SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'zara night eau de parfum envelops you in a captivating blend of softness and elegance creating a rich floral experience that feels both fresh and inviting this fragrance exudes a charming femininity where luscious floral notes mingle seamlessly with a warm creamy essence that evokes a sense of comfort users describe it as enchanting and seductive perfect for evening wear or special occasions the scent captures the essence of a night blooming with possibilities balancing the vibrancy of fresh petals with the alluring depth of sweet undertones reviewers appreciate its ability to linger gracefully on the skin leaving a trail of sophisticated allure without being overwhelming many find it to be a delightful choice for those seeking a fragrance that is both versatile and memorable with a touch of playfulness that hints at a romantic allure with a commendable rating zara night is celebrated for its accessibility and charm making it a favored addition to any perfume collection',
    'moss, sandalwood, mangosteen, cade oil',
    'whiskey, bellini, cognac, blackberry, juniper berry, iris root, aldehydes, red currant, flint, cumin, mango, sea salt, sea notes, birch, bitter orange, marine notes, grapefruit blossom, hawthorn, yuzu, clementine, cream, pineapple',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.8426
spearman_cosine 0.719

Training Details

Training Dataset

Unnamed Dataset

  • Size: 1,459 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 12 tokens
    • mean: 182.01 tokens
    • max: 256 tokens
    • min: 5 tokens
    • mean: 33.83 tokens
    • max: 101 tokens
    • min: 0.0
    • mean: 0.25
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    today tomorrow always in love by avon embodying a sense of timeless romance today tomorrow always in love is an enchanting fragrance that strikes a perfect balance between freshness and warmth this captivating scent opens with bright effervescent notes that evoke images of blooming gardens and sunlit moments as the fragrance unfolds it reveals a charming bouquet that celebrates femininity featuring delicate floral elements that wrap around the wearer like a cherished embrace users describe this perfume as uplifting and evocative making it an ideal companion for both everyday wear and special occasions many reviewers appreciate its elegant character highlighting its multifaceted nature that seamlessly transitions from day to night while some find it subtly sweet and playful others cherish its musky undertones which lend a depth that enhances its allure overall with a moderate rating that suggests a solid appreciation among wearers today tomorrow always in love captures the essence of ro... lotus, neroli, carambola, pomegranate, tuberose, gardenia, tuberose, pepper, musk, woody notes, amber 1.0
    mankind hero by kenneth cole encapsulates a vibrant and adventurous spirit designed for the modern man who embraces both freshness and sophistication this fragrance unfolds with an invigorating burst reminiscent of a brisk mountain breeze seamlessly paired with a zesty hint of citrus the aromatic heart introduces a soothing edginess where lavender and warm vanilla intertwine creating a balanced yet captivating profile as it settles an inviting warmth emerges enriched by woody undertones that linger pleasantly on the skin users have praised mankind hero for its versatile character suitable for both casual outings and formal occasions many describe it as longlasting and unique appreciating the balanced blend that feels both refreshing and comforting the overall sentiment reflects a sense of confidence and elegance making this scent a cherished addition to a mans fragrance collection it has garnered favorable reviews boasting a solid rating that underscores its appeal embrace the essence ... mountain air, lemon, coriander, lavender, vanilla, clary sage, plum, musk, coumarin, amberwood, oak moss 1.0
    black essential dark by avon immerse yourself in the captivating allure of black essential dark a fragrance that elegantly marries the depth of aromatic woods with a touch of leathers sensuality this modern scent envelops the wearer in a rich and sophisticated aura exuding confidence and a hint of mystery users describe it as both refreshing and spicy with an invigorating blend that feels perfect for the urban man who embraces lifes more daring adventures crafted with meticulous attention by perfumer mike parrot this fragrance has garnered a solid reputation amongst enthusiasts resulting in a commendable 405 rating from its admirers many find it to be versatile enough for both day and night wear making it an essential companion for various occasions reviewers frequently highlight its longlasting presence creating an inviting and memorable impression with a delicate yet commanding presence black essential dark is ideal for those looking to leave a mark without overpowering the senses wh... mint, bay leaf, cedar needle, passionflower, black cardamom, flint, rice, teak wood, cedar leaf 0.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • num_train_epochs: 5
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step spearman_cosine
1.0 46 0.5799
1.0870 50 0.6061
2.0 92 0.6940
2.1739 100 0.6940
3.0 138 0.7072
3.2609 150 0.7124
4.0 184 0.7150
4.3478 200 0.7177
5.0 230 0.7190

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.1
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
2
Safetensors
Model size
22.7M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for dawn78/minilm6_perfumerecommender_v1

Finetuned
(227)
this model

Evaluation results