File size: 14,529 Bytes
bcb5616
 
 
6e9bd3c
bcb5616
 
 
 
 
6e9bd3c
 
bcb5616
 
 
 
 
 
 
6e9bd3c
 
 
 
bcb5616
6e9bd3c
bcb5616
 
6e9bd3c
bcb5616
 
6e9bd3c
bcb5616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e9bd3c
 
 
bcb5616
6e9bd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcb5616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e9bd3c
 
 
bcb5616
6e9bd3c
bcb5616
 
6e9bd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
bcb5616
6e9bd3c
bcb5616
 
 
 
 
 
 
 
 
 
 
 
 
6e9bd3c
 
 
bcb5616
 
 
6e9bd3c
 
 
 
 
 
 
bcb5616
6e9bd3c
 
 
 
bcb5616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e9bd3c
 
bcb5616
6e9bd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcb5616
6e9bd3c
 
 
bcb5616
 
 
 
 
 
 
 
 
 
6e9bd3c
bcb5616
6e9bd3c
bcb5616
6e9bd3c
bcb5616
 
6e9bd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcb5616
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import json
import os
import datasets

import jsonlines

logger = datasets.logging.get_logger(__name__)

_CITATION = """\
@misc{chen2024gpradar,
  title={GPRadar-Defect-MultiTask Dataset},
  author={Chen, Xingqiang},
  year={2024},
  publisher={Hugging Face}
}
"""

_DESCRIPTION = """\
GPRadar-Defect-MultiTask Dataset

This dataset contains ground penetrating radar (GPR) images and annotations for defect detection and analysis,
designed for training and evaluating multimodal models for GPR defect detection.
The dataset includes both basic defect detection samples and a larger set of
874 annotated images from real-world structural inspections focusing on voids and cracks.
"""

_HOMEPAGE = "https://huggingface.co/datasets/xingqiang/GPRadar-Defect-MultiTask"

class PaligemmaDataset(datasets.GeneratorBasedBuilder):
    """GPRadar-Defect-MultiTask Dataset for GPR defect detection and analysis."""

    VERSION = datasets.Version("1.1.0")

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({
                "image": datasets.Image(),
                "boxes": datasets.Sequence(datasets.Sequence(datasets.Value("float32"), length=4)),
                "labels": datasets.Sequence(datasets.ClassLabel(names=["void", "crack"])),
                "caption": datasets.Value("string"),
            }),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "split": "val",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "split": "test",
                },
            ),
        ]

    def _generate_examples(self, split):
        """Yields examples."""
        # 统一格式的注释文件
        annotation_file = f"annotations/{split}_unified.json"
        
        if not os.path.exists(annotation_file):
            # 如果统一格式文件不存在,尝试转换
            convert_annotations_to_unified_format()
            
            # 再次检查文件是否已创建
            if not os.path.exists(annotation_file):
                logger.warning(f"找不到统一格式注释文件: {annotation_file},将返回空数据")
                return

        # 加载统一格式的注释
        with open(annotation_file, "r", encoding="utf-8") as f:
            annotations = json.load(f)

        for idx, ann in enumerate(annotations):
            # 尝试在不同的可能路径中查找图像
            image_found = False
            image_filename = ann["image_filename"]
            
            for image_path in [
                f"images/{split}/{image_filename}",
                f"images/datasets/{image_filename}",
                f"images/{image_filename}",
            ]:
                if os.path.exists(image_path):
                    yield idx, {
                        "image": image_path,
                        "boxes": ann["boxes"],
                        "labels": ann["labels"],
                        "caption": ann["caption"],
                    }
                    image_found = True
                    break
            
            if not image_found:
                logger.warning(f"找不到图像文件: {image_filename},跳过该示例")


def normalize_image_path(image_path):
    """规范化图像路径,移除多余的前缀"""
    # 处理特殊前缀
    if "p-1.v1i.paligemma-multimodal/dataset/" in image_path:
        return image_path.split("p-1.v1i.paligemma-multimodal/dataset/")[-1]
    return image_path


def convert_annotations_to_unified_format():
    """将所有注释转换为统一格式"""
    print("开始转换注释为统一格式...")
    
    # 确保annotations目录存在
    os.makedirs("annotations", exist_ok=True)

    # 增加对valid分割的处理(有些文件使用valid而不是val)
    for split in ["train", "val", "valid", "test"]:
        print(f"处理 {split} 分割...")
        unified_annotations = []
        
        # 处理 JSON 注释
        json_path = f"annotations/{split}.json"
        print(f"检查 JSON 文件: {json_path}")
        if os.path.exists(json_path):
            print(f"找到 JSON 文件: {json_path}")
            with open(json_path, encoding="utf-8") as f:
                try:
                    annotations = json.load(f)
                    print(f"从 {json_path} 加载了 {len(annotations)} 条注释")
                    for ann in annotations:
                        unified_annotations.append({
                            "image_filename": ann["image_filename"],
                            "boxes": ann["boxes"],
                            "labels": ann["labels"],
                            "caption": ann["caption"],
                            "source": "original"
                        })
                except json.JSONDecodeError:
                    print(f"错误: {json_path} 不是有效的 JSON 文件")
        else:
            print(f"未找到 JSON 文件: {json_path}")
        
        # 查找所有可能的JSONL注释文件
        # 1. 检查根目录
        jsonl_files_to_check = [
            f"_annotations.{split}.jsonl", 
            f"_annotations.{split}1.jsonl"
        ]
        
        # 2. 递归查找子目录中的JSONL文件
        for root, dirs, files in os.walk("annotations"):
            for file in files:
                if file.endswith(f"{split}.jsonl") or file.endswith(f"{split}1.jsonl") or file.endswith(f"{split}2.jsonl"):
                    rel_path = os.path.relpath(os.path.join(root, file), "annotations")
                    if rel_path != file:  # 不是根目录的文件
                        jsonl_files_to_check.append(rel_path)
        
        # 处理所有找到的JSONL文件
        for jsonl_path in jsonl_files_to_check:
            full_path = os.path.join("annotations", jsonl_path)
            print(f"检查 JSONL 文件: {full_path}")
            if os.path.exists(full_path):
                print(f"找到 JSONL 文件: {full_path}")
                annotation_count = 0
                with open(full_path, encoding="utf-8") as f:
                    for line_num, line in enumerate(f, 1):
                        try:
                            line = line.strip()
                            if not line:  # 跳过空行
                                print(f"跳过第 {line_num} 行: 空行")
                                continue
                                
                            ann = json.loads(line)
                            image_filename = ann.get("image", "")
                            
                            if not image_filename:
                                print(f"跳过第 {line_num} 行: 没有图像文件名")
                                continue
                            
                            # 规范化图像路径
                            image_filename = normalize_image_path(image_filename)
                                
                            # 检查图像是否存在
                            image_exists = False
                            possible_image_paths = [
                                f"images/datasets/{image_filename}",
                                f"images/train/{image_filename}",
                                f"images/val/{image_filename}",
                                f"images/test/{image_filename}",
                                f"images/{image_filename}"  # 直接在images目录下
                            ]
                            
                            for img_path in possible_image_paths:
                                if os.path.exists(img_path):
                                    image_exists = True
                                    break
                            
                            if not image_exists:
                                print(f"警告: 图像文件不存在: {image_filename}")
                                continue
                            
                            # 转换为统一格式
                            if "annotations" in ann:
                                # 处理新格式
                                boxes = [[b["x"], b["y"], b["width"], b["height"]] for b in ann["annotations"]]
                                labels = [0 if b["class"] == "void" else 1 for b in ann["annotations"]]
                                caption = f"Image contains {len(boxes)} defects: " + \
                                        ", ".join([b["class"] for b in ann["annotations"]])
                            else:
                                # 处理旧格式 (prefix/suffix)
                                boxes = []
                                labels = []
                                caption = ann.get("prefix", "")
                                
                                if "suffix" in ann:
                                    parts = ann["suffix"].split()
                                    for i, part in enumerate(parts):
                                        if "<loc" in part:
                                            # 解析位置
                                            coords = []
                                            loc_str = part
                                            while loc_str.startswith("<loc") and len(coords) < 4:
                                                try:
                                                    # 提取坐标
                                                    coord_value = int(loc_str[4:loc_str.find(">")])
                                                    coords.append(coord_value / 1024)  # 归一化坐标
                                                    # 移除已处理的部分
                                                    loc_str = loc_str[loc_str.find(">")+1:]
                                                except (ValueError, IndexError):
                                                    break
                                            
                                            if len(coords) == 4:
                                                boxes.append(coords)
                                                # 查找标签(通常在下一个部分)
                                                label_idx = 1
                                                while i + label_idx < len(parts) and not parts[i + label_idx].startswith("<loc"):
                                                    label_text = parts[i + label_idx]
                                                    if "void" in label_text:
                                                        labels.append(0)
                                                        break
                                                    elif "crack" in label_text:
                                                        labels.append(1)
                                                        break
                                                    label_idx += 1
                                                
                                                # 如果未找到特定标签,默认为void
                                                if len(labels) < len(boxes):
                                                    labels.append(0)
                            
                            unified_annotations.append({
                                "image_filename": image_filename,
                                "boxes": boxes,
                                "labels": labels,
                                "caption": caption,
                                "source": "p1v1"
                            })
                            annotation_count += 1
                        except json.JSONDecodeError as e:
                            print(f"警告: {full_path}{line_num} 行不是有效的 JSON: {e}")
                            continue
                print(f"从 {full_path} 加载了 {annotation_count} 条注释")
            else:
                print(f"未找到 JSONL 文件: {full_path}")
        
        # 如果是valid分割,与val合并
        if split == "valid":
            val_annotations = []
            if os.path.exists(f"annotations/val_unified.json"):
                try:
                    with open(f"annotations/val_unified.json", "r", encoding="utf-8") as f:
                        val_annotations = json.load(f)
                    print(f"加载现有val分割注释,共 {len(val_annotations)} 条记录")
                    
                    # 合并注释,避免重复
                    existing_filenames = {ann["image_filename"] for ann in val_annotations}
                    for ann in unified_annotations:
                        if ann["image_filename"] not in existing_filenames:
                            val_annotations.append(ann)
                            existing_filenames.add(ann["image_filename"])
                    
                    print(f"将valid分割与val分割合并,共 {len(val_annotations)} 条记录")
                    unified_annotations = val_annotations
                except Exception as e:
                    print(f"合并valid和val分割时出错: {e}")
                    
        # 保存统一格式的注释
        if unified_annotations:
            # 对于valid分割,保存为val_unified.json
            save_split = "val" if split == "valid" else split
            print(f"为 {save_split} 创建统一格式注释,共 {len(unified_annotations)} 条记录")
            unified_path = f"annotations/{save_split}_unified.json"
            with open(unified_path, "w", encoding="utf-8") as f:
                json.dump(unified_annotations, f, ensure_ascii=False, indent=2)
            print(f"已保存统一格式注释到: {unified_path}")
        else:
            print(f"警告: {split} 没有有效的注释,跳过创建统一格式文件")