Upload paligemma_dataset.py with huggingface_hub
Browse files- paligemma_dataset.py +340 -0
paligemma_dataset.py
ADDED
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
from PIL import Image
|
7 |
+
import jsonlines
|
8 |
+
|
9 |
+
logger = datasets.logging.get_logger(__name__)
|
10 |
+
|
11 |
+
_CITATION = """\
|
12 |
+
@misc{chen2024paligemma,
|
13 |
+
title={PaliGemma Multitask Dataset},
|
14 |
+
author={Chen, Xingqiang},
|
15 |
+
year={2024},
|
16 |
+
publisher={Hugging Face}
|
17 |
+
}
|
18 |
+
"""
|
19 |
+
|
20 |
+
_DESCRIPTION = """\
|
21 |
+
This dataset contains images and annotations for defect detection and analysis,
|
22 |
+
designed for training and evaluating the PaliGemma multitask model.
|
23 |
+
The dataset includes both basic defect detection samples and a larger set of
|
24 |
+
874 annotated images from real-world structural inspections.
|
25 |
+
"""
|
26 |
+
|
27 |
+
_HOMEPAGE = "https://huggingface.co/datasets/xingqiang/paligemma-multitask-dataset"
|
28 |
+
|
29 |
+
class PaligemmaDataset(datasets.GeneratorBasedBuilder):
|
30 |
+
"""PaliGemma Multitask Dataset for defect detection and analysis."""
|
31 |
+
|
32 |
+
VERSION = datasets.Version("1.1.0")
|
33 |
+
|
34 |
+
def _info(self):
|
35 |
+
return datasets.DatasetInfo(
|
36 |
+
description=_DESCRIPTION,
|
37 |
+
features=datasets.Features({
|
38 |
+
"image": datasets.Image(),
|
39 |
+
"boxes": datasets.Sequence(datasets.Sequence(datasets.Value("float32"), length=4)),
|
40 |
+
"labels": datasets.Sequence(datasets.ClassLabel(names=["void", "crack"])),
|
41 |
+
"caption": datasets.Value("string"),
|
42 |
+
"source": datasets.Value("string"),
|
43 |
+
}),
|
44 |
+
supervised_keys=None,
|
45 |
+
homepage=_HOMEPAGE,
|
46 |
+
citation=_CITATION,
|
47 |
+
)
|
48 |
+
|
49 |
+
def _split_generators(self, dl_manager):
|
50 |
+
"""Returns SplitGenerators."""
|
51 |
+
return [
|
52 |
+
datasets.SplitGenerator(
|
53 |
+
name=datasets.Split.TRAIN,
|
54 |
+
gen_kwargs={
|
55 |
+
"split": "train",
|
56 |
+
},
|
57 |
+
),
|
58 |
+
datasets.SplitGenerator(
|
59 |
+
name=datasets.Split.VALIDATION,
|
60 |
+
gen_kwargs={
|
61 |
+
"split": "val",
|
62 |
+
},
|
63 |
+
),
|
64 |
+
datasets.SplitGenerator(
|
65 |
+
name=datasets.Split.TEST,
|
66 |
+
gen_kwargs={
|
67 |
+
"split": "test",
|
68 |
+
},
|
69 |
+
),
|
70 |
+
]
|
71 |
+
|
72 |
+
def _generate_examples(self, split):
|
73 |
+
"""生成示例。"""
|
74 |
+
# 优先加载统一格式的注释
|
75 |
+
unified_path = os.path.join("annotations", f"{split}_unified.json")
|
76 |
+
if os.path.exists(unified_path):
|
77 |
+
logger.info(f"使用统一格式的注释文件: {unified_path}")
|
78 |
+
with open(unified_path, encoding="utf-8") as f:
|
79 |
+
annotations = json.load(f)
|
80 |
+
for idx, ann in enumerate(annotations):
|
81 |
+
image_path = os.path.join("images", split, ann["image_filename"])
|
82 |
+
try:
|
83 |
+
yield f"unified_{idx}", {
|
84 |
+
"image": image_path,
|
85 |
+
"boxes": ann["boxes"],
|
86 |
+
"labels": ann["labels"],
|
87 |
+
"caption": ann["caption"],
|
88 |
+
"source": ann.get("source", "unified")
|
89 |
+
}
|
90 |
+
except Exception as e:
|
91 |
+
logger.warning(f"跳过无效图像 {image_path}: {e}")
|
92 |
+
continue
|
93 |
+
return # 如果使用了统一格式,不再处理其他格式
|
94 |
+
|
95 |
+
# 如果没有统一格式,则回退到原始格式
|
96 |
+
# 加载原始 JSON 注释
|
97 |
+
json_path = os.path.join("annotations", f"{split}.json")
|
98 |
+
if os.path.exists(json_path):
|
99 |
+
with open(json_path, encoding="utf-8") as f:
|
100 |
+
annotations = json.load(f)
|
101 |
+
for idx, ann in enumerate(annotations):
|
102 |
+
image_path = os.path.join("images", split, ann["image_filename"])
|
103 |
+
try:
|
104 |
+
# 不要尝试在这里打开图像,只返回路径
|
105 |
+
yield f"orig_{idx}", {
|
106 |
+
"image": image_path,
|
107 |
+
"boxes": ann["boxes"],
|
108 |
+
"labels": ann["labels"],
|
109 |
+
"caption": ann["caption"],
|
110 |
+
"source": "original"
|
111 |
+
}
|
112 |
+
except Exception as e:
|
113 |
+
logger.warning(f"跳过无效图像 {image_path}: {e}")
|
114 |
+
continue
|
115 |
+
|
116 |
+
# 加载 JSONL 注释
|
117 |
+
jsonl_path = os.path.join("annotations", f"_annotations.{split}.jsonl")
|
118 |
+
if os.path.exists(jsonl_path):
|
119 |
+
with jsonlines.open(jsonl_path) as reader:
|
120 |
+
for idx, ann in enumerate(reader):
|
121 |
+
# 确保使用正确的图像文件名
|
122 |
+
image_filename = ann.get("image", "")
|
123 |
+
image_path = os.path.join("images", split, image_filename)
|
124 |
+
|
125 |
+
try:
|
126 |
+
# 不要尝试在这里打开图像,只返回路径
|
127 |
+
# 转换注释为我们的格式
|
128 |
+
if "annotations" in ann:
|
129 |
+
# 处理新格式
|
130 |
+
boxes = [[b["x"], b["y"], b["width"], b["height"]] for b in ann["annotations"]]
|
131 |
+
labels = [0 if b["class"] == "void" else 1 for b in ann["annotations"]]
|
132 |
+
caption = f"Image contains {len(boxes)} defects: " + \
|
133 |
+
", ".join([b["class"] for b in ann["annotations"]])
|
134 |
+
else:
|
135 |
+
# 处理旧格式 (prefix/suffix)
|
136 |
+
# 这里需要解析 suffix 中的位置信息
|
137 |
+
boxes = []
|
138 |
+
labels = []
|
139 |
+
if "suffix" in ann:
|
140 |
+
parts = ann["suffix"].split(";")
|
141 |
+
for part in parts:
|
142 |
+
part = part.strip()
|
143 |
+
if "<loc" in part:
|
144 |
+
# 解析位置和标签
|
145 |
+
loc_parts = part.split()
|
146 |
+
if len(loc_parts) >= 2:
|
147 |
+
# 提取坐标
|
148 |
+
coords = []
|
149 |
+
for loc in loc_parts[0].split("><"):
|
150 |
+
if loc.startswith("<loc"):
|
151 |
+
coords.append(int(loc[4:-1]) / 1024) # 归一化坐标
|
152 |
+
|
153 |
+
if len(coords) == 4:
|
154 |
+
boxes.append(coords)
|
155 |
+
label = 0 if "void" in loc_parts[1] else 1
|
156 |
+
labels.append(label)
|
157 |
+
|
158 |
+
caption = ann.get("prefix", "")
|
159 |
+
|
160 |
+
# 检查图像是否存在
|
161 |
+
image_exists = False
|
162 |
+
|
163 |
+
# 检查images/datasets目录
|
164 |
+
if os.path.exists(f"images/datasets/{image_filename}"):
|
165 |
+
image_exists = True
|
166 |
+
|
167 |
+
# 检查原始路径
|
168 |
+
if not image_exists:
|
169 |
+
for img_split in ["train", "val", "test"]:
|
170 |
+
if os.path.exists(f"images/{img_split}/{image_filename}"):
|
171 |
+
image_exists = True
|
172 |
+
break
|
173 |
+
|
174 |
+
if not image_exists:
|
175 |
+
print(f"警告: 图像文件不存在: {image_filename}")
|
176 |
+
continue
|
177 |
+
|
178 |
+
yield f"p1v1_{idx}", {
|
179 |
+
"image": image_path,
|
180 |
+
"boxes": boxes,
|
181 |
+
"labels": labels,
|
182 |
+
"caption": caption,
|
183 |
+
"source": "p1v1"
|
184 |
+
}
|
185 |
+
except Exception as e:
|
186 |
+
logger.warning(f"跳过无效注释 {image_path}: {e}")
|
187 |
+
continue
|
188 |
+
|
189 |
+
def convert_annotations_to_unified_format():
|
190 |
+
"""将所有注释转换为统一格式"""
|
191 |
+
print("开始转换注释为统一格式...")
|
192 |
+
|
193 |
+
# 确保annotations目录存在
|
194 |
+
os.makedirs("annotations", exist_ok=True)
|
195 |
+
|
196 |
+
# 增加对valid分割的处理(有些文件使用valid而不是val)
|
197 |
+
for split in ["train", "val", "valid", "test"]:
|
198 |
+
print(f"处理 {split} 分割...")
|
199 |
+
unified_annotations = []
|
200 |
+
|
201 |
+
# 处理 JSON 注释
|
202 |
+
json_path = f"annotations/{split}.json"
|
203 |
+
print(f"检查 JSON 文件: {json_path}")
|
204 |
+
if os.path.exists(json_path):
|
205 |
+
print(f"找到 JSON 文件: {json_path}")
|
206 |
+
with open(json_path, encoding="utf-8") as f:
|
207 |
+
try:
|
208 |
+
annotations = json.load(f)
|
209 |
+
print(f"从 {json_path} 加载了 {len(annotations)} 条注释")
|
210 |
+
for ann in annotations:
|
211 |
+
unified_annotations.append({
|
212 |
+
"image_filename": ann["image_filename"],
|
213 |
+
"boxes": ann["boxes"],
|
214 |
+
"labels": ann["labels"],
|
215 |
+
"caption": ann["caption"],
|
216 |
+
"source": "original"
|
217 |
+
})
|
218 |
+
except json.JSONDecodeError:
|
219 |
+
print(f"错误: {json_path} 不是有效的 JSON 文件")
|
220 |
+
else:
|
221 |
+
print(f"未找到 JSON 文件: {json_path}")
|
222 |
+
|
223 |
+
# 处理 JSONL 注释,包括目录p-1.v1i.paligemma下的文件
|
224 |
+
jsonl_variants = [
|
225 |
+
f"_annotations.{split}.jsonl",
|
226 |
+
f"_annotations.{split}1.jsonl",
|
227 |
+
f"p-1.v1i.paligemma/_annotations.{split}.jsonl",
|
228 |
+
f"p-1.v1i.paligemma/_annotations.{split}1.jsonl"
|
229 |
+
]
|
230 |
+
|
231 |
+
for jsonl_variant in jsonl_variants:
|
232 |
+
jsonl_path = f"annotations/{jsonl_variant}"
|
233 |
+
print(f"检查 JSONL 文件: {jsonl_path}")
|
234 |
+
if os.path.exists(jsonl_path):
|
235 |
+
print(f"找到 JSONL 文件: {jsonl_path}")
|
236 |
+
annotation_count = 0
|
237 |
+
with open(jsonl_path, encoding="utf-8") as f:
|
238 |
+
for line_num, line in enumerate(f, 1):
|
239 |
+
try:
|
240 |
+
line = line.strip()
|
241 |
+
if not line: # 跳过空行
|
242 |
+
print(f"跳过第 {line_num} 行: 空行")
|
243 |
+
continue
|
244 |
+
|
245 |
+
ann = json.loads(line)
|
246 |
+
image_filename = ann.get("image", "")
|
247 |
+
|
248 |
+
if not image_filename:
|
249 |
+
print(f"跳过第 {line_num} 行: 没有图像文件名")
|
250 |
+
continue
|
251 |
+
|
252 |
+
# 检查图像是否存在
|
253 |
+
image_exists = False
|
254 |
+
|
255 |
+
# 检查images/datasets目录
|
256 |
+
if os.path.exists(f"images/datasets/{image_filename}"):
|
257 |
+
image_exists = True
|
258 |
+
|
259 |
+
# 检查原始路径
|
260 |
+
if not image_exists:
|
261 |
+
for img_split in ["train", "val", "test"]:
|
262 |
+
if os.path.exists(f"images/{img_split}/{image_filename}"):
|
263 |
+
image_exists = True
|
264 |
+
break
|
265 |
+
|
266 |
+
if not image_exists:
|
267 |
+
print(f"警告: 图像文件不存在: {image_filename}")
|
268 |
+
continue
|
269 |
+
|
270 |
+
# 转换为统一格式
|
271 |
+
if "annotations" in ann:
|
272 |
+
# 处理新格式
|
273 |
+
boxes = [[b["x"], b["y"], b["width"], b["height"]] for b in ann["annotations"]]
|
274 |
+
labels = [0 if b["class"] == "void" else 1 for b in ann["annotations"]]
|
275 |
+
caption = f"Image contains {len(boxes)} defects: " + \
|
276 |
+
", ".join([b["class"] for b in ann["annotations"]])
|
277 |
+
else:
|
278 |
+
# 处理旧格式 (prefix/suffix)
|
279 |
+
boxes = []
|
280 |
+
labels = []
|
281 |
+
caption = ann.get("prefix", "")
|
282 |
+
|
283 |
+
if "suffix" in ann:
|
284 |
+
parts = ann["suffix"].split(";")
|
285 |
+
for part in parts:
|
286 |
+
part = part.strip()
|
287 |
+
if "<loc" in part:
|
288 |
+
# 解析位置和标签
|
289 |
+
loc_parts = part.split()
|
290 |
+
if len(loc_parts) >= 2:
|
291 |
+
# 提取坐标
|
292 |
+
coords = []
|
293 |
+
for loc in loc_parts[0].split("><"):
|
294 |
+
if loc.startswith("<loc"):
|
295 |
+
try:
|
296 |
+
coords.append(int(loc[4:-1]) / 1024) # 归一化坐标
|
297 |
+
except ValueError:
|
298 |
+
continue
|
299 |
+
|
300 |
+
if len(coords) == 4:
|
301 |
+
boxes.append(coords)
|
302 |
+
label = 0 if "void" in loc_parts[1] else 1
|
303 |
+
labels.append(label)
|
304 |
+
|
305 |
+
unified_annotations.append({
|
306 |
+
"image_filename": image_filename,
|
307 |
+
"boxes": boxes,
|
308 |
+
"labels": labels,
|
309 |
+
"caption": caption,
|
310 |
+
"source": "p1v1"
|
311 |
+
})
|
312 |
+
annotation_count += 1
|
313 |
+
except json.JSONDecodeError as e:
|
314 |
+
print(f"警告: {jsonl_path} 第 {line_num} 行不是有效的 JSON: {e}")
|
315 |
+
continue
|
316 |
+
print(f"从 {jsonl_path} 加载了 {annotation_count} 条注释")
|
317 |
+
else:
|
318 |
+
print(f"未找到 JSONL 文件: {jsonl_path}")
|
319 |
+
|
320 |
+
# 如果是valid分割,与val合并
|
321 |
+
if split == "valid" and os.path.exists(f"annotations/val_unified.json"):
|
322 |
+
try:
|
323 |
+
with open(f"annotations/val_unified.json", "r", encoding="utf-8") as f:
|
324 |
+
val_annotations = json.load(f)
|
325 |
+
unified_annotations.extend(val_annotations)
|
326 |
+
print(f"将valid分割与val分割合并,共 {len(unified_annotations)} 条记录")
|
327 |
+
except Exception as e:
|
328 |
+
print(f"合并valid和val分割时出错: {e}")
|
329 |
+
|
330 |
+
# 保存统一格式的注释
|
331 |
+
if unified_annotations:
|
332 |
+
# 对于valid分割,保存为val_unified.json
|
333 |
+
save_split = "val" if split == "valid" else split
|
334 |
+
print(f"为 {save_split} 创建统一格式注释,共 {len(unified_annotations)} 条记录")
|
335 |
+
unified_path = f"annotations/{save_split}_unified.json"
|
336 |
+
with open(unified_path, "w", encoding="utf-8") as f:
|
337 |
+
json.dump(unified_annotations, f, ensure_ascii=False, indent=2)
|
338 |
+
print(f"已保存统一格式注释到: {unified_path}")
|
339 |
+
else:
|
340 |
+
print(f"警告: {split} 没有有效的注释,跳过创建统一格式文件")
|