text
stringlengths 54
260
|
---|
06-07 07:42 - modeling.trainer - INFO - train - iter 100600: loss 3.1249, time 5.76s
|
06-07 07:42 - modeling.trainer - INFO - train - iter 100650: loss 3.1186, time 5.11s
|
06-07 07:42 - modeling.trainer - INFO - train - iter 100700: loss 3.1185, time 5.09s
|
06-07 07:42 - modeling.trainer - INFO - train - iter 100750: loss 3.1286, time 5.10s
|
06-07 07:42 - modeling.trainer - INFO - train - iter 100800: loss 3.1340, time 5.09s
|
06-07 07:43 - modeling.trainer - INFO - train - iter 100850: loss 3.1270, time 5.15s
|
06-07 07:43 - modeling.trainer - INFO - train - iter 100900: loss 3.1216, time 5.09s
|
06-07 07:43 - modeling.trainer - INFO - train - iter 100950: loss 3.1172, time 5.10s
|
06-07 07:43 - modeling.trainer - INFO - train - iter 101000: loss 3.1137, time 5.10s
|
06-07 07:43 - modeling.trainer - INFO - train - iter 101050: loss 3.1115, time 5.09s
|
06-07 07:43 - modeling.trainer - INFO - train - iter 101100: loss 3.1153, time 5.09s
|
06-07 07:43 - modeling.trainer - INFO - train - iter 101150: loss 3.1180, time 5.09s
|
06-07 07:43 - modeling.trainer - INFO - train - iter 101200: loss 3.1282, time 5.09s
|
06-07 07:43 - modeling.trainer - INFO - train - iter 101250: loss 3.1303, time 5.09s
|
06-07 07:43 - modeling.trainer - INFO - train - iter 101300: loss 3.1224, time 5.10s
|
06-07 07:43 - modeling.trainer - INFO - train - iter 101350: loss 3.1215, time 5.08s
|
06-07 07:43 - modeling.trainer - INFO - train - iter 101400: loss 3.1229, time 5.09s
|
06-07 07:44 - modeling.trainer - INFO - train - iter 101450: loss 3.1171, time 5.09s
|
06-07 07:44 - modeling.trainer - INFO - train - iter 101500: loss 3.1167, time 5.08s
|
06-07 07:44 - modeling.trainer - INFO - train - iter 101550: loss 3.1184, time 5.09s
|
06-07 07:44 - modeling.trainer - INFO - train - iter 101600: loss 3.1108, time 5.09s
|
06-07 07:44 - modeling.trainer - INFO - train - iter 101650: loss 3.1105, time 5.09s
|
06-07 07:44 - modeling.trainer - INFO - train - iter 101700: loss 3.1104, time 5.10s
|
06-07 07:44 - modeling.trainer - INFO - train - iter 101750: loss 3.1052, time 5.10s
|
06-07 07:44 - modeling.trainer - INFO - train - iter 101800: loss 3.1106, time 5.09s
|
06-07 07:44 - modeling.trainer - INFO - train - iter 101850: loss 3.1137, time 5.09s
|
06-07 07:44 - modeling.trainer - INFO - train - iter 101900: loss 3.1133, time 5.09s
|
06-07 07:44 - modeling.trainer - INFO - train - iter 101950: loss 3.1224, time 5.09s
|
06-07 07:45 - modeling.trainer - INFO - train - iter 102000: loss 3.1196, time 5.08s
|
06-07 07:45 - modeling.trainer - INFO - train - iter 102050: loss 3.1141, time 5.10s
|
06-07 07:45 - modeling.trainer - INFO - train - iter 102100: loss 3.1216, time 5.09s
|
06-07 07:45 - modeling.trainer - INFO - train - iter 102150: loss 3.1204, time 5.09s
|
06-07 07:45 - modeling.trainer - INFO - train - iter 102200: loss 3.1127, time 5.12s
|
06-07 07:45 - modeling.trainer - INFO - train - iter 102250: loss 3.1116, time 5.09s
|
06-07 07:45 - modeling.trainer - INFO - train - iter 102300: loss 3.1145, time 5.08s
|
06-07 07:45 - modeling.trainer - INFO - train - iter 102350: loss 3.1178, time 5.75s
|
06-07 07:45 - modeling.trainer - INFO - train - iter 102400: loss 3.1171, time 5.09s
|
06-07 07:45 - modeling.trainer - INFO - train - iter 102450: loss 3.1165, time 5.09s
|
06-07 07:45 - modeling.trainer - INFO - train - iter 102500: loss 3.1108, time 5.08s
|
06-07 07:45 - modeling.trainer - INFO - train - iter 102550: loss 3.1060, time 5.09s
|
06-07 07:46 - modeling.trainer - INFO - train - iter 102600: loss 3.1066, time 5.08s
|
06-07 07:46 - modeling.trainer - INFO - train - iter 102650: loss 3.1099, time 5.09s
|
06-07 07:46 - modeling.trainer - INFO - train - iter 102700: loss 3.1151, time 5.08s
|
06-07 07:46 - modeling.trainer - INFO - train - iter 102750: loss 3.1199, time 5.08s
|
06-07 07:46 - modeling.trainer - INFO - train - iter 102800: loss 3.1288, time 5.08s
|
06-07 07:46 - modeling.trainer - INFO - train - iter 102850: loss 3.1294, time 5.11s
|
06-07 07:46 - modeling.trainer - INFO - train - iter 102900: loss 3.1208, time 5.18s
|
06-07 07:46 - modeling.trainer - INFO - train - iter 102950: loss 3.1093, time 5.09s
|
06-07 07:46 - modeling.trainer - INFO - train - iter 103000: loss 3.1113, time 5.09s
|
06-07 07:46 - modeling.trainer - INFO - train - iter 103050: loss 3.1292, time 5.09s
|
06-07 07:46 - modeling.trainer - INFO - train - iter 103100: loss 3.1160, time 5.08s
|
06-07 07:46 - modeling.trainer - INFO - train - iter 103150: loss 3.0996, time 5.10s
|
06-07 07:47 - modeling.trainer - INFO - train - iter 103200: loss 3.1116, time 5.08s
|
06-07 07:47 - modeling.trainer - INFO - train - iter 103250: loss 3.1214, time 5.09s
|
06-07 07:47 - modeling.trainer - INFO - train - iter 103300: loss 3.1121, time 5.08s
|
06-07 07:47 - modeling.trainer - INFO - train - iter 103350: loss 3.1069, time 5.08s
|
06-07 07:47 - modeling.trainer - INFO - train - iter 103400: loss 3.1153, time 5.09s
|
06-07 07:47 - modeling.trainer - INFO - train - iter 103450: loss 3.1210, time 5.09s
|
06-07 07:47 - modeling.trainer - INFO - train - iter 103500: loss 3.1171, time 5.09s
|
06-07 07:47 - modeling.trainer - INFO - train - iter 103550: loss 3.1112, time 5.08s
|
06-07 07:47 - modeling.trainer - INFO - train - iter 103600: loss 3.1049, time 5.08s
|
06-07 07:47 - modeling.trainer - INFO - train - iter 103650: loss 3.1118, time 5.08s
|
06-07 07:47 - modeling.trainer - INFO - train - iter 103700: loss 3.1179, time 5.08s
|
06-07 07:47 - modeling.trainer - INFO - train - iter 103750: loss 3.1130, time 5.08s
|
06-07 07:48 - modeling.trainer - INFO - train - iter 103800: loss 3.1135, time 5.08s
|
06-07 07:48 - modeling.trainer - INFO - train - iter 103850: loss 3.1068, time 5.09s
|
06-07 07:48 - modeling.trainer - INFO - train - iter 103900: loss 3.1048, time 5.08s
|
06-07 07:48 - modeling.trainer - INFO - train - iter 103950: loss 3.1156, time 5.09s
|
06-07 07:48 - modeling.trainer - INFO - train - iter 104000: loss 3.1140, time 5.09s
|
06-07 07:48 - modeling.trainer - INFO - train - iter 104050: loss 3.1123, time 5.11s
|
06-07 07:48 - modeling.trainer - INFO - train - iter 104100: loss 3.1126, time 5.80s
|
06-07 07:48 - modeling.trainer - INFO - train - iter 104150: loss 3.1099, time 5.10s
|
06-07 07:48 - modeling.trainer - INFO - train - iter 104200: loss 3.1151, time 5.09s
|
06-07 07:48 - modeling.trainer - INFO - train - iter 104250: loss 3.1084, time 5.09s
|
06-07 07:48 - modeling.trainer - INFO - train - iter 104300: loss 3.1045, time 5.09s
|
06-07 07:49 - modeling.trainer - INFO - train - iter 104350: loss 3.1056, time 5.08s
|
06-07 07:49 - modeling.trainer - INFO - train - iter 104400: loss 3.1055, time 5.08s
|
06-07 07:49 - modeling.trainer - INFO - train - iter 104450: loss 3.1164, time 5.09s
|
06-07 07:49 - modeling.trainer - INFO - train - iter 104500: loss 3.1162, time 5.08s
|
06-07 07:49 - modeling.trainer - INFO - train - iter 104550: loss 3.1164, time 5.08s
|
06-07 07:49 - modeling.trainer - INFO - train - iter 104600: loss 3.1197, time 5.07s
|
06-07 07:49 - modeling.trainer - INFO - train - iter 104650: loss 3.1086, time 5.08s
|
06-07 07:49 - modeling.trainer - INFO - train - iter 104700: loss 3.0991, time 5.08s
|
06-07 07:49 - modeling.trainer - INFO - train - iter 104750: loss 3.1012, time 5.08s
|
06-07 07:49 - modeling.trainer - INFO - train - iter 104800: loss 3.1041, time 5.08s
|
06-07 07:49 - modeling.trainer - INFO - train - iter 104850: loss 3.1044, time 5.08s
|
06-07 07:49 - modeling.trainer - INFO - train - iter 104900: loss 3.1086, time 5.09s
|
06-07 07:50 - modeling.trainer - INFO - train - iter 104950: loss 3.1153, time 5.09s
|
06-07 07:50 - modeling.trainer - INFO - train - iter 105000: loss 3.1119, time 5.08s
|
06-07 07:50 - modeling.trainer - INFO - train - iter 105050: loss 3.1047, time 5.08s
|
06-07 07:50 - modeling.trainer - INFO - train - iter 105100: loss 3.1111, time 5.08s
|
06-07 07:50 - modeling.trainer - INFO - train - iter 105150: loss 3.1171, time 5.08s
|
06-07 07:50 - modeling.trainer - INFO - train - iter 105200: loss 3.1192, time 5.08s
|
06-07 07:50 - modeling.trainer - INFO - train - iter 105250: loss 3.1172, time 5.08s
|
06-07 07:50 - modeling.trainer - INFO - train - iter 105300: loss 3.1046, time 5.10s
|
06-07 07:50 - modeling.trainer - INFO - train - iter 105350: loss 3.1051, time 5.11s
|
06-07 07:50 - modeling.trainer - INFO - train - iter 105400: loss 3.1188, time 5.10s
|
06-07 07:50 - modeling.trainer - INFO - train - iter 105450: loss 3.1178, time 5.09s
|
06-07 07:50 - modeling.trainer - INFO - train - iter 105500: loss 3.1195, time 5.09s
|
06-07 07:51 - modeling.trainer - INFO - train - iter 105550: loss 3.1166, time 5.09s
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.