llama-3.2-350M-fourier
This model is a fine-tuned version of llama_small_config.json on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.5784
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.6741 | 0.0552 | 1000 | 4.6001 |
3.6587 | 0.1105 | 2000 | 3.7151 |
3.2297 | 0.1657 | 3000 | 3.2263 |
3.0288 | 0.2210 | 4000 | 3.0349 |
2.9584 | 0.2762 | 5000 | 2.9393 |
2.9657 | 0.3315 | 6000 | 2.9893 |
2.8654 | 0.3867 | 7000 | 2.8074 |
2.6982 | 0.4420 | 8000 | 2.7580 |
2.7292 | 0.4972 | 9000 | 2.7214 |
2.7568 | 0.5525 | 10000 | 2.6956 |
2.6141 | 0.6077 | 11000 | 2.6669 |
2.631 | 0.6630 | 12000 | 2.6421 |
2.6837 | 0.7182 | 13000 | 2.6185 |
2.6257 | 0.7734 | 14000 | 2.6032 |
2.5669 | 0.8287 | 15000 | 2.5918 |
2.6383 | 0.8839 | 16000 | 2.5836 |
2.5749 | 0.9392 | 17000 | 2.5796 |
2.613 | 0.9944 | 18000 | 2.5784 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.3.1+cu118
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 55
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.