arxiv_id
stringlengths
10
10
published
stringlengths
20
20
titles
stringlengths
9
243
authors
listlengths
1
389
abstract
stringlengths
96
3.09k
categories
listlengths
1
10
selected
bool
2 classes
2306.03435
2023-06-06T06:23:38Z
On the Role of Attention in Prompt-tuning
[ "Samet Oymak", "Ankit Singh Rawat", "Mahdi Soltanolkotabi", "Christos Thrampoulidis" ]
Prompt-tuning is an emerging strategy to adapt large language models (LLM) to downstream tasks by learning a (soft-)prompt parameter from data. Despite its success in LLMs, there is limited theoretical understanding of the power of prompt-tuning and the role of the attention mechanism in prompting. In this work, we explore prompt-tuning for one-layer attention architectures and study contextual mixture-models where each input token belongs to a context-relevant or -irrelevant set. We isolate the role of prompt-tuning through a self-contained prompt-attention model. Our contributions are as follows: (1) We show that softmax-prompt-attention is provably more expressive than softmax-self-attention and linear-prompt-attention under our contextual data model. (2) We analyze the initial trajectory of gradient descent and show that it learns the prompt and prediction head with near-optimal sample complexity and demonstrate how prompt can provably attend to sparse context-relevant tokens. (3) Assuming a known prompt but an unknown prediction head, we characterize the exact finite sample performance of prompt-attention which reveals the fundamental performance limits and the precise benefit of the context information. We also provide experiments that verify our theoretical insights on real datasets and demonstrate how prompt-tuning enables the model to attend to context-relevant information.
[ "cs.LG", "cs.CL", "stat.ML" ]
false
2306.03443
2023-06-06T06:49:41Z
Alzheimer Disease Classification through ASR-based Transcriptions: Exploring the Impact of Punctuation and Pauses
[ "Lucía Gómez-Zaragozá", "Simone Wills", "Cristian Tejedor-Garcia", "Javier Marín-Morales", "Mariano Alcañiz", "Helmer Strik" ]
Alzheimer's Disease (AD) is the world's leading neurodegenerative disease, which often results in communication difficulties. Analysing speech can serve as a diagnostic tool for identifying the condition. The recent ADReSS challenge provided a dataset for AD classification and highlighted the utility of manual transcriptions. In this study, we used the new state-of-the-art Automatic Speech Recognition (ASR) model Whisper to obtain the transcriptions, which also include automatic punctuation. The classification models achieved test accuracy scores of 0.854 and 0.833 combining the pretrained FastText word embeddings and recurrent neural networks on manual and ASR transcripts respectively. Additionally, we explored the influence of including pause information and punctuation in the transcriptions. We found that punctuation only yielded minor improvements in some cases, whereas pause encoding aided AD classification for both manual and ASR transcriptions across all approaches investigated.
[ "cs.CL", "cs.SD", "eess.AS" ]
false
2306.03444
2023-06-06T06:49:58Z
Automatic Assessment of Oral Reading Accuracy for Reading Diagnostics
[ "Bo Molenaar", "Cristian Tejedor-Garcia", "Helmer Strik", "Catia Cucchiarini" ]
Automatic assessment of reading fluency using automatic speech recognition (ASR) holds great potential for early detection of reading difficulties and subsequent timely intervention. Precise assessment tools are required, especially for languages other than English. In this study, we evaluate six state-of-the-art ASR-based systems for automatically assessing Dutch oral reading accuracy using Kaldi and Whisper. Results show our most successful system reached substantial agreement with human evaluations (MCC = .63). The same system reached the highest correlation between forced decoding confidence scores and word correctness (r = .45). This system's language model (LM) consisted of manual orthographic transcriptions and reading prompts of the test data, which shows that including reading errors in the LM improves assessment performance. We discuss the implications for developing automatic assessment systems and identify possible avenues of future research.
[ "cs.CL", "cs.SD", "eess.AS" ]
false
2306.03460
2023-06-06T07:28:49Z
Natural Language Commanding via Program Synthesis
[ "Apurva Gandhi", "Thong Q. Nguyen", "Huitian Jiao", "Robert Steen", "Ameya Bhatawdekar" ]
We present Semantic Interpreter, a natural language-friendly AI system for productivity software such as Microsoft Office that leverages large language models (LLMs) to execute user intent across application features. While LLMs are excellent at understanding user intent expressed as natural language, they are not sufficient for fulfilling application-specific user intent that requires more than text-to-text transformations. We therefore introduce the Office Domain Specific Language (ODSL), a concise, high-level language specialized for performing actions in and interacting with entities in Office applications. Semantic Interpreter leverages an Analysis-Retrieval prompt construction method with LLMs for program synthesis, translating natural language user utterances to ODSL programs that can be transpiled to application APIs and then executed. We focus our discussion primarily on a research exploration for Microsoft PowerPoint.
[ "cs.LG", "cs.CL", "cs.HC" ]
true
2306.03723
2023-06-06T14:41:30Z
Financial Numeric Extreme Labelling: A Dataset and Benchmarking for XBRL Tagging
[ "Soumya Sharma", "Subhendu Khatuya", "Manjunath Hegde", "Afreen Shaikh. Koustuv Dasgupta", "Pawan Goyal", "Niloy Ganguly" ]
The U.S. Securities and Exchange Commission (SEC) mandates all public companies to file periodic financial statements that should contain numerals annotated with a particular label from a taxonomy. In this paper, we formulate the task of automating the assignment of a label to a particular numeral span in a sentence from an extremely large label set. Towards this task, we release a dataset, Financial Numeric Extreme Labelling (FNXL), annotated with 2,794 labels. We benchmark the performance of the FNXL dataset by formulating the task as (a) a sequence labelling problem and (b) a pipeline with span extraction followed by Extreme Classification. Although the two approaches perform comparably, the pipeline solution provides a slight edge for the least frequent labels.
[ "cs.CL", "cs.AI", "cs.CE" ]
false
2306.03902
2023-06-06T17:58:44Z
Utterance Classification with Logical Neural Network: Explainable AI for Mental Disorder Diagnosis
[ "Yeldar Toleubay", "Don Joven Agravante", "Daiki Kimura", "Baihan Lin", "Djallel Bouneffouf", "Michiaki Tatsubori" ]
In response to the global challenge of mental health problems, we proposes a Logical Neural Network (LNN) based Neuro-Symbolic AI method for the diagnosis of mental disorders. Due to the lack of effective therapy coverage for mental disorders, there is a need for an AI solution that can assist therapists with the diagnosis. However, current Neural Network models lack explainability and may not be trusted by therapists. The LNN is a Recurrent Neural Network architecture that combines the learning capabilities of neural networks with the reasoning capabilities of classical logic-based AI. The proposed system uses input predicates from clinical interviews to output a mental disorder class, and different predicate pruning techniques are used to achieve scalability and higher scores. In addition, we provide an insight extraction method to aid therapists with their diagnosis. The proposed system addresses the lack of explainability of current Neural Network models and provides a more trustworthy solution for mental disorder diagnosis.
[ "cs.CL", "cs.AI", "cs.LO", "q-bio.NC" ]
false
2306.03917
2023-06-06T18:00:01Z
Turning large language models into cognitive models
[ "Marcel Binz", "Eric Schulz" ]
Large language models are powerful systems that excel at many tasks, ranging from translation to mathematical reasoning. Yet, at the same time, these models often show unhuman-like characteristics. In the present paper, we address this gap and ask whether large language models can be turned into cognitive models. We find that -- after finetuning them on data from psychological experiments -- these models offer accurate representations of human behavior, even outperforming traditional cognitive models in two decision-making domains. In addition, we show that their representations contain the information necessary to model behavior on the level of individual subjects. Finally, we demonstrate that finetuning on multiple tasks enables large language models to predict human behavior in a previously unseen task. Taken together, these results suggest that large, pre-trained models can be adapted to become generalist cognitive models, thereby opening up new research directions that could transform cognitive psychology and the behavioral sciences as a whole.
[ "cs.CL", "cs.AI", "cs.LG" ]
false
2306.05432
2023-06-06T15:22:16Z
Towards End-to-end Speech-to-text Summarization
[ "Raul Monteiro", "Diogo Pernes" ]
Speech-to-text (S2T) summarization is a time-saving technique for filtering and keeping up with the broadcast news uploaded online on a daily basis. The rise of large language models from deep learning with impressive text generation capabilities has placed the research focus on summarization systems that produce paraphrased compact versions of the document content, also known as abstractive summaries. End-to-end (E2E) modelling of S2T abstractive summarization is a promising approach that offers the possibility of generating rich latent representations that leverage non-verbal and acoustic information, as opposed to the use of only linguistic information from automatically generated transcripts in cascade systems. However, the few literature on E2E modelling of this task fails on exploring different domains, namely broadcast news, which is challenging domain where large and diversified volumes of data are presented to the user every day. We model S2T summarization both with a cascade and an E2E system for a corpus of broadcast news in French. Our novel E2E model leverages external data by resorting to transfer learning from a pre-trained T2T summarizer. Experiments show that both our cascade and E2E abstractive summarizers are stronger than an extractive baseline. However, the performance of the E2E model still lies behind the cascade one, which is object of an extensive analysis that includes future directions to close that gap.
[ "cs.CL", "cs.AI", "cs.LG", "eess.AS" ]
false
2306.06083
2023-06-06T21:13:08Z
Improving Fairness and Robustness in End-to-End Speech Recognition through unsupervised clustering
[ "Irina-Elena Veliche", "Pascale Fung" ]
The challenge of fairness arises when Automatic Speech Recognition (ASR) systems do not perform equally well for all sub-groups of the population. In the past few years there have been many improvements in overall speech recognition quality, but without any particular focus on advancing Equality and Equity for all user groups for whom systems do not perform well. ASR fairness is therefore also a robustness issue. Meanwhile, data privacy also takes priority in production systems. In this paper, we present a privacy preserving approach to improve fairness and robustness of end-to-end ASR without using metadata, zip codes, or even speaker or utterance embeddings directly in training. We extract utterance level embeddings using a speaker ID model trained on a public dataset, which we then use in an unsupervised fashion to create acoustic clusters. We use cluster IDs instead of speaker utterance embeddings as extra features during model training, which shows improvements for all demographic groups and in particular for different accents.
[ "cs.SD", "cs.CL", "cs.LG", "eess.AS" ]
false
2306.03322
2023-06-06T00:23:28Z
Stochastic Multi-Level Compositional Optimization Algorithms over Networks with Level-Independent Convergence Rate
[ "Hongchang Gao" ]
Stochastic multi-level compositional optimization problems cover many new machine learning paradigms, e.g., multi-step model-agnostic meta-learning, which require efficient optimization algorithms for large-scale applications. This paper studies the decentralized stochastic multi-level optimization algorithm, which is challenging because the multi-level structure and decentralized communication scheme may make the number of levels affect the order of the convergence rate. To this end, we develop two novel decentralized optimization algorithms to deal with the multi-level function and its gradient. Our theoretical results show that both algorithms can achieve the level-independent convergence rate for nonconvex problems under much milder conditions compared with existing single-machine algorithms. To the best of our knowledge, this is the first work that achieves the level-independent convergence rate under the decentralized setting. Moreover, extensive experiments confirm the efficacy of our proposed algorithms.
[ "cs.LG" ]
false
2306.03356
2023-06-06T02:14:20Z
Query Complexity of Active Learning for Function Family With Nearly Orthogonal Basis
[ "Xiang Chen", "Zhao Song", "Baocheng Sun", "Junze Yin", "Danyang Zhuo" ]
Many machine learning algorithms require large numbers of labeled data to deliver state-of-the-art results. In applications such as medical diagnosis and fraud detection, though there is an abundance of unlabeled data, it is costly to label the data by experts, experiments, or simulations. Active learning algorithms aim to reduce the number of required labeled data points while preserving performance. For many convex optimization problems such as linear regression and $p$-norm regression, there are theoretical bounds on the number of required labels to achieve a certain accuracy. We call this the query complexity of active learning. However, today's active learning algorithms require the underlying learned function to have an orthogonal basis. For example, when applying active learning to linear regression, the requirement is the target function is a linear composition of a set of orthogonal linear functions, and active learning can find the coefficients of these linear functions. We present a theoretical result to show that active learning does not need an orthogonal basis but rather only requires a nearly orthogonal basis. We provide the corresponding theoretical proofs for the function family of nearly orthogonal basis, and its applications associated with the algorithmically efficient active learning framework.
[ "cs.LG" ]
false
2306.03390
2023-06-06T04:07:21Z
Origin-Destination Network Generation via Gravity-Guided GAN
[ "Can Rong", "Huandong Wang", "Yong Li" ]
Origin-destination (OD) flow, which contains valuable population mobility information including direction and volume, is critical in many urban applications, such as urban planning, transportation management, etc. However, OD data is not always easy to access due to high costs or privacy concerns. Therefore, we must consider generating OD through mathematical models. Existing works utilize physics laws or machine learning (ML) models to build the association between urban structures and OD flows while these two kinds of methods suffer from the limitation of over-simplicity and poor generalization ability, respectively. In this paper, we propose to adopt physics-informed ML paradigm, which couple the physics scientific knowledge and data-driven ML methods, to construct a model named Origin-Destination Generation Networks (ODGN) for better population mobility modeling by leveraging the complementary strengths of combining physics and ML methods. Specifically, we first build a Multi-view Graph Attention Networks (MGAT) to capture the urban features of every region and then use a gravity-guided predictor to obtain OD flow between every two regions. Furthermore, we use a conditional GAN training strategy and design a sequence-based discriminator to consider the overall topological features of OD as a network. Extensive experiments on real-world datasets have been done to demonstrate the superiority of our proposed method compared with baselines.
[ "cs.LG" ]
false
2306.03412
2023-06-06T05:20:53Z
DEK-Forecaster: A Novel Deep Learning Model Integrated with EMD-KNN for Traffic Prediction
[ "Sajal Saha", "Sudipto Baral", "Anwar Haque" ]
Internet traffic volume estimation has a significant impact on the business policies of the ISP (Internet Service Provider) industry and business successions. Forecasting the internet traffic demand helps to shed light on the future traffic trend, which is often helpful for ISPs decision-making in network planning activities and investments. Besides, the capability to understand future trend contributes to managing regular and long-term operations. This study aims to predict the network traffic volume demand using deep sequence methods that incorporate Empirical Mode Decomposition (EMD) based noise reduction, Empirical rule based outlier detection, and $K$-Nearest Neighbour (KNN) based outlier mitigation. In contrast to the former studies, the proposed model does not rely on a particular EMD decomposed component called Intrinsic Mode Function (IMF) for signal denoising. In our proposed traffic prediction model, we used an average of all IMFs components for signal denoising. Moreover, the abnormal data points are replaced by $K$ nearest data points average, and the value for $K$ has been optimized based on the KNN regressor prediction error measured in Root Mean Squared Error (RMSE). Finally, we selected the best time-lagged feature subset for our prediction model based on AutoRegressive Integrated Moving Average (ARIMA) and Akaike Information Criterion (AIC) value. Our experiments are conducted on real-world internet traffic datasets from industry, and the proposed method is compared with various traditional deep sequence baseline models. Our results show that the proposed EMD-KNN integrated prediction models outperform comparative models.
[ "cs.LG" ]
false
2306.03440
2023-06-06T06:37:07Z
Quantifying the Variability Collapse of Neural Networks
[ "Jing Xu", "Haoxiong Liu" ]
Recent studies empirically demonstrate the positive relationship between the transferability of neural networks and the within-class variation of the last layer features. The recently discovered Neural Collapse (NC) phenomenon provides a new perspective of understanding such last layer geometry of neural networks. In this paper, we propose a novel metric, named Variability Collapse Index (VCI), to quantify the variability collapse phenomenon in the NC paradigm. The VCI metric is well-motivated and intrinsically related to the linear probing loss on the last layer features. Moreover, it enjoys desired theoretical and empirical properties, including invariance under invertible linear transformations and numerical stability, that distinguishes it from previous metrics. Our experiments verify that VCI is indicative of the variability collapse and the transferability of pretrained neural networks.
[ "cs.LG" ]
false
2306.03542
2023-06-06T09:38:57Z
Masked Autoencoders are Efficient Continual Federated Learners
[ "Subarnaduti Paul", "Lars-Joel Frey", "Roshni Kamath", "Kristian Kersting", "Martin Mundt" ]
Machine learning is typically framed from a perspective of i.i.d., and more importantly, isolated data. In parts, federated learning lifts this assumption, as it sets out to solve the real-world challenge of collaboratively learning a shared model from data distributed across clients. However, motivated primarily by privacy and computational constraints, the fact that data may change, distributions drift, or even tasks advance individually on clients, is seldom taken into account. The field of continual learning addresses this separate challenge and first steps have recently been taken to leverage synergies in distributed supervised settings, in which several clients learn to solve changing classification tasks over time without forgetting previously seen ones. Motivated by these prior works, we posit that such federated continual learning should be grounded in unsupervised learning of representations that are shared across clients; in the loose spirit of how humans can indirectly leverage others' experience without exposure to a specific task. For this purpose, we demonstrate that masked autoencoders for distribution estimation are particularly amenable to this setup. Specifically, their masking strategy can be seamlessly integrated with task attention mechanisms to enable selective knowledge transfer between clients. We empirically corroborate the latter statement through several continual federated scenarios on both image and binary datasets.
[ "cs.LG" ]
false
2306.03615
2023-06-06T12:07:50Z
Zero-shot Preference Learning for Offline RL via Optimal Transport
[ "Runze Liu", "Yali Du", "Fengshuo Bai", "Jiafei Lyu", "Xiu Li" ]
Preference-based Reinforcement Learning (PbRL) has demonstrated remarkable efficacy in aligning rewards with human intentions. However, a significant challenge lies in the need of substantial human labels, which is costly and time-consuming. Additionally, the expensive preference data obtained from prior tasks is not typically reusable for subsequent task learning, leading to extensive labeling for each new task. In this paper, we propose a novel zero-shot preference-based RL algorithm that leverages labeled preference data from source tasks to infer labels for target tasks, eliminating the requirement for human queries. Our approach utilizes Gromov-Wasserstein distance to align trajectory distributions between source and target tasks. The solved optimal transport matrix serves as a correspondence between trajectories of two tasks, making it possible to identify corresponding trajectory pairs between tasks and transfer the preference labels. However, learning directly from inferred labels that contains a fraction of noisy labels will result in an inaccurate reward function, subsequently affecting policy performance. To this end, we introduce Robust Preference Transformer, which models the rewards as Gaussian distributions and incorporates reward uncertainty in addition to reward mean. The empirical results on robotic manipulation tasks of Meta-World and Robomimic show that our method has strong capabilities of transferring preferences between tasks and learns reward functions from noisy labels robustly. Furthermore, we reveal that our method attains near-oracle performance with a small proportion of scripted labels.
[ "cs.LG" ]
false
2306.03647
2023-06-06T13:03:24Z
Proximal Symmetric Non-negative Latent Factor Analysis: A Novel Approach to Highly-Accurate Representation of Undirected Weighted Networks
[ "Yurong Zhong", "Zhe Xie", "Weiling Li", "Xin Luo" ]
An Undirected Weighted Network (UWN) is commonly found in big data-related applications. Note that such a network's information connected with its nodes, and edges can be expressed as a Symmetric, High-Dimensional and Incomplete (SHDI) matrix. However, existing models fail in either modeling its intrinsic symmetry or low-data density, resulting in low model scalability or representation learning ability. For addressing this issue, a Proximal Symmetric Nonnegative Latent-factor-analysis (PSNL) model is proposed. It incorporates a proximal term into symmetry-aware and data density-oriented objective function for high representation accuracy. Then an adaptive Alternating Direction Method of Multipliers (ADMM)-based learning scheme is implemented through a Tree-structured of Parzen Estimators (TPE) method for high computational efficiency. Empirical studies on four UWNs demonstrate that PSNL achieves higher accuracy gain than state-of-the-art models, as well as highly competitive computational efficiency.
[ "cs.LG" ]
false
2306.03680
2023-06-06T13:43:09Z
Mildly Constrained Evaluation Policy for Offline Reinforcement Learning
[ "Linjie Xu", "Zhengyao Jiang", "Jinyu Wang", "Lei Song", "Jiang Bian" ]
Offline reinforcement learning (RL) methodologies enforce constraints on the policy to adhere closely to the behavior policy, thereby stabilizing value learning and mitigating the selection of out-of-distribution (OOD) actions during test time. Conventional approaches apply identical constraints for both value learning and test time inference. However, our findings indicate that the constraints suitable for value estimation may in fact be excessively restrictive for action selection during test time. To address this issue, we propose a Mildly Constrained Evaluation Policy (MCEP) for test time inference with a more constrained target policy for value estimation. Since the target policy has been adopted in various prior approaches, MCEP can be seamlessly integrated with them as a plug-in. We instantiate MCEP based on TD3-BC [Fujimoto and Gu, 2021] and AWAC [Nair et al., 2020] algorithms. The empirical results on MuJoCo locomotion tasks show that the MCEP significantly outperforms the target policy and achieves competitive results to state-of-the-art offline RL methods. The codes are open-sourced at https://github.com/egg-west/MCEP.git.
[ "cs.LG" ]
false
2306.03715
2023-06-06T14:23:34Z
Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection Capability
[ "Jianing Zhu", "Hengzhuang Li", "Jiangchao Yao", "Tongliang Liu", "Jianliang Xu", "Bo Han" ]
Out-of-distribution (OOD) detection is an indispensable aspect of secure AI when deploying machine learning models in real-world applications. Previous paradigms either explore better scoring functions or utilize the knowledge of outliers to equip the models with the ability of OOD detection. However, few of them pay attention to the intrinsic OOD detection capability of the given model. In this work, we generally discover the existence of an intermediate stage of a model trained on in-distribution (ID) data having higher OOD detection performance than that of its final stage across different settings, and further identify one critical data-level attribution to be learning with the atypical samples. Based on such insights, we propose a novel method, Unleashing Mask, which aims to restore the OOD discriminative capabilities of the well-trained model with ID data. Our method utilizes a mask to figure out the memorized atypical samples, and then finetune the model or prune it with the introduced mask to forget them. Extensive experiments and analysis demonstrate the effectiveness of our method. The code is available at: https://github.com/tmlr-group/Unleashing-Mask.
[ "cs.LG" ]
false
2306.03745
2023-06-06T15:04:31Z
Soft Merging of Experts with Adaptive Routing
[ "Mohammed Muqeeth", "Haokun Liu", "Colin Raffel" ]
Sparsely activated neural networks with conditional computation learn to route their inputs through different "expert" subnetworks, providing a form of modularity that densely activated models lack. Despite their possible benefits, models with learned routing often underperform their parameter-matched densely activated counterparts as well as models that use non-learned heuristic routing strategies. In this paper, we hypothesize that these shortcomings stem from the gradient estimation techniques used to train sparsely activated models that use non-differentiable discrete routing decisions. To address this issue, we introduce Soft Merging of Experts with Adaptive Routing (SMEAR), which avoids discrete routing by using a single "merged" expert constructed via a weighted average of all of the experts' parameters. By routing activations through a single merged expert, SMEAR does not incur a significant increase in computational costs and enables standard gradient-based training. We empirically validate that models using SMEAR outperform models that route based on metadata or learn sparse routing through gradient estimation. Furthermore, we provide qualitative analysis demonstrating that the experts learned via SMEAR exhibit a significant amount of specialization. All of the code used in our experiments is publicly available.
[ "cs.LG" ]
false
2306.03824
2023-06-06T16:12:35Z
Understanding Generalization of Federated Learning via Stability: Heterogeneity Matters
[ "Zhenyu Sun", "Xiaochun Niu", "Ermin Wei" ]
Generalization performance is a key metric in evaluating machine learning models when applied to real-world applications. Good generalization indicates the model can predict unseen data correctly when trained under a limited number of data. Federated learning (FL), which has emerged as a popular distributed learning framework, allows multiple devices or clients to train a shared model without violating privacy requirements. While the existing literature has studied extensively the generalization performances of centralized machine learning algorithms, similar analysis in the federated settings is either absent or with very restrictive assumptions on the loss functions. In this paper, we aim to analyze the generalization performances of federated learning by means of algorithmic stability, which measures the change of the output model of an algorithm when perturbing one data point. Three widely-used algorithms are studied, including FedAvg, SCAFFOLD, and FedProx, under convex and non-convex loss functions. Our analysis shows that the generalization performances of models trained by these three algorithms are closely related to the heterogeneity of clients' datasets as well as the convergence behaviors of the algorithms. Particularly, in the i.i.d. setting, our results recover the classical results of stochastic gradient descent (SGD).
[ "cs.LG" ]
false
2306.03900
2023-06-06T17:58:12Z
Model Spider: Learning to Rank Pre-Trained Models Efficiently
[ "Yi-Kai Zhang", "Ting-Ji Huang", "Yao-Xiang Ding", "De-Chuan Zhan", "Han-Jia Ye" ]
Figuring out which Pre-Trained Model (PTM) from a model zoo fits the target task is essential to take advantage of plentiful model resources. With the availability of numerous heterogeneous PTMs from diverse fields, efficiently selecting the most suitable PTM is challenging due to the time-consuming costs of carrying out forward or backward passes over all PTMs. In this paper, we propose Model Spider, which tokenizes both PTMs and tasks by summarizing their characteristics into vectors to enable efficient PTM selection. By leveraging the approximated performance of PTMs on a separate set of training tasks, Model Spider learns to construct tokens and measure the fitness score between a model-task pair via their tokens. The ability to rank relevant PTMs higher than others generalizes to new tasks. With the top-ranked PTM candidates, we further learn to enrich task tokens with their PTM-specific semantics to re-rank the PTMs for better selection. Model Spider balances efficiency and selection ability, making PTM selection like a spider preying on a web. Model Spider demonstrates promising performance in various configurations of model zoos.
[ "cs.LG" ]
false
2306.03911
2023-06-06T14:13:16Z
Multi-constrained Symmetric Nonnegative Latent Factor Analysis for Accurately Representing Large-scale Undirected Weighted Networks
[ "Yurong Zhong", "Zhe Xie", "Weiling Li", "Xin Luo" ]
An Undirected Weighted Network (UWN) is frequently encountered in a big-data-related application concerning the complex interactions among numerous nodes, e.g., a protein interaction network from a bioinformatics application. A Symmetric High-Dimensional and Incomplete (SHDI) matrix can smoothly illustrate such an UWN, which contains rich knowledge like node interaction behaviors and local complexes. To extract desired knowledge from an SHDI matrix, an analysis model should carefully consider its symmetric-topology for describing an UWN's intrinsic symmetry. Representation learning to an UWN borrows the success of a pyramid of symmetry-aware models like a Symmetric Nonnegative Matrix Factorization (SNMF) model whose objective function utilizes a sole Latent Factor (LF) matrix for representing SHDI's symmetry rigorously. However, they suffer from the following drawbacks: 1) their computational complexity is high; and 2) their modeling strategy narrows their representation features, making them suffer from low learning ability. Aiming at addressing above critical issues, this paper proposes a Multi-constrained Symmetric Nonnegative Latent-factor-analysis (MSNL) model with two-fold ideas: 1) introducing multi-constraints composed of multiple LF matrices, i.e., inequality and equality ones into a data-density-oriented objective function for precisely representing the intrinsic symmetry of an SHDI matrix with broadened feature space; and 2) implementing an Alternating Direction Method of Multipliers (ADMM)-incorporated learning scheme for precisely solving such a multi-constrained model. Empirical studies on three SHDI matrices from a real bioinformatics or industrial application demonstrate that the proposed MSNL model achieves stronger representation learning ability to an SHDI matrix than state-of-the-art models do.
[ "cs.LG" ]
false
2306.03985
2023-06-06T19:44:37Z
Agent Performing Autonomous Stock Trading under Good and Bad Situations
[ "Yunfei Luo", "Zhangqi Duan" ]
Stock trading is one of the popular ways for financial management. However, the market and the environment of economy is unstable and usually not predictable. Furthermore, engaging in stock trading requires time and effort to analyze, create strategies, and make decisions. It would be convenient and effective if an agent could assist or even do the task of analyzing and modeling the past data and then generate a strategy for autonomous trading. Recently, reinforcement learning has been shown to be robust in various tasks that involve achieving a goal with a decision making strategy based on time-series data. In this project, we have developed a pipeline that simulates the stock trading environment and have trained an agent to automate the stock trading process with deep reinforcement learning methods, including deep Q-learning, deep SARSA, and the policy gradient method. We evaluate our platform during relatively good (before 2021) and bad (2021 - 2022) situations. The stocks we've evaluated on including Google, Apple, Tesla, Meta, Microsoft, and IBM. These stocks are among the popular ones, and the changes in trends are representative in terms of having good and bad situations. We showed that before 2021, the three reinforcement methods we have tried always provide promising profit returns with total annual rates around $70\%$ to $90\%$, while maintain a positive profit return after 2021 with total annual rates around 2% to 7%.
[ "cs.LG" ]
false
2306.03362
2023-06-06T02:29:40Z
Boosting Offline Reinforcement Learning with Action Preference Query
[ "Qisen Yang", "Shenzhi Wang", "Matthieu Gaetan Lin", "Shiji Song", "Gao Huang" ]
Training practical agents usually involve offline and online reinforcement learning (RL) to balance the policy's performance and interaction costs. In particular, online fine-tuning has become a commonly used method to correct the erroneous estimates of out-of-distribution data learned in the offline training phase. However, even limited online interactions can be inaccessible or catastrophic for high-stake scenarios like healthcare and autonomous driving. In this work, we introduce an interaction-free training scheme dubbed Offline-with-Action-Preferences (OAP). The main insight is that, compared to online fine-tuning, querying the preferences between pre-collected and learned actions can be equally or even more helpful to the erroneous estimate problem. By adaptively encouraging or suppressing policy constraint according to action preferences, OAP could distinguish overestimation from beneficial policy improvement and thus attains a more accurate evaluation of unseen data. Theoretically, we prove a lower bound of the behavior policy's performance improvement brought by OAP. Moreover, comprehensive experiments on the D4RL benchmark and state-of-the-art algorithms demonstrate that OAP yields higher (29% on average) scores, especially on challenging AntMaze tasks (98% higher).
[ "cs.LG", "cs.AI" ]
false
2306.03402
2023-06-06T04:47:44Z
Binary Classification with Instance and Label Dependent Label Noise
[ "Hyungki Im", "Paul Grigas" ]
Learning with label dependent label noise has been extensively explored in both theory and practice; however, dealing with instance (i.e., feature) and label dependent label noise continues to be a challenging task. The difficulty arises from the fact that the noise rate varies for each instance, making it challenging to estimate accurately. The question of whether it is possible to learn a reliable model using only noisy samples remains unresolved. We answer this question with a theoretical analysis that provides matching upper and lower bounds. Surprisingly, our results show that, without any additional assumptions, empirical risk minimization achieves the optimal excess risk bound. Specifically, we derive a novel excess risk bound proportional to the noise level, which holds in very general settings, by comparing the empirical risk minimizers obtained from clean samples and noisy samples. Second, we show that the minimax lower bound for the 0-1 loss is a constant proportional to the average noise rate. Our findings suggest that learning solely with noisy samples is impossible without access to clean samples or strong assumptions on the distribution of the data.
[ "stat.ML", "cs.LG" ]
false
2306.03405
2023-06-06T04:53:06Z
Vehicle Dynamics Modeling for Autonomous Racing Using Gaussian Processes
[ "Jingyun Ning", "Madhur Behl" ]
Autonomous racing is increasingly becoming a proving ground for autonomous vehicle technology at the limits of its current capabilities. The most prominent examples include the F1Tenth racing series, Formula Student Driverless (FSD), Roborace, and the Indy Autonomous Challenge (IAC). Especially necessary, in high speed autonomous racing, is the knowledge of accurate racecar vehicle dynamics. The choice of the vehicle dynamics model has to be made by balancing the increasing computational demands in contrast to improved accuracy of more complex models. Recent studies have explored learning-based methods, such as Gaussian Process (GP) regression for approximating the vehicle dynamics model. However, these efforts focus on higher level constructs such as motion planning, or predictive control and lack both in realism and rigor of the GP modeling process, which is often over-simplified. This paper presents the most detailed analysis of the applicability of GP models for approximating vehicle dynamics for autonomous racing. In particular we construct dynamic, and extended kinematic models for the popular F1TENTH racing platform. We investigate the effect of kernel choices, sample sizes, racetrack layout, racing lines, and velocity profiles on the efficacy and generalizability of the learned dynamics. We conduct 400+ simulations on real F1 track layouts to provide comprehensive recommendations to the research community for training accurate GP regression for single-track vehicle dynamics of a racecar.
[ "cs.RO", "cs.LG" ]
false
2306.03408
2023-06-06T05:11:58Z
Agents Explore the Environment Beyond Good Actions to Improve Their Model for Better Decisions
[ "Matthias Unverzagt" ]
Improving the decision-making capabilities of agents is a key challenge on the road to artificial intelligence. To improve the planning skills needed to make good decisions, MuZero's agent combines prediction by a network model and planning by a tree search using the predictions. MuZero's learning process can fail when predictions are poor but planning requires them. We use this as an impetus to get the agent to explore parts of the decision tree in the environment that it otherwise would not explore. The agent achieves this, first by normal planning to come up with an improved policy. Second, it randomly deviates from this policy at the beginning of each training episode. And third, it switches back to the improved policy at a random time step to experience the rewards from the environment associated with the improved policy, which is the basis for learning the correct value expectation. The simple board game Tic-Tac-Toe is used to illustrate how this approach can improve the agent's decision-making ability. The source code, written entirely in Java, is available at https://github.com/enpasos/muzero.
[ "cs.AI", "cs.LG" ]
false
2306.03434
2023-06-06T06:22:42Z
Learning-Based Heuristic for Combinatorial Optimization of the Minimum Dominating Set Problem using Graph Convolutional Networks
[ "Abihith Kothapalli", "Mudassir Shabbir", "Xenofon Koutsoukos" ]
A dominating set of a graph $\mathcal{G=(V, E)}$ is a subset of vertices $S\subseteq\mathcal{V}$ such that every vertex $v\in \mathcal{V} \setminus S$ outside the dominating set is adjacent to a vertex $u\in S$ within the set. The minimum dominating set problem seeks to find a dominating set of minimum cardinality and is a well-established NP-hard combinatorial optimization problem. We propose a novel learning-based heuristic approach to compute solutions for the minimum dominating set problem using graph convolutional networks. We conduct an extensive experimental evaluation of the proposed method on a combination of randomly generated graphs and real-world graph datasets. Our results indicate that the proposed learning-based approach can outperform a classical greedy approximation algorithm. Furthermore, we demonstrate the generalization capability of the graph convolutional network across datasets and its ability to scale to graphs of higher order than those on which it was trained. Finally, we utilize the proposed learning-based heuristic in an iterative greedy algorithm, achieving state-of-the-art performance in the computation of dominating sets.
[ "cs.LG", "cs.DM" ]
false
2306.03447
2023-06-06T07:00:24Z
GRAFENNE: Learning on Graphs with Heterogeneous and Dynamic Feature Sets
[ "Shubham Gupta", "Sahil Manchanda", "Sayan Ranu", "Srikanta Bedathur" ]
Graph neural networks (GNNs), in general, are built on the assumption of a static set of features characterizing each node in a graph. This assumption is often violated in practice. Existing methods partly address this issue through feature imputation. However, these techniques (i) assume uniformity of feature set across nodes, (ii) are transductive by nature, and (iii) fail to work when features are added or removed over time. In this work, we address these limitations through a novel GNN framework called GRAFENNE. GRAFENNE performs a novel allotropic transformation on the original graph, wherein the nodes and features are decoupled through a bipartite encoding. Through a carefully chosen message passing framework on the allotropic transformation, we make the model parameter size independent of the number of features and thereby inductive to both unseen nodes and features. We prove that GRAFENNE is at least as expressive as any of the existing message-passing GNNs in terms of Weisfeiler-Leman tests, and therefore, the additional inductivity to unseen features does not come at the cost of expressivity. In addition, as demonstrated over four real-world graphs, GRAFENNE empowers the underlying GNN with high empirical efficacy and the ability to learn in continual fashion over streaming feature sets.
[ "cs.LG", "cs.AI" ]
false
2306.03521
2023-06-06T09:12:49Z
Machine learning in and out of equilibrium
[ "Shishir Adhikari", "Alkan Kabakçıoğlu", "Alexander Strang", "Deniz Yuret", "Michael Hinczewski" ]
The algorithms used to train neural networks, like stochastic gradient descent (SGD), have close parallels to natural processes that navigate a high-dimensional parameter space -- for example protein folding or evolution. Our study uses a Fokker-Planck approach, adapted from statistical physics, to explore these parallels in a single, unified framework. We focus in particular on the stationary state of the system in the long-time limit, which in conventional SGD is out of equilibrium, exhibiting persistent currents in the space of network parameters. As in its physical analogues, the current is associated with an entropy production rate for any given training trajectory. The stationary distribution of these rates obeys the integral and detailed fluctuation theorems -- nonequilibrium generalizations of the second law of thermodynamics. We validate these relations in two numerical examples, a nonlinear regression network and MNIST digit classification. While the fluctuation theorems are universal, there are other aspects of the stationary state that are highly sensitive to the training details. Surprisingly, the effective loss landscape and diffusion matrix that determine the shape of the stationary distribution vary depending on the simple choice of minibatching done with or without replacement. We can take advantage of this nonequilibrium sensitivity to engineer an equilibrium stationary state for a particular application: sampling from a posterior distribution of network weights in Bayesian machine learning. We propose a new variation of stochastic gradient Langevin dynamics (SGLD) that harnesses without replacement minibatching. In an example system where the posterior is exactly known, this SGWORLD algorithm outperforms SGLD, converging to the posterior orders of magnitude faster as a function of the learning rate.
[ "cs.LG", "cond-mat.stat-mech" ]
false
2306.03527
2023-06-06T09:22:52Z
Rec4Ad: A Free Lunch to Mitigate Sample Selection Bias for Ads CTR Prediction in Taobao
[ "Jingyue Gao", "Shuguang Han", "Han Zhu", "Siran Yang", "Yuning Jiang", "Jian Xu", "Bo Zheng" ]
Click-Through Rate (CTR) prediction serves as a fundamental component in online advertising. A common practice is to train a CTR model on advertisement (ad) impressions with user feedback. Since ad impressions are purposely selected by the model itself, their distribution differs from the inference distribution and thus exhibits sample selection bias (SSB) that affects model performance. Existing studies on SSB mainly employ sample re-weighting techniques which suffer from high variance and poor model calibration. Another line of work relies on costly uniform data that is inadequate to train industrial models. Thus mitigating SSB in industrial models with a uniform-data-free framework is worth exploring. Fortunately, many platforms display mixed results of organic items (i.e., recommendations) and sponsored items (i.e., ads) to users, where impressions of ads and recommendations are selected by different systems but share the same user decision rationales. Based on the above characteristics, we propose to leverage recommendations samples as a free lunch to mitigate SSB for ads CTR model (Rec4Ad). After elaborating data augmentation, Rec4Ad learns disentangled representations with alignment and decorrelation modules for enhancement. When deployed in Taobao display advertising system, Rec4Ad achieves substantial gains in key business metrics, with a lift of up to +6.6\% CTR and +2.9\% RPM.
[ "cs.IR", "cs.LG" ]
false
2306.03536
2023-06-06T09:35:29Z
On Pitfalls of Test-Time Adaptation
[ "Hao Zhao", "Yuejiang Liu", "Alexandre Alahi", "Tao Lin" ]
Test-Time Adaptation (TTA) has recently emerged as a promising approach for tackling the robustness challenge under distribution shifts. However, the lack of consistent settings and systematic studies in prior literature hinders thorough assessments of existing methods. To address this issue, we present TTAB, a test-time adaptation benchmark that encompasses ten state-of-the-art algorithms, a diverse array of distribution shifts, and two evaluation protocols. Through extensive experiments, our benchmark reveals three common pitfalls in prior efforts. First, selecting appropriate hyper-parameters, especially for model selection, is exceedingly difficult due to online batch dependency. Second, the effectiveness of TTA varies greatly depending on the quality and properties of the model being adapted. Third, even under optimal algorithmic conditions, none of the existing methods are capable of addressing all common types of distribution shifts. Our findings underscore the need for future research in the field to conduct rigorous evaluations on a broader set of models and shifts, and to re-examine the assumptions behind the empirical success of TTA. Our code is available at \url{https://github.com/lins-lab/ttab}.
[ "cs.LG", "cs.AI" ]
false
2306.03558
2023-06-06T10:18:36Z
Machine Unlearning: A Survey
[ "Heng Xu", "Tianqing Zhu", "Lefeng Zhang", "Wanlei Zhou", "Philip S. Yu" ]
Machine learning has attracted widespread attention and evolved into an enabling technology for a wide range of highly successful applications, such as intelligent computer vision, speech recognition, medical diagnosis, and more. Yet a special need has arisen where, due to privacy, usability, and/or the right to be forgotten, information about some specific samples needs to be removed from a model, called machine unlearning. This emerging technology has drawn significant interest from both academics and industry due to its innovation and practicality. At the same time, this ambitious problem has led to numerous research efforts aimed at confronting its challenges. To the best of our knowledge, no study has analyzed this complex topic or compared the feasibility of existing unlearning solutions in different kinds of scenarios. Accordingly, with this survey, we aim to capture the key concepts of unlearning techniques. The existing solutions are classified and summarized based on their characteristics within an up-to-date and comprehensive review of each category's advantages and limitations. The survey concludes by highlighting some of the outstanding issues with unlearning techniques, along with some feasible directions for new research opportunities.
[ "cs.CR", "cs.LG" ]
false
2306.03561
2023-06-06T10:25:10Z
CIN++: Enhancing Topological Message Passing
[ "Lorenzo Giusti", "Teodora Reu", "Francesco Ceccarelli", "Cristian Bodnar", "Pietro Liò" ]
Graph Neural Networks (GNNs) have demonstrated remarkable success in learning from graph-structured data. However, they face significant limitations in expressive power, struggling with long-range interactions and lacking a principled approach to modeling higher-order structures and group interactions. Cellular Isomorphism Networks (CINs) recently addressed most of these challenges with a message passing scheme based on cell complexes. Despite their advantages, CINs make use only of boundary and upper messages which do not consider a direct interaction between the rings present in the underlying complex. Accounting for these interactions might be crucial for learning representations of many real-world complex phenomena such as the dynamics of supramolecular assemblies, neural activity within the brain, and gene regulation processes. In this work, we propose CIN++, an enhancement of the topological message passing scheme introduced in CINs. Our message passing scheme accounts for the aforementioned limitations by letting the cells to receive also lower messages within each layer. By providing a more comprehensive representation of higher-order and long-range interactions, our enhanced topological message passing scheme achieves state-of-the-art results on large-scale and long-range chemistry benchmarks.
[ "cs.LG", "cs.AI" ]
false
2306.03566
2023-06-06T10:34:03Z
Memory-Based Dual Gaussian Processes for Sequential Learning
[ "Paul E. Chang", "Prakhar Verma", "S. T. John", "Arno Solin", "Mohammad Emtiyaz Khan" ]
Sequential learning with Gaussian processes (GPs) is challenging when access to past data is limited, for example, in continual and active learning. In such cases, errors can accumulate over time due to inaccuracies in the posterior, hyperparameters, and inducing points, making accurate learning challenging. Here, we present a method to keep all such errors in check using the recently proposed dual sparse variational GP. Our method enables accurate inference for generic likelihoods and improves learning by actively building and updating a memory of past data. We demonstrate its effectiveness in several applications involving Bayesian optimization, active learning, and continual learning.
[ "cs.LG", "stat.ML" ]
false
2306.03607
2023-06-06T11:50:09Z
Buying Information for Stochastic Optimization
[ "Mingchen Ma", "Christos Tzamos" ]
Stochastic optimization is one of the central problems in Machine Learning and Theoretical Computer Science. In the standard model, the algorithm is given a fixed distribution known in advance. In practice though, one may acquire at a cost extra information to make better decisions. In this paper, we study how to buy information for stochastic optimization and formulate this question as an online learning problem. Assuming the learner has an oracle for the original optimization problem, we design a $2$-competitive deterministic algorithm and a $e/(e-1)$-competitive randomized algorithm for buying information. We show that this ratio is tight as the problem is equivalent to a robust generalization of the ski-rental problem, which we call super-martingale stopping. We also consider an adaptive setting where the learner can choose to buy information after taking some actions for the underlying optimization problem. We focus on the classic optimization problem, Min-Sum Set Cover, where the goal is to quickly find an action that covers a given request drawn from a known distribution. We provide an $8$-competitive algorithm running in polynomial time that chooses actions and decides when to buy information about the underlying request.
[ "cs.DS", "cs.LG" ]
false
2306.03626
2023-06-06T12:27:54Z
Understanding Progressive Training Through the Framework of Randomized Coordinate Descent
[ "Rafał Szlendak", "Elnur Gasanov", "Peter Richtárik" ]
We propose a Randomized Progressive Training algorithm (RPT) -- a stochastic proxy for the well-known Progressive Training method (PT) (Karras et al., 2017). Originally designed to train GANs (Goodfellow et al., 2014), PT was proposed as a heuristic, with no convergence analysis even for the simplest objective functions. On the contrary, to the best of our knowledge, RPT is the first PT-type algorithm with rigorous and sound theoretical guarantees for general smooth objective functions. We cast our method into the established framework of Randomized Coordinate Descent (RCD) (Nesterov, 2012; Richt\'arik & Tak\'a\v{c}, 2014), for which (as a by-product of our investigations) we also propose a novel, simple and general convergence analysis encapsulating strongly-convex, convex and nonconvex objectives. We then use this framework to establish a convergence theory for RPT. Finally, we validate the effectiveness of our method through extensive computational experiments.
[ "cs.LG", "math.OC" ]
false
2306.03702
2023-06-06T14:15:29Z
Bayesian post-hoc regularization of random forests
[ "Bastian Pfeifer" ]
Random Forests are powerful ensemble learning algorithms widely used in various machine learning tasks. However, they have a tendency to overfit noisy or irrelevant features, which can result in decreased generalization performance. Post-hoc regularization techniques aim to mitigate this issue by modifying the structure of the learned ensemble after its training. Here, we propose Bayesian post-hoc regularization to leverage the reliable patterns captured by leaf nodes closer to the root, while potentially reducing the impact of more specific and potentially noisy leaf nodes deeper in the tree. This approach allows for a form of pruning that does not alter the general structure of the trees but rather adjusts the influence of leaf nodes based on their proximity to the root node. We have evaluated the performance of our method on various machine learning data sets. Our approach demonstrates competitive performance with the state-of-the-art methods and, in certain cases, surpasses them in terms of predictive accuracy and generalization.
[ "cs.LG", "cs.AI" ]
false
2306.03726
2023-06-06T14:45:24Z
Exploring Model Dynamics for Accumulative Poisoning Discovery
[ "Jianing Zhu", "Xiawei Guo", "Jiangchao Yao", "Chao Du", "Li He", "Shuo Yuan", "Tongliang Liu", "Liang Wang", "Bo Han" ]
Adversarial poisoning attacks pose huge threats to various machine learning applications. Especially, the recent accumulative poisoning attacks show that it is possible to achieve irreparable harm on models via a sequence of imperceptible attacks followed by a trigger batch. Due to the limited data-level discrepancy in real-time data streaming, current defensive methods are indiscriminate in handling the poison and clean samples. In this paper, we dive into the perspective of model dynamics and propose a novel information measure, namely, Memorization Discrepancy, to explore the defense via the model-level information. By implicitly transferring the changes in the data manipulation to that in the model outputs, Memorization Discrepancy can discover the imperceptible poison samples based on their distinct dynamics from the clean samples. We thoroughly explore its properties and propose Discrepancy-aware Sample Correction (DSC) to defend against accumulative poisoning attacks. Extensive experiments comprehensively characterized Memorization Discrepancy and verified its effectiveness. The code is publicly available at: https://github.com/tmlr-group/Memorization-Discrepancy.
[ "cs.LG", "cs.CR" ]
false
2306.03770
2023-06-06T15:31:05Z
Graph Classification Gaussian Processes via Spectral Features
[ "Felix L. Opolka", "Yin-Cong Zhi", "Pietro Liò", "Xiaowen Dong" ]
Graph classification aims to categorise graphs based on their structure and node attributes. In this work, we propose to tackle this task using tools from graph signal processing by deriving spectral features, which we then use to design two variants of Gaussian process models for graph classification. The first variant uses spectral features based on the distribution of energy of a node feature signal over the spectrum of the graph. We show that even such a simple approach, having no learned parameters, can yield competitive performance compared to strong neural network and graph kernel baselines. A second, more sophisticated variant is designed to capture multi-scale and localised patterns in the graph by learning spectral graph wavelet filters, obtaining improved performance on synthetic and real-world data sets. Finally, we show that both models produce well calibrated uncertainty estimates, enabling reliable decision making based on the model predictions.
[ "cs.LG", "stat.ML" ]
false
2306.03834
2023-06-06T16:24:27Z
MTS2Graph: Interpretable Multivariate Time Series Classification with Temporal Evolving Graphs
[ "Raneen Younis", "Abdul Hakmeh", "Zahra Ahmadi" ]
Conventional time series classification approaches based on bags of patterns or shapelets face significant challenges in dealing with a vast amount of feature candidates from high-dimensional multivariate data. In contrast, deep neural networks can learn low-dimensional features efficiently, and in particular, Convolutional Neural Networks (CNN) have shown promising results in classifying Multivariate Time Series (MTS) data. A key factor in the success of deep neural networks is this astonishing expressive power. However, this power comes at the cost of complex, black-boxed models, conflicting with the goals of building reliable and human-understandable models. An essential criterion in understanding such predictive deep models involves quantifying the contribution of time-varying input variables to the classification. Hence, in this work, we introduce a new framework for interpreting multivariate time series data by extracting and clustering the input representative patterns that highly activate CNN neurons. This way, we identify each signal's role and dependencies, considering all possible combinations of signals in the MTS input. Then, we construct a graph that captures the temporal relationship between the extracted patterns for each layer. An effective graph merging strategy finds the connection of each node to the previous layer's nodes. Finally, a graph embedding algorithm generates new representations of the created interpretable time-series features. To evaluate the performance of our proposed framework, we run extensive experiments on eight datasets of the UCR/UEA archive, along with HAR and PAM datasets. The experiments indicate the benefit of our time-aware graph-based representation in MTS classification while enriching them with more interpretability.
[ "cs.LG", "cs.AI" ]
false
2306.03887
2023-06-06T17:46:48Z
Fast Context Adaptation in Cost-Aware Continual Learning
[ "Seyyidahmed Lahmer", "Federico Mason", "Federico Chiariotti", "Andrea Zanella" ]
In the past few years, DRL has become a valuable solution to automatically learn efficient resource management strategies in complex networks with time-varying statistics. However, the increased complexity of 5G and Beyond networks requires correspondingly more complex learning agents and the learning process itself might end up competing with users for communication and computational resources. This creates friction: on the one hand, the learning process needs resources to quickly convergence to an effective strategy; on the other hand, the learning process needs to be efficient, i.e., take as few resources as possible from the user's data plane, so as not to throttle users' QoS. In this paper, we investigate this trade-off and propose a dynamic strategy to balance the resources assigned to the data plane and those reserved for learning. With the proposed approach, a learning agent can quickly converge to an efficient resource allocation strategy and adapt to changes in the environment as for the CL paradigm, while minimizing the impact on the users' QoS. Simulation results show that the proposed method outperforms static allocation methods with minimal learning overhead, almost reaching the performance of an ideal out-of-band CL solution.
[ "cs.NI", "cs.LG" ]
false
2306.03949
2023-06-06T18:27:20Z
Partial Inference in Structured Prediction
[ "Chuyang Ke", "Jean Honorio" ]
In this paper, we examine the problem of partial inference in the context of structured prediction. Using a generative model approach, we consider the task of maximizing a score function with unary and pairwise potentials in the space of labels on graphs. Employing a two-stage convex optimization algorithm for label recovery, we analyze the conditions under which a majority of the labels can be recovered. We introduce a novel perspective on the Karush-Kuhn-Tucker (KKT) conditions and primal and dual construction, and provide statistical and topological requirements for partial recovery with provable guarantees.
[ "cs.LG", "stat.ML" ]
false
2306.03968
2023-06-06T19:02:57Z
Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels
[ "Alexander Immer", "Tycho F. A. van der Ouderaa", "Mark van der Wilk", "Gunnar Rätsch", "Bernhard Schölkopf" ]
Selecting hyperparameters in deep learning greatly impacts its effectiveness but requires manual effort and expertise. Recent works show that Bayesian model selection with Laplace approximations can allow to optimize such hyperparameters just like standard neural network parameters using gradients and on the training data. However, estimating a single hyperparameter gradient requires a pass through the entire dataset, limiting the scalability of such algorithms. In this work, we overcome this issue by introducing lower bounds to the linearized Laplace approximation of the marginal likelihood. In contrast to previous estimators, these bounds are amenable to stochastic-gradient-based optimization and allow to trade off estimation accuracy against computational complexity. We derive them using the function-space form of the linearized Laplace, which can be estimated using the neural tangent kernel. Experimentally, we show that the estimators can significantly accelerate gradient-based hyperparameter optimization.
[ "stat.ML", "cs.LG" ]
false
2306.03982
2023-06-06T19:35:09Z
Globally injective and bijective neural operators
[ "Takashi Furuya", "Michael Puthawala", "Matti Lassas", "Maarten V. de Hoop" ]
Recently there has been great interest in operator learning, where networks learn operators between function spaces from an essentially infinite-dimensional perspective. In this work we present results for when the operators learned by these networks are injective and surjective. As a warmup, we combine prior work in both the finite-dimensional ReLU and operator learning setting by giving sharp conditions under which ReLU layers with linear neural operators are injective. We then consider the case the case when the activation function is pointwise bijective and obtain sufficient conditions for the layer to be injective. We remark that this question, while trivial in the finite-rank case, is subtler in the infinite-rank case and is proved using tools from Fredholm theory. Next, we prove that our supplied injective neural operators are universal approximators and that their implementation, with finite-rank neural networks, are still injective. This ensures that injectivity is not `lost' in the transcription from analytical operators to their finite-rank implementation with networks. Finally, we conclude with an increase in abstraction and consider general conditions when subnetworks, which may be many layers deep, are injective and surjective and provide an exact inversion from a `linearization.' This section uses general arguments from Fredholm theory and Leray-Schauder degree theory for non-linear integral equations to analyze the mapping properties of neural operators in function spaces. These results apply to subnetworks formed from the layers considered in this work, under natural conditions. We believe that our work has applications in Bayesian UQ where injectivity enables likelihood estimation and in inverse problems where surjectivity and injectivity corresponds to existence and uniqueness, respectively.
[ "cs.LG", "stat.ML" ]
false
2306.04004
2023-06-06T20:35:20Z
Randomized Schur Complement Views for Graph Contrastive Learning
[ "Vignesh Kothapalli" ]
We introduce a randomized topological augmentor based on Schur complements for Graph Contrastive Learning (GCL). Given a graph laplacian matrix, the technique generates unbiased approximations of its Schur complements and treats the corresponding graphs as augmented views. We discuss the benefits of our approach, provide theoretical justifications and present connections with graph diffusion. Unlike previous efforts, we study the empirical effectiveness of the augmentor in a controlled fashion by varying the design choices for subsequent GCL phases, such as encoding and contrasting. Extensive experiments on node and graph classification benchmarks demonstrate that our technique consistently outperforms pre-defined and adaptive augmentation approaches to achieve state-of-the-art results.
[ "cs.LG", "cs.SI" ]
false
2306.04039
2023-06-06T22:08:42Z
Revisiting Neural Retrieval on Accelerators
[ "Jiaqi Zhai", "Zhaojie Gong", "Yueming Wang", "Xiao Sun", "Zheng Yan", "Fu Li", "Xing Liu" ]
Retrieval finds a small number of relevant candidates from a large corpus for information retrieval and recommendation applications. A key component of retrieval is to model (user, item) similarity, which is commonly represented as the dot product of two learned embeddings. This formulation permits efficient inference, commonly known as Maximum Inner Product Search (MIPS). Despite its popularity, dot products cannot capture complex user-item interactions, which are multifaceted and likely high rank. We hence examine non-dot-product retrieval settings on accelerators, and propose \textit{mixture of logits} (MoL), which models (user, item) similarity as an adaptive composition of elementary similarity functions. This new formulation is expressive, capable of modeling high rank (user, item) interactions, and further generalizes to the long tail. When combined with a hierarchical retrieval strategy, \textit{h-indexer}, we are able to scale up MoL to 100M corpus on a single GPU with latency comparable to MIPS baselines. On public datasets, our approach leads to uplifts of up to 77.3\% in hit rate (HR). Experiments on a large recommendation surface at Meta showed strong metric gains and reduced popularity bias, validating the proposed approach's performance and improved generalization.
[ "cs.LG", "cs.IR" ]
false
2306.04066
2023-06-06T23:54:01Z
Intelligent sampling for surrogate modeling, hyperparameter optimization, and data analysis
[ "Chandrika Kamath" ]
Sampling techniques are used in many fields, including design of experiments, image processing, and graphics. The techniques in each field are designed to meet the constraints specific to that field such as uniform coverage of the range of each dimension or random samples that are at least a certain distance apart from each other. When an application imposes new constraints, for example, by requiring samples in a non-rectangular domain or the addition of new samples to an existing set, a common solution is to modify the algorithm currently in use, often with less than satisfactory results. As an alternative, we propose the concept of intelligent sampling, where we devise algorithms specifically tailored to meet our sampling needs, either by creating new algorithms or by modifying suitable algorithms from other fields. Surprisingly, both qualitative and quantitative comparisons indicate that some relatively simple algorithms can be easily modified to meet the many sampling requirements of surrogate modeling, hyperparameter optimization, and data analysis; these algorithms outperform their more sophisticated counterparts currently in use, resulting in better use of time and computer resources.
[ "cs.LG", "stat.CO" ]
false
2306.04658
2023-06-06T19:27:11Z
Mathematics-assisted directed evolution and protein engineering
[ "Yuchi Qiu", "Guo-Wei Wei" ]
Directed evolution is a molecular biology technique that is transforming protein engineering by creating proteins with desirable properties and functions. However, it is experimentally impossible to perform the deep mutational scanning of the entire protein library due to the enormous mutational space, which scales as $20^N$ , where N is the number of amino acids. This has led to the rapid growth of AI-assisted directed evolution (AIDE) or AI-assisted protein engineering (AIPE) as an emerging research field. Aided with advanced natural language processing (NLP) techniques, including long short-term memory, autoencoder, and transformer, sequence-based embeddings have been dominant approaches in AIDE and AIPE. Persistent Laplacians, an emerging technique in topological data analysis (TDA), have made structure-based embeddings a superb option in AIDE and AIPE. We argue that a class of persistent topological Laplacians (PTLs), including persistent Laplacians, persistent path Laplacians, persistent sheaf Laplacians, persistent hypergraph Laplacians, persistent hyperdigraph Laplacians, and evolutionary de Rham-Hodge theory, can effectively overcome the limitations of the current TDA and offer a new generation of more powerful TDA approaches. In the general framework of topological deep learning, mathematics-assisted directed evolution (MADE) has a great potential for future protein engineering.
[ "q-bio.BM", "cs.LG" ]
false
2306.03335
2023-06-06T01:13:18Z
Unraveling Projection Heads in Contrastive Learning: Insights from Expansion and Shrinkage
[ "Yu Gui", "Cong Ma", "Yiqiao Zhong" ]
We investigate the role of projection heads, also known as projectors, within the encoder-projector framework (e.g., SimCLR) used in contrastive learning. We aim to demystify the observed phenomenon where representations learned before projectors outperform those learned after -- measured using the downstream linear classification accuracy, even when the projectors themselves are linear. In this paper, we make two significant contributions towards this aim. Firstly, through empirical and theoretical analysis, we identify two crucial effects -- expansion and shrinkage -- induced by the contrastive loss on the projectors. In essence, contrastive loss either expands or shrinks the signal direction in the representations learned by an encoder, depending on factors such as the augmentation strength, the temperature used in contrastive loss, etc. Secondly, drawing inspiration from the expansion and shrinkage phenomenon, we propose a family of linear transformations to accurately model the projector's behavior. This enables us to precisely characterize the downstream linear classification accuracy in the high-dimensional asymptotic limit. Our findings reveal that linear projectors operating in the shrinkage (or expansion) regime hinder (or improve) the downstream classification accuracy. This provides the first theoretical explanation as to why (linear) projectors impact the downstream performance of learned representations. Our theoretical findings are further corroborated by extensive experiments on both synthetic data and real image data.
[ "stat.ML", "cs.LG", "math.ST", "stat.TH" ]
false
2306.03466
2023-06-06T07:36:47Z
Convergent Bregman Plug-and-Play Image Restoration for Poisson Inverse Problems
[ "Samuel Hurault", "Ulugbek Kamilov", "Arthur Leclaire", "Nicolas Papadakis" ]
Plug-and-Play (PnP) methods are efficient iterative algorithms for solving ill-posed image inverse problems. PnP methods are obtained by using deep Gaussian denoisers instead of the proximal operator or the gradient-descent step within proximal algorithms. Current PnP schemes rely on data-fidelity terms that have either Lipschitz gradients or closed-form proximal operators, which is not applicable to Poisson inverse problems. Based on the observation that the Gaussian noise is not the adequate noise model in this setting, we propose to generalize PnP using theBregman Proximal Gradient (BPG) method. BPG replaces the Euclidean distance with a Bregman divergence that can better capture the smoothness properties of the problem. We introduce the Bregman Score Denoiser specifically parametrized and trained for the new Bregman geometry and prove that it corresponds to the proximal operator of a nonconvex potential. We propose two PnP algorithms based on the Bregman Score Denoiser for solving Poisson inverse problems. Extending the convergence results of BPG in the nonconvex settings, we show that the proposed methods converge, targeting stationary points of an explicit global functional. Experimental evaluations conducted on various Poisson inverse problems validate the convergence results and showcase effective restoration performance.
[ "eess.IV", "cs.LG", "math.OC" ]
false
2306.03515
2023-06-06T09:01:17Z
Logic Diffusion for Knowledge Graph Reasoning
[ "Xiaoying Xie", "Biao Gong", "Yiliang Lv", "Zhen Han", "Guoshuai Zhao", "Xueming Qian" ]
Most recent works focus on answering first order logical queries to explore the knowledge graph reasoning via multi-hop logic predictions. However, existing reasoning models are limited by the circumscribed logical paradigms of training samples, which leads to a weak generalization of unseen logic. To address these issues, we propose a plug-in module called Logic Diffusion (LoD) to discover unseen queries from surroundings and achieves dynamical equilibrium between different kinds of patterns. The basic idea of LoD is relation diffusion and sampling sub-logic by random walking as well as a special training mechanism called gradient adaption. Besides, LoD is accompanied by a novel loss function to further achieve the robust logical diffusion when facing noisy data in training or testing sets. Extensive experiments on four public datasets demonstrate the superiority of mainstream knowledge graph reasoning models with LoD over state-of-the-art. Moreover, our ablation study proves the general effectiveness of LoD on the noise-rich knowledge graph.
[ "cs.LG", "cs.AI", "cs.LO" ]
false
2306.03534
2023-06-06T09:34:11Z
Continual Learning in Linear Classification on Separable Data
[ "Itay Evron", "Edward Moroshko", "Gon Buzaglo", "Maroun Khriesh", "Badea Marjieh", "Nathan Srebro", "Daniel Soudry" ]
We analyze continual learning on a sequence of separable linear classification tasks with binary labels. We show theoretically that learning with weak regularization reduces to solving a sequential max-margin problem, corresponding to a special case of the Projection Onto Convex Sets (POCS) framework. We then develop upper bounds on the forgetting and other quantities of interest under various settings with recurring tasks, including cyclic and random orderings of tasks. We discuss several practical implications to popular training practices like regularization scheduling and weighting. We point out several theoretical differences between our continual classification setting and a recently studied continual regression setting.
[ "cs.LG", "cs.NA", "math.NA" ]
false
2306.03548
2023-06-06T09:50:38Z
Learning Dynamical Systems from Noisy Data with Inverse-Explicit Integrators
[ "Håkon Noren", "Sølve Eidnes", "Elena Celledoni" ]
We introduce the mean inverse integrator (MII), a novel approach to increase the accuracy when training neural networks to approximate vector fields of dynamical systems from noisy data. This method can be used to average multiple trajectories obtained by numerical integrators such as Runge-Kutta methods. We show that the class of mono-implicit Runge-Kutta methods (MIRK) has particular advantages when used in connection with MII. When training vector field approximations, explicit expressions for the loss functions are obtained when inserting the training data in the MIRK formulae, unlocking symmetric and high-order integrators that would otherwise be implicit for initial value problems. The combined approach of applying MIRK within MII yields a significantly lower error compared to the plain use of the numerical integrator without averaging the trajectories. This is demonstrated with experiments using data from several (chaotic) Hamiltonian systems. Additionally, we perform a sensitivity analysis of the loss functions under normally distributed perturbations, supporting the favorable performance of MII.
[ "cs.LG", "cs.NA", "math.NA" ]
false
2306.03646
2023-06-06T13:00:47Z
Dance Generation by Sound Symbolic Words
[ "Miki Okamura", "Naruya Kondo", "Tatsuki Fushimi", "Maki Sakamoto", "Yoichi Ochiai" ]
This study introduces a novel approach to generate dance motions using onomatopoeia as input, with the aim of enhancing creativity and diversity in dance generation. Unlike text and music, onomatopoeia conveys rhythm and meaning through abstract word expressions without constraints on expression and without need for specialized knowledge. We adapt the AI Choreographer framework and employ the Sakamoto system, a feature extraction method for onomatopoeia focusing on phonemes and syllables. Additionally, we present a new dataset of 40 onomatopoeia-dance motion pairs collected through a user survey. Our results demonstrate that the proposed method enables more intuitive dance generation and can create dance motions using sound-symbolic words from a variety of languages, including those without onomatopoeia. This highlights the potential for diverse dance creation across different languages and cultures, accessible to a wider audience. Qualitative samples from our model can be found at: https://sites.google.com/view/onomatopoeia-dance/home/.
[ "cs.LG", "cs.HC", "cs.SD", "eess.AS" ]
false
2306.03725
2023-06-06T14:44:52Z
Towards Memory-Efficient Training for Extremely Large Output Spaces -- Learning with 500k Labels on a Single Commodity GPU
[ "Erik Schultheis", "Rohit Babbar" ]
In classification problems with large output spaces (up to millions of labels), the last layer can require an enormous amount of memory. Using sparse connectivity would drastically reduce the memory requirements, but as we show below, it can result in much diminished predictive performance of the model. Fortunately, we found that this can be mitigated by introducing a penultimate layer of intermediate size. We further demonstrate that one can constrain the connectivity of the sparse layer to be uniform, in the sense that each output neuron will have the exact same number of incoming connections. This allows for efficient implementations of sparse matrix multiplication and connection redistribution on GPU hardware. Via a custom CUDA implementation, we show that the proposed approach can scale to datasets with 670,000 labels on a single commodity GPU with only 4GB memory.
[ "cs.LG", "cs.AI", "cs.DC" ]
false
2306.03739
2023-06-06T14:56:47Z
Learning to Do or Learning While Doing: Reinforcement Learning and Bayesian Optimisation for Online Continuous Tuning
[ "Jan Kaiser", "Chenran Xu", "Annika Eichler", "Andrea Santamaria Garcia", "Oliver Stein", "Erik Bründermann", "Willi Kuropka", "Hannes Dinter", "Frank Mayet", "Thomas Vinatier", "Florian Burkart", "Holger Schlarb" ]
Online tuning of real-world plants is a complex optimisation problem that continues to require manual intervention by experienced human operators. Autonomous tuning is a rapidly expanding field of research, where learning-based methods, such as Reinforcement Learning-trained Optimisation (RLO) and Bayesian optimisation (BO), hold great promise for achieving outstanding plant performance and reducing tuning times. Which algorithm to choose in different scenarios, however, remains an open question. Here we present a comparative study using a routine task in a real particle accelerator as an example, showing that RLO generally outperforms BO, but is not always the best choice. Based on the study's results, we provide a clear set of criteria to guide the choice of algorithm for a given tuning task. These can ease the adoption of learning-based autonomous tuning solutions to the operation of complex real-world plants, ultimately improving the availability and pushing the limits of operability of these facilities, thereby enabling scientific and engineering advancements.
[ "cs.LG", "cs.AI", "physics.acc-ph" ]
false
2306.03757
2023-06-06T15:17:34Z
Exploring the effects of robotic design on learning and neural control
[ "Joshua Paul Powers" ]
The ongoing deep learning revolution has allowed computers to outclass humans in various games and perceive features imperceptible to humans during classification tasks. Current machine learning techniques have clearly distinguished themselves in specialized tasks. However, we have yet to see robots capable of performing multiple tasks at an expert level. Most work in this field is focused on the development of more sophisticated learning algorithms for a robot's controller given a largely static and presupposed robotic design. By focusing on the development of robotic bodies, rather than neural controllers, I have discovered that robots can be designed such that they overcome many of the current pitfalls encountered by neural controllers in multitask settings. Through this discovery, I also present novel metrics to explicitly measure the learning ability of a robotic design and its resistance to common problems such as catastrophic interference. Traditionally, the physical robot design requires human engineers to plan every aspect of the system, which is expensive and often relies on human intuition. In contrast, within the field of evolutionary robotics, evolutionary algorithms are used to automatically create optimized designs, however, such designs are often still limited in their ability to perform in a multitask setting. The metrics created and presented here give a novel path to automated design that allow evolved robots to synergize with their controller to improve the computational efficiency of their learning while overcoming catastrophic interference. Overall, this dissertation intimates the ability to automatically design robots that are more general purpose than current robots and that can perform various tasks while requiring less computation.
[ "cs.RO", "cs.AI", "cs.LG", "cs.NE" ]
false
2306.03795
2023-06-06T15:40:27Z
AI-Supported Assessment of Load Safety
[ "Julius Schöning", "Niklas Kruse" ]
Load safety assessment and compliance is an essential step in the corporate process of every logistics service provider. In 2020, a total of 11,371 police checks of trucks were carried out, during which 9.6% (1091) violations against the load safety regulations were detected. For a logistic service provider, every load safety violation results in height fines and damage to reputation. An assessment of load safety supported by artificial intelligence (AI) will reduce the risk of accidents by unsecured loads and fines during safety assessments. This work shows how photos of the load, taken by the truck driver or the loadmaster after the loading process, can be used to assess load safety. By a trained two-stage artificial neural network (ANN), these photos are classified into three different classes I) cargo loaded safely, II) cargo loaded unsafely, and III) unusable image. By applying several architectures of convolutional neural networks (CNN), it can be shown that it is possible to distinguish between unusable and usable images for cargo safety assessment. This distinction is quite crucial since the truck driver and the loadmaster sometimes provide photos without the essential image features like the case structure of the truck and the whole cargo. A human operator or another ANN will then assess the load safety within the second stage.
[ "cs.AI", "cs.HC", "cs.LG" ]
false
2306.03830
2023-06-06T16:15:56Z
Inductive Bias for Emergent Communication in a Continuous Setting
[ "John Isak Fjellvang Villanger", "Troels Arnfred Bojesen" ]
We study emergent communication in a multi-agent reinforcement learning setting, where the agents solve cooperative tasks and have access to a communication channel. The communication channel may consist of either discrete symbols or continuous variables. We introduce an inductive bias to aid with the emergence of good communication protocols for continuous messages, and we look at the effect this type of inductive bias has for continuous and discrete messages in itself or when used in combination with reinforcement learning. We demonstrate that this type of inductive bias has a beneficial effect on the communication protocols learnt in two toy environments, Negotiation and Sequence Guess.
[ "cs.LG", "cs.AI", "cs.MA", "I.2.11" ]
false
2306.03962
2023-06-06T18:45:05Z
PILLAR: How to make semi-private learning more effective
[ "Francesco Pinto", "Yaxi Hu", "Fanny Yang", "Amartya Sanyal" ]
In Semi-Supervised Semi-Private (SP) learning, the learner has access to both public unlabelled and private labelled data. We propose a computationally efficient algorithm that, under mild assumptions on the data, provably achieves significantly lower private labelled sample complexity and can be efficiently run on real-world datasets. For this purpose, we leverage the features extracted by networks pre-trained on public (labelled or unlabelled) data, whose distribution can significantly differ from the one on which SP learning is performed. To validate its empirical effectiveness, we propose a wide variety of experiments under tight privacy constraints ($\epsilon = 0.1$) and with a focus on low-data regimes. In all of these settings, our algorithm exhibits significantly improved performance over available baselines that use similar amounts of public data.
[ "cs.LG", "cs.AI", "cs.CR", "stat.ML" ]
false
2306.03976
2023-06-06T19:18:46Z
Explainable AI using expressive Boolean formulas
[ "Gili Rosenberg", "J. Kyle Brubaker", "Martin J. A. Schuetz", "Grant Salton", "Zhihuai Zhu", "Elton Yechao Zhu", "Serdar Kadıoğlu", "Sima E. Borujeni", "Helmut G. Katzgraber" ]
We propose and implement an interpretable machine learning classification model for Explainable AI (XAI) based on expressive Boolean formulas. Potential applications include credit scoring and diagnosis of medical conditions. The Boolean formula defines a rule with tunable complexity (or interpretability), according to which input data are classified. Such a formula can include any operator that can be applied to one or more Boolean variables, thus providing higher expressivity compared to more rigid rule-based and tree-based approaches. The classifier is trained using native local optimization techniques, efficiently searching the space of feasible formulas. Shallow rules can be determined by fast Integer Linear Programming (ILP) or Quadratic Unconstrained Binary Optimization (QUBO) solvers, potentially powered by special purpose hardware or quantum devices. We combine the expressivity and efficiency of the native local optimizer with the fast operation of these devices by executing non-local moves that optimize over subtrees of the full Boolean formula. We provide extensive numerical benchmarking results featuring several baselines on well-known public datasets. Based on the results, we find that the native local rule classifier is generally competitive with the other classifiers. The addition of non-local moves achieves similar results with fewer iterations, and therefore using specialized or quantum hardware could lead to a speedup by fast proposal of non-local moves.
[ "cs.AI", "cs.LG", "math.OC", "quant-ph" ]
false
2306.04001
2023-06-06T20:28:37Z
One-Dimensional Deep Image Prior for Curve Fitting of S-Parameters from Electromagnetic Solvers
[ "Sriram Ravula", "Varun Gorti", "Bo Deng", "Swagato Chakraborty", "James Pingenot", "Bhyrav Mutnury", "Doug Wallace", "Doug Winterberg", "Adam Klivans", "Alexandros G. Dimakis" ]
A key problem when modeling signal integrity for passive filters and interconnects in IC packages is the need for multiple S-parameter measurements within a desired frequency band to obtain adequate resolution. These samples are often computationally expensive to obtain using electromagnetic (EM) field solvers. Therefore, a common approach is to select a small subset of the necessary samples and use an appropriate fitting mechanism to recreate a densely-sampled broadband representation. We present the first deep generative model-based approach to fit S-parameters from EM solvers using one-dimensional Deep Image Prior (DIP). DIP is a technique that optimizes the weights of a randomly-initialized convolutional neural network to fit a signal from noisy or under-determined measurements. We design a custom architecture and propose a novel regularization inspired by smoothing splines that penalizes discontinuous jumps. We experimentally compare DIP to publicly available and proprietary industrial implementations of Vector Fitting (VF), the industry-standard tool for fitting S-parameters. Relative to publicly available implementations of VF, our method shows superior performance on nearly all test examples using only 5-15% of the frequency samples. Our method is also competitive to proprietary VF tools and often outperforms them for challenging input instances.
[ "cs.LG", "cs.AI", "eess.SP" ]
false
2306.04008
2023-06-06T20:43:07Z
Green Steganalyzer: A Green Learning Approach to Image Steganalysis
[ "Yao Zhu", "Xinyu Wang", "Hong-Shuo Chen", "Ronald Salloum", "C. -C. Jay Kuo" ]
A novel learning solution to image steganalysis based on the green learning paradigm, called Green Steganalyzer (GS), is proposed in this work. GS consists of three modules: 1) pixel-based anomaly prediction, 2) embedding location detection, and 3) decision fusion for image-level detection. In the first module, GS decomposes an image into patches, adopts Saab transforms for feature extraction, and conducts self-supervised learning to predict an anomaly score of their center pixel. In the second module, GS analyzes the anomaly scores of a pixel and its neighborhood to find pixels of higher embedding probabilities. In the third module, GS focuses on pixels of higher embedding probabilities and fuses their anomaly scores to make final image-level classification. Compared with state-of-the-art deep-learning models, GS achieves comparable detection performance against S-UNIWARD, WOW and HILL steganography schemes with significantly lower computational complexity and a smaller model size, making it attractive for mobile/edge applications. Furthermore, GS is mathematically transparent because of its modular design.
[ "eess.IV", "cs.CR", "cs.LG" ]
false
2306.04040
2023-06-06T22:11:13Z
FedVal: Different good or different bad in federated learning
[ "Viktor Valadi", "Xinchi Qiu", "Pedro Porto Buarque de Gusmão", "Nicholas D. Lane", "Mina Alibeigi" ]
Federated learning (FL) systems are susceptible to attacks from malicious actors who might attempt to corrupt the training model through various poisoning attacks. FL also poses new challenges in addressing group bias, such as ensuring fair performance for different demographic groups. Traditional methods used to address such biases require centralized access to the data, which FL systems do not have. In this paper, we present a novel approach FedVal for both robustness and fairness that does not require any additional information from clients that could raise privacy concerns and consequently compromise the integrity of the FL system. To this end, we propose an innovative score function based on a server-side validation method that assesses client updates and determines the optimal aggregation balance between locally-trained models. Our research shows that this approach not only provides solid protection against poisoning attacks but can also be used to reduce group bias and subsequently promote fairness while maintaining the system's capability for differential privacy. Extensive experiments on the CIFAR-10, FEMNIST, and PUMS ACSIncome datasets in different configurations demonstrate the effectiveness of our method, resulting in state-of-the-art performances. We have proven robustness in situations where 80% of participating clients are malicious. Additionally, we have shown a significant increase in accuracy for underrepresented labels from 32% to 53%, and increase in recall rate for underrepresented features from 19% to 50%.
[ "cs.LG", "cs.AI", "cs.CR" ]
false
2306.04049
2023-06-06T22:35:16Z
One-sided Matrix Completion from Two Observations Per Row
[ "Steven Cao", "Percy Liang", "Gregory Valiant" ]
Given only a few observed entries from a low-rank matrix $X$, matrix completion is the problem of imputing the missing entries, and it formalizes a wide range of real-world settings that involve estimating missing data. However, when there are too few observed entries to complete the matrix, what other aspects of the underlying matrix can be reliably recovered? We study one such problem setting, that of "one-sided" matrix completion, where our goal is to recover the right singular vectors of $X$, even in the regime where recovering the left singular vectors is impossible, which arises when there are more rows than columns and very few observations. We propose a natural algorithm that involves imputing the missing values of the matrix $X^TX$ and show that even with only two observations per row in $X$, we can provably recover $X^TX$ as long as we have at least $\Omega(r^2 d \log d)$ rows, where $r$ is the rank and $d$ is the number of columns. We evaluate our algorithm on one-sided recovery of synthetic data and low-coverage genome sequencing. In these settings, our algorithm substantially outperforms standard matrix completion and a variety of direct factorization methods.
[ "cs.LG", "cs.DS", "stat.ML" ]
false
2306.04655
2023-06-06T16:14:15Z
Modulation Classification Through Deep Learning Using Resolution Transformed Spectrograms
[ "Muhammad Waqas", "Muhammad Ashraf", "Muhammad Zakwan" ]
Modulation classification is an essential step of signal processing and has been regularly applied in the field of tele-communication. Since variations of frequency with respect to time remains a vital distinction among radio signals having different modulation formats, these variations can be used for feature extraction by converting 1-D radio signals into frequency domain. In this paper, we propose a scheme for Automatic Modulation Classification (AMC) using modern architectures of Convolutional Neural Networks (CNN), through generating spectrum images of eleven different modulation types. Additionally, we perform resolution transformation of spectrograms that results up to 99.61% of computational load reduction and 8x faster conversion from the received I/Q data. This proposed AMC is implemented on CPU and GPU, to recognize digital as well as analogue signal modulation schemes on signals. The performance is evaluated on existing CNN models including SqueezeNet, Resnet-50, InceptionResnet-V2, Inception-V3, VGG-16 and Densenet-201. Best results of 91.2% are achieved in presence of AWGN and other noise impairments in the signals, stating that the transformed spectrogram-based AMC has good classification accuracy as the spectral features are highly discriminant, and CNN based models have capability to extract these high-dimensional features. The spectrograms were created under different SNRs ranging from 5 to 30db with a step size of 5db to observe the experimental results at various SNR levels. The proposed methodology is efficient to be applied in wireless communication networks for real-time applications.
[ "eess.SP", "cs.LG", "cs.SD", "eess.AS" ]
false
2306.03481
2023-06-06T08:06:43Z
Transition role of entangled data in quantum machine learning
[ "Xinbiao Wang", "Yuxuan Du", "Zhuozhuo Tu", "Yong Luo", "Xiao Yuan", "Dacheng Tao" ]
Entanglement serves as the resource to empower quantum computing. Recent progress has highlighted its positive impact on learning quantum dynamics, wherein the integration of entanglement into quantum operations or measurements of quantum machine learning (QML) models leads to substantial reductions in training data size, surpassing a specified prediction error threshold. However, an analytical understanding of how the entanglement degree in data affects model performance remains elusive. In this study, we address this knowledge gap by establishing a quantum no-free-lunch (NFL) theorem for learning quantum dynamics using entangled data. Contrary to previous findings, we prove that the impact of entangled data on prediction error exhibits a dual effect, depending on the number of permitted measurements. With a sufficient number of measurements, increasing the entanglement of training data consistently reduces the prediction error or decreases the required size of the training data to achieve the same prediction error. Conversely, when few measurements are allowed, employing highly entangled data could lead to an increased prediction error. The achieved results provide critical guidance for designing advanced QML protocols, especially for those tailored for execution on early-stage quantum computers with limited access to quantum resources.
[ "quant-ph", "cs.AI", "cs.IT", "cs.LG", "math.IT" ]
false
2306.03838
2023-06-06T16:27:17Z
Spherical Fourier Neural Operators: Learning Stable Dynamics on the Sphere
[ "Boris Bonev", "Thorsten Kurth", "Christian Hundt", "Jaideep Pathak", "Maximilian Baust", "Karthik Kashinath", "Anima Anandkumar" ]
Fourier Neural Operators (FNOs) have proven to be an efficient and effective method for resolution-independent operator learning in a broad variety of application areas across scientific machine learning. A key reason for their success is their ability to accurately model long-range dependencies in spatio-temporal data by learning global convolutions in a computationally efficient manner. To this end, FNOs rely on the discrete Fourier transform (DFT), however, DFTs cause visual and spectral artifacts as well as pronounced dissipation when learning operators in spherical coordinates since they incorrectly assume a flat geometry. To overcome this limitation, we generalize FNOs on the sphere, introducing Spherical FNOs (SFNOs) for learning operators on spherical geometries. We apply SFNOs to forecasting atmospheric dynamics, and demonstrate stable auto\-regressive rollouts for a year of simulated time (1,460 steps), while retaining physically plausible dynamics. The SFNO has important implications for machine learning-based simulation of climate dynamics that could eventually help accelerate our response to climate change.
[ "cs.LG", "cs.NA", "math.NA", "physics.ao-ph", "physics.comp-ph" ]
false
2306.04180
2023-06-07T06:29:03Z
FusedRF: Fusing Multiple Radiance Fields
[ "Rahul Goel", "Dhawal Sirikonda", "Rajvi Shah", "PJ Narayanan" ]
Radiance Fields (RFs) have shown great potential to represent scenes from casually captured discrete views. Compositing parts or whole of multiple captured scenes could greatly interest several XR applications. Prior works can generate new views of such scenes by tracing each scene in parallel. This increases the render times and memory requirements with the number of components. In this work, we provide a method to create a single, compact, fused RF representation for a scene composited using multiple RFs. The fused RF has the same render times and memory utilizations as a single RF. Our method distills information from multiple teacher RFs into a single student RF while also facilitating further manipulations like addition and deletion into the fused representation.
[ "cs.CV" ]
false
2306.04184
2023-06-07T06:40:54Z
StructuredMesh: 3D Structured Optimization of Façade Components on Photogrammetric Mesh Models using Binary Integer Programming
[ "Libin Wang", "Han Hu", "Qisen Shang", "Bo Xu", "Qing Zhu" ]
The lack of fa\c{c}ade structures in photogrammetric mesh models renders them inadequate for meeting the demands of intricate applications. Moreover, these mesh models exhibit irregular surfaces with considerable geometric noise and texture quality imperfections, making the restoration of structures challenging. To address these shortcomings, we present StructuredMesh, a novel approach for reconstructing fa\c{c}ade structures conforming to the regularity of buildings within photogrammetric mesh models. Our method involves capturing multi-view color and depth images of the building model using a virtual camera and employing a deep learning object detection pipeline to semi-automatically extract the bounding boxes of fa\c{c}ade components such as windows, doors, and balconies from the color image. We then utilize the depth image to remap these boxes into 3D space, generating an initial fa\c{c}ade layout. Leveraging architectural knowledge, we apply binary integer programming (BIP) to optimize the 3D layout's structure, encompassing the positions, orientations, and sizes of all components. The refined layout subsequently informs fa\c{c}ade modeling through instance replacement. We conducted experiments utilizing building mesh models from three distinct datasets, demonstrating the adaptability, robustness, and noise resistance of our proposed methodology. Furthermore, our 3D layout evaluation metrics reveal that the optimized layout enhances precision, recall, and F-score by 6.5%, 4.5%, and 5.5%, respectively, in comparison to the initial layout.
[ "cs.CV", "68U05", "I.5.3" ]
false
2306.04231
2023-06-07T08:14:17Z
Learning Probabilistic Coordinate Fields for Robust Correspondences
[ "Weiyue Zhao", "Hao Lu", "Xinyi Ye", "Zhiguo Cao", "Xin Li" ]
We introduce Probabilistic Coordinate Fields (PCFs), a novel geometric-invariant coordinate representation for image correspondence problems. In contrast to standard Cartesian coordinates, PCFs encode coordinates in correspondence-specific barycentric coordinate systems (BCS) with affine invariance. To know \textit{when and where to trust} the encoded coordinates, we implement PCFs in a probabilistic network termed PCF-Net, which parameterizes the distribution of coordinate fields as Gaussian mixture models. By jointly optimizing coordinate fields and their confidence conditioned on dense flows, PCF-Net can work with various feature descriptors when quantifying the reliability of PCFs by confidence maps. An interesting observation of this work is that the learned confidence map converges to geometrically coherent and semantically consistent regions, which facilitates robust coordinate representation. By delivering the confident coordinates to keypoint/feature descriptors, we show that PCF-Net can be used as a plug-in to existing correspondence-dependent approaches. Extensive experiments on both indoor and outdoor datasets suggest that accurate geometric invariant coordinates help to achieve the state of the art in several correspondence problems, such as sparse feature matching, dense image registration, camera pose estimation, and consistency filtering. Further, the interpretable confidence map predicted by PCF-Net can also be leveraged to other novel applications from texture transfer to multi-homography classification.
[ "cs.CV" ]
false
2306.04272
2023-06-07T09:13:56Z
On the Generalization of Multi-modal Contrastive Learning
[ "Qi Zhang", "Yifei Wang", "Yisen Wang" ]
Multi-modal contrastive learning (MMCL) has recently garnered considerable interest due to its superior performance in visual tasks, achieved by embedding multi-modal data, such as visual-language pairs. However, there still lack theoretical understandings of how MMCL extracts useful visual representation from multi-modal pairs, and particularly, how MMCL outperforms previous approaches like self-supervised contrastive learning (SSCL). In this paper, by drawing an intrinsic connection between MMCL and asymmetric matrix factorization, we establish the first generalization guarantees of MMCL for visual downstream tasks. Based on this framework, we further unify MMCL and SSCL by showing that MMCL implicitly performs SSCL with (pseudo) positive pairs induced by text pairs. Through this unified perspective, we characterize the advantage of MMCL by showing that text pairs induce more semantically consistent and diverse positive pairs, which, according to our analysis, provably benefit downstream generalization. Inspired by this finding, we propose CLIP-guided resampling methods to significantly improve the downstream performance of SSCL on ImageNet by leveraging multi-modal information. Code is available at https://github.com/PKU-ML/CLIP-Help-SimCLR.
[ "cs.CV" ]
false
2306.04385
2023-06-07T12:34:55Z
SF-FSDA: Source-Free Few-Shot Domain Adaptive Object Detection with Efficient Labeled Data Factory
[ "Han Sun", "Rui Gong", "Konrad Schindler", "Luc Van Gool" ]
Domain adaptive object detection aims to leverage the knowledge learned from a labeled source domain to improve the performance on an unlabeled target domain. Prior works typically require the access to the source domain data for adaptation, and the availability of sufficient data on the target domain. However, these assumptions may not hold due to data privacy and rare data collection. In this paper, we propose and investigate a more practical and challenging domain adaptive object detection problem under both source-free and few-shot conditions, named as SF-FSDA. To overcome this problem, we develop an efficient labeled data factory based approach. Without accessing the source domain, the data factory renders i) infinite amount of synthesized target-domain like images, under the guidance of the few-shot image samples and text description from the target domain; ii) corresponding bounding box and category annotations, only demanding minimum human effort, i.e., a few manually labeled examples. On the one hand, the synthesized images mitigate the knowledge insufficiency brought by the few-shot condition. On the other hand, compared to the popular pseudo-label technique, the generated annotations from data factory not only get rid of the reliance on the source pretrained object detection model, but also alleviate the unavoidably pseudo-label noise due to domain shift and source-free condition. The generated dataset is further utilized to adapt the source pretrained object detection model, realizing the robust object detection under SF-FSDA. The experiments on different settings showcase that our proposed approach outperforms other state-of-the-art methods on SF-FSDA problem. Our codes and models will be made publicly available.
[ "cs.CV" ]
false
2306.04474
2023-06-07T14:45:24Z
FoSp: Focus and Separation Network for Early Smoke Segmentation
[ "Lujian Yao", "Haitao Zhao", "Jingchao Peng", "Zhongze Wang", "Kaijie Zhao" ]
Early smoke segmentation (ESS) enables the accurate identification of smoke sources, facilitating the prompt extinguishing of fires and preventing large-scale gas leaks. But ESS poses greater challenges than conventional object and regular smoke segmentation due to its small scale and transparent appearance, which can result in high miss detection rate and low precision. To address these issues, a Focus and Separation Network (FoSp) is proposed. We first introduce a Focus module employing bidirectional cascade which guides low-resolution and high-resolution features towards mid-resolution to locate and determine the scope of smoke, reducing the miss detection rate. Next, we propose a Separation module that separates smoke images into a pure smoke foreground and a smoke-free background, enhancing the contrast between smoke and background fundamentally, improving segmentation precision. Finally, a Domain Fusion module is developed to integrate the distinctive features of the two modules which can balance recall and precision to achieve high F_beta. Futhermore, to promote the development of ESS, we introduce a high-quality real-world dataset called SmokeSeg, which contains more small and transparent smoke than the existing datasets. Experimental results show that our model achieves the best performance on three available datasets: SYN70K (mIoU: 83.00%), SMOKE5K (F_beta: 81.6%) and SmokeSeg (F_beta: 72.05%). Especially, our FoSp outperforms SegFormer by 7.71% (F_beta) for early smoke segmentation on SmokeSeg.
[ "cs.CV" ]
false
2306.04482
2023-06-07T17:42:42Z
ICON$^2$: Reliably Benchmarking Predictive Inequity in Object Detection
[ "Sruthi Sudhakar", "Viraj Prabhu", "Olga Russakovsky", "Judy Hoffman" ]
As computer vision systems are being increasingly deployed at scale in high-stakes applications like autonomous driving, concerns about social bias in these systems are rising. Analysis of fairness in real-world vision systems, such as object detection in driving scenes, has been limited to observing predictive inequity across attributes such as pedestrian skin tone, and lacks a consistent methodology to disentangle the role of confounding variables e.g. does my model perform worse for a certain skin tone, or are such scenes in my dataset more challenging due to occlusion and crowds? In this work, we introduce ICON$^2$, a framework for robustly answering this question. ICON$^2$ leverages prior knowledge on the deficiencies of object detection systems to identify performance discrepancies across sub-populations, compute correlations between these potential confounders and a given sensitive attribute, and control for the most likely confounders to obtain a more reliable estimate of model bias. Using our approach, we conduct an in-depth study on the performance of object detection with respect to income from the BDD100K driving dataset, revealing useful insights.
[ "cs.CV" ]
false
2306.04506
2023-06-07T15:15:13Z
Defocus to focus: Photo-realistic bokeh rendering by fusing defocus and radiance priors
[ "Xianrui Luo", "Juewen Peng", "Ke Xian", "Zijin Wu", "Zhiguo Cao" ]
We consider the problem of realistic bokeh rendering from a single all-in-focus image. Bokeh rendering mimics aesthetic shallow depth-of-field (DoF) in professional photography, but these visual effects generated by existing methods suffer from simple flat background blur and blurred in-focus regions, giving rise to unrealistic rendered results. In this work, we argue that realistic bokeh rendering should (i) model depth relations and distinguish in-focus regions, (ii) sustain sharp in-focus regions, and (iii) render physically accurate Circle of Confusion (CoC). To this end, we present a Defocus to Focus (D2F) framework to learn realistic bokeh rendering by fusing defocus priors with the all-in-focus image and by implementing radiance priors in layered fusion. Since no depth map is provided, we introduce defocus hallucination to integrate depth by learning to focus. The predicted defocus map implies the blur amount of bokeh and is used to guide weighted layered rendering. In layered rendering, we fuse images blurred by different kernels based on the defocus map. To increase the reality of the bokeh, we adopt radiance virtualization to simulate scene radiance. The scene radiance used in weighted layered rendering reassigns weights in the soft disk kernel to produce the CoC. To ensure the sharpness of in-focus regions, we propose to fuse upsampled bokeh images and original images. We predict the initial fusion mask from our defocus map and refine the mask with a deep network. We evaluate our model on a large-scale bokeh dataset. Extensive experiments show that our approach is capable of rendering visually pleasing bokeh effects in complex scenes. In particular, our solution receives the runner-up award in the AIM 2020 Rendering Realistic Bokeh Challenge.
[ "cs.CV" ]
false
2306.04540
2023-06-07T15:46:15Z
NeMO: Neural Map Growing System for Spatiotemporal Fusion in Bird's-Eye-View and BDD-Map Benchmark
[ "Xi Zhu", "Xiya Cao", "Zhiwei Dong", "Caifa Zhou", "Qiangbo Liu", "Wei Li", "Yongliang Wang" ]
Vision-centric Bird's-Eye View (BEV) representation is essential for autonomous driving systems (ADS). Multi-frame temporal fusion which leverages historical information has been demonstrated to provide more comprehensive perception results. While most research focuses on ego-centric maps of fixed settings, long-range local map generation remains less explored. This work outlines a new paradigm, named NeMO, for generating local maps through the utilization of a readable and writable big map, a learning-based fusion module, and an interaction mechanism between the two. With an assumption that the feature distribution of all BEV grids follows an identical pattern, we adopt a shared-weight neural network for all grids to update the big map. This paradigm supports the fusion of longer time series and the generation of long-range BEV local maps. Furthermore, we release BDD-Map, a BDD100K-based dataset incorporating map element annotations, including lane lines, boundaries, and pedestrian crossing. Experiments on the NuScenes and BDD-Map datasets demonstrate that NeMO outperforms state-of-the-art map segmentation methods. We also provide a new scene-level BEV map evaluation setting along with the corresponding baseline for a more comprehensive comparison.
[ "cs.CV" ]
false
2306.04619
2023-06-07T17:47:50Z
ARTIC3D: Learning Robust Articulated 3D Shapes from Noisy Web Image Collections
[ "Chun-Han Yao", "Amit Raj", "Wei-Chih Hung", "Yuanzhen Li", "Michael Rubinstein", "Ming-Hsuan Yang", "Varun Jampani" ]
Estimating 3D articulated shapes like animal bodies from monocular images is inherently challenging due to the ambiguities of camera viewpoint, pose, texture, lighting, etc. We propose ARTIC3D, a self-supervised framework to reconstruct per-instance 3D shapes from a sparse image collection in-the-wild. Specifically, ARTIC3D is built upon a skeleton-based surface representation and is further guided by 2D diffusion priors from Stable Diffusion. First, we enhance the input images with occlusions/truncation via 2D diffusion to obtain cleaner mask estimates and semantic features. Second, we perform diffusion-guided 3D optimization to estimate shape and texture that are of high-fidelity and faithful to input images. We also propose a novel technique to calculate more stable image-level gradients via diffusion models compared to existing alternatives. Finally, we produce realistic animations by fine-tuning the rendered shape and texture under rigid part transformations. Extensive evaluations on multiple existing datasets as well as newly introduced noisy web image collections with occlusions and truncation demonstrate that ARTIC3D outputs are more robust to noisy images, higher quality in terms of shape and texture details, and more realistic when animated. Project page: https://chhankyao.github.io/artic3d/
[ "cs.CV" ]
true
2306.04715
2023-06-07T18:26:22Z
UniBoost: Unsupervised Unimodal Pre-training for Boosting Zero-shot Vision-Language Tasks
[ "Yanan Sun", "Zihan Zhong", "Qi Fan", "Chi-Keung Tang", "Yu-Wing Tai" ]
Large-scale joint training of multimodal models, e.g., CLIP, have demonstrated great performance in many vision-language tasks. However, image-text pairs for pre-training are restricted to the intersection of images and texts, limiting their ability to cover a large distribution of real-world data, where noise can also be introduced as misaligned pairs during pre-processing. Conversely, unimodal models trained on text or image data alone through unsupervised techniques can achieve broader coverage of diverse real-world data and are not constrained by the requirement of simultaneous presence of image and text. In this paper, we demonstrate that using large-scale unsupervised unimodal models as pre-training can enhance the zero-shot performance of image-text pair models. Our thorough studies validate that models pre-trained as such can learn rich representations of both modalities, improving their ability to understand how images and text relate to each other. Our experiments show that unimodal pre-training outperforms state-of-the-art CLIP-based models by 6.5% (52.3% $\rightarrow$ 58.8%) on PASCAL-5$^i$ and 6.2% (27.2% $\rightarrow$ 33.4%) on COCO-20$^i$ semantic segmentation under zero-shot setting respectively. By learning representations of both modalities, unimodal pre-training offers broader coverage, reduced misalignment errors, and the ability to capture more complex features and patterns in the real-world data resulting in better performance especially for zero-shot vision-language tasks.
[ "cs.CV" ]
false
2306.04736
2023-06-07T19:12:03Z
BU-CVKit: Extendable Computer Vision Framework for Species Independent Tracking and Analysis
[ "Mahir Patel", "Lucas Carstensen", "Yiwen Gu", "Michael E. Hasselmo", "Margrit Betke" ]
A major bottleneck of interdisciplinary computer vision (CV) research is the lack of a framework that eases the reuse and abstraction of state-of-the-art CV models by CV and non-CV researchers alike. We present here BU-CVKit, a computer vision framework that allows the creation of research pipelines with chainable Processors. The community can create plugins of their work for the framework, hence improving the re-usability, accessibility, and exposure of their work with minimal overhead. Furthermore, we provide MuSeqPose Kit, a user interface for the pose estimation package of BU-CVKit, which automatically scans for installed plugins and programmatically generates an interface for them based on the metadata provided by the user. It also provides software support for standard pose estimation features such as annotations, 3D reconstruction, reprojection, and camera calibration. Finally, we show examples of behavioral neuroscience pipelines created through the sample plugins created for our framework.
[ "cs.CV" ]
false
2306.04774
2023-06-07T20:45:15Z
RefineVIS: Video Instance Segmentation with Temporal Attention Refinement
[ "Andre Abrantes", "Jiang Wang", "Peng Chu", "Quanzeng You", "Zicheng Liu" ]
We introduce a novel framework called RefineVIS for Video Instance Segmentation (VIS) that achieves good object association between frames and accurate segmentation masks by iteratively refining the representations using sequence context. RefineVIS learns two separate representations on top of an off-the-shelf frame-level image instance segmentation model: an association representation responsible for associating objects across frames and a segmentation representation that produces accurate segmentation masks. Contrastive learning is utilized to learn temporally stable association representations. A Temporal Attention Refinement (TAR) module learns discriminative segmentation representations by exploiting temporal relationships and a novel temporal contrastive denoising technique. Our method supports both online and offline inference. It achieves state-of-the-art video instance segmentation accuracy on YouTube-VIS 2019 (64.4 AP), Youtube-VIS 2021 (61.4 AP), and OVIS (46.1 AP) datasets. The visualization shows that the TAR module can generate more accurate instance segmentation masks, particularly for challenging cases such as highly occluded objects.
[ "cs.CV" ]
false
2306.04822
2023-06-07T23:06:53Z
Optimizing ViViT Training: Time and Memory Reduction for Action Recognition
[ "Shreyank N Gowda", "Anurag Arnab", "Jonathan Huang" ]
In this paper, we address the challenges posed by the substantial training time and memory consumption associated with video transformers, focusing on the ViViT (Video Vision Transformer) model, in particular the Factorised Encoder version, as our baseline for action recognition tasks. The factorised encoder variant follows the late-fusion approach that is adopted by many state of the art approaches. Despite standing out for its favorable speed/accuracy tradeoffs among the different variants of ViViT, its considerable training time and memory requirements still pose a significant barrier to entry. Our method is designed to lower this barrier and is based on the idea of freezing the spatial transformer during training. This leads to a low accuracy model if naively done. But we show that by (1) appropriately initializing the temporal transformer (a module responsible for processing temporal information) (2) introducing a compact adapter model connecting frozen spatial representations ((a module that selectively focuses on regions of the input image) to the temporal transformer, we can enjoy the benefits of freezing the spatial transformer without sacrificing accuracy. Through extensive experimentation over 6 benchmarks, we demonstrate that our proposed training strategy significantly reduces training costs (by $\sim 50\%$) and memory consumption while maintaining or slightly improving performance by up to 1.79\% compared to the baseline model. Our approach additionally unlocks the capability to utilize larger image transformer models as our spatial transformer and access more frames with the same memory consumption.
[ "cs.CV" ]
true
2306.04098
2023-06-07T01:43:09Z
Phoenix: A Federated Generative Diffusion Model
[ "Fiona Victoria Stanley Jothiraj", "Afra Mashhadi" ]
Generative AI has made impressive strides in enabling users to create diverse and realistic visual content such as images, videos, and audio. However, training generative models on large centralized datasets can pose challenges in terms of data privacy, security, and accessibility. Federated learning (FL) is an approach that uses decentralized techniques to collaboratively train a shared deep learning model while retaining the training data on individual edge devices to preserve data privacy. This paper proposes a novel method for training a Denoising Diffusion Probabilistic Model (DDPM) across multiple data sources using FL techniques. Diffusion models, a newly emerging generative model, show promising results in achieving superior quality images than Generative Adversarial Networks (GANs). Our proposed method Phoenix is an unconditional diffusion model that leverages strategies to improve the data diversity of generated samples even when trained on data with statistical heterogeneity or Non-IID (Non-Independent and Identically Distributed) data. We demonstrate how our approach outperforms the default diffusion model in an FL setting. These results indicate that high-quality samples can be generated by maintaining data diversity, preserving privacy, and reducing communication between data sources, offering exciting new possibilities in the field of generative AI.
[ "cs.LG", "cs.CV" ]
false
2306.04114
2023-06-07T02:55:09Z
Manga Rescreening with Interpretable Screentone Representation
[ "Minshan Xie", "Chengze Li", "Tien-Tsin Wong" ]
The process of adapting or repurposing manga pages is a time-consuming task that requires manga artists to manually work on every single screentone region and apply new patterns to create novel screentones across multiple panels. To address this issue, we propose an automatic manga rescreening pipeline that aims to minimize the human effort involved in manga adaptation. Our pipeline automatically recognizes screentone regions and generates novel screentones with newly specified characteristics (e.g., intensity or type). Existing manga generation methods have limitations in understanding and synthesizing complex tone- or intensity-varying regions. To overcome these limitations, we propose a novel interpretable representation of screentones that disentangles their intensity and type features, enabling better recognition and synthesis of screentones. This interpretable screentone representation reduces ambiguity in recognizing intensity-varying regions and provides fine-grained controls during screentone synthesis by decoupling and anchoring the type or the intensity feature. Our proposed method is demonstrated to be effective and convenient through various experiments, showcasing the superiority of the newly proposed pipeline with the interpretable screentone representations.
[ "cs.CV", "eess.IV" ]
false
2306.04144
2023-06-07T04:36:21Z
UCTB: An Urban Computing Tool Box for Spatiotemporal Crowd Flow Prediction
[ "Liyue Chen", "Di Chai", "Leye Wang" ]
Spatiotemporal crowd flow prediction is one of the key technologies in smart cities. Currently, there are two major pain points that plague related research and practitioners. Firstly, crowd flow is related to multiple domain knowledge factors; however, due to the diversity of application scenarios, it is difficult for subsequent work to make reasonable and comprehensive use of domain knowledge. Secondly, with the development of deep learning technology, the implementation of relevant techniques has become increasingly complex; reproducing advanced models has become a time-consuming and increasingly cumbersome task. To address these issues, we design and implement a spatiotemporal crowd flow prediction toolbox called UCTB (Urban Computing Tool Box), which integrates multiple spatiotemporal domain knowledge and state-of-the-art models simultaneously. The relevant code and supporting documents have been open-sourced at https://github.com/uctb/UCTB.
[ "cs.LG", "cs.CV" ]
false
2306.04214
2023-06-07T07:40:04Z
DualHGNN: A Dual Hypergraph Neural Network for Semi-Supervised Node Classification based on Multi-View Learning and Density Awareness
[ "Jianpeng Liao", "Jun Yan", "Qian Tao" ]
Graph-based semi-supervised node classification has been shown to become a state-of-the-art approach in many applications with high research value and significance. Most existing methods are only based on the original intrinsic or artificially established graph structure which may not accurately reflect the "true" correlation among data and are not optimal for semi-supervised node classification in the downstream graph neural networks. Besides, while existing graph-based methods mostly utilize the explicit graph structure, some implicit information, for example, the density information, can also provide latent information that can be further exploited. To address these limitations, this paper proposes the Dual Hypergraph Neural Network (DualHGNN), a new dual connection model integrating both hypergraph structure learning and hypergraph representation learning simultaneously in a unified architecture. The DualHGNN first leverages a multi-view hypergraph learning network to explore the optimal hypergraph structure from multiple views, constrained by a consistency loss proposed to improve its generalization. Then, DualHGNN employs a density-aware hypergraph attention network to explore the high-order semantic correlation among data points based on the density-aware attention mechanism. Extensive experiments are conducted in various benchmark datasets, and the results demonstrate the effectiveness of the proposed approach.
[ "cs.LG", "cs.CV" ]
false
2306.04362
2023-06-07T11:52:36Z
Youku-mPLUG: A 10 Million Large-scale Chinese Video-Language Dataset for Pre-training and Benchmarks
[ "Haiyang Xu", "Qinghao Ye", "Xuan Wu", "Ming Yan", "Yuan Miao", "Jiabo Ye", "Guohai Xu", "Anwen Hu", "Yaya Shi", "Guangwei Xu", "Chenliang Li", "Qi Qian", "Maofei Que", "Ji Zhang", "Xiao Zeng", "Fei Huang" ]
To promote the development of Vision-Language Pre-training (VLP) and multimodal Large Language Model (LLM) in the Chinese community, we firstly release the largest public Chinese high-quality video-language dataset named Youku-mPLUG, which is collected from Youku, a well-known Chinese video-sharing website, with strict criteria of safety, diversity, and quality. Youku-mPLUG contains 10 million Chinese video-text pairs filtered from 400 million raw videos across a wide range of 45 diverse categories for large-scale pre-training. In addition, to facilitate a comprehensive evaluation of video-language models, we carefully build the largest human-annotated Chinese benchmarks covering three popular video-language tasks of cross-modal retrieval, video captioning, and video category classification. Youku-mPLUG can enable researchers to conduct more in-depth multimodal research and develop better applications in the future. Furthermore, we release popular video-language pre-training models, ALPRO and mPLUG-2, and our proposed modularized decoder-only model mPLUG-video pre-trained on Youku-mPLUG. Experiments show that models pre-trained on Youku-mPLUG gain up to 23.1% improvement in video category classification. Besides, mPLUG-video achieves a new state-of-the-art result on these benchmarks with 80.5% top-1 accuracy in video category classification and 68.9 CIDEr score in video captioning, respectively. Finally, we scale up mPLUG-video based on the frozen Bloomz with only 1.7% trainable parameters as Chinese multimodal LLM, and demonstrate impressive instruction and video understanding ability. The zero-shot instruction understanding experiment indicates that pretraining with Youku-mPLUG can enhance the ability to comprehend overall and detailed visual semantics, recognize scene text, and leverage open-domain knowledge.
[ "cs.CV", "cs.CL" ]
true
2306.04557
2023-06-07T16:04:08Z
PhenoBench -- A Large Dataset and Benchmarks for Semantic Image Interpretation in the Agricultural Domain
[ "Jan Weyler", "Federico Magistri", "Elias Marks", "Yue Linn Chong", "Matteo Sodano", "Gianmarco Roggiolani", "Nived Chebrolu", "Cyrill Stachniss", "Jens Behley" ]
The production of food, feed, fiber, and fuel is a key task of agriculture. Especially crop production has to cope with a multitude of challenges in the upcoming decades caused by a growing world population, climate change, the need for sustainable production, lack of skilled workers, and generally the limited availability of arable land. Vision systems could help cope with these challenges by offering tools to make better and more sustainable field management decisions and support the breeding of new varieties of crops by allowing temporally dense and reproducible measurements. Recently, tackling perception tasks in the agricultural domain got increasing interest in the computer vision and robotics community since agricultural robotics are one promising solution for coping with the lack of workers and enable a more sustainable agricultural production at the same time. While large datasets and benchmarks in other domains are readily available and have enabled significant progress toward more reliable vision systems, agricultural datasets and benchmarks are comparably rare. In this paper, we present a large dataset and benchmarks for the semantic interpretation of images of real agricultural fields. Our dataset recorded with a UAV provides high-quality, dense annotations of crops and weeds, but also fine-grained labels of crop leaves at the same time, which enable the development of novel algorithms for visual perception in the agricultural domain. Together with the labeled data, we provide novel benchmarks for evaluating different visual perception tasks on a hidden test set comprised of different fields: known fields covered by the training data and a completely unseen field. The tasks cover semantic segmentation, panoptic segmentation of plants, leaf instance segmentation, detection of plants and leaves, and hierarchical panoptic segmentation for jointly identifying plants and leaves.
[ "cs.CV", "cs.RO" ]
false
2306.04579
2023-06-07T16:28:53Z
A Dataset for Deep Learning-based Bone Structure Analyses in Total Hip Arthroplasty
[ "Kaidong Zhang", "Ziyang Gan", "Dong Liu", "Xifu Shang" ]
Total hip arthroplasty (THA) is a widely used surgical procedure in orthopedics. For THA, it is of clinical significance to analyze the bone structure from the CT images, especially to observe the structure of the acetabulum and femoral head, before the surgical procedure. For such bone structure analyses, deep learning technologies are promising but require high-quality labeled data for the learning, while the data labeling is costly. We address this issue and propose an efficient data annotation pipeline for producing a deep learning-oriented dataset. Our pipeline consists of non-learning-based bone extraction (BE) and acetabulum and femoral head segmentation (AFS) and active-learning-based annotation refinement (AAR). For BE we use the classic graph-cut algorithm. For AFS we propose an improved algorithm, including femoral head boundary localization using first-order and second-order gradient regularization, line-based non-maximum suppression, and anatomy prior-based femoral head extraction. For AAR, we refine the algorithm-produced pseudo labels with the help of trained deep models: we measure the uncertainty based on the disagreement between the original pseudo labels and the deep model predictions, and then find out the samples with the largest uncertainty to ask for manual labeling. Using the proposed pipeline, we construct a large-scale bone structure analyses dataset from more than 300 clinical and diverse CT scans. We perform careful manual labeling for the test set of our data. We then benchmark multiple state-of-the art deep learning-based methods of medical image segmentation using the training and test sets of our data. The extensive experimental results validate the efficacy of the proposed data annotation pipeline. The dataset, related codes and models will be publicly available at https://github.com/hitachinsk/THA.
[ "eess.IV", "cs.CV" ]
false
2306.04593
2023-06-07T16:46:44Z
MarineVRS: Marine Video Retrieval System with Explainability via Semantic Understanding
[ "Tan-Sang Ha", "Hai Nguyen-Truong", "Tuan-Anh Vu", "Sai-Kit Yeung" ]
Building a video retrieval system that is robust and reliable, especially for the marine environment, is a challenging task due to several factors such as dealing with massive amounts of dense and repetitive data, occlusion, blurriness, low lighting conditions, and abstract queries. To address these challenges, we present MarineVRS, a novel and flexible video retrieval system designed explicitly for the marine domain. MarineVRS integrates state-of-the-art methods for visual and linguistic object representation to enable efficient and accurate search and analysis of vast volumes of underwater video data. In addition, unlike the conventional video retrieval system, which only permits users to index a collection of images or videos and search using a free-form natural language sentence, our retrieval system includes an additional Explainability module that outputs the segmentation masks of the objects that the input query referred to. This feature allows users to identify and isolate specific objects in the video footage, leading to more detailed analysis and understanding of their behavior and movements. Finally, with its adaptability, explainability, accuracy, and scalability, MarineVRS is a powerful tool for marine researchers and scientists to efficiently and accurately process vast amounts of data and gain deeper insights into the behavior and movements of marine species.
[ "cs.CV", "cs.IR" ]
false
2306.04622
2023-06-07T17:52:29Z
Yet Another Algorithm for Supervised Principal Component Analysis: Supervised Linear Centroid-Encoder
[ "Tomojit Ghosh", "Michael Kirby" ]
We propose a new supervised dimensionality reduction technique called Supervised Linear Centroid-Encoder (SLCE), a linear counterpart of the nonlinear Centroid-Encoder (CE) \citep{ghosh2022supervised}. SLCE works by mapping the samples of a class to its class centroid using a linear transformation. The transformation is a projection that reconstructs a point such that its distance from the corresponding class centroid, i.e., centroid-reconstruction loss, is minimized in the ambient space. We derive a closed-form solution using an eigendecomposition of a symmetric matrix. We did a detailed analysis and presented some crucial mathematical properties of the proposed approach. %We also provide an iterative solution approach based solving the optimization problem using a descent method. We establish a connection between the eigenvalues and the centroid-reconstruction loss. In contrast to Principal Component Analysis (PCA) which reconstructs a sample in the ambient space, the transformation of SLCE uses the instances of a class to rebuild the corresponding class centroid. Therefore the proposed method can be considered a form of supervised PCA. Experimental results show the performance advantage of SLCE over other supervised methods.
[ "cs.LG", "cs.CV" ]
false
2306.04632
2023-06-07T17:56:02Z
Designing a Better Asymmetric VQGAN for StableDiffusion
[ "Zixin Zhu", "Xuelu Feng", "Dongdong Chen", "Jianmin Bao", "Le Wang", "Yinpeng Chen", "Lu Yuan", "Gang Hua" ]
StableDiffusion is a revolutionary text-to-image generator that is causing a stir in the world of image generation and editing. Unlike traditional methods that learn a diffusion model in pixel space, StableDiffusion learns a diffusion model in the latent space via a VQGAN, ensuring both efficiency and quality. It not only supports image generation tasks, but also enables image editing for real images, such as image inpainting and local editing. However, we have observed that the vanilla VQGAN used in StableDiffusion leads to significant information loss, causing distortion artifacts even in non-edited image regions. To this end, we propose a new asymmetric VQGAN with two simple designs. Firstly, in addition to the input from the encoder, the decoder contains a conditional branch that incorporates information from task-specific priors, such as the unmasked image region in inpainting. Secondly, the decoder is much heavier than the encoder, allowing for more detailed recovery while only slightly increasing the total inference cost. The training cost of our asymmetric VQGAN is cheap, and we only need to retrain a new asymmetric decoder while keeping the vanilla VQGAN encoder and StableDiffusion unchanged. Our asymmetric VQGAN can be widely used in StableDiffusion-based inpainting and local editing methods. Extensive experiments demonstrate that it can significantly improve the inpainting and editing performance, while maintaining the original text-to-image capability. The code is available at \url{https://github.com/buxiangzhiren/Asymmetric_VQGAN}.
[ "cs.CV", "cs.GR" ]
true
2306.04636
2023-06-07T17:59:22Z
GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation
[ "Shuai Yang", "Liming Jiang", "Ziwei Liu", "Chen Change Loy" ]
Recent advances in deep learning have witnessed many successful unsupervised image-to-image translation models that learn correspondences between two visual domains without paired data. However, it is still a great challenge to build robust mappings between various domains especially for those with drastic visual discrepancies. In this paper, we introduce a novel versatile framework, Generative Prior-guided UNsupervised Image-to-image Translation (GP-UNIT), that improves the quality, applicability and controllability of the existing translation models. The key idea of GP-UNIT is to distill the generative prior from pre-trained class-conditional GANs to build coarse-level cross-domain correspondences, and to apply the learned prior to adversarial translations to excavate fine-level correspondences. With the learned multi-level content correspondences, GP-UNIT is able to perform valid translations between both close domains and distant domains. For close domains, GP-UNIT can be conditioned on a parameter to determine the intensity of the content correspondences during translation, allowing users to balance between content and style consistency. For distant domains, semi-supervised learning is explored to guide GP-UNIT to discover accurate semantic correspondences that are hard to learn solely from the appearance. We validate the superiority of GP-UNIT over state-of-the-art translation models in robust, high-quality and diversified translations between various domains through extensive experiments.
[ "cs.CV", "cs.LG" ]
false
2306.04701
2023-06-07T18:08:11Z
Robust-DefReg: A Robust Deformable Point Cloud Registration Method based on Graph Convolutional Neural Networks
[ "Sara Monji-Azad", "Marvin Kinz", "Jürgen Hesser" ]
Point cloud registration is a fundamental problem in computer vision that aims to estimate the transformation between corresponding sets of points. Non-rigid registration, in particular, involves addressing challenges including various levels of deformation, noise, outliers, and data incompleteness. This paper introduces Robust-DefReg, a robust non-rigid point cloud registration method based on graph convolutional networks (GCNNs). Robust-DefReg is a coarse-to-fine registration approach within an end-to-end pipeline, leveraging the advantages of both coarse and fine methods. The method learns global features to find correspondences between source and target point clouds, to enable appropriate initial alignment, and subsequently fine registration. The simultaneous achievement of high accuracy and robustness across all challenges is reported less frequently in existing studies, making it a key objective of the Robust-DefReg method. The proposed method achieves high accuracy in large deformations while maintaining computational efficiency. This method possesses three primary attributes: high accuracy, robustness to different challenges, and computational efficiency. The experimental results show that the proposed Robust-DefReg holds significant potential as a foundational architecture for future investigations in non-rigid point cloud registration. The source code of Robust-DefReg is available.
[ "cs.CV", "cs.LG" ]
false
2306.04709
2023-06-07T18:21:22Z
Improved statistical benchmarking of digital pathology models using pairwise frames evaluation
[ "Ylaine Gerardin", "John Shamshoian", "Judy Shen", "Nhat Le", "Jamie Prezioso", "John Abel", "Isaac Finberg", "Daniel Borders", "Raymond Biju", "Michael Nercessian", "Vaed Prasad", "Joseph Lee", "Spencer Wyman", "Sid Gupta", "Abigail Emerson", "Bahar Rahsepar", "Darpan Sanghavi", "Ryan Leung", "Limin Yu", "Archit Khosla", "Amaro Taylor-Weiner" ]
Nested pairwise frames is a method for relative benchmarking of cell or tissue digital pathology models against manual pathologist annotations on a set of sampled patches. At a high level, the method compares agreement between a candidate model and pathologist annotations with agreement among pathologists' annotations. This evaluation framework addresses fundamental issues of data size and annotator variability in using manual pathologist annotations as a source of ground truth for model validation. We implemented nested pairwise frames evaluation for tissue classification, cell classification, and cell count prediction tasks and show results for cell and tissue models deployed on an H&E-stained melanoma dataset.
[ "cs.CV", "cs.LG" ]
false
2306.04738
2023-06-07T19:20:01Z
MultiEarth 2023 -- Multimodal Learning for Earth and Environment Workshop and Challenge
[ "Miriam Cha", "Gregory Angelides", "Mark Hamilton", "Andy Soszynski", "Brandon Swenson", "Nathaniel Maidel", "Phillip Isola", "Taylor Perron", "Bill Freeman" ]
The Multimodal Learning for Earth and Environment Workshop (MultiEarth 2023) is the second annual CVPR workshop aimed at the monitoring and analysis of the health of Earth ecosystems by leveraging the vast amount of remote sensing data that is continuously being collected. The primary objective of this workshop is to bring together the Earth and environmental science communities as well as the multimodal representation learning communities to explore new ways of harnessing technological advancements in support of environmental monitoring. The MultiEarth Workshop also seeks to provide a common benchmark for processing multimodal remote sensing information by organizing public challenges focused on monitoring the Amazon rainforest. These challenges include estimating deforestation, detecting forest fires, translating synthetic aperture radar (SAR) images to the visible domain, and projecting environmental trends. This paper presents the challenge guidelines, datasets, and evaluation metrics. Our challenge website is available at https://sites.google.com/view/rainforest-challenge/multiearth-2023.
[ "cs.CV", "cs.AI" ]
false
2306.04745
2023-06-07T19:46:30Z
3D Human Keypoints Estimation From Point Clouds in the Wild Without Human Labels
[ "Zhenzhen Weng", "Alexander S. Gorban", "Jingwei Ji", "Mahyar Najibi", "Yin Zhou", "Dragomir Anguelov" ]
Training a 3D human keypoint detector from point clouds in a supervised manner requires large volumes of high quality labels. While it is relatively easy to capture large amounts of human point clouds, annotating 3D keypoints is expensive, subjective, error prone and especially difficult for long-tail cases (pedestrians with rare poses, scooterists, etc.). In this work, we propose GC-KPL - Geometry Consistency inspired Key Point Leaning, an approach for learning 3D human joint locations from point clouds without human labels. We achieve this by our novel unsupervised loss formulations that account for the structure and movement of the human body. We show that by training on a large training set from Waymo Open Dataset without any human annotated keypoints, we are able to achieve reasonable performance as compared to the fully supervised approach. Further, the backbone benefits from the unsupervised training and is useful in downstream fewshot learning of keypoints, where fine-tuning on only 10 percent of the labeled training data gives comparable performance to fine-tuning on the entire set. We demonstrated that GC-KPL outperforms by a large margin over SoTA when trained on entire dataset and efficiently leverages large volumes of unlabeled data.
[ "cs.CV", "cs.AI" ]
false
2306.04811
2023-06-07T22:20:51Z
Generative Text-Guided 3D Vision-Language Pretraining for Unified Medical Image Segmentation
[ "Yinda Chen", "Che Liu", "Wei Huang", "Sibo Cheng", "Rossella Arcucci", "Zhiwei Xiong" ]
Vision-Language Pretraining (VLP) has demonstrated remarkable capabilities in learning visual representations from textual descriptions of images without annotations. Yet, effective VLP demands large-scale image-text pairs, a resource that suffers scarcity in the medical domain. Moreover, conventional VLP is limited to 2D images while medical images encompass diverse modalities, often in 3D, making the learning process more challenging. To address these challenges, we present Generative Text-Guided 3D Vision-Language Pretraining for Unified Medical Image Segmentation (GTGM), a framework that extends of VLP to 3D medical images without relying on paired textual descriptions. Specifically, GTGM utilizes large language models (LLM) to generate medical-style text from 3D medical images. This synthetic text is then used to supervise 3D visual representation learning. Furthermore, a negative-free contrastive learning objective strategy is introduced to cultivate consistent visual representations between augmented 3D medical image patches, which effectively mitigates the biases associated with strict positive-negative sample pairings. We evaluate GTGM on three imaging modalities - Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and electron microscopy (EM) over 13 datasets. GTGM's superior performance across various medical image segmentation tasks underscores its effectiveness and versatility, by enabling VLP extension into 3D medical imagery while bypassing the need for paired text.
[ "cs.CV", "cs.AI" ]
false