language
stringclasses 6
values | original_string
stringlengths 25
887k
| text
stringlengths 25
887k
|
---|---|---|
Python | def solve(template: str, ruleset: Ruleset) -> tuple[int, int]:
"""
Calculates the required answers given the original template and the pair
insertion rules
"""
pairs = ("".join(pair) for pair in zip(template, template[1:]))
pair_counter = Counter(pairs)
for _ in range(10):
pair_counter = step(ruleset, pair_counter)
part1 = calculate_answer(template, pair_counter)
for _ in range(30):
pair_counter = step(ruleset, pair_counter)
part2 = calculate_answer(template, pair_counter)
return (part1, part2) | def solve(template: str, ruleset: Ruleset) -> tuple[int, int]:
"""
Calculates the required answers given the original template and the pair
insertion rules
"""
pairs = ("".join(pair) for pair in zip(template, template[1:]))
pair_counter = Counter(pairs)
for _ in range(10):
pair_counter = step(ruleset, pair_counter)
part1 = calculate_answer(template, pair_counter)
for _ in range(30):
pair_counter = step(ruleset, pair_counter)
part2 = calculate_answer(template, pair_counter)
return (part1, part2) |
Python | def graph_copy_integrity_checker(self, original_graph, addition_graph):
"""Utility function to test the integrity of a graph copy."""
main_graph = copy.deepcopy(original_graph)
node_map, edge_map = merge_graphs(main_graph, addition_graph)
# --Verify that the updated graph has all the nodes and edges from both graphs
expected_node_count = len(original_graph.get_all_node_ids()) + len(addition_graph.get_all_node_ids())
expected_edge_count = len(original_graph.get_all_edge_ids()) + len(addition_graph.get_all_edge_ids())
self.assertEqual(expected_node_count, len(main_graph.get_all_node_ids()))
self.assertEqual(expected_edge_count, len(main_graph.get_all_edge_ids()))
# --Verify that the original graph nodes and edges are still in-place
for node_id in original_graph.get_all_node_ids():
original_node = original_graph.get_node(node_id)
new_node = main_graph.get_node(node_id)
# Verify each node has the proper number of edges
self.assertEqual(len(original_node['edges']), len(new_node['edges']))
# Verify each node has the right edges
for edge_id in original_node['edges']:
self.assertIn(edge_id, new_node['edges'])
for edge_id in original_graph.get_all_edge_ids():
original_edge = original_graph.get_edge(edge_id)
new_edge = main_graph.get_edge(edge_id)
# Verify each edge has the correct targets
self.assertEqual(original_edge['vertices'], new_edge['vertices'])
# --Verify that the new nodes and edges exist and have the correct topology
for node_id in addition_graph.get_all_node_ids():
original_node = addition_graph.get_node(node_id)
new_node = main_graph.get_node(node_map[node_id])
# Verify each node has the proper number of edges
self.assertEqual(len(original_node['edges']), len(new_node['edges']))
# Verify each node has the right edges
for edge_id in original_node['edges']:
self.assertIn(edge_map[edge_id], new_node['edges'])
for edge_id in addition_graph.get_all_edge_ids():
original_edge = addition_graph.get_edge(edge_id)
new_edge = main_graph.get_edge(edge_map[edge_id])
# Verify each edge has the correct targets
original_vertex_a, original_vertex_b = original_edge['vertices']
mapped_new_vertices = (node_map[original_vertex_a], node_map[original_vertex_b])
self.assertEqual(mapped_new_vertices, new_edge['vertices']) | def graph_copy_integrity_checker(self, original_graph, addition_graph):
"""Utility function to test the integrity of a graph copy."""
main_graph = copy.deepcopy(original_graph)
node_map, edge_map = merge_graphs(main_graph, addition_graph)
# --Verify that the updated graph has all the nodes and edges from both graphs
expected_node_count = len(original_graph.get_all_node_ids()) + len(addition_graph.get_all_node_ids())
expected_edge_count = len(original_graph.get_all_edge_ids()) + len(addition_graph.get_all_edge_ids())
self.assertEqual(expected_node_count, len(main_graph.get_all_node_ids()))
self.assertEqual(expected_edge_count, len(main_graph.get_all_edge_ids()))
# --Verify that the original graph nodes and edges are still in-place
for node_id in original_graph.get_all_node_ids():
original_node = original_graph.get_node(node_id)
new_node = main_graph.get_node(node_id)
# Verify each node has the proper number of edges
self.assertEqual(len(original_node['edges']), len(new_node['edges']))
# Verify each node has the right edges
for edge_id in original_node['edges']:
self.assertIn(edge_id, new_node['edges'])
for edge_id in original_graph.get_all_edge_ids():
original_edge = original_graph.get_edge(edge_id)
new_edge = main_graph.get_edge(edge_id)
# Verify each edge has the correct targets
self.assertEqual(original_edge['vertices'], new_edge['vertices'])
# --Verify that the new nodes and edges exist and have the correct topology
for node_id in addition_graph.get_all_node_ids():
original_node = addition_graph.get_node(node_id)
new_node = main_graph.get_node(node_map[node_id])
# Verify each node has the proper number of edges
self.assertEqual(len(original_node['edges']), len(new_node['edges']))
# Verify each node has the right edges
for edge_id in original_node['edges']:
self.assertIn(edge_map[edge_id], new_node['edges'])
for edge_id in addition_graph.get_all_edge_ids():
original_edge = addition_graph.get_edge(edge_id)
new_edge = main_graph.get_edge(edge_map[edge_id])
# Verify each edge has the correct targets
original_vertex_a, original_vertex_b = original_edge['vertices']
mapped_new_vertices = (node_map[original_vertex_a], node_map[original_vertex_b])
self.assertEqual(mapped_new_vertices, new_edge['vertices']) |
Python | def breadth_first_search(graph, root_node=None):
"""Searches through the tree in a breadth-first fashion.
If root_node is None, an arbitrary node will be used as the root.
If root_node is not None, it will be used as the root for the search tree.
Returns a list of nodes, in the order that they were reached.
"""
ordering = []
all_nodes = graph.get_all_node_ids()
if not all_nodes:
return ordering
queue = deque()
discovered = defaultdict(lambda: False)
to_visit = set(all_nodes)
if root_node is None:
root_node = all_nodes[0]
discovered[root_node] = True
queue.appendleft(root_node)
# We need to make sure we visit all the nodes, including disconnected ones
while True:
# BFS Main Loop
while len(queue) > 0:
current_node = queue.pop()
ordering.append(current_node)
to_visit.remove(current_node)
for n in graph.neighbors(current_node):
if not discovered[n]:
discovered[n] = True
queue.appendleft(n)
# New root node if we still have more nodes
if len(to_visit) > 0:
node = to_visit.pop()
to_visit.add(node) # --We need this here because we remove the node as part of the BFS algorithm
discovered[node] = True
queue.appendleft(node)
else:
break
return ordering | def breadth_first_search(graph, root_node=None):
"""Searches through the tree in a breadth-first fashion.
If root_node is None, an arbitrary node will be used as the root.
If root_node is not None, it will be used as the root for the search tree.
Returns a list of nodes, in the order that they were reached.
"""
ordering = []
all_nodes = graph.get_all_node_ids()
if not all_nodes:
return ordering
queue = deque()
discovered = defaultdict(lambda: False)
to_visit = set(all_nodes)
if root_node is None:
root_node = all_nodes[0]
discovered[root_node] = True
queue.appendleft(root_node)
# We need to make sure we visit all the nodes, including disconnected ones
while True:
# BFS Main Loop
while len(queue) > 0:
current_node = queue.pop()
ordering.append(current_node)
to_visit.remove(current_node)
for n in graph.neighbors(current_node):
if not discovered[n]:
discovered[n] = True
queue.appendleft(n)
# New root node if we still have more nodes
if len(to_visit) > 0:
node = to_visit.pop()
to_visit.add(node) # --We need this here because we remove the node as part of the BFS algorithm
discovered[node] = True
queue.appendleft(node)
else:
break
return ordering |
Python | def find_minimum_spanning_tree(graph):
"""Calculates a minimum spanning tree for a graph.
Returns a list of edges that define the tree.
Returns an empty list for an empty graph.
"""
mst = []
if graph.num_nodes() == 0:
return mst
if graph.num_edges() == 0:
return mst
connected_components = get_connected_components(graph)
if len(connected_components) > 1:
raise DisconnectedGraphError
edge_list = kruskal_mst(graph)
return edge_list | def find_minimum_spanning_tree(graph):
"""Calculates a minimum spanning tree for a graph.
Returns a list of edges that define the tree.
Returns an empty list for an empty graph.
"""
mst = []
if graph.num_nodes() == 0:
return mst
if graph.num_edges() == 0:
return mst
connected_components = get_connected_components(graph)
if len(connected_components) > 1:
raise DisconnectedGraphError
edge_list = kruskal_mst(graph)
return edge_list |
Python | def find_minimum_spanning_tree_as_subgraph(graph):
"""Calculates a minimum spanning tree and returns a graph representation."""
edge_list = find_minimum_spanning_tree(graph)
subgraph = get_subgraph_from_edge_list(graph, edge_list)
return subgraph | def find_minimum_spanning_tree_as_subgraph(graph):
"""Calculates a minimum spanning tree and returns a graph representation."""
edge_list = find_minimum_spanning_tree(graph)
subgraph = get_subgraph_from_edge_list(graph, edge_list)
return subgraph |
Python | def find_minimum_spanning_forest(graph):
"""Calculates the minimum spanning forest of a disconnected graph.
Returns a list of lists, each containing the edges that define that tree.
Returns an empty list for an empty graph.
"""
msf = []
if graph.num_nodes() == 0:
return msf
if graph.num_edges() == 0:
return msf
connected_components = get_connected_components_as_subgraphs(graph)
for subgraph in connected_components:
edge_list = kruskal_mst(subgraph)
msf.append(edge_list)
return msf | def find_minimum_spanning_forest(graph):
"""Calculates the minimum spanning forest of a disconnected graph.
Returns a list of lists, each containing the edges that define that tree.
Returns an empty list for an empty graph.
"""
msf = []
if graph.num_nodes() == 0:
return msf
if graph.num_edges() == 0:
return msf
connected_components = get_connected_components_as_subgraphs(graph)
for subgraph in connected_components:
edge_list = kruskal_mst(subgraph)
msf.append(edge_list)
return msf |
Python | def find_minimum_spanning_forest_as_subgraphs(graph):
"""Calculates the minimum spanning forest and returns a list of trees as subgraphs."""
forest = find_minimum_spanning_forest(graph)
list_of_subgraphs = [get_subgraph_from_edge_list(graph, edge_list) for edge_list in forest]
return list_of_subgraphs | def find_minimum_spanning_forest_as_subgraphs(graph):
"""Calculates the minimum spanning forest and returns a list of trees as subgraphs."""
forest = find_minimum_spanning_forest(graph)
list_of_subgraphs = [get_subgraph_from_edge_list(graph, edge_list) for edge_list in forest]
return list_of_subgraphs |
Python | def kruskal_mst(graph):
"""Implements Kruskal's Algorithm for finding minimum spanning trees.
Assumes a non-empty, connected graph.
"""
edges_accepted = 0
ds = DisjointSet()
pq = PriorityQueue()
accepted_edges = []
label_lookup = {}
nodes = graph.get_all_node_ids()
num_vertices = len(nodes)
for n in nodes:
label = ds.add_set()
label_lookup[n] = label
edges = graph.get_all_edge_objects()
for e in edges:
pq.put(e['id'], e['cost'])
while edges_accepted < (num_vertices - 1):
edge_id = pq.get()
edge = graph.get_edge(edge_id)
node_a, node_b = edge['vertices']
label_a = label_lookup[node_a]
label_b = label_lookup[node_b]
a_set = ds.find(label_a)
b_set = ds.find(label_b)
if a_set != b_set:
edges_accepted += 1
accepted_edges.append(edge_id)
ds.union(a_set, b_set)
return accepted_edges | def kruskal_mst(graph):
"""Implements Kruskal's Algorithm for finding minimum spanning trees.
Assumes a non-empty, connected graph.
"""
edges_accepted = 0
ds = DisjointSet()
pq = PriorityQueue()
accepted_edges = []
label_lookup = {}
nodes = graph.get_all_node_ids()
num_vertices = len(nodes)
for n in nodes:
label = ds.add_set()
label_lookup[n] = label
edges = graph.get_all_edge_objects()
for e in edges:
pq.put(e['id'], e['cost'])
while edges_accepted < (num_vertices - 1):
edge_id = pq.get()
edge = graph.get_edge(edge_id)
node_a, node_b = edge['vertices']
label_a = label_lookup[node_a]
label_b = label_lookup[node_b]
a_set = ds.find(label_a)
b_set = ds.find(label_b)
if a_set != b_set:
edges_accepted += 1
accepted_edges.append(edge_id)
ds.union(a_set, b_set)
return accepted_edges |
Python | def __get_cycle(graph, ordering, parent_lookup):
"""Gets the main cycle of the dfs tree."""
root_node = ordering[0]
for i in range(2, len(ordering)):
current_node = ordering[i]
if graph.adjacent(current_node, root_node):
path = []
while current_node != root_node:
path.append(current_node)
current_node = parent_lookup[current_node]
path.append(root_node)
path.reverse()
return path | def __get_cycle(graph, ordering, parent_lookup):
"""Gets the main cycle of the dfs tree."""
root_node = ordering[0]
for i in range(2, len(ordering)):
current_node = ordering[i]
if graph.adjacent(current_node, root_node):
path = []
while current_node != root_node:
path.append(current_node)
current_node = parent_lookup[current_node]
path.append(root_node)
path.reverse()
return path |
Python | def __get_segments_from_node(node, graph):
"""Calculates the segments that can emanate from a particular node on the main cycle."""
list_of_segments = []
node_object = graph.get_node(node)
for e in node_object['edges']:
list_of_segments.append(e)
return list_of_segments | def __get_segments_from_node(node, graph):
"""Calculates the segments that can emanate from a particular node on the main cycle."""
list_of_segments = []
node_object = graph.get_node(node)
for e in node_object['edges']:
list_of_segments.append(e)
return list_of_segments |
Python | def __get_segments_from_cycle(graph, cycle_path):
"""Calculates the segments that emanate from the main cycle."""
list_of_segments = []
# We work through the cycle in a bottom-up fashion
for n in cycle_path[::-1]:
segments = __get_segments_from_node(n, graph)
if segments:
list_of_segments.append(segments)
return list_of_segments | def __get_segments_from_cycle(graph, cycle_path):
"""Calculates the segments that emanate from the main cycle."""
list_of_segments = []
# We work through the cycle in a bottom-up fashion
for n in cycle_path[::-1]:
segments = __get_segments_from_node(n, graph)
if segments:
list_of_segments.append(segments)
return list_of_segments |
Python | def new_edge(self, node_a, node_b, cost=1):
"""Adds a new, undirected edge between node_a and node_b with a cost.
Returns the edge id of the new edge."""
edge_id = super(UndirectedGraph, self).new_edge(node_a, node_b, cost)
self.nodes[node_b]['edges'].append(edge_id)
return edge_id | def new_edge(self, node_a, node_b, cost=1):
"""Adds a new, undirected edge between node_a and node_b with a cost.
Returns the edge id of the new edge."""
edge_id = super(UndirectedGraph, self).new_edge(node_a, node_b, cost)
self.nodes[node_b]['edges'].append(edge_id)
return edge_id |
Python | def neighbors(self, node_id):
"""Find all the nodes where there is an edge from the specified node to that node.
Returns a list of node ids."""
node = self.get_node(node_id)
flattened_nodes_list = []
for a, b in [self.get_edge(edge_id)['vertices'] for edge_id in node['edges']]:
flattened_nodes_list.append(a)
flattened_nodes_list.append(b)
node_set = set(flattened_nodes_list)
if node_id in node_set:
node_set.remove(node_id)
return [nid for nid in node_set] | def neighbors(self, node_id):
"""Find all the nodes where there is an edge from the specified node to that node.
Returns a list of node ids."""
node = self.get_node(node_id)
flattened_nodes_list = []
for a, b in [self.get_edge(edge_id)['vertices'] for edge_id in node['edges']]:
flattened_nodes_list.append(a)
flattened_nodes_list.append(b)
node_set = set(flattened_nodes_list)
if node_id in node_set:
node_set.remove(node_id)
return [nid for nid in node_set] |
Python | def delete_edge_by_id(self, edge_id):
"""Removes the edge identified by "edge_id" from the graph."""
edge = self.get_edge(edge_id)
# Remove the edge from the "from node"
# --Determine the from node
from_node_id = edge['vertices'][0]
from_node = self.get_node(from_node_id)
# --Remove the edge from it
from_node['edges'].remove(edge_id)
# Remove the edge from the "to node"
to_node_id = edge['vertices'][1]
to_node = self.get_node(to_node_id)
# --Remove the edge from it
to_node['edges'].remove(edge_id)
# Remove the edge from the edge list
del self.edges[edge_id]
self._num_edges -= 1 | def delete_edge_by_id(self, edge_id):
"""Removes the edge identified by "edge_id" from the graph."""
edge = self.get_edge(edge_id)
# Remove the edge from the "from node"
# --Determine the from node
from_node_id = edge['vertices'][0]
from_node = self.get_node(from_node_id)
# --Remove the edge from it
from_node['edges'].remove(edge_id)
# Remove the edge from the "to node"
to_node_id = edge['vertices'][1]
to_node = self.get_node(to_node_id)
# --Remove the edge from it
to_node['edges'].remove(edge_id)
# Remove the edge from the edge list
del self.edges[edge_id]
self._num_edges -= 1 |
Python | def move_edge_target(self, edge_id, node_a):
"""Moves an edge so that it targets node_a."""
# Grab the edge
edge = self.get_edge(edge_id)
# Remove the edge from the original "target node"
original_target_node_id = edge['vertices'][1]
original_target_node = self.get_node(original_target_node_id)
original_target_node['edges'].remove(edge_id)
# Add the edge to the new target node
new_target_node_id = node_a
new_target_node = self.get_node(new_target_node_id)
new_target_node['edges'].append(edge_id)
# Alter the vertices on the edge
edge['vertices'] = (edge['vertices'][0], node_a) | def move_edge_target(self, edge_id, node_a):
"""Moves an edge so that it targets node_a."""
# Grab the edge
edge = self.get_edge(edge_id)
# Remove the edge from the original "target node"
original_target_node_id = edge['vertices'][1]
original_target_node = self.get_node(original_target_node_id)
original_target_node['edges'].remove(edge_id)
# Add the edge to the new target node
new_target_node_id = node_a
new_target_node = self.get_node(new_target_node_id)
new_target_node['edges'].append(edge_id)
# Alter the vertices on the edge
edge['vertices'] = (edge['vertices'][0], node_a) |
Python | def _a_star_search_internal(graph, start, goal):
"""Performs an A* search, returning information about whether the goal node was reached
and path cost information that can be used to reconstruct the path.
"""
frontier = PriorityQueue()
frontier.put(start, 0)
came_from = {start: None}
cost_so_far = {start: 0}
goal_reached = False
while not frontier.empty():
current = frontier.get()
if current == goal:
goal_reached = True
break
for next_node in graph.neighbors(current):
new_cost = cost_so_far[current] + graph.edge_cost(current, next_node)
if next_node not in cost_so_far or new_cost < cost_so_far[next_node]:
cost_so_far[next_node] = new_cost
priority = new_cost + heuristic(goal, next_node)
frontier.put(next_node, priority)
came_from[next_node] = current
return came_from, cost_so_far, goal_reached | def _a_star_search_internal(graph, start, goal):
"""Performs an A* search, returning information about whether the goal node was reached
and path cost information that can be used to reconstruct the path.
"""
frontier = PriorityQueue()
frontier.put(start, 0)
came_from = {start: None}
cost_so_far = {start: 0}
goal_reached = False
while not frontier.empty():
current = frontier.get()
if current == goal:
goal_reached = True
break
for next_node in graph.neighbors(current):
new_cost = cost_so_far[current] + graph.edge_cost(current, next_node)
if next_node not in cost_so_far or new_cost < cost_so_far[next_node]:
cost_so_far[next_node] = new_cost
priority = new_cost + heuristic(goal, next_node)
frontier.put(next_node, priority)
came_from[next_node] = current
return came_from, cost_so_far, goal_reached |
Python | def graph_to_dot(graph, node_renderer=None, edge_renderer=None):
"""Produces a DOT specification string from the provided graph."""
node_pairs = list(graph.nodes.items())
edge_pairs = list(graph.edges.items())
if node_renderer is None:
node_renderer_wrapper = lambda nid: ''
else:
node_renderer_wrapper = lambda nid: ' [%s]' % ','.join(
['%s=%s' % tpl for tpl in list(node_renderer(graph, nid).items())])
# Start the graph
graph_string = 'digraph G {\n'
graph_string += 'overlap=scale;\n'
# Print the nodes (placeholder)
for node_id, node in node_pairs:
graph_string += '%i%s;\n' % (node_id, node_renderer_wrapper(node_id))
# Print the edges
for edge_id, edge in edge_pairs:
node_a = edge['vertices'][0]
node_b = edge['vertices'][1]
graph_string += '%i -> %i;\n' % (node_a, node_b)
# Finish the graph
graph_string += '}'
return graph_string | def graph_to_dot(graph, node_renderer=None, edge_renderer=None):
"""Produces a DOT specification string from the provided graph."""
node_pairs = list(graph.nodes.items())
edge_pairs = list(graph.edges.items())
if node_renderer is None:
node_renderer_wrapper = lambda nid: ''
else:
node_renderer_wrapper = lambda nid: ' [%s]' % ','.join(
['%s=%s' % tpl for tpl in list(node_renderer(graph, nid).items())])
# Start the graph
graph_string = 'digraph G {\n'
graph_string += 'overlap=scale;\n'
# Print the nodes (placeholder)
for node_id, node in node_pairs:
graph_string += '%i%s;\n' % (node_id, node_renderer_wrapper(node_id))
# Print the edges
for edge_id, edge in edge_pairs:
node_a = edge['vertices'][0]
node_b = edge['vertices'][1]
graph_string += '%i -> %i;\n' % (node_a, node_b)
# Finish the graph
graph_string += '}'
return graph_string |
Python | def build_cycle_graph(num_nodes):
"""Builds a cycle graph with the specified number of nodes.
Ref: http://mathworld.wolfram.com/CycleGraph.html"""
graph = UndirectedGraph()
if num_nodes > 0:
first_node = graph.new_node()
if num_nodes > 1:
previous_node = first_node
for _ in range(num_nodes - 1):
new_node = graph.new_node()
graph.new_edge(previous_node, new_node)
previous_node = new_node
graph.new_edge(previous_node, first_node)
return graph | def build_cycle_graph(num_nodes):
"""Builds a cycle graph with the specified number of nodes.
Ref: http://mathworld.wolfram.com/CycleGraph.html"""
graph = UndirectedGraph()
if num_nodes > 0:
first_node = graph.new_node()
if num_nodes > 1:
previous_node = first_node
for _ in range(num_nodes - 1):
new_node = graph.new_node()
graph.new_edge(previous_node, new_node)
previous_node = new_node
graph.new_edge(previous_node, first_node)
return graph |
Python | def build_wheel_graph(num_nodes):
"""Builds a wheel graph with the specified number of nodes.
Ref: http://mathworld.wolfram.com/WheelGraph.html"""
# The easiest way to build a wheel graph is to build
# C_n-1 and then add a hub node and spoke edges
graph = build_cycle_graph(num_nodes - 1)
cycle_graph_vertices = graph.get_all_node_ids()
node_id = graph.new_node()
for cycle_node in cycle_graph_vertices:
graph.new_edge(node_id, cycle_node)
return graph | def build_wheel_graph(num_nodes):
"""Builds a wheel graph with the specified number of nodes.
Ref: http://mathworld.wolfram.com/WheelGraph.html"""
# The easiest way to build a wheel graph is to build
# C_n-1 and then add a hub node and spoke edges
graph = build_cycle_graph(num_nodes - 1)
cycle_graph_vertices = graph.get_all_node_ids()
node_id = graph.new_node()
for cycle_node in cycle_graph_vertices:
graph.new_edge(node_id, cycle_node)
return graph |
Python | def build_triangle_graph():
"""Builds a triangle graph, C3.
Ref: http://mathworld.wolfram.com/CycleGraph.html"""
graph = build_cycle_graph(3)
return graph | def build_triangle_graph():
"""Builds a triangle graph, C3.
Ref: http://mathworld.wolfram.com/CycleGraph.html"""
graph = build_cycle_graph(3)
return graph |
Python | def build_square_graph():
"""Builds a square graph, C4.
Ref: http://mathworld.wolfram.com/CycleGraph.html"""
graph = build_cycle_graph(4)
return graph | def build_square_graph():
"""Builds a square graph, C4.
Ref: http://mathworld.wolfram.com/CycleGraph.html"""
graph = build_cycle_graph(4)
return graph |
Python | def build_k5_graph():
"""Makes a new K5 graph.
Ref: http://mathworld.wolfram.com/Pentatope.html"""
graph = UndirectedGraph()
# K5 has 5 nodes
for _ in range(5):
graph.new_node()
# K5 has 10 edges
# --Edge: a
graph.new_edge(1, 2)
# --Edge: b
graph.new_edge(2, 3)
# --Edge: c
graph.new_edge(3, 4)
# --Edge: d
graph.new_edge(4, 5)
# --Edge: e
graph.new_edge(5, 1)
# --Edge: f
graph.new_edge(1, 3)
# --Edge: g
graph.new_edge(1, 4)
# --Edge: h
graph.new_edge(2, 4)
# --Edge: i
graph.new_edge(2, 5)
# --Edge: j
graph.new_edge(3, 5)
return graph | def build_k5_graph():
"""Makes a new K5 graph.
Ref: http://mathworld.wolfram.com/Pentatope.html"""
graph = UndirectedGraph()
# K5 has 5 nodes
for _ in range(5):
graph.new_node()
# K5 has 10 edges
# --Edge: a
graph.new_edge(1, 2)
# --Edge: b
graph.new_edge(2, 3)
# --Edge: c
graph.new_edge(3, 4)
# --Edge: d
graph.new_edge(4, 5)
# --Edge: e
graph.new_edge(5, 1)
# --Edge: f
graph.new_edge(1, 3)
# --Edge: g
graph.new_edge(1, 4)
# --Edge: h
graph.new_edge(2, 4)
# --Edge: i
graph.new_edge(2, 5)
# --Edge: j
graph.new_edge(3, 5)
return graph |
Python | def build_groetzch_graph():
"""Makes a new Groetzsch graph.
Ref: http://mathworld.wolfram.com/GroetzschGraph.html"""
# Because the graph is so complicated, we want to
# build it via adjacency matrix specification
# -- Initialize the matrix to all zeros
adj = [[0 for _ in range(11)] for _ in range(11)]
# -- Add individual edge connections
row_connections = []
row_connections.append( (1,2,7,10) )
row_connections.append( (0,3,6,9) )
row_connections.append( (0,4,6,8) )
row_connections.append( (1,4,8,10) )
row_connections.append( (2,3,7,9) )
row_connections.append( (6,7,8,9,10) )
row_connections.append( (1,2,5) )
row_connections.append( (0,4,5) )
row_connections.append( (2,3,5) )
row_connections.append( (1,4,5) )
row_connections.append( (0,3,5) )
for j, tpl in enumerate(row_connections):
for i in tpl:
adj[j][i] = 1
adj[i][j] = 1
# Debug print the adjacency matrix
#for row in adj:
# print row
graph, _ = create_graph_from_adjacency_matrix(adj)
return graph | def build_groetzch_graph():
"""Makes a new Groetzsch graph.
Ref: http://mathworld.wolfram.com/GroetzschGraph.html"""
# Because the graph is so complicated, we want to
# build it via adjacency matrix specification
# -- Initialize the matrix to all zeros
adj = [[0 for _ in range(11)] for _ in range(11)]
# -- Add individual edge connections
row_connections = []
row_connections.append( (1,2,7,10) )
row_connections.append( (0,3,6,9) )
row_connections.append( (0,4,6,8) )
row_connections.append( (1,4,8,10) )
row_connections.append( (2,3,7,9) )
row_connections.append( (6,7,8,9,10) )
row_connections.append( (1,2,5) )
row_connections.append( (0,4,5) )
row_connections.append( (2,3,5) )
row_connections.append( (1,4,5) )
row_connections.append( (0,3,5) )
for j, tpl in enumerate(row_connections):
for i in tpl:
adj[j][i] = 1
adj[i][j] = 1
# Debug print the adjacency matrix
#for row in adj:
# print row
graph, _ = create_graph_from_adjacency_matrix(adj)
return graph |
Python | def build_franklin_graph():
"""Makes a new Franklin graph.
Ref: http://mathworld.wolfram.com/FranklinGraph.html"""
# The easiest way to build the Franklin graph is to start
# with C12 and add the additional 6 edges
graph = build_cycle_graph(12)
edge_tpls = [
(1,8),
(2,7),
(3,10),
(4,9),
(5,12),
(6,11)
]
for i, j in edge_tpls:
graph.new_edge(i, j)
return graph | def build_franklin_graph():
"""Makes a new Franklin graph.
Ref: http://mathworld.wolfram.com/FranklinGraph.html"""
# The easiest way to build the Franklin graph is to start
# with C12 and add the additional 6 edges
graph = build_cycle_graph(12)
edge_tpls = [
(1,8),
(2,7),
(3,10),
(4,9),
(5,12),
(6,11)
]
for i, j in edge_tpls:
graph.new_edge(i, j)
return graph |
Python | def build_chvatal_graph():
"""Makes a new Chvatal graph.
Ref: http://mathworld.wolfram.com/ChvatalGraph.html"""
# The easiest way to build the Chvatal graph is to start
# with C12 and add the additional 12 edges
graph = build_cycle_graph(12)
edge_tpls = [
(1,7), (1,9), (2,5), (2,11),
(3,7), (3,9), (4,10), (4,12),
(5,8), (6,10), (6,12), (8,11),
]
for i, j in edge_tpls:
graph.new_edge(i, j)
return graph | def build_chvatal_graph():
"""Makes a new Chvatal graph.
Ref: http://mathworld.wolfram.com/ChvatalGraph.html"""
# The easiest way to build the Chvatal graph is to start
# with C12 and add the additional 12 edges
graph = build_cycle_graph(12)
edge_tpls = [
(1,7), (1,9), (2,5), (2,11),
(3,7), (3,9), (4,10), (4,12),
(5,8), (6,10), (6,12), (8,11),
]
for i, j in edge_tpls:
graph.new_edge(i, j)
return graph |
Python | def build_single_node_graph(directed=False):
"""Builds a graph with a single node for testing."""
if directed:
graph = DirectedGraph()
else:
graph = UndirectedGraph()
graph.new_node()
return graph | def build_single_node_graph(directed=False):
"""Builds a graph with a single node for testing."""
if directed:
graph = DirectedGraph()
else:
graph = UndirectedGraph()
graph.new_node()
return graph |
Python | def build_2_node_graph(directed=False):
"""Builds a 2-node connected graph for testing."""
if directed:
graph = DirectedGraph()
else:
graph = UndirectedGraph()
graph.new_node()
graph.new_node()
graph.new_edge(1, 2)
return graph | def build_2_node_graph(directed=False):
"""Builds a 2-node connected graph for testing."""
if directed:
graph = DirectedGraph()
else:
graph = UndirectedGraph()
graph.new_node()
graph.new_node()
graph.new_edge(1, 2)
return graph |
Python | def build_3_node_line_graph(directed=False):
"""Builds a 3-node, 2-edge connected line graph for testing."""
if directed:
graph = DirectedGraph()
else:
graph = UndirectedGraph()
graph.new_node()
graph.new_node()
graph.new_node()
graph.new_edge(1, 2)
graph.new_edge(2, 3)
return graph | def build_3_node_line_graph(directed=False):
"""Builds a 3-node, 2-edge connected line graph for testing."""
if directed:
graph = DirectedGraph()
else:
graph = UndirectedGraph()
graph.new_node()
graph.new_node()
graph.new_node()
graph.new_edge(1, 2)
graph.new_edge(2, 3)
return graph |
Python | def build_3_node_line_root_articulation_graph(directed=False):
"""Builds a 3-node, 2-edge connected line graph for testing, where the root node is the articulation vertex."""
if directed:
graph = DirectedGraph()
else:
graph = UndirectedGraph()
graph.new_node()
graph.new_node()
graph.new_node()
graph.new_edge(1, 2)
graph.new_edge(1, 3)
return graph | def build_3_node_line_root_articulation_graph(directed=False):
"""Builds a 3-node, 2-edge connected line graph for testing, where the root node is the articulation vertex."""
if directed:
graph = DirectedGraph()
else:
graph = UndirectedGraph()
graph.new_node()
graph.new_node()
graph.new_node()
graph.new_edge(1, 2)
graph.new_edge(1, 3)
return graph |
Python | def build_triangle_graph_with_costs(directed=False):
"""Builds a triangle graph with costs for testing."""
if directed:
graph = DirectedGraph()
else:
graph = UndirectedGraph()
graph.new_node()
graph.new_node()
graph.new_node()
graph.new_edge(1, 2, 1)
graph.new_edge(2, 3, 2)
graph.new_edge(3, 1, 10)
return graph | def build_triangle_graph_with_costs(directed=False):
"""Builds a triangle graph with costs for testing."""
if directed:
graph = DirectedGraph()
else:
graph = UndirectedGraph()
graph.new_node()
graph.new_node()
graph.new_node()
graph.new_edge(1, 2, 1)
graph.new_edge(2, 3, 2)
graph.new_edge(3, 1, 10)
return graph |
Python | def build_petersons_graph():
"""Builds a non-planar test graph that does not contain K5 or K3,3 as a subgraph (Peterson's Graph).
Ref: http://mathworld.wolfram.com/PetersenGraph.html"""
graph = build_5_cycle_graph()
# --Build a 5-pointed star
for _ in range(5):
graph.new_node()
graph.new_edge(6, 8)
graph.new_edge(6, 9)
graph.new_edge(7, 9)
graph.new_edge(7, 10)
graph.new_edge(8, 10)
# --Connect it to the outside 5-cycle graph
graph.new_edge(1, 6)
graph.new_edge(2, 7)
graph.new_edge(3, 8)
graph.new_edge(4, 9)
graph.new_edge(5, 10)
return graph | def build_petersons_graph():
"""Builds a non-planar test graph that does not contain K5 or K3,3 as a subgraph (Peterson's Graph).
Ref: http://mathworld.wolfram.com/PetersenGraph.html"""
graph = build_5_cycle_graph()
# --Build a 5-pointed star
for _ in range(5):
graph.new_node()
graph.new_edge(6, 8)
graph.new_edge(6, 9)
graph.new_edge(7, 9)
graph.new_edge(7, 10)
graph.new_edge(8, 10)
# --Connect it to the outside 5-cycle graph
graph.new_edge(1, 6)
graph.new_edge(2, 7)
graph.new_edge(3, 8)
graph.new_edge(4, 9)
graph.new_edge(5, 10)
return graph |
Python | def make_subgraph(graph, vertices, edges):
"""Converts a subgraph given by a list of vertices and edges into a graph object."""
# Copy the entire graph
local_graph = copy.deepcopy(graph)
# Remove all the edges that aren't in the list
edges_to_delete = [x for x in local_graph.get_all_edge_ids() if x not in edges]
for e in edges_to_delete:
local_graph.delete_edge_by_id(e)
# Remove all the vertices that aren't in the list
nodes_to_delete = [x for x in local_graph.get_all_node_ids() if x not in vertices]
for n in nodes_to_delete:
local_graph.delete_node(n)
return local_graph | def make_subgraph(graph, vertices, edges):
"""Converts a subgraph given by a list of vertices and edges into a graph object."""
# Copy the entire graph
local_graph = copy.deepcopy(graph)
# Remove all the edges that aren't in the list
edges_to_delete = [x for x in local_graph.get_all_edge_ids() if x not in edges]
for e in edges_to_delete:
local_graph.delete_edge_by_id(e)
# Remove all the vertices that aren't in the list
nodes_to_delete = [x for x in local_graph.get_all_node_ids() if x not in vertices]
for n in nodes_to_delete:
local_graph.delete_node(n)
return local_graph |
Python | def convert_graph_directed_to_undirected(dg):
"""Converts a directed graph into an undirected graph. Directed edges are made undirected."""
udg = UndirectedGraph()
# Copy the graph
# --Copy nodes
# --Copy edges
udg.nodes = copy.deepcopy(dg.nodes)
udg.edges = copy.deepcopy(dg.edges)
udg.next_node_id = dg.next_node_id
udg.next_edge_id = dg.next_edge_id
# Convert the directed edges into undirected edges
for edge_id in udg.get_all_edge_ids():
edge = udg.get_edge(edge_id)
target_node_id = edge['vertices'][1]
target_node = udg.get_node(target_node_id)
target_node['edges'].append(edge_id)
return udg | def convert_graph_directed_to_undirected(dg):
"""Converts a directed graph into an undirected graph. Directed edges are made undirected."""
udg = UndirectedGraph()
# Copy the graph
# --Copy nodes
# --Copy edges
udg.nodes = copy.deepcopy(dg.nodes)
udg.edges = copy.deepcopy(dg.edges)
udg.next_node_id = dg.next_node_id
udg.next_edge_id = dg.next_edge_id
# Convert the directed edges into undirected edges
for edge_id in udg.get_all_edge_ids():
edge = udg.get_edge(edge_id)
target_node_id = edge['vertices'][1]
target_node = udg.get_node(target_node_id)
target_node['edges'].append(edge_id)
return udg |
Python | def remove_duplicate_edges_directed(dg):
"""Removes duplicate edges from a directed graph."""
# With directed edges, we can just hash the to and from node id tuples and if
# a node happens to conflict with one that already exists, we delete it
# --For aesthetic, we sort the edge ids so that lower edge ids are kept
lookup = {}
edges = sorted(dg.get_all_edge_ids())
for edge_id in edges:
e = dg.get_edge(edge_id)
tpl = e['vertices']
if tpl in lookup:
dg.delete_edge_by_id(edge_id)
else:
lookup[tpl] = edge_id | def remove_duplicate_edges_directed(dg):
"""Removes duplicate edges from a directed graph."""
# With directed edges, we can just hash the to and from node id tuples and if
# a node happens to conflict with one that already exists, we delete it
# --For aesthetic, we sort the edge ids so that lower edge ids are kept
lookup = {}
edges = sorted(dg.get_all_edge_ids())
for edge_id in edges:
e = dg.get_edge(edge_id)
tpl = e['vertices']
if tpl in lookup:
dg.delete_edge_by_id(edge_id)
else:
lookup[tpl] = edge_id |
Python | def remove_duplicate_edges_undirected(udg):
"""Removes duplicate edges from an undirected graph."""
# With undirected edges, we need to hash both combinations of the to-from node ids, since a-b and b-a are equivalent
# --For aesthetic, we sort the edge ids so that lower edges ids are kept
lookup = {}
edges = sorted(udg.get_all_edge_ids())
for edge_id in edges:
e = udg.get_edge(edge_id)
tpl_a = e['vertices']
tpl_b = (tpl_a[1], tpl_a[0])
if tpl_a in lookup or tpl_b in lookup:
udg.delete_edge_by_id(edge_id)
else:
lookup[tpl_a] = edge_id
lookup[tpl_b] = edge_id | def remove_duplicate_edges_undirected(udg):
"""Removes duplicate edges from an undirected graph."""
# With undirected edges, we need to hash both combinations of the to-from node ids, since a-b and b-a are equivalent
# --For aesthetic, we sort the edge ids so that lower edges ids are kept
lookup = {}
edges = sorted(udg.get_all_edge_ids())
for edge_id in edges:
e = udg.get_edge(edge_id)
tpl_a = e['vertices']
tpl_b = (tpl_a[1], tpl_a[0])
if tpl_a in lookup or tpl_b in lookup:
udg.delete_edge_by_id(edge_id)
else:
lookup[tpl_a] = edge_id
lookup[tpl_b] = edge_id |
Python | def create_graph_from_adjacency_matrix(adjacency_matrix):
"""Generates a graph from an adjacency matrix specification.
Returns a tuple containing the graph and a list-mapping of node ids to matrix column indices.
The graph will be an UndirectedGraph if the provided adjacency matrix is symmetric.
The graph will be a DirectedGraph if the provided adjacency matrix is not symmetric.
Ref: http://mathworld.wolfram.com/AdjacencyMatrix.html"""
if is_adjacency_matrix_symmetric(adjacency_matrix):
graph = UndirectedGraph()
else:
graph = DirectedGraph()
node_column_mapping = []
num_columns = len(adjacency_matrix)
for _ in range(num_columns):
node_id = graph.new_node()
node_column_mapping.append(node_id)
for j in range(num_columns):
for i in range(num_columns):
if adjacency_matrix[j][i]:
jnode_id = node_column_mapping[j]
inode_id = node_column_mapping[i]
# Because of our adjacency matrix encoding, [j][i] in our code corresponds to [i][j] in a traditional matrix interpretation
# Thus, we need to put an edge from node i to node j if [j][i] in our code is non-zero
graph.new_edge(inode_id, jnode_id)
return (graph, node_column_mapping) | def create_graph_from_adjacency_matrix(adjacency_matrix):
"""Generates a graph from an adjacency matrix specification.
Returns a tuple containing the graph and a list-mapping of node ids to matrix column indices.
The graph will be an UndirectedGraph if the provided adjacency matrix is symmetric.
The graph will be a DirectedGraph if the provided adjacency matrix is not symmetric.
Ref: http://mathworld.wolfram.com/AdjacencyMatrix.html"""
if is_adjacency_matrix_symmetric(adjacency_matrix):
graph = UndirectedGraph()
else:
graph = DirectedGraph()
node_column_mapping = []
num_columns = len(adjacency_matrix)
for _ in range(num_columns):
node_id = graph.new_node()
node_column_mapping.append(node_id)
for j in range(num_columns):
for i in range(num_columns):
if adjacency_matrix[j][i]:
jnode_id = node_column_mapping[j]
inode_id = node_column_mapping[i]
# Because of our adjacency matrix encoding, [j][i] in our code corresponds to [i][j] in a traditional matrix interpretation
# Thus, we need to put an edge from node i to node j if [j][i] in our code is non-zero
graph.new_edge(inode_id, jnode_id)
return (graph, node_column_mapping) |
Python | def is_adjacency_matrix_symmetric(adjacency_matrix):
"""Determines if an adjacency matrix is symmetric.
Ref: http://mathworld.wolfram.com/SymmetricMatrix.html"""
# Verify that the matrix is square
num_columns = len(adjacency_matrix)
for column in adjacency_matrix:
# In a square matrix, every row should be the same length as the number of columns
if len(column) != num_columns:
return False
# Loop through the bottom half of the matrix and compare it to the top half
# --We do the bottom half because of how we construct adjacency matrices
max_i = 0
for j in range(num_columns):
for i in range(max_i):
# If i == j, we can skip ahead so we don't compare with ourself
if i == j:
continue
# Compare the value in the bottom half with the mirrored value in the top half
# If they aren't the same, the matrix isn't symmetric
if adjacency_matrix[j][i] != adjacency_matrix[i][j]:
return False
max_i += 1
# If we reach this far without returning false, then we know that everything matched,
# which makes this a symmetric matrix
return True | def is_adjacency_matrix_symmetric(adjacency_matrix):
"""Determines if an adjacency matrix is symmetric.
Ref: http://mathworld.wolfram.com/SymmetricMatrix.html"""
# Verify that the matrix is square
num_columns = len(adjacency_matrix)
for column in adjacency_matrix:
# In a square matrix, every row should be the same length as the number of columns
if len(column) != num_columns:
return False
# Loop through the bottom half of the matrix and compare it to the top half
# --We do the bottom half because of how we construct adjacency matrices
max_i = 0
for j in range(num_columns):
for i in range(max_i):
# If i == j, we can skip ahead so we don't compare with ourself
if i == j:
continue
# Compare the value in the bottom half with the mirrored value in the top half
# If they aren't the same, the matrix isn't symmetric
if adjacency_matrix[j][i] != adjacency_matrix[i][j]:
return False
max_i += 1
# If we reach this far without returning false, then we know that everything matched,
# which makes this a symmetric matrix
return True |
Python | def depth_first_search(graph, root_node=None):
"""Searches through the tree in a breadth-first fashion.
If root_node is None, an arbitrary node will be used as the root.
If root_node is not None, it will be used as the root for the search tree.
Returns a list of nodes, in the order that they were reached.
"""
ordering, parent_lookup, children_lookup = depth_first_search_with_parent_data(graph, root_node)
return ordering | def depth_first_search(graph, root_node=None):
"""Searches through the tree in a breadth-first fashion.
If root_node is None, an arbitrary node will be used as the root.
If root_node is not None, it will be used as the root for the search tree.
Returns a list of nodes, in the order that they were reached.
"""
ordering, parent_lookup, children_lookup = depth_first_search_with_parent_data(graph, root_node)
return ordering |
Python | def depth_first_search_with_parent_data(graph, root_node = None, adjacency_lists = None):
"""Performs a depth-first search with visiting order of nodes determined by provided adjacency lists,
and also returns a parent lookup dict and a children lookup dict."""
ordering = []
parent_lookup = {}
children_lookup = defaultdict(lambda: [])
all_nodes = graph.get_all_node_ids()
if not all_nodes:
return ordering, parent_lookup, children_lookup
stack = deque()
discovered = defaultdict(lambda: False)
unvisited_nodes = set(all_nodes)
if root_node is None:
root_node = all_nodes[0]
if adjacency_lists is None:
adj = lambda v: graph.neighbors(v)
else:
adj = lambda v: adjacency_lists[v]
# --Initialize the stack, simulating the DFS call on the root node
stack.appendleft(root_node)
parent_lookup[root_node] = root_node
# We're using a non-recursive implementation of DFS, since Python isn't great for deep recursion
while True:
# Main DFS Loop
while len(stack) > 0:
u = stack.popleft()
if not discovered[u]:
discovered[u] = True
if u in unvisited_nodes:
unvisited_nodes.remove(u)
ordering.append(u)
neighbors = adj(u)
# When adding the new nodes to the stack, we want to add them in reverse order so that
# the order the nodes are visited is the same as with a recursive DFS implementation
for n in neighbors[::-1]:
if discovered[n]:
# If the node already exists in the discovered nodes list
# we don't want to re-add it to the stack
continue
stack.appendleft(n)
parent_lookup[n] = u
children_lookup[u].append(n)
# While there are still nodes that need visiting, repopulate the stack
if len(unvisited_nodes) > 0:
u = unvisited_nodes.pop()
stack.appendleft(u)
else:
break
return ordering, parent_lookup, children_lookup | def depth_first_search_with_parent_data(graph, root_node = None, adjacency_lists = None):
"""Performs a depth-first search with visiting order of nodes determined by provided adjacency lists,
and also returns a parent lookup dict and a children lookup dict."""
ordering = []
parent_lookup = {}
children_lookup = defaultdict(lambda: [])
all_nodes = graph.get_all_node_ids()
if not all_nodes:
return ordering, parent_lookup, children_lookup
stack = deque()
discovered = defaultdict(lambda: False)
unvisited_nodes = set(all_nodes)
if root_node is None:
root_node = all_nodes[0]
if adjacency_lists is None:
adj = lambda v: graph.neighbors(v)
else:
adj = lambda v: adjacency_lists[v]
# --Initialize the stack, simulating the DFS call on the root node
stack.appendleft(root_node)
parent_lookup[root_node] = root_node
# We're using a non-recursive implementation of DFS, since Python isn't great for deep recursion
while True:
# Main DFS Loop
while len(stack) > 0:
u = stack.popleft()
if not discovered[u]:
discovered[u] = True
if u in unvisited_nodes:
unvisited_nodes.remove(u)
ordering.append(u)
neighbors = adj(u)
# When adding the new nodes to the stack, we want to add them in reverse order so that
# the order the nodes are visited is the same as with a recursive DFS implementation
for n in neighbors[::-1]:
if discovered[n]:
# If the node already exists in the discovered nodes list
# we don't want to re-add it to the stack
continue
stack.appendleft(n)
parent_lookup[n] = u
children_lookup[u].append(n)
# While there are still nodes that need visiting, repopulate the stack
if len(unvisited_nodes) > 0:
u = unvisited_nodes.pop()
stack.appendleft(u)
else:
break
return ordering, parent_lookup, children_lookup |
Python | def find_biconnected_components(graph):
"""Finds all the biconnected components in a graph.
Returns a list of lists, each containing the edges that form a biconnected component.
Returns an empty list for an empty graph.
"""
list_of_components = []
# Run the algorithm on each of the connected components of the graph
components = get_connected_components_as_subgraphs(graph)
for component in components:
# --Call the internal biconnnected components function to find
# --the edge lists for this particular connected component
edge_list = _internal_get_biconnected_components_edge_lists(component)
list_of_components.extend(edge_list)
return list_of_components | def find_biconnected_components(graph):
"""Finds all the biconnected components in a graph.
Returns a list of lists, each containing the edges that form a biconnected component.
Returns an empty list for an empty graph.
"""
list_of_components = []
# Run the algorithm on each of the connected components of the graph
components = get_connected_components_as_subgraphs(graph)
for component in components:
# --Call the internal biconnnected components function to find
# --the edge lists for this particular connected component
edge_list = _internal_get_biconnected_components_edge_lists(component)
list_of_components.extend(edge_list)
return list_of_components |
Python | def find_biconnected_components_as_subgraphs(graph):
"""Finds the biconnected components and returns them as subgraphs."""
list_of_graphs = []
list_of_components = find_biconnected_components(graph)
for edge_list in list_of_components:
subgraph = get_subgraph_from_edge_list(graph, edge_list)
list_of_graphs.append(subgraph)
return list_of_graphs | def find_biconnected_components_as_subgraphs(graph):
"""Finds the biconnected components and returns them as subgraphs."""
list_of_graphs = []
list_of_components = find_biconnected_components(graph)
for edge_list in list_of_components:
subgraph = get_subgraph_from_edge_list(graph, edge_list)
list_of_graphs.append(subgraph)
return list_of_graphs |
Python | def find_articulation_vertices(graph):
"""Finds all of the articulation vertices within a graph.
Returns a list of all articulation vertices within the graph.
Returns an empty list for an empty graph.
"""
articulation_vertices = []
all_nodes = graph.get_all_node_ids()
if len(all_nodes) == 0:
return articulation_vertices
# Run the algorithm on each of the connected components of the graph
components = get_connected_components_as_subgraphs(graph)
for component in components:
# --Call the internal articulation vertices function to find
# --the node list for this particular connected component
vertex_list = _internal_get_cut_vertex_list(component)
articulation_vertices.extend(vertex_list)
return articulation_vertices | def find_articulation_vertices(graph):
"""Finds all of the articulation vertices within a graph.
Returns a list of all articulation vertices within the graph.
Returns an empty list for an empty graph.
"""
articulation_vertices = []
all_nodes = graph.get_all_node_ids()
if len(all_nodes) == 0:
return articulation_vertices
# Run the algorithm on each of the connected components of the graph
components = get_connected_components_as_subgraphs(graph)
for component in components:
# --Call the internal articulation vertices function to find
# --the node list for this particular connected component
vertex_list = _internal_get_cut_vertex_list(component)
articulation_vertices.extend(vertex_list)
return articulation_vertices |
Python | def _internal_get_biconnected_components_edge_lists(graph):
"""Works on a single connected component to produce the edge lists of the biconnected components.
Returns a list of lists, each containing the edges that combine to produce the connected component.
Returns a single nested list with 1 edge if there is only 1 edge in the graph (a 2-node graph is a
special case, generally considered to be a biconnected graph).
Returns an empty list if there are no edges in the graph (i.e. if it's a single-node or empty graph).
"""
list_of_components = []
num_nodes = graph.num_nodes()
num_edges = graph.num_edges()
if num_nodes <= 2:
if num_edges == 1:
list_of_components.append(graph.get_all_edge_ids())
return list_of_components
dfs_count = 0
edge_stack = deque()
dfs_stack = deque()
visited = defaultdict(lambda: False)
parent = defaultdict(lambda: None)
depth = {}
low = {}
preorder_processed = defaultdict(lambda: False)
postorder_processed = defaultdict(lambda: False)
# We're simulating a recursive DFS with an explicit stack, since Python has a really small function stack
unvisited_nodes = set(graph.get_all_node_ids())
while len(unvisited_nodes) > 0:
# --Initialize the first stack frame, simulating the DFS call on the root node
u = unvisited_nodes.pop()
parent[u] = u
stack_frame = {
'u': u,
'v': None,
'remaining_children': graph.neighbors(u)
}
dfs_stack.appendleft(stack_frame)
while len(dfs_stack) > 0:
frame = dfs_stack.popleft()
u = frame['u']
v = frame['v']
if not visited[u]:
if u in unvisited_nodes:
unvisited_nodes.remove(u)
visited[u] = True
dfs_count += 1
depth[u] = dfs_count
low[u] = depth[u]
if len(frame['remaining_children']) > 0:
v = frame['remaining_children'].pop()
frame['v'] = v
if v is None:
# --u has no neighbor nodes
continue
if not preorder_processed[v]:
# --This is the preorder processing, done for each neighbor node ''v'' of u
node_v = graph.get_node(v)
for edge_id in node_v['edges']:
edge = graph.get_edge(edge_id)
tpl_a = (u, v)
tpl_b = (v, u)
if tpl_a == edge['vertices'] or tpl_b == edge['vertices']:
edge_stack.appendleft(edge_id)
break
parent[v] = u
preorder_processed[v] = True
# print 'preorder for {}'.format(v)
dfs_stack.appendleft(frame)
# --Simulate the recursion to call the DFS on v
new_frame = {
'u': v,
'v': None,
'remaining_children': graph.neighbors(v)
}
dfs_stack.appendleft(new_frame)
continue
elif not postorder_processed[v] and u == parent[v]:
# --This is the postorder processing, done for each neighbor node ''v'' of u
if low[v] >= depth[u]:
component = output_component(graph, edge_stack, u, v)
if len(component) > 2:
# --You can't have a biconnected component with less than 3 edges
list_of_components.append(component)
low[u] = min(low[u], low[v])
postorder_processed[v] = True
# print 'postorder for {}'.format(v)
elif visited[v] and (parent[u] != v) and (depth[v] < depth[u]):
# (u,v) is a backedge from u to its ancestor v
node_v = graph.get_node(v)
for edge_id in node_v['edges']:
edge = graph.get_edge(edge_id)
tpl_a = (u, v)
tpl_b = (v, u)
if tpl_a == edge['vertices'] or tpl_b == edge['vertices']:
edge_stack.appendleft(edge_id)
break
low[u] = min(low[u], depth[v])
if len(frame['remaining_children']) > 0:
# --Continue onto the next neighbor node of u
v = frame['remaining_children'].pop()
frame['v'] = v
dfs_stack.appendleft(frame)
return list_of_components | def _internal_get_biconnected_components_edge_lists(graph):
"""Works on a single connected component to produce the edge lists of the biconnected components.
Returns a list of lists, each containing the edges that combine to produce the connected component.
Returns a single nested list with 1 edge if there is only 1 edge in the graph (a 2-node graph is a
special case, generally considered to be a biconnected graph).
Returns an empty list if there are no edges in the graph (i.e. if it's a single-node or empty graph).
"""
list_of_components = []
num_nodes = graph.num_nodes()
num_edges = graph.num_edges()
if num_nodes <= 2:
if num_edges == 1:
list_of_components.append(graph.get_all_edge_ids())
return list_of_components
dfs_count = 0
edge_stack = deque()
dfs_stack = deque()
visited = defaultdict(lambda: False)
parent = defaultdict(lambda: None)
depth = {}
low = {}
preorder_processed = defaultdict(lambda: False)
postorder_processed = defaultdict(lambda: False)
# We're simulating a recursive DFS with an explicit stack, since Python has a really small function stack
unvisited_nodes = set(graph.get_all_node_ids())
while len(unvisited_nodes) > 0:
# --Initialize the first stack frame, simulating the DFS call on the root node
u = unvisited_nodes.pop()
parent[u] = u
stack_frame = {
'u': u,
'v': None,
'remaining_children': graph.neighbors(u)
}
dfs_stack.appendleft(stack_frame)
while len(dfs_stack) > 0:
frame = dfs_stack.popleft()
u = frame['u']
v = frame['v']
if not visited[u]:
if u in unvisited_nodes:
unvisited_nodes.remove(u)
visited[u] = True
dfs_count += 1
depth[u] = dfs_count
low[u] = depth[u]
if len(frame['remaining_children']) > 0:
v = frame['remaining_children'].pop()
frame['v'] = v
if v is None:
# --u has no neighbor nodes
continue
if not preorder_processed[v]:
# --This is the preorder processing, done for each neighbor node ''v'' of u
node_v = graph.get_node(v)
for edge_id in node_v['edges']:
edge = graph.get_edge(edge_id)
tpl_a = (u, v)
tpl_b = (v, u)
if tpl_a == edge['vertices'] or tpl_b == edge['vertices']:
edge_stack.appendleft(edge_id)
break
parent[v] = u
preorder_processed[v] = True
# print 'preorder for {}'.format(v)
dfs_stack.appendleft(frame)
# --Simulate the recursion to call the DFS on v
new_frame = {
'u': v,
'v': None,
'remaining_children': graph.neighbors(v)
}
dfs_stack.appendleft(new_frame)
continue
elif not postorder_processed[v] and u == parent[v]:
# --This is the postorder processing, done for each neighbor node ''v'' of u
if low[v] >= depth[u]:
component = output_component(graph, edge_stack, u, v)
if len(component) > 2:
# --You can't have a biconnected component with less than 3 edges
list_of_components.append(component)
low[u] = min(low[u], low[v])
postorder_processed[v] = True
# print 'postorder for {}'.format(v)
elif visited[v] and (parent[u] != v) and (depth[v] < depth[u]):
# (u,v) is a backedge from u to its ancestor v
node_v = graph.get_node(v)
for edge_id in node_v['edges']:
edge = graph.get_edge(edge_id)
tpl_a = (u, v)
tpl_b = (v, u)
if tpl_a == edge['vertices'] or tpl_b == edge['vertices']:
edge_stack.appendleft(edge_id)
break
low[u] = min(low[u], depth[v])
if len(frame['remaining_children']) > 0:
# --Continue onto the next neighbor node of u
v = frame['remaining_children'].pop()
frame['v'] = v
dfs_stack.appendleft(frame)
return list_of_components |
Python | def output_component(graph, edge_stack, u, v):
"""Helper function to pop edges off the stack and produce a list of them."""
edge_list = []
while len(edge_stack) > 0:
edge_id = edge_stack.popleft()
edge_list.append(edge_id)
edge = graph.get_edge(edge_id)
tpl_a = (u, v)
tpl_b = (v, u)
if tpl_a == edge['vertices'] or tpl_b == edge['vertices']:
break
return edge_list | def output_component(graph, edge_stack, u, v):
"""Helper function to pop edges off the stack and produce a list of them."""
edge_list = []
while len(edge_stack) > 0:
edge_id = edge_stack.popleft()
edge_list.append(edge_id)
edge = graph.get_edge(edge_id)
tpl_a = (u, v)
tpl_b = (v, u)
if tpl_a == edge['vertices'] or tpl_b == edge['vertices']:
break
return edge_list |
Python | def _internal_get_cut_vertex_list(graph):
"""Works on a single connected component to produce the node list of cut vertices.
Returns a list of nodes.
Returns an empty list if there are no nodes in the graph (i.e. if it's an empty graph).
"""
list_of_cut_vertices = set()
if graph.num_nodes() == 0:
return list(list_of_cut_vertices)
dfs_count = 0
root_dfs_count = 1
dfs_stack = deque()
visited = defaultdict(lambda: False)
parent = defaultdict(lambda: None)
children = defaultdict(lambda: [])
depth = {}
low = {}
preorder_processed = defaultdict(lambda: False)
postorder_processed = defaultdict(lambda: False)
# We're simulating a recursive DFS with an explicit stack, since Python has a really small function stack
unvisited_nodes = set(graph.get_all_node_ids())
while len(unvisited_nodes) > 0:
# --Initialize the first stack frame, simulating the DFS call on the root node
u = unvisited_nodes.pop()
parent[u] = u
stack_frame = {
'u': u,
'v': None,
'remaining_children': graph.neighbors(u)
}
dfs_stack.appendleft(stack_frame)
while len(dfs_stack) > 0:
frame = dfs_stack.popleft()
u = frame['u']
v = frame['v']
if not visited[u]:
if u in unvisited_nodes:
unvisited_nodes.remove(u)
visited[u] = True
dfs_count += 1
depth[u] = dfs_count
low[u] = depth[u]
if len(frame['remaining_children']) > 0:
v = frame['remaining_children'].pop()
frame['v'] = v
if v is None:
# --u has no neighbor nodes
continue
if not preorder_processed[v]:
# --This is the preorder processing, done for each neighbor node ''v'' of u
parent[v] = u
children[u].append(v)
preorder_processed[v] = True
# print 'preorder for {}'.format(v)
dfs_stack.appendleft(frame)
# --Simulate the recursion to call the DFS on v
new_frame = {
'u': v,
'v': None,
'remaining_children': graph.neighbors(v)
}
dfs_stack.appendleft(new_frame)
continue
elif not postorder_processed[v] and u == parent[v]:
# --This is the postorder processing, done for each neighbor node ''v'' of u
if low[v] >= depth[u] and depth[u] > 1:
list_of_cut_vertices.add(u)
low[u] = min(low[u], low[v])
postorder_processed[v] = True
# print 'postorder for {}'.format(v)
elif visited[v] and (parent[u] != v) and (depth[v] < depth[u]):
# (u,v) is a backedge from u to its ancestor v
low[u] = min(low[u], depth[v])
if len(frame['remaining_children']) > 0:
# --Continue onto the next neighbor node of u
v = frame['remaining_children'].pop()
frame['v'] = v
dfs_stack.appendleft(frame)
# The root node gets special treatment; it's a cut vertex iff it has multiple children
if len(children[root_dfs_count]) > 1:
for node_id, dfs in list(depth.items()):
if dfs == root_dfs_count:
list_of_cut_vertices.add(node_id)
break
return list(list_of_cut_vertices) | def _internal_get_cut_vertex_list(graph):
"""Works on a single connected component to produce the node list of cut vertices.
Returns a list of nodes.
Returns an empty list if there are no nodes in the graph (i.e. if it's an empty graph).
"""
list_of_cut_vertices = set()
if graph.num_nodes() == 0:
return list(list_of_cut_vertices)
dfs_count = 0
root_dfs_count = 1
dfs_stack = deque()
visited = defaultdict(lambda: False)
parent = defaultdict(lambda: None)
children = defaultdict(lambda: [])
depth = {}
low = {}
preorder_processed = defaultdict(lambda: False)
postorder_processed = defaultdict(lambda: False)
# We're simulating a recursive DFS with an explicit stack, since Python has a really small function stack
unvisited_nodes = set(graph.get_all_node_ids())
while len(unvisited_nodes) > 0:
# --Initialize the first stack frame, simulating the DFS call on the root node
u = unvisited_nodes.pop()
parent[u] = u
stack_frame = {
'u': u,
'v': None,
'remaining_children': graph.neighbors(u)
}
dfs_stack.appendleft(stack_frame)
while len(dfs_stack) > 0:
frame = dfs_stack.popleft()
u = frame['u']
v = frame['v']
if not visited[u]:
if u in unvisited_nodes:
unvisited_nodes.remove(u)
visited[u] = True
dfs_count += 1
depth[u] = dfs_count
low[u] = depth[u]
if len(frame['remaining_children']) > 0:
v = frame['remaining_children'].pop()
frame['v'] = v
if v is None:
# --u has no neighbor nodes
continue
if not preorder_processed[v]:
# --This is the preorder processing, done for each neighbor node ''v'' of u
parent[v] = u
children[u].append(v)
preorder_processed[v] = True
# print 'preorder for {}'.format(v)
dfs_stack.appendleft(frame)
# --Simulate the recursion to call the DFS on v
new_frame = {
'u': v,
'v': None,
'remaining_children': graph.neighbors(v)
}
dfs_stack.appendleft(new_frame)
continue
elif not postorder_processed[v] and u == parent[v]:
# --This is the postorder processing, done for each neighbor node ''v'' of u
if low[v] >= depth[u] and depth[u] > 1:
list_of_cut_vertices.add(u)
low[u] = min(low[u], low[v])
postorder_processed[v] = True
# print 'postorder for {}'.format(v)
elif visited[v] and (parent[u] != v) and (depth[v] < depth[u]):
# (u,v) is a backedge from u to its ancestor v
low[u] = min(low[u], depth[v])
if len(frame['remaining_children']) > 0:
# --Continue onto the next neighbor node of u
v = frame['remaining_children'].pop()
frame['v'] = v
dfs_stack.appendleft(frame)
# The root node gets special treatment; it's a cut vertex iff it has multiple children
if len(children[root_dfs_count]) > 1:
for node_id, dfs in list(depth.items()):
if dfs == root_dfs_count:
list_of_cut_vertices.add(node_id)
break
return list(list_of_cut_vertices) |
Python | def __setup_dfs_data(graph, adj):
"""Sets up the dfs_data object, for consistency."""
dfs_data = __get_dfs_data(graph, adj)
dfs_data['graph'] = graph
dfs_data['adj'] = adj
L1, L2 = __low_point_dfs(dfs_data)
dfs_data['lowpoint_1_lookup'] = L1
dfs_data['lowpoint_2_lookup'] = L2
edge_weights = __calculate_edge_weights(dfs_data)
dfs_data['edge_weights'] = edge_weights
return dfs_data | def __setup_dfs_data(graph, adj):
"""Sets up the dfs_data object, for consistency."""
dfs_data = __get_dfs_data(graph, adj)
dfs_data['graph'] = graph
dfs_data['adj'] = adj
L1, L2 = __low_point_dfs(dfs_data)
dfs_data['lowpoint_1_lookup'] = L1
dfs_data['lowpoint_2_lookup'] = L2
edge_weights = __calculate_edge_weights(dfs_data)
dfs_data['edge_weights'] = edge_weights
return dfs_data |
Python | def __calculate_edge_weights(dfs_data):
"""Calculates the weight of each edge, for embedding-order sorting."""
graph = dfs_data['graph']
weights = {}
for edge_id in graph.get_all_edge_ids():
edge_weight = __edge_weight(edge_id, dfs_data)
weights[edge_id] = edge_weight
return weights | def __calculate_edge_weights(dfs_data):
"""Calculates the weight of each edge, for embedding-order sorting."""
graph = dfs_data['graph']
weights = {}
for edge_id in graph.get_all_edge_ids():
edge_weight = __edge_weight(edge_id, dfs_data)
weights[edge_id] = edge_weight
return weights |
Python | def __sort_adjacency_lists(dfs_data):
"""Sorts the adjacency list representation by the edge weights."""
new_adjacency_lists = {}
adjacency_lists = dfs_data['adj']
edge_weights = dfs_data['edge_weights']
edge_lookup = dfs_data['edge_lookup']
for node_id, adj_list in list(adjacency_lists.items()):
node_weight_lookup = {}
frond_lookup = {}
for node_b in adj_list:
edge_id = dfs_data['graph'].get_first_edge_id_by_node_ids(node_id, node_b)
node_weight_lookup[node_b] = edge_weights[edge_id]
frond_lookup[node_b] = 1 if edge_lookup[edge_id] == 'backedge' else 2
# Fronds should be before branches if the weights are equal
new_list = sorted(adj_list, key=lambda n: frond_lookup[n])
# Sort by weights
new_list.sort(key=lambda n: node_weight_lookup[n])
# Add the new sorted list to the new adjacency list lookup table
new_adjacency_lists[node_id] = new_list
return new_adjacency_lists | def __sort_adjacency_lists(dfs_data):
"""Sorts the adjacency list representation by the edge weights."""
new_adjacency_lists = {}
adjacency_lists = dfs_data['adj']
edge_weights = dfs_data['edge_weights']
edge_lookup = dfs_data['edge_lookup']
for node_id, adj_list in list(adjacency_lists.items()):
node_weight_lookup = {}
frond_lookup = {}
for node_b in adj_list:
edge_id = dfs_data['graph'].get_first_edge_id_by_node_ids(node_id, node_b)
node_weight_lookup[node_b] = edge_weights[edge_id]
frond_lookup[node_b] = 1 if edge_lookup[edge_id] == 'backedge' else 2
# Fronds should be before branches if the weights are equal
new_list = sorted(adj_list, key=lambda n: frond_lookup[n])
# Sort by weights
new_list.sort(key=lambda n: node_weight_lookup[n])
# Add the new sorted list to the new adjacency list lookup table
new_adjacency_lists[node_id] = new_list
return new_adjacency_lists |
Python | def __branch_point_dfs(dfs_data):
"""DFS that calculates the b(u) and N(u) lookups, and also reorders the adjacency lists."""
u = dfs_data['ordering'][0]
large_n = {}
large_n[u] = 0
stem = {}
stem[u] = u
b = {}
b[u] = 1
__branch_point_dfs_recursive(u, large_n, b, stem, dfs_data)
dfs_data['N_u_lookup'] = large_n
dfs_data['b_u_lookup'] = b
return | def __branch_point_dfs(dfs_data):
"""DFS that calculates the b(u) and N(u) lookups, and also reorders the adjacency lists."""
u = dfs_data['ordering'][0]
large_n = {}
large_n[u] = 0
stem = {}
stem[u] = u
b = {}
b[u] = 1
__branch_point_dfs_recursive(u, large_n, b, stem, dfs_data)
dfs_data['N_u_lookup'] = large_n
dfs_data['b_u_lookup'] = b
return |
Python | def __branch_point_dfs_recursive(u, large_n, b, stem, dfs_data):
"""A recursive implementation of the BranchPtDFS function, as defined on page 14 of the paper."""
first_vertex = dfs_data['adj'][u][0]
large_w = wt(u, first_vertex, dfs_data)
if large_w % 2 == 0:
large_w += 1
v_I = 0
v_II = 0
for v in [v for v in dfs_data['adj'][u] if wt(u, v, dfs_data) <= large_w]:
stem[u] = v # not in the original paper, but a logical extension based on page 13
if a(v, dfs_data) == u: # uv is a tree edge
large_n[v] = 0
if wt(u, v, dfs_data) % 2 == 0:
v_I = v
else:
b_u = b[u]
l2_v = L2(v, dfs_data)
#if l2_v > b_u:
# If this is true, then we're not on a branch at all
# continue
if l2_v < b_u:
large_n[v] = 1
elif b_u != 1:
#print stem
#print dfs_data['lowpoint_2_lookup']
#print b
xnode = stem[l2_v]
if large_n[xnode] != 0:
large_n[v] = large_n[xnode] + 1
elif dfs_data['graph'].adjacent(u, L1(v, dfs_data)):
large_n[v] = 2
else:
large_n[v] = large_n[u]
if large_n[v] % 2 == 0:
v_II = v
break # Goto 1
if v_II != 0:
# Move v_II to head of Adj[u]
dfs_data['adj'][u].remove(v_II)
dfs_data['adj'][u].insert(0, v_II)
elif v_I != 0:
# Move v_I to head of Adj[u]
dfs_data['adj'][u].remove(v_I)
dfs_data['adj'][u].insert(0, v_I)
first_time = True
for v in dfs_data['adj'][u]:
if a(v, dfs_data) == u:
b[v] = u
if first_time:
b[v] = b[u]
elif wt(u, v, dfs_data) % 2 == 0:
large_n[v] = 0
else:
large_n[v] = 1
stem[u] = v
__branch_point_dfs_recursive(v, large_n, b, stem, dfs_data)
first_time = False
return | def __branch_point_dfs_recursive(u, large_n, b, stem, dfs_data):
"""A recursive implementation of the BranchPtDFS function, as defined on page 14 of the paper."""
first_vertex = dfs_data['adj'][u][0]
large_w = wt(u, first_vertex, dfs_data)
if large_w % 2 == 0:
large_w += 1
v_I = 0
v_II = 0
for v in [v for v in dfs_data['adj'][u] if wt(u, v, dfs_data) <= large_w]:
stem[u] = v # not in the original paper, but a logical extension based on page 13
if a(v, dfs_data) == u: # uv is a tree edge
large_n[v] = 0
if wt(u, v, dfs_data) % 2 == 0:
v_I = v
else:
b_u = b[u]
l2_v = L2(v, dfs_data)
#if l2_v > b_u:
# If this is true, then we're not on a branch at all
# continue
if l2_v < b_u:
large_n[v] = 1
elif b_u != 1:
#print stem
#print dfs_data['lowpoint_2_lookup']
#print b
xnode = stem[l2_v]
if large_n[xnode] != 0:
large_n[v] = large_n[xnode] + 1
elif dfs_data['graph'].adjacent(u, L1(v, dfs_data)):
large_n[v] = 2
else:
large_n[v] = large_n[u]
if large_n[v] % 2 == 0:
v_II = v
break # Goto 1
if v_II != 0:
# Move v_II to head of Adj[u]
dfs_data['adj'][u].remove(v_II)
dfs_data['adj'][u].insert(0, v_II)
elif v_I != 0:
# Move v_I to head of Adj[u]
dfs_data['adj'][u].remove(v_I)
dfs_data['adj'][u].insert(0, v_I)
first_time = True
for v in dfs_data['adj'][u]:
if a(v, dfs_data) == u:
b[v] = u
if first_time:
b[v] = b[u]
elif wt(u, v, dfs_data) % 2 == 0:
large_n[v] = 0
else:
large_n[v] = 1
stem[u] = v
__branch_point_dfs_recursive(v, large_n, b, stem, dfs_data)
first_time = False
return |
Python | def __embed_branch(dfs_data):
"""Builds the combinatorial embedding of the graph. Returns whether the graph is planar."""
u = dfs_data['ordering'][0]
dfs_data['LF'] = []
dfs_data['RF'] = []
dfs_data['FG'] = {}
n = dfs_data['graph'].num_nodes()
f0 = (0, n)
g0 = (0, n)
L0 = {'u': 0, 'v': n}
R0 = {'x': 0, 'y': n}
dfs_data['LF'].append(f0)
dfs_data['RF'].append(g0)
dfs_data['FG'][0] = [L0, R0]
dfs_data['FG']['m'] = 0
dfs_data['FG']['l'] = 0
dfs_data['FG']['r'] = 0
#print 'DFS Ordering: {}'.format(dfs_data['ordering'])
#for node in dfs_data['ordering']:
#print '{}: {}'.format(node, dfs_data['adj'][node])
nonplanar = __embed_branch_recursive(u, dfs_data)
#print "Nonplanar:", nonplanar
return not nonplanar | def __embed_branch(dfs_data):
"""Builds the combinatorial embedding of the graph. Returns whether the graph is planar."""
u = dfs_data['ordering'][0]
dfs_data['LF'] = []
dfs_data['RF'] = []
dfs_data['FG'] = {}
n = dfs_data['graph'].num_nodes()
f0 = (0, n)
g0 = (0, n)
L0 = {'u': 0, 'v': n}
R0 = {'x': 0, 'y': n}
dfs_data['LF'].append(f0)
dfs_data['RF'].append(g0)
dfs_data['FG'][0] = [L0, R0]
dfs_data['FG']['m'] = 0
dfs_data['FG']['l'] = 0
dfs_data['FG']['r'] = 0
#print 'DFS Ordering: {}'.format(dfs_data['ordering'])
#for node in dfs_data['ordering']:
#print '{}: {}'.format(node, dfs_data['adj'][node])
nonplanar = __embed_branch_recursive(u, dfs_data)
#print "Nonplanar:", nonplanar
return not nonplanar |
Python | def __embed_branch_recursive(u, dfs_data):
"""A recursive implementation of the EmbedBranch function, as defined on pages 8 and 22 of the paper."""
#print "\nu: {}\nadj: {}".format(u, dfs_data['adj'][u])
#print 'Pre-inserts'
#print "FG: {}".format(dfs_data['FG'])
#print "LF: {}".format(dfs_data['LF'])
#print "RF: {}".format(dfs_data['RF'])
for v in dfs_data['adj'][u]:
#print "\nu, v: {}, {}".format(u, v)
#print "dfs_u, dfs_v: {}, {}".format(D(u, dfs_data), D(v, dfs_data))
nonplanar = True
if a(v, dfs_data) == u:
#print 'Ancestor block entered:', u, v
if b(v, dfs_data) == u:
successful = __insert_branch(u, v, dfs_data)
if not successful:
#print 'InsertBranch({}, {}) Failed'.format(u, v)
nonplanar = True
return nonplanar
nonplanar = __embed_branch_recursive(v, dfs_data)
if nonplanar:
return nonplanar
elif is_frond(u, v, dfs_data):
#print 'Frond block entered:', u, v
successful = __embed_frond(u, v, dfs_data)
if not successful:
#print 'EmbedFrond({}, {}) Failed'.format(u, v)
nonplanar = True
return nonplanar
#print 'Post EmbedFrond'
#print "FG: {}".format(dfs_data['FG'])
#print "LF: {}".format(dfs_data['LF'])
#print "RF: {}".format(dfs_data['RF'])
else:
# This block is totally valid, and there will be multiple cases when it gets hit.
# We only want to do things if an edge is a tree edge (parent to child along the spine of the DFS tree),
# or if it's a frond edge (an edge moving up the tree from lower along the spine).
# Every non-tree edge will eventually get handled by the frond edge code as we recurse up the spine.
pass
#print "{}: Should be planar".format(u)
#print 'Post-inserts'
#print "FG: {}".format(dfs_data['FG'])
#print "LF: {}".format(dfs_data['LF'])
#print "RF: {}".format(dfs_data['RF'])
nonplanar = False
return nonplanar | def __embed_branch_recursive(u, dfs_data):
"""A recursive implementation of the EmbedBranch function, as defined on pages 8 and 22 of the paper."""
#print "\nu: {}\nadj: {}".format(u, dfs_data['adj'][u])
#print 'Pre-inserts'
#print "FG: {}".format(dfs_data['FG'])
#print "LF: {}".format(dfs_data['LF'])
#print "RF: {}".format(dfs_data['RF'])
for v in dfs_data['adj'][u]:
#print "\nu, v: {}, {}".format(u, v)
#print "dfs_u, dfs_v: {}, {}".format(D(u, dfs_data), D(v, dfs_data))
nonplanar = True
if a(v, dfs_data) == u:
#print 'Ancestor block entered:', u, v
if b(v, dfs_data) == u:
successful = __insert_branch(u, v, dfs_data)
if not successful:
#print 'InsertBranch({}, {}) Failed'.format(u, v)
nonplanar = True
return nonplanar
nonplanar = __embed_branch_recursive(v, dfs_data)
if nonplanar:
return nonplanar
elif is_frond(u, v, dfs_data):
#print 'Frond block entered:', u, v
successful = __embed_frond(u, v, dfs_data)
if not successful:
#print 'EmbedFrond({}, {}) Failed'.format(u, v)
nonplanar = True
return nonplanar
#print 'Post EmbedFrond'
#print "FG: {}".format(dfs_data['FG'])
#print "LF: {}".format(dfs_data['LF'])
#print "RF: {}".format(dfs_data['RF'])
else:
# This block is totally valid, and there will be multiple cases when it gets hit.
# We only want to do things if an edge is a tree edge (parent to child along the spine of the DFS tree),
# or if it's a frond edge (an edge moving up the tree from lower along the spine).
# Every non-tree edge will eventually get handled by the frond edge code as we recurse up the spine.
pass
#print "{}: Should be planar".format(u)
#print 'Post-inserts'
#print "FG: {}".format(dfs_data['FG'])
#print "LF: {}".format(dfs_data['LF'])
#print "RF: {}".format(dfs_data['RF'])
nonplanar = False
return nonplanar |
Python | def __insert_branch(u, v, dfs_data):
"""Embeds a branch Bu(v) (as described on page 22 of the paper). Returns whether the embedding was successful."""
w = L1(v, dfs_data)
d_u = D(u, dfs_data)
d_w = D(w, dfs_data)
# Embed uw
successful = __embed_frond(u, w, dfs_data)
if not successful:
return False
# Embed a branch marker uu on the side opposite to uw, in the same frond block
#successful = __embed_frond(u, v, dfs_data, as_branch_marker=True)
successful = __embed_frond(u, u, dfs_data, as_branch_marker=True)
if not successful:
return False
return True | def __insert_branch(u, v, dfs_data):
"""Embeds a branch Bu(v) (as described on page 22 of the paper). Returns whether the embedding was successful."""
w = L1(v, dfs_data)
d_u = D(u, dfs_data)
d_w = D(w, dfs_data)
# Embed uw
successful = __embed_frond(u, w, dfs_data)
if not successful:
return False
# Embed a branch marker uu on the side opposite to uw, in the same frond block
#successful = __embed_frond(u, v, dfs_data, as_branch_marker=True)
successful = __embed_frond(u, u, dfs_data, as_branch_marker=True)
if not successful:
return False
return True |
Python | def __embed_frond(node_u, node_w, dfs_data, as_branch_marker=False):
"""Embeds a frond uw into either LF or RF. Returns whether the embedding was successful."""
d_u = D(node_u, dfs_data)
d_w = D(node_w, dfs_data)
comp_d_w = abs(d_w)
if as_branch_marker:
d_w *= -1
if dfs_data['last_inserted_side'] == 'LF':
__insert_frond_RF(d_w, d_u, dfs_data)
else:
# We default to inserting a branch marker on the left side, unless we know otherwise
__insert_frond_LF(d_w, d_u, dfs_data)
return True
LF = dfs_data['LF']
m = dfs_data['FG']['m']
l_w = lw(dfs_data)
r_w = rw(dfs_data)
u_m = u(m, dfs_data)
x_m = fn_x(m, dfs_data)
# There are multiple cases for both u and w
# --Detect the case for u and store it for handling once the case for w is determined
case_1 = False
case_2 = False
case_3 = False
if d_u > u_m and d_u > x_m:
case_1 = True
elif d_u <= u_m and d_u > x_m:
case_2 = True
elif d_u > u_m and d_u <= x_m:
case_3 = True
else:
# We should never get here, return false because there's no way we can embed this frond
#print "Invalid u-case detected: (d_u, u_m, x_m): ({}, {}, {})".format(d_u, u_m, x_m)
#print "FG: {}".format(dfs_data['FG'])
#print "LF: {}".format(dfs_data['LF'])
#print "RF: {}".format(dfs_data['RF'])
return False
# --Detect the case for w and process the edge appropriately
if comp_d_w >= l_w and comp_d_w >= r_w:
# Case 4
#print "w-case 4 reached"
# --We do the same thing for all three u-cases: Add the frond to the left side
__insert_frond_LF(d_w, d_u, dfs_data)
dfs_data['FG']['m'] += 1
m = dfs_data['FG']['m']
n = dfs_data['graph'].num_nodes()
Lm = {'u': d_w, 'v': d_u}
Rm = {'x': n, 'y': 0} # See page 17 for how we deal with Ri being empty
#Rm = {}
dfs_data['FG'][m] = [Lm, Rm]
return True
elif comp_d_w >= l_w and comp_d_w < r_w:
# Case 5
#print "w-case 5 reached"
return __do_case_5_work(d_w, d_u, case_1, case_2, case_3, dfs_data)
elif comp_d_w < l_w and comp_d_w >= r_w:
# Case 6
#print "w-case 6 reached"
return __do_case_6_work(d_w, d_u, case_1, case_2, case_3, dfs_data)
elif comp_d_w < l_w and comp_d_w < r_w:
# Case 7
#print "w-case 7 reached"
#print "FG: {}".format(dfs_data['FG'])
#print "LF: {}".format(dfs_data['LF'])
#print "RF: {}".format(dfs_data['RF'])
#print "(d_w, l_w, r_w): ({}, {}, {})".format(d_w, l_w, r_w)
#print "(d_u, u_m, x_m, m): ({}, {}, {}, {})".format(d_u, u_m, x_m, m)
while comp_d_w < l_w and comp_d_w < r_w:
if d_u > u_m and d_u > x_m:
#print "Nonplanar case reached: u-case 1, w-case 7"
#print "FG: {}".format(dfs_data['FG'])
#print "LF: {}".format(dfs_data['LF'])
#print "RF: {}".format(dfs_data['RF'])
#print "(d_w, l_w, r_w): ({}, {}, {})".format(d_w, l_w, r_w)
#print "(d_u, u_m, x_m, m): ({}, {}, {}, {})".format(d_u, u_m, x_m, m)
return False
switch_sides(d_u, dfs_data)
# --Update the local variables fo the next loop iteration
l_w = lw(dfs_data)
r_w = rw(dfs_data)
m = dfs_data['FG']['m']
u_m = u(m, dfs_data)
x_m = fn_x(m, dfs_data)
case_1 = False
case_2 = False
case_3 = False
if d_u <= u_m and d_u > x_m:
case_2 = True
elif d_u > u_m and d_u <= x_m:
case_3 = True
if comp_d_w >= l_w and comp_d_w < r_w:
# Case 5 redux
#print "w-case 5 redux reached"
return __do_case_5_work(d_w, d_u, case_1, case_2, case_3, dfs_data)
if comp_d_w < l_w and comp_d_w >= r_w:
# Case 6 redux
#print "w-case 6 redux reached"
return __do_case_6_work(d_w, d_u, case_1, case_2, case_3, dfs_data)
else:
# We should never get here, return false because there's no way we can embed this frond
#print "Invalid w-case detected"
return False
# We really shouldn't get to this point, but this is a catch-all just in case
#print "Failure catchall reached"
return False | def __embed_frond(node_u, node_w, dfs_data, as_branch_marker=False):
"""Embeds a frond uw into either LF or RF. Returns whether the embedding was successful."""
d_u = D(node_u, dfs_data)
d_w = D(node_w, dfs_data)
comp_d_w = abs(d_w)
if as_branch_marker:
d_w *= -1
if dfs_data['last_inserted_side'] == 'LF':
__insert_frond_RF(d_w, d_u, dfs_data)
else:
# We default to inserting a branch marker on the left side, unless we know otherwise
__insert_frond_LF(d_w, d_u, dfs_data)
return True
LF = dfs_data['LF']
m = dfs_data['FG']['m']
l_w = lw(dfs_data)
r_w = rw(dfs_data)
u_m = u(m, dfs_data)
x_m = fn_x(m, dfs_data)
# There are multiple cases for both u and w
# --Detect the case for u and store it for handling once the case for w is determined
case_1 = False
case_2 = False
case_3 = False
if d_u > u_m and d_u > x_m:
case_1 = True
elif d_u <= u_m and d_u > x_m:
case_2 = True
elif d_u > u_m and d_u <= x_m:
case_3 = True
else:
# We should never get here, return false because there's no way we can embed this frond
#print "Invalid u-case detected: (d_u, u_m, x_m): ({}, {}, {})".format(d_u, u_m, x_m)
#print "FG: {}".format(dfs_data['FG'])
#print "LF: {}".format(dfs_data['LF'])
#print "RF: {}".format(dfs_data['RF'])
return False
# --Detect the case for w and process the edge appropriately
if comp_d_w >= l_w and comp_d_w >= r_w:
# Case 4
#print "w-case 4 reached"
# --We do the same thing for all three u-cases: Add the frond to the left side
__insert_frond_LF(d_w, d_u, dfs_data)
dfs_data['FG']['m'] += 1
m = dfs_data['FG']['m']
n = dfs_data['graph'].num_nodes()
Lm = {'u': d_w, 'v': d_u}
Rm = {'x': n, 'y': 0} # See page 17 for how we deal with Ri being empty
#Rm = {}
dfs_data['FG'][m] = [Lm, Rm]
return True
elif comp_d_w >= l_w and comp_d_w < r_w:
# Case 5
#print "w-case 5 reached"
return __do_case_5_work(d_w, d_u, case_1, case_2, case_3, dfs_data)
elif comp_d_w < l_w and comp_d_w >= r_w:
# Case 6
#print "w-case 6 reached"
return __do_case_6_work(d_w, d_u, case_1, case_2, case_3, dfs_data)
elif comp_d_w < l_w and comp_d_w < r_w:
# Case 7
#print "w-case 7 reached"
#print "FG: {}".format(dfs_data['FG'])
#print "LF: {}".format(dfs_data['LF'])
#print "RF: {}".format(dfs_data['RF'])
#print "(d_w, l_w, r_w): ({}, {}, {})".format(d_w, l_w, r_w)
#print "(d_u, u_m, x_m, m): ({}, {}, {}, {})".format(d_u, u_m, x_m, m)
while comp_d_w < l_w and comp_d_w < r_w:
if d_u > u_m and d_u > x_m:
#print "Nonplanar case reached: u-case 1, w-case 7"
#print "FG: {}".format(dfs_data['FG'])
#print "LF: {}".format(dfs_data['LF'])
#print "RF: {}".format(dfs_data['RF'])
#print "(d_w, l_w, r_w): ({}, {}, {})".format(d_w, l_w, r_w)
#print "(d_u, u_m, x_m, m): ({}, {}, {}, {})".format(d_u, u_m, x_m, m)
return False
switch_sides(d_u, dfs_data)
# --Update the local variables fo the next loop iteration
l_w = lw(dfs_data)
r_w = rw(dfs_data)
m = dfs_data['FG']['m']
u_m = u(m, dfs_data)
x_m = fn_x(m, dfs_data)
case_1 = False
case_2 = False
case_3 = False
if d_u <= u_m and d_u > x_m:
case_2 = True
elif d_u > u_m and d_u <= x_m:
case_3 = True
if comp_d_w >= l_w and comp_d_w < r_w:
# Case 5 redux
#print "w-case 5 redux reached"
return __do_case_5_work(d_w, d_u, case_1, case_2, case_3, dfs_data)
if comp_d_w < l_w and comp_d_w >= r_w:
# Case 6 redux
#print "w-case 6 redux reached"
return __do_case_6_work(d_w, d_u, case_1, case_2, case_3, dfs_data)
else:
# We should never get here, return false because there's no way we can embed this frond
#print "Invalid w-case detected"
return False
# We really shouldn't get to this point, but this is a catch-all just in case
#print "Failure catchall reached"
return False |
Python | def __do_case_5_work(d_w, d_u, case_1, case_2, case_3, dfs_data):
"""Encapsulates the work that will be done for case 5 of __embed_frond,
since it gets used in more than one place."""
# --We should only ever see u-cases 1 and 2
if case_3:
# --We should never get here
return False
comp_d_w = abs(d_w)
#if case_1:
# --Add the frond to the left side
__insert_frond_LF(d_w, d_u, dfs_data)
# --Add uw to Lm
m = dfs_data['FG']['m']
Lm = L(m, dfs_data)
if comp_d_w < Lm['u']:
Lm['u'] = d_w
if d_u > Lm['v']:
Lm['v'] = d_u
# --Case 2 requires a bit of extra work
if case_2:
Lm['u'] = d_w
x_m1 = fn_x(m-1, dfs_data)
while comp_d_w < x_m1:
merge_Fm(dfs_data)
m = dfs_data['FG']['m']
x_m1 = fn_x(m-1, dfs_data)
#else:
#print "Case 5 work, u-case 1"
return True | def __do_case_5_work(d_w, d_u, case_1, case_2, case_3, dfs_data):
"""Encapsulates the work that will be done for case 5 of __embed_frond,
since it gets used in more than one place."""
# --We should only ever see u-cases 1 and 2
if case_3:
# --We should never get here
return False
comp_d_w = abs(d_w)
#if case_1:
# --Add the frond to the left side
__insert_frond_LF(d_w, d_u, dfs_data)
# --Add uw to Lm
m = dfs_data['FG']['m']
Lm = L(m, dfs_data)
if comp_d_w < Lm['u']:
Lm['u'] = d_w
if d_u > Lm['v']:
Lm['v'] = d_u
# --Case 2 requires a bit of extra work
if case_2:
Lm['u'] = d_w
x_m1 = fn_x(m-1, dfs_data)
while comp_d_w < x_m1:
merge_Fm(dfs_data)
m = dfs_data['FG']['m']
x_m1 = fn_x(m-1, dfs_data)
#else:
#print "Case 5 work, u-case 1"
return True |
Python | def __do_case_6_work(d_w, d_u, case_1, case_2, case_3, dfs_data):
"""Encapsulates the work that will be done for case 6 of __embed_frond,
since it gets used in more than one place."""
# --We should only ever see u-cases 1 and 3
if case_2:
# --We should never get here
return False
comp_d_w = abs(d_w)
# --Add the frond to the right side
__insert_frond_RF(d_w, d_u, dfs_data)
# --Add uw to Rm
m = dfs_data['FG']['m']
Rm = R(m, dfs_data)
if comp_d_w < Rm['x']:
Rm['x'] = d_w
if d_u > Rm['y']:
Rm['y'] = d_u
# --Case 3 requires a bit of extra work
if case_3:
Rm['x'] = d_w
u_m1 = u(m-1, dfs_data)
while comp_d_w < u_m1:
merge_Fm(dfs_data)
m = dfs_data['FG']['m']
u_m1 = u(m-1, dfs_data)
#else:
#print "Case 6 work, u-case 1"
return True | def __do_case_6_work(d_w, d_u, case_1, case_2, case_3, dfs_data):
"""Encapsulates the work that will be done for case 6 of __embed_frond,
since it gets used in more than one place."""
# --We should only ever see u-cases 1 and 3
if case_2:
# --We should never get here
return False
comp_d_w = abs(d_w)
# --Add the frond to the right side
__insert_frond_RF(d_w, d_u, dfs_data)
# --Add uw to Rm
m = dfs_data['FG']['m']
Rm = R(m, dfs_data)
if comp_d_w < Rm['x']:
Rm['x'] = d_w
if d_u > Rm['y']:
Rm['y'] = d_u
# --Case 3 requires a bit of extra work
if case_3:
Rm['x'] = d_w
u_m1 = u(m-1, dfs_data)
while comp_d_w < u_m1:
merge_Fm(dfs_data)
m = dfs_data['FG']['m']
u_m1 = u(m-1, dfs_data)
#else:
#print "Case 6 work, u-case 1"
return True |
Python | def __insert_frond_RF(d_w, d_u, dfs_data):
"""Encapsulates the process of inserting a frond uw into the right side frond group."""
# --Add the frond to the right side
dfs_data['RF'].append( (d_w, d_u) )
dfs_data['FG']['r'] += 1
dfs_data['last_inserted_side'] = 'RF' | def __insert_frond_RF(d_w, d_u, dfs_data):
"""Encapsulates the process of inserting a frond uw into the right side frond group."""
# --Add the frond to the right side
dfs_data['RF'].append( (d_w, d_u) )
dfs_data['FG']['r'] += 1
dfs_data['last_inserted_side'] = 'RF' |
Python | def __insert_frond_LF(d_w, d_u, dfs_data):
"""Encapsulates the process of inserting a frond uw into the left side frond group."""
# --Add the frond to the left side
dfs_data['LF'].append( (d_w, d_u) )
dfs_data['FG']['l'] += 1
dfs_data['last_inserted_side'] = 'LF' | def __insert_frond_LF(d_w, d_u, dfs_data):
"""Encapsulates the process of inserting a frond uw into the left side frond group."""
# --Add the frond to the left side
dfs_data['LF'].append( (d_w, d_u) )
dfs_data['FG']['l'] += 1
dfs_data['last_inserted_side'] = 'LF' |
Python | def merge_Fm(dfs_data):
"""Merges Fm-1 and Fm, as defined on page 19 of the paper."""
FG = dfs_data['FG']
m = FG['m']
FGm = FG[m]
FGm1 = FG[m-1]
if FGm[0]['u'] < FGm1[0]['u']:
FGm1[0]['u'] = FGm[0]['u']
if FGm[0]['v'] > FGm1[0]['v']:
FGm1[0]['v'] = FGm[0]['v']
if FGm[1]['x'] < FGm1[1]['x']:
FGm1[1]['x'] = FGm[1]['x']
if FGm[1]['y'] > FGm1[1]['y']:
FGm1[1]['y'] = FGm[1]['y']
del FG[m]
FG['m'] -= 1 | def merge_Fm(dfs_data):
"""Merges Fm-1 and Fm, as defined on page 19 of the paper."""
FG = dfs_data['FG']
m = FG['m']
FGm = FG[m]
FGm1 = FG[m-1]
if FGm[0]['u'] < FGm1[0]['u']:
FGm1[0]['u'] = FGm[0]['u']
if FGm[0]['v'] > FGm1[0]['v']:
FGm1[0]['v'] = FGm[0]['v']
if FGm[1]['x'] < FGm1[1]['x']:
FGm1[1]['x'] = FGm[1]['x']
if FGm[1]['y'] > FGm1[1]['y']:
FGm1[1]['y'] = FGm[1]['y']
del FG[m]
FG['m'] -= 1 |
Python | def switch_sides(d_u, dfs_data):
"""Switches Lm and Rm, as defined on page 20 of the paper."""
# global fn_x
m = dfs_data['FG']['m']
u_m = u(m, dfs_data)
# x_m = fn_x(m, dfs_data)
if d_u <= u_m:
l_w = lw(dfs_data)
u_m1 = u(m-1, dfs_data)
while u_m1 > l_w:
merge_Fm(dfs_data)
m = dfs_data['FG']['m']
u_m1 = u(m-1, dfs_data)
# l_w = r_w is handled dynamically by the switching of fronds below
# l = r
dfs_data['FG']['l'] = dfs_data['FG']['r']
# adjust r so that gr is first frond preceding xm in RF
x_m = fn_x(m, dfs_data)
r = len(dfs_data['RF']) - 1
g_r = dfs_data['RF'][r][0]
while g_r >= x_m:
r -= 1
if r < 0:
r = 0
break
g_r = dfs_data['RF'][r][0]
dfs_data['FG']['r'] = r
# changing r_w is also handled dynamically by the frond switching
else:
r_w = rw(dfs_data)
x_m1 = fn_x(m-1, dfs_data)
while x_m1 > r_w:
merge_Fm(dfs_data)
m = dfs_data['FG']['m']
x_m1 = fn_x(m-1, dfs_data)
# r_w = l_w is handled dynamically by the switching of fronds below
# r = l
dfs_data['FG']['r'] = dfs_data['FG']['l']
# adjust l so that fl is first frond preceding um in LF
u_m = u(m, dfs_data)
l = len(dfs_data['LF']) - 1
f_l = dfs_data['LF'][l][0]
while f_l >= u_m:
l -= 1
f_l = dfs_data['LF'][l][0]
dfs_data['FG']['l'] = l
# changing l_w is also handled dynamically by the frond switching
m = dfs_data['FG']['m']
# Exchange the portion of the linked list LF between um and vm with the portion of RF between xm and ym
LF = dfs_data['LF']
RF = dfs_data['RF']
u_m = u(m, dfs_data)
v_m = v(m, dfs_data)
x_m = fn_x(m, dfs_data)
y_m = y(m, dfs_data)
# --These are the baseline indexes, they should be narrowed appropriately
first_left_index = 1
last_left_index = len(LF) - 1
first_right_index = 1
last_right_index = len(RF) - 1
# --Narrow the left indexes
while first_left_index < last_left_index:
frond = LF[first_left_index]
if u_m >= frond[0]:
first_left_index -= 1
break
else:
first_left_index += 1
while first_left_index < last_left_index:
frond = LF[last_left_index]
if v_m < frond[1]:
last_left_index -= 1
else:
last_left_index += 1
break
# --Narrow the right indexes
while first_right_index < last_right_index:
frond = RF[first_right_index]
if x_m >= frond[0]:
first_right_index -= 1
break
else:
first_right_index += 1
while first_right_index < last_right_index:
frond = RF[last_right_index]
if y_m < frond[1]:
last_right_index -= 1
else:
last_right_index += 1
break
# --Grab the appropriate list slices from each list
LF_slice = LF[first_left_index:last_left_index+1]
RF_slice = RF[first_right_index:last_right_index+1]
# --Remove the slices from each list
del LF[first_left_index:last_left_index+1]
del RF[first_right_index:last_right_index+1]
# --Add the slice from the right list to the left list
i = first_left_index
for x in RF_slice:
LF.insert(i, x)
i += 1
# --Add the slice from the left list to the right list
i = first_right_index
for x in LF_slice:
RF.insert(i, x)
i += 1
# Descriptive Note: We can just switch the slices directly because we know that if there were any conflicts from
# the switch, those fronds would also have been included in the switch.
# Exchange um and xm , vm and ym , Lm and Rm
# --Only Lm and Rm need to be exchanged, since um, xm, vm, and ym are all dynamically calculated
old_rm = dfs_data['FG'][m][1]
old_lm = dfs_data['FG'][m][0]
# --We have to convert the Lm and Rm dicts to use the correct keys
converted_rm = __convert_RF_dict_to_LF(old_rm)
converted_lm = __convert_LF_dict_to_RF(old_lm)
dfs_data['FG'][m][1] = converted_lm
dfs_data['FG'][m][0] = converted_rm
merge_Fm(dfs_data) | def switch_sides(d_u, dfs_data):
"""Switches Lm and Rm, as defined on page 20 of the paper."""
# global fn_x
m = dfs_data['FG']['m']
u_m = u(m, dfs_data)
# x_m = fn_x(m, dfs_data)
if d_u <= u_m:
l_w = lw(dfs_data)
u_m1 = u(m-1, dfs_data)
while u_m1 > l_w:
merge_Fm(dfs_data)
m = dfs_data['FG']['m']
u_m1 = u(m-1, dfs_data)
# l_w = r_w is handled dynamically by the switching of fronds below
# l = r
dfs_data['FG']['l'] = dfs_data['FG']['r']
# adjust r so that gr is first frond preceding xm in RF
x_m = fn_x(m, dfs_data)
r = len(dfs_data['RF']) - 1
g_r = dfs_data['RF'][r][0]
while g_r >= x_m:
r -= 1
if r < 0:
r = 0
break
g_r = dfs_data['RF'][r][0]
dfs_data['FG']['r'] = r
# changing r_w is also handled dynamically by the frond switching
else:
r_w = rw(dfs_data)
x_m1 = fn_x(m-1, dfs_data)
while x_m1 > r_w:
merge_Fm(dfs_data)
m = dfs_data['FG']['m']
x_m1 = fn_x(m-1, dfs_data)
# r_w = l_w is handled dynamically by the switching of fronds below
# r = l
dfs_data['FG']['r'] = dfs_data['FG']['l']
# adjust l so that fl is first frond preceding um in LF
u_m = u(m, dfs_data)
l = len(dfs_data['LF']) - 1
f_l = dfs_data['LF'][l][0]
while f_l >= u_m:
l -= 1
f_l = dfs_data['LF'][l][0]
dfs_data['FG']['l'] = l
# changing l_w is also handled dynamically by the frond switching
m = dfs_data['FG']['m']
# Exchange the portion of the linked list LF between um and vm with the portion of RF between xm and ym
LF = dfs_data['LF']
RF = dfs_data['RF']
u_m = u(m, dfs_data)
v_m = v(m, dfs_data)
x_m = fn_x(m, dfs_data)
y_m = y(m, dfs_data)
# --These are the baseline indexes, they should be narrowed appropriately
first_left_index = 1
last_left_index = len(LF) - 1
first_right_index = 1
last_right_index = len(RF) - 1
# --Narrow the left indexes
while first_left_index < last_left_index:
frond = LF[first_left_index]
if u_m >= frond[0]:
first_left_index -= 1
break
else:
first_left_index += 1
while first_left_index < last_left_index:
frond = LF[last_left_index]
if v_m < frond[1]:
last_left_index -= 1
else:
last_left_index += 1
break
# --Narrow the right indexes
while first_right_index < last_right_index:
frond = RF[first_right_index]
if x_m >= frond[0]:
first_right_index -= 1
break
else:
first_right_index += 1
while first_right_index < last_right_index:
frond = RF[last_right_index]
if y_m < frond[1]:
last_right_index -= 1
else:
last_right_index += 1
break
# --Grab the appropriate list slices from each list
LF_slice = LF[first_left_index:last_left_index+1]
RF_slice = RF[first_right_index:last_right_index+1]
# --Remove the slices from each list
del LF[first_left_index:last_left_index+1]
del RF[first_right_index:last_right_index+1]
# --Add the slice from the right list to the left list
i = first_left_index
for x in RF_slice:
LF.insert(i, x)
i += 1
# --Add the slice from the left list to the right list
i = first_right_index
for x in LF_slice:
RF.insert(i, x)
i += 1
# Descriptive Note: We can just switch the slices directly because we know that if there were any conflicts from
# the switch, those fronds would also have been included in the switch.
# Exchange um and xm , vm and ym , Lm and Rm
# --Only Lm and Rm need to be exchanged, since um, xm, vm, and ym are all dynamically calculated
old_rm = dfs_data['FG'][m][1]
old_lm = dfs_data['FG'][m][0]
# --We have to convert the Lm and Rm dicts to use the correct keys
converted_rm = __convert_RF_dict_to_LF(old_rm)
converted_lm = __convert_LF_dict_to_RF(old_lm)
dfs_data['FG'][m][1] = converted_lm
dfs_data['FG'][m][0] = converted_rm
merge_Fm(dfs_data) |
Python | def __check_left_side_conflict(x, y, dfs_data):
"""Checks to see if the frond xy will conflict with a frond on the left side of the embedding."""
l = dfs_data['FG']['l']
w, z = dfs_data['LF'][l]
return __check_conflict_fronds(x, y, w, z, dfs_data) | def __check_left_side_conflict(x, y, dfs_data):
"""Checks to see if the frond xy will conflict with a frond on the left side of the embedding."""
l = dfs_data['FG']['l']
w, z = dfs_data['LF'][l]
return __check_conflict_fronds(x, y, w, z, dfs_data) |
Python | def __check_right_side_conflict(x, y, dfs_data):
"""Checks to see if the frond xy will conflict with a frond on the right side of the embedding."""
r = dfs_data['FG']['r']
w, z = dfs_data['RF'][r]
return __check_conflict_fronds(x, y, w, z, dfs_data) | def __check_right_side_conflict(x, y, dfs_data):
"""Checks to see if the frond xy will conflict with a frond on the right side of the embedding."""
r = dfs_data['FG']['r']
w, z = dfs_data['RF'][r]
return __check_conflict_fronds(x, y, w, z, dfs_data) |
Python | def __check_conflict_fronds(x, y, w, z, dfs_data):
"""Checks a pair of fronds to see if they conflict. Returns True if a conflict was found, False otherwise."""
# Case 1: False frond and corresponding branch marker
# --x and w should both be negative, and either xy or wz should be the same value uu
if x < 0 and w < 0 and (x == y or w == z):
# --Determine if the marker and frond correspond (have the same low-value)
if x == w:
return True
return False
# Case 2: Fronds with an overlap
if b(x, dfs_data) == b(w, dfs_data) and x > w and w > y and y > z:
return False
# Case 3: Branch marker and a frond on that branch
if x < 0 or w < 0:
# --Determine which one is the branch marker
if x < 0:
u = abs(x)
t = y
x = w
y = z
else:
u = abs(w)
t = z
# --Run the rest of the tests
if b(x, dfs_data) == u and y < u and \
(x, y) in __dfsify_branch_uv(u, t, dfs_data):
return True
return False
# If non of the conflict conditions were met, then there are obviously no conflicts
return False | def __check_conflict_fronds(x, y, w, z, dfs_data):
"""Checks a pair of fronds to see if they conflict. Returns True if a conflict was found, False otherwise."""
# Case 1: False frond and corresponding branch marker
# --x and w should both be negative, and either xy or wz should be the same value uu
if x < 0 and w < 0 and (x == y or w == z):
# --Determine if the marker and frond correspond (have the same low-value)
if x == w:
return True
return False
# Case 2: Fronds with an overlap
if b(x, dfs_data) == b(w, dfs_data) and x > w and w > y and y > z:
return False
# Case 3: Branch marker and a frond on that branch
if x < 0 or w < 0:
# --Determine which one is the branch marker
if x < 0:
u = abs(x)
t = y
x = w
y = z
else:
u = abs(w)
t = z
# --Run the rest of the tests
if b(x, dfs_data) == u and y < u and \
(x, y) in __dfsify_branch_uv(u, t, dfs_data):
return True
return False
# If non of the conflict conditions were met, then there are obviously no conflicts
return False |
Python | def __dfsify_branch_uv(u, v, dfs_data):
"""Helper function to convert the output of Bu(v) from edge ids to dfs-ordered fronds."""
buv = B(u, v, dfs_data)
new_list = []
for edge_id in buv:
edge = dfs_data['graph'].get_edge(edge_id)
j, k = edge['vertices']
d_x = D(j, dfs_data)
d_y = D(k, dfs_data)
if d_x < d_y:
smaller = d_x
larger = d_y
else:
smaller = d_y
larger = d_x
frond = (smaller, larger)
new_list.append(frond)
return new_list | def __dfsify_branch_uv(u, v, dfs_data):
"""Helper function to convert the output of Bu(v) from edge ids to dfs-ordered fronds."""
buv = B(u, v, dfs_data)
new_list = []
for edge_id in buv:
edge = dfs_data['graph'].get_edge(edge_id)
j, k = edge['vertices']
d_x = D(j, dfs_data)
d_y = D(k, dfs_data)
if d_x < d_y:
smaller = d_x
larger = d_y
else:
smaller = d_y
larger = d_x
frond = (smaller, larger)
new_list.append(frond)
return new_list |
Python | def __get_dfs_data(graph, adj=None):
"""Internal function that calculates the depth-first search of the graph.
Returns a dictionary with the following data:
* 'ordering': A dfs-ordering list of nodes
* 'ordering_lookup': A lookup dict mapping nodes to dfs-ordering
* 'node_lookup': A lookup dict mapping dfs-ordering to nodes
* 'edge_lookup': A lookup dict mapping edges as tree-edges or back-edges
* 'parent_lookup': A lookup dict mapping nodes to their parent node
* 'children_lookup': A lookup dict mapping nodes to their children
"""
ordering, parent_lookup, children_lookup = depth_first_search_with_parent_data(graph, adjacency_lists=adj)
ordering_lookup = dict(list(zip(ordering, list(range(1, len(ordering) + 1)))))
node_lookup = dict(list(zip(list(range(1, len(ordering) + 1)), ordering)))
edge_lookup = {}
for edge_id in graph.get_all_edge_ids():
edge = graph.get_edge(edge_id)
node_a, node_b = edge['vertices']
parent_a = parent_lookup[node_a]
parent_b = parent_lookup[node_b]
if parent_a == node_b or parent_b == node_a:
edge_lookup[edge_id] = 'tree-edge'
else:
edge_lookup[edge_id] = 'backedge'
dfs_data = {}
dfs_data['ordering'] = ordering
dfs_data['ordering_lookup'] = ordering_lookup
dfs_data['node_lookup'] = node_lookup
dfs_data['edge_lookup'] = edge_lookup
dfs_data['parent_lookup'] = parent_lookup
dfs_data['children_lookup'] = children_lookup
return dfs_data | def __get_dfs_data(graph, adj=None):
"""Internal function that calculates the depth-first search of the graph.
Returns a dictionary with the following data:
* 'ordering': A dfs-ordering list of nodes
* 'ordering_lookup': A lookup dict mapping nodes to dfs-ordering
* 'node_lookup': A lookup dict mapping dfs-ordering to nodes
* 'edge_lookup': A lookup dict mapping edges as tree-edges or back-edges
* 'parent_lookup': A lookup dict mapping nodes to their parent node
* 'children_lookup': A lookup dict mapping nodes to their children
"""
ordering, parent_lookup, children_lookup = depth_first_search_with_parent_data(graph, adjacency_lists=adj)
ordering_lookup = dict(list(zip(ordering, list(range(1, len(ordering) + 1)))))
node_lookup = dict(list(zip(list(range(1, len(ordering) + 1)), ordering)))
edge_lookup = {}
for edge_id in graph.get_all_edge_ids():
edge = graph.get_edge(edge_id)
node_a, node_b = edge['vertices']
parent_a = parent_lookup[node_a]
parent_b = parent_lookup[node_b]
if parent_a == node_b or parent_b == node_a:
edge_lookup[edge_id] = 'tree-edge'
else:
edge_lookup[edge_id] = 'backedge'
dfs_data = {}
dfs_data['ordering'] = ordering
dfs_data['ordering_lookup'] = ordering_lookup
dfs_data['node_lookup'] = node_lookup
dfs_data['edge_lookup'] = edge_lookup
dfs_data['parent_lookup'] = parent_lookup
dfs_data['children_lookup'] = children_lookup
return dfs_data |
Python | def __calculate_adjacency_lists(graph):
"""Builds an adjacency list representation for the graph, since we can't guarantee that the
internal representation of the graph is stored that way."""
adj = {}
for node in graph.get_all_node_ids():
neighbors = graph.neighbors(node)
adj[node] = neighbors
return adj | def __calculate_adjacency_lists(graph):
"""Builds an adjacency list representation for the graph, since we can't guarantee that the
internal representation of the graph is stored that way."""
adj = {}
for node in graph.get_all_node_ids():
neighbors = graph.neighbors(node)
adj[node] = neighbors
return adj |
Python | def __get_all_lowpoints(dfs_data):
"""Calculates the lowpoints for each node in a graph."""
lowpoint_1_lookup = {}
lowpoint_2_lookup = {}
ordering = dfs_data['ordering']
for node in ordering:
low_1, low_2 = __get_lowpoints(node, dfs_data)
lowpoint_1_lookup[node] = low_1
lowpoint_2_lookup[node] = low_2
return lowpoint_1_lookup, lowpoint_2_lookup | def __get_all_lowpoints(dfs_data):
"""Calculates the lowpoints for each node in a graph."""
lowpoint_1_lookup = {}
lowpoint_2_lookup = {}
ordering = dfs_data['ordering']
for node in ordering:
low_1, low_2 = __get_lowpoints(node, dfs_data)
lowpoint_1_lookup[node] = low_1
lowpoint_2_lookup[node] = low_2
return lowpoint_1_lookup, lowpoint_2_lookup |
Python | def __get_lowpoints(node, dfs_data):
"""Calculates the lowpoints for a single node in a graph."""
ordering_lookup = dfs_data['ordering_lookup']
t_u = T(node, dfs_data)
sorted_t_u = sorted(t_u, key=lambda a: ordering_lookup[a])
lowpoint_1 = sorted_t_u[0]
lowpoint_2 = sorted_t_u[1]
return lowpoint_1, lowpoint_2 | def __get_lowpoints(node, dfs_data):
"""Calculates the lowpoints for a single node in a graph."""
ordering_lookup = dfs_data['ordering_lookup']
t_u = T(node, dfs_data)
sorted_t_u = sorted(t_u, key=lambda a: ordering_lookup[a])
lowpoint_1 = sorted_t_u[0]
lowpoint_2 = sorted_t_u[1]
return lowpoint_1, lowpoint_2 |
Python | def __edge_weight(edge_id, dfs_data):
"""Calculates the edge weight used to sort edges."""
graph = dfs_data['graph']
edge_lookup = dfs_data['edge_lookup']
edge = graph.get_edge(edge_id)
u, v = edge['vertices']
d_u = D(u, dfs_data)
d_v = D(v, dfs_data)
lp_1 = L1(v, dfs_data)
d_lp_1 = D(lp_1, dfs_data)
if edge_lookup[edge_id] == 'backedge' and d_v < d_u:
return 2*d_v
elif is_type_I_branch(u, v, dfs_data):
return 2*d_lp_1
elif is_type_II_branch(u, v, dfs_data):
return 2*d_lp_1 + 1
else:
return 2*graph.num_nodes() + 1 | def __edge_weight(edge_id, dfs_data):
"""Calculates the edge weight used to sort edges."""
graph = dfs_data['graph']
edge_lookup = dfs_data['edge_lookup']
edge = graph.get_edge(edge_id)
u, v = edge['vertices']
d_u = D(u, dfs_data)
d_v = D(v, dfs_data)
lp_1 = L1(v, dfs_data)
d_lp_1 = D(lp_1, dfs_data)
if edge_lookup[edge_id] == 'backedge' and d_v < d_u:
return 2*d_v
elif is_type_I_branch(u, v, dfs_data):
return 2*d_lp_1
elif is_type_II_branch(u, v, dfs_data):
return 2*d_lp_1 + 1
else:
return 2*graph.num_nodes() + 1 |
Python | def __calculate_bu_dfs_recursively(u, b, dfs_data):
"""Calculates the b(u) lookup table with a recursive DFS."""
first_time = True
for v in dfs_data['adj'][u]:
if a(v, dfs_data) == u:
if first_time:
b[v] = b[u]
else:
b[v] = D(u, dfs_data)
__calculate_bu_dfs_recursively(v, b, dfs_data)
first_time = False | def __calculate_bu_dfs_recursively(u, b, dfs_data):
"""Calculates the b(u) lookup table with a recursive DFS."""
first_time = True
for v in dfs_data['adj'][u]:
if a(v, dfs_data) == u:
if first_time:
b[v] = b[u]
else:
b[v] = D(u, dfs_data)
__calculate_bu_dfs_recursively(v, b, dfs_data)
first_time = False |
Python | def is_type_I_branch(u, v, dfs_data):
"""Determines whether a branch uv is a type I branch."""
if u != a(v, dfs_data):
return False
if u == L2(v, dfs_data):
return True
return False | def is_type_I_branch(u, v, dfs_data):
"""Determines whether a branch uv is a type I branch."""
if u != a(v, dfs_data):
return False
if u == L2(v, dfs_data):
return True
return False |
Python | def is_type_II_branch(u, v, dfs_data):
"""Determines whether a branch uv is a type II branch."""
if u != a(v, dfs_data):
return False
if u < L2(v, dfs_data):
return True
return False | def is_type_II_branch(u, v, dfs_data):
"""Determines whether a branch uv is a type II branch."""
if u != a(v, dfs_data):
return False
if u < L2(v, dfs_data):
return True
return False |
Python | def __get_descendants(node, dfs_data):
"""Gets the descendants of a node."""
list_of_descendants = []
stack = deque()
children_lookup = dfs_data['children_lookup']
current_node = node
children = children_lookup[current_node]
dfs_current_node = D(current_node, dfs_data)
for n in children:
dfs_child = D(n, dfs_data)
# Validate that the child node is actually a descendant and not an ancestor
if dfs_child > dfs_current_node:
stack.append(n)
while len(stack) > 0:
current_node = stack.pop()
list_of_descendants.append(current_node)
children = children_lookup[current_node]
dfs_current_node = D(current_node, dfs_data)
for n in children:
dfs_child = D(n, dfs_data)
# Validate that the child node is actually a descendant and not an ancestor
if dfs_child > dfs_current_node:
stack.append(n)
return list_of_descendants | def __get_descendants(node, dfs_data):
"""Gets the descendants of a node."""
list_of_descendants = []
stack = deque()
children_lookup = dfs_data['children_lookup']
current_node = node
children = children_lookup[current_node]
dfs_current_node = D(current_node, dfs_data)
for n in children:
dfs_child = D(n, dfs_data)
# Validate that the child node is actually a descendant and not an ancestor
if dfs_child > dfs_current_node:
stack.append(n)
while len(stack) > 0:
current_node = stack.pop()
list_of_descendants.append(current_node)
children = children_lookup[current_node]
dfs_current_node = D(current_node, dfs_data)
for n in children:
dfs_child = D(n, dfs_data)
# Validate that the child node is actually a descendant and not an ancestor
if dfs_child > dfs_current_node:
stack.append(n)
return list_of_descendants |
Python | def S_star(u, dfs_data):
"""The set of all descendants of u, with u added."""
s_u = S(u, dfs_data)
if u not in s_u:
s_u.append(u)
return s_u | def S_star(u, dfs_data):
"""The set of all descendants of u, with u added."""
s_u = S(u, dfs_data)
if u not in s_u:
s_u.append(u)
return s_u |
Python | def B(u, v, dfs_data):
"""The branch at u containing v is the set of all edges incident on v or any descendant of v, if a(v) == u."""
"""Bu(v) = {wx | w is in S*(v)}"""
if a(v, dfs_data) != u:
return None
return list(set([edge_id for w in S_star(v, dfs_data) for edge_id in dfs_data['graph'].get_node(w)['edges']])) | def B(u, v, dfs_data):
"""The branch at u containing v is the set of all edges incident on v or any descendant of v, if a(v) == u."""
"""Bu(v) = {wx | w is in S*(v)}"""
if a(v, dfs_data) != u:
return None
return list(set([edge_id for w in S_star(v, dfs_data) for edge_id in dfs_data['graph'].get_node(w)['edges']])) |
Python | def _L(dfs_data):
"""L(T) contains leaves and branch points for the DFS-tree T."""
"""L(T) = {v | the first w in Adj[v] corresponds to a frond vw}."""
node_set = set()
for v, adj in list(dfs_data['adj'].items()):
w = adj[0]
if is_frond(v, w, dfs_data):
node_set.add(v)
return list(node_set) | def _L(dfs_data):
"""L(T) contains leaves and branch points for the DFS-tree T."""
"""L(T) = {v | the first w in Adj[v] corresponds to a frond vw}."""
node_set = set()
for v, adj in list(dfs_data['adj'].items()):
w = adj[0]
if is_frond(v, w, dfs_data):
node_set.add(v)
return list(node_set) |
Python | def fn_x(i, dfs_data):
"""The minimum vertex (DFS-number) in a frond contained in Ri."""
try:
return R(i, dfs_data)['x']
except Exception as e:
# Page 17 states that if Ri is empty, then we take xi to be n
return dfs_data['graph'].num_nodes() | def fn_x(i, dfs_data):
"""The minimum vertex (DFS-number) in a frond contained in Ri."""
try:
return R(i, dfs_data)['x']
except Exception as e:
# Page 17 states that if Ri is empty, then we take xi to be n
return dfs_data['graph'].num_nodes() |
Python | def y(i, dfs_data):
"""The maximum vertex (DFS-number) in a frond contained in Ri."""
try:
return R(i, dfs_data)['y']
except Exception as e:
# Page 17 states that if Ri is empty, then we take yi to be 0
return 0 | def y(i, dfs_data):
"""The maximum vertex (DFS-number) in a frond contained in Ri."""
try:
return R(i, dfs_data)['y']
except Exception as e:
# Page 17 states that if Ri is empty, then we take yi to be 0
return 0 |
Python | def is_planar(graph):
"""Determines whether a graph is planar or not."""
# Determine connected components as subgraphs; their planarity is independent of each other
connected_components = get_connected_components_as_subgraphs(graph)
for component in connected_components:
# Biconnected components likewise have independent planarity
biconnected_components = find_biconnected_components_as_subgraphs(component)
for bi_component in biconnected_components:
planarity = __is_subgraph_planar(bi_component)
if not planarity:
return False
return True | def is_planar(graph):
"""Determines whether a graph is planar or not."""
# Determine connected components as subgraphs; their planarity is independent of each other
connected_components = get_connected_components_as_subgraphs(graph)
for component in connected_components:
# Biconnected components likewise have independent planarity
biconnected_components = find_biconnected_components_as_subgraphs(component)
for bi_component in biconnected_components:
planarity = __is_subgraph_planar(bi_component)
if not planarity:
return False
return True |
Python | def __is_subgraph_planar(graph):
"""Internal function to determine if a subgraph is planar."""
# --First pass: Determine edge and vertex counts validate Euler's Formula
num_nodes = graph.num_nodes()
num_edges = graph.num_edges()
# --We can guarantee that if there are 4 or less nodes, then the graph is planar
# --A 4-node simple graph has a maximum of 6 possible edges (K4); this will always satisfy Euler's Formula:
# -- 6 <= 3(4 - 2)
if num_nodes < 5:
return True
if num_edges > 3*(num_nodes - 2):
return False
# --At this point, we have no choice but to run the calculation the hard way
return kocay_planarity_test(graph) | def __is_subgraph_planar(graph):
"""Internal function to determine if a subgraph is planar."""
# --First pass: Determine edge and vertex counts validate Euler's Formula
num_nodes = graph.num_nodes()
num_edges = graph.num_edges()
# --We can guarantee that if there are 4 or less nodes, then the graph is planar
# --A 4-node simple graph has a maximum of 6 possible edges (K4); this will always satisfy Euler's Formula:
# -- 6 <= 3(4 - 2)
if num_nodes < 5:
return True
if num_edges > 3*(num_nodes - 2):
return False
# --At this point, we have no choice but to run the calculation the hard way
return kocay_planarity_test(graph) |
Python | def add_set(self):
"""Adds a new set to the forest.
Returns a label by which the new set can be referenced
"""
self.__label_counter += 1
new_label = self.__label_counter
self.__forest[new_label] = -1 # All new sets have their parent set to themselves
self.__set_counter += 1
return new_label | def add_set(self):
"""Adds a new set to the forest.
Returns a label by which the new set can be referenced
"""
self.__label_counter += 1
new_label = self.__label_counter
self.__forest[new_label] = -1 # All new sets have their parent set to themselves
self.__set_counter += 1
return new_label |
Python | def find(self, node_label):
"""Finds the set containing the node_label.
Returns the set label.
"""
queue = []
current_node = node_label
while self.__forest[current_node] >= 0:
queue.append(current_node)
current_node = self.__forest[current_node]
root_node = current_node
# Path compression
for n in queue:
self.__forest[n] = root_node
return root_node | def find(self, node_label):
"""Finds the set containing the node_label.
Returns the set label.
"""
queue = []
current_node = node_label
while self.__forest[current_node] >= 0:
queue.append(current_node)
current_node = self.__forest[current_node]
root_node = current_node
# Path compression
for n in queue:
self.__forest[n] = root_node
return root_node |
Python | def union(self, label_a, label_b):
"""Joins two sets into a single new set.
label_a, label_b can be any nodes within the sets
"""
# Base case to avoid work
if label_a == label_b:
return
# Find the tree root of each node
root_a = self.find(label_a)
root_b = self.find(label_b)
# Avoid merging a tree to itself
if root_a == root_b:
return
self.__internal_union(root_a, root_b)
self.__set_counter -= 1 | def union(self, label_a, label_b):
"""Joins two sets into a single new set.
label_a, label_b can be any nodes within the sets
"""
# Base case to avoid work
if label_a == label_b:
return
# Find the tree root of each node
root_a = self.find(label_a)
root_b = self.find(label_b)
# Avoid merging a tree to itself
if root_a == root_b:
return
self.__internal_union(root_a, root_b)
self.__set_counter -= 1 |
Python | def __internal_union(self, root_a, root_b):
"""Internal function to join two set trees specified by root_a and root_b.
Assumes root_a and root_b are distinct.
"""
# Merge the trees, smaller to larger
update_rank = False
# --Determine the larger tree
rank_a = self.__forest[root_a]
rank_b = self.__forest[root_b]
if rank_a < rank_b:
larger = root_b
smaller = root_a
else:
larger = root_a
smaller = root_b
if rank_a == rank_b:
update_rank = True
# --Make the smaller tree a subtree of the larger tree
self.__forest[smaller] = larger
# --Update the rank of the new tree (if necessary)
if update_rank:
self.__forest[larger] -= 1 | def __internal_union(self, root_a, root_b):
"""Internal function to join two set trees specified by root_a and root_b.
Assumes root_a and root_b are distinct.
"""
# Merge the trees, smaller to larger
update_rank = False
# --Determine the larger tree
rank_a = self.__forest[root_a]
rank_b = self.__forest[root_b]
if rank_a < rank_b:
larger = root_b
smaller = root_a
else:
larger = root_a
smaller = root_b
if rank_a == rank_b:
update_rank = True
# --Make the smaller tree a subtree of the larger tree
self.__forest[smaller] = larger
# --Update the rank of the new tree (if necessary)
if update_rank:
self.__forest[larger] -= 1 |
Python | def matching_annotations_ids(self, factories):
"""Annotations that're within the timeframe that we're reindexing."""
return [
annotation.id
for annotation in factories.Annotation.create_batch(
3, updated=datetime.datetime.utcnow() - datetime.timedelta(days=3)
)
] | def matching_annotations_ids(self, factories):
"""Annotations that're within the timeframe that we're reindexing."""
return [
annotation.id
for annotation in factories.Annotation.create_batch(
3, updated=datetime.datetime.utcnow() - datetime.timedelta(days=3)
)
] |
Python | def not_matching_annotations(self, factories):
"""Annotations that're outside the timeframe that we're reindexing."""
before_annotations = factories.Annotation.build_batch(
3, updated=datetime.datetime.utcnow() - datetime.timedelta(days=14)
)
after_annotations = factories.Annotation.build_batch(
3, updated=datetime.datetime.utcnow() + datetime.timedelta(days=14)
)
return before_annotations + after_annotations | def not_matching_annotations(self, factories):
"""Annotations that're outside the timeframe that we're reindexing."""
before_annotations = factories.Annotation.build_batch(
3, updated=datetime.datetime.utcnow() - datetime.timedelta(days=14)
)
after_annotations = factories.Annotation.build_batch(
3, updated=datetime.datetime.utcnow() + datetime.timedelta(days=14)
)
return before_annotations + after_annotations |
Python | def handle_message(self, body, message):
"""
Handles a realtime message by acknowledging it and then calling the
wrapped handler.
"""
message.ack()
self.handler(body) | def handle_message(self, body, message):
"""
Handles a realtime message by acknowledging it and then calling the
wrapped handler.
"""
message.ack()
self.handler(body) |
Python | def matching(cls, sockets, annotation):
"""Find sockets with matching filters for the given annotation.
For this to work, the sockets must have first had `set_filter()` called
on them.
:param sockets: Iterable of sockets to check
:param annotation: Annotation to match
:return: A generator of matching socket objects
"""
values = {
"/id": [annotation.id],
"/uri": [normalize_uri(annotation.target_uri)],
"/references": set(annotation.references),
}
for socket in sockets:
# Some sockets might not yet have the filter applied (or had a non
# parsable filter etc.)
if not hasattr(socket, "filter_rows"):
continue
# Iterate over the filter_rows added by `set_filter()`
for field, value in socket.filter_rows:
try:
if value in values[field]:
yield socket
break
except KeyError:
continue | def matching(cls, sockets, annotation):
"""Find sockets with matching filters for the given annotation.
For this to work, the sockets must have first had `set_filter()` called
on them.
:param sockets: Iterable of sockets to check
:param annotation: Annotation to match
:return: A generator of matching socket objects
"""
values = {
"/id": [annotation.id],
"/uri": [normalize_uri(annotation.target_uri)],
"/references": set(annotation.references),
}
for socket in sockets:
# Some sockets might not yet have the filter applied (or had a non
# parsable filter etc.)
if not hasattr(socket, "filter_rows"):
continue
# Iterate over the filter_rows added by `set_filter()`
for field, value in socket.filter_rows:
try:
if value in values[field]:
yield socket
break
except KeyError:
continue |
Python | def _rows_for(cls, filter):
"""Convert a filter to field value pairs."""
for clause in filter["clauses"]:
field = clause["field"]
if field not in cls.KNOWN_FIELDS:
continue
values = clause["value"]
# Normalise to an iterable of distinct values
values = set(values) if isinstance(values, list) else [values]
for value in values:
if field == "/uri":
value = normalize_uri(value)
yield field, value | def _rows_for(cls, filter):
"""Convert a filter to field value pairs."""
for clause in filter["clauses"]:
field = clause["field"]
if field not in cls.KNOWN_FIELDS:
continue
values = clause["value"]
# Normalise to an iterable of distinct values
values = set(values) if isinstance(values, list) else [values]
for value in values:
if field == "/uri":
value = normalize_uri(value)
yield field, value |
Python | def start(event):
"""
Start some greenlets to process the incoming data from the message queue.
This subscriber is called when the application is booted, and kicks off
greenlets running `process_queue` for each message queue we subscribe to.
The function does not block.
"""
settings = event.app.registry.settings
greenlets = [
# Start greenlets to process messages from RabbitMQ
gevent.spawn(messages.process_messages, settings, ANNOTATION_TOPIC, WORK_QUEUE),
gevent.spawn(messages.process_messages, settings, USER_TOPIC, WORK_QUEUE),
# And one to process the queued work
gevent.spawn(process_work_queue, settings, WORK_QUEUE),
]
# Start a "greenlet of last resort" to monitor the worker greenlets and
# bail if any unexpected errors occur.
gevent.spawn(supervise, greenlets) | def start(event):
"""
Start some greenlets to process the incoming data from the message queue.
This subscriber is called when the application is booted, and kicks off
greenlets running `process_queue` for each message queue we subscribe to.
The function does not block.
"""
settings = event.app.registry.settings
greenlets = [
# Start greenlets to process messages from RabbitMQ
gevent.spawn(messages.process_messages, settings, ANNOTATION_TOPIC, WORK_QUEUE),
gevent.spawn(messages.process_messages, settings, USER_TOPIC, WORK_QUEUE),
# And one to process the queued work
gevent.spawn(process_work_queue, settings, WORK_QUEUE),
]
# Start a "greenlet of last resort" to monitor the worker greenlets and
# bail if any unexpected errors occur.
gevent.spawn(supervise, greenlets) |
Python | def process_work_queue(settings, queue, session_factory=None):
"""
Process each message from the queue in turn, handling exceptions.
This is the core of the streamer: we pull messages off the work queue,
dispatching them as appropriate. The handling of each message is wrapped in
code that ensures the database session is appropriately committed and
closed between messages.
"""
if session_factory is None:
session_factory = _get_session
session = session_factory(settings)
topic_handlers = {
ANNOTATION_TOPIC: messages.handle_annotation_event,
USER_TOPIC: messages.handle_user_event,
}
for msg in queue:
try:
# All access to the database in the streamer is currently
# read-only, so enforce that:
session.execute(
"SET TRANSACTION "
"ISOLATION LEVEL SERIALIZABLE "
"READ ONLY "
"DEFERRABLE"
)
if isinstance(msg, messages.Message):
messages.handle_message(msg, settings, session, topic_handlers)
elif isinstance(msg, websocket.Message):
websocket.handle_message(msg, session)
else:
raise UnknownMessageType(repr(msg))
except (KeyboardInterrupt, SystemExit):
session.rollback()
raise
except Exception as exc:
log.warning("Caught exception handling streamer message:", exc_info=exc)
session.rollback()
else:
session.commit()
finally:
session.close() | def process_work_queue(settings, queue, session_factory=None):
"""
Process each message from the queue in turn, handling exceptions.
This is the core of the streamer: we pull messages off the work queue,
dispatching them as appropriate. The handling of each message is wrapped in
code that ensures the database session is appropriately committed and
closed between messages.
"""
if session_factory is None:
session_factory = _get_session
session = session_factory(settings)
topic_handlers = {
ANNOTATION_TOPIC: messages.handle_annotation_event,
USER_TOPIC: messages.handle_user_event,
}
for msg in queue:
try:
# All access to the database in the streamer is currently
# read-only, so enforce that:
session.execute(
"SET TRANSACTION "
"ISOLATION LEVEL SERIALIZABLE "
"READ ONLY "
"DEFERRABLE"
)
if isinstance(msg, messages.Message):
messages.handle_message(msg, settings, session, topic_handlers)
elif isinstance(msg, websocket.Message):
websocket.handle_message(msg, session)
else:
raise UnknownMessageType(repr(msg))
except (KeyboardInterrupt, SystemExit):
session.rollback()
raise
except Exception as exc:
log.warning("Caught exception handling streamer message:", exc_info=exc)
session.rollback()
else:
session.commit()
finally:
session.close() |
Python | def reindex_annotations_in_date_range(start_date, end_date, max_annotations=250000):
"""Re-index annotations from Postgres to Elasticsearch in a date range.
:param start_date: Begin at this time (greater or equal)
:param end_date: End at this time (less than or equal)
:param max_annotations: Maximum number of items to process overall
"""
log.info(f"Re-indexing from {start_date} to {end_date}...")
indexer = BatchIndexer(celery.request.db, celery.request.es, celery.request)
errored = indexer.index(
annotation.id
for annotation in celery.request.db.query(Annotation.id)
.filter(Annotation.updated >= start_date)
.filter(Annotation.updated <= end_date)
.limit(max_annotations)
)
if errored:
log.warning("Failed to re-index annotations into ES6 %s", errored)
log.info(
"Re-index from %s to %s complete.", start_date, end_date,
) | def reindex_annotations_in_date_range(start_date, end_date, max_annotations=250000):
"""Re-index annotations from Postgres to Elasticsearch in a date range.
:param start_date: Begin at this time (greater or equal)
:param end_date: End at this time (less than or equal)
:param max_annotations: Maximum number of items to process overall
"""
log.info(f"Re-indexing from {start_date} to {end_date}...")
indexer = BatchIndexer(celery.request.db, celery.request.es, celery.request)
errored = indexer.index(
annotation.id
for annotation in celery.request.db.query(Annotation.id)
.filter(Annotation.updated >= start_date)
.filter(Annotation.updated <= end_date)
.limit(max_annotations)
)
if errored:
log.warning("Failed to re-index annotations into ES6 %s", errored)
log.info(
"Re-index from %s to %s complete.", start_date, end_date,
) |
Python | async def raid(
self,
ctx: Context,
operand: str = ""
):
"""
Allows an admin user to lock down the server in case of a raid.
This command toggles invite link generation for @everyone and
revokes all existing invite links.
"""
everyone = ctx.channel.guild.default_role
perms = everyone.permissions
enabled = not perms.create_instant_invite
logs_channel = self.bot.get_channel(LOGGING_CHANNEL_ID)
operand = operand.lower()
boolonoff = ("OFF", "ON")
action = True
embed = None
if not operand: # status query
await ctx.send(f"Raid protection currently {boolonoff[enabled]}. Use `:raid [on/off]` to toggle.")
action = False
elif operand in ("on", "yes") and not enabled: # need to turn it on
enabled = True
perms.update(create_instant_invite=False)
embed = Embed(
color=Colour.blue(),
title="Raid Protection ON.",
description=("Raid protection now ON - All invite links were"
" deleted and members may not create new ones")
)
for invite in await ctx.channel.guild.invites(): # delete links
await invite.delete()
elif operand in ("off", "no") and enabled:
enabled = False
perms.update(create_instant_invite=True)
embed = Embed(
color=Colour.blue(),
title="Raid Protection OFF.",
description=("Raid protection now OFF - Members can now create"
" new invite links")
)
else: # no changes
await ctx.send(f"Raid protection {boolonoff[enabled]}, nothing was changed.")
action = False
if action: # if we toggled it
msg = f"{ctx.author.name} toggled raid protection {boolonoff[enabled]}."
await everyone.edit(reason=msg, permissions=perms) # make the perm change
await ctx.send(msg) # direct response to invocation
embed.set_author(name=ctx.author.name, icon_url=ctx.author.avatar_url)
await logs_channel.send(embed=embed) | async def raid(
self,
ctx: Context,
operand: str = ""
):
"""
Allows an admin user to lock down the server in case of a raid.
This command toggles invite link generation for @everyone and
revokes all existing invite links.
"""
everyone = ctx.channel.guild.default_role
perms = everyone.permissions
enabled = not perms.create_instant_invite
logs_channel = self.bot.get_channel(LOGGING_CHANNEL_ID)
operand = operand.lower()
boolonoff = ("OFF", "ON")
action = True
embed = None
if not operand: # status query
await ctx.send(f"Raid protection currently {boolonoff[enabled]}. Use `:raid [on/off]` to toggle.")
action = False
elif operand in ("on", "yes") and not enabled: # need to turn it on
enabled = True
perms.update(create_instant_invite=False)
embed = Embed(
color=Colour.blue(),
title="Raid Protection ON.",
description=("Raid protection now ON - All invite links were"
" deleted and members may not create new ones")
)
for invite in await ctx.channel.guild.invites(): # delete links
await invite.delete()
elif operand in ("off", "no") and enabled:
enabled = False
perms.update(create_instant_invite=True)
embed = Embed(
color=Colour.blue(),
title="Raid Protection OFF.",
description=("Raid protection now OFF - Members can now create"
" new invite links")
)
else: # no changes
await ctx.send(f"Raid protection {boolonoff[enabled]}, nothing was changed.")
action = False
if action: # if we toggled it
msg = f"{ctx.author.name} toggled raid protection {boolonoff[enabled]}."
await everyone.edit(reason=msg, permissions=perms) # make the perm change
await ctx.send(msg) # direct response to invocation
embed.set_author(name=ctx.author.name, icon_url=ctx.author.avatar_url)
await logs_channel.send(embed=embed) |
Python | async def bbcnews(self, ctx: Context):
"""
Returns a link to BBC News.
"""
await ctx.send("https://www.bbc.co.uk/iplayer/live/bbcnews") | async def bbcnews(self, ctx: Context):
"""
Returns a link to BBC News.
"""
await ctx.send("https://www.bbc.co.uk/iplayer/live/bbcnews") |
Python | async def skynews(self, ctx: Context):
"""
Returns a link to Sky News.
"""
await ctx.send("https://www.youtube.com/watch?v=9Auq9mYxFEE") | async def skynews(self, ctx: Context):
"""
Returns a link to Sky News.
"""
await ctx.send("https://www.youtube.com/watch?v=9Auq9mYxFEE") |
Python | async def tos(self, ctx: Context):
"""
Returns a link to discord's terms of service.
"""
await ctx.send("https://www.discord.com/terms") | async def tos(self, ctx: Context):
"""
Returns a link to discord's terms of service.
"""
await ctx.send("https://www.discord.com/terms") |
Python | def encrypt(public_key: str, secret_value: str) -> str:
"""
Encrypts a Unicode string using the public key, returns base64 of the publickey
""" # noqa: E501
public_key = public.PublicKey(
public_key.encode("utf-8"), encoding.Base64Encoder())
sealed_box = public.SealedBox(public_key)
encrypted = sealed_box.encrypt(secret_value.encode("utf-8"))
return b64encode(encrypted).decode("utf-8") | def encrypt(public_key: str, secret_value: str) -> str:
"""
Encrypts a Unicode string using the public key, returns base64 of the publickey
""" # noqa: E501
public_key = public.PublicKey(
public_key.encode("utf-8"), encoding.Base64Encoder())
sealed_box = public.SealedBox(public_key)
encrypted = sealed_box.encrypt(secret_value.encode("utf-8"))
return b64encode(encrypted).decode("utf-8") |
Python | def print_response(response):
"""Prints a human-readable response"""
res = {}
if (response.text):
try:
res['body'] = response.json()
except: # noqa: E722
res['body'] = response.text
res['status_code'] = response.status_code
print(json.dumps(res, indent=4, sort_keys=True)) | def print_response(response):
"""Prints a human-readable response"""
res = {}
if (response.text):
try:
res['body'] = response.json()
except: # noqa: E722
res['body'] = response.text
res['status_code'] = response.status_code
print(json.dumps(res, indent=4, sort_keys=True)) |
Python | def global_avg_pooling(x):
"""
Incoming Tensor shape must be 4-D
"""
gap = tf.reduce_mean(x, axis=[1, 2])
return gap | def global_avg_pooling(x):
"""
Incoming Tensor shape must be 4-D
"""
gap = tf.reduce_mean(x, axis=[1, 2])
return gap |
Python | def login(self, email, password):
'''Authenticate the user to use the History Playground. Stores the
authentication token in the Playground object.
@param self: Playground object
@param email: Email address used to register on the History Playground
@param password: Password associated with email address when registering
'''
session = requests.Session()
payload = {'email':email,'password':password}
data = session.post(self._base_url + 'auth', data = payload).json()
if 'token' in data:
self.__auth_token = data['token']
else:
self.__auth_token = None
print('Failed to login.') | def login(self, email, password):
'''Authenticate the user to use the History Playground. Stores the
authentication token in the Playground object.
@param self: Playground object
@param email: Email address used to register on the History Playground
@param password: Password associated with email address when registering
'''
session = requests.Session()
payload = {'email':email,'password':password}
data = session.post(self._base_url + 'auth', data = payload).json()
if 'token' in data:
self.__auth_token = data['token']
else:
self.__auth_token = None
print('Failed to login.') |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.