ysn-rfd's picture
Upload 38 files
c1fcc58 verified
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import numpy as np
from tqdm import tqdm
import os
# Configuration
class Config:
FILE_PATH = 'dataset.txt'
SEQ_LENGTH = 8 # Context window size
BATCH_SIZE = 8
EPOCHS = 1
EMBEDDING_DIM = 16
HIDDEN_DIM = 32
LEARNING_RATE = 0.01
DROPOUT_RATE = 0.2
MODEL_SAVE_PATH = "char_lm_model_f4.pth"
GRAD_CLIP = 1.0
TOP_K = 5 # For generation
NUM_LAYERS = 4 # GRU layers
# Check for GPU availability
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
# Read and process text
with open(Config.FILE_PATH, 'r', encoding='utf-8') as f:
text = f.read()
# Vocabulary setup
chars = sorted(list(set(text)))
vocab_size = len(chars)
char_to_idx = {ch: i for i, ch in enumerate(chars)}
idx_to_char = {i: ch for i, ch in enumerate(chars)}
# Encode text
encoded_text = np.array([char_to_idx[ch] for ch in text])
# Dataset class
class TextDataset(Dataset):
def __init__(self, data, seq_length):
self.data = torch.tensor(data, dtype=torch.long)
self.seq_length = seq_length
def __len__(self):
return len(self.data) - self.seq_length - 1
def __getitem__(self, idx):
x = self.data[idx:idx+self.seq_length]
y = self.data[idx+1:idx+self.seq_length+1]
return x, y
dataset = TextDataset(encoded_text, Config.SEQ_LENGTH)
dataloader = DataLoader(dataset, batch_size=Config.BATCH_SIZE, shuffle=True, num_workers=4)
# Model architecture
class CharLM(nn.Module):
def __init__(self, vocab_size, config):
super(CharLM, self).__init__()
self.embedding = nn.Embedding(vocab_size, config.EMBEDDING_DIM)
self.gru = nn.GRU(config.EMBEDDING_DIM, config.HIDDEN_DIM,
num_layers=config.NUM_LAYERS,
batch_first=True,
dropout=config.DROPOUT_RATE if config.NUM_LAYERS > 1 else 0)
self.dropout = nn.Dropout(config.DROPOUT_RATE)
self.fc = nn.Linear(config.HIDDEN_DIM, vocab_size)
self.init_weights()
def init_weights(self):
for name, param in self.named_parameters():
if 'weight' in name:
nn.init.xavier_normal_(param)
elif 'bias' in name:
nn.init.constant_(param, 0.0)
def forward(self, x, hidden=None):
x = self.embedding(x)
out, hidden = self.gru(x, hidden)
out = self.dropout(out)
out = self.fc(out)
return out, hidden
model = CharLM(vocab_size, Config).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=Config.LEARNING_RATE)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2)
# Training loop
best_loss = float('inf')
for epoch in range(Config.EPOCHS):
model.train()
epoch_loss = 0
progress_bar = tqdm(dataloader, desc=f'Epoch {epoch+1}/{Config.EPOCHS}')
for inputs, targets in progress_bar:
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs, _ = model(inputs)
loss = criterion(outputs.view(-1, vocab_size), targets.view(-1))
loss.backward()
# Gradient clipping
nn.utils.clip_grad_norm_(model.parameters(), Config.GRAD_CLIP)
optimizer.step()
epoch_loss += loss.item()
# Update progress bar
progress_bar.set_postfix({'loss': f'{loss.item():.4f}'})
avg_loss = epoch_loss / len(dataloader)
scheduler.step(avg_loss)
# Save best model
if avg_loss < best_loss:
best_loss = avg_loss
torch.save({
'model_state_dict': model.state_dict(),
'char_to_idx': char_to_idx,
'idx_to_char': idx_to_char,
'config': Config
}, Config.MODEL_SAVE_PATH)
print(f'Epoch {epoch+1} complete. Avg loss: {avg_loss:.4f}')
print(f'Model saved to {Config.MODEL_SAVE_PATH}')
# Improved Text Generation Function
def generate_text(model, start_str, length=100, temperature=1.0, top_k=None):
"""
Generate text with temperature scaling and top-k sampling
- Maintains proper context window size
- Handles start strings of any length
- Returns original start_str + generated text
"""
model.eval()
initial_chars = list(start_str)
generated = initial_chars.copy()
# Initialize sequence with proper length
if len(initial_chars) < Config.SEQ_LENGTH:
# Pad with repeated characters if needed
padded = (initial_chars * Config.SEQ_LENGTH)[:Config.SEQ_LENGTH]
else:
# Take last SEQ_LENGTH characters
padded = initial_chars[-Config.SEQ_LENGTH:]
current_seq = torch.tensor([char_to_idx[c] for c in padded],
dtype=torch.long, device=device).unsqueeze(0)
with torch.no_grad():
for _ in range(length):
outputs, _ = model(current_seq)
logits = outputs[:, -1, :] / temperature
if top_k is not None and top_k > 0:
top_values, top_indices = torch.topk(logits, top_k)
logits[logits < top_values[:, -1:]] = -float('Inf')
probs = torch.softmax(logits, dim=-1)
next_idx = torch.multinomial(probs, num_samples=1)
next_char = idx_to_char[next_idx.item()]
generated.append(next_char)
# Update sequence: remove first character, add new
current_seq = torch.cat([current_seq[:, 1:], next_idx.unsqueeze(1)], dim=1)
# Return original start string plus generated text
return start_str + ''.join(generated[len(initial_chars):])
# Load best model for generation
checkpoint = torch.load(Config.MODEL_SAVE_PATH, map_location=device)
model.load_state_dict(checkpoint['model_state_dict'])
char_to_idx = checkpoint['char_to_idx']
idx_to_char = checkpoint['idx_to_char']
# Generation examples
print("\n--- Generation Examples ---")
for prompt in ["The ", "Once ", "In ", "AI "]:
generated = generate_text(
model,
prompt,
length=100,
temperature=0.4,
top_k=Config.TOP_K
)
print(f"\nPrompt: '{prompt}'\n{generated}\n{'-'*50}")