|
from transformers import PretrainedConfig, AutoConfig |
|
|
|
class MLPConfig(PretrainedConfig): |
|
r""" |
|
Config for the MLP model. |
|
|
|
Args: |
|
embedding_size (int, 8): Size of the input embeddings (last dimension of the 3D input). |
|
sequence_length (int, 8): Number of tokens in input sequence (middle dimension; must be fixed). |
|
num_labels (int, 32): Number of output labels (for multi-label classification). |
|
hidden_size (int, 2048): Size of each hidden layer. |
|
num_hidden_layers (int, 3): How many hidden layers to stack. |
|
dropout (float, 0.1): Dropout probability for hidden layers. |
|
""" |
|
|
|
model_type = "mlp" |
|
|
|
def __init__( |
|
self, |
|
embedding_size=8, |
|
sequence_length=8, |
|
num_labels=32, |
|
hidden_size=2048, |
|
num_hidden_layers=3, |
|
dropout=0.1, |
|
**kwargs |
|
): |
|
super().__init__(**kwargs) |
|
self.embedding_size = embedding_size |
|
self.sequence_length = sequence_length |
|
self.num_labels = num_labels |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.dropout = dropout |
|
|
|
|
|
AutoConfig.register("mlp", MLPConfig) |
|
|