arxiv_id
stringlengths
10
10
published
stringlengths
20
20
titles
stringlengths
9
243
authors
listlengths
1
389
abstract
stringlengths
96
3.09k
categories
listlengths
1
10
selected
bool
2 classes
2305.12284
2023-05-20T21:35:29Z
Safely Learning Dynamical Systems
[ "Amir Ali Ahmadi", "Abraar Chaudhry", "Vikas Sindhwani", "Stephen Tu" ]
A fundamental challenge in learning an unknown dynamical system is to reduce model uncertainty by making measurements while maintaining safety. In this work, we formulate a mathematical definition of what it means to safely learn a dynamical system by sequentially deciding where to initialize the next trajectory. In our framework, the state of the system is required to stay within a safety region for a horizon of $T$ time steps under the action of all dynamical systems that (i) belong to a given initial uncertainty set, and (ii) are consistent with the information gathered so far. For our first set of results, we consider the setting of safely learning a linear dynamical system involving $n$ states. For the case $T=1$, we present a linear programming-based algorithm that either safely recovers the true dynamics from at most $n$ trajectories, or certifies that safe learning is impossible. For $T=2$, we give a semidefinite representation of the set of safe initial conditions and show that $\lceil n/2 \rceil$ trajectories generically suffice for safe learning. Finally, for $T = \infty$, we provide semidefinite representable inner approximations of the set of safe initial conditions and show that one trajectory generically suffices for safe learning. Our second set of results concerns the problem of safely learning a general class of nonlinear dynamical systems. For the case $T=1$, we give a second-order cone programming based representation of the set of safe initial conditions. For $T=\infty$, we provide semidefinite representable inner approximations to the set of safe initial conditions. We show how one can safely collect trajectories and fit a polynomial model of the nonlinear dynamics that is consistent with the initial uncertainty set and best agrees with the observations.
[ "math.OC", "cs.LG", "cs.SY", "eess.SY", "math.DS" ]
false
2305.12216
2023-05-20T15:46:55Z
On First-Order Meta-Reinforcement Learning with Moreau Envelopes
[ "Mohammad Taha Toghani", "Sebastian Perez-Salazar", "César A. Uribe" ]
Meta-Reinforcement Learning (MRL) is a promising framework for training agents that can quickly adapt to new environments and tasks. In this work, we study the MRL problem under the policy gradient formulation, where we propose a novel algorithm that uses Moreau envelope surrogate regularizers to jointly learn a meta-policy that is adjustable to the environment of each individual task. Our algorithm, called Moreau Envelope Meta-Reinforcement Learning (MEMRL), learns a meta-policy that can adapt to a distribution of tasks by efficiently updating the policy parameters using a combination of gradient-based optimization and Moreau Envelope regularization. Moreau Envelopes provide a smooth approximation of the policy optimization problem, which enables us to apply standard optimization techniques and converge to an appropriate stationary point. We provide a detailed analysis of the MEMRL algorithm, where we show a sublinear convergence rate to a first-order stationary point for non-convex policy gradient optimization. We finally show the effectiveness of MEMRL on a multi-task 2D-navigation problem.
[ "cs.LG", "cs.AI", "cs.RO", "cs.SY", "eess.SY", "math.OC" ]
false
2305.12327
2023-05-21T03:14:42Z
Coronary Artery Semantic Labeling using Edge Attention Graph Matching Network
[ "Chen Zhao", "Zhihui Xu", "Guang-Uei Hung", "Weihua Zhou" ]
Coronary artery disease (CAD) is one of the primary causes leading deaths worldwide. The presence of atherosclerotic lesions in coronary arteries is the underlying pathophysiological basis of CAD, and accurate extraction of individual arterial branches using invasive coronary angiography (ICA) is crucial for stenosis detection and CAD diagnosis. We propose an innovative approach called the Edge Attention Graph Matching Network (EAGMN) for coronary artery semantic labeling. By converting the coronary artery semantic segmentation task into a graph node similarity comparison task, identifying the node-to-node correspondence would assign semantic labels for each arterial branch. More specifically, The EAGMN utilizes the association graph constructed from the two individual graphs as input. Experimental results indicate the EAGMN achieved a weighted accuracy of 0.8653, a weighted precision of 0.8656, a weighted recall of 0.8653 and a weighted F1-score of 0.8643. Furthermore, we employ ZORRO to provide interpretability and explainability of the graph matching for artery semantic labeling. These findings highlight the potential of the EAGMN for accurate and efficient coronary artery semantic labeling using ICAs. By leveraging the inherent characteristics of ICAs and incorporating graph matching techniques, our proposed model provides a promising solution for improving CAD diagnosis and treatment
[ "cs.CV" ]
false
2305.12344
2023-05-21T04:41:52Z
YOLOv3 with Spatial Pyramid Pooling for Object Detection with Unmanned Aerial Vehicles
[ "Wahyu Pebrianto", "Panca Mudjirahardjo", "Sholeh Hadi Pramono", "Rahmadwati", "Raden Arief Setyawan" ]
Object detection with Unmanned Aerial Vehicles (UAVs) has attracted much attention in the research field of computer vision. However, not easy to accurately detect objects with data obtained from UAVs, which capture images from very high altitudes, making the image dominated by small object sizes, that difficult to detect. Motivated by that challenge, we aim to improve the performance of the one-stage detector YOLOv3 by adding a Spatial Pyramid Pooling (SPP) layer on the end of the backbone darknet-53 to obtain more efficient feature extraction process in object detection tasks with UAVs. We also conducted an evaluation study on different versions of YOLOv3 methods. Includes YOLOv3 with SPP, YOLOv3, and YOLOv3-tiny, which we analyzed with the VisDrone2019-Det dataset. Here we show that YOLOv3 with SPP can get results mAP 0.6% higher than YOLOv3 and 26.6% than YOLOv3-Tiny at 640x640 input scale and is even able to maintain accuracy at different input image scales than other versions of the YOLOv3 method. Those results prove that the addition of SPP layers to YOLOv3 can be an efficient solution for improving the performance of the object detection method with data obtained from UAVs.
[ "cs.CV" ]
false
2305.12354
2023-05-21T05:24:43Z
Bi-ViT: Pushing the Limit of Vision Transformer Quantization
[ "Yanjing Li", "Sheng Xu", "Mingbao Lin", "Xianbin Cao", "Chuanjian Liu", "Xiao Sun", "Baochang Zhang" ]
Vision transformers (ViTs) quantization offers a promising prospect to facilitate deploying large pre-trained networks on resource-limited devices. Fully-binarized ViTs (Bi-ViT) that pushes the quantization of ViTs to its limit remain largely unexplored and a very challenging task yet, due to their unacceptable performance. Through extensive empirical analyses, we identify the severe drop in ViT binarization is caused by attention distortion in self-attention, which technically stems from the gradient vanishing and ranking disorder. To address these issues, we first introduce a learnable scaling factor to reactivate the vanished gradients and illustrate its effectiveness through theoretical and experimental analyses. We then propose a ranking-aware distillation method to rectify the disordered ranking in a teacher-student framework. Bi-ViT achieves significant improvements over popular DeiT and Swin backbones in terms of Top-1 accuracy and FLOPs. For example, with DeiT-Tiny and Swin-Tiny, our method significantly outperforms baselines by 22.1% and 21.4% respectively, while 61.5x and 56.1x theoretical acceleration in terms of FLOPs compared with real-valued counterparts on ImageNet.
[ "cs.CV" ]
false
2305.12361
2023-05-21T06:19:08Z
A Dual-level Detection Method for Video Copy Detection
[ "Tianyi Wang", "Feipeng Ma", "Zhenhua Liu", "Fengyun Rao" ]
With the development of multimedia technology, Video Copy Detection has been a crucial problem for social media platforms. Meta AI hold Video Similarity Challenge on CVPR 2023 to push the technology forward. In this paper, we share our winner solutions on both tracks to help progress in this area. For Descriptor Track, we propose a dual-level detection method with Video Editing Detection (VED) and Frame Scenes Detection (FSD) to tackle the core challenges on Video Copy Detection. Experimental results demonstrate the effectiveness and efficiency of our proposed method. Code is available at https://github.com/FeipengMa6/VSC22-Submission.
[ "cs.CV" ]
false
2305.12398
2023-05-21T08:29:16Z
Language Knowledge-Assisted Representation Learning for Skeleton-Based Action Recognition
[ "Haojun Xu", "Yan Gao", "Zheng Hui", "Jie Li", "Xinbo Gao" ]
How humans understand and recognize the actions of others is a complex neuroscientific problem that involves a combination of cognitive mechanisms and neural networks. Research has shown that humans have brain areas that recognize actions that process top-down attentional information, such as the temporoparietal association area. Also, humans have brain regions dedicated to understanding the minds of others and analyzing their intentions, such as the medial prefrontal cortex of the temporal lobe. Skeleton-based action recognition creates mappings for the complex connections between the human skeleton movement patterns and behaviors. Although existing studies encoded meaningful node relationships and synthesized action representations for classification with good results, few of them considered incorporating a priori knowledge to aid potential representation learning for better performance. LA-GCN proposes a graph convolution network using large-scale language models (LLM) knowledge assistance. First, the LLM knowledge is mapped into a priori global relationship (GPR) topology and a priori category relationship (CPR) topology between nodes. The GPR guides the generation of new "bone" representations, aiming to emphasize essential node information from the data level. The CPR mapping simulates category prior knowledge in human brain regions, encoded by the PC-AC module and used to add additional supervision-forcing the model to learn class-distinguishable features. In addition, to improve information transfer efficiency in topology modeling, we propose multi-hop attention graph convolution. It aggregates each node's k-order neighbor simultaneously to speed up model convergence. LA-GCN reaches state-of-the-art on NTU RGB+D, NTU RGB+D 120, and NW-UCLA datasets.
[ "cs.CV" ]
false
2305.12410
2023-05-21T09:21:41Z
DiffUCD:Unsupervised Hyperspectral Image Change Detection with Semantic Correlation Diffusion Model
[ "Xiangrong Zhang", "Shunli Tian", "Guanchun Wang", "Huiyu Zhou", "Licheng Jiao" ]
Hyperspectral image change detection (HSI-CD) has emerged as a crucial research area in remote sensing due to its ability to detect subtle changes on the earth's surface. Recently, diffusional denoising probabilistic models (DDPM) have demonstrated remarkable performance in the generative domain. Apart from their image generation capability, the denoising process in diffusion models can comprehensively account for the semantic correlation of spectral-spatial features in HSI, resulting in the retrieval of semantically relevant features in the original image. In this work, we extend the diffusion model's application to the HSI-CD field and propose a novel unsupervised HSI-CD with semantic correlation diffusion model (DiffUCD). Specifically, the semantic correlation diffusion model (SCDM) leverages abundant unlabeled samples and fully accounts for the semantic correlation of spectral-spatial features, which mitigates pseudo change between multi-temporal images arising from inconsistent imaging conditions. Besides, objects with the same semantic concept at the same spatial location may exhibit inconsistent spectral signatures at different times, resulting in pseudo change. To address this problem, we propose a cross-temporal contrastive learning (CTCL) mechanism that aligns the spectral feature representations of unchanged samples. By doing so, the spectral difference invariant features caused by environmental changes can be obtained. Experiments conducted on three publicly available datasets demonstrate that the proposed method outperforms the other state-of-the-art unsupervised methods in terms of Overall Accuracy (OA), Kappa Coefficient (KC), and F1 scores, achieving improvements of approximately 3.95%, 8.13%, and 4.45%, respectively. Notably, our method can achieve comparable results to those fully supervised methods requiring numerous annotated samples.
[ "cs.CV" ]
false
2305.12452
2023-05-21T13:14:28Z
Advancing Referring Expression Segmentation Beyond Single Image
[ "Yixuan Wu", "Zhao Zhang", "Xie Chi", "Feng Zhu", "Rui Zhao" ]
Referring Expression Segmentation (RES) is a widely explored multi-modal task, which endeavors to segment the pre-existing object within a single image with a given linguistic expression. However, in broader real-world scenarios, it is not always possible to determine if the described object exists in a specific image. Typically, we have a collection of images, some of which may contain the described objects. The current RES setting curbs its practicality in such situations. To overcome this limitation, we propose a more realistic and general setting, named Group-wise Referring Expression Segmentation (GRES), which expands RES to a collection of related images, allowing the described objects to be present in a subset of input images. To support this new setting, we introduce an elaborately compiled dataset named Grouped Referring Dataset (GRD), containing complete group-wise annotations of target objects described by given expressions. We also present a baseline method named Grouped Referring Segmenter (GRSer), which explicitly captures the language-vision and intra-group vision-vision interactions to achieve state-of-the-art results on the proposed GRES and related tasks, such as Co-Salient Object Detection and RES. Our dataset and codes will be publicly released in https://github.com/yixuan730/group-res.
[ "cs.CV" ]
false
2305.12506
2023-05-21T16:51:15Z
CNN-based Dendrite Core Detection from Microscopic Images of Directionally Solidified Ni-base Alloys
[ "Xiaoguang Li" ]
Dendrite core is the center point of the dendrite. The information of dendrite core is very helpful for material scientists to analyze the properties of materials. Therefore, detecting the dendrite core is a very important task in the material science field. Meanwhile, because of some special properties of the dendrites, this task is also very challenging. Different from the typical detection problems in the computer vision field, detecting the dendrite core aims to detect a single point location instead of the bounding-box. As a result, the existing regressing bounding-box based detection methods can not work well on this task because the calculated center point location based on the upper-left and lower-right corners of the bounding-box is usually not precise. In this work, we formulate the dendrite core detection problem as a segmentation task and proposed a novel detection method to detect the dendrite core directly. Our whole pipeline contains three steps: Easy Sample Detection (ESD), Hard Sample Detection(HSD), and Hard Sample Refinement (HSR). Specifically, ESD and HSD focus on the easy samples and hard samples of dendrite cores respectively. Both of them employ the same Central Point Detection Network (CPDN) but do not share parameters. To make HSD only focus on the feature of hard samples of dendrite cores, we destroy the structure of the easy samples of dendrites which are detected by ESD and force HSD to learn the feature of hard samples. HSR is a binary classifier which is used to filter out the false positive prediction of HSD. We evaluate our method on the dendrite dataset. Our method outperforms the state-of-the-art baselines on three metrics, i.e., Recall, Precision, and F-score.
[ "cs.CV" ]
false
2305.12384
2023-05-21T07:46:46Z
From Patches to Objects: Exploiting Spatial Reasoning for Better Visual Representations
[ "Toni Albert", "Bjoern Eskofier", "Dario Zanca" ]
As the field of deep learning steadily transitions from the realm of academic research to practical application, the significance of self-supervised pretraining methods has become increasingly prominent. These methods, particularly in the image domain, offer a compelling strategy to effectively utilize the abundance of unlabeled image data, thereby enhancing downstream tasks' performance. In this paper, we propose a novel auxiliary pretraining method that is based on spatial reasoning. Our proposed method takes advantage of a more flexible formulation of contrastive learning by introducing spatial reasoning as an auxiliary task for discriminative self-supervised methods. Spatial Reasoning works by having the network predict the relative distances between sampled non-overlapping patches. We argue that this forces the network to learn more detailed and intricate internal representations of the objects and the relationships between their constituting parts. Our experiments demonstrate substantial improvement in downstream performance in linear evaluation compared to similar work and provide directions for further research into spatial reasoning.
[ "cs.CV", "cs.LG" ]
false
2305.12414
2023-05-21T09:43:17Z
Real-time Aerial Detection and Reasoning on Embedded-UAVs
[ "Tin Lai" ]
We present a unified pipeline architecture for a real-time detection system on an embedded system for UAVs. Neural architectures have been the industry standard for computer vision. However, most existing works focus solely on concatenating deeper layers to achieve higher accuracy with run-time performance as the trade-off. This pipeline of networks can exploit the domain-specific knowledge on aerial pedestrian detection and activity recognition for the emerging UAV applications of autonomous surveying and activity reporting. In particular, our pipeline architectures operate in a time-sensitive manner, have high accuracy in detecting pedestrians from various aerial orientations, use a novel attention map for multi-activities recognition, and jointly refine its detection with temporal information. Numerically, we demonstrate our model's accuracy and fast inference speed on embedded systems. We empirically deployed our prototype hardware with full live feeds in a real-world open-field environment.
[ "cs.CV", "cs.AI" ]
false
2305.12447
2023-05-21T12:40:25Z
BreastSAM: A Study of Segment Anything Model for Breast Tumor Detection in Ultrasound Images
[ "Mingzhe Hu", "Yuheng Li", "Xiaofeng Yang" ]
Breast cancer is one of the most common cancers among women worldwide, with early detection significantly increasing survival rates. Ultrasound imaging is a critical diagnostic tool that aids in early detection by providing real-time imaging of the breast tissue. We conducted a thorough investigation of the Segment Anything Model (SAM) for the task of interactive segmentation of breast tumors in ultrasound images. We explored three pre-trained model variants: ViT_h, ViT_l, and ViT_b, among which ViT_l demonstrated superior performance in terms of mean pixel accuracy, Dice score, and IoU score. The significance of prompt interaction in improving the model's segmentation performance was also highlighted, with substantial improvements in performance metrics when prompts were incorporated. The study further evaluated the model's differential performance in segmenting malignant and benign breast tumors, with the model showing exceptional proficiency in both categories, albeit with slightly better performance for benign tumors. Furthermore, we analyzed the impacts of various breast tumor characteristics - size, contrast, aspect ratio, and complexity - on segmentation performance. Our findings reveal that tumor contrast and size positively impact the segmentation result, while complex boundaries pose challenges. The study provides valuable insights for using SAM as a robust and effective algorithm for breast tumor segmentation in ultrasound images.
[ "eess.IV", "cs.CV" ]
false
2305.12561
2023-05-21T20:22:38Z
M2LADS: A System for Generating MultiModal Learning Analytics Dashboards in Open Education
[ "Álvaro Becerra", "Roberto Daza", "Ruth Cobos", "Aythami Morales", "Mutlu Cukurova", "Julian Fierrez" ]
In this article, we present a Web-based System called M2LADS, which supports the integration and visualization of multimodal data recorded in learning sessions in a MOOC in the form of Web-based Dashboards. Based on the edBB platform, the multimodal data gathered contains biometric and behavioral signals including electroencephalogram data to measure learners' cognitive attention, heart rate for affective measures, visual attention from the video recordings. Additionally, learners' static background data and their learning performance measures are tracked using LOGCE and MOOC tracking logs respectively, and both are included in the Web-based System. M2LADS provides opportunities to capture learners' holistic experience during their interactions with the MOOC, which can in turn be used to improve their learning outcomes through feedback visualizations and interventions, as well as to enhance learning analytics models and improve the open content of the MOOC.
[ "cs.HC", "cs.CV" ]
false
2305.12570
2023-05-21T21:16:20Z
Generalizable synthetic MRI with physics-informed convolutional networks
[ "Luuk Jacobs", "Stefano Mandija", "Hongyan Liu", "Cornelis A. T. van den Berg", "Alessandro Sbrizzi", "Matteo Maspero" ]
In this study, we develop a physics-informed deep learning-based method to synthesize multiple brain magnetic resonance imaging (MRI) contrasts from a single five-minute acquisition and investigate its ability to generalize to arbitrary contrasts to accelerate neuroimaging protocols. A dataset of fifty-five subjects acquired with a standard MRI protocol and a five-minute transient-state sequence was used to develop a physics-informed deep learning-based method. The model, based on a generative adversarial network, maps data acquired from the five-minute scan to "effective" quantitative parameter maps, here named q*-maps, by using its generated PD, T1, and T2 values in a signal model to synthesize four standard contrasts (proton density-weighted, T1-weighted, T2-weighted, and T2-weighted fluid-attenuated inversion recovery), from which losses are computed. The q*-maps are compared to literature values and the synthetic contrasts are compared to an end-to-end deep learning-based method proposed by literature. The generalizability of the proposed method is investigated for five volunteers by synthesizing three non-standard contrasts unseen during training and comparing these to respective ground truth acquisitions via contrast-to-noise ratio and quantitative assessment. The physics-informed method was able to match the high-quality synthMRI of the end-to-end method for the four standard contrasts, with mean \pm standard deviation structural similarity metrics above 0.75 \pm 0.08 and peak signal-to-noise ratios above 22.4 \pm 1.9 and 22.6 \pm 2.1. Additionally, the physics-informed method provided retrospective contrast adjustment, with visually similar signal contrast and comparable contrast-to-noise ratios to the ground truth acquisitions for three sequences unused for model training, demonstrating its generalizability and potential application to accelerate neuroimaging protocols.
[ "physics.med-ph", "cs.CV" ]
false
2305.12328
2023-05-21T03:28:13Z
InstructVid2Vid: Controllable Video Editing with Natural Language Instructions
[ "Bosheng Qin", "Juncheng Li", "Siliang Tang", "Tat-Seng Chua", "Yueting Zhuang" ]
We present an end-to-end diffusion-based method for editing videos with human language instructions, namely $\textbf{InstructVid2Vid}$. Our approach enables the editing of input videos based on natural language instructions without any per-example fine-tuning or inversion. The proposed InstructVid2Vid model combines a pretrained image generation model, Stable Diffusion, with a conditional 3D U-Net architecture to generate time-dependent sequence of video frames. To obtain the training data, we incorporate the knowledge and expertise of different models, including ChatGPT, BLIP, and Tune-a-Video, to synthesize video-instruction triplets, which is a more cost-efficient alternative to collecting data in real-world scenarios. To improve the consistency between adjacent frames of generated videos, we propose the Frame Difference Loss, which is incorporated during the training process. During inference, we extend the classifier-free guidance to text-video input to guide the generated results, making them more related to both the input video and instruction. Experiments demonstrate that InstructVid2Vid is able to generate high-quality, temporally coherent videos and perform diverse edits, including attribute editing, change of background, and style transfer. These results highlight the versatility and effectiveness of our proposed method. Code is released in $\href{https://github.com/BrightQin/InstructVid2Vid}{InstructVid2Vid}$.
[ "cs.CV", "cs.AI", "cs.MM" ]
false
2305.12358
2023-05-21T05:45:38Z
AutoPaint: A Self-Inpainting Method for Unsupervised Anomaly Detection
[ "Mehdi Astaraki", "Francesca De Benetti", "Yousef Yeganeh", "Iuliana Toma-Dasu", "Örjan Smedby", "Chunliang Wang", "Nassir Navab", "Thomas Wendler" ]
Robust and accurate detection and segmentation of heterogenous tumors appearing in different anatomical organs with supervised methods require large-scale labeled datasets covering all possible types of diseases. Due to the unavailability of such rich datasets and the high cost of annotations, unsupervised anomaly detection (UAD) methods have been developed aiming to detect the pathologies as deviation from the normality by utilizing the unlabeled healthy image data. However, developed UAD models are often trained with an incomplete distribution of healthy anatomies and have difficulties in preserving anatomical constraints. This work intends to, first, propose a robust inpainting model to learn the details of healthy anatomies and reconstruct high-resolution images by preserving anatomical constraints. Second, we propose an autoinpainting pipeline to automatically detect tumors, replace their appearance with the learned healthy anatomies, and based on that segment the tumoral volumes in a purely unsupervised fashion. Three imaging datasets, including PET, CT, and PET-CT scans of lung tumors and head and neck tumors, are studied as benchmarks for evaluation. Experimental results demonstrate the significant superiority of the proposed method over a wide range of state-of-the-art UAD methods. Moreover, the unsupervised method we propose produces comparable results to a robust supervised segmentation method when applied to multimodal images.
[ "cs.CV", "cs.LG", "eess.IV" ]
false
2305.12369
2023-05-21T06:43:35Z
HIINT: Historical, Intra- and Inter- personal Dynamics Modeling with Cross-person Memory Transformer
[ "Yubin Kim", "Dong Won Lee", "Paul Pu Liang", "Sharifa Algohwinem", "Cynthia Breazeal", "Hae Won Park" ]
Accurately modeling affect dynamics, which refers to the changes and fluctuations in emotions and affective displays during human conversations, is crucial for understanding human interactions. By analyzing affect dynamics, we can gain insights into how people communicate, respond to different situations, and form relationships. However, modeling affect dynamics is challenging due to contextual factors, such as the complex and nuanced nature of interpersonal relationships, the situation, and other factors that influence affective displays. To address this challenge, we propose a Cross-person Memory Transformer (CPM-T) framework which is able to explicitly model affective dynamics (intrapersonal and interpersonal influences) by identifying verbal and non-verbal cues, and with a large language model to utilize the pre-trained knowledge and perform verbal reasoning. The CPM-T framework maintains memory modules to store and update the contexts within the conversation window, enabling the model to capture dependencies between earlier and later parts of a conversation. Additionally, our framework employs cross-modal attention to effectively align information from multi-modalities and leverage cross-person attention to align behaviors in multi-party interactions. We evaluate the effectiveness and generalizability of our approach on three publicly available datasets for joint engagement, rapport, and human beliefs prediction tasks. Remarkably, the CPM-T framework outperforms baseline models in average F1-scores by up to 7.3%, 9.3%, and 2.0% respectively. Finally, we demonstrate the importance of each component in the framework via ablation studies with respect to multimodal temporal behavior.
[ "cs.CV", "cs.AI", "cs.LG" ]
false
2305.12417
2023-05-21T09:54:12Z
CNN-based Methods for Object Recognition with High-Resolution Tactile Sensors
[ "Juan M. Gandarias", "Alfonso J. García-Cerezo", "Jesús M. Gómez-de-Gabriel" ]
Novel high-resolution pressure-sensor arrays allow treating pressure readings as standard images. Computer vision algorithms and methods such as Convolutional Neural Networks (CNN) can be used to identify contact objects. In this paper, a high-resolution tactile sensor has been attached to a robotic end-effector to identify contacted objects. Two CNN-based approaches have been employed to classify pressure images. These methods include a transfer learning approach using a pre-trained CNN on an RGB-images dataset and a custom-made CNN (TactNet) trained from scratch with tactile information. The transfer learning approach can be carried out by retraining the classification layers of the network or replacing these layers with an SVM. Overall, 11 configurations based on these methods have been tested: 8 transfer learning-based, and 3 TactNet-based. Moreover, a study of the performance of the methods and a comparative discussion with the current state-of-the-art on tactile object recognition is presented.
[ "cs.CV", "cs.AI", "cs.RO" ]
false
2305.12311
2023-05-21T01:25:44Z
i-Code V2: An Autoregressive Generation Framework over Vision, Language, and Speech Data
[ "Ziyi Yang", "Mahmoud Khademi", "Yichong Xu", "Reid Pryzant", "Yuwei Fang", "Chenguang Zhu", "Dongdong Chen", "Yao Qian", "Mei Gao", "Yi-Ling Chen", "Robert Gmyr", "Naoyuki Kanda", "Noel Codella", "Bin Xiao", "Yu Shi", "Lu Yuan", "Takuya Yoshioka", "Michael Zeng", "Xuedong Huang" ]
The convergence of text, visual, and audio data is a key step towards human-like artificial intelligence, however the current Vision-Language-Speech landscape is dominated by encoder-only models which lack generative abilities. We propose closing this gap with i-Code V2, the first model capable of generating natural language from any combination of Vision, Language, and Speech data. i-Code V2 is an integrative system that leverages state-of-the-art single-modality encoders, combining their outputs with a new modality-fusing encoder in order to flexibly project combinations of modalities into a shared representational space. Next, language tokens are generated from these representations via an autoregressive decoder. The whole framework is pretrained end-to-end on a large collection of dual- and single-modality datasets using a novel text completion objective that can be generalized across arbitrary combinations of modalities. i-Code V2 matches or outperforms state-of-the-art single- and dual-modality baselines on 7 multimodal tasks, demonstrating the power of generative multimodal pretraining across a diversity of tasks and signals.
[ "cs.CL", "cs.AI", "cs.CV", "cs.LG", "eess.AS" ]
false
2305.11916
2023-05-21T12:17:27Z
F-PABEE: Flexible-patience-based Early Exiting for Single-label and Multi-label text Classification Tasks
[ "Xiangxiang Gao", "Wei Zhu", "Jiasheng Gao", "Congrui Yin" ]
Computational complexity and overthinking problems have become the bottlenecks for pre-training language models (PLMs) with millions or even trillions of parameters. A Flexible-Patience-Based Early Exiting method (F-PABEE) has been proposed to alleviate the problems mentioned above for single-label classification (SLC) and multi-label classification (MLC) tasks. F-PABEE makes predictions at the classifier and will exit early if predicted distributions of cross-layer are consecutively similar. It is more flexible than the previous state-of-the-art (SOTA) early exiting method PABEE because it can simultaneously adjust the similarity score thresholds and the patience parameters. Extensive experiments show that: (1) F-PABEE makes a better speedup-accuracy balance than existing early exiting strategies on both SLC and MLC tasks. (2) F-PABEE achieves faster inference and better performances on different PLMs such as BERT and ALBERT. (3) F-PABEE-JSKD performs best for F-PABEE with different similarity measures.
[ "cs.CL" ]
false
2305.12307
2023-05-21T00:32:37Z
OntoType: Ontology-Guided Zero-Shot Fine-Grained Entity Typing with Weak Supervision from Pre-Trained Language Models
[ "Tanay Komarlu", "Minhao Jiang", "Xuan Wang", "Jiawei Han" ]
Fine-grained entity typing (FET), which assigns entities in text with context-sensitive, fine-grained semantic types, will play an important role in natural language understanding. A supervised FET method, which typically relies on human-annotated corpora for training, is costly and difficult to scale. Recent studies leverage pre-trained language models (PLMs) to generate rich and context-aware weak supervision for FET. However, a PLM may still generate a mixture of rough and fine-grained types, or tokens unsuitable for typing. In this study, we vision that an ontology provides a semantics-rich, hierarchical structure, which will help select the best results generated by multiple PLM models and head words. Specifically, we propose a novel zero-shot, ontology-guided FET method, OntoType, which follows a type ontological structure, from coarse to fine, ensembles multiple PLM prompting results to generate a set of type candidates, and refines its type resolution, under the local context with a natural language inference model. Our experiments on the Ontonotes, FIGER, and NYT datasets using their associated ontological structures demonstrate that our method outperforms the state-of-the-art zero-shot fine-grained entity typing methods. Our error analysis shows that refinement of the existing ontology structures will further improve fine-grained entity typing.
[ "cs.CL" ]
false
2305.12330
2023-05-21T03:35:45Z
Task-agnostic Distillation of Encoder-Decoder Language Models
[ "Chen Zhang", "Yang Yang", "Jingang Wang", "Dawei Song" ]
Finetuning pretrained language models (LMs) have enabled appealing performance on a diverse array of tasks. The intriguing task-agnostic property has driven a shifted focus from task-specific to task-agnostic distillation of LMs. While task-agnostic, compute-efficient, performance-preserved LMs can be yielded by task-agnostic distillation, previous studies mainly sit in distillation of either encoder-only LMs (e.g., BERT) or decoder-only ones (e.g., GPT) yet largely neglect that distillation of encoder-decoder LMs (e.g., T5) can posit very distinguished behaviors. Frustratingly, we discover that existing task-agnostic distillation methods can fail to handle the distillation of encoder-decoder LMs. To the demand, we explore a few paths and uncover a path named as MiniEnD that successfully tackles the distillation of encoder-decoder LMs in a task-agnostic fashion. We examine MiniEnD on language understanding and abstractive summarization. The results showcase that MiniEnD is generally effective and is competitive compared to other alternatives. We further scale MiniEnD up to distillation of 3B encoder-decoder language models with interpolated distillation. The results imply the opportunities and challenges in distilling large language models (e.g., LLaMA).
[ "cs.CL" ]
false
2305.12371
2023-05-21T06:46:33Z
Machine Translation by Projecting Text into the Same Phonetic-Orthographic Space Using a Common Encoding
[ "Amit Kumar", "Shantipriya Parida", "Ajay Pratap", "Anil Kumar Singh" ]
The use of subword embedding has proved to be a major innovation in Neural Machine Translation (NMT). It helps NMT to learn better context vectors for Low Resource Languages (LRLs) so as to predict the target words by better modelling the morphologies of the two languages and also the morphosyntax transfer. Even so, their performance for translation in Indian language to Indian language scenario is still not as good as for resource-rich languages. One reason for this is the relative morphological richness of Indian languages, while another is that most of them fall into the extremely low resource or zero-shot categories. Since most major Indian languages use Indic or Brahmi origin scripts, the text written in them is highly phonetic in nature and phonetically similar in terms of abstract letters and their arrangements. We use these characteristics of Indian languages and their scripts to propose an approach based on common multilingual Latin-based encodings (WX notation) that take advantage of language similarity while addressing the morphological complexity issue in NMT. These multilingual Latin-based encodings in NMT, together with Byte Pair Embedding (BPE) allow us to better exploit their phonetic and orthographic as well as lexical similarities to improve the translation quality by projecting different but similar languages on the same orthographic-phonetic character space. We verify the proposed approach by demonstrating experiments on similar language pairs (Gujarati-Hindi, Marathi-Hindi, Nepali-Hindi, Maithili-Hindi, Punjabi-Hindi, and Urdu-Hindi) under low resource conditions. The proposed approach shows an improvement in a majority of cases, in one case as much as ~10 BLEU points compared to baseline techniques for similar language pairs. We also get up to ~1 BLEU points improvement on distant and zero-shot language pairs.
[ "cs.CL" ]
false
2305.12389
2023-05-21T08:02:06Z
SHINE: Syntax-augmented Hierarchical Interactive Encoder for Zero-shot Cross-lingual Information Extraction
[ "Jun-Yu Ma", "Jia-Chen Gu", "Zhen-Hua Ling", "Quan Liu", "Cong Liu", "Guoping Hu" ]
Zero-shot cross-lingual information extraction(IE) aims at constructing an IE model for some low-resource target languages, given annotations exclusively in some rich-resource languages. Recent studies based on language-universal features have shown their effectiveness and are attracting increasing attention. However, prior work has neither explored the potential of establishing interactions between language-universal features and contextual representations nor incorporated features that can effectively model constituent span attributes and relationships between multiple spans. In this study, a syntax-augmented hierarchical interactive encoder (SHINE) is proposed to transfer cross-lingual IE knowledge. The proposed encoder is capable of interactively capturing complementary information between features and contextual information, to derive language-agnostic representations for various IE tasks. Concretely, a multi-level interaction network is designed to hierarchically interact the complementary information to strengthen domain adaptability. Besides, in addition to the well-studied syntax features of part-of-speech and dependency relation, a new syntax feature of constituency structure is introduced to model the constituent span information which is crucial for IE. Experiments across seven languages on three IE tasks and four benchmarks verify the effectiveness and generalization ability of the proposed method.
[ "cs.CL" ]
false
2305.12394
2023-05-21T08:15:12Z
Pruning Pre-trained Language Models with Principled Importance and Self-regularization
[ "Siyu Ren", "Kenny Q. Zhu" ]
Iterative pruning is one of the most effective compression methods for pre-trained language models. We discovered that finding the optimal pruning decision is an equality-constrained 0-1 Integer Linear Programming problem. The solution to this optimization problem leads to a principled importance criterion which we use to rank parameters during iterative model pruning. To mitigate the poor generalization at high sparsity levels, we propose a self-regularization scheme where model prediction is regularized by the latest checkpoint with increasing sparsity throughout pruning. Our experiments on natural language understanding, question-answering, named entity recognition, and data-to-text generation with various Transformer-based PLMs show the effectiveness of the approach at various sparsity levels.
[ "cs.CL" ]
false
2305.12412
2023-05-21T09:22:41Z
EM Pre-training for Multi-party Dialogue Response Generation
[ "Yiyang Li", "Hai Zhao" ]
Dialogue response generation requires an agent to generate a response according to the current dialogue history, in terms of which two-party dialogues have been well studied, but leaving a great gap for multi-party dialogues at the same time. Different from two-party dialogues where each response is a direct reply to its previous utterance, the addressee of a response utterance should be specified before it is generated in the multi-party scenario. Thanks to the huge amount of two-party conversational data, various pre-trained language models for two-party dialogue response generation have been proposed. However, due to the lack of annotated addressee labels in multi-party dialogue datasets, it is hard to use them to pre-train a response generation model for multi-party dialogues. To tackle this obstacle, we propose an Expectation-Maximization (EM) approach that iteratively performs the expectation steps to generate addressee labels, and the maximization steps to optimize a response generation model. Theoretical analyses and extensive experiments have justified the feasibility and effectiveness of our proposed method.
[ "cs.CL" ]
false
2305.12458
2023-05-21T13:30:56Z
Infor-Coef: Information Bottleneck-based Dynamic Token Downsampling for Compact and Efficient language model
[ "Wenxi Tan" ]
The prevalence of Transformer-based pre-trained language models (PLMs) has led to their wide adoption for various natural language processing tasks. However, their excessive overhead leads to large latency and computational costs. The statically compression methods allocate fixed computation to different samples, resulting in redundant computation. The dynamic token pruning method selectively shortens the sequences but are unable to change the model size and hardly achieve the speedups as static pruning. In this paper, we propose a model accelaration approaches for large language models that incorporates dynamic token downsampling and static pruning, optimized by the information bottleneck loss. Our model, Infor-Coef, achieves an 18x FLOPs speedup with an accuracy degradation of less than 8\% compared to BERT. This work provides a promising approach to compress and accelerate transformer-based models for NLP tasks.
[ "cs.CL" ]
false
2305.12480
2023-05-21T15:07:04Z
Is Translation Helpful? An Empirical Analysis of Cross-Lingual Transfer in Low-Resource Dialog Generation
[ "Lei Shen", "Shuai Yu", "Xiaoyu Shen" ]
Cross-lingual transfer is important for developing high-quality chatbots in multiple languages due to the strongly imbalanced distribution of language resources. A typical approach is to leverage off-the-shelf machine translation (MT) systems to utilize either the training corpus or developed models from high-resource languages. In this work, we investigate whether it is helpful to utilize MT at all in this task. To do so, we simulate a low-resource scenario assuming access to limited Chinese dialog data in the movie domain and large amounts of English dialog data from multiple domains. Experiments show that leveraging English dialog corpora can indeed improve the naturalness, relevance and cross-domain transferability in Chinese. However, directly using English dialog corpora in its original form, surprisingly, is better than using its translated version. As the topics and wording habits in daily conversations are strongly culture-dependent, MT can reinforce the bias from high-resource languages, yielding unnatural generations in the target language. Considering the cost of translating large amounts of text and the strong effects of the translation quality, we suggest future research should rather focus on utilizing the original English data for cross-lingual transfer in dialog generation. We perform extensive human evaluations and ablation studies. The analysis results, together with the collected dataset, are presented to draw attention towards this area and benefit future research.
[ "cs.CL" ]
false
2305.12518
2023-05-21T17:23:54Z
VAKTA-SETU: A Speech-to-Speech Machine Translation Service in Select Indic Languages
[ "Shivam Mhaskar", "Vineet Bhat", "Akshay Batheja", "Sourabh Deoghare", "Paramveer Choudhary", "Pushpak Bhattacharyya" ]
In this work, we present our deployment-ready Speech-to-Speech Machine Translation (SSMT) system for English-Hindi, English-Marathi, and Hindi-Marathi language pairs. We develop the SSMT system by cascading Automatic Speech Recognition (ASR), Disfluency Correction (DC), Machine Translation (MT), and Text-to-Speech Synthesis (TTS) models. We discuss the challenges faced during the research and development stage and the scalable deployment of the SSMT system as a publicly accessible web service. On the MT part of the pipeline too, we create a Text-to-Text Machine Translation (TTMT) service in all six translation directions involving English, Hindi, and Marathi. To mitigate data scarcity, we develop a LaBSE-based corpus filtering tool to select high-quality parallel sentences from a noisy pseudo-parallel corpus for training the TTMT system. All the data used for training the SSMT and TTMT systems and the best models are being made publicly available. Users of our system are (a) Govt. of India in the context of its new education policy (NEP), (b) tourists who criss-cross the multilingual landscape of India, (c) Indian Judiciary where a leading cause of the pendency of cases (to the order of 10 million as on date) is the translation of case papers, (d) farmers who need weather and price information and so on. We also share the feedback received from various stakeholders when our SSMT and TTMT systems were demonstrated in large public events.
[ "cs.CL" ]
false
2305.12565
2023-05-21T21:02:55Z
Understanding the Effect of Data Augmentation on Knowledge Distillation
[ "Ziqi Wang", "Chi Han", "Wenxuan Bao", "Heng Ji" ]
Knowledge distillation (KD) requires sufficient data to transfer knowledge from large-scale teacher models to small-scale student models. Therefore, data augmentation has been widely used to mitigate the shortage of data under specific scenarios. Classic data augmentation techniques, such as synonym replacement and k-nearest-neighbors, are initially designed for fine-tuning. To avoid severe semantic shifts and preserve task-specific labels, those methods prefer to change only a small proportion of tokens (e.g., changing 10% tokens is generally the best option for fine-tuning). However, such data augmentation methods are sub-optimal for knowledge distillation since the teacher model could provide label distributions and is more tolerant to semantic shifts. We first observe that KD prefers as much data as possible, which is different from fine-tuning that too much data will not gain more performance. Since changing more tokens leads to more semantic shifts, we use the proportion of changed tokens to reflect semantic shift degrees. Then we find that KD prefers augmented data with a larger semantic shift degree (e.g., changing 30% tokens is generally the best option for KD) than fine-tuning (changing 10% tokens). Besides, our findings show that smaller datasets prefer larger degrees until the out-of-distribution problem occurs (e.g., datasets with less than 10k inputs may prefer the 50% degree, and datasets with more than 100k inputs may prefer the 10% degree). Our work sheds light on the preference difference in data augmentation between fine-tuning and knowledge distillation and encourages the community to explore KD-specific data augmentation methods.
[ "cs.CL" ]
false
2305.12567
2023-05-21T21:06:23Z
Model-Generated Pretraining Signals Improves Zero-Shot Generalization of Text-to-Text Transformers
[ "Linyuan Gong", "Chenyan Xiong", "Xiaodong Liu", "Payal Bajaj", "Yiqing Xie", "Alvin Cheung", "Jianfeng Gao", "Xia Song" ]
This paper explores the effectiveness of model-generated signals in improving zero-shot generalization of text-to-text Transformers such as T5. We study various designs to pretrain T5 using an auxiliary model to construct more challenging token replacements for the main model to denoise. Key aspects under study include the decoding target, the location of the RTD head, and the masking pattern. Based on these studies, we develop a new model, METRO-T0, which is pretrained using the redesigned ELECTRA-Style pretraining strategies and then prompt-finetuned on a mixture of NLP tasks. METRO-T0 outperforms all similar-sized baselines on prompted NLP benchmarks, such as T0 Eval and MMLU, and rivals the state-of-the-art T0-11B model with only 8% of its parameters. Our analysis on model's neural activation and parameter sensitivity reveals that the effectiveness of METRO-T0 stems from more balanced contribution of parameters and better utilization of their capacity. The code and model checkpoints are available at https://github.com/gonglinyuan/metro_t0.
[ "cs.CL" ]
false
2305.12586
2023-05-21T22:44:25Z
Enhancing Few-shot Text-to-SQL Capabilities of Large Language Models: A Study on Prompt Design Strategies
[ "Linyong Nan", "Yilun Zhao", "Weijin Zou", "Narutatsu Ri", "Jaesung Tae", "Ellen Zhang", "Arman Cohan", "Dragomir Radev" ]
In-context learning (ICL) has emerged as a new approach to various natural language processing tasks, utilizing large language models (LLMs) to make predictions based on context that has been supplemented with a few examples or task-specific instructions. In this paper, we aim to extend this method to question answering tasks that utilize structured knowledge sources, and improve Text-to-SQL systems by exploring various prompt design strategies for employing LLMs. We conduct a systematic investigation into different demonstration selection methods and optimal instruction formats for prompting LLMs in the Text-to-SQL task. Our approach involves leveraging the syntactic structure of an example's SQL query to retrieve demonstrations, and we demonstrate that pursuing both diversity and similarity in demonstration selection leads to enhanced performance. Furthermore, we show that LLMs benefit from database-related knowledge augmentations. Our most effective strategy outperforms the state-of-the-art system by 2.5 points (Execution Accuracy) and the best fine-tuned system by 5.1 points on the Spider dataset. These results highlight the effectiveness of our approach in adapting LLMs to the Text-to-SQL task, and we present an analysis of the factors contributing to the success of our strategy.
[ "cs.CL" ]
false
2305.12594
2023-05-21T23:04:14Z
Modeling User Satisfaction Dynamics in Dialogue via Hawkes Process
[ "Fanghua Ye", "Zhiyuan Hu", "Emine Yilmaz" ]
Dialogue systems have received increasing attention while automatically evaluating their performance remains challenging. User satisfaction estimation (USE) has been proposed as an alternative. It assumes that the performance of a dialogue system can be measured by user satisfaction and uses an estimator to simulate users. The effectiveness of USE depends heavily on the estimator. Existing estimators independently predict user satisfaction at each turn and ignore satisfaction dynamics across turns within a dialogue. In order to fully simulate users, it is crucial to take satisfaction dynamics into account. To fill this gap, we propose a new estimator ASAP (sAtisfaction eStimation via HAwkes Process) that treats user satisfaction across turns as an event sequence and employs a Hawkes process to effectively model the dynamics in this sequence. Experimental results on four benchmark dialogue datasets demonstrate that ASAP can substantially outperform state-of-the-art baseline estimators.
[ "cs.CL" ]
false
2305.12434
2023-05-21T11:25:59Z
BiasAsker: Measuring the Bias in Conversational AI System
[ "Yuxuan Wan", "Wenxuan Wang", "Pinjia He", "Jiazhen Gu", "Haonan Bai", "Michael Lyu" ]
Powered by advanced Artificial Intelligence (AI) techniques, conversational AI systems, such as ChatGPT and digital assistants like Siri, have been widely deployed in daily life. However, such systems may still produce content containing biases and stereotypes, causing potential social problems. Due to the data-driven, black-box nature of modern AI techniques, comprehensively identifying and measuring biases in conversational systems remains a challenging task. Particularly, it is hard to generate inputs that can comprehensively trigger potential bias due to the lack of data containing both social groups as well as biased properties. In addition, modern conversational systems can produce diverse responses (e.g., chatting and explanation), which makes existing bias detection methods simply based on the sentiment and the toxicity hardly being adopted. In this paper, we propose BiasAsker, an automated framework to identify and measure social bias in conversational AI systems. To obtain social groups and biased properties, we construct a comprehensive social bias dataset, containing a total of 841 groups and 8,110 biased properties. Given the dataset, BiasAsker automatically generates questions and adopts a novel method based on existence measurement to identify two types of biases (i.e., absolute bias and related bias) in conversational systems. Extensive experiments on 8 commercial systems and 2 famous research models, such as ChatGPT and GPT-3, show that 32.83% of the questions generated by BiasAsker can trigger biased behaviors in these widely deployed conversational systems. All the code, data, and experimental results have been released to facilitate future research.
[ "cs.CL", "cs.AI" ]
false
2305.12449
2023-05-21T12:48:38Z
Communication Efficient Federated Learning for Multilingual Neural Machine Translation with Adapter
[ "Yi Liu", "Xiaohan Bi", "Lei Li", "Sishuo Chen", "Wenkai Yang", "Xu Sun" ]
Federated Multilingual Neural Machine Translation (Fed-MNMT) has emerged as a promising paradigm for institutions with limited language resources. This approach allows multiple institutions to act as clients and train a unified model through model synchronization, rather than collecting sensitive data for centralized training. This significantly reduces the cost of corpus collection and preserves data privacy. However, as pre-trained language models (PLMs) continue to increase in size, the communication cost for transmitting parameters during synchronization has become a training speed bottleneck. In this paper, we propose a communication-efficient Fed-MNMT framework that addresses this issue by keeping PLMs frozen and only transferring lightweight adapter modules between clients. Since different language pairs exhibit substantial discrepancies in data distributions, adapter parameters of clients may conflict with each other. To tackle this, we explore various clustering strategies to group parameters for integration and mitigate the negative effects of conflicting parameters. Experimental results demonstrate that our framework reduces communication cost by over 98% while achieving similar or even better performance compared to competitive baselines. Further analysis reveals that clustering strategies effectively solve the problem of linguistic discrepancy and pruning adapter modules further improves communication efficiency.
[ "cs.CL", "cs.AI" ]
false
2305.12463
2023-05-21T14:03:49Z
Teaching the Pre-trained Model to Generate Simple Texts for Text Simplification
[ "Renliang Sun", "Wei Xu", "Xiaojun Wan" ]
Randomly masking text spans in ordinary texts in the pre-training stage hardly allows models to acquire the ability to generate simple texts. It can hurt the performance of pre-trained models on text simplification tasks. In this paper, we propose a new continued pre-training strategy to teach the pre-trained model to generate simple texts. We continue pre-training BART, a representative model, to obtain SimpleBART. It consistently and significantly improves the results on lexical simplification, sentence simplification, and document-level simplification tasks over BART. At the end, we compare SimpleBART with several representative large language models (LLMs).
[ "cs.CL", "cs.AI" ]
false
2305.12510
2023-05-21T17:04:21Z
A Deeper (Autoregressive) Approach to Non-Convergent Discourse Parsing
[ "Yoav Tulpan", "Oren Tsur" ]
Online social platforms provide a bustling arena for information-sharing and for multi-party discussions. Various frameworks for dialogic discourse parsing were developed and used for the processing of discussions and for predicting the productivity of a dialogue. However, most of these frameworks are not suitable for the analysis of contentious discussions that are commonplace in many online platforms. A novel multi-label scheme for contentious dialog parsing was recently introduced by Zakharov et al. (2021). While the schema is well developed, the computational approach they provide is both naive and inefficient, as a different model (architecture) using a different representation of the input, is trained for each of the 31 tags in the annotation scheme. Moreover, all their models assume full knowledge of label collocations and context, which is unlikely in any realistic setting. In this work, we present a unified model for Non-Convergent Discourse Parsing that does not require any additional input other than the previous dialog utterances. We fine-tuned a RoBERTa backbone, combining embeddings of the utterance, the context and the labels through GRN layers and an asymmetric loss function. Overall, our model achieves results comparable with SOTA, without using label collocation and without training a unique architecture/model for each label.
[ "cs.CL", "cs.SI" ]
false
2305.12542
2023-05-21T18:53:26Z
ToxBuster: In-game Chat Toxicity Buster with BERT
[ "Zachary Yang", "Yasmine Maricar", "MohammadReza Davari", "Nicolas Grenon-Godbout", "Reihaneh Rabbany" ]
Detecting toxicity in online spaces is challenging and an ever more pressing problem given the increase in social media and gaming consumption. We introduce ToxBuster, a simple and scalable model trained on a relatively large dataset of 194k lines of game chat from Rainbow Six Siege and For Honor, carefully annotated for different kinds of toxicity. Compared to the existing state-of-the-art, ToxBuster achieves 82.95% (+7) in precision and 83.56% (+57) in recall. This improvement is obtained by leveraging past chat history and metadata. We also study the implication towards real-time and post-game moderation as well as the model transferability from one game to another.
[ "cs.CL", "cs.CY" ]
false
2305.13342
2023-05-21T22:52:13Z
On the Limitations of Simulating Active Learning
[ "Katerina Margatina", "Nikolaos Aletras" ]
Active learning (AL) is a human-and-model-in-the-loop paradigm that iteratively selects informative unlabeled data for human annotation, aiming to improve over random sampling. However, performing AL experiments with human annotations on-the-fly is a laborious and expensive process, thus unrealistic for academic research. An easy fix to this impediment is to simulate AL, by treating an already labeled and publicly available dataset as the pool of unlabeled data. In this position paper, we first survey recent literature and highlight the challenges across all different steps within the AL loop. We further unveil neglected caveats in the experimental setup that can significantly affect the quality of AL research. We continue with an exploration of how the simulation setting can govern empirical findings, arguing that it might be one of the answers behind the ever posed question ``why do active learning algorithms sometimes fail to outperform random sampling?''. We argue that evaluating AL algorithms on available labeled datasets might provide a lower bound as to their effectiveness in real data. We believe it is essential to collectively shape the best practices for AL research, particularly as engineering advancements in LLMs push the research focus towards data-driven approaches (e.g., data efficiency, alignment, fairness). In light of this, we have developed guidelines for future work. Our aim is to draw attention to these limitations within the community, in the hope of finding ways to address them.
[ "cs.LG", "cs.CL" ]
false
2305.12376
2023-05-21T07:10:31Z
Measuring Intersectional Biases in Historical Documents
[ "Nadav Borenstein", "Karolina Stańczak", "Thea Rolskov", "Natália da Silva Perez", "Natacha Klein Käfer", "Isabelle Augenstein" ]
Data-driven analyses of biases in historical texts can help illuminate the origin and development of biases prevailing in modern society. However, digitised historical documents pose a challenge for NLP practitioners as these corpora suffer from errors introduced by optical character recognition (OCR) and are written in an archaic language. In this paper, we investigate the continuities and transformations of bias in historical newspapers published in the Caribbean during the colonial era (18th to 19th centuries). Our analyses are performed along the axes of gender, race, and their intersection. We examine these biases by conducting a temporal study in which we measure the development of lexical associations using distributional semantics models and word embeddings. Further, we evaluate the effectiveness of techniques designed to process OCR-generated data and assess their stability when trained on and applied to the noisy historical newspapers. We find that there is a trade-off between the stability of the word embeddings and their compatibility with the historical dataset. We provide evidence that gender and racial biases are interdependent, and their intersection triggers distinct effects. These findings align with the theory of intersectionality, which stresses that biases affecting people with multiple marginalised identities compound to more than the sum of their constituents.
[ "cs.CL", "cs.CY", "cs.LG" ]
false
2305.12483
2023-05-21T15:20:20Z
Model Analysis & Evaluation for Ambiguous Question Answering
[ "Konstantinos Papakostas", "Irene Papadopoulou" ]
Ambiguous questions are a challenge for Question Answering models, as they require answers that cover multiple interpretations of the original query. To this end, these models are required to generate long-form answers that often combine conflicting pieces of information. Although recent advances in the field have shown strong capabilities in generating fluent responses, certain research questions remain unanswered. Does model/data scaling improve the answers' quality? Do automated metrics align with human judgment? To what extent do these models ground their answers in evidence? In this study, we aim to thoroughly investigate these aspects, and provide valuable insights into the limitations of the current approaches. To aid in reproducibility and further extension of our work, we open-source our code at https://github.com/din0s/ambig_lfqa.
[ "cs.CL", "cs.AI", "cs.LG" ]
false
2305.12487
2023-05-21T15:42:41Z
Augmenting Autotelic Agents with Large Language Models
[ "Cédric Colas", "Laetitia Teodorescu", "Pierre-Yves Oudeyer", "Xingdi Yuan", "Marc-Alexandre Côté" ]
Humans learn to master open-ended repertoires of skills by imagining and practicing their own goals. This autotelic learning process, literally the pursuit of self-generated (auto) goals (telos), becomes more and more open-ended as the goals become more diverse, abstract and creative. The resulting exploration of the space of possible skills is supported by an inter-individual exploration: goal representations are culturally evolved and transmitted across individuals, in particular using language. Current artificial agents mostly rely on predefined goal representations corresponding to goal spaces that are either bounded (e.g. list of instructions), or unbounded (e.g. the space of possible visual inputs) but are rarely endowed with the ability to reshape their goal representations, to form new abstractions or to imagine creative goals. In this paper, we introduce a language model augmented autotelic agent (LMA3) that leverages a pretrained language model (LM) to support the representation, generation and learning of diverse, abstract, human-relevant goals. The LM is used as an imperfect model of human cultural transmission; an attempt to capture aspects of humans' common-sense, intuitive physics and overall interests. Specifically, it supports three key components of the autotelic architecture: 1)~a relabeler that describes the goals achieved in the agent's trajectories, 2)~a goal generator that suggests new high-level goals along with their decomposition into subgoals the agent already masters, and 3)~reward functions for each of these goals. Without relying on any hand-coded goal representations, reward functions or curriculum, we show that LMA3 agents learn to master a large diversity of skills in a task-agnostic text-based environment.
[ "cs.AI", "cs.CL", "cs.LG" ]
true
2305.12501
2023-05-21T16:37:21Z
Exploring How Generative Adversarial Networks Learn Phonological Representations
[ "Jingyi Chen", "Micha Elsner" ]
This paper explores how Generative Adversarial Networks (GANs) learn representations of phonological phenomena. We analyze how GANs encode contrastive and non-contrastive nasality in French and English vowels by applying the ciwGAN architecture (Begus 2021a). Begus claims that ciwGAN encodes linguistically meaningful representations with categorical variables in its latent space and manipulating the latent variables shows an almost one to one corresponding control of the phonological features in ciwGAN's generated outputs. However, our results show an interactive effect of latent variables on the features in the generated outputs, which suggests the learned representations in neural networks are different from the phonological representations proposed by linguists. On the other hand, ciwGAN is able to distinguish contrastive and noncontrastive features in English and French by encoding them differently. Comparing the performance of GANs learning from different languages results in a better understanding of what language specific features contribute to developing language specific phonological representations. We also discuss the role of training data frequencies in phonological feature learning.
[ "cs.CL", "cs.SD", "eess.AS" ]
false
2305.12535
2023-05-21T18:29:10Z
Explaining How Transformers Use Context to Build Predictions
[ "Javier Ferrando", "Gerard I. Gállego", "Ioannis Tsiamas", "Marta R. Costa-jussà" ]
Language Generation Models produce words based on the previous context. Although existing methods offer input attributions as explanations for a model's prediction, it is still unclear how prior words affect the model's decision throughout the layers. In this work, we leverage recent advances in explainability of the Transformer and present a procedure to analyze models for language generation. Using contrastive examples, we compare the alignment of our explanations with evidence of the linguistic phenomena, and show that our method consistently aligns better than gradient-based and perturbation-based baselines. Then, we investigate the role of MLPs inside the Transformer and show that they learn features that help the model predict words that are grammatically acceptable. Lastly, we apply our method to Neural Machine Translation models, and demonstrate that they generate human-like source-target alignments for building predictions.
[ "cs.CL", "cs.AI", "cs.LG" ]
false
2305.12552
2023-05-21T19:26:46Z
Wav2SQL: Direct Generalizable Speech-To-SQL Parsing
[ "Huadai Liu", "Rongjie Huang", "Jinzheng He", "Gang Sun", "Ran Shen", "Xize Cheng", "Zhou Zhao" ]
Speech-to-SQL (S2SQL) aims to convert spoken questions into SQL queries given relational databases, which has been traditionally implemented in a cascaded manner while facing the following challenges: 1) model training is faced with the major issue of data scarcity, where limited parallel data is available; and 2) the systems should be robust enough to handle diverse out-of-domain speech samples that differ from the source data. In this work, we propose the first direct speech-to-SQL parsing model Wav2SQL which avoids error compounding across cascaded systems. Specifically, 1) to accelerate speech-driven SQL parsing research in the community, we release a large-scale and multi-speaker dataset MASpider; 2) leveraging the recent progress in the large-scale pre-training, we show that it alleviates the data scarcity issue and allow for direct speech-to-SQL parsing; and 3) we include the speech re-programming and gradient reversal classifier techniques to reduce acoustic variance and learned style-agnostic representation, improving generalization to unseen out-of-domain custom data. Experimental results demonstrate that Wav2SQL avoids error compounding and achieves state-of-the-art results by up to 2.5\% accuracy improvement over the baseline.
[ "cs.CL", "cs.SD", "eess.AS" ]
false
2305.12564
2023-05-21T20:57:12Z
ChatGPT Is More Likely to Be Perceived as Male Than Female
[ "Jared Wong", "Jin Kim" ]
We investigate how people perceive ChatGPT, and, in particular, how they assign human-like attributes such as gender to the chatbot. Across five pre-registered studies (N = 1,552), we find that people are more likely to perceive ChatGPT to be male than female. Specifically, people perceive male gender identity (1) following demonstrations of ChatGPT's core abilities (e.g., providing information or summarizing text), (2) in the absence of such demonstrations, and (3) across different methods of eliciting perceived gender (using various scales and asking to name ChatGPT). Moreover, we find that this seemingly default perception of ChatGPT as male can reverse when ChatGPT's feminine-coded abilities are highlighted (e.g., providing emotional support for a user).
[ "cs.HC", "cs.AI", "cs.CL", "cs.LG" ]
false
2305.12579
2023-05-21T22:06:14Z
Hystoc: Obtaining word confidences for fusion of end-to-end ASR systems
[ "Karel Beneš", "Martin Kocour", "Lukáš Burget" ]
End-to-end (e2e) systems have recently gained wide popularity in automatic speech recognition. However, these systems do generally not provide well-calibrated word-level confidences. In this paper, we propose Hystoc, a simple method for obtaining word-level confidences from hypothesis-level scores. Hystoc is an iterative alignment procedure which turns hypotheses from an n-best output of the ASR system into a confusion network. Eventually, word-level confidences are obtained as posterior probabilities in the individual bins of the confusion network. We show that Hystoc provides confidences that correlate well with the accuracy of the ASR hypothesis. Furthermore, we show that utilizing Hystoc in fusion of multiple e2e ASR systems increases the gains from the fusion by up to 1\,\% WER absolute on Spanish RTVE2020 dataset. Finally, we experiment with using Hystoc for direct fusion of n-best outputs from multiple systems, but we only achieve minor gains when fusing very similar systems.
[ "cs.CL", "cs.SD", "eess.AS" ]
false
2305.12329
2023-05-21T03:32:48Z
Anomaly Detection Using One-Class SVM for Logs of Juniper Router Devices
[ "Tat-Bao-Thien Nguyen", "Teh-Lu Liao", "Tuan-Anh Vu" ]
The article deals with anomaly detection of Juniper router logs. Abnormal Juniper router logs include logs that are usually different from the normal operation, and they often reflect the abnormal operation of router devices. To prevent router devices from being damaged and help administrator to grasp the situation of error quickly, detecting abnormal operation soon is very important. In this work, we present a new way to get important features from log data of Juniper router devices and use machine learning method (basing on One-Class SVM model) for anomaly detection. One-Class SVM model requires some knowledge and comprehension about logs of Juniper router devices so that it can analyze, interpret, and test the knowledge ac-quired. We collect log data from a lot of real Juniper router devices and clas-sify them based on our knowledge. Before these logs are used for training and testing the One-Class SVM model, the feature extraction phase for these data was carried out. Finally, with the proposed method, the system errors of the routers were dectected quickly and accurately. This may help our com-pany to reduce the operation cost for the router systems.
[ "cs.LG" ]
false
2305.12365
2023-05-21T06:29:17Z
Towards Optimal Energy Management Strategy for Hybrid Electric Vehicle with Reinforcement Learning
[ "Xinyang Wu", "Elisabeth Wedernikow", "Christof Nitsche", "Marco F. Huber" ]
In recent years, the development of Artificial Intelligence (AI) has shown tremendous potential in diverse areas. Among them, reinforcement learning (RL) has proven to be an effective solution for learning intelligent control strategies. As an inevitable trend for mitigating climate change, hybrid electric vehicles (HEVs) rely on efficient energy management strategies (EMS) to minimize energy consumption. Many researchers have employed RL to learn optimal EMS for specific vehicle models. However, most of these models tend to be complex and proprietary, making them unsuitable for broad applicability. This paper presents a novel framework, in which we implement and integrate RL-based EMS with the open-source vehicle simulation tool called FASTSim. The learned RL-based EMSs are evaluated on various vehicle models using different test drive cycles and prove to be effective in improving energy efficiency.
[ "cs.LG" ]
false
2305.12578
2023-05-21T21:57:32Z
Self-Explainable Graph Neural Networks for Link Prediction
[ "Huaisheng Zhu", "Dongsheng Luo", "Xianfeng Tang", "Junjie Xu", "Hui Liu", "Suhang Wang" ]
Graph Neural Networks (GNNs) have achieved state-of-the-art performance for link prediction. However, GNNs suffer from poor interpretability, which limits their adoptions in critical scenarios that require knowing why certain links are predicted. Despite various methods proposed for the explainability of GNNs, most of them are post-hoc explainers developed for explaining node classification. Directly adopting existing post-hoc explainers for explaining link prediction is sub-optimal because: (i) post-hoc explainers usually adopt another strategy or model to explain a target model, which could misinterpret the target model; and (ii) GNN explainers for node classification identify crucial subgraphs around each node for the explanation; while for link prediction, one needs to explain the prediction for each pair of nodes based on graph structure and node attributes. Therefore, in this paper, we study a novel problem of self-explainable GNNs for link prediction, which can simultaneously give accurate predictions and explanations. Concretely, we propose a new framework and it can find various $K$ important neighbors of one node to learn pair-specific representations for links from this node to other nodes. These $K$ different neighbors represent important characteristics of the node and model various factors for links from it. Thus, $K$ neighbors can provide explanations for the existence of links. Experiments on both synthetic and real-world datasets verify the effectiveness of the proposed framework for link prediction and explanation.
[ "cs.LG" ]
false
2305.12585
2023-05-21T22:44:18Z
GeometricImageNet: Extending convolutional neural networks to vector and tensor images
[ "Wilson Gregory", "David W. Hogg", "Ben Blum-Smith", "Maria Teresa Arias", "Kaze W. K. Wong", "Soledad Villar" ]
Convolutional neural networks and their ilk have been very successful for many learning tasks involving images. These methods assume that the input is a scalar image representing the intensity in each pixel, possibly in multiple channels for color images. In natural-science domains however, image-like data sets might have vectors (velocity, say), tensors (polarization, say), pseudovectors (magnetic field, say), or other geometric objects in each pixel. Treating the components of these objects as independent channels in a CNN neglects their structure entirely. Our formulation -- the GeometricImageNet -- combines a geometric generalization of convolution with outer products, tensor index contractions, and tensor index permutations to construct geometric-image functions of geometric images that use and benefit from the tensor structure. The framework permits, with a very simple adjustment, restriction to function spaces that are exactly equivariant to translations, discrete rotations, and reflections. We use representation theory to quantify the dimension of the space of equivariant polynomial functions on 2-dimensional vector images. We give partial results on the expressivity of GeometricImageNet on small images. In numerical experiments, we find that GeometricImageNet has good generalization for a small simulated physics system, even when trained with a small training set. We expect this tool will be valuable for scientific and engineering machine learning, for example in cosmology or ocean dynamics.
[ "cs.LG" ]
false
2305.12313
2023-05-21T01:36:25Z
When are ensembles really effective?
[ "Ryan Theisen", "Hyunsuk Kim", "Yaoqing Yang", "Liam Hodgkinson", "Michael W. Mahoney" ]
Ensembling has a long history in statistical data analysis, with many impactful applications. However, in many modern machine learning settings, the benefits of ensembling are less ubiquitous and less obvious. We study, both theoretically and empirically, the fundamental question of when ensembling yields significant performance improvements in classification tasks. Theoretically, we prove new results relating the \emph{ensemble improvement rate} (a measure of how much ensembling decreases the error rate versus a single model, on a relative scale) to the \emph{disagreement-error ratio}. We show that ensembling improves performance significantly whenever the disagreement rate is large relative to the average error rate; and that, conversely, one classifier is often enough whenever the disagreement rate is low relative to the average error rate. On the way to proving these results, we derive, under a mild condition called \emph{competence}, improved upper and lower bounds on the average test error rate of the majority vote classifier. To complement this theory, we study ensembling empirically in a variety of settings, verifying the predictions made by our theory, and identifying practical scenarios where ensembling does and does not result in large performance improvements. Perhaps most notably, we demonstrate a distinct difference in behavior between interpolating models (popular in current practice) and non-interpolating models (such as tree-based methods, where ensembling is popular), demonstrating that ensembling helps considerably more in the latter case than in the former.
[ "stat.ML", "cs.LG" ]
false
2305.12316
2023-05-21T01:57:56Z
One-Shot Federated Learning for LEO Constellations that Reduces Convergence Time from Days to 90 Minutes
[ "Mohamed Elmahallawy", "Tie Luo" ]
A Low Earth orbit (LEO) satellite constellation consists of a large number of small satellites traveling in space with high mobility and collecting vast amounts of mobility data such as cloud movement for weather forecast, large herds of animals migrating across geo-regions, spreading of forest fires, and aircraft tracking. Machine learning can be utilized to analyze these mobility data to address global challenges, and Federated Learning (FL) is a promising approach because it eliminates the need for transmitting raw data and hence is both bandwidth and privacy-friendly. However, FL requires many communication rounds between clients (satellites) and the parameter server (PS), leading to substantial delays of up to several days in LEO constellations. In this paper, we propose a novel one-shot FL approach for LEO satellites, called LEOShot, that needs only a single communication round to complete the entire learning process. LEOShot comprises three processes: (i) synthetic data generation, (ii) knowledge distillation, and (iii) virtual model retraining. We evaluate and benchmark LEOShot against the state of the art and the results show that it drastically expedites FL convergence by more than an order of magnitude. Also surprisingly, despite the one-shot nature, its model accuracy is on par with or even outperforms regular iterative FL schemes by a large margin
[ "cs.LG", "cs.NI" ]
false
2305.12320
2023-05-21T02:37:26Z
Random Relabeling for Efficient Machine Unlearning
[ "Junde Li", "Swaroop Ghosh" ]
Learning algorithms and data are the driving forces for machine learning to bring about tremendous transformation of industrial intelligence. However, individuals' right to retract their personal data and relevant data privacy regulations pose great challenges to machine learning: how to design an efficient mechanism to support certified data removals. Removal of previously seen data known as machine unlearning is challenging as these data points were implicitly memorized in training process of learning algorithms. Retraining remaining data from scratch straightforwardly serves such deletion requests, however, this naive method is not often computationally feasible. We propose the unlearning scheme random relabeling, which is applicable to generic supervised learning algorithms, to efficiently deal with sequential data removal requests in the online setting. A less constraining removal certification method based on probability distribution similarity with naive unlearning is further developed for logit-based classifiers.
[ "cs.LG", "cs.CR" ]
false
2305.12335
2023-05-21T03:58:16Z
Temporal Fusion Transformers for Streamflow Prediction: Value of Combining Attention with Recurrence
[ "Sinan Rasiya Koya", "Tirthankar Roy" ]
Over the past few decades, the hydrology community has witnessed notable advancements in streamflow prediction, particularly with the introduction of cutting-edge machine-learning algorithms. Recurrent neural networks, especially Long Short-Term Memory (LSTM) networks, have become popular due to their capacity to create precise forecasts and realistically mimic the system dynamics. Attention-based models, such as Transformers, can learn from the entire data sequence concurrently, a feature that LSTM does not have. This work tests the hypothesis that combining recurrence with attention can improve streamflow prediction. We set up the Temporal Fusion Transformer (TFT) architecture, a model that combines both of these aspects and has never been applied in hydrology before. We compare the performance of LSTM, Transformers, and TFT over 2,610 globally distributed catchments from the recently available Caravan dataset. Our results demonstrate that TFT indeed exceeds the performance benchmark set by the LSTM and Transformers for streamflow prediction. Additionally, being an explainable AI method, TFT helps in gaining insights into the streamflow generation processes.
[ "cs.LG", "physics.geo-ph" ]
false
2305.12349
2023-05-21T05:00:40Z
PINA: Leveraging Side Information in eXtreme Multi-label Classification via Predicted Instance Neighborhood Aggregation
[ "Eli Chien", "Jiong Zhang", "Cho-Jui Hsieh", "Jyun-Yu Jiang", "Wei-Cheng Chang", "Olgica Milenkovic", "Hsiang-Fu Yu" ]
The eXtreme Multi-label Classification~(XMC) problem seeks to find relevant labels from an exceptionally large label space. Most of the existing XMC learners focus on the extraction of semantic features from input query text. However, conventional XMC studies usually neglect the side information of instances and labels, which can be of use in many real-world applications such as recommendation systems and e-commerce product search. We propose Predicted Instance Neighborhood Aggregation (PINA), a data enhancement method for the general XMC problem that leverages beneficial side information. Unlike most existing XMC frameworks that treat labels and input instances as featureless indicators and independent entries, PINA extracts information from the label metadata and the correlations among training instances. Extensive experimental results demonstrate the consistent gain of PINA on various XMC tasks compared to the state-of-the-art methods: PINA offers a gain in accuracy compared to standard XR-Transformers on five public benchmark datasets. Moreover, PINA achieves a $\sim 5\%$ gain in accuracy on the largest dataset LF-AmazonTitles-1.3M. Our implementation is publicly available.
[ "cs.LG", "cs.IR" ]
false
2305.12352
2023-05-21T05:11:30Z
Pre-trained Mixed Integer Optimization through Multi-variable Cardinality Branching
[ "Yanguang Chen", "Wenzhi Gao", "Dongdong Ge", "Yinyu Ye" ]
We propose a new method to accelerate online Mixed Integer Optimization with Pre-trained machine learning models (PreMIO). The key component of PreMIO is a multi-variable cardinality branching procedure that splits the feasible region with data-driven hyperplanes, which can be easily integrated into any MIP solver with two lines of code. Moreover, we incorporate learning theory and concentration inequalities to develop a straightforward and interpretable hyper-parameter selection strategy for our method. We test the performance of PreMIO by applying it to state-of-the-art MIP solvers and running numerical experiments on both classical OR benchmark datasets and real-life instances. The results validate the effectiveness of our proposed method.
[ "math.OC", "cs.LG" ]
false
2305.12356
2023-05-21T05:28:37Z
Integer or Floating Point? New Outlooks for Low-Bit Quantization on Large Language Models
[ "Yijia Zhang", "Lingran Zhao", "Shijie Cao", "Wenqiang Wang", "Ting Cao", "Fan Yang", "Mao Yang", "Shanghang Zhang", "Ningyi Xu" ]
Efficient deployment of large language models (LLMs) necessitates low-bit quantization to minimize model size and inference cost. While low-bit integer formats (e.g., INT8/INT4) have been the conventional choice, emerging low-bit floating-point formats (e.g., FP8/FP4) offer a compelling alternative and are gaining support from cutting-edge hardware, such as NVIDIA's H100 GPU. However, the superiority of low-bit INT versus FP formats for quantization on LLMs remains unclear. In this study, we conduct a comparative analysis of INT and FP quantization with the same bit-width, revealing that the optimal quantization format varies across different layers due to the complexity and diversity of tensor distribution. Consequently, we advocate the Mixture of Formats Quantization (MoFQ), which selects the optimal format on a layer-wise basis. This simple yet effective approach achieves state-of-the-art results in both weight-only (W-only) and weight-activation (WA) post-training quantization scenarios when tested on LLaMA across various tasks. In 4-bit W-only quantization, MoFQ surpasses GPTQ without complex hyperparameter tuning and with an order of magnitude faster quantization speed. While in 8-bit WA quantization, MoFQ significantly outperforms INT/FP-only methods, achieving performance close to the full precision model. Notably, MoFQ incurs no hardware overhead compared to INT/FP-only quantization, as the bit-width remains unchanged.
[ "cs.LG", "cs.AI" ]
false
2305.12364
2023-05-21T06:28:53Z
Machine Learning for Socially Responsible Portfolio Optimisation
[ "Taeisha Nundlall", "Terence L Van Zyl" ]
Socially responsible investors build investment portfolios intending to incite social and environmental advancement alongside a financial return. Although Mean-Variance (MV) models successfully generate the highest possible return based on an investor's risk tolerance, MV models do not make provisions for additional constraints relevant to socially responsible (SR) investors. In response to this problem, the MV model must consider Environmental, Social, and Governance (ESG) scores in optimisation. Based on the prominent MV model, this study implements portfolio optimisation for socially responsible investors. The amended MV model allows SR investors to enter markets with competitive SR portfolios despite facing a trade-off between their investment Sharpe Ratio and the average ESG score of the portfolio.
[ "q-fin.PM", "cs.LG" ]
false
2305.12393
2023-05-21T08:12:54Z
Layer Collaboration in the Forward-Forward Algorithm
[ "Guy Lorberbom", "Itai Gat", "Yossi Adi", "Alex Schwing", "Tamir Hazan" ]
Backpropagation, which uses the chain rule, is the de-facto standard algorithm for optimizing neural networks nowadays. Recently, Hinton (2022) proposed the forward-forward algorithm, a promising alternative that optimizes neural nets layer-by-layer, without propagating gradients throughout the network. Although such an approach has several advantages over back-propagation and shows promising results, the fact that each layer is being trained independently limits the optimization process. Specifically, it prevents the network's layers from collaborating to learn complex and rich features. In this work, we study layer collaboration in the forward-forward algorithm. We show that the current version of the forward-forward algorithm is suboptimal when considering information flow in the network, resulting in a lack of collaboration between layers of the network. We propose an improved version that supports layer collaboration to better utilize the network structure, while not requiring any additional assumptions or computations. We empirically demonstrate the efficacy of the proposed version when considering both information flow and objective metrics. Additionally, we provide a theoretical motivation for the proposed method, inspired by functional entropy theory.
[ "cs.LG", "cs.NE" ]
false
2305.12402
2023-05-21T08:51:55Z
Bandit Multi-linear DR-Submodular Maximization and Its Applications on Adversarial Submodular Bandits
[ "Zongqi Wan", "Jialin Zhang", "Wei Chen", "Xiaoming Sun", "Zhijie Zhang" ]
We investigate the online bandit learning of the monotone multi-linear DR-submodular functions, designing the algorithm $\mathtt{BanditMLSM}$ that attains $O(T^{2/3}\log T)$ of $(1-1/e)$-regret. Then we reduce submodular bandit with partition matroid constraint and bandit sequential monotone maximization to the online bandit learning of the monotone multi-linear DR-submodular functions, attaining $O(T^{2/3}\log T)$ of $(1-1/e)$-regret in both problems, which improve the existing results. To the best of our knowledge, we are the first to give a sublinear regret algorithm for the submodular bandit with partition matroid constraint. A special case of this problem is studied by Streeter et al.(2009). They prove a $O(T^{4/5})$ $(1-1/e)$-regret upper bound. For the bandit sequential submodular maximization, the existing work proves an $O(T^{2/3})$ regret with a suboptimal $1/2$ approximation ratio (Niazadeh et al. 2021).
[ "cs.LG", "cs.AI" ]
false
2305.12470
2023-05-21T14:12:02Z
Quasi-Monte Carlo Graph Random Features
[ "Isaac Reid", "Krzysztof Choromanski", "Adrian Weller" ]
We present a novel mechanism to improve the accuracy of the recently-introduced class of graph random features (GRFs). Our method induces negative correlations between the lengths of the algorithm's random walks by imposing antithetic termination: a procedure to sample more diverse random walks which may be of independent interest. It has a trivial drop-in implementation. We derive strong theoretical guarantees on the properties of these quasi-Monte Carlo GRFs (q-GRFs), proving that they yield lower-variance estimators of the 2-regularised Laplacian kernel under mild conditions. Remarkably, our results hold for any graph topology. We demonstrate empirical accuracy improvements on a variety of tasks including a new practical application: time-efficient approximation of the graph diffusion process. To our knowledge, q-GRFs constitute the first rigorously studied quasi-Monte Carlo scheme for kernels defined on combinatorial objects, inviting new research on correlations between graph random walks.
[ "stat.ML", "cs.LG" ]
false
2305.12557
2023-05-21T20:12:27Z
Confidence-aware Personalized Federated Learning via Variational Expectation Maximization
[ "Junyi Zhu", "Xingchen Ma", "Matthew B. Blaschko" ]
Federated Learning (FL) is a distributed learning scheme to train a shared model across clients. One common and fundamental challenge in FL is that the sets of data across clients could be non-identically distributed and have different sizes. Personalized Federated Learning (PFL) attempts to solve this challenge via locally adapted models. In this work, we present a novel framework for PFL based on hierarchical Bayesian modeling and variational inference. A global model is introduced as a latent variable to augment the joint distribution of clients' parameters and capture the common trends of different clients, optimization is derived based on the principle of maximizing the marginal likelihood and conducted using variational expectation maximization. Our algorithm gives rise to a closed-form estimation of a confidence value which comprises the uncertainty of clients' parameters and local model deviations from the global model. The confidence value is used to weigh clients' parameters in the aggregation stage and adjust the regularization effect of the global model. We evaluate our method through extensive empirical studies on multiple datasets. Experimental results show that our approach obtains competitive results under mild heterogeneous circumstances while significantly outperforming state-of-the-art PFL frameworks in highly heterogeneous settings. Our code is available at https://github.com/JunyiZhu-AI/confidence_aware_PFL.
[ "cs.LG", "cs.AI" ]
false
2305.12590
2023-05-21T23:01:13Z
FAQ: Mitigating the Impact of Faults in the Weight Memory of DNN Accelerators through Fault-Aware Quantization
[ "Muhammad Abdullah Hanif", "Muhammad Shafique" ]
Permanent faults induced due to imperfections in the manufacturing process of Deep Neural Network (DNN) accelerators are a major concern, as they negatively impact the manufacturing yield of the chip fabrication process. Fault-aware training is the state-of-the-art approach for mitigating such faults. However, it incurs huge retraining overheads, specifically when used for large DNNs trained on complex datasets. To address this issue, we propose a novel Fault-Aware Quantization (FAQ) technique for mitigating the effects of stuck-at permanent faults in the on-chip weight memory of DNN accelerators at a negligible overhead cost compared to fault-aware retraining while offering comparable accuracy results. We propose a lookup table-based algorithm to achieve ultra-low model conversion time. We present extensive evaluation of the proposed approach using five different DNNs, i.e., ResNet-18, VGG11, VGG16, AlexNet and MobileNetV2, and three different datasets, i.e., CIFAR-10, CIFAR-100 and ImageNet. The results demonstrate that FAQ helps in maintaining the baseline accuracy of the DNNs at low and moderate fault rates without involving costly fault-aware training. For example, for ResNet-18 trained on the CIFAR-10 dataset, at 0.04 fault rate FAQ offers (on average) an increase of 76.38% in accuracy. Similarly, for VGG11 trained on the CIFAR-10 dataset, at 0.04 fault rate FAQ offers (on average) an increase of 70.47% in accuracy. The results also show that FAQ incurs negligible overheads, i.e., less than 5% of the time required to run 1 epoch of retraining. We additionally demonstrate the efficacy of our technique when used in conjunction with fault-aware retraining and show that the use of FAQ inside fault-aware retraining enables fast accuracy recovery.
[ "cs.AR", "cs.LG" ]
false
2305.12600
2023-05-21T23:16:30Z
PRODIGY: Enabling In-context Learning Over Graphs
[ "Qian Huang", "Hongyu Ren", "Peng Chen", "Gregor Kržmanc", "Daniel Zeng", "Percy Liang", "Jure Leskovec" ]
In-context learning is the ability of a pretrained model to adapt to novel and diverse downstream tasks by conditioning on prompt examples, without optimizing any parameters. While large language models have demonstrated this ability, how in-context learning could be performed over graphs is unexplored. In this paper, we develop \textbf{Pr}etraining \textbf{O}ver \textbf{D}iverse \textbf{I}n-Context \textbf{G}raph S\textbf{y}stems (PRODIGY), the first pretraining framework that enables in-context learning over graphs. The key idea of our framework is to formulate in-context learning over graphs with a novel \emph{prompt graph} representation, which connects prompt examples and queries. We then propose a graph neural network architecture over the prompt graph and a corresponding family of in-context pretraining objectives. With PRODIGY, the pretrained model can directly perform novel downstream classification tasks on unseen graphs via in-context learning. We provide empirical evidence of the effectiveness of our framework by showcasing its strong in-context learning performance on tasks involving citation networks and knowledge graphs. Our approach outperforms the in-context learning accuracy of contrastive pretraining baselines with hard-coded adaptation by 18\% on average across all setups. Moreover, it also outperforms standard finetuning with limited data by 33\% on average with in-context learning.
[ "cs.LG", "cs.AI" ]
false
2305.14378
2023-05-21T08:00:23Z
Predicting Stock Market Time-Series Data using CNN-LSTM Neural Network Model
[ "Aadhitya A", "Rajapriya R", "Vineetha R S", "Anurag M Bagde" ]
Stock market is often important as it represents the ownership claims on businesses. Without sufficient stocks, a company cannot perform well in finance. Predicting a stock market performance of a company is nearly hard because every time the prices of a company stock keeps changing and not constant. So, its complex to determine the stock data. But if the previous performance of a company in stock market is known, then we can track the data and provide predictions to stockholders in order to wisely take decisions on handling the stocks to a company. To handle this, many machine learning models have been invented but they didn't succeed due to many reasons like absence of advanced libraries, inaccuracy of model when made to train with real time data and much more. So, to track the patterns and the features of data, a CNN-LSTM Neural Network can be made. Recently, CNN is now used in Natural Language Processing (NLP) based applications, so by identifying the features from stock data and converting them into tensors, we can obtain the features and then send it to LSTM neural network to find the patterns and thereby predicting the stock market for given period of time. The accuracy of the CNN-LSTM NN model is found to be high even when allowed to train on real-time stock market data. This paper describes about the features of the custom CNN-LSTM model, experiments we made with the model (like training with stock market datasets, performance comparison with other models) and the end product we obtained at final stage.
[ "q-fin.ST", "cs.LG" ]
false
2305.15430
2023-05-21T06:55:10Z
Bounded Projection Matrix Approximation with Applications to Community Detection
[ "Zheng Zhai", "Hengchao Chen", "Qiang Sun" ]
Community detection is an important problem in unsupervised learning. This paper proposes to solve a projection matrix approximation problem with an additional entrywise bounded constraint. Algorithmically, we introduce a new differentiable convex penalty and derive an alternating direction method of multipliers (ADMM) algorithm. Theoretically, we establish the convergence properties of the proposed algorithm. Numerical experiments demonstrate the superiority of our algorithm over its competitors, such as the semi-definite relaxation method and spectral clustering.
[ "cs.SI", "cs.LG" ]
false
2305.15431
2023-05-21T11:01:14Z
Exploring and Exploiting Data Heterogeneity in Recommendation
[ "Zimu Wang", "Jiashuo Liu", "Hao Zou", "Xingxuan Zhang", "Yue He", "Dongxu Liang", "Peng Cui" ]
Massive amounts of data are the foundation of data-driven recommendation models. As an inherent nature of big data, data heterogeneity widely exists in real-world recommendation systems. It reflects the differences in the properties among sub-populations. Ignoring the heterogeneity in recommendation data could limit the performance of recommendation models, hurt the sub-populational robustness, and make the models misled by biases. However, data heterogeneity has not attracted substantial attention in the recommendation community. Therefore, it inspires us to adequately explore and exploit heterogeneity for solving the above problems and assisting data analysis. In this work, we focus on exploring two representative categories of heterogeneity in recommendation data that is the heterogeneity of prediction mechanism and covariate distribution and propose an algorithm that explores the heterogeneity through a bilevel clustering method. Furthermore, the uncovered heterogeneity is exploited for two purposes in recommendation scenarios which are prediction with multiple sub-models and supporting debias. Extensive experiments on real-world data validate the existence of heterogeneity in recommendation data and the effectiveness of exploring and exploiting data heterogeneity in recommendation.
[ "cs.IR", "cs.LG" ]
false
2305.12407
2023-05-21T09:08:09Z
Federated Offline Policy Learning with Heterogeneous Observational Data
[ "Aldo Gael Carranza", "Susan Athey" ]
We consider the problem of learning personalized decision policies on observational data from heterogeneous data sources. Moreover, we examine this problem in the federated setting where a central server aims to learn a policy on the data distributed across the heterogeneous sources without exchanging their raw data. We present a federated policy learning algorithm based on aggregation of local policies trained with doubly robust offline policy evaluation and learning strategies. We provide a novel regret analysis for our approach that establishes a finite-sample upper bound on a notion of global regret across a distribution of clients. In addition, for any individual client, we establish a corresponding local regret upper bound characterized by the presence of distribution shift relative to all other clients. We support our theoretical findings with experimental results. Our analysis and experiments provide insights into the value of heterogeneous client participation in federation for policy learning in heterogeneous settings.
[ "cs.LG", "cs.DC", "econ.EM", "stat.ML" ]
false
2305.12424
2023-05-21T10:44:02Z
Mol-PECO: a deep learning model to predict human olfactory perception from molecular structures
[ "Mengji Zhang", "Yusuke Hiki", "Akira Funahashi", "Tetsuya J. Kobayashi" ]
While visual and auditory information conveyed by wavelength of light and frequency of sound have been decoded, predicting olfactory information encoded by the combination of odorants remains challenging due to the unknown and potentially discontinuous perceptual space of smells and odorants. Herein, we develop a deep learning model called Mol-PECO (Molecular Representation by Positional Encoding of Coulomb Matrix) to predict olfactory perception from molecular structures. Mol-PECO updates the learned atom embedding by directional graph convolutional networks (GCN), which model the Laplacian eigenfunctions as positional encoding, and Coulomb matrix, which encodes atomic coordinates and charges. With a comprehensive dataset of 8,503 molecules, Mol-PECO directly achieves an area-under-the-receiver-operating-characteristic (AUROC) of 0.813 in 118 odor descriptors, superior to the machine learning of molecular fingerprints (AUROC of 0.761) and GCN of adjacency matrix (AUROC of 0.678). The learned embeddings by Mol-PECO also capture a meaningful odor space with global clustering of descriptors and local retrieval of similar odorants. Our work may promote the understanding and decoding of the olfactory sense and mechanisms.
[ "cs.LG", "cs.AI", "q-bio.BM", "q-bio.NC" ]
false
2305.12475
2023-05-21T14:40:43Z
Two Sides of One Coin: the Limits of Untuned SGD and the Power of Adaptive Methods
[ "Junchi Yang", "Xiang Li", "Ilyas Fatkhullin", "Niao He" ]
The classical analysis of Stochastic Gradient Descent (SGD) with polynomially decaying stepsize $\eta_t = \eta/\sqrt{t}$ relies on well-tuned $\eta$ depending on problem parameters such as Lipschitz smoothness constant, which is often unknown in practice. In this work, we prove that SGD with arbitrary $\eta > 0$, referred to as untuned SGD, still attains an order-optimal convergence rate $\widetilde{O}(T^{-1/4})$ in terms of gradient norm for minimizing smooth objectives. Unfortunately, it comes at the expense of a catastrophic exponential dependence on the smoothness constant, which we show is unavoidable for this scheme even in the noiseless setting. We then examine three families of adaptive methods $\unicode{x2013}$ Normalized SGD (NSGD), AMSGrad, and AdaGrad $\unicode{x2013}$ unveiling their power in preventing such exponential dependency in the absence of information about the smoothness parameter and boundedness of stochastic gradients. Our results provide theoretical justification for the advantage of adaptive methods over untuned SGD in alleviating the issue with large gradients.
[ "math.OC", "cs.LG", "stat.ML" ]
false
2305.12543
2023-05-21T19:00:06Z
A Reinforcement Learning Approach for Robust Supervisory Control of UAVs Under Disturbances
[ "Ibrahim Ahmed", "Marcos Quinones-Grueiro", "Gautam Biswas" ]
In this work, we present an approach to supervisory reinforcement learning control for unmanned aerial vehicles (UAVs). UAVs are dynamic systems where control decisions in response to disturbances in the environment have to be made in the order of milliseconds. We formulate a supervisory control architecture that interleaves with extant embedded control and demonstrates robustness to environmental disturbances in the form of adverse wind conditions. We run case studies with a Tarot T-18 Octorotor to demonstrate the effectiveness of our approach and compare it against a classic cascade control architecture used in most vehicles. While the results show the performance difference is marginal for nominal operations, substantial performance improvement is obtained with the supervisory RL approach under unseen wind conditions.
[ "eess.SY", "cs.LG", "cs.SY" ]
false
2305.12571
2023-05-21T21:21:46Z
Reproducibility Requires Consolidated Artifacts
[ "Iordanis Fostiropoulos", "Bowman Brown", "Laurent Itti" ]
Machine learning is facing a 'reproducibility crisis' where a significant number of works report failures when attempting to reproduce previously published results. We evaluate the sources of reproducibility failures using a meta-analysis of 142 replication studies from ReScience C and 204 code repositories. We find that missing experiment details such as hyperparameters are potential causes of unreproducibility. We experimentally show the bias of different hyperparameter selection strategies and conclude that consolidated artifacts with a unified framework can help support reproducibility.
[ "cs.LG", "cs.AI", "cs.SE" ]
false
2305.12581
2023-05-21T22:29:55Z
A parametric distribution for exact post-selection inference with data carving
[ "Erik Drysdale" ]
Post-selection inference (PoSI) is a statistical technique for obtaining valid confidence intervals and p-values when hypothesis generation and testing use the same source of data. PoSI can be used on a range of popular algorithms including the Lasso. Data carving is a variant of PoSI in which a portion of held out data is combined with the hypothesis generating data at inference time. While data carving has attractive theoretical and empirical properties, existing approaches rely on computationally expensive MCMC methods to carry out inference. This paper's key contribution is to show that pivotal quantities can be constructed for the data carving procedure based on a known parametric distribution. Specifically, when the selection event is characterized by a set of polyhedral constraints on a Gaussian response, data carving will follow the sum of a normal and a truncated normal (SNTN), which is a variant of the truncated bivariate normal distribution. The main impact of this insight is that obtaining exact inference for data carving can be made computationally trivial, since the CDF of the SNTN distribution can be found using the CDF of a standard bivariate normal. A python package sntn has been released to further facilitate the adoption of data carving with PoSI.
[ "stat.ME", "cs.LG", "stat.ML" ]
false
2305.13341
2023-05-21T19:22:50Z
Discovering Causal Relations and Equations from Data
[ "Gustau Camps-Valls", "Andreas Gerhardus", "Urmi Ninad", "Gherardo Varando", "Georg Martius", "Emili Balaguer-Ballester", "Ricardo Vinuesa", "Emiliano Diaz", "Laure Zanna", "Jakob Runge" ]
Physics is a field of science that has traditionally used the scientific method to answer questions about why natural phenomena occur and to make testable models that explain the phenomena. Discovering equations, laws and principles that are invariant, robust and causal explanations of the world has been fundamental in physical sciences throughout the centuries. Discoveries emerge from observing the world and, when possible, performing interventional studies in the system under study. With the advent of big data and the use of data-driven methods, causal and equation discovery fields have grown and made progress in computer science, physics, statistics, philosophy, and many applied fields. All these domains are intertwined and can be used to discover causal relations, physical laws, and equations from observational data. This paper reviews the concepts, methods, and relevant works on causal and equation discovery in the broad field of Physics and outlines the most important challenges and promising future lines of research. We also provide a taxonomy for observational causal and equation discovery, point out connections, and showcase a complete set of case studies in Earth and climate sciences, fluid dynamics and mechanics, and the neurosciences. This review demonstrates that discovering fundamental laws and causal relations by observing natural phenomena is being revolutionised with the efficient exploitation of observational data, modern machine learning algorithms and the interaction with domain knowledge. Exciting times are ahead with many challenges and opportunities to improve our understanding of complex systems.
[ "physics.data-an", "cs.AI", "cs.LG", "stat.ME" ]
false
2305.12649
2023-05-22T02:46:34Z
Imbalance-Agnostic Source-Free Domain Adaptation via Avatar Prototype Alignment
[ "Hongbin Lin", "Mingkui Tan", "Yifan Zhang", "Zhen Qiu", "Shuaicheng Niu", "Dong Liu", "Qing Du", "Yanxia Liu" ]
Source-free Unsupervised Domain Adaptation (SF-UDA) aims to adapt a well-trained source model to an unlabeled target domain without access to the source data. One key challenge is the lack of source data during domain adaptation. To handle this, we propose to mine the hidden knowledge of the source model and exploit it to generate source avatar prototypes. To this end, we propose a Contrastive Prototype Generation and Adaptation (CPGA) method. CPGA consists of two stages: Prototype generation and Prototype adaptation. Extensive experiments on three UDA benchmark datasets demonstrate the superiority of CPGA. However, existing SF.UDA studies implicitly assume balanced class distributions for both the source and target domains, which hinders their real applications. To address this issue, we study a more practical SF-UDA task, termed imbalance-agnostic SF-UDA, where the class distributions of both the unseen source domain and unlabeled target domain are unknown and could be arbitrarily skewed. This task is much more challenging than vanilla SF-UDA due to the co-occurrence of covariate shifts and unidentified class distribution shifts between the source and target domains. To address this task, we extend CPGA and propose a new Target-aware Contrastive Prototype Generation and Adaptation (T-CPGA) method. Specifically, for better prototype adaptation in the imbalance-agnostic scenario, T-CPGA applies a new pseudo label generation strategy to identify unknown target class distribution and generate accurate pseudo labels, by utilizing the collective intelligence of the source model and an additional contrastive language-image pre-trained model. Meanwhile, we further devise a target label-distribution-aware classifier to adapt the model to the unknown target class distribution. We empirically show that T-CPGA significantly outperforms CPGA and other SF-UDA methods in imbalance-agnostic SF-UDA.
[ "cs.CV" ]
false
2305.12659
2023-05-22T03:03:29Z
UVOSAM: A Mask-free Paradigm for Unsupervised Video Object Segmentation via Segment Anything Model
[ "Zhenghao Zhang", "Zhichao Wei", "Shengfan Zhang", "Zuozhuo Dai", "Siyu Zhu" ]
Unsupervised video object segmentation has made significant progress in recent years, but the manual annotation of video mask datasets is expensive and limits the diversity of available datasets. The Segment Anything Model (SAM) has introduced a new prompt-driven paradigm for image segmentation, unlocking a range of previously unexplored capabilities. In this paper, we propose a novel paradigm called UVOSAM, which leverages SAM for unsupervised video object segmentation without requiring video mask labels. To address SAM's limitations in instance discovery and identity association, we introduce a video salient object tracking network that automatically generates trajectories for prominent foreground objects. These trajectories then serve as prompts for SAM to produce video masks on a frame-by-frame basis. Our experimental results demonstrate that UVOSAM significantly outperforms current mask-supervised methods. These findings suggest that UVOSAM has the potential to improve unsupervised video object segmentation and reduce the cost of manual annotation.
[ "cs.CV" ]
false
2305.12724
2023-05-22T05:18:34Z
Bridging the Gap Between End-to-end and Non-End-to-end Multi-Object Tracking
[ "Feng Yan", "Weixin Luo", "Yujie Zhong", "Yiyang Gan", "Lin Ma" ]
Existing end-to-end Multi-Object Tracking (e2e-MOT) methods have not surpassed non-end-to-end tracking-by-detection methods. One potential reason is its label assignment strategy during training that consistently binds the tracked objects with tracking queries and then assigns the few newborns to detection queries. With one-to-one bipartite matching, such an assignment will yield unbalanced training, i.e., scarce positive samples for detection queries, especially for an enclosed scene, as the majority of the newborns come on stage at the beginning of videos. Thus, e2e-MOT will be easier to yield a tracking terminal without renewal or re-initialization, compared to other tracking-by-detection methods. To alleviate this problem, we present Co-MOT, a simple and effective method to facilitate e2e-MOT by a novel coopetition label assignment with a shadow concept. Specifically, we add tracked objects to the matching targets for detection queries when performing the label assignment for training the intermediate decoders. For query initialization, we expand each query by a set of shadow counterparts with limited disturbance to itself. With extensive ablations, Co-MOT achieves superior performance without extra costs, e.g., 69.4% HOTA on DanceTrack and 52.8% TETA on BDD100K. Impressively, Co-MOT only requires 38\% FLOPs of MOTRv2 to attain a similar performance, resulting in the 1.4$\times$ faster inference speed.
[ "cs.CV" ]
false
2305.12799
2023-05-22T07:53:36Z
Interactive Data Synthesis for Systematic Vision Adaptation via LLMs-AIGCs Collaboration
[ "Qifan Yu", "Juncheng Li", "Wentao Ye", "Siliang Tang", "Yueting Zhuang" ]
Recent text-to-image generation models have shown promising results in generating high-fidelity photo-realistic images. In parallel, the problem of data scarcity has brought a growing interest in employing AIGC technology for high-quality data expansion. However, this paradigm requires well-designed prompt engineering that cost-less data expansion and labeling remain under-explored. Inspired by LLM's powerful capability in task guidance, we propose a new paradigm of annotated data expansion named as ChatGenImage. The core idea behind it is to leverage the complementary strengths of diverse models to establish a highly effective and user-friendly pipeline for interactive data augmentation. In this work, we extensively study how LLMs communicate with AIGC model to achieve more controllable image generation and make the first attempt to collaborate them for automatic data augmentation for a variety of downstream tasks. Finally, we present fascinating results obtained from our ChatGenImage framework and demonstrate the powerful potential of our synthetic data for systematic vision adaptation. Our codes are available at https://github.com/Yuqifan1117/Labal-Anything-Pipeline.
[ "cs.CV" ]
false
2305.12800
2023-05-22T07:54:13Z
Single Domain Dynamic Generalization for Iris Presentation Attack Detection
[ "Yachun Li", "Jingjing Wang", "Yuhui Chen", "Di Xie", "Shiliang Pu" ]
Iris presentation attack detection (PAD) has achieved great success under intra-domain settings but easily degrades on unseen domains. Conventional domain generalization methods mitigate the gap by learning domain-invariant features. However, they ignore the discriminative information in the domain-specific features. Moreover, we usually face a more realistic scenario with only one single domain available for training. To tackle the above issues, we propose a Single Domain Dynamic Generalization (SDDG) framework, which simultaneously exploits domain-invariant and domain-specific features on a per-sample basis and learns to generalize to various unseen domains with numerous natural images. Specifically, a dynamic block is designed to adaptively adjust the network with a dynamic adaptor. And an information maximization loss is further combined to increase diversity. The whole network is integrated into the meta-learning paradigm. We generate amplitude perturbed images and cover diverse domains with natural images. Therefore, the network can learn to generalize to the perturbed domains in the meta-test phase. Extensive experiments show the proposed method is effective and outperforms the state-of-the-art on LivDet-Iris 2017 dataset.
[ "cs.CV" ]
false
2305.12811
2023-05-22T08:12:25Z
Label Smarter, Not Harder: CleverLabel for Faster Annotation of Ambiguous Image Classification with Higher Quality
[ "Lars Schmarje", "Vasco Grossmann", "Tim Michels", "Jakob Nazarenus", "Monty Santarossa", "Claudius Zelenka", "Reinhard Koch" ]
High-quality data is crucial for the success of machine learning, but labeling large datasets is often a time-consuming and costly process. While semi-supervised learning can help mitigate the need for labeled data, label quality remains an open issue due to ambiguity and disagreement among annotators. Thus, we use proposal-guided annotations as one option which leads to more consistency between annotators. However, proposing a label increases the probability of the annotators deciding in favor of this specific label. This introduces a bias which we can simulate and remove. We propose a new method CleverLabel for Cost-effective LabEling using Validated proposal-guidEd annotations and Repaired LABELs. CleverLabel can reduce labeling costs by up to 30.0%, while achieving a relative improvement in Kullback-Leibler divergence of up to 29.8% compared to the previous state-of-the-art on a multi-domain real-world image classification benchmark. CleverLabel offers a novel solution to the challenge of efficiently labeling large datasets while also improving the label quality.
[ "cs.CV" ]
false
2305.12833
2023-05-22T08:53:50Z
Boosting Long-tailed Object Detection via Step-wise Learning on Smooth-tail Data
[ "Na Dong", "Yongqiang Zhang", "Mingli Ding", "Gim Hee Lee" ]
Real-world data tends to follow a long-tailed distribution, where the class imbalance results in dominance of the head classes during training. In this paper, we propose a frustratingly simple but effective step-wise learning framework to gradually enhance the capability of the model in detecting all categories of long-tailed datasets. Specifically, we build smooth-tail data where the long-tailed distribution of categories decays smoothly to correct the bias towards head classes. We pre-train a model on the whole long-tailed data to preserve discriminability between all categories. We then fine-tune the class-agnostic modules of the pre-trained model on the head class dominant replay data to get a head class expert model with improved decision boundaries from all categories. Finally, we train a unified model on the tail class dominant replay data while transferring knowledge from the head class expert model to ensure accurate detection of all categories. Extensive experiments on long-tailed datasets LVIS v0.5 and LVIS v1.0 demonstrate the superior performance of our method, where we can improve the AP with ResNet-50 backbone from 27.0% to 30.3% AP, and especially for the rare categories from 15.5% to 24.9% AP. Our best model using ResNet-101 backbone can achieve 30.7% AP, which suppresses all existing detectors using the same backbone.
[ "cs.CV" ]
false
2305.12843
2023-05-22T09:08:46Z
Registering Neural Radiance Fields as 3D Density Images
[ "Han Jiang", "Ruoxuan Li", "Haosen Sun", "Yu-Wing Tai", "Chi-Keung Tang" ]
No significant work has been done to directly merge two partially overlapping scenes using NeRF representations. Given pre-trained NeRF models of a 3D scene with partial overlapping, this paper aligns them with a rigid transform, by generalizing the traditional registration pipeline, that is, key point detection and point set registration, to operate on 3D density fields. To describe corner points as key points in 3D, we propose to use universal pre-trained descriptor-generating neural networks that can be trained and tested on different scenes. We perform experiments to demonstrate that the descriptor networks can be conveniently trained using a contrastive learning strategy. We demonstrate that our method, as a global approach, can effectively register NeRF models, thus making possible future large-scale NeRF construction by registering its smaller and overlapping NeRFs captured individually.
[ "cs.CV" ]
false
2305.12853
2023-05-22T09:24:55Z
Real-Aug: Realistic Scene Synthesis for LiDAR Augmentation in 3D Object Detection
[ "Jinglin Zhan", "Tiejun Liu", "Rengang Li", "Jingwei Zhang", "Zhaoxiang Zhang", "Yuntao Chen" ]
Data and model are the undoubtable two supporting pillars for LiDAR object detection. However, data-centric works have fallen far behind compared with the ever-growing list of fancy new models. In this work, we systematically study the synthesis-based LiDAR data augmentation approach (so-called GT-Aug) which offers maxium controllability over generated data samples. We pinpoint the main shortcoming of existing works is introducing unrealistic LiDAR scan patterns during GT-Aug. In light of this finding, we propose Real-Aug, a synthesis-based augmentation method which prioritizes on generating realistic LiDAR scans. Our method consists a reality-conforming scene composition module which handles the details of the composition and a real-synthesis mixing up training strategy which gradually adapts the data distribution from synthetic data to the real one. To verify the effectiveness of our methods, we conduct extensive ablation studies and validate the proposed Real-Aug on a wide combination of detectors and datasets. We achieve a state-of-the-art 0.744 NDS and 0.702 mAP on nuScenes test set. The code shall be released soon.
[ "cs.CV" ]
false
2305.12863
2023-05-22T09:40:32Z
Towards Benchmarking and Assessing Visual Naturalness of Physical World Adversarial Attacks
[ "Simin Li", "Shuing Zhang", "Gujun Chen", "Dong Wang", "Pu Feng", "Jiakai Wang", "Aishan Liu", "Xin Yi", "Xianglong Liu" ]
Physical world adversarial attack is a highly practical and threatening attack, which fools real world deep learning systems by generating conspicuous and maliciously crafted real world artifacts. In physical world attacks, evaluating naturalness is highly emphasized since human can easily detect and remove unnatural attacks. However, current studies evaluate naturalness in a case-by-case fashion, which suffers from errors, bias and inconsistencies. In this paper, we take the first step to benchmark and assess visual naturalness of physical world attacks, taking autonomous driving scenario as the first attempt. First, to benchmark attack naturalness, we contribute the first Physical Attack Naturalness (PAN) dataset with human rating and gaze. PAN verifies several insights for the first time: naturalness is (disparately) affected by contextual features (i.e., environmental and semantic variations) and correlates with behavioral feature (i.e., gaze signal). Second, to automatically assess attack naturalness that aligns with human ratings, we further introduce Dual Prior Alignment (DPA) network, which aims to embed human knowledge into model reasoning process. Specifically, DPA imitates human reasoning in naturalness assessment by rating prior alignment and mimics human gaze behavior by attentive prior alignment. We hope our work fosters researches to improve and automatically assess naturalness of physical world attacks. Our code and dataset can be found at https://github.com/zhangsn-19/PAN.
[ "cs.CV" ]
false
2305.12912
2023-05-22T10:52:11Z
BMB: Balanced Memory Bank for Imbalanced Semi-supervised Learning
[ "Wujian Peng", "Zejia Weng", "Hengduo Li", "Zuxuan Wu" ]
Exploring a substantial amount of unlabeled data, semi-supervised learning (SSL) boosts the recognition performance when only a limited number of labels are provided. However, traditional methods assume that the data distribution is class-balanced, which is difficult to achieve in reality due to the long-tailed nature of real-world data. While the data imbalance problem has been extensively studied in supervised learning (SL) paradigms, directly transferring existing approaches to SSL is nontrivial, as prior knowledge about data distribution remains unknown in SSL. In light of this, we propose Balanced Memory Bank (BMB), a semi-supervised framework for long-tailed recognition. The core of BMB is an online-updated memory bank that caches historical features with their corresponding pseudo labels, and the memory is also carefully maintained to ensure the data therein are class-rebalanced. Additionally, an adaptive weighting module is introduced to work jointly with the memory bank so as to further re-calibrate the biased training process. We conduct experiments on multiple datasets and demonstrate, among other things, that BMB surpasses state-of-the-art approaches by clear margins, for example 8.2$\%$ on the 1$\%$ labeled subset of ImageNet127 (with a resolution of 64$\times$64) and 4.3$\%$ on the 50$\%$ labeled subset of ImageNet-LT.
[ "cs.CV" ]
false
2305.12954
2023-05-22T12:02:31Z
Is Synthetic Data From Diffusion Models Ready for Knowledge Distillation?
[ "Zheng Li", "Yuxuan Li", "Penghai Zhao", "Renjie Song", "Xiang Li", "Jian Yang" ]
Diffusion models have recently achieved astonishing performance in generating high-fidelity photo-realistic images. Given their huge success, it is still unclear whether synthetic images are applicable for knowledge distillation when real images are unavailable. In this paper, we extensively study whether and how synthetic images produced from state-of-the-art diffusion models can be used for knowledge distillation without access to real images, and obtain three key conclusions: (1) synthetic data from diffusion models can easily lead to state-of-the-art performance among existing synthesis-based distillation methods, (2) low-fidelity synthetic images are better teaching materials, and (3) relatively weak classifiers are better teachers. Code is available at https://github.com/zhengli97/DM-KD.
[ "cs.CV" ]
false
2305.12955
2023-05-22T12:03:20Z
Gated Stereo: Joint Depth Estimation from Gated and Wide-Baseline Active Stereo Cues
[ "Stefanie Walz", "Mario Bijelic", "Andrea Ramazzina", "Amanpreet Walia", "Fahim Mannan", "Felix Heide" ]
We propose Gated Stereo, a high-resolution and long-range depth estimation technique that operates on active gated stereo images. Using active and high dynamic range passive captures, Gated Stereo exploits multi-view cues alongside time-of-flight intensity cues from active gating. To this end, we propose a depth estimation method with a monocular and stereo depth prediction branch which are combined in a final fusion stage. Each block is supervised through a combination of supervised and gated self-supervision losses. To facilitate training and validation, we acquire a long-range synchronized gated stereo dataset for automotive scenarios. We find that the method achieves an improvement of more than 50 % MAE compared to the next best RGB stereo method, and 74 % MAE to existing monocular gated methods for distances up to 160 m. Our code,models and datasets are available here.
[ "cs.CV" ]
false
2305.12959
2023-05-22T12:09:51Z
Contrastive Predictive Autoencoders for Dynamic Point Cloud Self-Supervised Learning
[ "Xiaoxiao Sheng", "Zhiqiang Shen", "Gang Xiao" ]
We present a new self-supervised paradigm on point cloud sequence understanding. Inspired by the discriminative and generative self-supervised methods, we design two tasks, namely point cloud sequence based Contrastive Prediction and Reconstruction (CPR), to collaboratively learn more comprehensive spatiotemporal representations. Specifically, dense point cloud segments are first input into an encoder to extract embeddings. All but the last ones are then aggregated by a context-aware autoregressor to make predictions for the last target segment. Towards the goal of modeling multi-granularity structures, local and global contrastive learning are performed between predictions and targets. To further improve the generalization of representations, the predictions are also utilized to reconstruct raw point cloud sequences by a decoder, where point cloud colorization is employed to discriminate against different frames. By combining classic contrast and reconstruction paradigms, it makes the learned representations with both global discrimination and local perception. We conduct experiments on four point cloud sequence benchmarks, and report the results on action recognition and gesture recognition under multiple experimental settings. The performances are comparable with supervised methods and show powerful transferability.
[ "cs.CV" ]
false
2305.13031
2023-05-22T13:33:41Z
HGFormer: Hierarchical Grouping Transformer for Domain Generalized Semantic Segmentation
[ "Jian Ding", "Nan Xue", "Gui-Song Xia", "Bernt Schiele", "Dengxin Dai" ]
Current semantic segmentation models have achieved great success under the independent and identically distributed (i.i.d.) condition. However, in real-world applications, test data might come from a different domain than training data. Therefore, it is important to improve model robustness against domain differences. This work studies semantic segmentation under the domain generalization setting, where a model is trained only on the source domain and tested on the unseen target domain. Existing works show that Vision Transformers are more robust than CNNs and show that this is related to the visual grouping property of self-attention. In this work, we propose a novel hierarchical grouping transformer (HGFormer) to explicitly group pixels to form part-level masks and then whole-level masks. The masks at different scales aim to segment out both parts and a whole of classes. HGFormer combines mask classification results at both scales for class label prediction. We assemble multiple interesting cross-domain settings by using seven public semantic segmentation datasets. Experiments show that HGFormer yields more robust semantic segmentation results than per-pixel classification methods and flat grouping transformers, and outperforms previous methods significantly. Code will be available at https://github.com/dingjiansw101/HGFormer.
[ "cs.CV" ]
false
2305.13077
2023-05-22T14:48:53Z
ControlVideo: Training-free Controllable Text-to-Video Generation
[ "Yabo Zhang", "Yuxiang Wei", "Dongsheng Jiang", "Xiaopeng Zhang", "Wangmeng Zuo", "Qi Tian" ]
Text-driven diffusion models have unlocked unprecedented abilities in image generation, whereas their video counterpart still lags behind due to the excessive training cost of temporal modeling. Besides the training burden, the generated videos also suffer from appearance inconsistency and structural flickers, especially in long video synthesis. To address these challenges, we design a \emph{training-free} framework called \textbf{ControlVideo} to enable natural and efficient text-to-video generation. ControlVideo, adapted from ControlNet, leverages coarsely structural consistency from input motion sequences, and introduces three modules to improve video generation. Firstly, to ensure appearance coherence between frames, ControlVideo adds fully cross-frame interaction in self-attention modules. Secondly, to mitigate the flicker effect, it introduces an interleaved-frame smoother that employs frame interpolation on alternated frames. Finally, to produce long videos efficiently, it utilizes a hierarchical sampler that separately synthesizes each short clip with holistic coherency. Empowered with these modules, ControlVideo outperforms the state-of-the-arts on extensive motion-prompt pairs quantitatively and qualitatively. Notably, thanks to the efficient designs, it generates both short and long videos within several minutes using one NVIDIA 2080Ti. Code is available at https://github.com/YBYBZhang/ControlVideo.
[ "cs.CV" ]
true
2305.13167
2023-05-22T15:54:22Z
VLAB: Enhancing Video Language Pre-training by Feature Adapting and Blending
[ "Xingjian He", "Sihan Chen", "Fan Ma", "Zhicheng Huang", "Xiaojie Jin", "Zikang Liu", "Dongmei Fu", "Yi Yang", "Jing Liu", "Jiashi Feng" ]
Large-scale image-text contrastive pre-training models, such as CLIP, have been demonstrated to effectively learn high-quality multimodal representations. However, there is limited research on learning video-text representations for general video multimodal tasks based on these powerful features. Towards this goal, we propose a novel video-text pre-training method dubbed VLAB: Video Language pre-training by feature Adapting and Blending, which transfers CLIP representations to video pre-training tasks and develops unified video multimodal models for a wide range of video-text tasks. Specifically, VLAB is founded on two key strategies: feature adapting and feature blending. In the former, we introduce a new video adapter module to address CLIP's deficiency in modeling temporal information and extend the model's capability to encompass both contrastive and generative tasks. In the latter, we propose an end-to-end training method that further enhances the model's performance by exploiting the complementarity of image and video features. We validate the effectiveness and versatility of VLAB through extensive experiments on highly competitive video multimodal tasks, including video text retrieval, video captioning, and video question answering. Remarkably, VLAB outperforms competing methods significantly and sets new records in video question answering on MSRVTT, MSVD, and TGIF datasets. It achieves an accuracy of 49.6, 61.0, and 79.0, respectively. Codes and models will be released.
[ "cs.CV" ]
false
2305.13173
2023-05-22T16:00:01Z
Semantic-Promoted Debiasing and Background Disambiguation for Zero-Shot Instance Segmentation
[ "Shuting He", "Henghui Ding", "Wei Jiang" ]
Zero-shot instance segmentation aims to detect and precisely segment objects of unseen categories without any training samples. Since the model is trained on seen categories, there is a strong bias that the model tends to classify all the objects into seen categories. Besides, there is a natural confusion between background and novel objects that have never shown up in training. These two challenges make novel objects hard to be raised in the final instance segmentation results. It is desired to rescue novel objects from background and dominated seen categories. To this end, we propose D$^2$Zero with Semantic-Promoted Debiasing and Background Disambiguation to enhance the performance of Zero-shot instance segmentation. Semantic-promoted debiasing utilizes inter-class semantic relationships to involve unseen categories in visual feature training and learns an input-conditional classifier to conduct dynamical classification based on the input image. Background disambiguation produces image-adaptive background representation to avoid mistaking novel objects for background. Extensive experiments show that we significantly outperform previous state-of-the-art methods by a large margin, e.g., 16.86% improvement on COCO. Project page: https://henghuiding.github.io/D2Zero/
[ "cs.CV" ]
false
2305.13220
2023-05-22T16:50:19Z
Fast Monocular Scene Reconstruction with Global-Sparse Local-Dense Grids
[ "Wei Dong", "Chris Choy", "Charles Loop", "Or Litany", "Yuke Zhu", "Anima Anandkumar" ]
Indoor scene reconstruction from monocular images has long been sought after by augmented reality and robotics developers. Recent advances in neural field representations and monocular priors have led to remarkable results in scene-level surface reconstructions. The reliance on Multilayer Perceptrons (MLP), however, significantly limits speed in training and rendering. In this work, we propose to directly use signed distance function (SDF) in sparse voxel block grids for fast and accurate scene reconstruction without MLPs. Our globally sparse and locally dense data structure exploits surfaces' spatial sparsity, enables cache-friendly queries, and allows direct extensions to multi-modal data such as color and semantic labels. To apply this representation to monocular scene reconstruction, we develop a scale calibration algorithm for fast geometric initialization from monocular depth priors. We apply differentiable volume rendering from this initialization to refine details with fast convergence. We also introduce efficient high-dimensional Continuous Random Fields (CRFs) to further exploit the semantic-geometry consistency between scene objects. Experiments show that our approach is 10x faster in training and 100x faster in rendering while achieving comparable accuracy to state-of-the-art neural implicit methods.
[ "cs.CV" ]
false
2305.13232
2023-05-22T17:05:06Z
Revisiting Data Augmentation in Model Compression: An Empirical and Comprehensive Study
[ "Muzhou Yu", "Linfeng Zhang", "Kaisheng Ma" ]
The excellent performance of deep neural networks is usually accompanied by a large number of parameters and computations, which have limited their usage on the resource-limited edge devices. To address this issue, abundant methods such as pruning, quantization and knowledge distillation have been proposed to compress neural networks and achieved significant breakthroughs. However, most of these compression methods focus on the architecture or the training method of neural networks but ignore the influence from data augmentation. In this paper, we revisit the usage of data augmentation in model compression and give a comprehensive study on the relation between model sizes and their optimal data augmentation policy. To sum up, we mainly have the following three observations: (A) Models in different sizes prefer data augmentation with different magnitudes. Hence, in iterative pruning, data augmentation with varying magnitudes leads to better performance than data augmentation with a consistent magnitude. (B) Data augmentation with a high magnitude may significantly improve the performance of large models but harm the performance of small models. Fortunately, small models can still benefit from strong data augmentations by firstly learning them with "additional parameters" and then discard these "additional parameters" during inference. (C) The prediction of a pre-trained large model can be utilized to measure the difficulty of data augmentation. Thus it can be utilized as a criterion to design better data augmentation policies. We hope this paper may promote more research on the usage of data augmentation in model compression.
[ "cs.CV" ]
false
2305.13307
2023-05-22T17:59:05Z
NeRFuser: Large-Scale Scene Representation by NeRF Fusion
[ "Jiading Fang", "Shengjie Lin", "Igor Vasiljevic", "Vitor Guizilini", "Rares Ambrus", "Adrien Gaidon", "Gregory Shakhnarovich", "Matthew R. Walter" ]
A practical benefit of implicit visual representations like Neural Radiance Fields (NeRFs) is their memory efficiency: large scenes can be efficiently stored and shared as small neural nets instead of collections of images. However, operating on these implicit visual data structures requires extending classical image-based vision techniques (e.g., registration, blending) from image sets to neural fields. Towards this goal, we propose NeRFuser, a novel architecture for NeRF registration and blending that assumes only access to pre-generated NeRFs, and not the potentially large sets of images used to generate them. We propose registration from re-rendering, a technique to infer the transformation between NeRFs based on images synthesized from individual NeRFs. For blending, we propose sample-based inverse distance weighting to blend visual information at the ray-sample level. We evaluate NeRFuser on public benchmarks and a self-collected object-centric indoor dataset, showing the robustness of our method, including to views that are challenging to render from the individual source NeRFs.
[ "cs.CV" ]
false
2305.13308
2023-05-22T17:59:41Z
If at First You Don't Succeed, Try, Try Again: Faithful Diffusion-based Text-to-Image Generation by Selection
[ "Shyamgopal Karthik", "Karsten Roth", "Massimiliano Mancini", "Zeynep Akata" ]
Despite their impressive capabilities, diffusion-based text-to-image (T2I) models can lack faithfulness to the text prompt, where generated images may not contain all the mentioned objects, attributes or relations. To alleviate these issues, recent works proposed post-hoc methods to improve model faithfulness without costly retraining, by modifying how the model utilizes the input prompt. In this work, we take a step back and show that large T2I diffusion models are more faithful than usually assumed, and can generate images faithful to even complex prompts without the need to manipulate the generative process. Based on that, we show how faithfulness can be simply treated as a candidate selection problem instead, and introduce a straightforward pipeline that generates candidate images for a text prompt and picks the best one according to an automatic scoring system that can leverage already existing T2I evaluation metrics. Quantitative comparisons alongside user studies on diverse benchmarks show consistently improved faithfulness over post-hoc enhancement methods, with comparable or lower computational cost. Code is available at \url{https://github.com/ExplainableML/ImageSelect}.
[ "cs.CV" ]
false
2305.13312
2023-05-22T17:59:58Z
Contextualising Implicit Representations for Semantic Tasks
[ "Theo W. Costain", "Kejie Li", "Victor A. Prisacariu" ]
Prior works have demonstrated that implicit representations trained only for reconstruction tasks typically generate encodings that are not useful for semantic tasks. In this work, we propose a method that contextualises the encodings of implicit representations, enabling their use in downstream tasks (e.g. semantic segmentation), without requiring access to the original training data or encoding network. Using an implicit representation trained for a reconstruction task alone, our contextualising module takes an encoding trained for reconstruction only and reveals meaningful semantic information that is hidden in the encodings, without compromising the reconstruction performance. With our proposed module, it becomes possible to pre-train implicit representations on larger datasets, improving their reconstruction performance compared to training on only a smaller labelled dataset, whilst maintaining their segmentation performance on the labelled dataset. Importantly, our method allows for future foundation implicit representation models to be fine-tuned on unseen tasks, regardless of encoder or dataset availability.
[ "cs.CV" ]
false
2305.13353
2023-05-22T17:54:01Z
RenderMe-360: A Large Digital Asset Library and Benchmarks Towards High-fidelity Head Avatars
[ "Dongwei Pan", "Long Zhuo", "Jingtan Piao", "Huiwen Luo", "Wei Cheng", "Yuxin Wang", "Siming Fan", "Shengqi Liu", "Lei Yang", "Bo Dai", "Ziwei Liu", "Chen Change Loy", "Chen Qian", "Wayne Wu", "Dahua Lin", "Kwan-Yee Lin" ]
Synthesizing high-fidelity head avatars is a central problem for computer vision and graphics. While head avatar synthesis algorithms have advanced rapidly, the best ones still face great obstacles in real-world scenarios. One of the vital causes is inadequate datasets -- 1) current public datasets can only support researchers to explore high-fidelity head avatars in one or two task directions; 2) these datasets usually contain digital head assets with limited data volume, and narrow distribution over different attributes. In this paper, we present RenderMe-360, a comprehensive 4D human head dataset to drive advance in head avatar research. It contains massive data assets, with 243+ million complete head frames, and over 800k video sequences from 500 different identities captured by synchronized multi-view cameras at 30 FPS. It is a large-scale digital library for head avatars with three key attributes: 1) High Fidelity: all subjects are captured by 60 synchronized, high-resolution 2K cameras in 360 degrees. 2) High Diversity: The collected subjects vary from different ages, eras, ethnicities, and cultures, providing abundant materials with distinctive styles in appearance and geometry. Moreover, each subject is asked to perform various motions, such as expressions and head rotations, which further extend the richness of assets. 3) Rich Annotations: we provide annotations with different granularities: cameras' parameters, matting, scan, 2D/3D facial landmarks, FLAME fitting, and text description. Based on the dataset, we build a comprehensive benchmark for head avatar research, with 16 state-of-the-art methods performed on five main tasks: novel view synthesis, novel expression synthesis, hair rendering, hair editing, and talking head generation. Our experiments uncover the strengths and weaknesses of current methods. RenderMe-360 opens the door for future exploration in head avatars.
[ "cs.CV" ]
false