from transformers import PretrainedConfig, AutoConfig class MLPConfig(PretrainedConfig): r""" Config for the MLP model. Args: embedding_size (int, 8): Size of the input embeddings (last dimension of the 3D input). sequence_length (int, 8): Number of tokens in input sequence (middle dimension; must be fixed). num_labels (int, 32): Number of output labels (for multi-label classification). hidden_size (int, 2048): Size of each hidden layer. num_hidden_layers (int, 3): How many hidden layers to stack. dropout (float, 0.1): Dropout probability for hidden layers. """ model_type = "mlp" def __init__( self, embedding_size=8, sequence_length=8, num_labels=32, hidden_size=2048, num_hidden_layers=3, dropout=0.1, **kwargs ): super().__init__(**kwargs) self.embedding_size = embedding_size self.sequence_length = sequence_length self.num_labels = num_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.dropout = dropout AutoConfig.register("mlp", MLPConfig)