import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader import numpy as np from tqdm import tqdm import os # Configuration class Config: FILE_PATH = 'dataset.txt' SEQ_LENGTH = 8 # Context window size BATCH_SIZE = 8 EPOCHS = 1 EMBEDDING_DIM = 16 HIDDEN_DIM = 32 LEARNING_RATE = 0.01 DROPOUT_RATE = 0.2 MODEL_SAVE_PATH = "char_lm_model_f4.pth" GRAD_CLIP = 1.0 TOP_K = 5 # For generation NUM_LAYERS = 4 # GRU layers # Check for GPU availability device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(f"Using device: {device}") # Read and process text with open(Config.FILE_PATH, 'r', encoding='utf-8') as f: text = f.read() # Vocabulary setup chars = sorted(list(set(text))) vocab_size = len(chars) char_to_idx = {ch: i for i, ch in enumerate(chars)} idx_to_char = {i: ch for i, ch in enumerate(chars)} # Encode text encoded_text = np.array([char_to_idx[ch] for ch in text]) # Dataset class class TextDataset(Dataset): def __init__(self, data, seq_length): self.data = torch.tensor(data, dtype=torch.long) self.seq_length = seq_length def __len__(self): return len(self.data) - self.seq_length - 1 def __getitem__(self, idx): x = self.data[idx:idx+self.seq_length] y = self.data[idx+1:idx+self.seq_length+1] return x, y dataset = TextDataset(encoded_text, Config.SEQ_LENGTH) dataloader = DataLoader(dataset, batch_size=Config.BATCH_SIZE, shuffle=True, num_workers=4) # Model architecture class CharLM(nn.Module): def __init__(self, vocab_size, config): super(CharLM, self).__init__() self.embedding = nn.Embedding(vocab_size, config.EMBEDDING_DIM) self.gru = nn.GRU(config.EMBEDDING_DIM, config.HIDDEN_DIM, num_layers=config.NUM_LAYERS, batch_first=True, dropout=config.DROPOUT_RATE if config.NUM_LAYERS > 1 else 0) self.dropout = nn.Dropout(config.DROPOUT_RATE) self.fc = nn.Linear(config.HIDDEN_DIM, vocab_size) self.init_weights() def init_weights(self): for name, param in self.named_parameters(): if 'weight' in name: nn.init.xavier_normal_(param) elif 'bias' in name: nn.init.constant_(param, 0.0) def forward(self, x, hidden=None): x = self.embedding(x) out, hidden = self.gru(x, hidden) out = self.dropout(out) out = self.fc(out) return out, hidden model = CharLM(vocab_size, Config).to(device) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=Config.LEARNING_RATE) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2) # Training loop best_loss = float('inf') for epoch in range(Config.EPOCHS): model.train() epoch_loss = 0 progress_bar = tqdm(dataloader, desc=f'Epoch {epoch+1}/{Config.EPOCHS}') for inputs, targets in progress_bar: inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() outputs, _ = model(inputs) loss = criterion(outputs.view(-1, vocab_size), targets.view(-1)) loss.backward() # Gradient clipping nn.utils.clip_grad_norm_(model.parameters(), Config.GRAD_CLIP) optimizer.step() epoch_loss += loss.item() # Update progress bar progress_bar.set_postfix({'loss': f'{loss.item():.4f}'}) avg_loss = epoch_loss / len(dataloader) scheduler.step(avg_loss) # Save best model if avg_loss < best_loss: best_loss = avg_loss torch.save({ 'model_state_dict': model.state_dict(), 'char_to_idx': char_to_idx, 'idx_to_char': idx_to_char, 'config': Config }, Config.MODEL_SAVE_PATH) print(f'Epoch {epoch+1} complete. Avg loss: {avg_loss:.4f}') print(f'Model saved to {Config.MODEL_SAVE_PATH}') # Improved Text Generation Function def generate_text(model, start_str, length=100, temperature=1.0, top_k=None): """ Generate text with temperature scaling and top-k sampling - Maintains proper context window size - Handles start strings of any length - Returns original start_str + generated text """ model.eval() initial_chars = list(start_str) generated = initial_chars.copy() # Initialize sequence with proper length if len(initial_chars) < Config.SEQ_LENGTH: # Pad with repeated characters if needed padded = (initial_chars * Config.SEQ_LENGTH)[:Config.SEQ_LENGTH] else: # Take last SEQ_LENGTH characters padded = initial_chars[-Config.SEQ_LENGTH:] current_seq = torch.tensor([char_to_idx[c] for c in padded], dtype=torch.long, device=device).unsqueeze(0) with torch.no_grad(): for _ in range(length): outputs, _ = model(current_seq) logits = outputs[:, -1, :] / temperature if top_k is not None and top_k > 0: top_values, top_indices = torch.topk(logits, top_k) logits[logits < top_values[:, -1:]] = -float('Inf') probs = torch.softmax(logits, dim=-1) next_idx = torch.multinomial(probs, num_samples=1) next_char = idx_to_char[next_idx.item()] generated.append(next_char) # Update sequence: remove first character, add new current_seq = torch.cat([current_seq[:, 1:], next_idx.unsqueeze(1)], dim=1) # Return original start string plus generated text return start_str + ''.join(generated[len(initial_chars):]) # Load best model for generation checkpoint = torch.load(Config.MODEL_SAVE_PATH, map_location=device) model.load_state_dict(checkpoint['model_state_dict']) char_to_idx = checkpoint['char_to_idx'] idx_to_char = checkpoint['idx_to_char'] # Generation examples print("\n--- Generation Examples ---") for prompt in ["The ", "Once ", "In ", "AI "]: generated = generate_text( model, prompt, length=100, temperature=0.4, top_k=Config.TOP_K ) print(f"\nPrompt: '{prompt}'\n{generated}\n{'-'*50}")