File size: 7,690 Bytes
835424e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import torch
import torch_directml
from torch import nn
from torch.utils import data
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda, Compose, transforms
import torchvision.models as models
import collections
import matplotlib.pyplot as plt
import argparse
import time
import os
import pathlib
import dataloader_classification
import torch.autograd.profiler as profiler
from PIL import Image
from os.path import exists
def get_checkpoint_folder(model_str, device):
device_str = 'dml' if device.type == 'privateuseone' else str(device)
checkpoint_folder = str(os.path.join(pathlib.Path(__file__).parent.parent.resolve(),
'checkpoints', model_str, device_str))
os.makedirs(checkpoint_folder, exist_ok=True)
return str(os.path.join(checkpoint_folder, 'checkpoint.pth'))
def eval(dataloader, model_str, model, device, loss, highest_accuracy, save_model, trace):
size = len(dataloader.dataset)
num_batches = len(dataloader)
# Switch model to evaluation mode
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X = X.to(device)
y = y.to(device)
# Evaluate the model on the test input
if (trace):
with profiler.profile(record_shapes=True, with_stack=True, profile_memory=True) as prof:
with profiler.record_function("model_inference"):
pred = model(X)
print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=1000))
break
else:
pred = model(X)
test_loss += loss(pred, y).to("cpu")
correct += (pred.to("cpu").argmax(1) == y.to("cpu")).type(torch.float).sum()
if not trace:
test_loss /= num_batches
correct /= size
if (correct.item() > highest_accuracy):
highest_accuracy = correct.item()
print("current highest_accuracy: ", highest_accuracy)
# save model
if save_model:
state_dict = collections.OrderedDict()
for key in model.state_dict().keys():
state_dict[key] = model.state_dict()[key].to("cpu")
checkpoint = get_checkpoint_folder(model_str, device)
torch.save(state_dict, checkpoint)
print(f"Test Error: \n Accuracy: {(100*correct.item()):>0.1f}%, Avg loss: {test_loss.item():>8f} \n")
return highest_accuracy
def get_model(model_str, device):
if (model_str == 'squeezenet1_1'):
model = models.squeezenet1_1(num_classes=10).to(device)
elif (model_str == 'resnet50'):
model = models.resnet50(num_classes=10).to(device)
elif (model_str == 'squeezenet1_0'):
model = models.squeezenet1_0(num_classes=10).to(device)
elif (model_str == 'resnet18'):
model = models.resnet18(num_classes=10).to(device)
elif (model_str == 'alexnet'):
model = models.alexnet(num_classes=10).to(device)
elif (model_str == 'vgg16'):
model = models.vgg16(num_classes=10).to(device)
elif (model_str == 'densenet161'):
model = models.densenet161(num_classes=10).to(device)
elif (model_str == 'inception_v3'):
model = models.inception_v3(num_classes=10).to(device)
elif (model_str == 'googlenet'):
model = models.googlenet(num_classes=10).to(device)
elif (model_str == 'shufflenet_v2_x1_0'):
model = models.shufflenet_v2_x1_0(num_classes=10).to(device)
elif (model_str == 'mobilenet_v2'):
model = models.mobilenet_v2(num_classes=10).to(device)
elif (model_str == 'mobilenet_v3_large'):
model = models.mobilenet_v3_large(num_classes=10).to(device)
elif (model_str == 'mobilenet_v3_small'):
model = models.mobilenet_v3_small(num_classes=10).to(device)
elif (model_str == 'resnext50_32x4d'):
model = models.resnext50_32x4d(num_classes=10).to(device)
elif (model_str == 'wide_resnet50_2'):
model = models.wide_resnet50_2(num_classes=10).to(device)
elif (model_str == 'mnasnet1_0'):
model = models.mnasnet1_0(num_classes=10).to(device)
else:
raise Exception(f"Model {model_str} is not supported yet!")
checkpoint = get_checkpoint_folder(model_str, device)
if (exists(checkpoint)):
model.load_state_dict(torch.load(checkpoint))
return model
def preprocess(filename, device, input_size=1):
input_image = Image.open(filename)
preprocess_transform = dataloader_classification.create_testing_data_transform(input_size)
input_tensor = preprocess_transform(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
input_batch = input_batch.to(device)
return input_batch
def predict(filename, model_str, device):
# Get the model
model = get_model(model_str, device)
model.eval()
# Preprocess input
input = preprocess(filename, device)
# Evaluate
with torch.no_grad():
pred = model(input).to('cpu')
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
probabilities = torch.nn.functional.softmax(pred[0], dim=0)
data_folder = dataloader_classification.get_pytorch_data()
classes_file = str(os.path.join(data_folder, 'imagenet_classes.txt'))
with open(classes_file, "r") as f:
categories = [s.strip() for s in f.readlines()]
# Show top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
print(categories[top5_catid[i]], top5_prob[i].item())
def main(path, batch_size, device, model_str, trace):
if trace:
if model_str == 'inception_v3':
batch_size = 3
else:
batch_size = 1
input_size = 299 if model_str == 'inception_v3' else 224
# Load the dataset
testing_dataloader = dataloader_classification.create_testing_dataloader(path, batch_size, input_size)
# Create the device
device = torch.device(device)
# Load the model on the device
start = time.time()
model = get_model(model_str, device)
print('Finished moving {} to device: {} in {}s.'.format(model_str, device, time.time() - start))
cross_entropy_loss = nn.CrossEntropyLoss().to(device)
# Test
highest_accuracy = eval(testing_dataloader,
model_str,
model,
device,
cross_entropy_loss,
0,
False,
trace)
if __name__ == "__main__":
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--path", type=str, default="cifar-10-python", help="Path to cifar dataset.")
parser.add_argument('--batch_size', type=int, default=32, metavar='N', help='Batch size to train with.')
parser.add_argument('--device', type=str, default='dml', help='The device to use for training.')
parser.add_argument('--model', type=str, default='resnet18', help='The model to use.')
args = parser.parse_args()
device = torch_directml.device(torch_directml.default_device()) if args.device == 'dml' else torch.device(args.device)
main(args.path, args.batch_size, device, args.model()) |