File size: 16,542 Bytes
bcb5616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import json
import os
from pathlib import Path

import datasets
from PIL import Image
import jsonlines

logger = datasets.logging.get_logger(__name__)

_CITATION = """\
@misc{chen2024paligemma,
  title={PaliGemma Multitask Dataset},
  author={Chen, Xingqiang},
  year={2024},
  publisher={Hugging Face}
}
"""

_DESCRIPTION = """\
This dataset contains images and annotations for defect detection and analysis,
designed for training and evaluating the PaliGemma multitask model.
The dataset includes both basic defect detection samples and a larger set of
874 annotated images from real-world structural inspections.
"""

_HOMEPAGE = "https://huggingface.co/datasets/xingqiang/paligemma-multitask-dataset"

class PaligemmaDataset(datasets.GeneratorBasedBuilder):
    """PaliGemma Multitask Dataset for defect detection and analysis."""

    VERSION = datasets.Version("1.1.0")

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({
                "image": datasets.Image(),
                "boxes": datasets.Sequence(datasets.Sequence(datasets.Value("float32"), length=4)),
                "labels": datasets.Sequence(datasets.ClassLabel(names=["void", "crack"])),
                "caption": datasets.Value("string"),
                "source": datasets.Value("string"),
            }),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "split": "val",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "split": "test",
                },
            ),
        ]

    def _generate_examples(self, split):
        """生成示例。"""
        # 优先加载统一格式的注释
        unified_path = os.path.join("annotations", f"{split}_unified.json")
        if os.path.exists(unified_path):
            logger.info(f"使用统一格式的注释文件: {unified_path}")
            with open(unified_path, encoding="utf-8") as f:
                annotations = json.load(f)
                for idx, ann in enumerate(annotations):
                    image_path = os.path.join("images", split, ann["image_filename"])
                    try:
                        yield f"unified_{idx}", {
                            "image": image_path,
                            "boxes": ann["boxes"],
                            "labels": ann["labels"],
                            "caption": ann["caption"],
                            "source": ann.get("source", "unified")
                        }
                    except Exception as e:
                        logger.warning(f"跳过无效图像 {image_path}: {e}")
                        continue
            return  # 如果使用了统一格式,不再处理其他格式
        
        # 如果没有统一格式,则回退到原始格式
        # 加载原始 JSON 注释
        json_path = os.path.join("annotations", f"{split}.json")
        if os.path.exists(json_path):
            with open(json_path, encoding="utf-8") as f:
                annotations = json.load(f)
                for idx, ann in enumerate(annotations):
                    image_path = os.path.join("images", split, ann["image_filename"])
                    try:
                        # 不要尝试在这里打开图像,只返回路径
                        yield f"orig_{idx}", {
                            "image": image_path,
                            "boxes": ann["boxes"],
                            "labels": ann["labels"],
                            "caption": ann["caption"],
                            "source": "original"
                        }
                    except Exception as e:
                        logger.warning(f"跳过无效图像 {image_path}: {e}")
                        continue

        # 加载 JSONL 注释
        jsonl_path = os.path.join("annotations", f"_annotations.{split}.jsonl")
        if os.path.exists(jsonl_path):
            with jsonlines.open(jsonl_path) as reader:
                for idx, ann in enumerate(reader):
                    # 确保使用正确的图像文件名
                    image_filename = ann.get("image", "")
                    image_path = os.path.join("images", split, image_filename)
                    
                    try:
                        # 不要尝试在这里打开图像,只返回路径
                        # 转换注释为我们的格式
                        if "annotations" in ann:
                            # 处理新格式
                            boxes = [[b["x"], b["y"], b["width"], b["height"]] for b in ann["annotations"]]
                            labels = [0 if b["class"] == "void" else 1 for b in ann["annotations"]]
                            caption = f"Image contains {len(boxes)} defects: " + \
                                    ", ".join([b["class"] for b in ann["annotations"]])
                        else:
                            # 处理旧格式 (prefix/suffix)
                            # 这里需要解析 suffix 中的位置信息
                            boxes = []
                            labels = []
                            if "suffix" in ann:
                                parts = ann["suffix"].split(";")
                                for part in parts:
                                    part = part.strip()
                                    if "<loc" in part:
                                        # 解析位置和标签
                                        loc_parts = part.split()
                                        if len(loc_parts) >= 2:
                                            # 提取坐标
                                            coords = []
                                            for loc in loc_parts[0].split("><"):
                                                if loc.startswith("<loc"):
                                                    coords.append(int(loc[4:-1]) / 1024)  # 归一化坐标
                                            
                                            if len(coords) == 4:
                                                boxes.append(coords)
                                                label = 0 if "void" in loc_parts[1] else 1
                                                labels.append(label)
                        
                            caption = ann.get("prefix", "")
                        
                        # 检查图像是否存在
                        image_exists = False
                        
                        # 检查images/datasets目录
                        if os.path.exists(f"images/datasets/{image_filename}"):
                            image_exists = True
                            
                        # 检查原始路径
                        if not image_exists:
                            for img_split in ["train", "val", "test"]:
                                if os.path.exists(f"images/{img_split}/{image_filename}"):
                                    image_exists = True
                                    break
                        
                        if not image_exists:
                            print(f"警告: 图像文件不存在: {image_filename}")
                            continue
                        
                        yield f"p1v1_{idx}", {
                            "image": image_path,
                            "boxes": boxes,
                            "labels": labels,
                            "caption": caption,
                            "source": "p1v1"
                        }
                    except Exception as e:
                        logger.warning(f"跳过无效注释 {image_path}: {e}")
                        continue

def convert_annotations_to_unified_format():
    """将所有注释转换为统一格式"""
    print("开始转换注释为统一格式...")
    
    # 确保annotations目录存在
    os.makedirs("annotations", exist_ok=True)

    # 增加对valid分割的处理(有些文件使用valid而不是val)
    for split in ["train", "val", "valid", "test"]:
        print(f"处理 {split} 分割...")
        unified_annotations = []
        
        # 处理 JSON 注释
        json_path = f"annotations/{split}.json"
        print(f"检查 JSON 文件: {json_path}")
        if os.path.exists(json_path):
            print(f"找到 JSON 文件: {json_path}")
            with open(json_path, encoding="utf-8") as f:
                try:
                    annotations = json.load(f)
                    print(f"从 {json_path} 加载了 {len(annotations)} 条注释")
                    for ann in annotations:
                        unified_annotations.append({
                            "image_filename": ann["image_filename"],
                            "boxes": ann["boxes"],
                            "labels": ann["labels"],
                            "caption": ann["caption"],
                            "source": "original"
                        })
                except json.JSONDecodeError:
                    print(f"错误: {json_path} 不是有效的 JSON 文件")
        else:
            print(f"未找到 JSON 文件: {json_path}")
        
        # 处理 JSONL 注释,包括目录p-1.v1i.paligemma下的文件
        jsonl_variants = [
            f"_annotations.{split}.jsonl", 
            f"_annotations.{split}1.jsonl",
            f"p-1.v1i.paligemma/_annotations.{split}.jsonl",
            f"p-1.v1i.paligemma/_annotations.{split}1.jsonl"
        ]
        
        for jsonl_variant in jsonl_variants:
            jsonl_path = f"annotations/{jsonl_variant}"
            print(f"检查 JSONL 文件: {jsonl_path}")
            if os.path.exists(jsonl_path):
                print(f"找到 JSONL 文件: {jsonl_path}")
                annotation_count = 0
                with open(jsonl_path, encoding="utf-8") as f:
                    for line_num, line in enumerate(f, 1):
                        try:
                            line = line.strip()
                            if not line:  # 跳过空行
                                print(f"跳过第 {line_num} 行: 空行")
                                continue
                                
                            ann = json.loads(line)
                            image_filename = ann.get("image", "")
                            
                            if not image_filename:
                                print(f"跳过第 {line_num} 行: 没有图像文件名")
                                continue
                                
                            # 检查图像是否存在
                            image_exists = False
                            
                            # 检查images/datasets目录
                            if os.path.exists(f"images/datasets/{image_filename}"):
                                image_exists = True
                                
                            # 检查原始路径
                            if not image_exists:
                                for img_split in ["train", "val", "test"]:
                                    if os.path.exists(f"images/{img_split}/{image_filename}"):
                                        image_exists = True
                                        break
                            
                            if not image_exists:
                                print(f"警告: 图像文件不存在: {image_filename}")
                                continue
                            
                            # 转换为统一格式
                            if "annotations" in ann:
                                # 处理新格式
                                boxes = [[b["x"], b["y"], b["width"], b["height"]] for b in ann["annotations"]]
                                labels = [0 if b["class"] == "void" else 1 for b in ann["annotations"]]
                                caption = f"Image contains {len(boxes)} defects: " + \
                                        ", ".join([b["class"] for b in ann["annotations"]])
                            else:
                                # 处理旧格式 (prefix/suffix)
                                boxes = []
                                labels = []
                                caption = ann.get("prefix", "")
                                
                                if "suffix" in ann:
                                    parts = ann["suffix"].split(";")
                                    for part in parts:
                                        part = part.strip()
                                        if "<loc" in part:
                                            # 解析位置和标签
                                            loc_parts = part.split()
                                            if len(loc_parts) >= 2:
                                                # 提取坐标
                                                coords = []
                                                for loc in loc_parts[0].split("><"):
                                                    if loc.startswith("<loc"):
                                                        try:
                                                            coords.append(int(loc[4:-1]) / 1024)  # 归一化坐标
                                                        except ValueError:
                                                            continue
                                                
                                                if len(coords) == 4:
                                                    boxes.append(coords)
                                                    label = 0 if "void" in loc_parts[1] else 1
                                                    labels.append(label)
                            
                            unified_annotations.append({
                                "image_filename": image_filename,
                                "boxes": boxes,
                                "labels": labels,
                                "caption": caption,
                                "source": "p1v1"
                            })
                            annotation_count += 1
                        except json.JSONDecodeError as e:
                            print(f"警告: {jsonl_path}{line_num} 行不是有效的 JSON: {e}")
                            continue
                print(f"从 {jsonl_path} 加载了 {annotation_count} 条注释")
            else:
                print(f"未找到 JSONL 文件: {jsonl_path}")
        
        # 如果是valid分割,与val合并
        if split == "valid" and os.path.exists(f"annotations/val_unified.json"):
            try:
                with open(f"annotations/val_unified.json", "r", encoding="utf-8") as f:
                    val_annotations = json.load(f)
                unified_annotations.extend(val_annotations)
                print(f"将valid分割与val分割合并,共 {len(unified_annotations)} 条记录")
            except Exception as e:
                print(f"合并valid和val分割时出错: {e}")
                
        # 保存统一格式的注释
        if unified_annotations:
            # 对于valid分割,保存为val_unified.json
            save_split = "val" if split == "valid" else split
            print(f"为 {save_split} 创建统一格式注释,共 {len(unified_annotations)} 条记录")
            unified_path = f"annotations/{save_split}_unified.json"
            with open(unified_path, "w", encoding="utf-8") as f:
                json.dump(unified_annotations, f, ensure_ascii=False, indent=2)
            print(f"已保存统一格式注释到: {unified_path}")
        else:
            print(f"警告: {split} 没有有效的注释,跳过创建统一格式文件")