Upload hf_mamba_classification.py
Browse files- hf_mamba_classification.py +210 -0
hf_mamba_classification.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
4 |
+
from transformers.models.mamba.modeling_mamba import (
|
5 |
+
MambaPreTrainedModel,
|
6 |
+
MambaModel,
|
7 |
+
MambaCache,
|
8 |
+
MAMBA_INPUTS_DOCSTRING,
|
9 |
+
MAMBA_START_DOCSTRING,
|
10 |
+
)
|
11 |
+
from transformers.modeling_outputs import SequenceClassifierOutputWithPast
|
12 |
+
from typing import List, Optional, Tuple, Union
|
13 |
+
from transformers.utils import (
|
14 |
+
ModelOutput,
|
15 |
+
add_start_docstrings,
|
16 |
+
add_start_docstrings_to_model_forward,
|
17 |
+
add_code_sample_docstrings,
|
18 |
+
)
|
19 |
+
from dataclasses import dataclass
|
20 |
+
|
21 |
+
|
22 |
+
_CHECKPOINT_FOR_DOC = "state-spaces/mamba-130m-hf"
|
23 |
+
_CONFIG_FOR_DOC = "MambaConfig"
|
24 |
+
|
25 |
+
|
26 |
+
@dataclass
|
27 |
+
class MambaSequenceClassifierOutput(ModelOutput):
|
28 |
+
"""
|
29 |
+
Base class for outputs of sentence classification models.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
33 |
+
Classification (or regression if config.num_labels==1) loss.
|
34 |
+
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
|
35 |
+
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
36 |
+
cache_params (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`):
|
37 |
+
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
38 |
+
avoid providing the old `input_ids`.
|
39 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
40 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
41 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
42 |
+
|
43 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
44 |
+
"""
|
45 |
+
|
46 |
+
loss: Optional[torch.FloatTensor] = None
|
47 |
+
logits: torch.FloatTensor = None
|
48 |
+
# cache_params: Optional[MambaCache] = None,
|
49 |
+
cache_params: Optional[List[torch.FloatTensor]] = None
|
50 |
+
# cache_params: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
51 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
52 |
+
|
53 |
+
|
54 |
+
class MambaClassificationHead(nn.Module):
|
55 |
+
"""Head for sentence-level classification tasks."""
|
56 |
+
|
57 |
+
def __init__(self, config):
|
58 |
+
super().__init__()
|
59 |
+
# self.activation = ACT2FN[config.hidden_act]
|
60 |
+
# self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
61 |
+
# self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
62 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
63 |
+
|
64 |
+
# module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
65 |
+
self.out_proj.weight.data.normal_(mean=0.0, std=config.initializer_range)
|
66 |
+
|
67 |
+
self.config = config
|
68 |
+
|
69 |
+
def forward(self, features, **kwargs):
|
70 |
+
# x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
71 |
+
# x = self.dropout(x)
|
72 |
+
# x = self.dense(x)
|
73 |
+
# x = self.activation(x)
|
74 |
+
# x = self.dropout(x)
|
75 |
+
x = features
|
76 |
+
x = self.out_proj(x)
|
77 |
+
return x
|
78 |
+
|
79 |
+
|
80 |
+
@add_start_docstrings(
|
81 |
+
"""Mamba Model backbone with a sequence classification/regression head on top (a linear layer on top of
|
82 |
+
the pooled output) e.g. for GLUE tasks.""",
|
83 |
+
MAMBA_START_DOCSTRING,
|
84 |
+
)
|
85 |
+
class MambaForSequenceClassification(MambaPreTrainedModel):
|
86 |
+
def __init__(self, config):
|
87 |
+
super().__init__(config)
|
88 |
+
self.num_labels = config.num_labels
|
89 |
+
# self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
90 |
+
self.backbone = MambaModel(config)
|
91 |
+
# self.classifier = MambaClassificationHead(config)
|
92 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
93 |
+
# self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
94 |
+
|
95 |
+
for param in self.base_model.parameters():
|
96 |
+
param.requires_grad = False
|
97 |
+
|
98 |
+
# Initialize weights and apply final processing
|
99 |
+
self.post_init()
|
100 |
+
|
101 |
+
@add_start_docstrings_to_model_forward(MAMBA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
102 |
+
@add_code_sample_docstrings(
|
103 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
104 |
+
output_type=MambaSequenceClassifierOutput,
|
105 |
+
config_class=_CONFIG_FOR_DOC,
|
106 |
+
)
|
107 |
+
def forward(
|
108 |
+
self,
|
109 |
+
input_ids: Optional[torch.LongTensor] = None,
|
110 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
111 |
+
cache_params: Optional[MambaCache] = None,
|
112 |
+
use_cache: Optional[bool] = None,
|
113 |
+
labels: Optional[torch.LongTensor] = None,
|
114 |
+
output_hidden_states: Optional[bool] = None,
|
115 |
+
return_dict: Optional[bool] = None,
|
116 |
+
**kwargs,
|
117 |
+
) -> Union[Tuple, MambaSequenceClassifierOutput]:
|
118 |
+
r"""
|
119 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
120 |
+
Labels for computing the sequence classification/regression loss.
|
121 |
+
Indices should be in `[0, ..., config.num_labels - 1]`.
|
122 |
+
If `config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
123 |
+
If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
124 |
+
"""
|
125 |
+
# use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
126 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
127 |
+
|
128 |
+
# if inputs_embeds is None:
|
129 |
+
# inputs_embeds = self.backbone.embeddings(input_ids)
|
130 |
+
|
131 |
+
# if self.backbone.gradient_checkpointing and self.training and use_cache:
|
132 |
+
# use_cache = False
|
133 |
+
|
134 |
+
# if cache_params is None and use_cache:
|
135 |
+
# cache_params = MambaCache(
|
136 |
+
# self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype
|
137 |
+
# )
|
138 |
+
|
139 |
+
mamba_outputs = self.backbone(
|
140 |
+
input_ids,
|
141 |
+
cache_params=cache_params,
|
142 |
+
use_cache=use_cache,
|
143 |
+
inputs_embeds=inputs_embeds,
|
144 |
+
output_hidden_states=output_hidden_states,
|
145 |
+
return_dict=return_dict,
|
146 |
+
)
|
147 |
+
hidden_states = mamba_outputs[0]
|
148 |
+
logits = self.classifier(hidden_states)
|
149 |
+
|
150 |
+
if input_ids is not None:
|
151 |
+
batch_size, sequence_length = input_ids.shape[:2]
|
152 |
+
else:
|
153 |
+
batch_size, sequence_length = inputs_embeds.shape[:2]
|
154 |
+
assert (
|
155 |
+
self.config.pad_token_id is not None or batch_size == 1
|
156 |
+
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
157 |
+
|
158 |
+
if self.config.pad_token_id is None:
|
159 |
+
sequence_lengths = -1
|
160 |
+
else:
|
161 |
+
if input_ids is not None:
|
162 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
163 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
164 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
165 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
166 |
+
else:
|
167 |
+
sequence_lengths = -1
|
168 |
+
print(
|
169 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
170 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
171 |
+
)
|
172 |
+
|
173 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
174 |
+
|
175 |
+
loss = None
|
176 |
+
if labels is not None:
|
177 |
+
if self.config.problem_type is None:
|
178 |
+
if self.num_labels == 1:
|
179 |
+
self.config.problem_type = "regression"
|
180 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
181 |
+
self.config.problem_type = "single_label_classification"
|
182 |
+
else:
|
183 |
+
self.config.problem_type = "multi_label_classification"
|
184 |
+
|
185 |
+
if self.config.problem_type == "regression":
|
186 |
+
loss_fct = MSELoss()
|
187 |
+
if self.num_labels == 1:
|
188 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
189 |
+
else:
|
190 |
+
loss = loss_fct(pooled_logits, labels)
|
191 |
+
elif self.config.problem_type == "single_label_classification":
|
192 |
+
loss_fct = CrossEntropyLoss()
|
193 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
194 |
+
elif self.config.problem_type == "multi_label_classification":
|
195 |
+
loss_fct = BCEWithLogitsLoss()
|
196 |
+
loss = loss_fct(pooled_logits, labels)
|
197 |
+
|
198 |
+
# if use_cache:
|
199 |
+
# cache_params.seqlen_offset += inputs_embeds.shape[1]
|
200 |
+
|
201 |
+
if not return_dict:
|
202 |
+
output = (pooled_logits,) + mamba_outputs[1:]
|
203 |
+
return ((loss,) + output) if loss is not None else output
|
204 |
+
|
205 |
+
return MambaSequenceClassifierOutput(
|
206 |
+
loss=loss,
|
207 |
+
logits=pooled_logits,
|
208 |
+
cache_params=mamba_outputs.cache_params,
|
209 |
+
hidden_states=mamba_outputs.hidden_states,
|
210 |
+
)
|