RuModernBERT-small
The Russian version of the modernized bidirectional encoder-only Transformer model, ModernBERT. RuModernBERT was pre-trained on approximately 2 trillion tokens of Russian, English, and code data with a context length of up to 8,192 tokens, using data from the internet, books, scientific sources, and social media.
Model Size | Hidden Dim | Num Layers | Vocab Size | Context Length | Task | |
---|---|---|---|---|---|---|
deepvk/RuModernBERT-small [this] | 35M | 384 | 12 | 50368 | 8192 | Masked LM |
deepvk/RuModernBERT-base | 150M | 768 | 22 | 50368 | 8192 | Masked LM |
Usage
Don't forget to update transformers
and install flash-attn
if your GPU supports it.
from transformers import AutoTokenizer, AutoModelForMaskedLM
# Prepare model
model_id = "deepvk/RuModernBERT-small"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForMaskedLM.from_pretrained(model_id, attn_implementation="flash_attention_2")
model = model.eval()
# Prepare input
text = "Мама мыла [MASK]."
inputs = tokenizer(text, return_tensors="pt")
masked_index = inputs["input_ids"][0].tolist().index(tokenizer.mask_token_id)
# Make prediction
outputs = model(**inputs)
# Show prediction
predicted_token_id = outputs.logits[0, masked_index].argmax(axis=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print("Predicted token:", predicted_token)
# Predicted token: посуду
Training Details
This is the small version with 35 million parameters.
Tokenizer
We trained a new tokenizer following the original configuration. We maintained the size of the vocabulary and added the same special tokens. The tokenizer was trained on a mixture of Russian and English from FineWeb.
Dataset
Pre-training includes three main stages: massive pre-training, context extension, and cooldown. Unlike the original model, we did not use the same data for all stages. For the second and third stages, we used cleaner data sources.
Data Source | Stage 1 | Stage 2 | Stage 3 |
---|---|---|---|
FineWeb (En+Ru) | ✅ | ❌ | ❌ |
CulturaX-Ru-Edu (Ru) | ❌ | ✅ | ❌ |
Wiki (En+Ru) | ✅ | ✅ | ✅ |
ArXiv (En) | ✅ | ✅ | ✅ |
Book (En+Ru) | ✅ | ✅ | ✅ |
Code | ✅ | ✅ | ✅ |
StackExchange (En+Ru) | ✅ | ✅ | ✅ |
Social (Ru) | ✅ | ✅ | ✅ |
Total Tokens | 1.3T | 250B | 50B |
Context length
In the first stage, the model was trained with a context length of 1,024
.
In the second and third stages, it was extended to 8,192
.
Evaluation
To evaluate the model, we measure quality on the encodechka
and Russian Super Glue (RSG)
benchmarks.
For RSG, we perform a grid search for optimal hyperparameters and report metrics from the dev split.
For a fair comparison, we compare the RuModernBERT model only with raw encoders that were not trained on retrieval or sentence embedding tasks.
Russian Super Glue

Model | RCB | PARus | MuSeRC | TERRa | RUSSE | RWSD | DaNetQA | Score |
---|---|---|---|---|---|---|---|---|
deepvk/deberta-v1-distill | 0.433 | 0.56 | 0.625 | 0.590 | 0.943 | 0.569 | 0.726 | 0.635 |
deepvk/deberta-v1-base | 0.450 | 0.61 | 0.722 | 0.704 | 0.948 | 0.578 | 0.760 | 0.682 |
ai-forever/ruBert-base | 0.491 | 0.61 | 0.663 | 0.769 | 0.962 | 0.574 | 0.678 | 0.678 |
deepvk/RuModernBERT-small [this] | 0.555 | 0.64 | 0.746 | 0.593 | 0.930 | 0.574 | 0.743 | 0.683 |
deepvk/RuModernBERT-base | 0.556 | 0.61 | 0.857 | 0.818 | 0.977 | 0.583 | 0.758 | 0.737 |
Encodechka
Model Size | STS-B | Paraphraser | XNLI | Sentiment | Toxicity | Inappropriateness | Intents | IntentsX | FactRu | RuDReC | Avg. S | Avg. S+W | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cointegrated/rubert-tiny | 11.9M | 0.66 | 0.53 | 0.40 | 0.71 | 0.89 | 0.68 | 0.70 | 0.58 | 0.24 | 0.34 | 0.645 | 0.575 |
deepvk/deberta-v1-distill | 81.5M | 0.70 | 0.57 | 0.38 | 0.77 | 0.98 | 0.79 | 0.77 | 0.36 | 0.36 | 0.44 | 0.665 | 0.612 |
deepvk/deberta-v1-base | 124M | 0.68 | 0.54 | 0.38 | 0.76 | 0.98 | 0.80 | 0.78 | 0.29 | 0.29 | 0.40 | 0.653 | 0.591 |
answerdotai/ModernBERT-base | 150M | 0.50 | 0.29 | 0.36 | 0.64 | 0.79 | 0.62 | 0.59 | 0.10 | 0.22 | 0.20 | 0.486 | 0.431 |
ai-forever/ruBert-base | 178M | 0.67 | 0.53 | 0.39 | 0.77 | 0.98 | 0.78 | 0.77 | 0.38 | 🥴 | 🥴 | 0.659 | 🥴 |
DeepPavlov/rubert-base-cased | 180M | 0.63 | 0.50 | 0.38 | 0.73 | 0.94 | 0.74 | 0.74 | 0.31 | 🥴 | 🥴 | 0.621 | 🥴 |
deepvk/RuModernBERT-small [this] | 35M | 0.64 | 0.50 | 0.36 | 0.72 | 0.95 | 0.73 | 0.72 | 0.47 | 0.28 | 0.26 | 0.636 | 0.563 |
deepvk/RuModernBERT-base | 150M | 0.67 | 0.54 | 0.35 | 0.75 | 0.97 | 0.76 | 0.76 | 0.58 | 0.37 | 0.36 | 0.673 | 0.611 |
Citation
@misc{deepvk2025rumodernbert,
title={RuModernBERT: Modernized BERT for Russian},
author={Spirin, Egor and Malashenko, Boris and Sokolov Andrey},
url={https://huggingface.co/deepvk/rumodernbert-base},
publisher={Hugging Face}
year={2025},
}
- Downloads last month
- 5,637