|
|
|
|
|
|
|
import torch
|
|
import torch_directml
|
|
from torch import nn
|
|
from torch.utils.data import DataLoader
|
|
from torchvision import datasets
|
|
from torchvision.transforms import ToTensor, Lambda, Compose, transforms
|
|
import torchvision.models as models
|
|
import collections
|
|
import matplotlib.pyplot as plt
|
|
import argparse
|
|
import time
|
|
import os
|
|
import pathlib
|
|
import test_classification
|
|
import dataloader_classification
|
|
from test_classification import get_model
|
|
import torch.autograd.profiler as profiler
|
|
|
|
def select_device(device=''):
|
|
if device.lower() == 'cuda':
|
|
if not torch.cuda.is_available():
|
|
print ("torch.cuda not available")
|
|
return torch.device('cpu')
|
|
else:
|
|
return torch.device('cuda:0')
|
|
if device.lower() == 'dml':
|
|
return torch_directml.device(torch_directml.default_device())
|
|
else:
|
|
return torch.device('cpu')
|
|
|
|
def train(dataloader, model, device, loss, learning_rate, momentum, weight_decay, trace, model_str, ci_train):
|
|
size = len(dataloader.dataset)
|
|
|
|
|
|
optimizer = torch.optim.SGD(
|
|
model.parameters(),
|
|
lr=learning_rate,
|
|
momentum=momentum,
|
|
weight_decay=weight_decay)
|
|
|
|
optimize_after_batches = 1
|
|
start = time.time()
|
|
for batch, (X, y) in enumerate(dataloader):
|
|
X = X.to(device)
|
|
y = y.to(device)
|
|
|
|
if (trace):
|
|
with profiler.profile(record_shapes=True, with_stack=True, profile_memory=True) as prof:
|
|
with profiler.record_function("model_inference"):
|
|
|
|
if (model_str == 'inception_v3'):
|
|
pred, _ = model(X)
|
|
elif (model_str == 'googlenet'):
|
|
pred, _, _ = model(X)
|
|
else:
|
|
pred = model(X)
|
|
|
|
batch_loss = loss(pred, y)
|
|
batch_loss.backward()
|
|
|
|
if batch % optimize_after_batches == 0:
|
|
optimizer.step()
|
|
optimizer.zero_grad()
|
|
print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=1000))
|
|
break
|
|
else:
|
|
|
|
if (model_str == 'inception_v3'):
|
|
outputs, aux_outputs = model(X)
|
|
loss1 = loss(outputs, y)
|
|
loss2 = loss(aux_outputs, y)
|
|
batch_loss = loss1 + 0.4*loss2
|
|
elif (model_str == 'googlenet'):
|
|
outputs, aux_outputs_1, aux_outputs_2 = model(X)
|
|
loss1 = loss(outputs, y)
|
|
loss2 = loss(aux_outputs_1, y)
|
|
loss3 = loss(aux_outputs_2, y)
|
|
batch_loss = loss1 + 0.3*loss2 + 0.3*loss3
|
|
else:
|
|
pred = model(X)
|
|
batch_loss = loss(model(X), y)
|
|
batch_loss.backward()
|
|
|
|
if batch % optimize_after_batches == 0:
|
|
optimizer.step()
|
|
optimizer.zero_grad()
|
|
|
|
if (batch+1) % 100 == 0:
|
|
batch_loss_cpu, current = batch_loss.to('cpu'), (batch+1) * len(X)
|
|
print(f"loss: {batch_loss_cpu.item():>7f} [{current:>5d}/{size:>5d}] in {time.time() - start:>5f}s")
|
|
start = time.time()
|
|
|
|
if ci_train:
|
|
print(f"train [{len(X):>5d}/{size:>5d}] in {time.time() - start:>5f}s")
|
|
break
|
|
|
|
|
|
def main(path, batch_size, epochs, learning_rate,
|
|
momentum, weight_decay, device, model_str, save_model, trace, ci_train=False):
|
|
if trace:
|
|
if model_str == 'inception_v3':
|
|
batch_size = 3
|
|
else:
|
|
batch_size = 1
|
|
epochs = 1 if trace or ci_train else epochs
|
|
|
|
input_size = 299 if model_str == 'inception_v3' else 224
|
|
|
|
model = get_model(model_str, device)
|
|
|
|
|
|
training_dataloader = dataloader_classification.create_training_dataloader(path, batch_size, input_size)
|
|
testing_dataloader = dataloader_classification.create_testing_dataloader(path, batch_size, input_size)
|
|
|
|
|
|
start = time.time()
|
|
|
|
print('Finished moving {} to device: {} in {}s.'.format(model_str, device, time.time() - start))
|
|
|
|
cross_entropy_loss = nn.CrossEntropyLoss().to(device)
|
|
|
|
highest_accuracy = 0
|
|
|
|
for t in range(epochs):
|
|
print(f"Epoch {t+1}\n-------------------------------")
|
|
|
|
|
|
train(training_dataloader,
|
|
model,
|
|
device,
|
|
cross_entropy_loss,
|
|
learning_rate,
|
|
momentum,
|
|
weight_decay,
|
|
trace,
|
|
model_str,
|
|
ci_train)
|
|
|
|
if not trace and not ci_train:
|
|
|
|
highest_accuracy = test_classification.eval(testing_dataloader,
|
|
model_str,
|
|
model,
|
|
device,
|
|
cross_entropy_loss,
|
|
highest_accuracy,
|
|
save_model,
|
|
False)
|
|
|
|
print("Done! with highest_accuracy: ", highest_accuracy)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(__doc__)
|
|
parser.add_argument("--path", type=str, default="cifar-10-python", help="Path to cifar dataset.")
|
|
parser.add_argument('--batch_size', type=int, default=32, metavar='N', help='Batch size to train with.')
|
|
parser.add_argument('--epochs', type=int, default=50, metavar='N', help='The number of epochs to train for.')
|
|
parser.add_argument('--learning_rate', type=float, default=0.001, metavar='LR', help='The learning rate.')
|
|
parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='The percentage of past parameters to store.')
|
|
parser.add_argument('--weight_decay', default=0.0001, type=float, help='The parameter to decay weights.')
|
|
parser.add_argument('--device', type=str, default='dml', help='The device to use for training.')
|
|
parser.add_argument('--model', type=str, default='', help='The model to use.')
|
|
parser.add_argument('--save_model', action='store_true', help='save model state_dict to file')
|
|
parser.add_argument('--trace', type=bool, default=False, help='Trace performance.')
|
|
args = parser.parse_args()
|
|
|
|
print (args)
|
|
device = select_device(args.device)
|
|
main(args.path, args.batch_size, args.epochs, args.learning_rate,
|
|
args.momentum, args.weight_decay, device, args.model, args.save_model, args.trace) |