#!/usr/bin/env python3 from diffusers import StableDiffusionPipeline, DDIMScheduler import time import os from huggingface_hub import HfApi import torch import sys from pathlib import Path import requests from PIL import Image from io import BytesIO begin = ["a picture of ", "a photo of ", "The ", "an image of "] mid = ["", " on a bike", " with sunglasses", " at the beach", " in front of a mountain", " in the water", " on a boat", " at a fashion show", " as a superstar model", " while it snows", " in a forest", " with a nice landscape"] end = ["", " , disco light style", ", minecraft style", " , picasso style", " as a lego person", ""] api = HfApi() start_time = time.time() path = "patrickvonplaten/papa_out_5" pipe = StableDiffusionPipeline.from_pretrained(path, safety_checker=None, torch_dtype=torch.float16) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe = pipe.to("cuda") counter = 0 for b in begin: for m in mid: for e in end: prompt = b + mid + e + ", highly realistic, super resolution, high quality photography, beautiful" images = pipe(prompt=prompt, num_images_per_prompt=2, eta=1.0, negative_prompt="ugly, bad quality, deformed", num_inference_steps=50).images for i, image in enumerate(images): path = os.path.join(Path.home(), "papa", f"{counter}.png") image.save(path) api.upload_file( path_or_fileobj=path, path_in_repo=path.split("/")[-1], repo_id="patrickvonplaten/papa", repo_type="dataset", ) print(f"https://huggingface.co/datasets/patrickvonplaten/papa/blob/main/{counter}.png") counter += 1