Update hf_mamba_classification.py
Browse files- hf_mamba_classification.py +24 -70
hf_mamba_classification.py
CHANGED
|
@@ -1,14 +1,13 @@
|
|
| 1 |
import torch
|
| 2 |
from torch import nn
|
| 3 |
-
from torch.nn import
|
| 4 |
from transformers.models.mamba.modeling_mamba import (
|
| 5 |
-
MambaPreTrainedModel,
|
| 6 |
MambaModel,
|
| 7 |
-
MambaCache,
|
| 8 |
MAMBA_INPUTS_DOCSTRING,
|
| 9 |
MAMBA_START_DOCSTRING,
|
| 10 |
)
|
| 11 |
-
from transformers.modeling_outputs import SequenceClassifierOutputWithPast
|
| 12 |
from typing import List, Optional, Tuple, Union
|
| 13 |
from transformers.utils import (
|
| 14 |
ModelOutput,
|
|
@@ -45,33 +44,21 @@ class MambaSequenceClassifierOutput(ModelOutput):
|
|
| 45 |
|
| 46 |
loss: Optional[torch.FloatTensor] = None
|
| 47 |
logits: torch.FloatTensor = None
|
| 48 |
-
# cache_params: Optional[MambaCache] = None,
|
| 49 |
cache_params: Optional[List[torch.FloatTensor]] = None
|
| 50 |
-
# cache_params: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
| 51 |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 52 |
-
|
| 53 |
-
|
| 54 |
class MambaClassificationHead(nn.Module):
|
| 55 |
"""Head for sentence-level classification tasks."""
|
| 56 |
|
| 57 |
def __init__(self, config):
|
| 58 |
super().__init__()
|
| 59 |
-
# self.activation = ACT2FN[config.hidden_act]
|
| 60 |
-
# self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 61 |
-
# self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 62 |
self.out_proj = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
| 63 |
-
|
| 64 |
-
# module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 65 |
self.out_proj.weight.data.normal_(mean=0.0, std=config.initializer_range)
|
| 66 |
|
| 67 |
self.config = config
|
| 68 |
|
| 69 |
def forward(self, features, **kwargs):
|
| 70 |
-
# x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
| 71 |
-
# x = self.dropout(x)
|
| 72 |
-
# x = self.dense(x)
|
| 73 |
-
# x = self.activation(x)
|
| 74 |
-
# x = self.dropout(x)
|
| 75 |
x = features
|
| 76 |
x = self.out_proj(x)
|
| 77 |
return x
|
|
@@ -86,19 +73,15 @@ class MambaForSequenceClassification(MambaPreTrainedModel):
|
|
| 86 |
def __init__(self, config):
|
| 87 |
super().__init__(config)
|
| 88 |
self.num_labels = config.num_labels
|
| 89 |
-
# self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
| 90 |
self.backbone = MambaModel(config)
|
| 91 |
-
|
| 92 |
-
self.classifier = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
| 93 |
-
# self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
| 94 |
-
|
| 95 |
-
for param in self.base_model.parameters():
|
| 96 |
-
param.requires_grad = False
|
| 97 |
|
| 98 |
# Initialize weights and apply final processing
|
| 99 |
self.post_init()
|
| 100 |
|
| 101 |
-
@add_start_docstrings_to_model_forward(
|
|
|
|
|
|
|
| 102 |
@add_code_sample_docstrings(
|
| 103 |
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 104 |
output_type=MambaSequenceClassifierOutput,
|
|
@@ -122,19 +105,9 @@ class MambaForSequenceClassification(MambaPreTrainedModel):
|
|
| 122 |
If `config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
| 123 |
If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 124 |
"""
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
# if inputs_embeds is None:
|
| 129 |
-
# inputs_embeds = self.backbone.embeddings(input_ids)
|
| 130 |
-
|
| 131 |
-
# if self.backbone.gradient_checkpointing and self.training and use_cache:
|
| 132 |
-
# use_cache = False
|
| 133 |
-
|
| 134 |
-
# if cache_params is None and use_cache:
|
| 135 |
-
# cache_params = MambaCache(
|
| 136 |
-
# self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype
|
| 137 |
-
# )
|
| 138 |
|
| 139 |
mamba_outputs = self.backbone(
|
| 140 |
input_ids,
|
|
@@ -154,13 +127,15 @@ class MambaForSequenceClassification(MambaPreTrainedModel):
|
|
| 154 |
assert (
|
| 155 |
self.config.pad_token_id is not None or batch_size == 1
|
| 156 |
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
| 157 |
-
|
| 158 |
if self.config.pad_token_id is None:
|
| 159 |
sequence_lengths = -1
|
| 160 |
else:
|
| 161 |
if input_ids is not None:
|
| 162 |
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
| 163 |
-
sequence_lengths =
|
|
|
|
|
|
|
| 164 |
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
| 165 |
sequence_lengths = sequence_lengths.to(logits.device)
|
| 166 |
else:
|
|
@@ -170,34 +145,13 @@ class MambaForSequenceClassification(MambaPreTrainedModel):
|
|
| 170 |
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
| 171 |
)
|
| 172 |
|
| 173 |
-
pooled_logits = logits[
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 181 |
-
self.config.problem_type = "single_label_classification"
|
| 182 |
-
else:
|
| 183 |
-
self.config.problem_type = "multi_label_classification"
|
| 184 |
-
|
| 185 |
-
if self.config.problem_type == "regression":
|
| 186 |
-
loss_fct = MSELoss()
|
| 187 |
-
if self.num_labels == 1:
|
| 188 |
-
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 189 |
-
else:
|
| 190 |
-
loss = loss_fct(pooled_logits, labels)
|
| 191 |
-
elif self.config.problem_type == "single_label_classification":
|
| 192 |
-
loss_fct = CrossEntropyLoss()
|
| 193 |
-
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
| 194 |
-
elif self.config.problem_type == "multi_label_classification":
|
| 195 |
-
loss_fct = BCEWithLogitsLoss()
|
| 196 |
-
loss = loss_fct(pooled_logits, labels)
|
| 197 |
-
|
| 198 |
-
# if use_cache:
|
| 199 |
-
# cache_params.seqlen_offset += inputs_embeds.shape[1]
|
| 200 |
-
|
| 201 |
if not return_dict:
|
| 202 |
output = (pooled_logits,) + mamba_outputs[1:]
|
| 203 |
return ((loss,) + output) if loss is not None else output
|
|
@@ -207,4 +161,4 @@ class MambaForSequenceClassification(MambaPreTrainedModel):
|
|
| 207 |
logits=pooled_logits,
|
| 208 |
cache_params=mamba_outputs.cache_params,
|
| 209 |
hidden_states=mamba_outputs.hidden_states,
|
| 210 |
-
)
|
|
|
|
| 1 |
import torch
|
| 2 |
from torch import nn
|
| 3 |
+
from torch.nn import CrossEntropyLoss
|
| 4 |
from transformers.models.mamba.modeling_mamba import (
|
| 5 |
+
MambaPreTrainedModel,
|
| 6 |
MambaModel,
|
| 7 |
+
MambaCache,
|
| 8 |
MAMBA_INPUTS_DOCSTRING,
|
| 9 |
MAMBA_START_DOCSTRING,
|
| 10 |
)
|
|
|
|
| 11 |
from typing import List, Optional, Tuple, Union
|
| 12 |
from transformers.utils import (
|
| 13 |
ModelOutput,
|
|
|
|
| 44 |
|
| 45 |
loss: Optional[torch.FloatTensor] = None
|
| 46 |
logits: torch.FloatTensor = None
|
|
|
|
| 47 |
cache_params: Optional[List[torch.FloatTensor]] = None
|
|
|
|
| 48 |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 49 |
+
|
| 50 |
+
|
| 51 |
class MambaClassificationHead(nn.Module):
|
| 52 |
"""Head for sentence-level classification tasks."""
|
| 53 |
|
| 54 |
def __init__(self, config):
|
| 55 |
super().__init__()
|
|
|
|
|
|
|
|
|
|
| 56 |
self.out_proj = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
|
|
|
|
|
|
| 57 |
self.out_proj.weight.data.normal_(mean=0.0, std=config.initializer_range)
|
| 58 |
|
| 59 |
self.config = config
|
| 60 |
|
| 61 |
def forward(self, features, **kwargs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
x = features
|
| 63 |
x = self.out_proj(x)
|
| 64 |
return x
|
|
|
|
| 73 |
def __init__(self, config):
|
| 74 |
super().__init__(config)
|
| 75 |
self.num_labels = config.num_labels
|
|
|
|
| 76 |
self.backbone = MambaModel(config)
|
| 77 |
+
self.classifier = MambaClassificationHead(config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
# Initialize weights and apply final processing
|
| 80 |
self.post_init()
|
| 81 |
|
| 82 |
+
@add_start_docstrings_to_model_forward(
|
| 83 |
+
MAMBA_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
| 84 |
+
)
|
| 85 |
@add_code_sample_docstrings(
|
| 86 |
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 87 |
output_type=MambaSequenceClassifierOutput,
|
|
|
|
| 105 |
If `config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
| 106 |
If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 107 |
"""
|
| 108 |
+
return_dict = (
|
| 109 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 110 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
mamba_outputs = self.backbone(
|
| 113 |
input_ids,
|
|
|
|
| 127 |
assert (
|
| 128 |
self.config.pad_token_id is not None or batch_size == 1
|
| 129 |
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
| 130 |
+
|
| 131 |
if self.config.pad_token_id is None:
|
| 132 |
sequence_lengths = -1
|
| 133 |
else:
|
| 134 |
if input_ids is not None:
|
| 135 |
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
| 136 |
+
sequence_lengths = (
|
| 137 |
+
torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
| 138 |
+
)
|
| 139 |
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
| 140 |
sequence_lengths = sequence_lengths.to(logits.device)
|
| 141 |
else:
|
|
|
|
| 145 |
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
| 146 |
)
|
| 147 |
|
| 148 |
+
pooled_logits = logits[
|
| 149 |
+
torch.arange(batch_size, device=logits.device), sequence_lengths
|
| 150 |
+
]
|
| 151 |
+
|
| 152 |
+
loss_fct = CrossEntropyLoss()
|
| 153 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
| 154 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
if not return_dict:
|
| 156 |
output = (pooled_logits,) + mamba_outputs[1:]
|
| 157 |
return ((loss,) + output) if loss is not None else output
|
|
|
|
| 161 |
logits=pooled_logits,
|
| 162 |
cache_params=mamba_outputs.cache_params,
|
| 163 |
hidden_states=mamba_outputs.hidden_states,
|
| 164 |
+
)
|