|
# t5_wikisql_SQL2en |
|
--- |
|
language: en |
|
datasets: |
|
- wikisql |
|
--- |
|
|
|
This is a [t5-small](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned version on the [wikisql dataset](https://huggingface.co/datasets/wikisql) for **SQL** to **English** **translation** text2text mission. |
|
|
|
To load the model: |
|
(necessary packages: !pip install transformers sentencepiece) |
|
```python |
|
from transformers import AutoTokenizer, AutoModelWithLMHead |
|
tokenizer = AutoTokenizer.from_pretrained("dbernsohn/t5_wikisql_SQL2en") |
|
model = AutoModelWithLMHead.from_pretrained("dbernsohn/t5_wikisql_SQL2en") |
|
``` |
|
|
|
You can then use this model to translate SQL queries into plain english. |
|
|
|
```python |
|
query = "SELECT people FROM peoples where age > 10" |
|
input_text = f"translate SQL to English: {query} </s>" |
|
features = tokenizer([input_text], return_tensors='pt') |
|
|
|
output = model.generate(input_ids=features['input_ids'].cuda(), |
|
attention_mask=features['attention_mask'].cuda()) |
|
|
|
tokenizer.decode(output[0]) |
|
``` |
|
|
|
The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/SQLM) |
|
|
|
> Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/) |
|
|