File size: 7,690 Bytes
835424e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import torch
import torch_directml
from torch import nn
from torch.utils import data
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda, Compose, transforms
import torchvision.models as models
import collections
import matplotlib.pyplot as plt
import argparse
import time
import os
import pathlib
import dataloader_classification
import torch.autograd.profiler as profiler
from PIL import Image
from os.path import exists

def get_checkpoint_folder(model_str, device):
    device_str = 'dml' if device.type == 'privateuseone' else str(device)
    checkpoint_folder = str(os.path.join(pathlib.Path(__file__).parent.parent.resolve(),
                    'checkpoints', model_str, device_str))
    os.makedirs(checkpoint_folder, exist_ok=True)
    return str(os.path.join(checkpoint_folder, 'checkpoint.pth'))

def eval(dataloader, model_str, model, device, loss, highest_accuracy, save_model, trace):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)

    # Switch model to evaluation mode
    model.eval()

    test_loss, correct = 0, 0
    with torch.no_grad():
        for X, y in dataloader:
            X = X.to(device)
            y = y.to(device)
            
            # Evaluate the model on the test input
            if (trace):
                with profiler.profile(record_shapes=True, with_stack=True, profile_memory=True) as prof:
                    with profiler.record_function("model_inference"):
                        pred = model(X)
                print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=1000))
                break
            else:
                pred = model(X)

            test_loss += loss(pred, y).to("cpu")
            correct += (pred.to("cpu").argmax(1) == y.to("cpu")).type(torch.float).sum()

    if not trace:
        test_loss /= num_batches
        correct /= size
        
        if (correct.item() > highest_accuracy):
            highest_accuracy = correct.item()
            print("current highest_accuracy: ", highest_accuracy)
            
            # save model
            if save_model:
                state_dict = collections.OrderedDict()
                for key in model.state_dict().keys():
                    state_dict[key] = model.state_dict()[key].to("cpu")
                checkpoint = get_checkpoint_folder(model_str, device)
                torch.save(state_dict, checkpoint)

        print(f"Test Error: \n Accuracy: {(100*correct.item()):>0.1f}%, Avg loss: {test_loss.item():>8f} \n")

    return highest_accuracy


def get_model(model_str, device):
    if (model_str == 'squeezenet1_1'):
        model = models.squeezenet1_1(num_classes=10).to(device)
    elif (model_str == 'resnet50'):
        model = models.resnet50(num_classes=10).to(device)
    elif (model_str == 'squeezenet1_0'):
        model = models.squeezenet1_0(num_classes=10).to(device)
    elif (model_str == 'resnet18'):
        model = models.resnet18(num_classes=10).to(device)
    elif (model_str == 'alexnet'):
        model = models.alexnet(num_classes=10).to(device)
    elif (model_str == 'vgg16'):
        model = models.vgg16(num_classes=10).to(device)
    elif (model_str == 'densenet161'):
        model = models.densenet161(num_classes=10).to(device)
    elif (model_str == 'inception_v3'):
        model = models.inception_v3(num_classes=10).to(device)
    elif (model_str == 'googlenet'):
        model = models.googlenet(num_classes=10).to(device)
    elif (model_str == 'shufflenet_v2_x1_0'):
        model = models.shufflenet_v2_x1_0(num_classes=10).to(device)
    elif (model_str == 'mobilenet_v2'):
        model = models.mobilenet_v2(num_classes=10).to(device)
    elif (model_str == 'mobilenet_v3_large'):
        model = models.mobilenet_v3_large(num_classes=10).to(device)
    elif (model_str == 'mobilenet_v3_small'):
        model = models.mobilenet_v3_small(num_classes=10).to(device)
    elif (model_str == 'resnext50_32x4d'):
        model = models.resnext50_32x4d(num_classes=10).to(device)
    elif (model_str == 'wide_resnet50_2'):
        model = models.wide_resnet50_2(num_classes=10).to(device)
    elif (model_str == 'mnasnet1_0'):
        model = models.mnasnet1_0(num_classes=10).to(device)
    else:
        raise Exception(f"Model {model_str} is not supported yet!")

    checkpoint = get_checkpoint_folder(model_str, device)
    if (exists(checkpoint)):
        model.load_state_dict(torch.load(checkpoint))

    return model

def preprocess(filename, device, input_size=1):
    input_image = Image.open(filename)
    preprocess_transform = dataloader_classification.create_testing_data_transform(input_size)
    input_tensor = preprocess_transform(input_image)
    input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
    input_batch = input_batch.to(device)
    return input_batch

def predict(filename, model_str, device):
    # Get the model
    model = get_model(model_str, device)
    model.eval()

    # Preprocess input
    input = preprocess(filename, device)

    # Evaluate
    with torch.no_grad():
        pred = model(input).to('cpu')

    # The output has unnormalized scores. To get probabilities, you can run a softmax on it.
    probabilities = torch.nn.functional.softmax(pred[0], dim=0)

    data_folder = dataloader_classification.get_pytorch_data()
    classes_file = str(os.path.join(data_folder, 'imagenet_classes.txt'))
    with open(classes_file, "r") as f:
        categories = [s.strip() for s in f.readlines()]
        # Show top categories per image
        top5_prob, top5_catid = torch.topk(probabilities, 5)
        for i in range(top5_prob.size(0)):
            print(categories[top5_catid[i]], top5_prob[i].item())


def main(path, batch_size, device, model_str, trace):
    if trace:
        if model_str == 'inception_v3':
            batch_size = 3
        else:
            batch_size = 1
            
    input_size = 299 if model_str == 'inception_v3' else 224

    # Load the dataset
    testing_dataloader = dataloader_classification.create_testing_dataloader(path, batch_size, input_size)

    # Create the device
    device = torch.device(device)
 
    # Load the model on the device
    start = time.time()

    model = get_model(model_str, device)

    print('Finished moving {} to device: {} in {}s.'.format(model_str, device, time.time() - start))

    cross_entropy_loss = nn.CrossEntropyLoss().to(device)

    # Test
    highest_accuracy = eval(testing_dataloader,
                            model_str,
                            model,
                            device,
                            cross_entropy_loss,
                            0,
                            False,
                            trace)
    

if __name__ == "__main__":
    parser = argparse.ArgumentParser(__doc__)
    parser.add_argument("--path", type=str, default="cifar-10-python", help="Path to cifar dataset.")
    parser.add_argument('--batch_size', type=int, default=32, metavar='N', help='Batch size to train with.')
    parser.add_argument('--device', type=str, default='dml', help='The device to use for training.')
    parser.add_argument('--model', type=str, default='resnet18', help='The model to use.')
    args = parser.parse_args()
    device = torch_directml.device(torch_directml.default_device()) if args.device == 'dml' else torch.device(args.device)
    main(args.path, args.batch_size, device, args.model())