|
# t5_wikisql_SQL2en |
|
--- |
|
language: en |
|
datasets: |
|
- wikisql |
|
--- |
|
|
|
[Googles T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned on [WikiSQL](https://github.com/salesforce/WikiSQL) for **English** to **SQL** **translation**. |
|
|
|
|
|
This is a [t5-small] (https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned version on the [wikisql dataset] (https://huggingface.co/datasets/wikisql). |
|
|
|
The model can be loaded like so: |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelWithLMHead |
|
tokenizer = AutoTokenizer.from_pretrained("dbernsohn/t5_wikisql_SQL2en") |
|
model = AutoModelWithLMHead.from_pretrained("dbernsohn/t5_wikisql_SQL2en") |
|
``` |
|
|
|
You can then use this model to translate SQL queries into plain english. |
|
|
|
```python |
|
query = "SELECT COUNT Params from model where location=HF-Hub" |
|
input_text = f"translate English to SQL: {query} </s>" |
|
features = tokenizer([input_text], return_tensors='pt') |
|
|
|
output = model.generate(input_ids=features['input_ids'].cuda(), |
|
attention_mask=features['attention_mask'].cuda()) |
|
|
|
tokenizer.decode(output[0]) |
|
``` |
|
|
|
The whole training process and hyperparameters are in my [GitHub repo] (https://github.com/DorBernsohn) |