Upload paligemma_dataset.py with huggingface_hub
Browse files- paligemma_dataset.py +340 -0
paligemma_dataset.py
ADDED
|
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
|
| 5 |
+
import datasets
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import jsonlines
|
| 8 |
+
|
| 9 |
+
logger = datasets.logging.get_logger(__name__)
|
| 10 |
+
|
| 11 |
+
_CITATION = """\
|
| 12 |
+
@misc{chen2024paligemma,
|
| 13 |
+
title={PaliGemma Multitask Dataset},
|
| 14 |
+
author={Chen, Xingqiang},
|
| 15 |
+
year={2024},
|
| 16 |
+
publisher={Hugging Face}
|
| 17 |
+
}
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
_DESCRIPTION = """\
|
| 21 |
+
This dataset contains images and annotations for defect detection and analysis,
|
| 22 |
+
designed for training and evaluating the PaliGemma multitask model.
|
| 23 |
+
The dataset includes both basic defect detection samples and a larger set of
|
| 24 |
+
874 annotated images from real-world structural inspections.
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
_HOMEPAGE = "https://huggingface.co/datasets/xingqiang/paligemma-multitask-dataset"
|
| 28 |
+
|
| 29 |
+
class PaligemmaDataset(datasets.GeneratorBasedBuilder):
|
| 30 |
+
"""PaliGemma Multitask Dataset for defect detection and analysis."""
|
| 31 |
+
|
| 32 |
+
VERSION = datasets.Version("1.1.0")
|
| 33 |
+
|
| 34 |
+
def _info(self):
|
| 35 |
+
return datasets.DatasetInfo(
|
| 36 |
+
description=_DESCRIPTION,
|
| 37 |
+
features=datasets.Features({
|
| 38 |
+
"image": datasets.Image(),
|
| 39 |
+
"boxes": datasets.Sequence(datasets.Sequence(datasets.Value("float32"), length=4)),
|
| 40 |
+
"labels": datasets.Sequence(datasets.ClassLabel(names=["void", "crack"])),
|
| 41 |
+
"caption": datasets.Value("string"),
|
| 42 |
+
"source": datasets.Value("string"),
|
| 43 |
+
}),
|
| 44 |
+
supervised_keys=None,
|
| 45 |
+
homepage=_HOMEPAGE,
|
| 46 |
+
citation=_CITATION,
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
def _split_generators(self, dl_manager):
|
| 50 |
+
"""Returns SplitGenerators."""
|
| 51 |
+
return [
|
| 52 |
+
datasets.SplitGenerator(
|
| 53 |
+
name=datasets.Split.TRAIN,
|
| 54 |
+
gen_kwargs={
|
| 55 |
+
"split": "train",
|
| 56 |
+
},
|
| 57 |
+
),
|
| 58 |
+
datasets.SplitGenerator(
|
| 59 |
+
name=datasets.Split.VALIDATION,
|
| 60 |
+
gen_kwargs={
|
| 61 |
+
"split": "val",
|
| 62 |
+
},
|
| 63 |
+
),
|
| 64 |
+
datasets.SplitGenerator(
|
| 65 |
+
name=datasets.Split.TEST,
|
| 66 |
+
gen_kwargs={
|
| 67 |
+
"split": "test",
|
| 68 |
+
},
|
| 69 |
+
),
|
| 70 |
+
]
|
| 71 |
+
|
| 72 |
+
def _generate_examples(self, split):
|
| 73 |
+
"""生成示例。"""
|
| 74 |
+
# 优先加载统一格式的注释
|
| 75 |
+
unified_path = os.path.join("annotations", f"{split}_unified.json")
|
| 76 |
+
if os.path.exists(unified_path):
|
| 77 |
+
logger.info(f"使用统一格式的注释文件: {unified_path}")
|
| 78 |
+
with open(unified_path, encoding="utf-8") as f:
|
| 79 |
+
annotations = json.load(f)
|
| 80 |
+
for idx, ann in enumerate(annotations):
|
| 81 |
+
image_path = os.path.join("images", split, ann["image_filename"])
|
| 82 |
+
try:
|
| 83 |
+
yield f"unified_{idx}", {
|
| 84 |
+
"image": image_path,
|
| 85 |
+
"boxes": ann["boxes"],
|
| 86 |
+
"labels": ann["labels"],
|
| 87 |
+
"caption": ann["caption"],
|
| 88 |
+
"source": ann.get("source", "unified")
|
| 89 |
+
}
|
| 90 |
+
except Exception as e:
|
| 91 |
+
logger.warning(f"跳过无效图像 {image_path}: {e}")
|
| 92 |
+
continue
|
| 93 |
+
return # 如果使用了统一格式,不再处理其他格式
|
| 94 |
+
|
| 95 |
+
# 如果没有统一格式,则回退到原始格式
|
| 96 |
+
# 加载原始 JSON 注释
|
| 97 |
+
json_path = os.path.join("annotations", f"{split}.json")
|
| 98 |
+
if os.path.exists(json_path):
|
| 99 |
+
with open(json_path, encoding="utf-8") as f:
|
| 100 |
+
annotations = json.load(f)
|
| 101 |
+
for idx, ann in enumerate(annotations):
|
| 102 |
+
image_path = os.path.join("images", split, ann["image_filename"])
|
| 103 |
+
try:
|
| 104 |
+
# 不要尝试在这里打开图像,只返回路径
|
| 105 |
+
yield f"orig_{idx}", {
|
| 106 |
+
"image": image_path,
|
| 107 |
+
"boxes": ann["boxes"],
|
| 108 |
+
"labels": ann["labels"],
|
| 109 |
+
"caption": ann["caption"],
|
| 110 |
+
"source": "original"
|
| 111 |
+
}
|
| 112 |
+
except Exception as e:
|
| 113 |
+
logger.warning(f"跳过无效图像 {image_path}: {e}")
|
| 114 |
+
continue
|
| 115 |
+
|
| 116 |
+
# 加载 JSONL 注释
|
| 117 |
+
jsonl_path = os.path.join("annotations", f"_annotations.{split}.jsonl")
|
| 118 |
+
if os.path.exists(jsonl_path):
|
| 119 |
+
with jsonlines.open(jsonl_path) as reader:
|
| 120 |
+
for idx, ann in enumerate(reader):
|
| 121 |
+
# 确保使用正确的图像文件名
|
| 122 |
+
image_filename = ann.get("image", "")
|
| 123 |
+
image_path = os.path.join("images", split, image_filename)
|
| 124 |
+
|
| 125 |
+
try:
|
| 126 |
+
# 不要尝试在这里打开图像,只返回路径
|
| 127 |
+
# 转换注释为我们的格式
|
| 128 |
+
if "annotations" in ann:
|
| 129 |
+
# 处理新格式
|
| 130 |
+
boxes = [[b["x"], b["y"], b["width"], b["height"]] for b in ann["annotations"]]
|
| 131 |
+
labels = [0 if b["class"] == "void" else 1 for b in ann["annotations"]]
|
| 132 |
+
caption = f"Image contains {len(boxes)} defects: " + \
|
| 133 |
+
", ".join([b["class"] for b in ann["annotations"]])
|
| 134 |
+
else:
|
| 135 |
+
# 处理旧格式 (prefix/suffix)
|
| 136 |
+
# 这里需要解析 suffix 中的位置信息
|
| 137 |
+
boxes = []
|
| 138 |
+
labels = []
|
| 139 |
+
if "suffix" in ann:
|
| 140 |
+
parts = ann["suffix"].split(";")
|
| 141 |
+
for part in parts:
|
| 142 |
+
part = part.strip()
|
| 143 |
+
if "<loc" in part:
|
| 144 |
+
# 解析位置和标签
|
| 145 |
+
loc_parts = part.split()
|
| 146 |
+
if len(loc_parts) >= 2:
|
| 147 |
+
# 提取坐标
|
| 148 |
+
coords = []
|
| 149 |
+
for loc in loc_parts[0].split("><"):
|
| 150 |
+
if loc.startswith("<loc"):
|
| 151 |
+
coords.append(int(loc[4:-1]) / 1024) # 归一化坐标
|
| 152 |
+
|
| 153 |
+
if len(coords) == 4:
|
| 154 |
+
boxes.append(coords)
|
| 155 |
+
label = 0 if "void" in loc_parts[1] else 1
|
| 156 |
+
labels.append(label)
|
| 157 |
+
|
| 158 |
+
caption = ann.get("prefix", "")
|
| 159 |
+
|
| 160 |
+
# 检查图像是否存在
|
| 161 |
+
image_exists = False
|
| 162 |
+
|
| 163 |
+
# 检查images/datasets目录
|
| 164 |
+
if os.path.exists(f"images/datasets/{image_filename}"):
|
| 165 |
+
image_exists = True
|
| 166 |
+
|
| 167 |
+
# 检查原始路径
|
| 168 |
+
if not image_exists:
|
| 169 |
+
for img_split in ["train", "val", "test"]:
|
| 170 |
+
if os.path.exists(f"images/{img_split}/{image_filename}"):
|
| 171 |
+
image_exists = True
|
| 172 |
+
break
|
| 173 |
+
|
| 174 |
+
if not image_exists:
|
| 175 |
+
print(f"警告: 图像文件不存在: {image_filename}")
|
| 176 |
+
continue
|
| 177 |
+
|
| 178 |
+
yield f"p1v1_{idx}", {
|
| 179 |
+
"image": image_path,
|
| 180 |
+
"boxes": boxes,
|
| 181 |
+
"labels": labels,
|
| 182 |
+
"caption": caption,
|
| 183 |
+
"source": "p1v1"
|
| 184 |
+
}
|
| 185 |
+
except Exception as e:
|
| 186 |
+
logger.warning(f"跳过无效注释 {image_path}: {e}")
|
| 187 |
+
continue
|
| 188 |
+
|
| 189 |
+
def convert_annotations_to_unified_format():
|
| 190 |
+
"""将所有注释转换为统一格式"""
|
| 191 |
+
print("开始转换注释为统一格式...")
|
| 192 |
+
|
| 193 |
+
# 确保annotations目录存在
|
| 194 |
+
os.makedirs("annotations", exist_ok=True)
|
| 195 |
+
|
| 196 |
+
# 增加对valid分割的处理(有些文件使用valid而不是val)
|
| 197 |
+
for split in ["train", "val", "valid", "test"]:
|
| 198 |
+
print(f"处理 {split} 分割...")
|
| 199 |
+
unified_annotations = []
|
| 200 |
+
|
| 201 |
+
# 处理 JSON 注释
|
| 202 |
+
json_path = f"annotations/{split}.json"
|
| 203 |
+
print(f"检查 JSON 文件: {json_path}")
|
| 204 |
+
if os.path.exists(json_path):
|
| 205 |
+
print(f"找到 JSON 文件: {json_path}")
|
| 206 |
+
with open(json_path, encoding="utf-8") as f:
|
| 207 |
+
try:
|
| 208 |
+
annotations = json.load(f)
|
| 209 |
+
print(f"从 {json_path} 加载了 {len(annotations)} 条注释")
|
| 210 |
+
for ann in annotations:
|
| 211 |
+
unified_annotations.append({
|
| 212 |
+
"image_filename": ann["image_filename"],
|
| 213 |
+
"boxes": ann["boxes"],
|
| 214 |
+
"labels": ann["labels"],
|
| 215 |
+
"caption": ann["caption"],
|
| 216 |
+
"source": "original"
|
| 217 |
+
})
|
| 218 |
+
except json.JSONDecodeError:
|
| 219 |
+
print(f"错误: {json_path} 不是有效的 JSON 文件")
|
| 220 |
+
else:
|
| 221 |
+
print(f"未找到 JSON 文件: {json_path}")
|
| 222 |
+
|
| 223 |
+
# 处理 JSONL 注释,包括目录p-1.v1i.paligemma下的文件
|
| 224 |
+
jsonl_variants = [
|
| 225 |
+
f"_annotations.{split}.jsonl",
|
| 226 |
+
f"_annotations.{split}1.jsonl",
|
| 227 |
+
f"p-1.v1i.paligemma/_annotations.{split}.jsonl",
|
| 228 |
+
f"p-1.v1i.paligemma/_annotations.{split}1.jsonl"
|
| 229 |
+
]
|
| 230 |
+
|
| 231 |
+
for jsonl_variant in jsonl_variants:
|
| 232 |
+
jsonl_path = f"annotations/{jsonl_variant}"
|
| 233 |
+
print(f"检查 JSONL 文件: {jsonl_path}")
|
| 234 |
+
if os.path.exists(jsonl_path):
|
| 235 |
+
print(f"找到 JSONL 文件: {jsonl_path}")
|
| 236 |
+
annotation_count = 0
|
| 237 |
+
with open(jsonl_path, encoding="utf-8") as f:
|
| 238 |
+
for line_num, line in enumerate(f, 1):
|
| 239 |
+
try:
|
| 240 |
+
line = line.strip()
|
| 241 |
+
if not line: # 跳过空行
|
| 242 |
+
print(f"跳过第 {line_num} 行: 空行")
|
| 243 |
+
continue
|
| 244 |
+
|
| 245 |
+
ann = json.loads(line)
|
| 246 |
+
image_filename = ann.get("image", "")
|
| 247 |
+
|
| 248 |
+
if not image_filename:
|
| 249 |
+
print(f"跳过第 {line_num} 行: 没有图像文件名")
|
| 250 |
+
continue
|
| 251 |
+
|
| 252 |
+
# 检查图像是否存在
|
| 253 |
+
image_exists = False
|
| 254 |
+
|
| 255 |
+
# 检查images/datasets目录
|
| 256 |
+
if os.path.exists(f"images/datasets/{image_filename}"):
|
| 257 |
+
image_exists = True
|
| 258 |
+
|
| 259 |
+
# 检查原始路径
|
| 260 |
+
if not image_exists:
|
| 261 |
+
for img_split in ["train", "val", "test"]:
|
| 262 |
+
if os.path.exists(f"images/{img_split}/{image_filename}"):
|
| 263 |
+
image_exists = True
|
| 264 |
+
break
|
| 265 |
+
|
| 266 |
+
if not image_exists:
|
| 267 |
+
print(f"警告: 图像文件不存在: {image_filename}")
|
| 268 |
+
continue
|
| 269 |
+
|
| 270 |
+
# 转换为统一格式
|
| 271 |
+
if "annotations" in ann:
|
| 272 |
+
# 处理新格式
|
| 273 |
+
boxes = [[b["x"], b["y"], b["width"], b["height"]] for b in ann["annotations"]]
|
| 274 |
+
labels = [0 if b["class"] == "void" else 1 for b in ann["annotations"]]
|
| 275 |
+
caption = f"Image contains {len(boxes)} defects: " + \
|
| 276 |
+
", ".join([b["class"] for b in ann["annotations"]])
|
| 277 |
+
else:
|
| 278 |
+
# 处理旧格式 (prefix/suffix)
|
| 279 |
+
boxes = []
|
| 280 |
+
labels = []
|
| 281 |
+
caption = ann.get("prefix", "")
|
| 282 |
+
|
| 283 |
+
if "suffix" in ann:
|
| 284 |
+
parts = ann["suffix"].split(";")
|
| 285 |
+
for part in parts:
|
| 286 |
+
part = part.strip()
|
| 287 |
+
if "<loc" in part:
|
| 288 |
+
# 解析位置和标签
|
| 289 |
+
loc_parts = part.split()
|
| 290 |
+
if len(loc_parts) >= 2:
|
| 291 |
+
# 提取坐标
|
| 292 |
+
coords = []
|
| 293 |
+
for loc in loc_parts[0].split("><"):
|
| 294 |
+
if loc.startswith("<loc"):
|
| 295 |
+
try:
|
| 296 |
+
coords.append(int(loc[4:-1]) / 1024) # 归一化坐标
|
| 297 |
+
except ValueError:
|
| 298 |
+
continue
|
| 299 |
+
|
| 300 |
+
if len(coords) == 4:
|
| 301 |
+
boxes.append(coords)
|
| 302 |
+
label = 0 if "void" in loc_parts[1] else 1
|
| 303 |
+
labels.append(label)
|
| 304 |
+
|
| 305 |
+
unified_annotations.append({
|
| 306 |
+
"image_filename": image_filename,
|
| 307 |
+
"boxes": boxes,
|
| 308 |
+
"labels": labels,
|
| 309 |
+
"caption": caption,
|
| 310 |
+
"source": "p1v1"
|
| 311 |
+
})
|
| 312 |
+
annotation_count += 1
|
| 313 |
+
except json.JSONDecodeError as e:
|
| 314 |
+
print(f"警告: {jsonl_path} 第 {line_num} 行不是有效的 JSON: {e}")
|
| 315 |
+
continue
|
| 316 |
+
print(f"从 {jsonl_path} 加载了 {annotation_count} 条注释")
|
| 317 |
+
else:
|
| 318 |
+
print(f"未找到 JSONL 文件: {jsonl_path}")
|
| 319 |
+
|
| 320 |
+
# 如果是valid分割,与val合并
|
| 321 |
+
if split == "valid" and os.path.exists(f"annotations/val_unified.json"):
|
| 322 |
+
try:
|
| 323 |
+
with open(f"annotations/val_unified.json", "r", encoding="utf-8") as f:
|
| 324 |
+
val_annotations = json.load(f)
|
| 325 |
+
unified_annotations.extend(val_annotations)
|
| 326 |
+
print(f"将valid分割与val分割合并,共 {len(unified_annotations)} 条记录")
|
| 327 |
+
except Exception as e:
|
| 328 |
+
print(f"合并valid和val分割时出错: {e}")
|
| 329 |
+
|
| 330 |
+
# 保存统一格式的注释
|
| 331 |
+
if unified_annotations:
|
| 332 |
+
# 对于valid分割,保存为val_unified.json
|
| 333 |
+
save_split = "val" if split == "valid" else split
|
| 334 |
+
print(f"为 {save_split} 创建统一格式注释,共 {len(unified_annotations)} 条记录")
|
| 335 |
+
unified_path = f"annotations/{save_split}_unified.json"
|
| 336 |
+
with open(unified_path, "w", encoding="utf-8") as f:
|
| 337 |
+
json.dump(unified_annotations, f, ensure_ascii=False, indent=2)
|
| 338 |
+
print(f"已保存统一格式注释到: {unified_path}")
|
| 339 |
+
else:
|
| 340 |
+
print(f"警告: {split} 没有有效的注释,跳过创建统一格式文件")
|