aha_class / README.md
djsull's picture
Update README.md
6c4f437 verified
metadata
metrics:
  - f1
  - accuracy
model-index:
  - name: aha_class
    results: []

aha_class

This model is a fine-tuned version of klue/roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0885
  • F1: 0.9580
  • Roc Auc: 0.9679
  • Accuracy: 0.9391

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
No log 1.0 42 0.1723 0.95 0.9635 0.9217
No log 2.0 84 0.1160 0.9576 0.9659 0.9391
No log 3.0 126 0.1064 0.9492 0.9595 0.9304
No log 4.0 168 0.0974 0.9540 0.9657 0.9304
No log 5.0 210 0.0968 0.9580 0.9679 0.9304
No log 6.0 252 0.0885 0.9580 0.9679 0.9391
No log 7.0 294 0.1005 0.9580 0.9679 0.9391
No log 8.0 336 0.0921 0.9664 0.9743 0.9478
No log 9.0 378 0.1055 0.9580 0.9679 0.9391
No log 10.0 420 0.0988 0.9664 0.9743 0.9478
No log 11.0 462 0.0993 0.9664 0.9743 0.9478

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1