File size: 6,917 Bytes
835424e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
#!/usr/bin/env python
# Copyright (c) Microsoft Corporation. All rights reserved.
import torch
import torch_directml
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda, Compose, transforms
import torchvision.models as models
import collections
import matplotlib.pyplot as plt
import argparse
import time
import os
import pathlib
import test_classification
import dataloader_classification
from test_classification import get_model
import torch.autograd.profiler as profiler
def select_device(device=''):
if device.lower() == 'cuda':
if not torch.cuda.is_available():
print ("torch.cuda not available")
return torch.device('cpu')
else:
return torch.device('cuda:0')
if device.lower() == 'dml':
return torch_directml.device(torch_directml.default_device())
else:
return torch.device('cpu')
def train(dataloader, model, device, loss, learning_rate, momentum, weight_decay, trace, model_str, ci_train):
size = len(dataloader.dataset)
# Define optimizer
optimizer = torch.optim.SGD(
model.parameters(),
lr=learning_rate,
momentum=momentum,
weight_decay=weight_decay)
optimize_after_batches = 1
start = time.time()
for batch, (X, y) in enumerate(dataloader):
X = X.to(device)
y = y.to(device)
if (trace):
with profiler.profile(record_shapes=True, with_stack=True, profile_memory=True) as prof:
with profiler.record_function("model_inference"):
# Compute loss and perform backpropagation
if (model_str == 'inception_v3'):
pred, _ = model(X)
elif (model_str == 'googlenet'):
pred, _, _ = model(X)
else:
pred = model(X)
batch_loss = loss(pred, y)
batch_loss.backward()
if batch % optimize_after_batches == 0:
optimizer.step()
optimizer.zero_grad()
print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=1000))
break
else:
# Compute loss and perform backpropagation
if (model_str == 'inception_v3'):
outputs, aux_outputs = model(X)
loss1 = loss(outputs, y)
loss2 = loss(aux_outputs, y)
batch_loss = loss1 + 0.4*loss2
elif (model_str == 'googlenet'):
outputs, aux_outputs_1, aux_outputs_2 = model(X)
loss1 = loss(outputs, y)
loss2 = loss(aux_outputs_1, y)
loss3 = loss(aux_outputs_2, y)
batch_loss = loss1 + 0.3*loss2 + 0.3*loss3
else:
pred = model(X)
batch_loss = loss(model(X), y)
batch_loss.backward()
if batch % optimize_after_batches == 0:
optimizer.step()
optimizer.zero_grad()
if (batch+1) % 100 == 0:
batch_loss_cpu, current = batch_loss.to('cpu'), (batch+1) * len(X)
print(f"loss: {batch_loss_cpu.item():>7f} [{current:>5d}/{size:>5d}] in {time.time() - start:>5f}s")
start = time.time()
if ci_train:
print(f"train [{len(X):>5d}/{size:>5d}] in {time.time() - start:>5f}s")
break
def main(path, batch_size, epochs, learning_rate,
momentum, weight_decay, device, model_str, save_model, trace, ci_train=False):
if trace:
if model_str == 'inception_v3':
batch_size = 3
else:
batch_size = 1
epochs = 1 if trace or ci_train else epochs
input_size = 299 if model_str == 'inception_v3' else 224
model = get_model(model_str, device)
# Load the dataset
training_dataloader = dataloader_classification.create_training_dataloader(path, batch_size, input_size)
testing_dataloader = dataloader_classification.create_testing_dataloader(path, batch_size, input_size)
# Load the model on the device
start = time.time()
print('Finished moving {} to device: {} in {}s.'.format(model_str, device, time.time() - start))
cross_entropy_loss = nn.CrossEntropyLoss().to(device)
highest_accuracy = 0
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
# Train
train(training_dataloader,
model,
device,
cross_entropy_loss,
learning_rate,
momentum,
weight_decay,
trace,
model_str,
ci_train)
if not trace and not ci_train:
# Test
highest_accuracy = test_classification.eval(testing_dataloader,
model_str,
model,
device,
cross_entropy_loss,
highest_accuracy,
save_model,
False)
print("Done! with highest_accuracy: ", highest_accuracy)
if __name__ == "__main__":
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--path", type=str, default="cifar-10-python", help="Path to cifar dataset.")
parser.add_argument('--batch_size', type=int, default=32, metavar='N', help='Batch size to train with.')
parser.add_argument('--epochs', type=int, default=50, metavar='N', help='The number of epochs to train for.')
parser.add_argument('--learning_rate', type=float, default=0.001, metavar='LR', help='The learning rate.')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='The percentage of past parameters to store.')
parser.add_argument('--weight_decay', default=0.0001, type=float, help='The parameter to decay weights.')
parser.add_argument('--device', type=str, default='dml', help='The device to use for training.')
parser.add_argument('--model', type=str, default='', help='The model to use.')
parser.add_argument('--save_model', action='store_true', help='save model state_dict to file')
parser.add_argument('--trace', type=bool, default=False, help='Trace performance.')
args = parser.parse_args()
print (args)
device = select_device(args.device)
main(args.path, args.batch_size, args.epochs, args.learning_rate,
args.momentum, args.weight_decay, device, args.model, args.save_model, args.trace) |