pangolin-large

This model is a fine-tuned version of answerdotai/ModernBERT-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0225
  • F1: 0.9904
  • Accuracy: 0.9937

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss F1 Accuracy
0.1519 0.1042 100 0.1354 0.9229 0.9534
0.068 0.2083 200 0.0553 0.9689 0.9797
0.0458 0.3125 300 0.0555 0.9758 0.9844
0.0389 0.4167 400 0.0442 0.9804 0.9874
0.04 0.5208 500 0.0323 0.9842 0.9897
0.0308 0.625 600 0.0357 0.9836 0.9894
0.0357 0.7292 700 0.0336 0.9861 0.9909
0.0306 0.8333 800 0.0299 0.9880 0.9921
0.0246 0.9375 900 0.0338 0.9846 0.9900
0.0195 1.0417 1000 0.0260 0.9881 0.9922
0.0124 1.1458 1100 0.0225 0.9887 0.9926
0.005 1.25 1200 0.0286 0.9874 0.9917
0.0075 1.3542 1300 0.0313 0.9897 0.9933
0.0065 1.4583 1400 0.0318 0.9892 0.9930
0.0093 1.5625 1500 0.0257 0.9903 0.9937
0.0099 1.6667 1600 0.0233 0.9889 0.9927
0.0054 1.7708 1700 0.0221 0.9905 0.9938
0.0077 1.875 1800 0.0222 0.9907 0.9939
0.0052 1.9792 1900 0.0225 0.9904 0.9937

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
16
Safetensors
Model size
396M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for dcarpintero/pangolin-guard-large

Finetuned
(83)
this model