text
stringlengths 54
260
|
---|
06-12 02:50 - modeling.trainer - INFO - train - iter 1911450: loss 2.8244, time 5.60s
|
06-12 02:51 - modeling.trainer - INFO - train - iter 1911500: loss 2.8408, time 6.35s
|
06-12 02:51 - modeling.trainer - INFO - train - iter 1911550: loss 2.8392, time 5.55s
|
06-12 02:51 - modeling.trainer - INFO - train - iter 1911600: loss 2.8318, time 5.55s
|
06-12 02:51 - modeling.trainer - INFO - train - iter 1911650: loss 2.8250, time 5.64s
|
06-12 02:51 - modeling.trainer - INFO - train - iter 1911700: loss 2.8294, time 5.54s
|
06-12 02:51 - modeling.trainer - INFO - train - iter 1911750: loss 2.8291, time 5.55s
|
06-12 02:51 - modeling.trainer - INFO - train - iter 1911800: loss 2.8226, time 5.59s
|
06-12 02:51 - modeling.trainer - INFO - train - iter 1911850: loss 2.8255, time 5.61s
|
06-12 02:51 - modeling.trainer - INFO - train - iter 1911900: loss 2.8347, time 5.63s
|
06-12 02:51 - modeling.trainer - INFO - train - iter 1911950: loss 2.8359, time 5.55s
|
06-12 02:51 - modeling.trainer - INFO - train - iter 1912000: loss 2.8333, time 5.60s
|
06-12 02:52 - modeling.trainer - INFO - train - iter 1912050: loss 2.8284, time 5.57s
|
06-12 02:52 - modeling.trainer - INFO - train - iter 1912100: loss 2.8290, time 5.61s
|
06-12 02:52 - modeling.trainer - INFO - train - iter 1912150: loss 2.8408, time 5.57s
|
06-12 02:52 - modeling.trainer - INFO - train - iter 1912200: loss 2.8389, time 5.52s
|
06-12 02:52 - modeling.trainer - INFO - train - iter 1912250: loss 2.8378, time 5.61s
|
06-12 02:52 - modeling.trainer - INFO - train - iter 1912300: loss 2.8378, time 5.57s
|
06-12 02:52 - modeling.trainer - INFO - train - iter 1912350: loss 2.8321, time 5.53s
|
06-12 02:52 - modeling.trainer - INFO - train - iter 1912400: loss 2.8285, time 5.53s
|
06-12 02:52 - modeling.trainer - INFO - train - iter 1912450: loss 2.8272, time 5.65s
|
06-12 02:52 - modeling.trainer - INFO - train - iter 1912500: loss 2.8377, time 5.53s
|
06-12 02:52 - modeling.trainer - INFO - train - iter 1912550: loss 2.8415, time 5.53s
|
06-12 02:53 - modeling.trainer - INFO - train - iter 1912600: loss 2.8335, time 5.59s
|
06-12 02:53 - modeling.trainer - INFO - train - iter 1912650: loss 2.8296, time 5.55s
|
06-12 02:53 - modeling.trainer - INFO - train - iter 1912700: loss 2.8293, time 5.60s
|
06-12 02:53 - modeling.trainer - INFO - train - iter 1912750: loss 2.8359, time 5.59s
|
06-12 02:53 - modeling.trainer - INFO - train - iter 1912800: loss 2.8375, time 5.60s
|
06-12 02:53 - modeling.trainer - INFO - train - iter 1912850: loss 2.8336, time 5.58s
|
06-12 02:53 - modeling.trainer - INFO - train - iter 1912900: loss 2.8272, time 5.56s
|
06-12 02:53 - modeling.trainer - INFO - train - iter 1912950: loss 2.8302, time 5.60s
|
06-12 02:53 - modeling.trainer - INFO - train - iter 1913000: loss 2.8457, time 5.60s
|
06-12 02:53 - modeling.trainer - INFO - train - iter 1913050: loss 2.8390, time 5.53s
|
06-12 02:54 - modeling.trainer - INFO - train - iter 1913100: loss 2.8302, time 5.56s
|
06-12 02:54 - modeling.trainer - INFO - train - iter 1913150: loss 2.8317, time 5.56s
|
06-12 02:54 - modeling.trainer - INFO - train - iter 1913200: loss 2.8296, time 5.58s
|
06-12 02:54 - modeling.trainer - INFO - train - iter 1913250: loss 2.8326, time 6.23s
|
06-12 02:54 - modeling.trainer - INFO - train - iter 1913300: loss 2.8331, time 5.54s
|
06-12 02:54 - modeling.trainer - INFO - train - iter 1913350: loss 2.8396, time 5.56s
|
06-12 02:54 - modeling.trainer - INFO - train - iter 1913400: loss 2.8359, time 5.56s
|
06-12 02:54 - modeling.trainer - INFO - train - iter 1913450: loss 2.8330, time 5.51s
|
06-12 02:54 - modeling.trainer - INFO - train - iter 1913500: loss 2.8366, time 5.54s
|
06-12 02:54 - modeling.trainer - INFO - train - iter 1913550: loss 2.8393, time 5.54s
|
06-12 02:54 - modeling.trainer - INFO - train - iter 1913600: loss 2.8455, time 5.56s
|
06-12 02:55 - modeling.trainer - INFO - train - iter 1913650: loss 2.8442, time 5.47s
|
06-12 02:55 - modeling.trainer - INFO - train - iter 1913700: loss 2.8395, time 5.60s
|
06-12 02:55 - modeling.trainer - INFO - train - iter 1913750: loss 2.8318, time 5.52s
|
06-12 02:55 - modeling.trainer - INFO - train - iter 1913800: loss 2.8357, time 5.60s
|
06-12 02:55 - modeling.trainer - INFO - train - iter 1913850: loss 2.8370, time 5.58s
|
06-12 02:55 - modeling.trainer - INFO - train - iter 1913900: loss 2.8282, time 5.55s
|
06-12 02:55 - modeling.trainer - INFO - train - iter 1913950: loss 2.8303, time 5.53s
|
06-12 02:55 - modeling.trainer - INFO - train - iter 1914000: loss 2.8340, time 5.58s
|
06-12 02:55 - modeling.trainer - INFO - train - iter 1914050: loss 2.8259, time 5.56s
|
06-12 02:55 - modeling.trainer - INFO - train - iter 1914100: loss 2.8212, time 5.58s
|
06-12 02:55 - modeling.trainer - INFO - train - iter 1914150: loss 2.8367, time 5.51s
|
06-12 02:56 - modeling.trainer - INFO - train - iter 1914200: loss 2.8417, time 5.53s
|
06-12 02:56 - modeling.trainer - INFO - train - iter 1914250: loss 2.8255, time 5.58s
|
06-12 02:56 - modeling.trainer - INFO - train - iter 1914300: loss 2.8241, time 5.55s
|
06-12 02:56 - modeling.trainer - INFO - train - iter 1914350: loss 2.8302, time 5.53s
|
06-12 02:56 - modeling.trainer - INFO - train - iter 1914400: loss 2.8318, time 5.53s
|
06-12 02:56 - modeling.trainer - INFO - train - iter 1914450: loss 2.8334, time 5.54s
|
06-12 02:56 - modeling.trainer - INFO - train - iter 1914500: loss 2.8337, time 5.54s
|
06-12 02:56 - modeling.trainer - INFO - train - iter 1914550: loss 2.8360, time 5.51s
|
06-12 02:56 - modeling.trainer - INFO - train - iter 1914600: loss 2.8372, time 5.53s
|
06-12 02:56 - modeling.trainer - INFO - train - iter 1914650: loss 2.8433, time 5.52s
|
06-12 02:56 - modeling.trainer - INFO - train - iter 1914700: loss 2.8443, time 5.54s
|
06-12 02:57 - modeling.trainer - INFO - train - iter 1914750: loss 2.8350, time 5.57s
|
06-12 02:57 - modeling.trainer - INFO - train - iter 1914800: loss 2.8390, time 5.58s
|
06-12 02:57 - modeling.trainer - INFO - train - iter 1914850: loss 2.8463, time 5.49s
|
06-12 02:57 - modeling.trainer - INFO - train - iter 1914900: loss 2.8445, time 5.55s
|
06-12 02:57 - modeling.trainer - INFO - train - iter 1914950: loss 2.8350, time 5.54s
|
06-12 02:57 - modeling.trainer - INFO - train - iter 1915000: loss 2.8355, time 6.20s
|
06-12 02:57 - modeling.trainer - INFO - train - iter 1915050: loss 2.8409, time 5.56s
|
06-12 02:57 - modeling.trainer - INFO - train - iter 1915100: loss 2.8401, time 5.55s
|
06-12 02:57 - modeling.trainer - INFO - train - iter 1915150: loss 2.8389, time 5.51s
|
06-12 02:57 - modeling.trainer - INFO - train - iter 1915200: loss 2.8333, time 5.61s
|
06-12 02:57 - modeling.trainer - INFO - train - iter 1915250: loss 2.8318, time 5.54s
|
06-12 02:58 - modeling.trainer - INFO - train - iter 1915300: loss 2.8277, time 5.49s
|
06-12 02:58 - modeling.trainer - INFO - train - iter 1915350: loss 2.8313, time 5.49s
|
06-12 02:58 - modeling.trainer - INFO - train - iter 1915400: loss 2.8417, time 5.53s
|
06-12 02:58 - modeling.trainer - INFO - train - iter 1915450: loss 2.8352, time 5.54s
|
06-12 02:58 - modeling.trainer - INFO - train - iter 1915500: loss 2.8280, time 5.51s
|
06-12 02:58 - modeling.trainer - INFO - train - iter 1915550: loss 2.8340, time 5.56s
|
06-12 02:58 - modeling.trainer - INFO - train - iter 1915600: loss 2.8383, time 5.53s
|
06-12 02:58 - modeling.trainer - INFO - train - iter 1915650: loss 2.8423, time 5.49s
|
06-12 02:58 - modeling.trainer - INFO - train - iter 1915700: loss 2.8396, time 5.49s
|
06-12 02:58 - modeling.trainer - INFO - train - iter 1915750: loss 2.8353, time 5.49s
|
06-12 02:59 - modeling.trainer - INFO - train - iter 1915800: loss 2.8383, time 5.52s
|
06-12 02:59 - modeling.trainer - INFO - train - iter 1915850: loss 2.8375, time 5.46s
|
06-12 02:59 - modeling.trainer - INFO - train - iter 1915900: loss 2.8369, time 5.53s
|
06-12 02:59 - modeling.trainer - INFO - train - iter 1915950: loss 2.8334, time 5.58s
|
06-12 02:59 - modeling.trainer - INFO - train - iter 1916000: loss 2.8303, time 5.46s
|
06-12 02:59 - modeling.trainer - INFO - train - iter 1916050: loss 2.8366, time 5.50s
|
06-12 02:59 - modeling.trainer - INFO - train - iter 1916100: loss 2.8386, time 5.52s
|
06-12 02:59 - modeling.trainer - INFO - train - iter 1916150: loss 2.8321, time 5.55s
|
06-12 02:59 - modeling.trainer - INFO - train - iter 1916200: loss 2.8343, time 5.47s
|
06-12 02:59 - modeling.trainer - INFO - train - iter 1916250: loss 2.8359, time 5.53s
|
06-12 02:59 - modeling.trainer - INFO - train - iter 1916300: loss 2.8343, time 5.53s
|
06-12 03:00 - modeling.trainer - INFO - train - iter 1916350: loss 2.8409, time 5.50s
|
06-12 03:00 - modeling.trainer - INFO - train - iter 1916400: loss 2.8377, time 5.50s
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.