File size: 14,529 Bytes
bcb5616 6e9bd3c bcb5616 6e9bd3c bcb5616 6e9bd3c bcb5616 6e9bd3c bcb5616 6e9bd3c bcb5616 6e9bd3c bcb5616 6e9bd3c bcb5616 6e9bd3c bcb5616 6e9bd3c bcb5616 6e9bd3c bcb5616 6e9bd3c bcb5616 6e9bd3c bcb5616 6e9bd3c bcb5616 6e9bd3c bcb5616 6e9bd3c bcb5616 6e9bd3c bcb5616 6e9bd3c bcb5616 6e9bd3c bcb5616 6e9bd3c bcb5616 6e9bd3c bcb5616 6e9bd3c bcb5616 6e9bd3c bcb5616 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import json
import os
import datasets
import jsonlines
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@misc{chen2024gpradar,
title={GPRadar-Defect-MultiTask Dataset},
author={Chen, Xingqiang},
year={2024},
publisher={Hugging Face}
}
"""
_DESCRIPTION = """\
GPRadar-Defect-MultiTask Dataset
This dataset contains ground penetrating radar (GPR) images and annotations for defect detection and analysis,
designed for training and evaluating multimodal models for GPR defect detection.
The dataset includes both basic defect detection samples and a larger set of
874 annotated images from real-world structural inspections focusing on voids and cracks.
"""
_HOMEPAGE = "https://huggingface.co/datasets/xingqiang/GPRadar-Defect-MultiTask"
class PaligemmaDataset(datasets.GeneratorBasedBuilder):
"""GPRadar-Defect-MultiTask Dataset for GPR defect detection and analysis."""
VERSION = datasets.Version("1.1.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({
"image": datasets.Image(),
"boxes": datasets.Sequence(datasets.Sequence(datasets.Value("float32"), length=4)),
"labels": datasets.Sequence(datasets.ClassLabel(names=["void", "crack"])),
"caption": datasets.Value("string"),
}),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"split": "val",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"split": "test",
},
),
]
def _generate_examples(self, split):
"""Yields examples."""
# 统一格式的注释文件
annotation_file = f"annotations/{split}_unified.json"
if not os.path.exists(annotation_file):
# 如果统一格式文件不存在,尝试转换
convert_annotations_to_unified_format()
# 再次检查文件是否已创建
if not os.path.exists(annotation_file):
logger.warning(f"找不到统一格式注释文件: {annotation_file},将返回空数据")
return
# 加载统一格式的注释
with open(annotation_file, "r", encoding="utf-8") as f:
annotations = json.load(f)
for idx, ann in enumerate(annotations):
# 尝试在不同的可能路径中查找图像
image_found = False
image_filename = ann["image_filename"]
for image_path in [
f"images/{split}/{image_filename}",
f"images/datasets/{image_filename}",
f"images/{image_filename}",
]:
if os.path.exists(image_path):
yield idx, {
"image": image_path,
"boxes": ann["boxes"],
"labels": ann["labels"],
"caption": ann["caption"],
}
image_found = True
break
if not image_found:
logger.warning(f"找不到图像文件: {image_filename},跳过该示例")
def normalize_image_path(image_path):
"""规范化图像路径,移除多余的前缀"""
# 处理特殊前缀
if "p-1.v1i.paligemma-multimodal/dataset/" in image_path:
return image_path.split("p-1.v1i.paligemma-multimodal/dataset/")[-1]
return image_path
def convert_annotations_to_unified_format():
"""将所有注释转换为统一格式"""
print("开始转换注释为统一格式...")
# 确保annotations目录存在
os.makedirs("annotations", exist_ok=True)
# 增加对valid分割的处理(有些文件使用valid而不是val)
for split in ["train", "val", "valid", "test"]:
print(f"处理 {split} 分割...")
unified_annotations = []
# 处理 JSON 注释
json_path = f"annotations/{split}.json"
print(f"检查 JSON 文件: {json_path}")
if os.path.exists(json_path):
print(f"找到 JSON 文件: {json_path}")
with open(json_path, encoding="utf-8") as f:
try:
annotations = json.load(f)
print(f"从 {json_path} 加载了 {len(annotations)} 条注释")
for ann in annotations:
unified_annotations.append({
"image_filename": ann["image_filename"],
"boxes": ann["boxes"],
"labels": ann["labels"],
"caption": ann["caption"],
"source": "original"
})
except json.JSONDecodeError:
print(f"错误: {json_path} 不是有效的 JSON 文件")
else:
print(f"未找到 JSON 文件: {json_path}")
# 查找所有可能的JSONL注释文件
# 1. 检查根目录
jsonl_files_to_check = [
f"_annotations.{split}.jsonl",
f"_annotations.{split}1.jsonl"
]
# 2. 递归查找子目录中的JSONL文件
for root, dirs, files in os.walk("annotations"):
for file in files:
if file.endswith(f"{split}.jsonl") or file.endswith(f"{split}1.jsonl") or file.endswith(f"{split}2.jsonl"):
rel_path = os.path.relpath(os.path.join(root, file), "annotations")
if rel_path != file: # 不是根目录的文件
jsonl_files_to_check.append(rel_path)
# 处理所有找到的JSONL文件
for jsonl_path in jsonl_files_to_check:
full_path = os.path.join("annotations", jsonl_path)
print(f"检查 JSONL 文件: {full_path}")
if os.path.exists(full_path):
print(f"找到 JSONL 文件: {full_path}")
annotation_count = 0
with open(full_path, encoding="utf-8") as f:
for line_num, line in enumerate(f, 1):
try:
line = line.strip()
if not line: # 跳过空行
print(f"跳过第 {line_num} 行: 空行")
continue
ann = json.loads(line)
image_filename = ann.get("image", "")
if not image_filename:
print(f"跳过第 {line_num} 行: 没有图像文件名")
continue
# 规范化图像路径
image_filename = normalize_image_path(image_filename)
# 检查图像是否存在
image_exists = False
possible_image_paths = [
f"images/datasets/{image_filename}",
f"images/train/{image_filename}",
f"images/val/{image_filename}",
f"images/test/{image_filename}",
f"images/{image_filename}" # 直接在images目录下
]
for img_path in possible_image_paths:
if os.path.exists(img_path):
image_exists = True
break
if not image_exists:
print(f"警告: 图像文件不存在: {image_filename}")
continue
# 转换为统一格式
if "annotations" in ann:
# 处理新格式
boxes = [[b["x"], b["y"], b["width"], b["height"]] for b in ann["annotations"]]
labels = [0 if b["class"] == "void" else 1 for b in ann["annotations"]]
caption = f"Image contains {len(boxes)} defects: " + \
", ".join([b["class"] for b in ann["annotations"]])
else:
# 处理旧格式 (prefix/suffix)
boxes = []
labels = []
caption = ann.get("prefix", "")
if "suffix" in ann:
parts = ann["suffix"].split()
for i, part in enumerate(parts):
if "<loc" in part:
# 解析位置
coords = []
loc_str = part
while loc_str.startswith("<loc") and len(coords) < 4:
try:
# 提取坐标
coord_value = int(loc_str[4:loc_str.find(">")])
coords.append(coord_value / 1024) # 归一化坐标
# 移除已处理的部分
loc_str = loc_str[loc_str.find(">")+1:]
except (ValueError, IndexError):
break
if len(coords) == 4:
boxes.append(coords)
# 查找标签(通常在下一个部分)
label_idx = 1
while i + label_idx < len(parts) and not parts[i + label_idx].startswith("<loc"):
label_text = parts[i + label_idx]
if "void" in label_text:
labels.append(0)
break
elif "crack" in label_text:
labels.append(1)
break
label_idx += 1
# 如果未找到特定标签,默认为void
if len(labels) < len(boxes):
labels.append(0)
unified_annotations.append({
"image_filename": image_filename,
"boxes": boxes,
"labels": labels,
"caption": caption,
"source": "p1v1"
})
annotation_count += 1
except json.JSONDecodeError as e:
print(f"警告: {full_path} 第 {line_num} 行不是有效的 JSON: {e}")
continue
print(f"从 {full_path} 加载了 {annotation_count} 条注释")
else:
print(f"未找到 JSONL 文件: {full_path}")
# 如果是valid分割,与val合并
if split == "valid":
val_annotations = []
if os.path.exists(f"annotations/val_unified.json"):
try:
with open(f"annotations/val_unified.json", "r", encoding="utf-8") as f:
val_annotations = json.load(f)
print(f"加载现有val分割注释,共 {len(val_annotations)} 条记录")
# 合并注释,避免重复
existing_filenames = {ann["image_filename"] for ann in val_annotations}
for ann in unified_annotations:
if ann["image_filename"] not in existing_filenames:
val_annotations.append(ann)
existing_filenames.add(ann["image_filename"])
print(f"将valid分割与val分割合并,共 {len(val_annotations)} 条记录")
unified_annotations = val_annotations
except Exception as e:
print(f"合并valid和val分割时出错: {e}")
# 保存统一格式的注释
if unified_annotations:
# 对于valid分割,保存为val_unified.json
save_split = "val" if split == "valid" else split
print(f"为 {save_split} 创建统一格式注释,共 {len(unified_annotations)} 条记录")
unified_path = f"annotations/{save_split}_unified.json"
with open(unified_path, "w", encoding="utf-8") as f:
json.dump(unified_annotations, f, ensure_ascii=False, indent=2)
print(f"已保存统一格式注释到: {unified_path}")
else:
print(f"警告: {split} 没有有效的注释,跳过创建统一格式文件") |