language
stringclasses
6 values
original_string
stringlengths
25
887k
text
stringlengths
25
887k
Python
def cf(self): """Return a dictionary with the NetCDF CF parameters for the projection. Returns: :obj:`dict`: A dictionary with the NetCDF CF parameter names and projection parameter values. """ return self._cf_params()
def cf(self): """Return a dictionary with the NetCDF CF parameters for the projection. Returns: :obj:`dict`: A dictionary with the NetCDF CF parameter names and projection parameter values. """ return self._cf_params()
Python
def run(self, args=''): # print('args is: {}'.format(args)) """Run executable from shell with given arguments Input: args Optional, should be given a string to suffix a command line call to the executable, eg `-sw1 -sw2` Self variables: stdout, stderr Process standard communication channels returncode Process exit status Process output variables are overwritten if run multiple times Additionally returns stdout """ # Clear output variables from any previous execution self.stdout, self.stderr, self.returncode = None, None, None # Run executable from shell with arguments as string process = subprocess.Popen( '{} {}'.format(self.command, args), shell=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # Store stdout and stderr self.stdout, self.stderr = process.communicate() self.returncode = process.returncode # Return stdout return self.stdout
def run(self, args=''): # print('args is: {}'.format(args)) """Run executable from shell with given arguments Input: args Optional, should be given a string to suffix a command line call to the executable, eg `-sw1 -sw2` Self variables: stdout, stderr Process standard communication channels returncode Process exit status Process output variables are overwritten if run multiple times Additionally returns stdout """ # Clear output variables from any previous execution self.stdout, self.stderr, self.returncode = None, None, None # Run executable from shell with arguments as string process = subprocess.Popen( '{} {}'.format(self.command, args), shell=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # Store stdout and stderr self.stdout, self.stderr = process.communicate() self.returncode = process.returncode # Return stdout return self.stdout
Python
def handle(req): """handle a request to the function Args: req (str): request body """ r = requests.get("http://api.open-notify.org/astros.json") result = r.json() index = random.randint(0, len(result["people"]) - 1) name = result["people"][index]["name"] return "{} is in space".format(name)
def handle(req): """handle a request to the function Args: req (str): request body """ r = requests.get("http://api.open-notify.org/astros.json") result = r.json() index = random.randint(0, len(result["people"]) - 1) name = result["people"][index]["name"] return "{} is in space".format(name)
Python
def installSoftware(software): """ Install arbitrary software based on a software object """ packagelist = "" for package in software.packages: packagelist += package + " " if "{}" in software.installer: return [software.installer.format(packagelist)] return [software.installer + " " + packagelist]
def installSoftware(software): """ Install arbitrary software based on a software object """ packagelist = "" for package in software.packages: packagelist += package + " " if "{}" in software.installer: return [software.installer.format(packagelist)] return [software.installer + " " + packagelist]
Python
def start(self, command="/bin/bash", herefile="EOF"): """ Generate the chrooted environment commands. A chrooted environment should have a list of commands to execute (inside of this) A herefile/string should be supplied to specify the delimiter as the underlying structure uses these. The herestring should be a string of charachters that is not presend inside the command """ if self.user == "root": return self.chrootAsRoot(command, herefile) return self.chrootAsUser(command, herefile, herefile+"2")
def start(self, command="/bin/bash", herefile="EOF"): """ Generate the chrooted environment commands. A chrooted environment should have a list of commands to execute (inside of this) A herefile/string should be supplied to specify the delimiter as the underlying structure uses these. The herestring should be a string of charachters that is not presend inside the command """ if self.user == "root": return self.chrootAsRoot(command, herefile) return self.chrootAsUser(command, herefile, herefile+"2")
Python
def install(self): """ Install a git repository to a specific location. It also installs git in case that is not present return the status code from git. If installing git fails it returns None """ return [self.installGit(), "git clone {} {}".format(self.url, self.destination)]
def install(self): """ Install a git repository to a specific location. It also installs git in case that is not present return the status code from git. If installing git fails it returns None """ return [self.installGit(), "git clone {} {}".format(self.url, self.destination)]
Python
def installGit(self): """ Install git if it doesn't exist yes """ software = sw.software(packages=[config.GITPACKAGE]) return builder.installSoftware(software)
def installGit(self): """ Install git if it doesn't exist yes """ software = sw.software(packages=[config.GITPACKAGE]) return builder.installSoftware(software)
Python
def populateMissingNetwork(content): """ See if a piece of the dictionary is missing. If it is then we set it to the hardcoded values defined in config.py This function should not be called externally. It fills all data related to network configuration options """ if not exists(content, "IP"): content["IP"] = config.IP if not exists(content, "WIFI_CONNECT_COMMAND"): content["WIFI_CONNECT_COMMAND"] = config.WIFI_CONNECT_COMMAND if not exists(content, "WIFI_CONNECT_COMMAND_WITH_PASSWORD"): content["WIFI_CONNECT_COMMAND_WITH_PASSWORD"] = config.WIFI_CONNECT_COMMAND_WITH_PASSWORD return content
def populateMissingNetwork(content): """ See if a piece of the dictionary is missing. If it is then we set it to the hardcoded values defined in config.py This function should not be called externally. It fills all data related to network configuration options """ if not exists(content, "IP"): content["IP"] = config.IP if not exists(content, "WIFI_CONNECT_COMMAND"): content["WIFI_CONNECT_COMMAND"] = config.WIFI_CONNECT_COMMAND if not exists(content, "WIFI_CONNECT_COMMAND_WITH_PASSWORD"): content["WIFI_CONNECT_COMMAND_WITH_PASSWORD"] = config.WIFI_CONNECT_COMMAND_WITH_PASSWORD return content
Python
def populateMissingUser(content): """ See if a piece of the dictionary is missing. If it is then we set it to the hardcoded values defined in config.py This function should not be called externally. It fills all data related to user configuration options """ if not exists(content, "DEFAULT_SHELL"): content["DEFAULT_SHELL"] = config.DEFAULT_SHELL if not exists(content, "USERADD"): content["USERADD"] = config.USERADD if not exists(content, "MOUNTPOINT"): content["MOUNTPOINT"] = config.MOUNTPOINT return content
def populateMissingUser(content): """ See if a piece of the dictionary is missing. If it is then we set it to the hardcoded values defined in config.py This function should not be called externally. It fills all data related to user configuration options """ if not exists(content, "DEFAULT_SHELL"): content["DEFAULT_SHELL"] = config.DEFAULT_SHELL if not exists(content, "USERADD"): content["USERADD"] = config.USERADD if not exists(content, "MOUNTPOINT"): content["MOUNTPOINT"] = config.MOUNTPOINT return content
Python
def populateMissingBootloader(content): """ See if a piece of the dictionary is missing. If it is then we set it to the hardcoded values defined in config.py This function should not be called externally. It fills all data related to bootloader configuration options """ if not exists(content, "BOOTLOADER_EFI"): content["BOOTLOADER_EFI"] = config.BOOTLOADER_EFI if not exists(content, "BOOTLOADER_DOS"): content["BOOTLOADER_DOS"] = config.BOOTLOADER_DOS if not exists(content, "BOOTLOADER_CONFIG"): content["BOOTLOADER_CONFIG"] = config.BOOTLOADER_CONFIG return content
def populateMissingBootloader(content): """ See if a piece of the dictionary is missing. If it is then we set it to the hardcoded values defined in config.py This function should not be called externally. It fills all data related to bootloader configuration options """ if not exists(content, "BOOTLOADER_EFI"): content["BOOTLOADER_EFI"] = config.BOOTLOADER_EFI if not exists(content, "BOOTLOADER_DOS"): content["BOOTLOADER_DOS"] = config.BOOTLOADER_DOS if not exists(content, "BOOTLOADER_CONFIG"): content["BOOTLOADER_CONFIG"] = config.BOOTLOADER_CONFIG return content
Python
def populateMissingSystem(content): """ See if a piece of the dictionary is missing. If it is then we set it to the hardcoded values defined in config.py This function should not be called externally. It fills all data related to system configuration options """ if not exists(content, "LOCAL"): content["LOCAL"] = config.LOCALE if not exists(content, "KEYMAP"): content["KEYMAP"] = config.KEYMAP if not exists(content, "HOSTNAME"): content["HOSTNAME"] = config.HOSTNAME if not exists(content, "ROOT_PWD"): content["ROOT_PWD"] = config.ROOT_PWD return content
def populateMissingSystem(content): """ See if a piece of the dictionary is missing. If it is then we set it to the hardcoded values defined in config.py This function should not be called externally. It fills all data related to system configuration options """ if not exists(content, "LOCAL"): content["LOCAL"] = config.LOCALE if not exists(content, "KEYMAP"): content["KEYMAP"] = config.KEYMAP if not exists(content, "HOSTNAME"): content["HOSTNAME"] = config.HOSTNAME if not exists(content, "ROOT_PWD"): content["ROOT_PWD"] = config.ROOT_PWD return content
Python
def populateMissingLUKS(content): """ See if a piece of the dictionary is missing. If it is then we set it to the hardcoded values defined in config.py This function should not be called externally. It fills all data related to LUKS encryption configuration options """ if not exists(content, "LUKS"): content["LUKS"] = config.LUKS if not exists(content, "LUKS_OPEN"): content["LUKS_OPEN"] = config.LUKS_OPEN if not exists(content, "LUKS_NAME"): content["LUKS_NAME"] = config.LUKS_NAME if not exists(content, "LUKS_DEVICE"): content["LUKS_DEVICE"] = config.LUKS_DEVICE return content
def populateMissingLUKS(content): """ See if a piece of the dictionary is missing. If it is then we set it to the hardcoded values defined in config.py This function should not be called externally. It fills all data related to LUKS encryption configuration options """ if not exists(content, "LUKS"): content["LUKS"] = config.LUKS if not exists(content, "LUKS_OPEN"): content["LUKS_OPEN"] = config.LUKS_OPEN if not exists(content, "LUKS_NAME"): content["LUKS_NAME"] = config.LUKS_NAME if not exists(content, "LUKS_DEVICE"): content["LUKS_DEVICE"] = config.LUKS_DEVICE return content
Python
def populateMissingMisc(content): """ See if a piece of the dictionary is missing. If it is then we set it to the hardcoded values defined in config.py This function should not be called externally. It fills all data related to Miscellanous configuration options """ if not exists(content, "INSTALLCOMMAND"): content["INSTALLCOMMAND"] = config.INSTALLCOMMAND if not exists(content, "CHROOT"): content["CHROOT"] = config.CHROOT if not exists(content, "FSTAB"): content["FSTAB"] = config.FSTAB if not exists(content, "GROUPS"): content["GROUPS"] = config.GROUPS if not exists(content, "HERESTRING"): content["HERESTRING"] = config.HERESTRING if not exists(content, "BOOTSTRAP"): content["BOOTSTRAP"] = config.BOOTSTRAP if not exists(content, "BOOTSTRAP_PACKAGES"): content["BOOTSTRAP_PACKAGES"] = config.BOOTSTRAP_PACKAGES if not exists(content, "KERNEL"): content["KERNEL"] = config.KERNEL return content
def populateMissingMisc(content): """ See if a piece of the dictionary is missing. If it is then we set it to the hardcoded values defined in config.py This function should not be called externally. It fills all data related to Miscellanous configuration options """ if not exists(content, "INSTALLCOMMAND"): content["INSTALLCOMMAND"] = config.INSTALLCOMMAND if not exists(content, "CHROOT"): content["CHROOT"] = config.CHROOT if not exists(content, "FSTAB"): content["FSTAB"] = config.FSTAB if not exists(content, "GROUPS"): content["GROUPS"] = config.GROUPS if not exists(content, "HERESTRING"): content["HERESTRING"] = config.HERESTRING if not exists(content, "BOOTSTRAP"): content["BOOTSTRAP"] = config.BOOTSTRAP if not exists(content, "BOOTSTRAP_PACKAGES"): content["BOOTSTRAP_PACKAGES"] = config.BOOTSTRAP_PACKAGES if not exists(content, "KERNEL"): content["KERNEL"] = config.KERNEL return content
Python
def populateMissingPieces(content): """ See if a piece of the dictionary is missing. If it is then we set it to the hardcoded values defined in config.py """ content = populateMissingNetwork(content) content = populateMissingUser(content) content = populateMissingBootloader(content) content = populateMissingSystem(content) content = populateMissingMisc(content) return content
def populateMissingPieces(content): """ See if a piece of the dictionary is missing. If it is then we set it to the hardcoded values defined in config.py """ content = populateMissingNetwork(content) content = populateMissingUser(content) content = populateMissingBootloader(content) content = populateMissingSystem(content) content = populateMissingMisc(content) return content
Python
def exists(dict, key): """ Check if a key exists in a dict """ return key in dict.keys()
def exists(dict, key): """ Check if a key exists in a dict """ return key in dict.keys()
Python
def convertYamlToCommands(executor, config=None): """ convert a parser.executor object to commands """ commands = [] for step in executor.steps: # make partitiontable if type(step) == type(execution.partitiontable()): commands = concat(commands, PartitionTableGen(step, config)) elif type(step) == type(execution.format()): commands = concat(commands, formatGen(step, config)) elif type(step) == type(execution.mount()): commands = concat(commands, mountGen(step, config)) elif type(step) == type(execution.bootstrap()): commands = concat(commands, bootstrapGen(step, config)) elif type(step) == type(execution.fstab()): commands = concat(commands, fstabGen(step, config)) elif type(step) == type(execution.scriptstep()): commands = concat(commands, scriptGen(step, config)) elif type(step) == type(execution.chroot(config)): commands = concat(commands, chrootGen(step, config)) elif type(step) == type(execution.systemsetup()): commands = concat(commands, systemGen(step, config)) elif type(step) == type(execution.createUser()): commands = concat(commands, createUser(step, config)) elif type(step) == type(execution.bootloaderstep()): commands = concat(commands, bootloaderGen(step, config)) elif type(step) == type(execution.packages()): commands = concat(commands, packageGen(step, config)) elif type(step) == type(execution.network()): commands == concat(commands, networkGen(step, config)) else: print(step) return commands
def convertYamlToCommands(executor, config=None): """ convert a parser.executor object to commands """ commands = [] for step in executor.steps: # make partitiontable if type(step) == type(execution.partitiontable()): commands = concat(commands, PartitionTableGen(step, config)) elif type(step) == type(execution.format()): commands = concat(commands, formatGen(step, config)) elif type(step) == type(execution.mount()): commands = concat(commands, mountGen(step, config)) elif type(step) == type(execution.bootstrap()): commands = concat(commands, bootstrapGen(step, config)) elif type(step) == type(execution.fstab()): commands = concat(commands, fstabGen(step, config)) elif type(step) == type(execution.scriptstep()): commands = concat(commands, scriptGen(step, config)) elif type(step) == type(execution.chroot(config)): commands = concat(commands, chrootGen(step, config)) elif type(step) == type(execution.systemsetup()): commands = concat(commands, systemGen(step, config)) elif type(step) == type(execution.createUser()): commands = concat(commands, createUser(step, config)) elif type(step) == type(execution.bootloaderstep()): commands = concat(commands, bootloaderGen(step, config)) elif type(step) == type(execution.packages()): commands = concat(commands, packageGen(step, config)) elif type(step) == type(execution.network()): commands == concat(commands, networkGen(step, config)) else: print(step) return commands
Python
def networkGen(step, config): """ If no network exists then we will try and connect to one """ return concat(["\n#Establishing a network connection"], nw.Connector().getShellCommand(step.model.ssid, step.model.password, config["WIFI_CONNECT_COMMAND_WITH_PASSWORD"], config))
def networkGen(step, config): """ If no network exists then we will try and connect to one """ return concat(["\n#Establishing a network connection"], nw.Connector().getShellCommand(step.model.ssid, step.model.password, config["WIFI_CONNECT_COMMAND_WITH_PASSWORD"], config))
Python
def chrootGen(step, config): """ Build chroot command from a parser.executor.chroot object """ commands = convertYamlToCommands(step, config) return concat(["\n# Executing chroot function"], chroot.chroot(chrootfunc=config["CHROOT"], user=step.user, mountpoint=step.mountpoint).start(command=commands, herefile=config["HERESTRING"]))
def chrootGen(step, config): """ Build chroot command from a parser.executor.chroot object """ commands = convertYamlToCommands(step, config) return concat(["\n# Executing chroot function"], chroot.chroot(chrootfunc=config["CHROOT"], user=step.user, mountpoint=step.mountpoint).start(command=commands, herefile=config["HERESTRING"]))
Python
def scriptGen(step, config): """ Generate a script command from a parser.executor.script """ if not step.model.command == None: return concat(["\n# Executing custom script"], script.script(shell="", payload=step.model.command).exec()) with open(step.model.file, 'r') as stream: return concat(["\n# Executing custom script"], script.script(shell="", payload=stream.read()).exec())
def scriptGen(step, config): """ Generate a script command from a parser.executor.script """ if not step.model.command == None: return concat(["\n# Executing custom script"], script.script(shell="", payload=step.model.command).exec()) with open(step.model.file, 'r') as stream: return concat(["\n# Executing custom script"], script.script(shell="", payload=stream.read()).exec())
Python
def bootstrapGen(step, config): """ Bootstrap the system on a drive """ return concat(["\n#bootstrapping system"], swb.installSoftware(sw.software(config["BOOTSTRAP"], packages=config["BOOTSTRAP_PACKAGES"])))
def bootstrapGen(step, config): """ Bootstrap the system on a drive """ return concat(["\n#bootstrapping system"], swb.installSoftware(sw.software(config["BOOTSTRAP"], packages=config["BOOTSTRAP_PACKAGES"])))
Python
def mountGen(mounter, config): """ Generate mount commands from a parser.executor.mount object """ commands = ["\n#Mounting partitions"] if type(mounter.model) == type(parsemodel.disk()): partitions = genPartitions( mounter.model.partitions, mounter.model.device, config) else: partitions = genPartitions( [mounter.model], mounter.model.device, config) commands = concat(commands, mb.mountAll(partitions, config["MOUNTPOINT"])) return commands
def mountGen(mounter, config): """ Generate mount commands from a parser.executor.mount object """ commands = ["\n#Mounting partitions"] if type(mounter.model) == type(parsemodel.disk()): partitions = genPartitions( mounter.model.partitions, mounter.model.device, config) else: partitions = genPartitions( [mounter.model], mounter.model.device, config) commands = concat(commands, mb.mountAll(partitions, config["MOUNTPOINT"])) return commands
Python
def formatGen(formater, config): """ Generate format commands from a parser.executor.format object """ commands = ["\n#Formating partitions"] if type(formater.model) == type(parsemodel.disk()): partitions = genPartitions( formater.model.partitions, formater.model.device, config) else: partitions = genPartitions( [formater.model], formater.model.device, config) for part in partitions: commands = concat(commands, pb.format(part, config)) return commands
def formatGen(formater, config): """ Generate format commands from a parser.executor.format object """ commands = ["\n#Formating partitions"] if type(formater.model) == type(parsemodel.disk()): partitions = genPartitions( formater.model.partitions, formater.model.device, config) else: partitions = genPartitions( [formater.model], formater.model.device, config) for part in partitions: commands = concat(commands, pb.format(part, config)) return commands
Python
def PartitionTableGen(ptable, config): """ Convert a partitiontable gen step to a list of commands """ model = ptable.model table = tablemodel.disk(model.device, model.size, genPartitions(model.partitions, model.device, config), model.gpt) if model.bGenTable: return concat(["\n#Building partition table"], tablebuilder.buildPartitionTable(table)) return concat(["\n#Building partition table"], tablebuilder.buildPartitionTableEntries(table))
def PartitionTableGen(ptable, config): """ Convert a partitiontable gen step to a list of commands """ model = ptable.model table = tablemodel.disk(model.device, model.size, genPartitions(model.partitions, model.device, config), model.gpt) if model.bGenTable: return concat(["\n#Building partition table"], tablebuilder.buildPartitionTable(table)) return concat(["\n#Building partition table"], tablebuilder.buildPartitionTableEntries(table))
Python
def genPartitions(parserPartitions, diskdevice, config): """ generate a list of model partition from a parser partition model """ partitions = [] if "nvme" in diskdevice: diskdevice += "p" # TODO: Generate logic volumes here as well for i, part in enumerate(parserPartitions): device = diskdevice+str(i+1) offset = i+1 if (part.offset != None): device = diskdevice + str(part.offset) offset = part.offset partitions.append(partition.partition(device, part.name, part.mount, part.filesystem, part.start, part.end, part.bIsEncrypted, part.volumes, part.password, part.resize, part.size, offset)) return partitions
def genPartitions(parserPartitions, diskdevice, config): """ generate a list of model partition from a parser partition model """ partitions = [] if "nvme" in diskdevice: diskdevice += "p" # TODO: Generate logic volumes here as well for i, part in enumerate(parserPartitions): device = diskdevice+str(i+1) offset = i+1 if (part.offset != None): device = diskdevice + str(part.offset) offset = part.offset partitions.append(partition.partition(device, part.name, part.mount, part.filesystem, part.start, part.end, part.bIsEncrypted, part.volumes, part.password, part.resize, part.size, offset)) return partitions
Python
def BuildSoftwareFromFile(filename, installer=config.INSTALLCOMMAND): """ Build a software object from a file containing packages @file = a file containing packages (every line is a package) @installer = the base install command to install software """ sw = software(installer=installer) with open(filename) as f: lines = f.read().splitlines() sw.packages = lines return sw
def BuildSoftwareFromFile(filename, installer=config.INSTALLCOMMAND): """ Build a software object from a file containing packages @file = a file containing packages (every line is a package) @installer = the base install command to install software """ sw = software(installer=installer) with open(filename) as f: lines = f.read().splitlines() sw.packages = lines return sw
Python
def generate(raw, config): """ Convert raw yaml convertion to a class based representation """ representation = yamlfile.file() representation.model = model.generateModel(raw["models"], config) representation.execution = execution.generateExecution( raw["execution"], config) return representation
def generate(raw, config): """ Convert raw yaml convertion to a class based representation """ representation = yamlfile.file() representation.model = model.generateModel(raw["models"], config) representation.execution = execution.generateExecution( raw["execution"], config) return representation
Python
def modelLinker(file): """ convert a raw yamlfile.file object to a linked model to executor linker It will link generated models to executors. So that each executor knows with which model to work with """ for executor in file.execution.steps: executor.setModel(file.model) if type(executor) == type(execution.chroot({"MOUNTPOINT": ""})): for step in executor.steps: step.setModel(file.model) return file
def modelLinker(file): """ convert a raw yamlfile.file object to a linked model to executor linker It will link generated models to executors. So that each executor knows with which model to work with """ for executor in file.execution.steps: executor.setModel(file.model) if type(executor) == type(execution.chroot({"MOUNTPOINT": ""})): for step in executor.steps: step.setModel(file.model) return file
Python
def buildPartitionTable(Disk): """ Generate the partition table commands based on a disk object The disk object must have a root partition """ commands = [getPartitionTableType(Disk)] for part in Disk.partitions: commands = concat(commands, getPartitionCommands( Disk, part, part.offset)) return commands
def buildPartitionTable(Disk): """ Generate the partition table commands based on a disk object The disk object must have a root partition """ commands = [getPartitionTableType(Disk)] for part in Disk.partitions: commands = concat(commands, getPartitionCommands( Disk, part, part.offset)) return commands
Python
def buildPartitionTableEntries(Disk): """ Generate the partition table commands based on a disk object It appends the partitions to an exisiting partition table """ commands = [] for index, part in enumerate(Disk.partitions): commands = concat(commands, getPartitionCommands( Disk, part, part.offset)) return commands
def buildPartitionTableEntries(Disk): """ Generate the partition table commands based on a disk object It appends the partitions to an exisiting partition table """ commands = [] for index, part in enumerate(Disk.partitions): commands = concat(commands, getPartitionCommands( Disk, part, part.offset)) return commands
Python
def buildPrimaryPartition(disk, Partition, index=0, name="root"): """ Alter the partition table to include a primary typed partition on a certain disk @disk is the device to alter its partition table @Partition is the model of a partition @index is the index of the partition in the partition table @name is the name to assign this partition in the table """ commands = [] commands.append(getBaseCommand( disk) + "mkpart primary {} {}".format(Partition.start, Partition.end)) commands.append(getBaseCommand(disk) + "name {} {}".format(index, name)) return commands
def buildPrimaryPartition(disk, Partition, index=0, name="root"): """ Alter the partition table to include a primary typed partition on a certain disk @disk is the device to alter its partition table @Partition is the model of a partition @index is the index of the partition in the partition table @name is the name to assign this partition in the table """ commands = [] commands.append(getBaseCommand( disk) + "mkpart primary {} {}".format(Partition.start, Partition.end)) commands.append(getBaseCommand(disk) + "name {} {}".format(index, name)) return commands
Python
def buildSwapPartition(disk, Partition, index=0, name="swap"): """ Alter the partition table to include a primary typed partition on a certain disk @disk is the device to alter its partition table @Partition is the model of a partition @index is the index of the partition in the partition table @name is the name to assign this partition in the table """ return buildPrimaryPartition(disk, Partition, index, name)
def buildSwapPartition(disk, Partition, index=0, name="swap"): """ Alter the partition table to include a primary typed partition on a certain disk @disk is the device to alter its partition table @Partition is the model of a partition @index is the index of the partition in the partition table @name is the name to assign this partition in the table """ return buildPrimaryPartition(disk, Partition, index, name)
Python
def buildEncryptedPrimaryPartition(disk, Partition, index=0, name="root"): """ Alter the partition table to include a primary typed partition on a certain disk @disk is the device to alter its partition table @Partition is the model of a partition @index is the index of the partition in the partition table @name is the name to assign this partition in the table """ commands = [] commands.append(getBaseCommand( disk) + "mkpart primary {} {}".format(Partition.start, Partition.end)) commands.append(getBaseCommand(disk) + "set {} lvm on".format(index)) commands.append(getBaseCommand(disk) + "name {} {}".format(index, name)) return commands
def buildEncryptedPrimaryPartition(disk, Partition, index=0, name="root"): """ Alter the partition table to include a primary typed partition on a certain disk @disk is the device to alter its partition table @Partition is the model of a partition @index is the index of the partition in the partition table @name is the name to assign this partition in the table """ commands = [] commands.append(getBaseCommand( disk) + "mkpart primary {} {}".format(Partition.start, Partition.end)) commands.append(getBaseCommand(disk) + "set {} lvm on".format(index)) commands.append(getBaseCommand(disk) + "name {} {}".format(index, name)) return commands
Python
def buildResizePartition(disk, Partition, index=0, name="root"): """ Resize an exisiting partition to a new size based on its index and the size """ commands = [] commands.append(getBaseCommand( disk) + "resizepart {} {}".format(index, Partition.size)) return commands
def buildResizePartition(disk, Partition, index=0, name="root"): """ Resize an exisiting partition to a new size based on its index and the size """ commands = [] commands.append(getBaseCommand( disk) + "resizepart {} {}".format(index, Partition.size)) return commands
Python
def format(part, config): """ format a partition based on the filesystem. It returns a list of command to run If no matching filesystem was found we return None """ if part.filesystem == EFilesystem.EXT4: return ["mkfs.ext4 -F {}".format(part.device)] elif part.filesystem == EFilesystem.BTRFS: return ["mkfs.btrfs -f {}".format(part.device)] elif part.filesystem == EFilesystem.FAT32: return ["mkfs.fat -I -F32 {}".format(part.device)] elif part.filesystem == EFilesystem.SWAP: return ["mkswap -f {}".format(part.device)] elif part.bIsEncrypted or part.filesystem == EFilesystem.LUKS: return handleEncryptedPartition(part, config) return None
def format(part, config): """ format a partition based on the filesystem. It returns a list of command to run If no matching filesystem was found we return None """ if part.filesystem == EFilesystem.EXT4: return ["mkfs.ext4 -F {}".format(part.device)] elif part.filesystem == EFilesystem.BTRFS: return ["mkfs.btrfs -f {}".format(part.device)] elif part.filesystem == EFilesystem.FAT32: return ["mkfs.fat -I -F32 {}".format(part.device)] elif part.filesystem == EFilesystem.SWAP: return ["mkswap -f {}".format(part.device)] elif part.bIsEncrypted or part.filesystem == EFilesystem.LUKS: return handleEncryptedPartition(part, config) return None
Python
def makeUnixUser(user, config): """ return a list of commands needed to build the user """ groups = listToString(user.groups) return [config["USERADD"].format(getEncryptedPassword(user.password), groups, user.shell, user.name)]
def makeUnixUser(user, config): """ return a list of commands needed to build the user """ groups = listToString(user.groups) return [config["USERADD"].format(getEncryptedPassword(user.password), groups, user.shell, user.name)]
Python
def mountAll(parts, mountpoint=config.MOUNTPOINT): """ @parts= a list of partitions @mountpoint=the place to mount the partitions Mount a list of partitions in the right order First root is mounted then the rest Return a list of commands """ command = [] # Add the root mount first for part in parts: if part.mountpoint == "/": command = concat(command, mount(part, mountpoint)) break # mount /boot as second (in case there is an efi directory the /boot should be mounted first) for part in parts: if part.mountpoint == "/boot": command = concat(command, mount(part, mountpoint)) # Add all other mounts for part in parts: if part.mountpoint != "/" and part.mountpoint != "/boot": command = concat(command, mount(part, mountpoint)) return command
def mountAll(parts, mountpoint=config.MOUNTPOINT): """ @parts= a list of partitions @mountpoint=the place to mount the partitions Mount a list of partitions in the right order First root is mounted then the rest Return a list of commands """ command = [] # Add the root mount first for part in parts: if part.mountpoint == "/": command = concat(command, mount(part, mountpoint)) break # mount /boot as second (in case there is an efi directory the /boot should be mounted first) for part in parts: if part.mountpoint == "/boot": command = concat(command, mount(part, mountpoint)) # Add all other mounts for part in parts: if part.mountpoint != "/" and part.mountpoint != "/boot": command = concat(command, mount(part, mountpoint)) return command
Python
def mount(part, mountpoint): """ Mount a partition based on its filesystem/mountpoint """ if part.mountpoint == "swap" or part.mountpoint == "[swap]": return mountswap(part, mountpoint) elif part.mountpoint == "/": return mountroot(part, mountpoint) return mountStandard(part, mountpoint)
def mount(part, mountpoint): """ Mount a partition based on its filesystem/mountpoint """ if part.mountpoint == "swap" or part.mountpoint == "[swap]": return mountswap(part, mountpoint) elif part.mountpoint == "/": return mountroot(part, mountpoint) return mountStandard(part, mountpoint)
Python
def mountStandard(part, mountpoint): """ Mount all partitions that are not "special" aka partitions that are not root, swap etc boot partitions are allowed here """ mount = mountpoint + "/" + part.mountpoint if mountpoint[-1:] == "/" or part.mountpoint[0] == "/": mount = mountpoint + part.mountpoint return ["mkdir -p {}".format(mount), "mount {} {}".format(part.device, mount)]
def mountStandard(part, mountpoint): """ Mount all partitions that are not "special" aka partitions that are not root, swap etc boot partitions are allowed here """ mount = mountpoint + "/" + part.mountpoint if mountpoint[-1:] == "/" or part.mountpoint[0] == "/": mount = mountpoint + part.mountpoint return ["mkdir -p {}".format(mount), "mount {} {}".format(part.device, mount)]
Python
def generateExecution(raw, config): """ generate a execution from a raw yaml model """ steps = [] for step in raw: steps.append(getStep(step, config)) executor = execution() executor.steps = steps return executor
def generateExecution(raw, config): """ generate a execution from a raw yaml model """ steps = [] for step in raw: steps.append(getStep(step, config)) executor = execution() executor.steps = steps return executor
Python
def handleEncryptedPartition(part, config): """ Convert a partition into a luks volume The volume is created from @volumes @volumes = a list of logicvolumes mounted on config.LUKS_DEVICE The important parameters of @volumes is the mountpoint, name and size """ command = ["modprobe dm-crypt", "modprobe dm-mod"] command.append("printf '{}' | ".format(part.password) + config["LUKS"].format(part.device)) command.append("printf '{}' | ".format(part.password) + config["LUKS_OPEN"].format(part.device)) command.append("pvcreate " + config["LUKS_DEVICE"]) command.append("vgcreate {} ".format( config["LUKS_NAME"]) + config["LUKS_DEVICE"]) for volume in part.volumes: command.append( "lvcreate -n {} -L {} {}".format(volume.name, volume.size, config["LUKS_NAME"])) # add format command for volumes for volume in part.volumes: formating = formatVolume(volume.name, volume.mountpoint, config) for form in formating: command.append(form) return command
def handleEncryptedPartition(part, config): """ Convert a partition into a luks volume The volume is created from @volumes @volumes = a list of logicvolumes mounted on config.LUKS_DEVICE The important parameters of @volumes is the mountpoint, name and size """ command = ["modprobe dm-crypt", "modprobe dm-mod"] command.append("printf '{}' | ".format(part.password) + config["LUKS"].format(part.device)) command.append("printf '{}' | ".format(part.password) + config["LUKS_OPEN"].format(part.device)) command.append("pvcreate " + config["LUKS_DEVICE"]) command.append("vgcreate {} ".format( config["LUKS_NAME"]) + config["LUKS_DEVICE"]) for volume in part.volumes: command.append( "lvcreate -n {} -L {} {}".format(volume.name, volume.size, config["LUKS_NAME"])) # add format command for volumes for volume in part.volumes: formating = formatVolume(volume.name, volume.mountpoint, config) for form in formating: command.append(form) return command
Python
def generateModel(raw, config): """ generate a model from a raw yaml model """ representation = models() for dic in raw: if exists(dic, "bootloader"): representation.bootloader = generateBootloader(dic["bootloader"]) if exists(dic, "system"): representation.system = generateSystem(dic["system"], config) if exists(dic, "chroots") and type(dic["chroots"]) is list: representation.chroots = generateChroots(dic, config) if exists(dic, "disks") and type(dic["disks"]) is list: representation.disks = generateDisks(dic) if exists(dic, "packages") and type(dic["packages"]) is list: representation.packages = generatePackages(dic, config) if exists(dic, "users") and type(dic["users"]) is list: representation.users = generateUsers(dic, config) if exists(dic, "scripts") and type(dic["scripts"]) is list: representation.scripts = generateScripts(dic) if exists(dic, "network"): representation.network = generateNetwork(dic["network"]) return representation
def generateModel(raw, config): """ generate a model from a raw yaml model """ representation = models() for dic in raw: if exists(dic, "bootloader"): representation.bootloader = generateBootloader(dic["bootloader"]) if exists(dic, "system"): representation.system = generateSystem(dic["system"], config) if exists(dic, "chroots") and type(dic["chroots"]) is list: representation.chroots = generateChroots(dic, config) if exists(dic, "disks") and type(dic["disks"]) is list: representation.disks = generateDisks(dic) if exists(dic, "packages") and type(dic["packages"]) is list: representation.packages = generatePackages(dic, config) if exists(dic, "users") and type(dic["users"]) is list: representation.users = generateUsers(dic, config) if exists(dic, "scripts") and type(dic["scripts"]) is list: representation.scripts = generateScripts(dic) if exists(dic, "network"): representation.network = generateNetwork(dic["network"]) return representation
Python
def HasNetwork(self, host=config.IP, port=53, timeout=3): """ Access the network and see if a connection exists This discards DNS requests and focuses entirely on ip packets """ try: socket.setdefaulttimeout(timeout) socket.socket(socket.AF_INET, socket.SOCK_STREAM).connect( (host, port)) return True except socket.error as ex: print(ex) return False
def HasNetwork(self, host=config.IP, port=53, timeout=3): """ Access the network and see if a connection exists This discards DNS requests and focuses entirely on ip packets """ try: socket.setdefaulttimeout(timeout) socket.socket(socket.AF_INET, socket.SOCK_STREAM).connect( (host, port)) return True except socket.error as ex: print(ex) return False
Python
def establishConnectionCommand(self, command=config.WIFI_CONNECT_COMMAND): """ Try to interactivaly make a connection """ obj = shell.Command(command).GetReturnCode() self.bIsConnected = self.HasNetwork()
def establishConnectionCommand(self, command=config.WIFI_CONNECT_COMMAND): """ Try to interactivaly make a connection """ obj = shell.Command(command).GetReturnCode() self.bIsConnected = self.HasNetwork()
Python
def establishConnection(self, ssid, password, command=config.WIFI_CONNECT_COMMAND_WITH_PASSWORD): """ Try to make a basic network connection by ssid, password """ res = shell.Command(command.format(ssid, password)).GetStdout() self.bIsConnected = self.HasNetwork() return res
def establishConnection(self, ssid, password, command=config.WIFI_CONNECT_COMMAND_WITH_PASSWORD): """ Try to make a basic network connection by ssid, password """ res = shell.Command(command.format(ssid, password)).GetStdout() self.bIsConnected = self.HasNetwork() return res
Python
def SetColumns(self, columnNames): """Define the column names (dictionary keys pointing to columns within the data frame). columnNames should be a list of objects (usually strings). If called more than once, erases previous column-name definitions. """ if self.dict != {}: # remove old column definitions for oldName in self.dict: # remove old column-name attributes oldName_attr = oldName.split()[0].strip() if oldName_attr in self.__dict__: junk = self.__dict__.pop(oldName_attr) self.dict = {} for i in range(self.nCols): try: colName = columnNames[i] self.dict[colName] = self.data[i] # define a new attribute, if possible (for access via x.colName) if type(colName) is str: colName_attr = colName.split()[0].strip() self.__dict__[colName_attr] = self.data[i] except IndexError: pass self.colNames = columnNames
def SetColumns(self, columnNames): """Define the column names (dictionary keys pointing to columns within the data frame). columnNames should be a list of objects (usually strings). If called more than once, erases previous column-name definitions. """ if self.dict != {}: # remove old column definitions for oldName in self.dict: # remove old column-name attributes oldName_attr = oldName.split()[0].strip() if oldName_attr in self.__dict__: junk = self.__dict__.pop(oldName_attr) self.dict = {} for i in range(self.nCols): try: colName = columnNames[i] self.dict[colName] = self.data[i] # define a new attribute, if possible (for access via x.colName) if type(colName) is str: colName_attr = colName.split()[0].strip() self.__dict__[colName_attr] = self.data[i] except IndexError: pass self.colNames = columnNames
Python
def SetAltColumns(self, columnNames): """Define an additional set of column names (dictionary keys pointing to columns within the data array) for all columns. Does not erase previous column-name definitions. """ for i in range(self.nCols): try: colName = columnNames[i] self.dict[colName] = self.data[i] # define a new attribute, if possible (for access via x.colName) if type(colName) is str: colName_attr = colName.split()[0].strip() self.__dict__[colName_attr] = self.data[i] except IndexError: pass
def SetAltColumns(self, columnNames): """Define an additional set of column names (dictionary keys pointing to columns within the data array) for all columns. Does not erase previous column-name definitions. """ for i in range(self.nCols): try: colName = columnNames[i] self.dict[colName] = self.data[i] # define a new attribute, if possible (for access via x.colName) if type(colName) is str: colName_attr = colName.split()[0].strip() self.__dict__[colName_attr] = self.data[i] except IndexError: pass
Python
def ChangeColumnName(self, oldName, newName): """Change the name of one of the columns. Change is propagated into the internal attribute dictionary, so obj.newName will return the column which obj.oldName formerly returned. """ if (oldName in self.colNames): # replace name in column name list newList = self.colNames[:] i_old = newList.index(oldName) newList.insert(i_old, newName) newList.remove(oldName) # store new column names, generate keys and attributes self.SetColumns(newList) # clean up internal dictionary by removing old attribute ref oldName_attr = oldName.split()[0].strip() if oldName in self.__dict__: junk = self.__dict__.pop(oldName_attr) else: msg = "Column name \"%s\" does not exist." % oldName raise KeyError(msg)
def ChangeColumnName(self, oldName, newName): """Change the name of one of the columns. Change is propagated into the internal attribute dictionary, so obj.newName will return the column which obj.oldName formerly returned. """ if (oldName in self.colNames): # replace name in column name list newList = self.colNames[:] i_old = newList.index(oldName) newList.insert(i_old, newName) newList.remove(oldName) # store new column names, generate keys and attributes self.SetColumns(newList) # clean up internal dictionary by removing old attribute ref oldName_attr = oldName.split()[0].strip() if oldName in self.__dict__: junk = self.__dict__.pop(oldName_attr) else: msg = "Column name \"%s\" does not exist." % oldName raise KeyError(msg)
Python
def AddNewColumn(self, dataColumn, columnName=None): """Adds a new column to the ListDataFrame, along with the column name, if supplied. Throws an error if dataColumn is not a list or numpy array; also throws an error if the length of dataColumns is different from the existing columns. """ if type(dataColumn) not in [list, np.ndarray]: raise TypeError(error1) if len(dataColumn) != len(self.data[0]): raise TypeError(error2) self.data.append(dataColumn) self.nCols += 1 if columnName is not None and self.colNames is not None: columnNames = copy.copy(self.colNames) columnNames.append(columnName) self.SetColumns(columnNames)
def AddNewColumn(self, dataColumn, columnName=None): """Adds a new column to the ListDataFrame, along with the column name, if supplied. Throws an error if dataColumn is not a list or numpy array; also throws an error if the length of dataColumns is different from the existing columns. """ if type(dataColumn) not in [list, np.ndarray]: raise TypeError(error1) if len(dataColumn) != len(self.data[0]): raise TypeError(error2) self.data.append(dataColumn) self.nCols += 1 if columnName is not None and self.colNames is not None: columnNames = copy.copy(self.colNames) columnNames.append(columnName) self.SetColumns(columnNames)
Python
def SetColumns(self, columnNames): """Define the column names (dictionary keys pointing to columns within the data array. If called more than once, erases previous column-name definitions. """ if self.dict != {}: # remove old column definitions for oldName in self.dict: # remove old column-name attributes oldName_attr = oldName.split()[0].strip() if oldName_attr in self.__dict__: junk = self.__dict__.pop(oldName_attr) self.dict = {} for i in range(self.nCols): try: colName = columnNames[i] self.dict[colName] = self.data[:,i] # define a new attribute, if possible if type(colName) is str: colName_attr = colName.split()[0].strip() self.__dict__[colName_attr] = self.data[:,i] except IndexError: pass
def SetColumns(self, columnNames): """Define the column names (dictionary keys pointing to columns within the data array. If called more than once, erases previous column-name definitions. """ if self.dict != {}: # remove old column definitions for oldName in self.dict: # remove old column-name attributes oldName_attr = oldName.split()[0].strip() if oldName_attr in self.__dict__: junk = self.__dict__.pop(oldName_attr) self.dict = {} for i in range(self.nCols): try: colName = columnNames[i] self.dict[colName] = self.data[:,i] # define a new attribute, if possible if type(colName) is str: colName_attr = colName.split()[0].strip() self.__dict__[colName_attr] = self.data[:,i] except IndexError: pass
Python
def SetAltColumns(self, columnNames): """Define an additional set of column names (dictionary keys pointing to columns within the data array). Does not erase previous column-name definitions. """ for i in range(self.nCols): try: colName = columnNames[i] self.dict[colName] = self.data[:,i] # define a new attribute, if possible if type(colName) is str: colName_attr = colName.split()[0].strip() self.__dict__[colName_attr] = self.data[:,i] except IndexError: pass
def SetAltColumns(self, columnNames): """Define an additional set of column names (dictionary keys pointing to columns within the data array). Does not erase previous column-name definitions. """ for i in range(self.nCols): try: colName = columnNames[i] self.dict[colName] = self.data[:,i] # define a new attribute, if possible if type(colName) is str: colName_attr = colName.split()[0].strip() self.__dict__[colName_attr] = self.data[:,i] except IndexError: pass
Python
def InsertAndReplace( theList, ii, newItems ): """Given a list, replace the entry at index ii with the elements of newItems (also a list). """ nNewItems = len(newItems) if (ii < 0) or (ii > len(theList)): msg = "\ndatautils.InsertAndReplace: *** ERROR: requested insert location" msg += " (index = %d) is < 0 or > length(theList) [%d]" % (ii, len(theList)) msg += "\n" print(msg) return del theList[ii] for j in reversed(range(nNewItems)): theList.insert(ii, newItems[j])
def InsertAndReplace( theList, ii, newItems ): """Given a list, replace the entry at index ii with the elements of newItems (also a list). """ nNewItems = len(newItems) if (ii < 0) or (ii > len(theList)): msg = "\ndatautils.InsertAndReplace: *** ERROR: requested insert location" msg += " (index = %d) is < 0 or > length(theList) [%d]" % (ii, len(theList)) msg += "\n" print(msg) return del theList[ii] for j in reversed(range(nNewItems)): theList.insert(ii, newItems[j])
Python
def AddExtraColumnNames( columnNames, subListColumns, subListLengths, subListSuffixes ): """Given a list of column names, process it to replace column names for those columns which have sub-lists. New column names corresponding to each sub-list column are inserted in place of the original name, for each such column. """ oldColNames = [ columnNames[i] for i in subListColumns ] nSubListCols = len(subListColumns) for i in range(nSubListCols): baseName = oldColNames[i] nSubLists = subListLengths[i] # generate suffixes: if (subListSuffixes is not None): if (len(subListSuffixes) != nSubLists): msg = "\tdatautils.AddExtraColumnNames: *** WARNING: number of subListSuffixes" msg += " elements (%d) != actual number\n\tof sub-lists (%d)" % (len(subListSuffixes), nSubLists) msg += " for column with orig. name = %s...\n" % (baseName) msg += "\tNumerical suffixes will be used instead for new column names.\n" print(msg) suffixes = [ str(k) for k in range(nSubLists) ] else: suffixes = subListSuffixes else: suffixes = [ str(k) for k in range(nSubLists) ] newNames = [ "%s_%s" % (baseName, suffixes[k]) for k in range(nSubLists) ] insertLoc = columnNames.index(baseName) InsertAndReplace(columnNames, insertLoc, newNames)
def AddExtraColumnNames( columnNames, subListColumns, subListLengths, subListSuffixes ): """Given a list of column names, process it to replace column names for those columns which have sub-lists. New column names corresponding to each sub-list column are inserted in place of the original name, for each such column. """ oldColNames = [ columnNames[i] for i in subListColumns ] nSubListCols = len(subListColumns) for i in range(nSubListCols): baseName = oldColNames[i] nSubLists = subListLengths[i] # generate suffixes: if (subListSuffixes is not None): if (len(subListSuffixes) != nSubLists): msg = "\tdatautils.AddExtraColumnNames: *** WARNING: number of subListSuffixes" msg += " elements (%d) != actual number\n\tof sub-lists (%d)" % (len(subListSuffixes), nSubLists) msg += " for column with orig. name = %s...\n" % (baseName) msg += "\tNumerical suffixes will be used instead for new column names.\n" print(msg) suffixes = [ str(k) for k in range(nSubLists) ] else: suffixes = subListSuffixes else: suffixes = [ str(k) for k in range(nSubLists) ] newNames = [ "%s_%s" % (baseName, suffixes[k]) for k in range(nSubLists) ] insertLoc = columnNames.index(baseName) InsertAndReplace(columnNames, insertLoc, newNames)
Python
def ColumnToFloats( inputList, blankValue ): """Takes a list of numbers in string format and converts them to floating-point, with blank entries being replaced by blankValue (which should be float). """ try: floatList = np.array(inputList, "Float64") except ValueError: # looks like column has some blanks in it floatList = copy.copy(inputList) for j in range(len(inputList)): try: floatList[j] = float(inputList[j]) except ValueError: floatList[j] = blankValue floatList = np.array(floatList) return floatList
def ColumnToFloats( inputList, blankValue ): """Takes a list of numbers in string format and converts them to floating-point, with blank entries being replaced by blankValue (which should be float). """ try: floatList = np.array(inputList, "Float64") except ValueError: # looks like column has some blanks in it floatList = copy.copy(inputList) for j in range(len(inputList)): try: floatList[j] = float(inputList[j]) except ValueError: floatList[j] = blankValue floatList = np.array(floatList) return floatList
Python
def ReadCompositeTable( fileName, skip="#", delimiter=None, noConvert=None, intCols=None, blankVal=0, convertSubLists=False, expandSubLists=False, dataFrame=False, columnRow=None, subListSuffixes=None ): """Function which reads a text datafile and returns a list of columns. Comments and other lines to skip should start with the "skip" character (which by default is "#"); column separators are specified with "delimiter" (default is whitespace). By default, all columns are converted to 1-D NumPy arrays, unless the data in that column are non-numeric [only the first row of data is checked to see which columns might be non-numeric] or the column number [0-based: first column = 0, 2nd column = 1, etc.] is in the noConvert list. Numeric columns with column number in intCols (list) are converted to Int64 arrays; all other numeric columns become Float64 arrays. blankVal specifies the default number to use for blank values in numerical columns. convertSubLists specifies whether embedded sublists (e.g., "{x,y,z}" should be recognized and processed; if so, each such column becomes a *list of NumPy arrays*; if convertSubLists=False, then each such column is a list of strings. If expandSublists=True, then embedded sublists are converted into extra columns (this forces convertSubLists to be True). If dataFrame=True, then the result is a ListDataFrame object. If columnRow = x, then that line [0-based; first line = 0, etc.] is assumed to contain column headers and is processed accordingly (only useful if dataFrame = True as well). In addition, if columnRow != None, then subListSuffixes can be used to modify the column names for sublists (newNames[i] = origName + "_" + subListSuffixes[i]); if subListSuffixes is None [the default], then renamed column names have "_0", "_1", etc. as suffixes. """ subListsFound = False if noConvert is None: noConvert = [] if intCols is None: intCols = [] if expandSubLists is True: convertSubLists = True if convertSubLists is True: subListCols = [] subListLengths = {} subListLengthList = [] nDataRows = CountDataLinesInFile(fileName, skip=skip) nAllRows = CountLinesInFile(fileName) # open file in "universal" mode to convert Mac or DOS line endings to \n inFile = open(fileName, 'rU') dlines = [line.rstrip() for line in inFile if len(line.strip()) > 0 and line[0] not in skip ] # if requested, extract column names if ((columnRow is not None) and (columnRow >= 0) and (columnRow < nAllRows)): inFile.seek(0,0) # rewind to beginning of file i = 0 while (i <= columnRow): line = inFile.readline() i += 1 colHeaderLine = line.strip("#") pp = colHeaderLine.split(delimiter) colNames = [ p.strip() for p in pp ] else: colNames = None inFile.close() # Figure out number of columns, which ones are non-numeric, and which have # sub-lists (if we're allowing for the latter) pp = dlines[0].split(delimiter) nInputCols = len(pp) nonNumberCols = [] for i in range(nInputCols): if (i not in intCols) and (i not in noConvert): # check to make sure this column has numbers try: x = float(pp[i]) except ValueError: if convertSubLists is True and pp[i].find("{") >= 0: # a-ha, this is a column with sublists, so let's convert it subListsFound = True subListCols.append(i) ppp = pp[i].split(",") nSubLists = len(ppp) subListLengths[i] = nSubLists subListLengthList.append(nSubLists) else: noConvert.append(i) # Create the master list of input columns dataList = [] for i in range(nInputCols): dataList.append([]) # go through the table and assign entries to individual-column lists for n in range(nDataRows): pieces = dlines[n].split(delimiter) for i in range(nInputCols): dataList[i].append(pieces[i]) # Now convert columns to NumPy arrays, if possible: if (not expandSubLists): # "Normal" approach (if sublists columns exist, then each is stored # as a list of NumPy arrays); total number of columns is unchanged. # Note that columns in noConvert are left untouched (as list of strings) for i in range(nInputCols): if i in intCols: dataList[i] = np.array(dataList[i], "Int64") elif convertSubLists is True and i in subListCols: dataList[i] = ExtractSubLists(dataList[i], subListLengths[i]) elif i not in noConvert: # this must, by default, be a floating-point column dataList[i] = ColumnToFloats(dataList[i], blankVal) else: # Alternate approach, where we expand sublists into individual, new columns. # Have to be careful, since number of columns in dataList will be changing... # Note that columns in noConvert are left untouched (as list of strings) nAddedCols = 0 for i_orig in range(nInputCols): # i_orig = index into original (input) columns ii = i_orig + nAddedCols # ii = index into current version of dataList if i_orig in intCols: dataList[ii] = np.array(dataList[ii], "Int64") elif i_orig in subListCols: # number of added cols = n(subLists) - 1, bcs. we *remove* original column nAddedCols += subListLengths[i_orig] - 1 listOfSublists = ExtractSubLists(dataList[ii], subListLengths[i_orig]) InsertAndReplace(dataList, ii, listOfSublists) elif i_orig not in noConvert: # this must, by default, be a floating-point column dataList[ii] = ColumnToFloats(dataList[ii], blankVal) # OK, if there were sublists *and* we generated extra columns, update # the colNames list to account for extra columns if (expandSubLists is True) and (subListsFound is True) and (colNames is not None): AddExtraColumnNames(colNames, subListCols, subListLengthList, subListSuffixes) if dataFrame: return ListDataFrame(dataList, colNames) else: return dataList
def ReadCompositeTable( fileName, skip="#", delimiter=None, noConvert=None, intCols=None, blankVal=0, convertSubLists=False, expandSubLists=False, dataFrame=False, columnRow=None, subListSuffixes=None ): """Function which reads a text datafile and returns a list of columns. Comments and other lines to skip should start with the "skip" character (which by default is "#"); column separators are specified with "delimiter" (default is whitespace). By default, all columns are converted to 1-D NumPy arrays, unless the data in that column are non-numeric [only the first row of data is checked to see which columns might be non-numeric] or the column number [0-based: first column = 0, 2nd column = 1, etc.] is in the noConvert list. Numeric columns with column number in intCols (list) are converted to Int64 arrays; all other numeric columns become Float64 arrays. blankVal specifies the default number to use for blank values in numerical columns. convertSubLists specifies whether embedded sublists (e.g., "{x,y,z}" should be recognized and processed; if so, each such column becomes a *list of NumPy arrays*; if convertSubLists=False, then each such column is a list of strings. If expandSublists=True, then embedded sublists are converted into extra columns (this forces convertSubLists to be True). If dataFrame=True, then the result is a ListDataFrame object. If columnRow = x, then that line [0-based; first line = 0, etc.] is assumed to contain column headers and is processed accordingly (only useful if dataFrame = True as well). In addition, if columnRow != None, then subListSuffixes can be used to modify the column names for sublists (newNames[i] = origName + "_" + subListSuffixes[i]); if subListSuffixes is None [the default], then renamed column names have "_0", "_1", etc. as suffixes. """ subListsFound = False if noConvert is None: noConvert = [] if intCols is None: intCols = [] if expandSubLists is True: convertSubLists = True if convertSubLists is True: subListCols = [] subListLengths = {} subListLengthList = [] nDataRows = CountDataLinesInFile(fileName, skip=skip) nAllRows = CountLinesInFile(fileName) # open file in "universal" mode to convert Mac or DOS line endings to \n inFile = open(fileName, 'rU') dlines = [line.rstrip() for line in inFile if len(line.strip()) > 0 and line[0] not in skip ] # if requested, extract column names if ((columnRow is not None) and (columnRow >= 0) and (columnRow < nAllRows)): inFile.seek(0,0) # rewind to beginning of file i = 0 while (i <= columnRow): line = inFile.readline() i += 1 colHeaderLine = line.strip("#") pp = colHeaderLine.split(delimiter) colNames = [ p.strip() for p in pp ] else: colNames = None inFile.close() # Figure out number of columns, which ones are non-numeric, and which have # sub-lists (if we're allowing for the latter) pp = dlines[0].split(delimiter) nInputCols = len(pp) nonNumberCols = [] for i in range(nInputCols): if (i not in intCols) and (i not in noConvert): # check to make sure this column has numbers try: x = float(pp[i]) except ValueError: if convertSubLists is True and pp[i].find("{") >= 0: # a-ha, this is a column with sublists, so let's convert it subListsFound = True subListCols.append(i) ppp = pp[i].split(",") nSubLists = len(ppp) subListLengths[i] = nSubLists subListLengthList.append(nSubLists) else: noConvert.append(i) # Create the master list of input columns dataList = [] for i in range(nInputCols): dataList.append([]) # go through the table and assign entries to individual-column lists for n in range(nDataRows): pieces = dlines[n].split(delimiter) for i in range(nInputCols): dataList[i].append(pieces[i]) # Now convert columns to NumPy arrays, if possible: if (not expandSubLists): # "Normal" approach (if sublists columns exist, then each is stored # as a list of NumPy arrays); total number of columns is unchanged. # Note that columns in noConvert are left untouched (as list of strings) for i in range(nInputCols): if i in intCols: dataList[i] = np.array(dataList[i], "Int64") elif convertSubLists is True and i in subListCols: dataList[i] = ExtractSubLists(dataList[i], subListLengths[i]) elif i not in noConvert: # this must, by default, be a floating-point column dataList[i] = ColumnToFloats(dataList[i], blankVal) else: # Alternate approach, where we expand sublists into individual, new columns. # Have to be careful, since number of columns in dataList will be changing... # Note that columns in noConvert are left untouched (as list of strings) nAddedCols = 0 for i_orig in range(nInputCols): # i_orig = index into original (input) columns ii = i_orig + nAddedCols # ii = index into current version of dataList if i_orig in intCols: dataList[ii] = np.array(dataList[ii], "Int64") elif i_orig in subListCols: # number of added cols = n(subLists) - 1, bcs. we *remove* original column nAddedCols += subListLengths[i_orig] - 1 listOfSublists = ExtractSubLists(dataList[ii], subListLengths[i_orig]) InsertAndReplace(dataList, ii, listOfSublists) elif i_orig not in noConvert: # this must, by default, be a floating-point column dataList[ii] = ColumnToFloats(dataList[ii], blankVal) # OK, if there were sublists *and* we generated extra columns, update # the colNames list to account for extra columns if (expandSubLists is True) and (subListsFound is True) and (colNames is not None): AddExtraColumnNames(colNames, subListCols, subListLengthList, subListSuffixes) if dataFrame: return ListDataFrame(dataList, colNames) else: return dataList
Python
def ReadCompositeTableFromText( textLines, skip="#", delimiter=None, noConvert=None, intCols=None, blankVal=0, convertSubLists=False, expandSubLists=False, dataFrame=False, columnRow=None, subListSuffixes=None ): """Identical to ReadCompositeTable, except that it accepts a list of lines (each line a string), with the first line assumed to be column headers. """ subListsFound = False if noConvert is None: noConvert = [] if intCols is None: intCols = [] if expandSubLists is True: convertSubLists = True if convertSubLists is True: subListCols = [] subListLengths = {} subListLengthList = [] nAllRows = len(textLines) dlines = [line.rstrip() for line in textLines if len(line.strip()) > 0 and line[0] not in skip ] nDataRows = len(dlines) # if requested, extract column names if ((columnRow is not None) and (columnRow >= 0) and (columnRow < nAllRows)): colHeaderLine = textLines[columnRow].strip(skip) colNames = [ p.strip() for p in colHeaderLine.split(delimiter) ] else: colNames = None # Figure out number of columns, which ones are non-numeric, and which have # sub-lists (if we're allowing for the latter) pp = dlines[0].split(delimiter) nInputCols = len(pp) nonNumberCols = [] for i in range(nInputCols): if (i not in intCols) and (i not in noConvert): # check to make sure this column has numbers try: x = float(pp[i]) except ValueError: if convertSubLists is True and pp[i].find("{") >= 0: # a-ha, this is a column with sublists, so let's convert it subListsFound = True subListCols.append(i) ppp = pp[i].split(",") nSubLists = len(ppp) subListLengths[i] = nSubLists subListLengthList.append(nSubLists) else: noConvert.append(i) # Create the master list of input columns dataList = [] for i in range(nInputCols): dataList.append([]) # go through the table and assign entries to individual-column lists for n in range(nDataRows): pieces = dlines[n].split(delimiter) for i in range(nInputCols): dataList[i].append(pieces[i]) # Now convert columns to NumPy arrays, if possible: if (not expandSubLists): # "Normal" approach (if sublists columns exist, then each is stored # as a list of NumPy arrays); total number of columns is unchanged. # Note that columns in noConvert are left untouched (as list of strings) for i in range(nInputCols): if i in intCols: dataList[i] = np.array(dataList[i], "Int64") elif convertSubLists is True and i in subListCols: dataList[i] = ExtractSubLists(dataList[i], subListLengths[i]) elif i not in noConvert: # this must, by default, be a floating-point column dataList[i] = ColumnToFloats(dataList[i], blankVal) else: # Alternate approach, where we expand sublists into individual, new columns. # Have to be careful, since number of columns in dataList will be changing... # Note that columns in noConvert are left untouched (as list of strings) nAddedCols = 0 for i_orig in range(nInputCols): # i_orig = index into original (input) columns ii = i_orig + nAddedCols # ii = index into current version of dataList if i_orig in intCols: dataList[ii] = np.array(dataList[ii], "Int64") elif i_orig in subListCols: # number of added cols = n(subLists) - 1, bcs. we *remove* original column nAddedCols += subListLengths[i_orig] - 1 listOfSublists = ExtractSubLists(dataList[ii], subListLengths[i_orig]) InsertAndReplace(dataList, ii, listOfSublists) elif i_orig not in noConvert: # this must, by default, be a floating-point column dataList[ii] = ColumnToFloats(dataList[ii], blankVal) # OK, if there were sublists *and* we generated extra columns, update # the colNames list to account for extra columns if (expandSubLists is True) and (subListsFound is True) and (colNames is not None): AddExtraColumnNames(colNames, subListCols, subListLengthList, subListSuffixes) if dataFrame: return ListDataFrame(dataList, colNames) else: return dataList
def ReadCompositeTableFromText( textLines, skip="#", delimiter=None, noConvert=None, intCols=None, blankVal=0, convertSubLists=False, expandSubLists=False, dataFrame=False, columnRow=None, subListSuffixes=None ): """Identical to ReadCompositeTable, except that it accepts a list of lines (each line a string), with the first line assumed to be column headers. """ subListsFound = False if noConvert is None: noConvert = [] if intCols is None: intCols = [] if expandSubLists is True: convertSubLists = True if convertSubLists is True: subListCols = [] subListLengths = {} subListLengthList = [] nAllRows = len(textLines) dlines = [line.rstrip() for line in textLines if len(line.strip()) > 0 and line[0] not in skip ] nDataRows = len(dlines) # if requested, extract column names if ((columnRow is not None) and (columnRow >= 0) and (columnRow < nAllRows)): colHeaderLine = textLines[columnRow].strip(skip) colNames = [ p.strip() for p in colHeaderLine.split(delimiter) ] else: colNames = None # Figure out number of columns, which ones are non-numeric, and which have # sub-lists (if we're allowing for the latter) pp = dlines[0].split(delimiter) nInputCols = len(pp) nonNumberCols = [] for i in range(nInputCols): if (i not in intCols) and (i not in noConvert): # check to make sure this column has numbers try: x = float(pp[i]) except ValueError: if convertSubLists is True and pp[i].find("{") >= 0: # a-ha, this is a column with sublists, so let's convert it subListsFound = True subListCols.append(i) ppp = pp[i].split(",") nSubLists = len(ppp) subListLengths[i] = nSubLists subListLengthList.append(nSubLists) else: noConvert.append(i) # Create the master list of input columns dataList = [] for i in range(nInputCols): dataList.append([]) # go through the table and assign entries to individual-column lists for n in range(nDataRows): pieces = dlines[n].split(delimiter) for i in range(nInputCols): dataList[i].append(pieces[i]) # Now convert columns to NumPy arrays, if possible: if (not expandSubLists): # "Normal" approach (if sublists columns exist, then each is stored # as a list of NumPy arrays); total number of columns is unchanged. # Note that columns in noConvert are left untouched (as list of strings) for i in range(nInputCols): if i in intCols: dataList[i] = np.array(dataList[i], "Int64") elif convertSubLists is True and i in subListCols: dataList[i] = ExtractSubLists(dataList[i], subListLengths[i]) elif i not in noConvert: # this must, by default, be a floating-point column dataList[i] = ColumnToFloats(dataList[i], blankVal) else: # Alternate approach, where we expand sublists into individual, new columns. # Have to be careful, since number of columns in dataList will be changing... # Note that columns in noConvert are left untouched (as list of strings) nAddedCols = 0 for i_orig in range(nInputCols): # i_orig = index into original (input) columns ii = i_orig + nAddedCols # ii = index into current version of dataList if i_orig in intCols: dataList[ii] = np.array(dataList[ii], "Int64") elif i_orig in subListCols: # number of added cols = n(subLists) - 1, bcs. we *remove* original column nAddedCols += subListLengths[i_orig] - 1 listOfSublists = ExtractSubLists(dataList[ii], subListLengths[i_orig]) InsertAndReplace(dataList, ii, listOfSublists) elif i_orig not in noConvert: # this must, by default, be a floating-point column dataList[ii] = ColumnToFloats(dataList[ii], blankVal) # OK, if there were sublists *and* we generated extra columns, update # the colNames list to account for extra columns if (expandSubLists is True) and (subListsFound is True) and (colNames is not None): AddExtraColumnNames(colNames, subListCols, subListLengthList, subListSuffixes) if dataFrame: return ListDataFrame(dataList, colNames) else: return dataList
Python
def EllipseCircum( a, b ): """Calcluates circumference of an ellipse. Given an ellipse defined by semi-major axis a and semi-minor axis b, the function returns the circumference of the ellipse, using the approximation of Ramanujan. Parameters ---------- a : float semi-major axis of ellipse b : float semi-minor axis of ellipse Returns ------- circumference : float """ return math.pi * ( 3*(a + b) - math.sqrt( (3*a + b)*(a + 3*b) ) )
def EllipseCircum( a, b ): """Calcluates circumference of an ellipse. Given an ellipse defined by semi-major axis a and semi-minor axis b, the function returns the circumference of the ellipse, using the approximation of Ramanujan. Parameters ---------- a : float semi-major axis of ellipse b : float semi-minor axis of ellipse Returns ------- circumference : float """ return math.pi * ( 3*(a + b) - math.sqrt( (3*a + b)*(a + 3*b) ) )
Python
def EllipseR( a, ellipticity, pa, referencePA ): """Calcute radius where vector from center crosses boundary of an ellipse. Given an ellipse with specified semi-major axis, ellipticity, and position angle (a, ellipticity, pa), this function returns the radius from the ellipse center where a vector from the center of the ellipse at position angle = referencePA intersects the ellipse. Angles are assumed to be in degrees. Parameters ---------- a : float semi-major axis of ellipse ellipticity : float ellipse ellipticity (1 - b/a) pa : float position angle of ellipse major axis [degrees] referencePA: float position angle of vector [degrees] Returns ------- radius : float distance from the ellipse center to ellipse along vector """ b = a*(1.0 - ellipticity) dPA_rad = np.radians(pa - referencePA) return 1.0 / np.sqrt( (np.cos(dPA_rad)/a)**2 + (np.sin(dPA_rad)/b)**2 )
def EllipseR( a, ellipticity, pa, referencePA ): """Calcute radius where vector from center crosses boundary of an ellipse. Given an ellipse with specified semi-major axis, ellipticity, and position angle (a, ellipticity, pa), this function returns the radius from the ellipse center where a vector from the center of the ellipse at position angle = referencePA intersects the ellipse. Angles are assumed to be in degrees. Parameters ---------- a : float semi-major axis of ellipse ellipticity : float ellipse ellipticity (1 - b/a) pa : float position angle of ellipse major axis [degrees] referencePA: float position angle of vector [degrees] Returns ------- radius : float distance from the ellipse center to ellipse along vector """ b = a*(1.0 - ellipticity) dPA_rad = np.radians(pa - referencePA) return 1.0 / np.sqrt( (np.cos(dPA_rad)/a)**2 + (np.sin(dPA_rad)/b)**2 )
Python
def _ReadEllipse_fits( filename ): """Read an ellipse-fit table in FITS format. Utility function to read an IRAF ellipse fit in FITS table format, as generated by the tables.tcopy task. Output is a tuple of (dictionary containing the columns, list of lower-cased column names). Parameters ---------- filename : str path to FITS table Returns ------- (dataDict, columNames) : tuple of (dict, list) dataDict = dict mapping column names (str) to 1D numpy.ndarray columnNames = list of str for column names """ tabdat = fits.open(filename)[1].data dataDict = {} columnNames = [] for columnDef in tabdat.columns: colName = columnDef.name.lower() dataDict[colName] = np.array(columnDef.array) columnNames.append(colName) return (dataDict, columnNames)
def _ReadEllipse_fits( filename ): """Read an ellipse-fit table in FITS format. Utility function to read an IRAF ellipse fit in FITS table format, as generated by the tables.tcopy task. Output is a tuple of (dictionary containing the columns, list of lower-cased column names). Parameters ---------- filename : str path to FITS table Returns ------- (dataDict, columNames) : tuple of (dict, list) dataDict = dict mapping column names (str) to 1D numpy.ndarray columnNames = list of str for column names """ tabdat = fits.open(filename)[1].data dataDict = {} columnNames = [] for columnDef in tabdat.columns: colName = columnDef.name.lower() dataDict[colName] = np.array(columnDef.array) columnNames.append(colName) return (dataDict, columnNames)
Python
def _ReadEllipse_tprint( lines ): """Read an ellipse-fit table in tprint format. [Deprecated] Utility function to read an IRAF ellipse fit in tprint-generated text-file form (supplied as a list of lines read in from the file). Output is a tuple of (dictionary containing the columns, list of lower-cased column names). Parameters ---------- lines : list of str list of lines read from text file Returns ------- (dataDict, columNames) : tuple of (dict, list) dataDict = dict mapping column names (str) to 1D numpy.ndarray columnNames = list of str for column names """ commentlines = [line.strip() for line in lines if line[0] == "#"] # skip first comment line nBlocks = int(len(commentlines[1:]) / 2) columnNameLines = [ commentlines[2*i + 1] for i in range(nBlocks) ] datalines = [line.strip() for line in lines if line[0] not in ["#", "\n"] ] nPts = int(len(datalines)/nBlocks) dataDict = {} columnNameList = [] for i in range(nBlocks): pp = columnNameLines[i].split() colNames = [ name.lower() for name in pp[1:] ] nCols = len(colNames) for colname in colNames: if colname != "row": dataDict[colname] = [] columnNameList.append(colname) for j in range(nPts): dataline = datalines[nPts*i + j] datapieces = dataline.split() for cc in range(nCols): colName = colNames[cc] dataPiece = datapieces[cc] if colName != "row": if colName in integerColumns: try: dataVal = int(dataPiece) except ValueError: print(dataline) print(dataPiece) raise else: try: dataVal = float(dataPiece) except ValueError as e: if dataPiece == "INDEF": dataVal = 0.0 else: raise ValueError(e) dataDict[colName].append(dataVal) return dataDict, columnNameList
def _ReadEllipse_tprint( lines ): """Read an ellipse-fit table in tprint format. [Deprecated] Utility function to read an IRAF ellipse fit in tprint-generated text-file form (supplied as a list of lines read in from the file). Output is a tuple of (dictionary containing the columns, list of lower-cased column names). Parameters ---------- lines : list of str list of lines read from text file Returns ------- (dataDict, columNames) : tuple of (dict, list) dataDict = dict mapping column names (str) to 1D numpy.ndarray columnNames = list of str for column names """ commentlines = [line.strip() for line in lines if line[0] == "#"] # skip first comment line nBlocks = int(len(commentlines[1:]) / 2) columnNameLines = [ commentlines[2*i + 1] for i in range(nBlocks) ] datalines = [line.strip() for line in lines if line[0] not in ["#", "\n"] ] nPts = int(len(datalines)/nBlocks) dataDict = {} columnNameList = [] for i in range(nBlocks): pp = columnNameLines[i].split() colNames = [ name.lower() for name in pp[1:] ] nCols = len(colNames) for colname in colNames: if colname != "row": dataDict[colname] = [] columnNameList.append(colname) for j in range(nPts): dataline = datalines[nPts*i + j] datapieces = dataline.split() for cc in range(nCols): colName = colNames[cc] dataPiece = datapieces[cc] if colName != "row": if colName in integerColumns: try: dataVal = int(dataPiece) except ValueError: print(dataline) print(dataPiece) raise else: try: dataVal = float(dataPiece) except ValueError as e: if dataPiece == "INDEF": dataVal = 0.0 else: raise ValueError(e) dataDict[colName].append(dataVal) return dataDict, columnNameList
Python
def _ReadEllipse_tdump( lines ): """Read an ellipse-fit table in tdump format. Utility function to read an IRAF ellipse fit in tdump-generated text-file form (supplied as a list of lines read in from the file). Output is a tuple of (dictionary containing the columns, list of lower-cased column names, name of original fitted image). Parameters ---------- lines : list of str list of lines read from text file Returns ------- (dataDict, columNames) : tuple of (dict, list) dataDict = dict mapping column names (str) to 1D numpy.ndarray columnNames = list of str for column names """ for i in range(len(lines)): if lines[i].startswith("IMAGE"): lastHeader = i colHeaderlines = lines[0:lastHeader] # very last "header" line is IMAGE name imageName = lines[lastHeader].split()[-1].strip() datalines = lines[lastHeader + 1:] nDataRows = len(datalines) columnNameList = [ line.split()[0].lower() for line in colHeaderlines ] nColumns = len(colHeaderlines) nElements = len(datalines[0].split()) if (nElements != nColumns): msg = "ERROR: Number of column titles (%d) not equal to number of columns (%d)!" % (nElements, nColumns) print(msg) return None, None dataList = [] for i in range(nColumns): dataList.append([]) # go through the table and assign entries to individual-column lists for n in range(nDataRows): pieces = datalines[n].split() for i in range(nColumns): colName = columnNameList[i] dataPiece = pieces[i] if colName in integerColumns: try: dataVal = int(dataPiece) except ValueError: print(datalines[n]) print(dataPiece) raise ValueError(e) else: try: dataVal = float(dataPiece) except ValueError as e: if dataPiece == "INDEF": dataVal = 0.0 else: raise ValueError(e) dataList[i].append(dataVal) # create dictionary and assign columns to column names dataDict = {} for i in range(nColumns): dataDict[columnNameList[i]] = dataList[i] return dataDict, columnNameList, imageName
def _ReadEllipse_tdump( lines ): """Read an ellipse-fit table in tdump format. Utility function to read an IRAF ellipse fit in tdump-generated text-file form (supplied as a list of lines read in from the file). Output is a tuple of (dictionary containing the columns, list of lower-cased column names, name of original fitted image). Parameters ---------- lines : list of str list of lines read from text file Returns ------- (dataDict, columNames) : tuple of (dict, list) dataDict = dict mapping column names (str) to 1D numpy.ndarray columnNames = list of str for column names """ for i in range(len(lines)): if lines[i].startswith("IMAGE"): lastHeader = i colHeaderlines = lines[0:lastHeader] # very last "header" line is IMAGE name imageName = lines[lastHeader].split()[-1].strip() datalines = lines[lastHeader + 1:] nDataRows = len(datalines) columnNameList = [ line.split()[0].lower() for line in colHeaderlines ] nColumns = len(colHeaderlines) nElements = len(datalines[0].split()) if (nElements != nColumns): msg = "ERROR: Number of column titles (%d) not equal to number of columns (%d)!" % (nElements, nColumns) print(msg) return None, None dataList = [] for i in range(nColumns): dataList.append([]) # go through the table and assign entries to individual-column lists for n in range(nDataRows): pieces = datalines[n].split() for i in range(nColumns): colName = columnNameList[i] dataPiece = pieces[i] if colName in integerColumns: try: dataVal = int(dataPiece) except ValueError: print(datalines[n]) print(dataPiece) raise ValueError(e) else: try: dataVal = float(dataPiece) except ValueError as e: if dataPiece == "INDEF": dataVal = 0.0 else: raise ValueError(e) dataList[i].append(dataVal) # create dictionary and assign columns to column names dataDict = {} for i in range(nColumns): dataDict[columnNameList[i]] = dataList[i] return dataDict, columnNameList, imageName
Python
def ReadEllipse( filename, pix=None, dataFrame=True, correctPA=True, telPA=None, flip=False, ZP=None, smaUnits=None ): """Read in an ellipse-fit table from a file. Reads in an ellipse fit table file generated by the IRAF STSDAS task ellipse and stores it in a dictionary or a ListDataFrame [default]. The original column names are transformed into lower-case (e.g., ELLIP_ERR --> ellip_err). All columns are converted to 1-D numpy.ndarray objects. Returns a datautils.ListDataFrame object [default] or (if dataFrame=False), a Python dict mapping column names to numpy arrays. The input table is assumed to be a text file which has been generated from the original STSDAS-table file via either "tprint" or "tdump". The function will attempt to guess which format is in use from the first few lines of the file. Alternately, it can be a FITS table generated by "tcopy" (with filename ending in ".fit", ".fits", ".FIT", or ".FITS"). Parameters ---------- filename : str path to table file containing output of IRAF ellipse (converted from STSDAS table form) pix : float or None, optional scale for pixels (e.g., arc seconds per pixel) dataFrame : bool, optional if True [default], output is datautils.ListDataFrame; otherwise, output is dict correctPA : bool, optional if True [default], position angles are corrected to standard astronomical form telPA : float or None, optional orientation of image (position of image +y axis on sky, in degrees E of N) flip : bool, optional if True, position angles are flipped about the y-axis ZP : float or None, optional effective zero point for converting counts/pixel into mag arcsec^-2 smaUnits : str or None, optional label describing units for semi-major axis (after applying `pix` conversion) Returns ------- ellipseFit : dict or datautils.ListDataFrame Notes ----- If correctPA = True [the default], then position angles are corrected from the raw ellipse-fit values (-90 < pa < +90) to standard astronomical values; the original position-angle values are stored in a new column named "raw_pa". By default, this corrects position angles to degrees CCW of the image +y axis. Alternately, the user can specify the angle of the +y axis on the sky, in degrees E of N, via the telPA keyword. If the pixel scale (e.g., in units of arcsec/pixel) is known, it can be supplied via the pix keyword, and the semi-major axis (as well as semi-minor axis and equivalent radius) will be converted from pixels to arc seconds. The original semi-major axis pixel values are stored in an additional column named "sma_pix". The following additional columns are automatically generated: "b" = semi-minor axes of the fitted ellipses "req" = equivalent radii [sqrt(a*b)] of the fitted ellipses "q" = axis ratios of the fitted ellipses (= 1 - ellipticity) If the requested output is a datautils.ListDataFrame object, then a few additional metadata attributes are defined: dataframe.tableFile has the path to the original input table file dataframe.sma_units = "pixels" or "arcsec" (the latter only if the user specified a pixel scale via the pix keyword) or user-supplied smaUnits dataframe.units_per_pix has the user-supplied pixel scale (if any) dataframe.origImage has the original fitted image name -- *if* the input ellipse-fit file was in tdump format (tprint format does not preserve that information, nor does converting the table to FITS format with tcopy). dataframe.zp_sb = user-supplied effective zero point (= None if none was supplied) In addition, the ListDataFrame object will have additional alternate column names "a" for "SMA" and "i" for "INTENS". """ # Call internal utility functions to get basic dict mapping column names to # lists of values and list of column names, based on format of input file fnameBase = os.path.split(filename) rootName,ext = os.path.splitext(filename) if ext in [".fit", ".fits", ".FIT", ".FITS"]: # FITS table dataDict, columnNameList = _ReadEllipse_fits(filename) originalImage = None else: # text-file format lines = open(filename).readlines() # identify whether it's tprint or tdump output and read it in accordingly if lines[0].startswith("# Table"): # table was generated by tprint dataDict, columnNameList = _ReadEllipse_tprint(lines) originalImage = None elif lines[0].startswith("SMA R %7.2f pixel"): # table was generated by tdump dataDict, columnNameList, originalImage = _ReadEllipse_tdump(lines) # Post-processing: # correct the position angles: dataDict["raw_pa"] = dataDict["pa"] dataDict["pa"] = CorrectPosAngle(dataDict["pa"], telPA, flip) # provide more useful/predictable intensity-error key: dataDict["intens_err"] = dataDict["int_err"] # change SMA value from pixels to arcsec (or other user-defined unit): if smaUnits is None: if pix is None: smaUnits = "pixels" else: smaUnits = "arc sec" dataDict["sma_pix"] = dataDict["sma"] userPixelScale = None if pix is None: pix = 1.0 else: userPixelScale = pix dataDict["sma"] = [ pix*sma for sma in dataDict["sma"] ] # add list of column names in original order columnNameList.append("raw_pa") columnNameList.append("sma_pix") # compute correct higher-order harmonic values, if present: higherHarmonicsPresent = False for rawnameHH in HIGHER_HARMONIC_RAWNAMES: if rawnameHH in columnNameList: higherHarmonicsPresent = True if higherHarmonicsPresent is True: sma = np.array(dataDict["sma_pix"]) gradient = np.array(dataDict["grad"]) sma_times_grad = sma*gradient for rawHarmonic in HIGHER_HARMONIC_RAWNAMES: if rawHarmonic in columnNameList: rawData = np.array(dataDict[rawHarmonic]) rawErr = np.array(dataDict[rawHarmonic + "_err"]) # do conversion using -(raw_amplitude) [e.g., Eq.6 in Ciambur 2015] scaledData = -rawData / sma_times_grad scaledErr = rawErr / sma_times_grad scaledName = SCALED_NAMES[rawHarmonic] scaledErrName = scaledName + "_err" dataDict[scaledName] = scaledData dataDict[scaledErrName] = scaledErr columnNameList.append(scaledName) columnNameList.append(scaledErrName) # Convert all columns to numpy arrays for cname in columnNameList: dataDict[cname] = np.array(dataDict[cname]) if ZP is not None: dataDict["sb"] = ZP - 2.5*np.log10(dataDict['intens']) columnNameList.append("sb") # Generate semi-minor axis, axis ratio, equivalent radius req = sqrt(a^2 + b^2) dataDict["b"] = (1.0 - dataDict["ellip"]) * dataDict["sma"] dataDict["q"] = (1.0 - dataDict["ellip"]) dataDict["q_err"] = dataDict["ellip_err"] dataDict["req"] = EquivRadius(dataDict) columnNameList.append("b") columnNameList.append("q") columnNameList.append("q_err") columnNameList.append("req") dataDict["column_list"] = columnNameList # Convert to datautils.ListDataFrame, if requested: if dataFrame is True: frameList = [] for cname in columnNameList: frameList.append(dataDict[cname]) result = du.ListDataFrame(frameList, columnNameList) # extra conveniences (aliased column names) result.AddColumnName("sma", "a") result.AddColumnName("intens", "i") # add meta-data result.tableFile = filename result.sma_units = smaUnits result.units_per_pix = userPixelScale result.origImage = originalImage result.zp_sb = ZP else: result = dataDict return result
def ReadEllipse( filename, pix=None, dataFrame=True, correctPA=True, telPA=None, flip=False, ZP=None, smaUnits=None ): """Read in an ellipse-fit table from a file. Reads in an ellipse fit table file generated by the IRAF STSDAS task ellipse and stores it in a dictionary or a ListDataFrame [default]. The original column names are transformed into lower-case (e.g., ELLIP_ERR --> ellip_err). All columns are converted to 1-D numpy.ndarray objects. Returns a datautils.ListDataFrame object [default] or (if dataFrame=False), a Python dict mapping column names to numpy arrays. The input table is assumed to be a text file which has been generated from the original STSDAS-table file via either "tprint" or "tdump". The function will attempt to guess which format is in use from the first few lines of the file. Alternately, it can be a FITS table generated by "tcopy" (with filename ending in ".fit", ".fits", ".FIT", or ".FITS"). Parameters ---------- filename : str path to table file containing output of IRAF ellipse (converted from STSDAS table form) pix : float or None, optional scale for pixels (e.g., arc seconds per pixel) dataFrame : bool, optional if True [default], output is datautils.ListDataFrame; otherwise, output is dict correctPA : bool, optional if True [default], position angles are corrected to standard astronomical form telPA : float or None, optional orientation of image (position of image +y axis on sky, in degrees E of N) flip : bool, optional if True, position angles are flipped about the y-axis ZP : float or None, optional effective zero point for converting counts/pixel into mag arcsec^-2 smaUnits : str or None, optional label describing units for semi-major axis (after applying `pix` conversion) Returns ------- ellipseFit : dict or datautils.ListDataFrame Notes ----- If correctPA = True [the default], then position angles are corrected from the raw ellipse-fit values (-90 < pa < +90) to standard astronomical values; the original position-angle values are stored in a new column named "raw_pa". By default, this corrects position angles to degrees CCW of the image +y axis. Alternately, the user can specify the angle of the +y axis on the sky, in degrees E of N, via the telPA keyword. If the pixel scale (e.g., in units of arcsec/pixel) is known, it can be supplied via the pix keyword, and the semi-major axis (as well as semi-minor axis and equivalent radius) will be converted from pixels to arc seconds. The original semi-major axis pixel values are stored in an additional column named "sma_pix". The following additional columns are automatically generated: "b" = semi-minor axes of the fitted ellipses "req" = equivalent radii [sqrt(a*b)] of the fitted ellipses "q" = axis ratios of the fitted ellipses (= 1 - ellipticity) If the requested output is a datautils.ListDataFrame object, then a few additional metadata attributes are defined: dataframe.tableFile has the path to the original input table file dataframe.sma_units = "pixels" or "arcsec" (the latter only if the user specified a pixel scale via the pix keyword) or user-supplied smaUnits dataframe.units_per_pix has the user-supplied pixel scale (if any) dataframe.origImage has the original fitted image name -- *if* the input ellipse-fit file was in tdump format (tprint format does not preserve that information, nor does converting the table to FITS format with tcopy). dataframe.zp_sb = user-supplied effective zero point (= None if none was supplied) In addition, the ListDataFrame object will have additional alternate column names "a" for "SMA" and "i" for "INTENS". """ # Call internal utility functions to get basic dict mapping column names to # lists of values and list of column names, based on format of input file fnameBase = os.path.split(filename) rootName,ext = os.path.splitext(filename) if ext in [".fit", ".fits", ".FIT", ".FITS"]: # FITS table dataDict, columnNameList = _ReadEllipse_fits(filename) originalImage = None else: # text-file format lines = open(filename).readlines() # identify whether it's tprint or tdump output and read it in accordingly if lines[0].startswith("# Table"): # table was generated by tprint dataDict, columnNameList = _ReadEllipse_tprint(lines) originalImage = None elif lines[0].startswith("SMA R %7.2f pixel"): # table was generated by tdump dataDict, columnNameList, originalImage = _ReadEllipse_tdump(lines) # Post-processing: # correct the position angles: dataDict["raw_pa"] = dataDict["pa"] dataDict["pa"] = CorrectPosAngle(dataDict["pa"], telPA, flip) # provide more useful/predictable intensity-error key: dataDict["intens_err"] = dataDict["int_err"] # change SMA value from pixels to arcsec (or other user-defined unit): if smaUnits is None: if pix is None: smaUnits = "pixels" else: smaUnits = "arc sec" dataDict["sma_pix"] = dataDict["sma"] userPixelScale = None if pix is None: pix = 1.0 else: userPixelScale = pix dataDict["sma"] = [ pix*sma for sma in dataDict["sma"] ] # add list of column names in original order columnNameList.append("raw_pa") columnNameList.append("sma_pix") # compute correct higher-order harmonic values, if present: higherHarmonicsPresent = False for rawnameHH in HIGHER_HARMONIC_RAWNAMES: if rawnameHH in columnNameList: higherHarmonicsPresent = True if higherHarmonicsPresent is True: sma = np.array(dataDict["sma_pix"]) gradient = np.array(dataDict["grad"]) sma_times_grad = sma*gradient for rawHarmonic in HIGHER_HARMONIC_RAWNAMES: if rawHarmonic in columnNameList: rawData = np.array(dataDict[rawHarmonic]) rawErr = np.array(dataDict[rawHarmonic + "_err"]) # do conversion using -(raw_amplitude) [e.g., Eq.6 in Ciambur 2015] scaledData = -rawData / sma_times_grad scaledErr = rawErr / sma_times_grad scaledName = SCALED_NAMES[rawHarmonic] scaledErrName = scaledName + "_err" dataDict[scaledName] = scaledData dataDict[scaledErrName] = scaledErr columnNameList.append(scaledName) columnNameList.append(scaledErrName) # Convert all columns to numpy arrays for cname in columnNameList: dataDict[cname] = np.array(dataDict[cname]) if ZP is not None: dataDict["sb"] = ZP - 2.5*np.log10(dataDict['intens']) columnNameList.append("sb") # Generate semi-minor axis, axis ratio, equivalent radius req = sqrt(a^2 + b^2) dataDict["b"] = (1.0 - dataDict["ellip"]) * dataDict["sma"] dataDict["q"] = (1.0 - dataDict["ellip"]) dataDict["q_err"] = dataDict["ellip_err"] dataDict["req"] = EquivRadius(dataDict) columnNameList.append("b") columnNameList.append("q") columnNameList.append("q_err") columnNameList.append("req") dataDict["column_list"] = columnNameList # Convert to datautils.ListDataFrame, if requested: if dataFrame is True: frameList = [] for cname in columnNameList: frameList.append(dataDict[cname]) result = du.ListDataFrame(frameList, columnNameList) # extra conveniences (aliased column names) result.AddColumnName("sma", "a") result.AddColumnName("intens", "i") # add meta-data result.tableFile = filename result.sma_units = smaUnits result.units_per_pix = userPixelScale result.origImage = originalImage result.zp_sb = ZP else: result = dataDict return result
Python
def ReplaceColumnsWithConstants( efit, colNameList, colValueList, smarange=None ): """Replace values in an ellipse-fit column with constant. Given an ellipse-fit dictionary, for each column name in colNameList, replace the existing values with the corresponding constant value in colValueList. Optionally, the range in semi-major axis for which values are replaced can be specified via smarange (only semi-major axis values >= smarange[0] and <= smarange[1] will be affectd). """ if "sma" in efit.keys(): # IRAF-style ellipse fit a = efit['sma'] else: # probably Bender-format ellipse fit if 'a' in efit.keys(): a = efit['a'] elif 'r' in efit.keys(): a = efit['r'] else: print("UNABLE TO FIND SMA COLUMN IN ELLIPSE-FIT DICTIONARY!") return None nRows = len(a) N = len(colNameList) if smarange is not None: amin = smarange[0] amax = smarange[1] iGood = [ i for i in range(nRows) if a[i] >= amin and a[i] <= amax ] else: iGood = range(nRows) for i in iGood: for j in range(N): efit[colNameList[j]][i] = colValueList[j]
def ReplaceColumnsWithConstants( efit, colNameList, colValueList, smarange=None ): """Replace values in an ellipse-fit column with constant. Given an ellipse-fit dictionary, for each column name in colNameList, replace the existing values with the corresponding constant value in colValueList. Optionally, the range in semi-major axis for which values are replaced can be specified via smarange (only semi-major axis values >= smarange[0] and <= smarange[1] will be affectd). """ if "sma" in efit.keys(): # IRAF-style ellipse fit a = efit['sma'] else: # probably Bender-format ellipse fit if 'a' in efit.keys(): a = efit['a'] elif 'r' in efit.keys(): a = efit['r'] else: print("UNABLE TO FIND SMA COLUMN IN ELLIPSE-FIT DICTIONARY!") return None nRows = len(a) N = len(colNameList) if smarange is not None: amin = smarange[0] amax = smarange[1] iGood = [ i for i in range(nRows) if a[i] >= amin and a[i] <= amax ] else: iGood = range(nRows) for i in iGood: for j in range(N): efit[colNameList[j]][i] = colValueList[j]
Python
def MergeEllipseFits( efit1, efit2, transitionRadius ): """Merge two ellipse-fit dicts. Given two IRAF-style ellipse-fit dictionaries (efit1 and efit2), return a merged ellipse-fit dictionary where data from efit1 is used for a < transitionRadius and data from efit2 is used for a > transitionRadius. Does NOT work with datautils.ListDataFrame objects! Parameters ---------- efit1, efit2 : dicts dicts with ellipse-fit columns Returns ------- merged_efit : dict dict with ellipse fit columns """ if type(efit1) is du.ListDataFrame: dataFrame = True columnNameList = efit1.colNames else: dataFrame = False columnNameList = efit1["column_list"] a1 = efit1['sma'] a2 = efit2['sma'] n1 = len(a1) n2 = len(a2) # check for bad inputs if (transitionRadius < a1[0]) or (transitionRadius > a1[-1]): print("Requested transition radius (%g) is outside boundaries of efit1 (%g--%g)!" % (transitionRadius, a1[0], a1[-1])) return None if (transitionRadius < a2[0]) or (transitionRadius > a2[-1]): print("Requested transition radius (%g) is outside boundaries of efit2 (%g--%g)!" % (transitionRadius, a2[0], a2[-1])) return None efit1_border = NearestIndex(a1, transitionRadius, noPrint=True) efit2_border = NearestIndex(a2, transitionRadius, noPrint=True) end1 = efit1_border[1] start2 = efit2_border[1] if (a2[start2] <= a1[end1]): start2 += 1 newDict = {} for colName in columnNameList: efit1vals = efit1[colName] efit2vals = efit2[colName] newDict[colName] = np.concatenate((efit1vals[0:end1], efit2vals[start2:])) newDict["column_list"] = columnNameList if dataFrame is True: frameList = [] for cname in columnNameList: frameList.append(newDict[cname]) result = du.ListDataFrame(frameList, columnNameList) # extra conveninces result.AddColumnName("sma", "a") result.AddColumnName("intens", "i") result.sma_units = efit1.sma_units else: result = newDict return result
def MergeEllipseFits( efit1, efit2, transitionRadius ): """Merge two ellipse-fit dicts. Given two IRAF-style ellipse-fit dictionaries (efit1 and efit2), return a merged ellipse-fit dictionary where data from efit1 is used for a < transitionRadius and data from efit2 is used for a > transitionRadius. Does NOT work with datautils.ListDataFrame objects! Parameters ---------- efit1, efit2 : dicts dicts with ellipse-fit columns Returns ------- merged_efit : dict dict with ellipse fit columns """ if type(efit1) is du.ListDataFrame: dataFrame = True columnNameList = efit1.colNames else: dataFrame = False columnNameList = efit1["column_list"] a1 = efit1['sma'] a2 = efit2['sma'] n1 = len(a1) n2 = len(a2) # check for bad inputs if (transitionRadius < a1[0]) or (transitionRadius > a1[-1]): print("Requested transition radius (%g) is outside boundaries of efit1 (%g--%g)!" % (transitionRadius, a1[0], a1[-1])) return None if (transitionRadius < a2[0]) or (transitionRadius > a2[-1]): print("Requested transition radius (%g) is outside boundaries of efit2 (%g--%g)!" % (transitionRadius, a2[0], a2[-1])) return None efit1_border = NearestIndex(a1, transitionRadius, noPrint=True) efit2_border = NearestIndex(a2, transitionRadius, noPrint=True) end1 = efit1_border[1] start2 = efit2_border[1] if (a2[start2] <= a1[end1]): start2 += 1 newDict = {} for colName in columnNameList: efit1vals = efit1[colName] efit2vals = efit2[colName] newDict[colName] = np.concatenate((efit1vals[0:end1], efit2vals[start2:])) newDict["column_list"] = columnNameList if dataFrame is True: frameList = [] for cname in columnNameList: frameList.append(newDict[cname]) result = du.ListDataFrame(frameList, columnNameList) # extra conveninces result.AddColumnName("sma", "a") result.AddColumnName("intens", "i") result.sma_units = efit1.sma_units else: result = newDict return result
Python
def IntensityFromRadius( ellipseFit, radius, ZP=None ): """Returns or estimates ellipse-fit intensity at a given radius. Given an ellipse-fit dictionary or datautils.ListDataFrame object and a user-specified "radius" (semi-major axis), this function extracts corresponding intensity level for the ellipse with that semi-major axis (using spline interpolation to get the intensity value if the radius is not explicitly in the ellipse-fit object). Returns intensity (in counts/pixel), unless ZP is specified, in which case the result is in magnitudes (if ZP converts counts/pixel to mag/arcsec^2, the result is mag/arcsec^2). Parameters ---------- ellipseFit : dict or datautils.ListDataFrame object radius : float or iterable radius (or list, tuple, or numpy.ndarray) specifying where to estimate intensity Returns ------- result : float or numpy.ndarray Returns float if `radius` was float, numpy.ndarray otherwise """ sma = np.array(ellipseFit['sma']) badInput = False if np.iterable(radius): if (min(radius) < sma[0]) or (max(radius) > sma[-1]): badInput = True txt = "WARNING: requested radius array contains values outside" elif (radius < sma[0]) or (radius > sma[-1]): badInput = True txt = "WARNING: requested radius (%g) is outside" % radius if badInput: txt += " ellipse-fit semi-major axis range (%g--%g)!" % (sma[0], sma[-1]) print(txt) return None intensity = np.array(ellipseFit['intens']) #intensity_spline_func = spline.Spline(sma, intensity) intensity_spline = interpolate.InterpolatedUnivariateSpline(sma, intensity) newIntensity = intensity_spline(radius) if ZP is None: return newIntensity else: return (ZP - 2.5*np.log10(newIntensity))
def IntensityFromRadius( ellipseFit, radius, ZP=None ): """Returns or estimates ellipse-fit intensity at a given radius. Given an ellipse-fit dictionary or datautils.ListDataFrame object and a user-specified "radius" (semi-major axis), this function extracts corresponding intensity level for the ellipse with that semi-major axis (using spline interpolation to get the intensity value if the radius is not explicitly in the ellipse-fit object). Returns intensity (in counts/pixel), unless ZP is specified, in which case the result is in magnitudes (if ZP converts counts/pixel to mag/arcsec^2, the result is mag/arcsec^2). Parameters ---------- ellipseFit : dict or datautils.ListDataFrame object radius : float or iterable radius (or list, tuple, or numpy.ndarray) specifying where to estimate intensity Returns ------- result : float or numpy.ndarray Returns float if `radius` was float, numpy.ndarray otherwise """ sma = np.array(ellipseFit['sma']) badInput = False if np.iterable(radius): if (min(radius) < sma[0]) or (max(radius) > sma[-1]): badInput = True txt = "WARNING: requested radius array contains values outside" elif (radius < sma[0]) or (radius > sma[-1]): badInput = True txt = "WARNING: requested radius (%g) is outside" % radius if badInput: txt += " ellipse-fit semi-major axis range (%g--%g)!" % (sma[0], sma[-1]) print(txt) return None intensity = np.array(ellipseFit['intens']) #intensity_spline_func = spline.Spline(sma, intensity) intensity_spline = interpolate.InterpolatedUnivariateSpline(sma, intensity) newIntensity = intensity_spline(radius) if ZP is None: return newIntensity else: return (ZP - 2.5*np.log10(newIntensity))
Python
def ValueFromRadius( ellipseFit, radius, value="pa" ): """Returns or estimates ellipse-fit value at a given radius. Given an ellipse-fit dictionary or datautils.ListDataFrame object and a user-specified "radius" (semi-major axis), this function extracts the corresponding parameter value for the ellipse with that semi-major axis (using spline interpolation to get the value if the radius is not explicitly in the ellipse-fit object). value = string specifying which value to return (e.g., "ellip", "pa", etc.) """ sma = np.array(ellipseFit['sma']) badInput = False if np.iterable(radius): if (min(radius) < sma[0]) or (max(radius) > sma[-1]): badInput = True txt = "WARNING: requested radius array contains values outside" elif (radius < sma[0]) or (radius > sma[-1]): badInput = True txt = "WARNING: requested radius (%g) is outside" % radius if badInput: txt += " ellipse-fit semi-major axis range (%g--%g)!" % (sma[0], sma[-1]) print(txt) return None values = np.array(ellipseFit[value]) values_spline = interpolate.InterpolatedUnivariateSpline(sma, values) newValue = values_spline(radius) return newValue
def ValueFromRadius( ellipseFit, radius, value="pa" ): """Returns or estimates ellipse-fit value at a given radius. Given an ellipse-fit dictionary or datautils.ListDataFrame object and a user-specified "radius" (semi-major axis), this function extracts the corresponding parameter value for the ellipse with that semi-major axis (using spline interpolation to get the value if the radius is not explicitly in the ellipse-fit object). value = string specifying which value to return (e.g., "ellip", "pa", etc.) """ sma = np.array(ellipseFit['sma']) badInput = False if np.iterable(radius): if (min(radius) < sma[0]) or (max(radius) > sma[-1]): badInput = True txt = "WARNING: requested radius array contains values outside" elif (radius < sma[0]) or (radius > sma[-1]): badInput = True txt = "WARNING: requested radius (%g) is outside" % radius if badInput: txt += " ellipse-fit semi-major axis range (%g--%g)!" % (sma[0], sma[-1]) print(txt) return None values = np.array(ellipseFit[value]) values_spline = interpolate.InterpolatedUnivariateSpline(sma, values) newValue = values_spline(radius) return newValue
Python
def GetStartParams( ellipseFit, a0=10, printCommand=False, useExactSma=False ): """ Extract the necessary start parameters for running doellipse: x0, y0, pa0, ell0 given the specified semi-major axis (default = 10 pixels). """ doellipseTemplate = "doellipse xxx el_xxx {0} {1} {2} {3} {4}" i0,i1 = NearestIndex(ellipseFit.a, a0, noPrint=True) d1 = abs(ellipseFit.a[i0] - a0) d2 = abs(ellipseFit.a[i1] - a0) if (d1 < d2): i = i0 else: i = i1 (x0,y0,a00,pa0,ell0) = (ellipseFit.x0[i], ellipseFit.y0[i], a0, ellipseFit.pa[i], ellipseFit.ellip[i]) if pa0 > 90: pa0 = 90 - pa0 if useExactSma is True: a00 = ellipseFit.a[i] if printCommand is True: txt = doellipseTemplate.format(x0,y0,a00,pa0,ell0) print(txt) return (x0,y0,a00,pa0,ell0)
def GetStartParams( ellipseFit, a0=10, printCommand=False, useExactSma=False ): """ Extract the necessary start parameters for running doellipse: x0, y0, pa0, ell0 given the specified semi-major axis (default = 10 pixels). """ doellipseTemplate = "doellipse xxx el_xxx {0} {1} {2} {3} {4}" i0,i1 = NearestIndex(ellipseFit.a, a0, noPrint=True) d1 = abs(ellipseFit.a[i0] - a0) d2 = abs(ellipseFit.a[i1] - a0) if (d1 < d2): i = i0 else: i = i1 (x0,y0,a00,pa0,ell0) = (ellipseFit.x0[i], ellipseFit.y0[i], a0, ellipseFit.pa[i], ellipseFit.ellip[i]) if pa0 > 90: pa0 = 90 - pa0 if useExactSma is True: a00 = ellipseFit.a[i] if printCommand is True: txt = doellipseTemplate.format(x0,y0,a00,pa0,ell0) print(txt) return (x0,y0,a00,pa0,ell0)
Python
def WriteProfile( x, y, outputFilename ): """Take two input vectors x and y (integer or float) and write them to a text file: x y """ nX = len(x) nY = len(y) if (nX != nY): msg = "WARNING: number of elements in x (%d) not same as number" % nX msg += " of elements in y (%d)!\n" % nY msg += "Nothing saved.\n" print(msg) return nPts = min([nX, nY]) outf = open(outputFilename, 'w') for i in xrange(nPts): outf.write("%g\t\t%g\n" % (x[i], y[i])) outf.close() return
def WriteProfile( x, y, outputFilename ): """Take two input vectors x and y (integer or float) and write them to a text file: x y """ nX = len(x) nY = len(y) if (nX != nY): msg = "WARNING: number of elements in x (%d) not same as number" % nX msg += " of elements in y (%d)!\n" % nY msg += "Nothing saved.\n" print(msg) return nPts = min([nX, nY]) outf = open(outputFilename, 'w') for i in xrange(nPts): outf.write("%g\t\t%g\n" % (x[i], y[i])) outf.close() return
Python
def WriteProfileFromDict( dataDict, outputFilename ): """Take a data dictionary from an ellipse fit and save I(a) in a text file: a I(a) """ sma = dataDict["sma"] I = dataDict["intens"] WriteProfile(sma, I, outputFilename) return
def WriteProfileFromDict( dataDict, outputFilename ): """Take a data dictionary from an ellipse fit and save I(a) in a text file: a I(a) """ sma = dataDict["sma"] I = dataDict["intens"] WriteProfile(sma, I, outputFilename) return
Python
def NearestIndex( vector, value, noPrint=False, debug=0 ): """Returns nearest two indices to a specified value in a vector. Given an input list or numpy 1-D array, which is asumed to be monotonically increasing or decreasing, find the indices of the two points with values closest to parameter 'value'.""" npts = len(vector) if (value < min(vector)) or (value > max(vector)): if noPrint: return (None, None) else: print(" value %f lies outside range of input vector (%g to %g)!" % \ (value, min(vector), max(vector))) return None diff1 = vector[1] - vector[0] if diff1 > 0: # vector is increasing Sign = 1 else: # vector is decreasing Sign = -1 i1 = i2 = 0 diff = Sign*(value - vector[0]) if debug: print(diff) for i in range(1, npts): newdiff = Sign*(value - vector[i]) if debug: print(i, newdiff) if (newdiff > 0) and (newdiff <= diff): diff = newdiff i1 = i else: # we just crossed over i2 = i break if noPrint is False: print(" input_vector[%d,%d] = %g, %g" % (i1, i2, vector[i1], vector[i2])) return (i1, i2)
def NearestIndex( vector, value, noPrint=False, debug=0 ): """Returns nearest two indices to a specified value in a vector. Given an input list or numpy 1-D array, which is asumed to be monotonically increasing or decreasing, find the indices of the two points with values closest to parameter 'value'.""" npts = len(vector) if (value < min(vector)) or (value > max(vector)): if noPrint: return (None, None) else: print(" value %f lies outside range of input vector (%g to %g)!" % \ (value, min(vector), max(vector))) return None diff1 = vector[1] - vector[0] if diff1 > 0: # vector is increasing Sign = 1 else: # vector is decreasing Sign = -1 i1 = i2 = 0 diff = Sign*(value - vector[0]) if debug: print(diff) for i in range(1, npts): newdiff = Sign*(value - vector[i]) if debug: print(i, newdiff) if (newdiff > 0) and (newdiff <= diff): diff = newdiff i1 = i else: # we just crossed over i2 = i break if noPrint is False: print(" input_vector[%d,%d] = %g, %g" % (i1, i2, vector[i1], vector[i2])) return (i1, i2)
Python
def WeightedFlux( dataDict ): """Given an input ellipse-fit stored in a dictionary, compute the approximate total flux.""" sma = dataDict["sma"] I = dataDict["intens"] ellipticity = dataDict["ellip"] npts = len(sma) # start with flux inside innermost ellipse innerFlux = dataDict["TFLUX_E"][0] fluxSum = innerFlux # now add up flux in elliptical annuli for j in range(1, npts - 1): dr = (sma[j + 1] - sma[j - 1])/2.0 # approximation to circumference of ellipse a = sma[j] b = a*(1.0 - ellipticity[j]) area = EllipseCircum(a,b) * dr fluxSum += I[j]*area # add outermost ellipse dr = sma[npts - 1] - sma[npts - 2] a = sma[npts - 1] b = a*(1.0 - ellipticity[npts - 1]) area = EllipseCircum(a,b) fluxSum += I[npts - 1]*area return fluxSum
def WeightedFlux( dataDict ): """Given an input ellipse-fit stored in a dictionary, compute the approximate total flux.""" sma = dataDict["sma"] I = dataDict["intens"] ellipticity = dataDict["ellip"] npts = len(sma) # start with flux inside innermost ellipse innerFlux = dataDict["TFLUX_E"][0] fluxSum = innerFlux # now add up flux in elliptical annuli for j in range(1, npts - 1): dr = (sma[j + 1] - sma[j - 1])/2.0 # approximation to circumference of ellipse a = sma[j] b = a*(1.0 - ellipticity[j]) area = EllipseCircum(a,b) * dr fluxSum += I[j]*area # add outermost ellipse dr = sma[npts - 1] - sma[npts - 2] a = sma[npts - 1] b = a*(1.0 - ellipticity[npts - 1]) area = EllipseCircum(a,b) fluxSum += I[npts - 1]*area return fluxSum
Python
def EquivRadius( dataDict ): """Computes equivalent radius based on semi-major axis and ellipticity. Given an input ellipse-fit stored in a dictionary, return a numpy array of the equivalent radius [r_eq = sqrt(a*b)].""" try: a = np.array(dataDict["sma"]) except KeyError: # maybe it's a Bender-format ellipse fit a = np.array(dataDict["a"]) try: ellipticity = np.array(dataDict["ellip"]) except KeyError: ellipticity = np.array(dataDict["eps"]) # maybe it's a Bender-format ellipse fit b = (1.0 - ellipticity)*a r_eq = np.sqrt(a*b) return r_eq
def EquivRadius( dataDict ): """Computes equivalent radius based on semi-major axis and ellipticity. Given an input ellipse-fit stored in a dictionary, return a numpy array of the equivalent radius [r_eq = sqrt(a*b)].""" try: a = np.array(dataDict["sma"]) except KeyError: # maybe it's a Bender-format ellipse fit a = np.array(dataDict["a"]) try: ellipticity = np.array(dataDict["ellip"]) except KeyError: ellipticity = np.array(dataDict["eps"]) # maybe it's a Bender-format ellipse fit b = (1.0 - ellipticity)*a r_eq = np.sqrt(a*b) return r_eq
Python
def PlotHarmonicMomentErrors( efit, m, smaName='sma', errSuffix="_err", xlog=False, ylog=False, xmark=None, xmarkColor=None, plotColor="k", ymark=None, ymarkColor='k', smaScale=1.0, useSqrt=True ): """NOTE: calculation and plotting of error bars not yet implemented! """ a = smaScale * np.array(efit[smaName]) sinHarmonicName = "a%1d" % m cosHarmonicName = "b%1d" % m aVals = np.array(efit[sinHarmonicName]) bVals = np.array(efit[cosHarmonicName]) if useSqrt is True: y = np.sqrt(aVals**2 + bVals**2) else: y = aVals**2 + bVals**2 if xlog is True: # make x-axis tick marks larger plt.tick_params(axis="x", which="major", length=10) plt.tick_params(axis="x", which="minor", length=5) if xlog is True and ylog is False: plt.semilogx(a, y, color=plotColor) elif xlog is False and ylog is True: plt.semilogy(a, y, color=plotColor) elif xlog is True and ylog is True: plt.loglog(a, y, color=plotColor) else: plt.plot(a, y, color=plotColor) # plt.errorbar(a, y, yerr=y_err, fmt="o", color=plotColor, ms=2) if xmark is not None: if xmarkColor is None: xmarkColor = plotColor if type(xmark) in [int, float]: plt.axvline(xmark, ls="--", color=xmarkColor) else: nXmarks = len(xmark) if type(xmarkColor) is not list: xmarkColors = [xmarkColor]*nXmarks else: xmarkColors = xmarkColor for i in range(len(xmark)): plt.axvline(xmark[i], ls="--", color=xmarkColors[i]) if ymark is not None: if type(ymark) in [int, float]: plt.axhline(ymark, ls="--", color=ymarkColor) else: for y in ymark: plt.axhline(y, ls="--", color=ymarkColor)
def PlotHarmonicMomentErrors( efit, m, smaName='sma', errSuffix="_err", xlog=False, ylog=False, xmark=None, xmarkColor=None, plotColor="k", ymark=None, ymarkColor='k', smaScale=1.0, useSqrt=True ): """NOTE: calculation and plotting of error bars not yet implemented! """ a = smaScale * np.array(efit[smaName]) sinHarmonicName = "a%1d" % m cosHarmonicName = "b%1d" % m aVals = np.array(efit[sinHarmonicName]) bVals = np.array(efit[cosHarmonicName]) if useSqrt is True: y = np.sqrt(aVals**2 + bVals**2) else: y = aVals**2 + bVals**2 if xlog is True: # make x-axis tick marks larger plt.tick_params(axis="x", which="major", length=10) plt.tick_params(axis="x", which="minor", length=5) if xlog is True and ylog is False: plt.semilogx(a, y, color=plotColor) elif xlog is False and ylog is True: plt.semilogy(a, y, color=plotColor) elif xlog is True and ylog is True: plt.loglog(a, y, color=plotColor) else: plt.plot(a, y, color=plotColor) # plt.errorbar(a, y, yerr=y_err, fmt="o", color=plotColor, ms=2) if xmark is not None: if xmarkColor is None: xmarkColor = plotColor if type(xmark) in [int, float]: plt.axvline(xmark, ls="--", color=xmarkColor) else: nXmarks = len(xmark) if type(xmarkColor) is not list: xmarkColors = [xmarkColor]*nXmarks else: xmarkColors = xmarkColor for i in range(len(xmark)): plt.axvline(xmark[i], ls="--", color=xmarkColors[i]) if ymark is not None: if type(ymark) in [int, float]: plt.axhline(ymark, ls="--", color=ymarkColor) else: for y in ymark: plt.axhline(y, ls="--", color=ymarkColor)
Python
def GetMaxHarmonic( efit ): """Determine highest-order of harmonic amplitudes in an ellipse-fit object""" # We assume that columns named "ai3_err", "ai4_err", "ai5_err", etc. # exist, up to "aiM_err", where M is the maximum harmonic number momentNums = [int(cname.rstrip("_err")[2:]) for cname in efit.colNames if cname[:2] == "ai" and cname[-4:] == "_err"] return max(momentNums)
def GetMaxHarmonic( efit ): """Determine highest-order of harmonic amplitudes in an ellipse-fit object""" # We assume that columns named "ai3_err", "ai4_err", "ai5_err", etc. # exist, up to "aiM_err", where M is the maximum harmonic number momentNums = [int(cname.rstrip("_err")[2:]) for cname in efit.colNames if cname[:2] == "ai" and cname[-4:] == "_err"] return max(momentNums)
Python
def PlotHigherMoment( efit, m=4, xlog=False, xrange=None, yrange=None, xmark=None, maintitle=None, xtitle=None, plotColorList=['k', 'r', 'g', 'b'], noErase=False, labelSize=12, smaScale=1.0 ): """Plot 2nd moment of higher-order harmonics (e.g., A_4^2 + B_4^2) for one or more ellipse-fit objects. Meant for use with IRAF ellipse fits. efit can be a single ellipse-fit object [generated by ReadEllipse] or a list of such objects. Defaults to m=4. plotColorList = optional list of color specifications for use when plotting a list of ellipse-fit objects. labelSize = sizes of x- and y-axis labels (in points) smaScale = conversion from arc seconds (or pixel) to desired linear scale (e.g., parsecs or kpc) for the x-axis. """ if isinstance(efit, list): nEfits = len(efit) plotList = True else: plotList = False if (m < 3) or (m > 8): if (m < 3): print("*** WARNING: m < 3 harmonic components not defined! ***") else: print("*** WARNING: m > 8 harmonic components not currently supported! ***") return None sinHarmonicName = "a%1d" % m sinHarmonicLabel = "A%1d" % m cosHarmonicName = "b%1d" % m if noErase is False: plt.clf() if not plotList: PlotHarmonicMomentErrors(efit, m, xlog=xlog, xmark=xmark, smaScale=smaScale) else: for i in range(nEfits): PlotHarmonicMomentErrors(efit[i], m, xlog=xlog, xmark=xmark, plotColor=plotColorList[i], smaScale=smaScale) if xrange is None: xrange = plt.xlim() if (xrange is not None): plt.xlim(xrange[0], xrange[1]) if (yrange is not None): plt.ylim(yrange[0], yrange[1]) if maintitle is not None: plt.title(maintitle)
def PlotHigherMoment( efit, m=4, xlog=False, xrange=None, yrange=None, xmark=None, maintitle=None, xtitle=None, plotColorList=['k', 'r', 'g', 'b'], noErase=False, labelSize=12, smaScale=1.0 ): """Plot 2nd moment of higher-order harmonics (e.g., A_4^2 + B_4^2) for one or more ellipse-fit objects. Meant for use with IRAF ellipse fits. efit can be a single ellipse-fit object [generated by ReadEllipse] or a list of such objects. Defaults to m=4. plotColorList = optional list of color specifications for use when plotting a list of ellipse-fit objects. labelSize = sizes of x- and y-axis labels (in points) smaScale = conversion from arc seconds (or pixel) to desired linear scale (e.g., parsecs or kpc) for the x-axis. """ if isinstance(efit, list): nEfits = len(efit) plotList = True else: plotList = False if (m < 3) or (m > 8): if (m < 3): print("*** WARNING: m < 3 harmonic components not defined! ***") else: print("*** WARNING: m > 8 harmonic components not currently supported! ***") return None sinHarmonicName = "a%1d" % m sinHarmonicLabel = "A%1d" % m cosHarmonicName = "b%1d" % m if noErase is False: plt.clf() if not plotList: PlotHarmonicMomentErrors(efit, m, xlog=xlog, xmark=xmark, smaScale=smaScale) else: for i in range(nEfits): PlotHarmonicMomentErrors(efit[i], m, xlog=xlog, xmark=xmark, plotColor=plotColorList[i], smaScale=smaScale) if xrange is None: xrange = plt.xlim() if (xrange is not None): plt.xlim(xrange[0], xrange[1]) if (yrange is not None): plt.ylim(yrange[0], yrange[1]) if maintitle is not None: plt.title(maintitle)
Python
def DrawOneEllipse( x, y, a, pa, ell, color='r', lw=2, alpha=0.5 ): """ Draw an ellipse on a pre-existing plot. Draws an ellipse on a figure, centered at (x,y) [data coordinates] with semi-major axis a, position angle pa [in usual astronomial sense of CCW from +y axis], and ellipticity ell. color, lw, alpha: standard matplotlib parameters for the ellipses """ w = 2*a h = (1 - ell)*w pa_adj = 90.0 + pa ellipseObj = Ellipse(xy=(x,y), width=w, height=h, angle=pa_adj, edgecolor=color, fc='None', lw=lw, alpha=alpha) ax = plt.gca() ax.add_patch(ellipseObj)
def DrawOneEllipse( x, y, a, pa, ell, color='r', lw=2, alpha=0.5 ): """ Draw an ellipse on a pre-existing plot. Draws an ellipse on a figure, centered at (x,y) [data coordinates] with semi-major axis a, position angle pa [in usual astronomial sense of CCW from +y axis], and ellipticity ell. color, lw, alpha: standard matplotlib parameters for the ellipses """ w = 2*a h = (1 - ell)*w pa_adj = 90.0 + pa ellipseObj = Ellipse(xy=(x,y), width=w, height=h, angle=pa_adj, edgecolor=color, fc='None', lw=lw, alpha=alpha) ax = plt.gca() ax.add_patch(ellipseObj)
Python
def DrawEllipses( ellipseFit, start=None, step=None, end=None, xc=0, yc=0, rawPix=False, color='r', lw=1, alpha=0.5 ): """Draw multiple ellipses from an ellipse-fit object on a pre-existing plot. Given an ellipse-fit object, this function draws ellipses on the current plot corresponding to the ellipses specified in the ellipse-fit object ellipseFit: ellipse-fit object (e.g., generated by ReadEllipse) start: initial index to plot [default = 0] step: delta-index for plotted ellipses [default = 1] end: final sma index to plot [default = n_elements in ellipseFit] xc,yc: reference center coordinates (will be subtracted from ellipse center coordinates before plotting) rawPix: True to use raw pixel values instead of sma values from ellipse fit color, lw, alpha: standard matplotlib parameters for the ellipses """ x0 = ellipseFit.x0 y0 = ellipseFit.y0 if rawPix is True: a = ellipseFit.sma_pix else: a = ellipseFit.sma ell = ellipseFit.ellip pa = ellipseFit.pa nEllipses = len(x0) if start is None: i0 = 0 else: i0 = start if end is None: i1 = nEllipses else: i1 = end if step is None: delta_i = 1 else: delta_i = step for i in range(i0, i1, delta_i): DrawOneEllipse(x0[i] - xc, y0[i] - yc, a[i], pa[i], ell[i], color=color, lw=lw, alpha=alpha)
def DrawEllipses( ellipseFit, start=None, step=None, end=None, xc=0, yc=0, rawPix=False, color='r', lw=1, alpha=0.5 ): """Draw multiple ellipses from an ellipse-fit object on a pre-existing plot. Given an ellipse-fit object, this function draws ellipses on the current plot corresponding to the ellipses specified in the ellipse-fit object ellipseFit: ellipse-fit object (e.g., generated by ReadEllipse) start: initial index to plot [default = 0] step: delta-index for plotted ellipses [default = 1] end: final sma index to plot [default = n_elements in ellipseFit] xc,yc: reference center coordinates (will be subtracted from ellipse center coordinates before plotting) rawPix: True to use raw pixel values instead of sma values from ellipse fit color, lw, alpha: standard matplotlib parameters for the ellipses """ x0 = ellipseFit.x0 y0 = ellipseFit.y0 if rawPix is True: a = ellipseFit.sma_pix else: a = ellipseFit.sma ell = ellipseFit.ellip pa = ellipseFit.pa nEllipses = len(x0) if start is None: i0 = 0 else: i0 = start if end is None: i1 = nEllipses else: i1 = end if step is None: delta_i = 1 else: delta_i = step for i in range(i0, i1, delta_i): DrawOneEllipse(x0[i] - xc, y0[i] - yc, a[i], pa[i], ell[i], color=color, lw=lw, alpha=alpha)
Python
def minpoint( vector, value ): """For a monotonically increasing vector, returns the smallest index for which vector[index] > value.""" inds = [i for i in range(len(vector)) if vector[i] > value] return inds[0]
def minpoint( vector, value ): """For a monotonically increasing vector, returns the smallest index for which vector[index] > value.""" inds = [i for i in range(len(vector)) if vector[i] > value] return inds[0]
Python
def ReadBenderEllipse( filename, dataFrame=False, headerLine=None, useDefaultColumnNames=True ): """Read in an ellipse fit generated by Bender/Saglia code and store it in a dictionary (or, optionally, a ListDataFrame object). Columns are converted to 1-D numpy arrays. headerLine indicates which line contains the column titles (first line = 1, etc.); the actual data is assumed to start immediately after. Normally, the function attempts to locate the header line automatically (first line in file with same number of elements [excluding any initial "#"] as last line in file). The headerLine keyword is mainly useful for perverse situations (e.g., there is a line in the header that happens to have 12 words in it). Because we (currently) don't know how the Bender code handles position angles, we don't attempt to "correct" the PA. """ lines = open(filename).readlines() nTotalLines = len(lines) lastLine = lines[-1] nCols = len(lastLine.split()) # find the header line -- should be first line which has same number of elements # as the last line in the file if headerLine is None: headerString = None for i in range(nTotalLines): tmpLine = lines[i].lstrip("#") if len(tmpLine.split()) == nCols: headerString = tmpLine headerLineIndex = i break if headerString is None: print("Unable to find header line!\n") return None else: headerLineIndex = headerLine - 1 headerString = lines[headerLineIndex] if useDefaultColumnNames: colheaders = DEFAULT_BENDER_COLUMNS else: colheaders = headerString.split() # get rid of excess space at end, if any colheaders[-1] = colheaders[-1].strip() # find first data line: firstDataLine = None for j in range(headerLineIndex + 1, nTotalLines): tmpLine = lines[j] if len(tmpLine.split()) == nCols: firstDataLine = j break if firstDataLine is None: print("Unable to find first data line!\n") return None dataLines = [line for line in lines[firstDataLine:] if line[0] != "#"] nDataLines = len(dataLines) dataDict = {} for i in range(nCols): cname = colheaders[i] dataDict[cname] = np.array([ float(line.split()[i]) for line in dataLines ]) dataDict["req"] = EquivRadius(dataDict) colheaders.append("req") # Convert to dataFrame, if requested: if dataFrame is True: frameList = [] for cname in colheaders: frameList.append(dataDict[cname]) result = du.ListDataFrame(frameList, colheaders) # extra conveninces #result.AddColumnName("sma", "a") #result.AddColumnName("intens", "i") # add meta-data result.tableFile = filename else: result = dataDict return result
def ReadBenderEllipse( filename, dataFrame=False, headerLine=None, useDefaultColumnNames=True ): """Read in an ellipse fit generated by Bender/Saglia code and store it in a dictionary (or, optionally, a ListDataFrame object). Columns are converted to 1-D numpy arrays. headerLine indicates which line contains the column titles (first line = 1, etc.); the actual data is assumed to start immediately after. Normally, the function attempts to locate the header line automatically (first line in file with same number of elements [excluding any initial "#"] as last line in file). The headerLine keyword is mainly useful for perverse situations (e.g., there is a line in the header that happens to have 12 words in it). Because we (currently) don't know how the Bender code handles position angles, we don't attempt to "correct" the PA. """ lines = open(filename).readlines() nTotalLines = len(lines) lastLine = lines[-1] nCols = len(lastLine.split()) # find the header line -- should be first line which has same number of elements # as the last line in the file if headerLine is None: headerString = None for i in range(nTotalLines): tmpLine = lines[i].lstrip("#") if len(tmpLine.split()) == nCols: headerString = tmpLine headerLineIndex = i break if headerString is None: print("Unable to find header line!\n") return None else: headerLineIndex = headerLine - 1 headerString = lines[headerLineIndex] if useDefaultColumnNames: colheaders = DEFAULT_BENDER_COLUMNS else: colheaders = headerString.split() # get rid of excess space at end, if any colheaders[-1] = colheaders[-1].strip() # find first data line: firstDataLine = None for j in range(headerLineIndex + 1, nTotalLines): tmpLine = lines[j] if len(tmpLine.split()) == nCols: firstDataLine = j break if firstDataLine is None: print("Unable to find first data line!\n") return None dataLines = [line for line in lines[firstDataLine:] if line[0] != "#"] nDataLines = len(dataLines) dataDict = {} for i in range(nCols): cname = colheaders[i] dataDict[cname] = np.array([ float(line.split()[i]) for line in dataLines ]) dataDict["req"] = EquivRadius(dataDict) colheaders.append("req") # Convert to dataFrame, if requested: if dataFrame is True: frameList = [] for cname in colheaders: frameList.append(dataDict[cname]) result = du.ListDataFrame(frameList, colheaders) # extra conveninces #result.AddColumnName("sma", "a") #result.AddColumnName("intens", "i") # add meta-data result.tableFile = filename else: result = dataDict return result
Python
def WriteBenderEllipse( ellipseFit, outputFilename ): """Given an ellipseFit dictionary containing Bender-format entries (as generated by ReadBenderEllipse), write the ellipse fit to a text file. ASSUMES THAT ellipseFit IS ALREADY IN BENDER FORMAT! """ outputLines = [COLUMNS_BENDER, "#\n"] smaKey = 'a' if 'a' not in ellipseFit.keys(): smaKey = 'r' nDataLines = len(ellipseFit[smaKey]) for i in range(nDataLines): a = ellipseFit[smaKey][i] b = ellipseFit['b'][i] sb = ellipseFit['sb'][i] eps = ellipseFit['eps'][i] deps = ellipseFit['deps'][i] pa = ellipseFit['pa'][i] dpa = ellipseFit['dpa'][i] a2 = ellipseFit['a2'][i] a4 = ellipseFit['a4'][i] a6 = ellipseFit['a6'][i] a8 = ellipseFit['a8'][i] a10 = ellipseFit['a10'][i] a12 = ellipseFit['a12'][i] t = ellipseFit['t'][i] outLine = OUTPUT_FMT_BENDER_ALL % (a,b,sb,eps,deps,pa,dpa,a2,a4,a6,a8,a10,a12,t) outputLines.append(outLine) outf = open(outputFilename, 'w') for line in outputLines: outf.write(line) outf.close()
def WriteBenderEllipse( ellipseFit, outputFilename ): """Given an ellipseFit dictionary containing Bender-format entries (as generated by ReadBenderEllipse), write the ellipse fit to a text file. ASSUMES THAT ellipseFit IS ALREADY IN BENDER FORMAT! """ outputLines = [COLUMNS_BENDER, "#\n"] smaKey = 'a' if 'a' not in ellipseFit.keys(): smaKey = 'r' nDataLines = len(ellipseFit[smaKey]) for i in range(nDataLines): a = ellipseFit[smaKey][i] b = ellipseFit['b'][i] sb = ellipseFit['sb'][i] eps = ellipseFit['eps'][i] deps = ellipseFit['deps'][i] pa = ellipseFit['pa'][i] dpa = ellipseFit['dpa'][i] a2 = ellipseFit['a2'][i] a4 = ellipseFit['a4'][i] a6 = ellipseFit['a6'][i] a8 = ellipseFit['a8'][i] a10 = ellipseFit['a10'][i] a12 = ellipseFit['a12'][i] t = ellipseFit['t'][i] outLine = OUTPUT_FMT_BENDER_ALL % (a,b,sb,eps,deps,pa,dpa,a2,a4,a6,a8,a10,a12,t) outputLines.append(outLine) outf = open(outputFilename, 'w') for line in outputLines: outf.write(line) outf.close()
Python
def ConvertBenderToIraf( benderEfit, dataFrame=True ): """Given an ellipse-fit DataFrame object generated by reading a Bender/Saglia ellipse-fit file, generate a new DataFrame object in IRAF ellipse-fit format. a4,a6,a8,a10,a12 are converted to IRAF-format B4,B6,etc. (errors for these quantities are set to 0, since the """ a = benderEfit['a'] ell = benderEfit['eps'] nPts = len(a) irafDict = {} irafDict['sma'] = benderEfit['a'] irafDict['sb'] = benderEfit['sb'] irafDict['ellip'] = benderEfit['eps'] irafDict['ellip_err'] = benderEfit['deps'] irafDict['pa'] = benderEfit['pa'] irafDict['pa_err'] = benderEfit['dpa'] irafDict['b4'] = ConvertHigherOrder_Bender2Iraf(a, ell, benderEfit['a4']) irafDict['b6'] = ConvertHigherOrder_Bender2Iraf(a, ell, benderEfit['a6']) irafDict['b8'] = ConvertHigherOrder_Bender2Iraf(a, ell, benderEfit['a8']) irafDict['b10'] = ConvertHigherOrder_Bender2Iraf(a, ell, benderEfit['a10']) irafDict['b12'] = ConvertHigherOrder_Bender2Iraf(a, ell, benderEfit['a12']) # add in missing columns, filled with zeros for cname in IRAF_COLNAMES_B: if cname not in BENDER_COLUMNS_AS_IRAF: irafDict[cname] = np.zeros(nPts) # Convert to dataFrame, if requested: if dataFrame is True: frameList = [] columnNameList = IRAF_COLNAMES_B for cname in columnNameList: frameList.append(irafDict[cname]) result = du.ListDataFrame(frameList, columnNameList) # extra conveninces result.AddColumnName("sma", "a") result.AddColumnName("intens", "i") else: result = irafDict return result
def ConvertBenderToIraf( benderEfit, dataFrame=True ): """Given an ellipse-fit DataFrame object generated by reading a Bender/Saglia ellipse-fit file, generate a new DataFrame object in IRAF ellipse-fit format. a4,a6,a8,a10,a12 are converted to IRAF-format B4,B6,etc. (errors for these quantities are set to 0, since the """ a = benderEfit['a'] ell = benderEfit['eps'] nPts = len(a) irafDict = {} irafDict['sma'] = benderEfit['a'] irafDict['sb'] = benderEfit['sb'] irafDict['ellip'] = benderEfit['eps'] irafDict['ellip_err'] = benderEfit['deps'] irafDict['pa'] = benderEfit['pa'] irafDict['pa_err'] = benderEfit['dpa'] irafDict['b4'] = ConvertHigherOrder_Bender2Iraf(a, ell, benderEfit['a4']) irafDict['b6'] = ConvertHigherOrder_Bender2Iraf(a, ell, benderEfit['a6']) irafDict['b8'] = ConvertHigherOrder_Bender2Iraf(a, ell, benderEfit['a8']) irafDict['b10'] = ConvertHigherOrder_Bender2Iraf(a, ell, benderEfit['a10']) irafDict['b12'] = ConvertHigherOrder_Bender2Iraf(a, ell, benderEfit['a12']) # add in missing columns, filled with zeros for cname in IRAF_COLNAMES_B: if cname not in BENDER_COLUMNS_AS_IRAF: irafDict[cname] = np.zeros(nPts) # Convert to dataFrame, if requested: if dataFrame is True: frameList = [] columnNameList = IRAF_COLNAMES_B for cname in columnNameList: frameList.append(irafDict[cname]) result = du.ListDataFrame(frameList, columnNameList) # extra conveninces result.AddColumnName("sma", "a") result.AddColumnName("intens", "i") else: result = irafDict return result
Python
def ConvertIrafToBender( irafEfit, irafColnames=None, dataFrame=True ): """Given an ellipse-fit DataFrame object generated by reading an IRAF ellipse-fit file, generate a new DataFrame object in (abridged) Bender ellipse-fit format. You can *also* use a simple Python dictionary for irafEfit, but in this case you *must* supply a (possibly empty) list via the keyword irafColnames. This list needs to contain the keys of any even high-order [cos(m theta), with m >= 6] terms that are in the input dictionary and should be translated to Bender ellipse-fit form; if the only higher-order term is m=4 ('b4'), then irafColnames can be an empty list []. For example, if B6 and B8 terms are present (indexed via ['b6'] and ['b8'], then use irafColnames=['b6', 'b8']. If supplying a Python dictionary instead of an ellipse-fit DataFrame, the dictionary *must*, at a minimum, have numpy arrays indexed with the following keys: 'a', 'sb', 'ellip', 'ellip_err', 'pa', 'pa_err', and 'b4' (corresponding to semi-major axis, surface-brightness, ellipticity & error, position angle & error, and cos(4 theta) term). B4,B6,etc. are converted to Bender-style a4,a6,etc. """ a = irafEfit['a'] ell = irafEfit['ellip'] if irafColnames is None: irafColnames = irafEfit.colNames nPts = len(a) benderDict = {} benderDict['a'] = irafEfit['a'] benderDict['b'] = a * (1.0 - ell) benderDict['sb'] = irafEfit['sb'] benderDict['eps'] = irafEfit['ellip'] benderDict['deps'] = irafEfit['ellip_err'] benderDict['pa'] = irafEfit['pa'] benderDict['dpa'] = irafEfit['pa_err'] benderDict['a2'] = np.zeros(nPts) benderDict['a4'] = ConvertHigherOrder_Iraf2Bender(a, ell, irafEfit['b4']) if 'b6' in irafColnames: benderDict['a6'] = ConvertHigherOrder_Iraf2Bender(a, ell, irafEfit['b6']) else: benderDict['a6'] = np.zeros(nPts) if 'b8' in irafColnames: benderDict['a8'] = ConvertHigherOrder_Iraf2Bender(a, ell, irafEfit['b8']) else: benderDict['a8'] = np.zeros(nPts) if 'b10' in irafColnames: benderDict['a10'] = ConvertHigherOrder_Iraf2Bender(a, ell, irafEfit['b10']) else: benderDict['a10'] = np.zeros(nPts) if 'b12' in irafColnames: benderDict['a12'] = ConvertHigherOrder_Iraf2Bender(a, ell, irafEfit['b12']) else: benderDict['a12'] = np.zeros(nPts) benderDict['t'] = np.zeros(nPts) # Convert to dataFrame, if requested: if dataFrame is True: frameList = [] columnNameList = DEFAULT_BENDER_COLUMNS for cname in columnNameList: frameList.append(benderDict[cname]) result = du.ListDataFrame(frameList, columnNameList) else: result = benderDict return result
def ConvertIrafToBender( irafEfit, irafColnames=None, dataFrame=True ): """Given an ellipse-fit DataFrame object generated by reading an IRAF ellipse-fit file, generate a new DataFrame object in (abridged) Bender ellipse-fit format. You can *also* use a simple Python dictionary for irafEfit, but in this case you *must* supply a (possibly empty) list via the keyword irafColnames. This list needs to contain the keys of any even high-order [cos(m theta), with m >= 6] terms that are in the input dictionary and should be translated to Bender ellipse-fit form; if the only higher-order term is m=4 ('b4'), then irafColnames can be an empty list []. For example, if B6 and B8 terms are present (indexed via ['b6'] and ['b8'], then use irafColnames=['b6', 'b8']. If supplying a Python dictionary instead of an ellipse-fit DataFrame, the dictionary *must*, at a minimum, have numpy arrays indexed with the following keys: 'a', 'sb', 'ellip', 'ellip_err', 'pa', 'pa_err', and 'b4' (corresponding to semi-major axis, surface-brightness, ellipticity & error, position angle & error, and cos(4 theta) term). B4,B6,etc. are converted to Bender-style a4,a6,etc. """ a = irafEfit['a'] ell = irafEfit['ellip'] if irafColnames is None: irafColnames = irafEfit.colNames nPts = len(a) benderDict = {} benderDict['a'] = irafEfit['a'] benderDict['b'] = a * (1.0 - ell) benderDict['sb'] = irafEfit['sb'] benderDict['eps'] = irafEfit['ellip'] benderDict['deps'] = irafEfit['ellip_err'] benderDict['pa'] = irafEfit['pa'] benderDict['dpa'] = irafEfit['pa_err'] benderDict['a2'] = np.zeros(nPts) benderDict['a4'] = ConvertHigherOrder_Iraf2Bender(a, ell, irafEfit['b4']) if 'b6' in irafColnames: benderDict['a6'] = ConvertHigherOrder_Iraf2Bender(a, ell, irafEfit['b6']) else: benderDict['a6'] = np.zeros(nPts) if 'b8' in irafColnames: benderDict['a8'] = ConvertHigherOrder_Iraf2Bender(a, ell, irafEfit['b8']) else: benderDict['a8'] = np.zeros(nPts) if 'b10' in irafColnames: benderDict['a10'] = ConvertHigherOrder_Iraf2Bender(a, ell, irafEfit['b10']) else: benderDict['a10'] = np.zeros(nPts) if 'b12' in irafColnames: benderDict['a12'] = ConvertHigherOrder_Iraf2Bender(a, ell, irafEfit['b12']) else: benderDict['a12'] = np.zeros(nPts) benderDict['t'] = np.zeros(nPts) # Convert to dataFrame, if requested: if dataFrame is True: frameList = [] columnNameList = DEFAULT_BENDER_COLUMNS for cname in columnNameList: frameList.append(benderDict[cname]) result = du.ListDataFrame(frameList, columnNameList) else: result = benderDict return result
Python
def testReadEllipse_fluxconv( self ): """Test that we convert intensities to arbitrary fluxes, given an input flux conversion factor.""" for i in range(5): deltaRel = abs((n5831_flux[i] - self.n5831efit_fits_sb['flux'][i]) / n5831_flux[i]) self.assertLess(deltaRel, 1e-6) # check associated metatdata correct = 100.0 # WARNING: NON-DICT ATTRIBUTE self.assertEqual(correct, self.n5831efit_fits_sb.fluxconv) # check associated metatdata correct = "blah" # WARNING: NON-DICT ATTRIBUTE self.assertEqual(correct, self.n5831efit_fits_sb.flux_units)
def testReadEllipse_fluxconv( self ): """Test that we convert intensities to arbitrary fluxes, given an input flux conversion factor.""" for i in range(5): deltaRel = abs((n5831_flux[i] - self.n5831efit_fits_sb['flux'][i]) / n5831_flux[i]) self.assertLess(deltaRel, 1e-6) # check associated metatdata correct = 100.0 # WARNING: NON-DICT ATTRIBUTE self.assertEqual(correct, self.n5831efit_fits_sb.fluxconv) # check associated metatdata correct = "blah" # WARNING: NON-DICT ATTRIBUTE self.assertEqual(correct, self.n5831efit_fits_sb.flux_units)
Python
def testReadEllipse_Ell( self ): """Test that we correctly read in ellipticity values, and also that we correctly convert these to q (= b/a) and r_eq values. """ # test for ellipticity values for i in range(5): deltaRel = abs((n5831_startEll[i] - self.n5831efit_fits['ellip'][i]) / n5831_startEll[i]) self.assertLess(deltaRel, 1e-6) # test for axis-ratio values for i in range(5): deltaRel = abs((n5831_startq[i] - self.n5831efit_fits['q'][i]) / n5831_startq[i]) self.assertLess(deltaRel, 1e-6) # test for r_eq values for i in range(5): deltaRel = abs((n5831_startReq[i] - self.n5831efit_fits['r_eq'][i]) / n5831_startReq[i]) self.assertLess(deltaRel, 1e-6)
def testReadEllipse_Ell( self ): """Test that we correctly read in ellipticity values, and also that we correctly convert these to q (= b/a) and r_eq values. """ # test for ellipticity values for i in range(5): deltaRel = abs((n5831_startEll[i] - self.n5831efit_fits['ellip'][i]) / n5831_startEll[i]) self.assertLess(deltaRel, 1e-6) # test for axis-ratio values for i in range(5): deltaRel = abs((n5831_startq[i] - self.n5831efit_fits['q'][i]) / n5831_startq[i]) self.assertLess(deltaRel, 1e-6) # test for r_eq values for i in range(5): deltaRel = abs((n5831_startReq[i] - self.n5831efit_fits['r_eq'][i]) / n5831_startReq[i]) self.assertLess(deltaRel, 1e-6)
Python
async def _complete_login( self, user_id: str, login_submission: JsonDict, create_non_existent_users: bool = False, ratelimit: bool = True, auth_provider_id: Optional[str] = None, should_issue_refresh_token: bool = False, auth_provider_session_id: Optional[str] = None, ) -> Dict[str, Any]: """Called when we've successfully authed the user and now need to actually login them in (e.g. create devices). This gets called on all successful logins. Applies the ratelimiting for successful login attempts against an account. Args: user_id: ID of the user to register. login_submission: Dictionary of login information. create_non_existent_users: Whether to create the user if they don't exist. Defaults to False. ratelimit: Whether to ratelimit the login request. auth_provider_id: The SSO IdP the user used, if any. should_issue_refresh_token: True if this login should issue a refresh token alongside the access token. auth_provider_session_id: The session ID got during login from the SSO IdP. Returns: result: Dictionary of account information after successful login. """ # Before we actually log them in we check if they've already logged in # too often. This happens here rather than before as we don't # necessarily know the user before now. if ratelimit: await self._account_ratelimiter.ratelimit(None, user_id.lower()) if create_non_existent_users: canonical_uid = await self.auth_handler.check_user_exists(user_id) if not canonical_uid: canonical_uid = await self.registration_handler.register_user( localpart=UserID.from_string(user_id).localpart ) user_id = canonical_uid device_id = login_submission.get("device_id") initial_display_name = login_submission.get("initial_device_display_name") ( device_id, access_token, valid_until_ms, refresh_token, ) = await self.registration_handler.register_device( user_id, device_id, initial_display_name, auth_provider_id=auth_provider_id, should_issue_refresh_token=should_issue_refresh_token, auth_provider_session_id=auth_provider_session_id, ) result: Dict[str, Any] = { "user_id": user_id, "access_token": access_token, "home_server": self.hs.hostname, "device_id": device_id, } if valid_until_ms is not None: expires_in_ms = valid_until_ms - self.clock.time_msec() result["expires_in_ms"] = expires_in_ms if refresh_token is not None: result["refresh_token"] = refresh_token return result
async def _complete_login( self, user_id: str, login_submission: JsonDict, create_non_existent_users: bool = False, ratelimit: bool = True, auth_provider_id: Optional[str] = None, should_issue_refresh_token: bool = False, auth_provider_session_id: Optional[str] = None, ) -> Dict[str, Any]: """Called when we've successfully authed the user and now need to actually login them in (e.g. create devices). This gets called on all successful logins. Applies the ratelimiting for successful login attempts against an account. Args: user_id: ID of the user to register. login_submission: Dictionary of login information. create_non_existent_users: Whether to create the user if they don't exist. Defaults to False. ratelimit: Whether to ratelimit the login request. auth_provider_id: The SSO IdP the user used, if any. should_issue_refresh_token: True if this login should issue a refresh token alongside the access token. auth_provider_session_id: The session ID got during login from the SSO IdP. Returns: result: Dictionary of account information after successful login. """ # Before we actually log them in we check if they've already logged in # too often. This happens here rather than before as we don't # necessarily know the user before now. if ratelimit: await self._account_ratelimiter.ratelimit(None, user_id.lower()) if create_non_existent_users: canonical_uid = await self.auth_handler.check_user_exists(user_id) if not canonical_uid: canonical_uid = await self.registration_handler.register_user( localpart=UserID.from_string(user_id).localpart ) user_id = canonical_uid device_id = login_submission.get("device_id") initial_display_name = login_submission.get("initial_device_display_name") ( device_id, access_token, valid_until_ms, refresh_token, ) = await self.registration_handler.register_device( user_id, device_id, initial_display_name, auth_provider_id=auth_provider_id, should_issue_refresh_token=should_issue_refresh_token, auth_provider_session_id=auth_provider_session_id, ) result: Dict[str, Any] = { "user_id": user_id, "access_token": access_token, "home_server": self.hs.hostname, "device_id": device_id, } if valid_until_ms is not None: expires_in_ms = valid_until_ms - self.clock.time_msec() result["expires_in_ms"] = expires_in_ms if refresh_token is not None: result["refresh_token"] = refresh_token return result
Python
def scan_links(webpage, maximum, filename, modulus): """ Main function to itterate. (needs a rewrite) """ LINKS_INDEXED.append(webpage) counter = 1 while LINKS_INDEXED: for link in LINKS_INDEXED: LINKS_INDEXED.remove(link) LINKS_VISITED.append(link) for href in Search.Search(link).get_links(): if href in LINKS_INDEXED or href in LINKS_VISITED: pass else: LINKS_INDEXED.append(href) counter += 1 if counter % modulus == 0: print(str(counter) + " | " + str(len(LINKS_INDEXED)) + " | " + str(len(LINKS_VISITED))) if counter >= maximum and maximum != -1: break if counter >= maximum and maximum != -1: break if os.path.exists(filename): os.remove(filename) with open(filename, "w+") as _file: for link in LINKS_INDEXED + LINKS_VISITED: _file.write(link + "\n")
def scan_links(webpage, maximum, filename, modulus): """ Main function to itterate. (needs a rewrite) """ LINKS_INDEXED.append(webpage) counter = 1 while LINKS_INDEXED: for link in LINKS_INDEXED: LINKS_INDEXED.remove(link) LINKS_VISITED.append(link) for href in Search.Search(link).get_links(): if href in LINKS_INDEXED or href in LINKS_VISITED: pass else: LINKS_INDEXED.append(href) counter += 1 if counter % modulus == 0: print(str(counter) + " | " + str(len(LINKS_INDEXED)) + " | " + str(len(LINKS_VISITED))) if counter >= maximum and maximum != -1: break if counter >= maximum and maximum != -1: break if os.path.exists(filename): os.remove(filename) with open(filename, "w+") as _file: for link in LINKS_INDEXED + LINKS_VISITED: _file.write(link + "\n")
Python
def command_line_parser(): """ Main function primarly used for the command line interface """ parser = ArgumentParser(prog="outlookdisablespamfilter", add_help=False) required = parser.add_argument_group('required arguments') optional = parser.add_argument_group('optional arguments') required.add_argument( "-e", "--outlook_email", help="Outlook.com Email Address", required=True ) required.add_argument( "-p", "--outlook_app_password", help="Outlook.com App Password", required=True ) optional.add_argument( '-h', '--help', action='help', default=SUPPRESS, help='show this help message and exit' ) args = parser.parse_args() transfer_spam_emails( outlook_email=args.outlook_email, outlook_app_password=args.outlook_app_password )
def command_line_parser(): """ Main function primarly used for the command line interface """ parser = ArgumentParser(prog="outlookdisablespamfilter", add_help=False) required = parser.add_argument_group('required arguments') optional = parser.add_argument_group('optional arguments') required.add_argument( "-e", "--outlook_email", help="Outlook.com Email Address", required=True ) required.add_argument( "-p", "--outlook_app_password", help="Outlook.com App Password", required=True ) optional.add_argument( '-h', '--help', action='help', default=SUPPRESS, help='show this help message and exit' ) args = parser.parse_args() transfer_spam_emails( outlook_email=args.outlook_email, outlook_app_password=args.outlook_app_password )
Python
def transfer_spam_emails(outlook_email, outlook_app_password, move_to_mailbox="Inbox"): """ Transfer spam emails from Junk folder to another mailbox Args: outlook_email (str): outlook.com email address like [email protected] outlook_app_password (str): App password for outlook.com move_to_mailbox (str): Mailbox to move the messages to (default: Inbox) """ server_outlook = "outlook.office365.com" with imaplib.IMAP4_SSL(host=server_outlook, port=993) as imap_outlook: _ = imap_outlook.login( outlook_email, outlook_app_password ) _ = imap_outlook.select( "Junk", readonly=False ) print('Fetching messages from Spam Folder ...') resp, items = imap_outlook.search(None, 'ALL') msg_nums = items[0].split() print('%s messages to archive' % len(msg_nums)) for msg_num in msg_nums: resp, data = imap_outlook.fetch( msg_num, "(FLAGS INTERNALDATE BODY.PEEK[])" ) message = data[0][1] date = imaplib.Time2Internaldate( imaplib.Internaldate2tuple( data[0][0] ) ) copy_result = imap_outlook.append( move_to_mailbox, b"", date, message ) if copy_result[0] == 'OK': _ = imap_outlook.store( msg_num, '+FLAGS', '\\Deleted' ) ex = imap_outlook.expunge() print('expunge status: %s' % ex[0]) if not ex[1][0]: print('expunge count: 0') else: print('expunge count: %s' % len(ex[1]))
def transfer_spam_emails(outlook_email, outlook_app_password, move_to_mailbox="Inbox"): """ Transfer spam emails from Junk folder to another mailbox Args: outlook_email (str): outlook.com email address like [email protected] outlook_app_password (str): App password for outlook.com move_to_mailbox (str): Mailbox to move the messages to (default: Inbox) """ server_outlook = "outlook.office365.com" with imaplib.IMAP4_SSL(host=server_outlook, port=993) as imap_outlook: _ = imap_outlook.login( outlook_email, outlook_app_password ) _ = imap_outlook.select( "Junk", readonly=False ) print('Fetching messages from Spam Folder ...') resp, items = imap_outlook.search(None, 'ALL') msg_nums = items[0].split() print('%s messages to archive' % len(msg_nums)) for msg_num in msg_nums: resp, data = imap_outlook.fetch( msg_num, "(FLAGS INTERNALDATE BODY.PEEK[])" ) message = data[0][1] date = imaplib.Time2Internaldate( imaplib.Internaldate2tuple( data[0][0] ) ) copy_result = imap_outlook.append( move_to_mailbox, b"", date, message ) if copy_result[0] == 'OK': _ = imap_outlook.store( msg_num, '+FLAGS', '\\Deleted' ) ex = imap_outlook.expunge() print('expunge status: %s' % ex[0]) if not ex[1][0]: print('expunge count: 0') else: print('expunge count: %s' % len(ex[1]))
Python
def simulated_annealing_with_tunable_T(self, problem, map_canvas, schedule=exp_schedule()): """ Simulated annealing where temperature is taken as user input """ current = Node(problem.initial) while(1): T = schedule(self.temperature.get()) if T == 0: return current.state neighbors = current.expand(problem) if not neighbors: return current.state next = random.choice(neighbors) delta_e = problem.value(next.state) - problem.value(current.state) if delta_e > 0 or probability(math.exp(delta_e / T)): map_canvas.delete("poly") current = next self.cost.set("Cost = " + str('%0.3f' % (-1 * problem.value(current.state)))) points = [] for city in current.state: points.append(self.frame_locations[city][0]) points.append(self.frame_locations[city][1]) map_canvas.create_polygon(points, outline='red', width=3, fill='', tag="poly") map_canvas.update() map_canvas.after(self.speed.get())
def simulated_annealing_with_tunable_T(self, problem, map_canvas, schedule=exp_schedule()): """ Simulated annealing where temperature is taken as user input """ current = Node(problem.initial) while(1): T = schedule(self.temperature.get()) if T == 0: return current.state neighbors = current.expand(problem) if not neighbors: return current.state next = random.choice(neighbors) delta_e = problem.value(next.state) - problem.value(current.state) if delta_e > 0 or probability(math.exp(delta_e / T)): map_canvas.delete("poly") current = next self.cost.set("Cost = " + str('%0.3f' % (-1 * problem.value(current.state)))) points = [] for city in current.state: points.append(self.frame_locations[city][0]) points.append(self.frame_locations[city][1]) map_canvas.create_polygon(points, outline='red', width=3, fill='', tag="poly") map_canvas.update() map_canvas.after(self.speed.get())
Python
def show_iris(i=0, j=1, k=2): """Plots the iris dataset in a 3D plot. The three axes are given by i, j and k, which correspond to three of the four iris features.""" from mpl_toolkits.mplot3d import Axes3D plt.rcParams.update(plt.rcParamsDefault) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') iris = DataSet(name="iris") buckets = iris.split_values_by_classes() features = ["Sepal Length", "Sepal Width", "Petal Length", "Petal Width"] f1, f2, f3 = features[i], features[j], features[k] a_setosa = [v[i] for v in buckets["setosa"]] b_setosa = [v[j] for v in buckets["setosa"]] c_setosa = [v[k] for v in buckets["setosa"]] a_virginica = [v[i] for v in buckets["virginica"]] b_virginica = [v[j] for v in buckets["virginica"]] c_virginica = [v[k] for v in buckets["virginica"]] a_versicolor = [v[i] for v in buckets["versicolor"]] b_versicolor = [v[j] for v in buckets["versicolor"]] c_versicolor = [v[k] for v in buckets["versicolor"]] for c, m, sl, sw, pl in [('b', 's', a_setosa, b_setosa, c_setosa), ('g', '^', a_virginica, b_virginica, c_virginica), ('r', 'o', a_versicolor, b_versicolor, c_versicolor)]: ax.scatter(sl, sw, pl, c=c, marker=m) ax.set_xlabel(f1) ax.set_ylabel(f2) ax.set_zlabel(f3) plt.show()
def show_iris(i=0, j=1, k=2): """Plots the iris dataset in a 3D plot. The three axes are given by i, j and k, which correspond to three of the four iris features.""" from mpl_toolkits.mplot3d import Axes3D plt.rcParams.update(plt.rcParamsDefault) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') iris = DataSet(name="iris") buckets = iris.split_values_by_classes() features = ["Sepal Length", "Sepal Width", "Petal Length", "Petal Width"] f1, f2, f3 = features[i], features[j], features[k] a_setosa = [v[i] for v in buckets["setosa"]] b_setosa = [v[j] for v in buckets["setosa"]] c_setosa = [v[k] for v in buckets["setosa"]] a_virginica = [v[i] for v in buckets["virginica"]] b_virginica = [v[j] for v in buckets["virginica"]] c_virginica = [v[k] for v in buckets["virginica"]] a_versicolor = [v[i] for v in buckets["versicolor"]] b_versicolor = [v[j] for v in buckets["versicolor"]] c_versicolor = [v[k] for v in buckets["versicolor"]] for c, m, sl, sw, pl in [('b', 's', a_setosa, b_setosa, c_setosa), ('g', '^', a_virginica, b_virginica, c_virginica), ('r', 'o', a_versicolor, b_versicolor, c_versicolor)]: ax.scatter(sl, sw, pl, c=c, marker=m) ax.set_xlabel(f1) ax.set_ylabel(f2) ax.set_zlabel(f3) plt.show()
Python
def make_visualize(slider): """Takes an input a sliderand returns callback function for timer and animation.""" def visualize_callback(Visualize, time_step): if Visualize is True: for i in range(slider.min, slider.max + 1): slider.value = i time.sleep(float(time_step)) return visualize_callback
def make_visualize(slider): """Takes an input a sliderand returns callback function for timer and animation.""" def visualize_callback(Visualize, time_step): if Visualize is True: for i in range(slider.min, slider.max + 1): slider.value = i time.sleep(float(time_step)) return visualize_callback
Python
def execute(self, exec_str): """Stores the command to be exectued to a list which is used later during update()""" if not isinstance(exec_str, str): print("Invalid execution argument:", exec_str) self.alert("Recieved invalid execution command format") prefix = "{0}_canvas_object.".format(self.cid) self.exec_list.append(prefix + exec_str + ';')
def execute(self, exec_str): """Stores the command to be exectued to a list which is used later during update()""" if not isinstance(exec_str, str): print("Invalid execution argument:", exec_str) self.alert("Recieved invalid execution command format") prefix = "{0}_canvas_object.".format(self.cid) self.exec_list.append(prefix + exec_str + ';')
Python
def arc_n(self, xn, yn, rn, start, stop): """Similar to arc(), but the dimensions are normalized to fall between 0 and 1 The normalizing factor for radius is selected between width and height by seeing which is smaller.""" x = round(xn * self.width) y = round(yn * self.height) r = round(rn * min(self.width, self.height)) self.arc(x, y, r, start, stop)
def arc_n(self, xn, yn, rn, start, stop): """Similar to arc(), but the dimensions are normalized to fall between 0 and 1 The normalizing factor for radius is selected between width and height by seeing which is smaller.""" x = round(xn * self.width) y = round(yn * self.height) r = round(rn * min(self.width, self.height)) self.arc(x, y, r, start, stop)
Python
def update(self): """Execute the JS code to execute the commands queued by execute()""" exec_code = "<script>\n" + '\n'.join(self.exec_list) + "\n</script>" self.exec_list = [] display_html(exec_code)
def update(self): """Execute the JS code to execute the commands queued by execute()""" exec_code = "<script>\n" + '\n'.join(self.exec_list) + "\n</script>" self.exec_list = [] display_html(exec_code)
Python
def inverse_matrix(X): """Inverse a given square matrix of size 2x2""" assert len(X) == 2 assert len(X[0]) == 2 det = X[0][0] * X[1][1] - X[0][1] * X[1][0] assert det != 0 inv_mat = scalar_matrix_product(1.0/det, [[X[1][1], -X[0][1]], [-X[1][0], X[0][0]]]) return inv_mat
def inverse_matrix(X): """Inverse a given square matrix of size 2x2""" assert len(X) == 2 assert len(X[0]) == 2 det = X[0][0] * X[1][1] - X[0][1] * X[1][0] assert det != 0 inv_mat = scalar_matrix_product(1.0/det, [[X[1][1], -X[0][1]], [-X[1][0], X[0][0]]]) return inv_mat
Python
def num_or_str(x): """The argument is a string; convert to a number if possible, or strip it.""" try: return int(x) except ValueError: try: return float(x) except ValueError: return str(x).strip()
def num_or_str(x): """The argument is a string; convert to a number if possible, or strip it.""" try: return int(x) except ValueError: try: return float(x) except ValueError: return str(x).strip()
Python
def print_table(table, header=None, sep=' ', numfmt='{}'): """Print a list of lists as a table, so that columns line up nicely. header, if specified, will be printed as the first row. numfmt is the format for all numbers; you might want e.g. '{:.2f}'. (If you want different formats in different columns, don't use print_table.) sep is the separator between columns.""" justs = ['rjust' if isnumber(x) else 'ljust' for x in table[0]] if header: table.insert(0, header) table = [[numfmt.format(x) if isnumber(x) else x for x in row] for row in table] sizes = list( map(lambda seq: max(map(len, seq)), list(zip(*[map(str, row) for row in table])))) for row in table: print(sep.join(getattr( str(x), j)(size) for (j, size, x) in zip(justs, sizes, row)))
def print_table(table, header=None, sep=' ', numfmt='{}'): """Print a list of lists as a table, so that columns line up nicely. header, if specified, will be printed as the first row. numfmt is the format for all numbers; you might want e.g. '{:.2f}'. (If you want different formats in different columns, don't use print_table.) sep is the separator between columns.""" justs = ['rjust' if isnumber(x) else 'ljust' for x in table[0]] if header: table.insert(0, header) table = [[numfmt.format(x) if isnumber(x) else x for x in row] for row in table] sizes = list( map(lambda seq: max(map(len, seq)), list(zip(*[map(str, row) for row in table])))) for row in table: print(sep.join(getattr( str(x), j)(size) for (j, size, x) in zip(justs, sizes, row)))
Python
def make_line(map, x0, y0, x1, y1, distance): ''' This function draws out the lines joining various points. ''' map.create_line(x0, y0, x1, y1) map.create_text((x0 + x1) / 2, (y0 + y1) / 2, text=distance)
def make_line(map, x0, y0, x1, y1, distance): ''' This function draws out the lines joining various points. ''' map.create_line(x0, y0, x1, y1) map.create_text((x0 + x1) / 2, (y0 + y1) / 2, text=distance)
Python
def breadth_first_tree_search(problem): """Search the shallowest nodes in the search tree first.""" global frontier, counter if counter == -1: frontier = FIFOQueue() return tree_search(problem)
def breadth_first_tree_search(problem): """Search the shallowest nodes in the search tree first.""" global frontier, counter if counter == -1: frontier = FIFOQueue() return tree_search(problem)
Python
def depth_first_tree_search(problem): """Search the deepest nodes in the search tree first.""" # This search algorithm might not work in case of repeated paths. global frontier, counter if counter == -1: frontier = Stack() return tree_search(problem)
def depth_first_tree_search(problem): """Search the deepest nodes in the search tree first.""" # This search algorithm might not work in case of repeated paths. global frontier, counter if counter == -1: frontier = Stack() return tree_search(problem)
Python
def depth_first_graph_search(problem): """Search the deepest nodes in the search tree first.""" global frontier, counter if counter == -1: frontier = Stack() return graph_search(problem)
def depth_first_graph_search(problem): """Search the deepest nodes in the search tree first.""" global frontier, counter if counter == -1: frontier = Stack() return graph_search(problem)