|
import torch
|
|
import torch_directml
|
|
from torch import nn
|
|
from torch.utils import data
|
|
from torch.utils.data import DataLoader
|
|
from torchvision import datasets
|
|
from torchvision.transforms import ToTensor, Lambda, Compose, transforms
|
|
import torchvision.models as models
|
|
import collections
|
|
import matplotlib.pyplot as plt
|
|
import argparse
|
|
import time
|
|
import os
|
|
import pathlib
|
|
import dataloader_classification
|
|
import torch.autograd.profiler as profiler
|
|
from PIL import Image
|
|
from os.path import exists
|
|
|
|
def get_checkpoint_folder(model_str, device):
|
|
device_str = 'dml' if device.type == 'privateuseone' else str(device)
|
|
checkpoint_folder = str(os.path.join(pathlib.Path(__file__).parent.parent.resolve(),
|
|
'checkpoints', model_str, device_str))
|
|
os.makedirs(checkpoint_folder, exist_ok=True)
|
|
return str(os.path.join(checkpoint_folder, 'checkpoint.pth'))
|
|
|
|
def eval(dataloader, model_str, model, device, loss, highest_accuracy, save_model, trace):
|
|
size = len(dataloader.dataset)
|
|
num_batches = len(dataloader)
|
|
|
|
|
|
model.eval()
|
|
|
|
test_loss, correct = 0, 0
|
|
with torch.no_grad():
|
|
for X, y in dataloader:
|
|
X = X.to(device)
|
|
y = y.to(device)
|
|
|
|
|
|
if (trace):
|
|
with profiler.profile(record_shapes=True, with_stack=True, profile_memory=True) as prof:
|
|
with profiler.record_function("model_inference"):
|
|
pred = model(X)
|
|
print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=1000))
|
|
break
|
|
else:
|
|
pred = model(X)
|
|
|
|
test_loss += loss(pred, y).to("cpu")
|
|
correct += (pred.to("cpu").argmax(1) == y.to("cpu")).type(torch.float).sum()
|
|
|
|
if not trace:
|
|
test_loss /= num_batches
|
|
correct /= size
|
|
|
|
if (correct.item() > highest_accuracy):
|
|
highest_accuracy = correct.item()
|
|
print("current highest_accuracy: ", highest_accuracy)
|
|
|
|
|
|
if save_model:
|
|
state_dict = collections.OrderedDict()
|
|
for key in model.state_dict().keys():
|
|
state_dict[key] = model.state_dict()[key].to("cpu")
|
|
checkpoint = get_checkpoint_folder(model_str, device)
|
|
torch.save(state_dict, checkpoint)
|
|
|
|
print(f"Test Error: \n Accuracy: {(100*correct.item()):>0.1f}%, Avg loss: {test_loss.item():>8f} \n")
|
|
|
|
return highest_accuracy
|
|
|
|
|
|
def get_model(model_str, device):
|
|
if (model_str == 'squeezenet1_1'):
|
|
model = models.squeezenet1_1(num_classes=10).to(device)
|
|
elif (model_str == 'resnet50'):
|
|
model = models.resnet50(num_classes=10).to(device)
|
|
elif (model_str == 'squeezenet1_0'):
|
|
model = models.squeezenet1_0(num_classes=10).to(device)
|
|
elif (model_str == 'resnet18'):
|
|
model = models.resnet18(num_classes=10).to(device)
|
|
elif (model_str == 'alexnet'):
|
|
model = models.alexnet(num_classes=10).to(device)
|
|
elif (model_str == 'vgg16'):
|
|
model = models.vgg16(num_classes=10).to(device)
|
|
elif (model_str == 'densenet161'):
|
|
model = models.densenet161(num_classes=10).to(device)
|
|
elif (model_str == 'inception_v3'):
|
|
model = models.inception_v3(num_classes=10).to(device)
|
|
elif (model_str == 'googlenet'):
|
|
model = models.googlenet(num_classes=10).to(device)
|
|
elif (model_str == 'shufflenet_v2_x1_0'):
|
|
model = models.shufflenet_v2_x1_0(num_classes=10).to(device)
|
|
elif (model_str == 'mobilenet_v2'):
|
|
model = models.mobilenet_v2(num_classes=10).to(device)
|
|
elif (model_str == 'mobilenet_v3_large'):
|
|
model = models.mobilenet_v3_large(num_classes=10).to(device)
|
|
elif (model_str == 'mobilenet_v3_small'):
|
|
model = models.mobilenet_v3_small(num_classes=10).to(device)
|
|
elif (model_str == 'resnext50_32x4d'):
|
|
model = models.resnext50_32x4d(num_classes=10).to(device)
|
|
elif (model_str == 'wide_resnet50_2'):
|
|
model = models.wide_resnet50_2(num_classes=10).to(device)
|
|
elif (model_str == 'mnasnet1_0'):
|
|
model = models.mnasnet1_0(num_classes=10).to(device)
|
|
else:
|
|
raise Exception(f"Model {model_str} is not supported yet!")
|
|
|
|
checkpoint = get_checkpoint_folder(model_str, device)
|
|
if (exists(checkpoint)):
|
|
model.load_state_dict(torch.load(checkpoint))
|
|
|
|
return model
|
|
|
|
def preprocess(filename, device, input_size=1):
|
|
input_image = Image.open(filename)
|
|
preprocess_transform = dataloader_classification.create_testing_data_transform(input_size)
|
|
input_tensor = preprocess_transform(input_image)
|
|
input_batch = input_tensor.unsqueeze(0)
|
|
input_batch = input_batch.to(device)
|
|
return input_batch
|
|
|
|
def predict(filename, model_str, device):
|
|
|
|
model = get_model(model_str, device)
|
|
model.eval()
|
|
|
|
|
|
input = preprocess(filename, device)
|
|
|
|
|
|
with torch.no_grad():
|
|
pred = model(input).to('cpu')
|
|
|
|
|
|
probabilities = torch.nn.functional.softmax(pred[0], dim=0)
|
|
|
|
data_folder = dataloader_classification.get_pytorch_data()
|
|
classes_file = str(os.path.join(data_folder, 'imagenet_classes.txt'))
|
|
with open(classes_file, "r") as f:
|
|
categories = [s.strip() for s in f.readlines()]
|
|
|
|
top5_prob, top5_catid = torch.topk(probabilities, 5)
|
|
for i in range(top5_prob.size(0)):
|
|
print(categories[top5_catid[i]], top5_prob[i].item())
|
|
|
|
|
|
def main(path, batch_size, device, model_str, trace):
|
|
if trace:
|
|
if model_str == 'inception_v3':
|
|
batch_size = 3
|
|
else:
|
|
batch_size = 1
|
|
|
|
input_size = 299 if model_str == 'inception_v3' else 224
|
|
|
|
|
|
testing_dataloader = dataloader_classification.create_testing_dataloader(path, batch_size, input_size)
|
|
|
|
|
|
device = torch.device(device)
|
|
|
|
|
|
start = time.time()
|
|
|
|
model = get_model(model_str, device)
|
|
|
|
print('Finished moving {} to device: {} in {}s.'.format(model_str, device, time.time() - start))
|
|
|
|
cross_entropy_loss = nn.CrossEntropyLoss().to(device)
|
|
|
|
|
|
highest_accuracy = eval(testing_dataloader,
|
|
model_str,
|
|
model,
|
|
device,
|
|
cross_entropy_loss,
|
|
0,
|
|
False,
|
|
trace)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(__doc__)
|
|
parser.add_argument("--path", type=str, default="cifar-10-python", help="Path to cifar dataset.")
|
|
parser.add_argument('--batch_size', type=int, default=32, metavar='N', help='Batch size to train with.')
|
|
parser.add_argument('--device', type=str, default='dml', help='The device to use for training.')
|
|
parser.add_argument('--model', type=str, default='resnet18', help='The model to use.')
|
|
args = parser.parse_args()
|
|
device = torch_directml.device(torch_directml.default_device()) if args.device == 'dml' else torch.device(args.device)
|
|
main(args.path, args.batch_size, device, args.model()) |