Update hf_mamba_classification.py
Browse files- hf_mamba_classification.py +24 -70
hf_mamba_classification.py
CHANGED
@@ -1,14 +1,13 @@
|
|
1 |
import torch
|
2 |
from torch import nn
|
3 |
-
from torch.nn import
|
4 |
from transformers.models.mamba.modeling_mamba import (
|
5 |
-
MambaPreTrainedModel,
|
6 |
MambaModel,
|
7 |
-
MambaCache,
|
8 |
MAMBA_INPUTS_DOCSTRING,
|
9 |
MAMBA_START_DOCSTRING,
|
10 |
)
|
11 |
-
from transformers.modeling_outputs import SequenceClassifierOutputWithPast
|
12 |
from typing import List, Optional, Tuple, Union
|
13 |
from transformers.utils import (
|
14 |
ModelOutput,
|
@@ -45,33 +44,21 @@ class MambaSequenceClassifierOutput(ModelOutput):
|
|
45 |
|
46 |
loss: Optional[torch.FloatTensor] = None
|
47 |
logits: torch.FloatTensor = None
|
48 |
-
# cache_params: Optional[MambaCache] = None,
|
49 |
cache_params: Optional[List[torch.FloatTensor]] = None
|
50 |
-
# cache_params: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
51 |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
52 |
-
|
53 |
-
|
54 |
class MambaClassificationHead(nn.Module):
|
55 |
"""Head for sentence-level classification tasks."""
|
56 |
|
57 |
def __init__(self, config):
|
58 |
super().__init__()
|
59 |
-
# self.activation = ACT2FN[config.hidden_act]
|
60 |
-
# self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
61 |
-
# self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
62 |
self.out_proj = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
63 |
-
|
64 |
-
# module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
65 |
self.out_proj.weight.data.normal_(mean=0.0, std=config.initializer_range)
|
66 |
|
67 |
self.config = config
|
68 |
|
69 |
def forward(self, features, **kwargs):
|
70 |
-
# x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
71 |
-
# x = self.dropout(x)
|
72 |
-
# x = self.dense(x)
|
73 |
-
# x = self.activation(x)
|
74 |
-
# x = self.dropout(x)
|
75 |
x = features
|
76 |
x = self.out_proj(x)
|
77 |
return x
|
@@ -86,19 +73,15 @@ class MambaForSequenceClassification(MambaPreTrainedModel):
|
|
86 |
def __init__(self, config):
|
87 |
super().__init__(config)
|
88 |
self.num_labels = config.num_labels
|
89 |
-
# self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
90 |
self.backbone = MambaModel(config)
|
91 |
-
|
92 |
-
self.classifier = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
93 |
-
# self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
94 |
-
|
95 |
-
for param in self.base_model.parameters():
|
96 |
-
param.requires_grad = False
|
97 |
|
98 |
# Initialize weights and apply final processing
|
99 |
self.post_init()
|
100 |
|
101 |
-
@add_start_docstrings_to_model_forward(
|
|
|
|
|
102 |
@add_code_sample_docstrings(
|
103 |
checkpoint=_CHECKPOINT_FOR_DOC,
|
104 |
output_type=MambaSequenceClassifierOutput,
|
@@ -122,19 +105,9 @@ class MambaForSequenceClassification(MambaPreTrainedModel):
|
|
122 |
If `config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
123 |
If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
124 |
"""
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
# if inputs_embeds is None:
|
129 |
-
# inputs_embeds = self.backbone.embeddings(input_ids)
|
130 |
-
|
131 |
-
# if self.backbone.gradient_checkpointing and self.training and use_cache:
|
132 |
-
# use_cache = False
|
133 |
-
|
134 |
-
# if cache_params is None and use_cache:
|
135 |
-
# cache_params = MambaCache(
|
136 |
-
# self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype
|
137 |
-
# )
|
138 |
|
139 |
mamba_outputs = self.backbone(
|
140 |
input_ids,
|
@@ -154,13 +127,15 @@ class MambaForSequenceClassification(MambaPreTrainedModel):
|
|
154 |
assert (
|
155 |
self.config.pad_token_id is not None or batch_size == 1
|
156 |
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
157 |
-
|
158 |
if self.config.pad_token_id is None:
|
159 |
sequence_lengths = -1
|
160 |
else:
|
161 |
if input_ids is not None:
|
162 |
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
163 |
-
sequence_lengths =
|
|
|
|
|
164 |
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
165 |
sequence_lengths = sequence_lengths.to(logits.device)
|
166 |
else:
|
@@ -170,34 +145,13 @@ class MambaForSequenceClassification(MambaPreTrainedModel):
|
|
170 |
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
171 |
)
|
172 |
|
173 |
-
pooled_logits = logits[
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
181 |
-
self.config.problem_type = "single_label_classification"
|
182 |
-
else:
|
183 |
-
self.config.problem_type = "multi_label_classification"
|
184 |
-
|
185 |
-
if self.config.problem_type == "regression":
|
186 |
-
loss_fct = MSELoss()
|
187 |
-
if self.num_labels == 1:
|
188 |
-
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
189 |
-
else:
|
190 |
-
loss = loss_fct(pooled_logits, labels)
|
191 |
-
elif self.config.problem_type == "single_label_classification":
|
192 |
-
loss_fct = CrossEntropyLoss()
|
193 |
-
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
194 |
-
elif self.config.problem_type == "multi_label_classification":
|
195 |
-
loss_fct = BCEWithLogitsLoss()
|
196 |
-
loss = loss_fct(pooled_logits, labels)
|
197 |
-
|
198 |
-
# if use_cache:
|
199 |
-
# cache_params.seqlen_offset += inputs_embeds.shape[1]
|
200 |
-
|
201 |
if not return_dict:
|
202 |
output = (pooled_logits,) + mamba_outputs[1:]
|
203 |
return ((loss,) + output) if loss is not None else output
|
@@ -207,4 +161,4 @@ class MambaForSequenceClassification(MambaPreTrainedModel):
|
|
207 |
logits=pooled_logits,
|
208 |
cache_params=mamba_outputs.cache_params,
|
209 |
hidden_states=mamba_outputs.hidden_states,
|
210 |
-
)
|
|
|
1 |
import torch
|
2 |
from torch import nn
|
3 |
+
from torch.nn import CrossEntropyLoss
|
4 |
from transformers.models.mamba.modeling_mamba import (
|
5 |
+
MambaPreTrainedModel,
|
6 |
MambaModel,
|
7 |
+
MambaCache,
|
8 |
MAMBA_INPUTS_DOCSTRING,
|
9 |
MAMBA_START_DOCSTRING,
|
10 |
)
|
|
|
11 |
from typing import List, Optional, Tuple, Union
|
12 |
from transformers.utils import (
|
13 |
ModelOutput,
|
|
|
44 |
|
45 |
loss: Optional[torch.FloatTensor] = None
|
46 |
logits: torch.FloatTensor = None
|
|
|
47 |
cache_params: Optional[List[torch.FloatTensor]] = None
|
|
|
48 |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
49 |
+
|
50 |
+
|
51 |
class MambaClassificationHead(nn.Module):
|
52 |
"""Head for sentence-level classification tasks."""
|
53 |
|
54 |
def __init__(self, config):
|
55 |
super().__init__()
|
|
|
|
|
|
|
56 |
self.out_proj = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
|
|
|
|
57 |
self.out_proj.weight.data.normal_(mean=0.0, std=config.initializer_range)
|
58 |
|
59 |
self.config = config
|
60 |
|
61 |
def forward(self, features, **kwargs):
|
|
|
|
|
|
|
|
|
|
|
62 |
x = features
|
63 |
x = self.out_proj(x)
|
64 |
return x
|
|
|
73 |
def __init__(self, config):
|
74 |
super().__init__(config)
|
75 |
self.num_labels = config.num_labels
|
|
|
76 |
self.backbone = MambaModel(config)
|
77 |
+
self.classifier = MambaClassificationHead(config)
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
# Initialize weights and apply final processing
|
80 |
self.post_init()
|
81 |
|
82 |
+
@add_start_docstrings_to_model_forward(
|
83 |
+
MAMBA_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
84 |
+
)
|
85 |
@add_code_sample_docstrings(
|
86 |
checkpoint=_CHECKPOINT_FOR_DOC,
|
87 |
output_type=MambaSequenceClassifierOutput,
|
|
|
105 |
If `config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
106 |
If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
107 |
"""
|
108 |
+
return_dict = (
|
109 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
110 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
mamba_outputs = self.backbone(
|
113 |
input_ids,
|
|
|
127 |
assert (
|
128 |
self.config.pad_token_id is not None or batch_size == 1
|
129 |
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
130 |
+
|
131 |
if self.config.pad_token_id is None:
|
132 |
sequence_lengths = -1
|
133 |
else:
|
134 |
if input_ids is not None:
|
135 |
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
136 |
+
sequence_lengths = (
|
137 |
+
torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
138 |
+
)
|
139 |
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
140 |
sequence_lengths = sequence_lengths.to(logits.device)
|
141 |
else:
|
|
|
145 |
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
146 |
)
|
147 |
|
148 |
+
pooled_logits = logits[
|
149 |
+
torch.arange(batch_size, device=logits.device), sequence_lengths
|
150 |
+
]
|
151 |
+
|
152 |
+
loss_fct = CrossEntropyLoss()
|
153 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
154 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
if not return_dict:
|
156 |
output = (pooled_logits,) + mamba_outputs[1:]
|
157 |
return ((loss,) + output) if loss is not None else output
|
|
|
161 |
logits=pooled_logits,
|
162 |
cache_params=mamba_outputs.cache_params,
|
163 |
hidden_states=mamba_outputs.hidden_states,
|
164 |
+
)
|