|
|
|
from diffusers import StableDiffusionPipeline, DDIMScheduler |
|
import time |
|
import os |
|
from huggingface_hub import HfApi |
|
import torch |
|
import sys |
|
from pathlib import Path |
|
import requests |
|
from PIL import Image |
|
from io import BytesIO |
|
|
|
begin = ["a picture of <rickmann>", "a photo of <rickmann>", "The <rickmann>", "an image of <rickmann>"] |
|
mid = ["", " on a bike", " with sunglasses", " at the beach", " in front of a mountain", " in the water", " on a boat", " at a fashion show", " as a superstar model", " while it snows", " in a forest", " with a nice landscape"] |
|
end = ["", " , disco light style", ", minecraft style", " , picasso style", " as a lego person", ""] |
|
|
|
api = HfApi() |
|
start_time = time.time() |
|
path = "patrickvonplaten/papa_out_5" |
|
pipe = StableDiffusionPipeline.from_pretrained(path, safety_checker=None, torch_dtype=torch.float16) |
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) |
|
pipe = pipe.to("cuda") |
|
counter = 0 |
|
|
|
for b in begin: |
|
for m in mid: |
|
for e in end: |
|
prompt = b + mid + e + ", highly realistic, super resolution, high quality photography, beautiful" |
|
|
|
images = pipe(prompt=prompt, num_images_per_prompt=2, eta=1.0, negative_prompt="ugly, bad quality, deformed", num_inference_steps=50).images |
|
|
|
for i, image in enumerate(images): |
|
path = os.path.join(Path.home(), "papa", f"{counter}.png") |
|
image.save(path) |
|
|
|
api.upload_file( |
|
path_or_fileobj=path, |
|
path_in_repo=path.split("/")[-1], |
|
repo_id="patrickvonplaten/papa", |
|
repo_type="dataset", |
|
) |
|
print(f"https://huggingface.co/datasets/patrickvonplaten/papa/blob/main/{counter}.png") |
|
counter += 1 |
|
|