language
stringclasses 6
values | original_string
stringlengths 25
887k
| text
stringlengths 25
887k
|
---|---|---|
Python | async def topdeathstoday(self, ctx, amount: int = 6):
"""Show X countries with top amount of deaths today.
Defaults to 6.
"""
if amount > 20 or amount < 0:
return await ctx.send("Invalid amount. Please choose between an amount between 1-20.")
async with ctx.typing():
data = await self.get(self.api + "/countries?sort = todayDeaths")
if isinstance(data, dict):
error = data.get("failed")
if error is not None:
return await ctx.send(error)
if not data:
return await ctx.send("No data available.")
embed = discord.Embed(
color = 0xf34949,
title= "Covid-19 | Top {} Deaths Today ".format(amount),
timestamp = datetime.datetime.utcfromtimestamp(data[0]["updated"] / 1000),
)
for i in range(amount):
cases = self.humanize_number(data[i]["cases"])
deaths = self.humanize_number(data[i]["deaths"])
recovered = self.humanize_number(data[i]["recovered"])
todayCases = self.humanize_number(data[i]["todayCases"])
todayDeaths = self.humanize_number(data[i]["todayDeaths"])
critical = self.humanize_number(data[i]["critical"])
msg = str('**Cases**: {}\n**Deaths**: {}\n**Recovered**: {}\n**Cases Today**: {}' +
'\n**Deaths Today**: {}\n**Critical**: {}').format(cases, deaths, recovered,
todayCases, todayDeaths, critical)
embed.add_field(name = data[i]["country"], value = msg)
await ctx.send(embed = embed) | async def topdeathstoday(self, ctx, amount: int = 6):
"""Show X countries with top amount of deaths today.
Defaults to 6.
"""
if amount > 20 or amount < 0:
return await ctx.send("Invalid amount. Please choose between an amount between 1-20.")
async with ctx.typing():
data = await self.get(self.api + "/countries?sort = todayDeaths")
if isinstance(data, dict):
error = data.get("failed")
if error is not None:
return await ctx.send(error)
if not data:
return await ctx.send("No data available.")
embed = discord.Embed(
color = 0xf34949,
title= "Covid-19 | Top {} Deaths Today ".format(amount),
timestamp = datetime.datetime.utcfromtimestamp(data[0]["updated"] / 1000),
)
for i in range(amount):
cases = self.humanize_number(data[i]["cases"])
deaths = self.humanize_number(data[i]["deaths"])
recovered = self.humanize_number(data[i]["recovered"])
todayCases = self.humanize_number(data[i]["todayCases"])
todayDeaths = self.humanize_number(data[i]["todayDeaths"])
critical = self.humanize_number(data[i]["critical"])
msg = str('**Cases**: {}\n**Deaths**: {}\n**Recovered**: {}\n**Cases Today**: {}' +
'\n**Deaths Today**: {}\n**Critical**: {}').format(cases, deaths, recovered,
todayCases, todayDeaths, critical)
embed.add_field(name = data[i]["country"], value = msg)
await ctx.send(embed = embed) |
Python | async def state(self, ctx, *, states: str):
"""Show stats for specific states.
Supports multiple countries seperated by a comma.
Example: luci covid state New York, California
"""
if not states:
return await ctx.send_help()
async with ctx.typing():
states = ",".join(states.split(", "))
data = await self.get(self.api + "/states/{}".format(states))
if isinstance(data, dict):
error = data.get("failed")
if error is not None:
return await ctx.send(error)
data = [data]
if not data:
return await ctx.send("No data available.")
await GenericMenu(source = CovidStateMenu(data), ctx = ctx, type= "Today").start(
ctx = ctx,
wait = False,
) | async def state(self, ctx, *, states: str):
"""Show stats for specific states.
Supports multiple countries seperated by a comma.
Example: luci covid state New York, California
"""
if not states:
return await ctx.send_help()
async with ctx.typing():
states = ",".join(states.split(", "))
data = await self.get(self.api + "/states/{}".format(states))
if isinstance(data, dict):
error = data.get("failed")
if error is not None:
return await ctx.send(error)
data = [data]
if not data:
return await ctx.send("No data available.")
await GenericMenu(source = CovidStateMenu(data), ctx = ctx, type= "Today").start(
ctx = ctx,
wait = False,
) |
Python | async def _yesterday(self, ctx, *, states: str):
"""Show stats for yesterday for specific states.
Supports multiple countries seperated by a comma.
Example: luci covid state yesterday New York, California.
"""
async with ctx.typing():
states = ",".join(states.split(", "))
data = await self.get(self.api + "/states/{}?yesterday = 1".format(states))
if isinstance(data, dict):
error = data.get("failed")
if error is not None:
return await ctx.send(error)
data = [data]
if not data:
return await ctx.send("No data available.")
await GenericMenu(source = CovidStateMenu(data), ctx = ctx, type= "Yesterday").start(
ctx = ctx,
wait = False,
) | async def _yesterday(self, ctx, *, states: str):
"""Show stats for yesterday for specific states.
Supports multiple countries seperated by a comma.
Example: luci covid state yesterday New York, California.
"""
async with ctx.typing():
states = ",".join(states.split(", "))
data = await self.get(self.api + "/states/{}?yesterday = 1".format(states))
if isinstance(data, dict):
error = data.get("failed")
if error is not None:
return await ctx.send(error)
data = [data]
if not data:
return await ctx.send("No data available.")
await GenericMenu(source = CovidStateMenu(data), ctx = ctx, type= "Yesterday").start(
ctx = ctx,
wait = False,
) |
Python | async def format_mod_embed(self, ctx, user, success, method, duration = None, location = None):
"""Helper function to format an embed to prevent extra code"""
embed = discord.Embed(timestamp = ctx.message.created_at)
embed.set_author(name = method.title(), icon_url = user.avatar_url)
embed.color = 0xf34949
embed.set_footer(text = f"User ID: {user.id}")
if success:
if method == "ban" or method == "hackban":
embed.description = f"{user} was just {method}ned."
elif method == "unmute" or method == "kick":
embed.description = f"{user} was just {method}d."
elif method == "mute":
embed.description = f"{user} was just {method}d for {duration}."
elif method == "channel-locked" or method == "server-locked":
embed.description = f"`{location.name}` is now in lockdown mode!"
elif method == "channel-unlocked" or method == "server-unlocked":
embed.description = f"`{location.name}` is now unlocked. Enjoy!"
else:
embed.description = f"{user} was just {method}ed."
else:
if method == "lock" or "channel-locked":
embed.description = f"You do not have the permissions to {method} `{location.name}`."
if method == "unlock" or "channel-unlocked":
embed.description = f"You do not have the permissions to {method} `{location.name}`."
else:
embed.description = f"You do not have the permissions to {method} {user.name}."
return embed | async def format_mod_embed(self, ctx, user, success, method, duration = None, location = None):
"""Helper function to format an embed to prevent extra code"""
embed = discord.Embed(timestamp = ctx.message.created_at)
embed.set_author(name = method.title(), icon_url = user.avatar_url)
embed.color = 0xf34949
embed.set_footer(text = f"User ID: {user.id}")
if success:
if method == "ban" or method == "hackban":
embed.description = f"{user} was just {method}ned."
elif method == "unmute" or method == "kick":
embed.description = f"{user} was just {method}d."
elif method == "mute":
embed.description = f"{user} was just {method}d for {duration}."
elif method == "channel-locked" or method == "server-locked":
embed.description = f"`{location.name}` is now in lockdown mode!"
elif method == "channel-unlocked" or method == "server-unlocked":
embed.description = f"`{location.name}` is now unlocked. Enjoy!"
else:
embed.description = f"{user} was just {method}ed."
else:
if method == "lock" or "channel-locked":
embed.description = f"You do not have the permissions to {method} `{location.name}`."
if method == "unlock" or "channel-unlocked":
embed.description = f"You do not have the permissions to {method} `{location.name}`."
else:
embed.description = f"You do not have the permissions to {method} {user.name}."
return embed |
Python | async def kick(self, ctx, member: discord.Member, *, reason = None):
"""Kick someone from the server."""
try:
await ctx.guild.kick(member, reason = reason)
except:
success = False
else:
success = True
embed = await self.format_mod_embed(ctx, member, success, "kick")
await ctx.send(embed = embed) | async def kick(self, ctx, member: discord.Member, *, reason = None):
"""Kick someone from the server."""
try:
await ctx.guild.kick(member, reason = reason)
except:
success = False
else:
success = True
embed = await self.format_mod_embed(ctx, member, success, "kick")
await ctx.send(embed = embed) |
Python | async def ban(self, ctx, member: discord.Member, *, reason = None):
"""Ban someone from the server."""
if (member == ctx.author):
await ctx.send("Boomer! you can't ban yourself 🤦♂️")
try:
await ctx.guild.ban(member, reason = reason)
await member.send(f"You have been banned in {ctx.guild} for {reason}" if reason != None \
else f"You have been banned in {ctx.guild}")
except:
success = False
else:
success = True
embed = await self.format_mod_embed(ctx, member, success, "ban")
await ctx.send(embed = embed) | async def ban(self, ctx, member: discord.Member, *, reason = None):
"""Ban someone from the server."""
if (member == ctx.author):
await ctx.send("Boomer! you can't ban yourself 🤦♂️")
try:
await ctx.guild.ban(member, reason = reason)
await member.send(f"You have been banned in {ctx.guild} for {reason}" if reason != None \
else f"You have been banned in {ctx.guild}")
except:
success = False
else:
success = True
embed = await self.format_mod_embed(ctx, member, success, "ban")
await ctx.send(embed = embed) |
Python | async def bans(self, ctx):
"""See a list of banned users in the guild"""
bans = await ctx.guild.bans()
embed = discord.Embed(title = f"List of Banned Members ({len(bans)}):")
embed.description = ", ".join([str(b.user) for b in bans])
embed.color = 0xf34949
await ctx.send(embed = embed) | async def bans(self, ctx):
"""See a list of banned users in the guild"""
bans = await ctx.guild.bans()
embed = discord.Embed(title = f"List of Banned Members ({len(bans)}):")
embed.description = ", ".join([str(b.user) for b in bans])
embed.color = 0xf34949
await ctx.send(embed = embed) |
Python | async def baninfo(self, ctx, *, member: GetFetchUser):
"""Check the reason of a ban from the audit logs."""
ban = await ctx.guild.fetch_ban(member)
embed = discord.Embed()
embed.color = 0xf34949
embed.set_author(name = str(ban.user), icon_url = ban.user.avatar_url)
embed.add_field(name="Reason", value = ban.reason or "None")
embed.set_thumbnail(url = ban.user.avatar_url)
embed.set_footer(text = f"User ID: {ban.user.id}")
await ctx.send(embed = embed) | async def baninfo(self, ctx, *, member: GetFetchUser):
"""Check the reason of a ban from the audit logs."""
ban = await ctx.guild.fetch_ban(member)
embed = discord.Embed()
embed.color = 0xf34949
embed.set_author(name = str(ban.user), icon_url = ban.user.avatar_url)
embed.add_field(name="Reason", value = ban.reason or "None")
embed.set_thumbnail(url = ban.user.avatar_url)
embed.set_footer(text = f"User ID: {ban.user.id}")
await ctx.send(embed = embed) |
Python | async def addrole(self, ctx, member: discord.Member, *, rolename: str):
"""Add a role to someone else."""
role = discord.utils.find(lambda m: rolename.lower() in m.name.lower(), ctx.message.guild.roles)
if not role:
return await ctx.send("That role does not exist.")
try:
await member.add_roles(role)
await ctx.send(f"Added: `{role.name}`")
except:
await ctx.send("I don't have the perms to add that role.") | async def addrole(self, ctx, member: discord.Member, *, rolename: str):
"""Add a role to someone else."""
role = discord.utils.find(lambda m: rolename.lower() in m.name.lower(), ctx.message.guild.roles)
if not role:
return await ctx.send("That role does not exist.")
try:
await member.add_roles(role)
await ctx.send(f"Added: `{role.name}`")
except:
await ctx.send("I don't have the perms to add that role.") |
Python | async def removerole(self, ctx, member: discord.Member, *, rolename: str):
"""Remove a role from someone else."""
role = discord.utils.find(lambda m: rolename.lower() in m.name.lower(), ctx.message.guild.roles)
if not role:
return await ctx.send("That role does not exist.")
try:
await member.remove_roles(role)
await ctx.send(f"Removed: `{role.name}`")
except:
await ctx.send("I don't have the perms to add that role.") | async def removerole(self, ctx, member: discord.Member, *, rolename: str):
"""Remove a role from someone else."""
role = discord.utils.find(lambda m: rolename.lower() in m.name.lower(), ctx.message.guild.roles)
if not role:
return await ctx.send("That role does not exist.")
try:
await member.remove_roles(role)
await ctx.send(f"Removed: `{role.name}`")
except:
await ctx.send("I don't have the perms to add that role.") |
Python | async def hackban(self, ctx, userid, *, reason = None):
"""Ban someone not in the server"""
try:
userid = int(userid)
except:
await ctx.send("Invalid ID!")
try:
await ctx.guild.ban(discord.Object(userid), reason = reason)
except:
success = False
else:
success = True
if success:
async for entry in ctx.guild.audit_logs(limit = 1, user = ctx.guild.me,
action = discord.AuditLogAction.ban):
embed = await self.format_mod_embed(ctx, entry.target, success, "hackban")
else:
embed = await self.format_mod_embed(ctx, userid, success, "hackban")
await ctx.send(embed = embed) | async def hackban(self, ctx, userid, *, reason = None):
"""Ban someone not in the server"""
try:
userid = int(userid)
except:
await ctx.send("Invalid ID!")
try:
await ctx.guild.ban(discord.Object(userid), reason = reason)
except:
success = False
else:
success = True
if success:
async for entry in ctx.guild.audit_logs(limit = 1, user = ctx.guild.me,
action = discord.AuditLogAction.ban):
embed = await self.format_mod_embed(ctx, entry.target, success, "hackban")
else:
embed = await self.format_mod_embed(ctx, userid, success, "hackban")
await ctx.send(embed = embed) |
Python | async def mute(self, ctx, member: discord.Member, duration, *, reason = None):
"""Denies someone from chatting in all text channels and \
talking in voice channels for a specified duration
Example: luci mute @luciferchase 1h"""
unit = duration[-1]
if unit == "s":
time = int(duration[:-1])
longunit = "seconds"
elif unit == "m":
time = int(duration[:-1]) * 60
longunit = "minutes"
elif unit == "h":
time = int(duration[:-1]) * 60 * 60
longunit = "hours"
else:
await ctx.send("Invalid Unit! Use `s`, `m`, or `h`.")
return
progress = await ctx.send("Muting user!")
try:
for channel in ctx.guild.text_channels:
await channel.set_permissions(
member,
overwrite = discord.PermissionOverwrite(send_messages = False),
reason = reason
)
for channel in ctx.guild.voice_channels:
await channel.set_permissions(
member,
overwrite = discord.PermissionOverwrite(speak = False),
reason = reason
)
except:
success = False
else:
success = True
await progress.delete()
embed = await self.format_mod_embed(ctx, member, success, "mute", f"{str(duration[:-1])} {longunit}")
await ctx.send(embed = embed)
await asyncio.sleep(time)
try:
for channel in ctx.guild.channels:
await channel.set_permissions(member, overwrite = None, reason = reason)
except:
pass | async def mute(self, ctx, member: discord.Member, duration, *, reason = None):
"""Denies someone from chatting in all text channels and \
talking in voice channels for a specified duration
Example: luci mute @luciferchase 1h"""
unit = duration[-1]
if unit == "s":
time = int(duration[:-1])
longunit = "seconds"
elif unit == "m":
time = int(duration[:-1]) * 60
longunit = "minutes"
elif unit == "h":
time = int(duration[:-1]) * 60 * 60
longunit = "hours"
else:
await ctx.send("Invalid Unit! Use `s`, `m`, or `h`.")
return
progress = await ctx.send("Muting user!")
try:
for channel in ctx.guild.text_channels:
await channel.set_permissions(
member,
overwrite = discord.PermissionOverwrite(send_messages = False),
reason = reason
)
for channel in ctx.guild.voice_channels:
await channel.set_permissions(
member,
overwrite = discord.PermissionOverwrite(speak = False),
reason = reason
)
except:
success = False
else:
success = True
await progress.delete()
embed = await self.format_mod_embed(ctx, member, success, "mute", f"{str(duration[:-1])} {longunit}")
await ctx.send(embed = embed)
await asyncio.sleep(time)
try:
for channel in ctx.guild.channels:
await channel.set_permissions(member, overwrite = None, reason = reason)
except:
pass |
Python | async def unmute(self, ctx, member: discord.Member, *, reason = None):
"""Removes channel overrides for specified member"""
progress = await ctx.send("Unmuting user!")
try:
for channel in ctx.message.guild.channels:
await channel.set_permissions(member, overwrite = None, reason = reason)
except:
success = False
else:
success = True
await progress.delete()
embed = await self.format_mod_embed(ctx, member, success, "unmute")
await ctx.send(embed = embed) | async def unmute(self, ctx, member: discord.Member, *, reason = None):
"""Removes channel overrides for specified member"""
progress = await ctx.send("Unmuting user!")
try:
for channel in ctx.message.guild.channels:
await channel.set_permissions(member, overwrite = None, reason = reason)
except:
success = False
else:
success = True
await progress.delete()
embed = await self.format_mod_embed(ctx, member, success, "unmute")
await ctx.send(embed = embed) |
Python | async def chan(self, ctx, channel: discord.TextChannel = None, *, reason = None):
"""Lockdown a channel. Members will not be able to send a message."""
if channel is None:
channel = ctx.channel
try:
await channel.set_permissions(
ctx.guild.default_role,
overwrite = discord.PermissionOverwrite(send_messages = False),
reason = reason
)
except:
success = False
else:
success = True
embed = await self.format_mod_embed(ctx, ctx.author, success, "channel-locked", 0, channel)
await ctx.send(embed = embed) | async def chan(self, ctx, channel: discord.TextChannel = None, *, reason = None):
"""Lockdown a channel. Members will not be able to send a message."""
if channel is None:
channel = ctx.channel
try:
await channel.set_permissions(
ctx.guild.default_role,
overwrite = discord.PermissionOverwrite(send_messages = False),
reason = reason
)
except:
success = False
else:
success = True
embed = await self.format_mod_embed(ctx, ctx.author, success, "channel-locked", 0, channel)
await ctx.send(embed = embed) |
Python | async def _server(self, ctx, server: discord.Guild = None, *, reason = None):
"""Lockdown the server. Sed lyf."""
if server is None:
server = ctx.guild
progress = await ctx.send(f"Locking down {server.name}")
try:
for channel in server.channels:
await channel.set_permissions(
ctx.guild.default_role,
overwrite = discord.PermissionOverwrite(send_messages = False),
reason = reason
)
except:
success = False
else:
success = True
await progress.delete()
embed = await self.format_mod_embed(ctx, ctx.author, success, "server-locked", 0, server)
await ctx.send(embed = embed) | async def _server(self, ctx, server: discord.Guild = None, *, reason = None):
"""Lockdown the server. Sed lyf."""
if server is None:
server = ctx.guild
progress = await ctx.send(f"Locking down {server.name}")
try:
for channel in server.channels:
await channel.set_permissions(
ctx.guild.default_role,
overwrite = discord.PermissionOverwrite(send_messages = False),
reason = reason
)
except:
success = False
else:
success = True
await progress.delete()
embed = await self.format_mod_embed(ctx, ctx.author, success, "server-locked", 0, server)
await ctx.send(embed = embed) |
Python | async def channel(self, ctx, channel: discord.TextChannel = None, *, reason = None):
"""Unlock a channel. Members will be able to send message again."""
if channel is None:
channel = ctx.channel
try:
await channel.set_permissions(
ctx.guild.default_role,
overwrite = discord.PermissionOverwrite(send_messages = True),
reason = reason
)
except:
success = False
else:
success = True
embed = await self.format_mod_embed(ctx, ctx.author, success, "channel-unlocked", 0, channel)
await ctx.send(embed = embed) | async def channel(self, ctx, channel: discord.TextChannel = None, *, reason = None):
"""Unlock a channel. Members will be able to send message again."""
if channel is None:
channel = ctx.channel
try:
await channel.set_permissions(
ctx.guild.default_role,
overwrite = discord.PermissionOverwrite(send_messages = True),
reason = reason
)
except:
success = False
else:
success = True
embed = await self.format_mod_embed(ctx, ctx.author, success, "channel-unlocked", 0, channel)
await ctx.send(embed = embed) |
Python | async def server(self, ctx, server: discord.Guild = None, *, reason = None):
"""Unlock the server. Not sed anymore!"""
if server is None:
server = ctx.guild
progress = await ctx.send(f"Unlocking {server.name}")
try:
for channel in server.channels:
await channel.set_permissions(
ctx.guild.default_role,
overwrite = discord.PermissionOverwrite(send_messages = True),
reason = reason
)
except:
success = False
else:
success = True
await progress.delete()
embed = await self.format_mod_embed(ctx, ctx.author, success, "server-unlocked", 0, server)
await ctx.send(embed = embed) | async def server(self, ctx, server: discord.Guild = None, *, reason = None):
"""Unlock the server. Not sed anymore!"""
if server is None:
server = ctx.guild
progress = await ctx.send(f"Unlocking {server.name}")
try:
for channel in server.channels:
await channel.set_permissions(
ctx.guild.default_role,
overwrite = discord.PermissionOverwrite(send_messages = True),
reason = reason
)
except:
success = False
else:
success = True
await progress.delete()
embed = await self.format_mod_embed(ctx, ctx.author, success, "server-unlocked", 0, server)
await ctx.send(embed = embed) |
Python | async def contains(self, ctx, *, substr: str):
"""Removes all messages containing a substring.
The substring must be at least 3 characters long.
"""
if len(substr) < 3:
await ctx.send("The substring length must be at least 3 characters.")
else:
await self.do_removal(ctx, 100, lambda e: substr in e.content) | async def contains(self, ctx, *, substr: str):
"""Removes all messages containing a substring.
The substring must be at least 3 characters long.
"""
if len(substr) < 3:
await ctx.send("The substring length must be at least 3 characters.")
else:
await self.do_removal(ctx, 100, lambda e: substr in e.content) |
Python | async def _bots(self, ctx, search=100, prefix=None):
"""Removes a bot user's messages and messages with their optional prefix."""
getprefix = prefix if prefix else self.config["prefix"]
def predicate(m):
return (m.webhook_id is None and m.author.bot) or m.content.startswith(tuple(getprefix))
await self.do_removal(ctx, search, predicate) | async def _bots(self, ctx, search=100, prefix=None):
"""Removes a bot user's messages and messages with their optional prefix."""
getprefix = prefix if prefix else self.config["prefix"]
def predicate(m):
return (m.webhook_id is None and m.author.bot) or m.content.startswith(tuple(getprefix))
await self.do_removal(ctx, search, predicate) |
Python | async def _emojis(self, ctx, search=100):
"""Removes all messages containing custom emoji."""
custom_emoji = re.compile(r"<a?:(.*?):(\d{17,21})>|[\u263a-\U0001f645]")
def predicate(m):
return custom_emoji.search(m.content)
await self.do_removal(ctx, search, predicate) | async def _emojis(self, ctx, search=100):
"""Removes all messages containing custom emoji."""
custom_emoji = re.compile(r"<a?:(.*?):(\d{17,21})>|[\u263a-\U0001f645]")
def predicate(m):
return custom_emoji.search(m.content)
await self.do_removal(ctx, search, predicate) |
Python | async def _reactions(self, ctx, search=100):
"""Removes all reactions from messages that have them."""
if search > 2000:
return await ctx.send(f"Too many messages to search for ({search}/2000)")
total_reactions = 0
async for message in ctx.history(limit=search, before=ctx.message):
if len(message.reactions):
total_reactions += sum(r.count for r in message.reactions)
await message.clear_reactions()
await ctx.send(f"Successfully removed {total_reactions} reactions.") | async def _reactions(self, ctx, search=100):
"""Removes all reactions from messages that have them."""
if search > 2000:
return await ctx.send(f"Too many messages to search for ({search}/2000)")
total_reactions = 0
async for message in ctx.history(limit=search, before=ctx.message):
if len(message.reactions):
total_reactions += sum(r.count for r in message.reactions)
await message.clear_reactions()
await ctx.send(f"Successfully removed {total_reactions} reactions.") |
Python | async def alphanato(self, ctx, *args):
"""Get military phonetics of every letter in english alphabet.
Usage: You can get all the phonetics by simply calling `luci nda` or `luci alphanato`
You can also get phonetics for a particular letter or multiple letter (separated by space) by doing:
`luci nda l` or `luci nda l m n o`"""
phonetics = ["Alpha", "Bravo", "Charlie", "Delta", "Echo", "Foxtrot", "Golf",\
"Hotel", "India", "Juliett", "Kilo", "Lima", "Mike", "November", "Oscar", "Papa", \
"Quebec", "Romeo", "Sierra", "Tango", "Uniform", "Victor", \
"Whiskey", "X-Ray", "Yankee", "Zulu"]
message_string = ""
if (args == ()):
for index in range(26):
message_string += f"{chr(97 + index)}: {phonetics[index]}\n"
else:
for letter in args:
mssg_string += f"{letter}: {''.join([i for i in phonetics if i[0].lower() == letter])}\n"
await ctx.send(f"```ml\n{mssg_string}```") | async def alphanato(self, ctx, *args):
"""Get military phonetics of every letter in english alphabet.
Usage: You can get all the phonetics by simply calling `luci nda` or `luci alphanato`
You can also get phonetics for a particular letter or multiple letter (separated by space) by doing:
`luci nda l` or `luci nda l m n o`"""
phonetics = ["Alpha", "Bravo", "Charlie", "Delta", "Echo", "Foxtrot", "Golf",\
"Hotel", "India", "Juliett", "Kilo", "Lima", "Mike", "November", "Oscar", "Papa", \
"Quebec", "Romeo", "Sierra", "Tango", "Uniform", "Victor", \
"Whiskey", "X-Ray", "Yankee", "Zulu"]
message_string = ""
if (args == ()):
for index in range(26):
message_string += f"{chr(97 + index)}: {phonetics[index]}\n"
else:
for letter in args:
mssg_string += f"{letter}: {''.join([i for i in phonetics if i[0].lower() == letter])}\n"
await ctx.send(f"```ml\n{mssg_string}```") |
Python | async def avatar(self, ctx, *, user: discord.Member = None):
"""Returns user avatar URL.
User argument can be user mention, nickname, username, user ID.
Default to yourself when no argument is supplied.
"""
author = ctx.author
if not user:
user = author
if user.is_avatar_animated():
url = user.avatar_url_as(format = "gif")
if not user.is_avatar_animated():
url = user.avatar_url_as(static_format = "png")
await ctx.send("{}'s Avatar URL : {}".format(user.name, url)) | async def avatar(self, ctx, *, user: discord.Member = None):
"""Returns user avatar URL.
User argument can be user mention, nickname, username, user ID.
Default to yourself when no argument is supplied.
"""
author = ctx.author
if not user:
user = author
if user.is_avatar_animated():
url = user.avatar_url_as(format = "gif")
if not user.is_avatar_animated():
url = user.avatar_url_as(static_format = "png")
await ctx.send("{}'s Avatar URL : {}".format(user.name, url)) |
Python | async def catfact(self, ctx):
"""Get a random fact about cats."""
async with self.session.get("https://catfact.ninja/fact") as response:
data = await response.json()
fact = data["fact"]
embed = discord.Embed(title = "Catfact ❤", description = fact, color = 0x00ffff)
await ctx.send(embed = embed) | async def catfact(self, ctx):
"""Get a random fact about cats."""
async with self.session.get("https://catfact.ninja/fact") as response:
data = await response.json()
fact = data["fact"]
embed = discord.Embed(title = "Catfact ❤", description = fact, color = 0x00ffff)
await ctx.send(embed = embed) |
Python | async def dogfact(self, ctx):
"""Get a random fact about dogs. [Bit slow to run for the first time though (API limitation)]"""
async with self.session.get(
"https://dog-facts-api.herokuapp.com/api/v1/resources/dogs?number=1") as response:
data = await response.json()
fact = data[0]["fact"]
embed = discord.Embed(title = "Dogfact ❤", description = fact, color = 0x00ffff)
await ctx.send(embed = embed) | async def dogfact(self, ctx):
"""Get a random fact about dogs. [Bit slow to run for the first time though (API limitation)]"""
async with self.session.get(
"https://dog-facts-api.herokuapp.com/api/v1/resources/dogs?number=1") as response:
data = await response.json()
fact = data[0]["fact"]
embed = discord.Embed(title = "Dogfact ❤", description = fact, color = 0x00ffff)
await ctx.send(embed = embed) |
Python | async def insult(self, ctx, member: discord.Member = None):
"""Insult someone. They are really evil though, take care."""
if (member is None):
member = ctx.author
async with self.session.get("https://evilinsult.com/generate_insult.php") as response:
text = await response.text()
embed = discord.Embed(
title = f"{ctx.author.name} insulted {member.name}",
description = text,
color = 0xf34949
)
await ctx.send(embed = embed) | async def insult(self, ctx, member: discord.Member = None):
"""Insult someone. They are really evil though, take care."""
if (member is None):
member = ctx.author
async with self.session.get("https://evilinsult.com/generate_insult.php") as response:
text = await response.text()
embed = discord.Embed(
title = f"{ctx.author.name} insulted {member.name}",
description = text,
color = 0xf34949
)
await ctx.send(embed = embed) |
Python | async def isitdown(self, ctx: commands.Context, url_to_check):
"""
Check if the provided url is down
Alias: iid
"""
try:
resp, url = await self._check_if_down(url_to_check)
except AssertionError:
await ctx.send("Invalid URL provided. Make sure not to include `https://`")
return
# log.debug(resp)
if resp["isitdown"]:
await ctx.send(f"{url} is DOWN!")
else:
await ctx.send(f"{url} is UP!") | async def isitdown(self, ctx: commands.Context, url_to_check):
"""
Check if the provided url is down
Alias: iid
"""
try:
resp, url = await self._check_if_down(url_to_check)
except AssertionError:
await ctx.send("Invalid URL provided. Make sure not to include `https://`")
return
# log.debug(resp)
if resp["isitdown"]:
await ctx.send(f"{url} is DOWN!")
else:
await ctx.send(f"{url} is UP!") |
Python | async def nitro(self, ctx, emoji_name):
"""Send an animated emoji even if you don't have nitro. \
Send just its name and the bot will send the emote.
Usage: `luci n nacho`"""
# # Delete original message
# await ctx.message.delete()
# First get all the emojies the bot has access and then Send emoji
emoji_found = False
for emoji in self.bot.emojis:
if (emoji.name in emoji_name):
await ctx.send(emoji.url)
emoji_found = True
if (not emoji_found):
await ctx.send("Emoji not found <a:awkward1:839499334555140157>") | async def nitro(self, ctx, emoji_name):
"""Send an animated emoji even if you don't have nitro. \
Send just its name and the bot will send the emote.
Usage: `luci n nacho`"""
# # Delete original message
# await ctx.message.delete()
# First get all the emojies the bot has access and then Send emoji
emoji_found = False
for emoji in self.bot.emojis:
if (emoji.name in emoji_name):
await ctx.send(emoji.url)
emoji_found = True
if (not emoji_found):
await ctx.send("Emoji not found <a:awkward1:839499334555140157>") |
Python | async def poll(self, ctx, *message):
"""Do a poll
Syntax: luci poll <question> |option 1|option 2|option 3|...
For eg: luci poll Is luci geh? |Yes|No|You are geh|
You can omit options to make it automatically a two option poll
"""
# Delete original message
await ctx.message.delete()
message = " ".join(message)
time = datetime.now().strftime("%m/%d/%Y %H:%M:%S")
# CHeck if there is an actual question given or not
if (len(message) == 0):
await ctx.send("Bruh! Send a question atlease 🤦♂️")
# await ctx.invoke(self.bot.get_command("help"), "dm")
return
# Get index of question and options separator "|"
index = message.find("|")
# Check if there are any options or not
if (index != -1):
# Get question and options from the message
question = message[:message.find("|")]
options = [option for option in message[message.find("|") + 1:].split("|") if option != ""]
# Check if there are more than 26 options
if (len(options) > 20):
await ctx.send("Bruh! Please give maximum 20 options 🤦♂️.",
" You can only react 20 times to a message.")
return
reactions = ["🇦", "🇧", "🇨", "🇩", "🇪", "🇫", "🇬", "🇭", "🇮", "J", "🇰", "🇱", "🇲", "🇳", "🇴", "🇵", \
"🇶", "🇷", "🇸", "🇹", "🇺", "🇻", "🇼", "🇽", "🇾", "🇿"]
options_string = ""
for index in range(len(options)):
options_string += f"{reactions[index]} {options[index]}\n"
embed = discord.Embed(
title = question,
description = options_string,
color = 0x00FFFF
)
embed.set_footer(text = time)
embed.set_author(name = ctx.author.name, icon_url = ctx.author.avatar_url)
poll_embed = await ctx.send(embed = embed)
for index in range(len(options)):
await poll_embed.add_reaction(reactions[index])
# Else by default make a dual option poll
else:
question = "".join(message)
embed = discord.Embed(
title = question,
color = 0x00FFFF
)
embed.set_footer(text = time)
embed.set_author(name = ctx.author.name, icon_url = ctx.author.avatar_url)
poll_embed = await ctx.send(embed = embed)
await poll_embed.add_reaction("👍")
await poll_embed.add_reaction("👎") | async def poll(self, ctx, *message):
"""Do a poll
Syntax: luci poll <question> |option 1|option 2|option 3|...
For eg: luci poll Is luci geh? |Yes|No|You are geh|
You can omit options to make it automatically a two option poll
"""
# Delete original message
await ctx.message.delete()
message = " ".join(message)
time = datetime.now().strftime("%m/%d/%Y %H:%M:%S")
# CHeck if there is an actual question given or not
if (len(message) == 0):
await ctx.send("Bruh! Send a question atlease 🤦♂️")
# await ctx.invoke(self.bot.get_command("help"), "dm")
return
# Get index of question and options separator "|"
index = message.find("|")
# Check if there are any options or not
if (index != -1):
# Get question and options from the message
question = message[:message.find("|")]
options = [option for option in message[message.find("|") + 1:].split("|") if option != ""]
# Check if there are more than 26 options
if (len(options) > 20):
await ctx.send("Bruh! Please give maximum 20 options 🤦♂️.",
" You can only react 20 times to a message.")
return
reactions = ["🇦", "🇧", "🇨", "🇩", "🇪", "🇫", "🇬", "🇭", "🇮", "J", "🇰", "🇱", "🇲", "🇳", "🇴", "🇵", \
"🇶", "🇷", "🇸", "🇹", "🇺", "🇻", "🇼", "🇽", "🇾", "🇿"]
options_string = ""
for index in range(len(options)):
options_string += f"{reactions[index]} {options[index]}\n"
embed = discord.Embed(
title = question,
description = options_string,
color = 0x00FFFF
)
embed.set_footer(text = time)
embed.set_author(name = ctx.author.name, icon_url = ctx.author.avatar_url)
poll_embed = await ctx.send(embed = embed)
for index in range(len(options)):
await poll_embed.add_reaction(reactions[index])
# Else by default make a dual option poll
else:
question = "".join(message)
embed = discord.Embed(
title = question,
color = 0x00FFFF
)
embed.set_footer(text = time)
embed.set_author(name = ctx.author.name, icon_url = ctx.author.avatar_url)
poll_embed = await ctx.send(embed = embed)
await poll_embed.add_reaction("👍")
await poll_embed.add_reaction("👎") |
Python | async def urban(self, ctx, *, search: commands.clean_content):
""" Find the 'best' definition to your words """
async with ctx.channel.typing():
try:
async with self.session.get(f"https://api.urbandictionary.com/v0/define?term={search}") \
as response:
data = await response.json()
except Exception:
return await ctx.send("Urban API returned invalid data... might be down atm.")
if not len(data["list"]):
return await ctx.send("Couldn't find your search in the dictionary...")
result = sorted(data["list"], reverse = True, key=lambda i: int(i["thumbs_up"]))[0]
definition = result["definition"]
if len(definition) >= 1000:
definition = definition[:1000]
definition = definition.rsplit(" ", 1)[0]
definition += "..."
await ctx.send(f"📚 Definitions for **{result['word']}**```fix\n{definition}```") | async def urban(self, ctx, *, search: commands.clean_content):
""" Find the 'best' definition to your words """
async with ctx.channel.typing():
try:
async with self.session.get(f"https://api.urbandictionary.com/v0/define?term={search}") \
as response:
data = await response.json()
except Exception:
return await ctx.send("Urban API returned invalid data... might be down atm.")
if not len(data["list"]):
return await ctx.send("Couldn't find your search in the dictionary...")
result = sorted(data["list"], reverse = True, key=lambda i: int(i["thumbs_up"]))[0]
definition = result["definition"]
if len(definition) >= 1000:
definition = definition[:1000]
definition = definition.rsplit(" ", 1)[0]
definition += "..."
await ctx.send(f"📚 Definitions for **{result['word']}**```fix\n{definition}```") |
Python | async def ipl(self, ctx):
"""Get info about last match and upcoming matches"""
# Fetch details first
last_match_details, last_match_details_2, \
next_match_details, next_match_details_2 = self.fetch_matches()
embed = discord.Embed(
color = 0x25dbf4, # Blue
title = "Matches"
)
embed.add_field(
name = "Next Match",
value = f'{next_match_details["team-1"]} \nvs \
\n{next_match_details["team-2"]}',
inline = False
)
# If there is a second match on that day
if (next_match_details_2 != False):
embed.add_field(
name = "Match 2",
value = f'{next_match_details_2["team-1"]} \nvs \
\n{next_match_details_2["team-2"]}',
inline = False
)
embed.add_field(
name = "Last Match",
value = f'{last_match_details["team-1"]} \nvs \n{last_match_details["team-2"]}',
inline = True
)
embed.add_field(
name = "Winner",
value = f'{last_match_details["winner_team"]}',
inline = True
)
image_url = self.image_url[last_match_details["winner_team"]]
# If there was another match yesterday
if (last_match_details_2 != False):
embed.add_field(
name = "Match 2",
value = f'{last_match_details_2["team-1"]} \nvs \
\n{last_match_details_2["team-2"]}',
inline = False
)
embed.add_field(
name = "Winner",
value = f'{last_match_details_2["winner_team"]}',
inline = True
)
# Update the image to show
image_url = self.image_url[last_match_details_2["winner_team"]]
embed.set_image(url = image_url)
embed.set_thumbnail(url = self.ipl_logo)
await ctx.send(embed = embed) | async def ipl(self, ctx):
"""Get info about last match and upcoming matches"""
# Fetch details first
last_match_details, last_match_details_2, \
next_match_details, next_match_details_2 = self.fetch_matches()
embed = discord.Embed(
color = 0x25dbf4, # Blue
title = "Matches"
)
embed.add_field(
name = "Next Match",
value = f'{next_match_details["team-1"]} \nvs \
\n{next_match_details["team-2"]}',
inline = False
)
# If there is a second match on that day
if (next_match_details_2 != False):
embed.add_field(
name = "Match 2",
value = f'{next_match_details_2["team-1"]} \nvs \
\n{next_match_details_2["team-2"]}',
inline = False
)
embed.add_field(
name = "Last Match",
value = f'{last_match_details["team-1"]} \nvs \n{last_match_details["team-2"]}',
inline = True
)
embed.add_field(
name = "Winner",
value = f'{last_match_details["winner_team"]}',
inline = True
)
image_url = self.image_url[last_match_details["winner_team"]]
# If there was another match yesterday
if (last_match_details_2 != False):
embed.add_field(
name = "Match 2",
value = f'{last_match_details_2["team-1"]} \nvs \
\n{last_match_details_2["team-2"]}',
inline = False
)
embed.add_field(
name = "Winner",
value = f'{last_match_details_2["winner_team"]}',
inline = True
)
# Update the image to show
image_url = self.image_url[last_match_details_2["winner_team"]]
embed.set_image(url = image_url)
embed.set_thumbnail(url = self.ipl_logo)
await ctx.send(embed = embed) |
Python | async def standings(self, ctx):
"""Get current standings of Sattebaaz Championship"""
embed = await self.fetch_standings()
await ctx.send(embed = embed) | async def standings(self, ctx):
"""Get current standings of Sattebaaz Championship"""
embed = await self.fetch_standings()
await ctx.send(embed = embed) |
Python | def info(message: str, member: Union[Member, User], title: str = "Info") -> Embed:
"""
Constructs success embed with custom title and description.
Color depends on passed member top role color.
:param message: embed description
:param member: member object to get the color of it's top role from
:param title: title of embed, defaults to "Info"
:return: Embed object
"""
return Embed(title=title, description=message,
color=get_top_role_color(member, fallback_color=Color.green())) | def info(message: str, member: Union[Member, User], title: str = "Info") -> Embed:
"""
Constructs success embed with custom title and description.
Color depends on passed member top role color.
:param message: embed description
:param member: member object to get the color of it's top role from
:param title: title of embed, defaults to "Info"
:return: Embed object
"""
return Embed(title=title, description=message,
color=get_top_role_color(member, fallback_color=Color.green())) |
Python | def success(message: str, member: Union[Member, User] = None) -> Embed:
"""
Constructs success embed with fixed title 'Success' and color depending
on passed member top role color.
If member is not passed or if it's a User (DMs) green color will be used.
:param message: embed description
:param member: member object to get the color of it's top role from,
usually our bot member object from the specific guild.
:return: Embed object
"""
return simple_embed(f"😁︱{message}", "",
get_top_role_color(member, fallback_color=Color.green())) | def success(message: str, member: Union[Member, User] = None) -> Embed:
"""
Constructs success embed with fixed title 'Success' and color depending
on passed member top role color.
If member is not passed or if it's a User (DMs) green color will be used.
:param message: embed description
:param member: member object to get the color of it's top role from,
usually our bot member object from the specific guild.
:return: Embed object
"""
return simple_embed(f"😁︱{message}", "",
get_top_role_color(member, fallback_color=Color.green())) |
Python | def failure(message: str) -> Embed:
"""
Constructs failure embed with fixed title 'Failure' and color red
:param message: embed description
:return: Embed object
"""
return simple_embed(f"🥺︱{message}", "", Color.red()) | def failure(message: str) -> Embed:
"""
Constructs failure embed with fixed title 'Failure' and color red
:param message: embed description
:return: Embed object
"""
return simple_embed(f"🥺︱{message}", "", Color.red()) |
Python | async def convert(self, ctx, tz_1, tz_2, *timestamp):
"""Example: luci convert london kolkata 12:56"""
timestamp = timestamp[0]
if (":" not in timestamp):
timestamp += ":00"
if (len(timestamp.split(":")[0]) == 1):
timestamp = "0" + timestamp
# Convert timestamp to datetime object
timestamp = datetime.strptime(timestamp, self.fmt)
if (tz_1.lower() == "usa"):
tz_1 = "america"
if (tz_2.lower() == "usa"):
tz_2 = "america"
list_of_timezones = list(pytz.all_timezones)
found_1, found_2 = (False, False)
for i in range(len(list_of_timezones)):
if (found_1 and found_2):
break
if (tz_1.title() in list_of_timezones[i]):
tz_1 = list_of_timezones[i]
found_1 = True
elif (tz_2.title() in list_of_timezones[i]):
tz_2 = list_of_timezones[i]
found_2 = True
else:
if (not found_1):
country_not_found = "first timezone"
elif (not found_2):
country_not_found = "second timezone"
else:
country_not_found = "both the timezone"
await ctx.send(f"Uh oh! Your {country_not_found} not found 👀")
await ctx.send("You can check list of timezones using `luci timezones [continent name]`")
return
# First we will get the time difference between the timezones
# Current time in UTC
now_utc = datetime.now(pytz.timezone("UTC"))
time_in_tz1 = now_utc.astimezone(pytz.timezone(tz_1))
time_in_tz2 = now_utc.astimezone(pytz.timezone(tz_2))
# Stip all timezone info from datetime object
time_in_tz1 = datetime.strptime(time_in_tz1.strftime(self.fmt), self.fmt)
time_in_tz2 = datetime.strptime(time_in_tz2.strftime(self.fmt), self.fmt)
if (time_in_tz2 > time_in_tz1):
difference_in_time = time_in_tz2 - time_in_tz1
timestamp_2 = timestamp + difference_in_time
else:
difference_in_time = time_in_tz1 - time_in_tz2
timestamp_2 = timestamp - difference_in_time
await ctx.send("```css\n{}: {}\n{}: {}```".format(
tz_1, timestamp.strftime(self.fmt), tz_2, timestamp_2.strftime(self.fmt))) | async def convert(self, ctx, tz_1, tz_2, *timestamp):
"""Example: luci convert london kolkata 12:56"""
timestamp = timestamp[0]
if (":" not in timestamp):
timestamp += ":00"
if (len(timestamp.split(":")[0]) == 1):
timestamp = "0" + timestamp
# Convert timestamp to datetime object
timestamp = datetime.strptime(timestamp, self.fmt)
if (tz_1.lower() == "usa"):
tz_1 = "america"
if (tz_2.lower() == "usa"):
tz_2 = "america"
list_of_timezones = list(pytz.all_timezones)
found_1, found_2 = (False, False)
for i in range(len(list_of_timezones)):
if (found_1 and found_2):
break
if (tz_1.title() in list_of_timezones[i]):
tz_1 = list_of_timezones[i]
found_1 = True
elif (tz_2.title() in list_of_timezones[i]):
tz_2 = list_of_timezones[i]
found_2 = True
else:
if (not found_1):
country_not_found = "first timezone"
elif (not found_2):
country_not_found = "second timezone"
else:
country_not_found = "both the timezone"
await ctx.send(f"Uh oh! Your {country_not_found} not found 👀")
await ctx.send("You can check list of timezones using `luci timezones [continent name]`")
return
# First we will get the time difference between the timezones
# Current time in UTC
now_utc = datetime.now(pytz.timezone("UTC"))
time_in_tz1 = now_utc.astimezone(pytz.timezone(tz_1))
time_in_tz2 = now_utc.astimezone(pytz.timezone(tz_2))
# Stip all timezone info from datetime object
time_in_tz1 = datetime.strptime(time_in_tz1.strftime(self.fmt), self.fmt)
time_in_tz2 = datetime.strptime(time_in_tz2.strftime(self.fmt), self.fmt)
if (time_in_tz2 > time_in_tz1):
difference_in_time = time_in_tz2 - time_in_tz1
timestamp_2 = timestamp + difference_in_time
else:
difference_in_time = time_in_tz1 - time_in_tz2
timestamp_2 = timestamp - difference_in_time
await ctx.send("```css\n{}: {}\n{}: {}```".format(
tz_1, timestamp.strftime(self.fmt), tz_2, timestamp_2.strftime(self.fmt))) |
Python | async def mods(self, ctx):
""" Check which mods are online on current guild """
message = ""
all_status = {
"online": {"users": [], "emoji": "🟢"},
"idle": {"users": [], "emoji": "🟡"},
"dnd": {"users": [], "emoji": "🔴"},
"offline": {"users": [], "emoji": "⚫"}
}
for user in ctx.guild.members:
user_perm = ctx.channel.permissions_for(user)
if user_perm.kick_members or user_perm.ban_members:
if not user.bot:
all_status[str(user.status)]["users"].append(f"{user}")
for i in all_status:
if all_status[i]["users"]:
message += f"{all_status[i]['emoji']} {', '.join(all_status[i]['users'])}\n"
await ctx.send(f"Mods in **{ctx.guild.name}**\n{message}") | async def mods(self, ctx):
""" Check which mods are online on current guild """
message = ""
all_status = {
"online": {"users": [], "emoji": "🟢"},
"idle": {"users": [], "emoji": "🟡"},
"dnd": {"users": [], "emoji": "🔴"},
"offline": {"users": [], "emoji": "⚫"}
}
for user in ctx.guild.members:
user_perm = ctx.channel.permissions_for(user)
if user_perm.kick_members or user_perm.ban_members:
if not user.bot:
all_status[str(user.status)]["users"].append(f"{user}")
for i in all_status:
if all_status[i]["users"]:
message += f"{all_status[i]['emoji']} {', '.join(all_status[i]['users'])}\n"
await ctx.send(f"Mods in **{ctx.guild.name}**\n{message}") |
Python | async def photo(self, ctx, *query):
""" Get a photo from Unsplash.
For eg. `luci photo messi`
Default to a random photo
"""
endpoint_list = {
"search": "/search/photos",
"random": "/photos/random"
}
params = {
"client_id": self.unsplash_client_id,
"query": f"{' '.join(query)}",
"page": "1",
}
if (len(query) != 0):
endpoint = endpoint_list["search"]
else:
endpoint = endpoint_list["random"]
async with self.session.get(self.unsplash_api + endpoint, params = params) as response:
data = await response.json()
if (len(query) != 0):
if (str(response.status)[:2] == 40):
self.log.error(f"API Rate limit hit for this hour {datetime.now()}")
self.log.error(f"Status Code: {response.status}")
async with self.session.get(self.dog_api) as response:
data = await response.json()
data = data[0]
embed = discord.Embed(
title = "Sorry!",
color = 0xea1010 # Red
)
embed.add_field(
name = "50/50 Requests of this Hour reached. Try again next Hour.",
value = "Maybe give money to @luciferchase? Anyway here is a cute doggo ❤"
)
embed.set_image(url = data["url"])
await ctx.send(embed = embed)
return
elif (data["results"] == []):
self.log.error(f"No photo found for the query : {' '.join(query)}")
async with self.session.get(self.dog_api) as response:
data = await response.json()
data = data[0]
embed = discord.Embed(
title = "No Photo Found",
color = 0xea1010 # Red
)
embed.add_field(
name = f"No photo found for the query : `{' '.join(query)}`",
value = "Maybe change your query? Anyway here is a cute doggo ❤"
)
embed.set_image(url = data["url"])
await ctx.send(embed = embed)
return
likes = {}
for photo in data["results"]:
likes[photo["id"]] = photo["likes"]
photo_info = [photo for photo in data["results"] if photo["id"] == max(likes)][0]
# In case there is no particular photo requested, get a random photo
else:
photo_info = data
if (photo_info["description"] == None):
if (photo_info["alt_description"] != None):
photo_info["description"] = photo_info["alt_description"]
else:
photo_info["description"] = "Photo"
embed = discord.Embed(
title = f"{' '.join(query)}".title(),
description = f'{photo_info["description"][:50]}...',
url = photo_info["urls"]["regular"],
color = 0xf5009b # Pinkish
)
embed.set_author(
name = photo_info["user"]["name"],
url = f'https://unsplash.com/@{photo_info["user"]["username"]}',
icon_url = photo_info["user"]["profile_image"]["large"]
)
embed.set_thumbnail(url = photo_info["user"]["profile_image"]["large"])
embed.set_image(url = photo_info["urls"]["full"])
embed.set_footer(text = f"❤️ {photo_info['likes']}")
await ctx.send(embed = embed) | async def photo(self, ctx, *query):
""" Get a photo from Unsplash.
For eg. `luci photo messi`
Default to a random photo
"""
endpoint_list = {
"search": "/search/photos",
"random": "/photos/random"
}
params = {
"client_id": self.unsplash_client_id,
"query": f"{' '.join(query)}",
"page": "1",
}
if (len(query) != 0):
endpoint = endpoint_list["search"]
else:
endpoint = endpoint_list["random"]
async with self.session.get(self.unsplash_api + endpoint, params = params) as response:
data = await response.json()
if (len(query) != 0):
if (str(response.status)[:2] == 40):
self.log.error(f"API Rate limit hit for this hour {datetime.now()}")
self.log.error(f"Status Code: {response.status}")
async with self.session.get(self.dog_api) as response:
data = await response.json()
data = data[0]
embed = discord.Embed(
title = "Sorry!",
color = 0xea1010 # Red
)
embed.add_field(
name = "50/50 Requests of this Hour reached. Try again next Hour.",
value = "Maybe give money to @luciferchase? Anyway here is a cute doggo ❤"
)
embed.set_image(url = data["url"])
await ctx.send(embed = embed)
return
elif (data["results"] == []):
self.log.error(f"No photo found for the query : {' '.join(query)}")
async with self.session.get(self.dog_api) as response:
data = await response.json()
data = data[0]
embed = discord.Embed(
title = "No Photo Found",
color = 0xea1010 # Red
)
embed.add_field(
name = f"No photo found for the query : `{' '.join(query)}`",
value = "Maybe change your query? Anyway here is a cute doggo ❤"
)
embed.set_image(url = data["url"])
await ctx.send(embed = embed)
return
likes = {}
for photo in data["results"]:
likes[photo["id"]] = photo["likes"]
photo_info = [photo for photo in data["results"] if photo["id"] == max(likes)][0]
# In case there is no particular photo requested, get a random photo
else:
photo_info = data
if (photo_info["description"] == None):
if (photo_info["alt_description"] != None):
photo_info["description"] = photo_info["alt_description"]
else:
photo_info["description"] = "Photo"
embed = discord.Embed(
title = f"{' '.join(query)}".title(),
description = f'{photo_info["description"][:50]}...',
url = photo_info["urls"]["regular"],
color = 0xf5009b # Pinkish
)
embed.set_author(
name = photo_info["user"]["name"],
url = f'https://unsplash.com/@{photo_info["user"]["username"]}',
icon_url = photo_info["user"]["profile_image"]["large"]
)
embed.set_thumbnail(url = photo_info["user"]["profile_image"]["large"])
embed.set_image(url = photo_info["urls"]["full"])
embed.set_footer(text = f"❤️ {photo_info['likes']}")
await ctx.send(embed = embed) |
Python | async def wallpaper(self, ctx):
""" Get Bing's daily wallpaper of the day
"""
async with self.session.get(self.bing_api) as response:
data = await response.json()
await ctx.send(data["images"][0]["title"])
wallpaper = await ctx.send(f'http://bing.com{data["images"][0]["url"]}')
await wallpaper.add_reaction("❤️")
await wallpaper.add_reaction("👍")
await wallpaper.add_reaction("👎") | async def wallpaper(self, ctx):
""" Get Bing's daily wallpaper of the day
"""
async with self.session.get(self.bing_api) as response:
data = await response.json()
await ctx.send(data["images"][0]["title"])
wallpaper = await ctx.send(f'http://bing.com{data["images"][0]["url"]}')
await wallpaper.add_reaction("❤️")
await wallpaper.add_reaction("👍")
await wallpaper.add_reaction("👎") |
Python | async def redpanda(self, ctx):
""" Get a random red panda pic
"""
async with self.session.get(self.red_panda_api) as response:
data = await response.json()
embed = discord.Embed(
title = "Here is a cute red panda ❤",
color = 0xf34949 # Red
)
embed.set_image(url = data["link"])
await ctx.send(embed = embed) | async def redpanda(self, ctx):
""" Get a random red panda pic
"""
async with self.session.get(self.red_panda_api) as response:
data = await response.json()
embed = discord.Embed(
title = "Here is a cute red panda ❤",
color = 0xf34949 # Red
)
embed.set_image(url = data["link"])
await ctx.send(embed = embed) |
Python | async def math(self, ctx, *expression):
""" Solve a math expression. Supports very complex problems too.
For eg. `luci math sin(pi/4)`
"""
log = logging.getLogger("math")
if (expression == ""):
embed = discord.Embed(
color = 0xf34949, # Red
title = "Input A Expression"
)
await ctx.send(embed = embed)
return
start = time.monotonic()
api = "http://api.mathjs.org/v4/"
params = {
"expr": "".join(expression)
}
async with self.session.get(api, params = params) as response:
end = time.monotonic()
if (response.status != 200):
log.info(expression)
log.error(await response.text())
return
embed = discord.Embed(
color = 0xf34949, # Red
title = await response.text()
)
embed.add_field(
name = "Your Input:",
value = f'`{"".join(expression)}`',
inline = True
)
embed.add_field(
name = "Answer:",
value = f"`{await response.text()}`",
inline = True
)
embed.set_footer(text = f"Calculated in {round((end - start) * 1000, 3)} ms")
await ctx.send(embed = embed) | async def math(self, ctx, *expression):
""" Solve a math expression. Supports very complex problems too.
For eg. `luci math sin(pi/4)`
"""
log = logging.getLogger("math")
if (expression == ""):
embed = discord.Embed(
color = 0xf34949, # Red
title = "Input A Expression"
)
await ctx.send(embed = embed)
return
start = time.monotonic()
api = "http://api.mathjs.org/v4/"
params = {
"expr": "".join(expression)
}
async with self.session.get(api, params = params) as response:
end = time.monotonic()
if (response.status != 200):
log.info(expression)
log.error(await response.text())
return
embed = discord.Embed(
color = 0xf34949, # Red
title = await response.text()
)
embed.add_field(
name = "Your Input:",
value = f'`{"".join(expression)}`',
inline = True
)
embed.add_field(
name = "Answer:",
value = f"`{await response.text()}`",
inline = True
)
embed.set_footer(text = f"Calculated in {round((end - start) * 1000, 3)} ms")
await ctx.send(embed = embed) |
Python | async def factorise(self, ctx, *expression):
"""Factorise a polynomial equation. Please put tan(x) instead of tanx and so on for all trigonametric functions.
Usage: `luci factorise x^2 + 2x`"""
expression = "".join(expression)
loading = await ctx.send("Calculating...")
await ctx.trigger_typing()
embed = await self.get_result(ctx = ctx, operation = "factor", expression = expression)
# First delete the calculating message
await loading.delete()
await ctx.send(embed = embed) | async def factorise(self, ctx, *expression):
"""Factorise a polynomial equation. Please put tan(x) instead of tanx and so on for all trigonametric functions.
Usage: `luci factorise x^2 + 2x`"""
expression = "".join(expression)
loading = await ctx.send("Calculating...")
await ctx.trigger_typing()
embed = await self.get_result(ctx = ctx, operation = "factor", expression = expression)
# First delete the calculating message
await loading.delete()
await ctx.send(embed = embed) |
Python | async def derive(self, ctx, *expression):
"""Differentiate a polynomial. Please put tan(x) instead of tanx and so on for all trigonametric functions.
Usage: `luci derive x^2 + 2x`"""
expression = "".join(expression)
loading = await ctx.send("Calculating...")
await ctx.trigger_typing()
embed = await self.get_result(ctx = ctx, operation = "derive", expression = expression)
# First delete the calculating message
await loading.delete()
await ctx.send(embed = embed) | async def derive(self, ctx, *expression):
"""Differentiate a polynomial. Please put tan(x) instead of tanx and so on for all trigonametric functions.
Usage: `luci derive x^2 + 2x`"""
expression = "".join(expression)
loading = await ctx.send("Calculating...")
await ctx.trigger_typing()
embed = await self.get_result(ctx = ctx, operation = "derive", expression = expression)
# First delete the calculating message
await loading.delete()
await ctx.send(embed = embed) |
Python | async def integrate(self, ctx, *expression):
"""Integrate a polynomial. Please put tan(x) instead of tanx and so on for all trigonametric functions.
Usage: `luci integrate x^2 + 2x`"""
expression = "".join(expression)
loading = await ctx.send("Calculating...")
await ctx.trigger_typing()
embed = await self.get_result(ctx = ctx, operation = "integrate", expression = expression)
# First delete the calculating message
await loading.delete()
await ctx.send(embed = embed) | async def integrate(self, ctx, *expression):
"""Integrate a polynomial. Please put tan(x) instead of tanx and so on for all trigonametric functions.
Usage: `luci integrate x^2 + 2x`"""
expression = "".join(expression)
loading = await ctx.send("Calculating...")
await ctx.trigger_typing()
embed = await self.get_result(ctx = ctx, operation = "integrate", expression = expression)
# First delete the calculating message
await loading.delete()
await ctx.send(embed = embed) |
Python | async def solve(self, ctx, *expression):
"""Find roots of a polynomial. Please put tan(x) instead of tanx and so on for all trigonametric functions.
Usage: `luci roots x^2 + 2x`"""
expression = "".join(expression)
loading = await ctx.send("Calculating...")
await ctx.trigger_typing()
embed = await self.get_result(ctx = ctx, operation = "zeroes", expression = expression)
# First delete the calculating message
await loading.delete()
await ctx.send(embed = embed) | async def solve(self, ctx, *expression):
"""Find roots of a polynomial. Please put tan(x) instead of tanx and so on for all trigonametric functions.
Usage: `luci roots x^2 + 2x`"""
expression = "".join(expression)
loading = await ctx.send("Calculating...")
await ctx.trigger_typing()
embed = await self.get_result(ctx = ctx, operation = "zeroes", expression = expression)
# First delete the calculating message
await loading.delete()
await ctx.send(embed = embed) |
Python | async def truth(self, ctx, *, user: discord.Member):
"""Ask a truth question to users!"""
question = random.choice(self.truths)
# Set author
author = ctx.message.author
# Get and pick random user
member_list = len(ctx.guild.members)
random_number = random.randint(0, member_list - 1)
random_member = ctx.guild.members[random_number].mention
# Build Embed
embed = discord.Embed(
title = f"{author.nick} asked {user.nick}",
description = question.format(name = random_member),
color = 0xf34949 # red
)
await ctx.send(embed = embed) | async def truth(self, ctx, *, user: discord.Member):
"""Ask a truth question to users!"""
question = random.choice(self.truths)
# Set author
author = ctx.message.author
# Get and pick random user
member_list = len(ctx.guild.members)
random_number = random.randint(0, member_list - 1)
random_member = ctx.guild.members[random_number].mention
# Build Embed
embed = discord.Embed(
title = f"{author.nick} asked {user.nick}",
description = question.format(name = random_member),
color = 0xf34949 # red
)
await ctx.send(embed = embed) |
Python | async def oddones(self, ctx, date: str = None):
"""Odd 1s Out
Only random comics are available.
"""
all_comics = []
main_url = "https://theodd1sout.com/pages/comics"
async with ctx.typing():
async with self.session.get(main_url) as response:
html = await response.text()
soup = BeautifulSoup(html, "html.parser")
a = soup.find_all("a", {"class": "shogun-image-link"})
for item in a:
try:
all_comics.append(item["href"])
except KeyError:
pass
random_comic_page = random.choice(all_comics)
async with self.session.get(random_comic_page) as response:
html = await response.text()
soup = BeautifulSoup(html, "html.parser")
partial_comic_url = soup.find(id = "article-featured-image")["src"]
comic_name = soup.find(id = "article-featured-image")["alt"].replace(" ", "-")
if partial_comic_url:
async with self.session.get(f"https:{partial_comic_url}") as response:
img = io.BytesIO(await response.read())
await ctx.send(file = discord.File(img, f"oddonesout-{comic_name}.png"))
else:
return await ctx.send("Can't retrieve a comic image for that site.") | async def oddones(self, ctx, date: str = None):
"""Odd 1s Out
Only random comics are available.
"""
all_comics = []
main_url = "https://theodd1sout.com/pages/comics"
async with ctx.typing():
async with self.session.get(main_url) as response:
html = await response.text()
soup = BeautifulSoup(html, "html.parser")
a = soup.find_all("a", {"class": "shogun-image-link"})
for item in a:
try:
all_comics.append(item["href"])
except KeyError:
pass
random_comic_page = random.choice(all_comics)
async with self.session.get(random_comic_page) as response:
html = await response.text()
soup = BeautifulSoup(html, "html.parser")
partial_comic_url = soup.find(id = "article-featured-image")["src"]
comic_name = soup.find(id = "article-featured-image")["alt"].replace(" ", "-")
if partial_comic_url:
async with self.session.get(f"https:{partial_comic_url}") as response:
img = io.BytesIO(await response.read())
await ctx.send(file = discord.File(img, f"oddonesout-{comic_name}.png"))
else:
return await ctx.send("Can't retrieve a comic image for that site.") |
Python | def equal_to(
cls,
value: str,
ctx: Optional[commands.Context] = None,
channel: Optional[Union[discord.TextChannel, discord.DMChannel]] = None,
user: Optional[discord.abc.User] = None,
) -> "MessagePredicate":
"""Match if the response is equal to the specified value.
Parameters
----------
value : str
The value to compare the response with.
ctx : Optional[Context]
Same as ``ctx`` in :meth:`same_context`.
channel : Optional[discord.TextChannel]
Same as ``channel`` in :meth:`same_context`.
user : Optional[discord.abc.User]
Same as ``user`` in :meth:`same_context`.
Returns
-------
MessagePredicate
The event predicate.
"""
same_context = cls.same_context(ctx, channel, user)
return cls(lambda self, m: same_context(m) and m.content == value) | def equal_to(
cls,
value: str,
ctx: Optional[commands.Context] = None,
channel: Optional[Union[discord.TextChannel, discord.DMChannel]] = None,
user: Optional[discord.abc.User] = None,
) -> "MessagePredicate":
"""Match if the response is equal to the specified value.
Parameters
----------
value : str
The value to compare the response with.
ctx : Optional[Context]
Same as ``ctx`` in :meth:`same_context`.
channel : Optional[discord.TextChannel]
Same as ``channel`` in :meth:`same_context`.
user : Optional[discord.abc.User]
Same as ``user`` in :meth:`same_context`.
Returns
-------
MessagePredicate
The event predicate.
"""
same_context = cls.same_context(ctx, channel, user)
return cls(lambda self, m: same_context(m) and m.content == value) |
Python | def lower_equal_to(
cls,
value: str,
ctx: Optional[commands.Context] = None,
channel: Optional[Union[discord.TextChannel, discord.DMChannel]] = None,
user: Optional[discord.abc.User] = None,
) -> "MessagePredicate":
"""Match if the response *as lowercase* is equal to the specified value.
Parameters
----------
value : str
The value to compare the response with.
ctx : Optional[Context]
Same as ``ctx`` in :meth:`same_context`.
channel : Optional[discord.TextChannel]
Same as ``channel`` in :meth:`same_context`.
user : Optional[discord.abc.User]
Same as ``user`` in :meth:`same_context`.
Returns
-------
MessagePredicate
The event predicate.
"""
same_context = cls.same_context(ctx, channel, user)
return cls(lambda self, m: same_context(m) and m.content.lower() == value) | def lower_equal_to(
cls,
value: str,
ctx: Optional[commands.Context] = None,
channel: Optional[Union[discord.TextChannel, discord.DMChannel]] = None,
user: Optional[discord.abc.User] = None,
) -> "MessagePredicate":
"""Match if the response *as lowercase* is equal to the specified value.
Parameters
----------
value : str
The value to compare the response with.
ctx : Optional[Context]
Same as ``ctx`` in :meth:`same_context`.
channel : Optional[discord.TextChannel]
Same as ``channel`` in :meth:`same_context`.
user : Optional[discord.abc.User]
Same as ``user`` in :meth:`same_context`.
Returns
-------
MessagePredicate
The event predicate.
"""
same_context = cls.same_context(ctx, channel, user)
return cls(lambda self, m: same_context(m) and m.content.lower() == value) |
Python | def less(
cls,
value: Union[int, float],
ctx: Optional[commands.Context] = None,
channel: Optional[Union[discord.TextChannel, discord.DMChannel]] = None,
user: Optional[discord.abc.User] = None,
) -> "MessagePredicate":
"""Match if the response is less than the specified value.
Parameters
----------
value : Union[int, float]
The value to compare the response with.
ctx : Optional[Context]
Same as ``ctx`` in :meth:`same_context`.
channel : Optional[discord.TextChannel]
Same as ``channel`` in :meth:`same_context`.
user : Optional[discord.abc.User]
Same as ``user`` in :meth:`same_context`.
Returns
-------
MessagePredicate
The event predicate.
"""
valid_int = cls.valid_int(ctx, channel, user)
valid_float = cls.valid_float(ctx, channel, user)
return cls(lambda self, m: (valid_int(m) or valid_float(m)) and float(m.content) < value) | def less(
cls,
value: Union[int, float],
ctx: Optional[commands.Context] = None,
channel: Optional[Union[discord.TextChannel, discord.DMChannel]] = None,
user: Optional[discord.abc.User] = None,
) -> "MessagePredicate":
"""Match if the response is less than the specified value.
Parameters
----------
value : Union[int, float]
The value to compare the response with.
ctx : Optional[Context]
Same as ``ctx`` in :meth:`same_context`.
channel : Optional[discord.TextChannel]
Same as ``channel`` in :meth:`same_context`.
user : Optional[discord.abc.User]
Same as ``user`` in :meth:`same_context`.
Returns
-------
MessagePredicate
The event predicate.
"""
valid_int = cls.valid_int(ctx, channel, user)
valid_float = cls.valid_float(ctx, channel, user)
return cls(lambda self, m: (valid_int(m) or valid_float(m)) and float(m.content) < value) |
Python | def greater(
cls,
value: Union[int, float],
ctx: Optional[commands.Context] = None,
channel: Optional[Union[discord.TextChannel, discord.DMChannel]] = None,
user: Optional[discord.abc.User] = None,
) -> "MessagePredicate":
"""Match if the response is greater than the specified value.
Parameters
----------
value : Union[int, float]
The value to compare the response with.
ctx : Optional[Context]
Same as ``ctx`` in :meth:`same_context`.
channel : Optional[discord.TextChannel]
Same as ``channel`` in :meth:`same_context`.
user : Optional[discord.abc.User]
Same as ``user`` in :meth:`same_context`.
Returns
-------
MessagePredicate
The event predicate.
"""
valid_int = cls.valid_int(ctx, channel, user)
valid_float = cls.valid_float(ctx, channel, user)
return cls(lambda self, m: (valid_int(m) or valid_float(m)) and float(m.content) > value) | def greater(
cls,
value: Union[int, float],
ctx: Optional[commands.Context] = None,
channel: Optional[Union[discord.TextChannel, discord.DMChannel]] = None,
user: Optional[discord.abc.User] = None,
) -> "MessagePredicate":
"""Match if the response is greater than the specified value.
Parameters
----------
value : Union[int, float]
The value to compare the response with.
ctx : Optional[Context]
Same as ``ctx`` in :meth:`same_context`.
channel : Optional[discord.TextChannel]
Same as ``channel`` in :meth:`same_context`.
user : Optional[discord.abc.User]
Same as ``user`` in :meth:`same_context`.
Returns
-------
MessagePredicate
The event predicate.
"""
valid_int = cls.valid_int(ctx, channel, user)
valid_float = cls.valid_float(ctx, channel, user)
return cls(lambda self, m: (valid_int(m) or valid_float(m)) and float(m.content) > value) |
Python | def length_less(
cls,
length: int,
ctx: Optional[commands.Context] = None,
channel: Optional[Union[discord.TextChannel, discord.DMChannel]] = None,
user: Optional[discord.abc.User] = None,
) -> "MessagePredicate":
"""Match if the response's length is less than the specified length.
Parameters
----------
length : int
The value to compare the response's length with.
ctx : Optional[Context]
Same as ``ctx`` in :meth:`same_context`.
channel : Optional[discord.TextChannel]
Same as ``channel`` in :meth:`same_context`.
user : Optional[discord.abc.User]
Same as ``user`` in :meth:`same_context`.
Returns
-------
MessagePredicate
The event predicate.
"""
same_context = cls.same_context(ctx, channel, user)
return cls(lambda self, m: same_context(m) and len(m.content) <= length) | def length_less(
cls,
length: int,
ctx: Optional[commands.Context] = None,
channel: Optional[Union[discord.TextChannel, discord.DMChannel]] = None,
user: Optional[discord.abc.User] = None,
) -> "MessagePredicate":
"""Match if the response's length is less than the specified length.
Parameters
----------
length : int
The value to compare the response's length with.
ctx : Optional[Context]
Same as ``ctx`` in :meth:`same_context`.
channel : Optional[discord.TextChannel]
Same as ``channel`` in :meth:`same_context`.
user : Optional[discord.abc.User]
Same as ``user`` in :meth:`same_context`.
Returns
-------
MessagePredicate
The event predicate.
"""
same_context = cls.same_context(ctx, channel, user)
return cls(lambda self, m: same_context(m) and len(m.content) <= length) |
Python | def length_greater(
cls,
length: int,
ctx: Optional[commands.Context] = None,
channel: Optional[Union[discord.TextChannel, discord.DMChannel]] = None,
user: Optional[discord.abc.User] = None,
) -> "MessagePredicate":
"""Match if the response's length is greater than the specified length.
Parameters
----------
length : int
The value to compare the response's length with.
ctx : Optional[Context]
Same as ``ctx`` in :meth:`same_context`.
channel : Optional[discord.TextChannel]
Same as ``channel`` in :meth:`same_context`.
user : Optional[discord.abc.User]
Same as ``user`` in :meth:`same_context`.
Returns
-------
MessagePredicate
The event predicate.
"""
same_context = cls.same_context(ctx, channel, user)
return cls(lambda self, m: same_context(m) and len(m.content) >= length) | def length_greater(
cls,
length: int,
ctx: Optional[commands.Context] = None,
channel: Optional[Union[discord.TextChannel, discord.DMChannel]] = None,
user: Optional[discord.abc.User] = None,
) -> "MessagePredicate":
"""Match if the response's length is greater than the specified length.
Parameters
----------
length : int
The value to compare the response's length with.
ctx : Optional[Context]
Same as ``ctx`` in :meth:`same_context`.
channel : Optional[discord.TextChannel]
Same as ``channel`` in :meth:`same_context`.
user : Optional[discord.abc.User]
Same as ``user`` in :meth:`same_context`.
Returns
-------
MessagePredicate
The event predicate.
"""
same_context = cls.same_context(ctx, channel, user)
return cls(lambda self, m: same_context(m) and len(m.content) >= length) |
Python | def same_context(
cls, message: Optional[discord.Message] = None, user: Optional[discord.abc.User] = None
) -> "ReactionPredicate":
"""Match if a reaction fits the described context.
This will ignore reactions added by the bot user, regardless
of whether or not ``user`` is supplied.
Parameters
----------
message : Optional[discord.Message]
The message which we expect a reaction to. If unspecified,
the reaction's message will be ignored.
user : Optional[discord.abc.User]
The user we expect to react. If unspecified, the user who
added the reaction will be ignored.
Returns
-------
ReactionPredicate
The event predicate.
"""
# noinspection PyProtectedMember
me_id = message._state.self_id
return cls(
lambda self, r, u: u.id != me_id
and (message is None or r.message.id == message.id)
and (user is None or u.id == user.id)
) | def same_context(
cls, message: Optional[discord.Message] = None, user: Optional[discord.abc.User] = None
) -> "ReactionPredicate":
"""Match if a reaction fits the described context.
This will ignore reactions added by the bot user, regardless
of whether or not ``user`` is supplied.
Parameters
----------
message : Optional[discord.Message]
The message which we expect a reaction to. If unspecified,
the reaction's message will be ignored.
user : Optional[discord.abc.User]
The user we expect to react. If unspecified, the user who
added the reaction will be ignored.
Returns
-------
ReactionPredicate
The event predicate.
"""
# noinspection PyProtectedMember
me_id = message._state.self_id
return cls(
lambda self, r, u: u.id != me_id
and (message is None or r.message.id == message.id)
and (user is None or u.id == user.id)
) |
Python | async def leaderboard(self, ctx, world = None):
"""See quiz leaderboard. Type `luci leaderboard global` to see global leaderboard"""
if (world != None):
self.cursor.execute(f"""SELECT * FROM quiz WHERE guild_id = {ctx.guild.id} ORDER BY points DESC""")
else:
self.cursor.execute("""SELECT * FROM quiz ORDER BY points DESC""")
data = self.cursor.fetchall()
embed = discord.Embed(
title = "Global Leaderboard" if world else "Leaderboard",
color = 0x07f223
)
emojies = ["🥇", "🥈", "🥉", "4️⃣", "5️⃣", "6️⃣", "7️⃣", "8️⃣", "9️⃣", "🔟"]
# Add fields to the embed
for index in range(len(data)):
user = self.bot.get_user(data[index][0])
embed.add_field(
name = f"{emojies[index]} {user.name}#{user.discriminator}",
value = f"Points: {data[index][1]}",
inline = False
)
await ctx.send(embed = embed) | async def leaderboard(self, ctx, world = None):
"""See quiz leaderboard. Type `luci leaderboard global` to see global leaderboard"""
if (world != None):
self.cursor.execute(f"""SELECT * FROM quiz WHERE guild_id = {ctx.guild.id} ORDER BY points DESC""")
else:
self.cursor.execute("""SELECT * FROM quiz ORDER BY points DESC""")
data = self.cursor.fetchall()
embed = discord.Embed(
title = "Global Leaderboard" if world else "Leaderboard",
color = 0x07f223
)
emojies = ["🥇", "🥈", "🥉", "4️⃣", "5️⃣", "6️⃣", "7️⃣", "8️⃣", "9️⃣", "🔟"]
# Add fields to the embed
for index in range(len(data)):
user = self.bot.get_user(data[index][0])
embed.add_field(
name = f"{emojies[index]} {user.name}#{user.discriminator}",
value = f"Points: {data[index][1]}",
inline = False
)
await ctx.send(embed = embed) |
Python | async def startgame(ctx: commands.Context, user: discord.Member) -> bool:
"""
Whether to start the connect 4 game.
"""
await ctx.send(
f"{user.mention}, {ctx.author.name} is challenging you to a game of Connect4. (y/n)"
)
try:
pred = MessagePredicate.yes_or_no(ctx, user = user)
await ctx.bot.wait_for("message", check = pred, timeout = 60)
except asyncio.TimeoutError:
await ctx.send("Game offer declined, cancelling.")
return False
if pred.result:
return True
await ctx.send("Game cancelled.")
return False | async def startgame(ctx: commands.Context, user: discord.Member) -> bool:
"""
Whether to start the connect 4 game.
"""
await ctx.send(
f"{user.mention}, {ctx.author.name} is challenging you to a game of Connect4. (y/n)"
)
try:
pred = MessagePredicate.yes_or_no(ctx, user = user)
await ctx.bot.wait_for("message", check = pred, timeout = 60)
except asyncio.TimeoutError:
await ctx.send("Game offer declined, cancelling.")
return False
if pred.result:
return True
await ctx.send("Game cancelled.")
return False |
Python | def loss(hypes, decoded_logits, labels):
"""Calculate the loss from the logits and the labels.
Args:
logits: Logits tensor, float - [batch_size, NUM_CLASSES].
labels: Labels tensor, int32 - [batch_size].
Returns:
loss: Loss tensor of type float.
"""
logits = decoded_logits['logits']
with tf.name_scope('loss'):
xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=labels, name="xentropy")
class_loss = tf.reduce_mean(xentropy,
name='road_loss_mean')
reg_loss_col = tf.GraphKeys.REGULARIZATION_LOSSES
weight_loss = tf.add_n(tf.get_collection(reg_loss_col),
name='reg_loss')
losses = {}
losses['total_loss'] = class_loss+weight_loss
losses['loss'] = class_loss
losses['weight_loss'] = weight_loss
return losses | def loss(hypes, decoded_logits, labels):
"""Calculate the loss from the logits and the labels.
Args:
logits: Logits tensor, float - [batch_size, NUM_CLASSES].
labels: Labels tensor, int32 - [batch_size].
Returns:
loss: Loss tensor of type float.
"""
logits = decoded_logits['logits']
with tf.name_scope('loss'):
xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=labels, name="xentropy")
class_loss = tf.reduce_mean(xentropy,
name='road_loss_mean')
reg_loss_col = tf.GraphKeys.REGULARIZATION_LOSSES
weight_loss = tf.add_n(tf.get_collection(reg_loss_col),
name='reg_loss')
losses = {}
losses['total_loss'] = class_loss+weight_loss
losses['loss'] = class_loss
losses['weight_loss'] = weight_loss
return losses |
Python | def evaluation(hyp, images, labels, decoded_logits, losses, global_step):
"""Evaluate the quality of the logits at predicting the label.
Args:
logits: Logits tensor, float - [batch_size, NUM_CLASSES].
labels: Labels tensor, int32 - [batch_size], with values in the
range [0, NUM_CLASSES).
Returns:
A scalar int32 tensor with the number of examples (out of batch_size)
that were predicted correctly.
"""
# For a classifier model, we can use the in_top_k Op.
# It returns a bool tensor with shape [batch_size] that is true for
# the examples where the label's is was in the top k (here k=1)
# of all logits for that example.
eval_list = []
road_classes = hyp["road_classes"]
logits = decoded_logits['logits']
correct_road = tf.nn.in_top_k(logits, labels, 1)
acc_road = tf.reduce_sum(tf.cast(correct_road, tf.int32))
eval_list.append(('Acc. Road ', acc_road))
eval_list.append(('Class loss', losses['loss']))
eval_list.append(('l2', losses['weight_loss']))
# eval_list.append(('Precision', tp/(tp + fp)))
# eval_list.append(('True BG', tn/(tn + fp)))
# eval_list.append(('True Street [Recall]', tp/(tp + fn)))
return eval_list | def evaluation(hyp, images, labels, decoded_logits, losses, global_step):
"""Evaluate the quality of the logits at predicting the label.
Args:
logits: Logits tensor, float - [batch_size, NUM_CLASSES].
labels: Labels tensor, int32 - [batch_size], with values in the
range [0, NUM_CLASSES).
Returns:
A scalar int32 tensor with the number of examples (out of batch_size)
that were predicted correctly.
"""
# For a classifier model, we can use the in_top_k Op.
# It returns a bool tensor with shape [batch_size] that is true for
# the examples where the label's is was in the top k (here k=1)
# of all logits for that example.
eval_list = []
road_classes = hyp["road_classes"]
logits = decoded_logits['logits']
correct_road = tf.nn.in_top_k(logits, labels, 1)
acc_road = tf.reduce_sum(tf.cast(correct_road, tf.int32))
eval_list.append(('Acc. Road ', acc_road))
eval_list.append(('Class loss', losses['loss']))
eval_list.append(('l2', losses['weight_loss']))
# eval_list.append(('Precision', tp/(tp + fp)))
# eval_list.append(('True BG', tn/(tn + fp)))
# eval_list.append(('True Street [Recall]', tp/(tp + fn)))
return eval_list |
Python | def to_seconds(string):
"""
Converts a human readable time string into seconds.
Accepts:
- 's': seconds
- 'm': minutes
- 'h': hours
- 'd': days
Examples:
>>> to_seconds('1m30s')
90
>>> to_seconds('5m')
300
>>> to_seconds('1h')
3600
>>> to_seconds('1h30m')
5400
>>> to_seconds('3d')
259200
>>> to_seconds('42x')
Traceback (most recent call last):
...
ValueError
"""
units = {
's': 1,
'm': 60,
'h': 60 * 60,
'd': 60 * 60 * 24
}
match = re.search(r'(?:(?P<d>\d+)d)?(?:(?P<h>\d+)h)?(?:(?P<m>\d+)m)?(?:(?P<s>\d+)s)?', string)
if not match or not any(match.groups()):
raise ValueError
total = 0
for unit, seconds in units.iteritems():
if match.group(unit) is not None:
total += int(match.group(unit)) * seconds
return total | def to_seconds(string):
"""
Converts a human readable time string into seconds.
Accepts:
- 's': seconds
- 'm': minutes
- 'h': hours
- 'd': days
Examples:
>>> to_seconds('1m30s')
90
>>> to_seconds('5m')
300
>>> to_seconds('1h')
3600
>>> to_seconds('1h30m')
5400
>>> to_seconds('3d')
259200
>>> to_seconds('42x')
Traceback (most recent call last):
...
ValueError
"""
units = {
's': 1,
'm': 60,
'h': 60 * 60,
'd': 60 * 60 * 24
}
match = re.search(r'(?:(?P<d>\d+)d)?(?:(?P<h>\d+)h)?(?:(?P<m>\d+)m)?(?:(?P<s>\d+)s)?', string)
if not match or not any(match.groups()):
raise ValueError
total = 0
for unit, seconds in units.iteritems():
if match.group(unit) is not None:
total += int(match.group(unit)) * seconds
return total |
Python | def calculate_cooperation_stuff(self):
"""
Calculate the cooperation rate for each bot in each bot pair and store
these in an instance variable
STORES:
- cooperation_matrix: numpy array, cooperation_matrix[i][j] is i's
cooperation rate when partnered with j
- bigger_man_scores: a bot's bigger_man_score is the fraction of
partnerships in which that bot cooperated at least as much as its
partner
- cooperation_rates: the fraction of each bot's total moves that are
cooperations
"""
tr = self.tourney_res
bot_list = tr.get_bot_list()
bot_id_list = [bot.tournament_id for bot in bot_list]
num_bots = len(bot_list)
coop_matrix = [[0 for _ in xrange(num_bots)] for _ in xrange(num_bots)]
big_man_scores = {}
for bot_id in bot_id_list:
big_man_scores[bot_id] = 0.0
coop_rates = {}
# for each bot pair, count the times each bot cooperates and divide by
# the total number of turns, and store this rate in coop_matrix
for i in xrange(num_bots):
bot1_id = bot_list[i].tournament_id
for j in xrange(i, num_bots):
bot2_id = bot_list[j].tournament_id
interactions = tr.get_interactions(bot1_id, bot2_id)
total_turns = sum([len(meeting) for meeting in interactions])
bot1_coops, bot2_coops = 0.0, 0.0
for meeting in interactions:
for turn in meeting:
if turn[0] == 'C':
bot1_coops += 1.0
if turn[1] == 'C':
bot2_coops += 1.0
bot1_rate = bot1_coops/total_turns
bot2_rate = bot2_coops/total_turns
coop_matrix[bot1_id][bot2_id] = bot1_rate
coop_matrix[bot2_id][bot1_id] = bot2_rate
# don't include the case where a bot partners with its own clone
if bot1_id != bot2_id:
if bot1_rate >= bot2_rate:
big_man_scores[bot1_id] += 1.0
if bot2_rate >= bot1_rate:
big_man_scores[bot2_id] += 1.0
for i in xrange(num_bots):
bot_id = bot_list[i].tournament_id
bot_coop_rates = coop_matrix[bot_id]
coop_rates[bot_id] = sum(bot_coop_rates)/len(bot_coop_rates)
big_man_scores[bot_id] = big_man_scores[bot_id]/(num_bots-1)
# save these cooperation rates per interaction and the overall
# cooperation rate for each bot
self.cooperation_matrix = np.array(coop_matrix)
self.bigger_man_scores = big_man_scores
self.cooperation_rates = coop_rates | def calculate_cooperation_stuff(self):
"""
Calculate the cooperation rate for each bot in each bot pair and store
these in an instance variable
STORES:
- cooperation_matrix: numpy array, cooperation_matrix[i][j] is i's
cooperation rate when partnered with j
- bigger_man_scores: a bot's bigger_man_score is the fraction of
partnerships in which that bot cooperated at least as much as its
partner
- cooperation_rates: the fraction of each bot's total moves that are
cooperations
"""
tr = self.tourney_res
bot_list = tr.get_bot_list()
bot_id_list = [bot.tournament_id for bot in bot_list]
num_bots = len(bot_list)
coop_matrix = [[0 for _ in xrange(num_bots)] for _ in xrange(num_bots)]
big_man_scores = {}
for bot_id in bot_id_list:
big_man_scores[bot_id] = 0.0
coop_rates = {}
# for each bot pair, count the times each bot cooperates and divide by
# the total number of turns, and store this rate in coop_matrix
for i in xrange(num_bots):
bot1_id = bot_list[i].tournament_id
for j in xrange(i, num_bots):
bot2_id = bot_list[j].tournament_id
interactions = tr.get_interactions(bot1_id, bot2_id)
total_turns = sum([len(meeting) for meeting in interactions])
bot1_coops, bot2_coops = 0.0, 0.0
for meeting in interactions:
for turn in meeting:
if turn[0] == 'C':
bot1_coops += 1.0
if turn[1] == 'C':
bot2_coops += 1.0
bot1_rate = bot1_coops/total_turns
bot2_rate = bot2_coops/total_turns
coop_matrix[bot1_id][bot2_id] = bot1_rate
coop_matrix[bot2_id][bot1_id] = bot2_rate
# don't include the case where a bot partners with its own clone
if bot1_id != bot2_id:
if bot1_rate >= bot2_rate:
big_man_scores[bot1_id] += 1.0
if bot2_rate >= bot1_rate:
big_man_scores[bot2_id] += 1.0
for i in xrange(num_bots):
bot_id = bot_list[i].tournament_id
bot_coop_rates = coop_matrix[bot_id]
coop_rates[bot_id] = sum(bot_coop_rates)/len(bot_coop_rates)
big_man_scores[bot_id] = big_man_scores[bot_id]/(num_bots-1)
# save these cooperation rates per interaction and the overall
# cooperation rate for each bot
self.cooperation_matrix = np.array(coop_matrix)
self.bigger_man_scores = big_man_scores
self.cooperation_rates = coop_rates |
Python | def principle_eigenvector(self, C, iters):
"""
Starts with every node at a constant amount of 'worth' and iterates
using C to update every node's 'worth' until converging on the principle
eigenvector
ARGS:
- C: C is a numpy array in [0, 1]^(nxn) where values represent the
'votes' between nodes like in PageRank
RETURNS:
- pev: pev is the principle eigenvector of C, representing the end
values of each node. normalize to add to n
"""
num_vals = len(C)
current_vals = np.array([1 for _ in xrange(num_vals)])
i = 0
while i < iters:
current_vals = C.dot(current_vals)
i += 1
total_val = float(sum(current_vals))
pev = copy.copy(current_vals)
for idx, v in enumerate(current_vals):
try:
pev[idx] = (num_vals/total_val)*v
except ZeroDivisionError:
pev[idx] = 1
return pev | def principle_eigenvector(self, C, iters):
"""
Starts with every node at a constant amount of 'worth' and iterates
using C to update every node's 'worth' until converging on the principle
eigenvector
ARGS:
- C: C is a numpy array in [0, 1]^(nxn) where values represent the
'votes' between nodes like in PageRank
RETURNS:
- pev: pev is the principle eigenvector of C, representing the end
values of each node. normalize to add to n
"""
num_vals = len(C)
current_vals = np.array([1 for _ in xrange(num_vals)])
i = 0
while i < iters:
current_vals = C.dot(current_vals)
i += 1
total_val = float(sum(current_vals))
pev = copy.copy(current_vals)
for idx, v in enumerate(current_vals):
try:
pev[idx] = (num_vals/total_val)*v
except ZeroDivisionError:
pev[idx] = 1
return pev |
Python | def calculate_network_morality(self):
"""
Calculate and store the morality metrics of network jesus and network
moses for each bot
ARGS:
- coop_matrix: numpy array, coop_matrix[i][j] is i's cooperation rate
when partnered with j
STORES:
- eigenjesus_scores: list of recursively defined morality scores
(cooperating with cooperaters is worth more), cooperating always helps
- eigenmoses_scores: list of recursively defined morality scores
(cooperating with cooperaters is worth more), cooperating with a
defector actually counts against you
"""
## TODO: come up with programmtic way of determining number of iters
self.eigenjesus_scores =\
self.principle_eigenvector(self.cooperation_matrix, 100)
coop_def_matrix = (self.cooperation_matrix-0.5)*2
self.eigenmoses_scores =\
self.principle_eigenvector(coop_def_matrix, 100) | def calculate_network_morality(self):
"""
Calculate and store the morality metrics of network jesus and network
moses for each bot
ARGS:
- coop_matrix: numpy array, coop_matrix[i][j] is i's cooperation rate
when partnered with j
STORES:
- eigenjesus_scores: list of recursively defined morality scores
(cooperating with cooperaters is worth more), cooperating always helps
- eigenmoses_scores: list of recursively defined morality scores
(cooperating with cooperaters is worth more), cooperating with a
defector actually counts against you
"""
## TODO: come up with programmtic way of determining number of iters
self.eigenjesus_scores =\
self.principle_eigenvector(self.cooperation_matrix, 100)
coop_def_matrix = (self.cooperation_matrix-0.5)*2
self.eigenmoses_scores =\
self.principle_eigenvector(coop_def_matrix, 100) |
Python | def calculate_scores(self):
"""
Get the scores for each bot pair meetings list and store in
self.interaction_scores. Tally up the total score for each bot and store
in self.bot_info_by_id['total']
"""
for bot_pair in self.interactions:
self.interaction_scores[bot_pair] = []
for meeting in self.interactions[bot_pair]:
meeting_scores = [0, 0]
for turn in meeting:
turn_scores = self.score_turn(turn)
# accumulate scores for meeting
meeting_scores[0] += turn_scores[0]
meeting_scores[1] += turn_scores[1]
meeting_scores = tuple(meeting_scores)
# add scores for meeting to list of meeting scores for this pair
self.interaction_scores[bot_pair].append(meeting_scores)
# also add to total for each bot, but only once if this is a bot
# paired with its clone
if bot_pair[0] == bot_pair[1]:
self.bot_info_by_id[bot_pair[0]]['total']\
+= meeting_scores[0]
else:
for idx, bot_id in enumerate(bot_pair):
self.bot_info_by_id[bot_id]['total']\
+= meeting_scores[idx] | def calculate_scores(self):
"""
Get the scores for each bot pair meetings list and store in
self.interaction_scores. Tally up the total score for each bot and store
in self.bot_info_by_id['total']
"""
for bot_pair in self.interactions:
self.interaction_scores[bot_pair] = []
for meeting in self.interactions[bot_pair]:
meeting_scores = [0, 0]
for turn in meeting:
turn_scores = self.score_turn(turn)
# accumulate scores for meeting
meeting_scores[0] += turn_scores[0]
meeting_scores[1] += turn_scores[1]
meeting_scores = tuple(meeting_scores)
# add scores for meeting to list of meeting scores for this pair
self.interaction_scores[bot_pair].append(meeting_scores)
# also add to total for each bot, but only once if this is a bot
# paired with its clone
if bot_pair[0] == bot_pair[1]:
self.bot_info_by_id[bot_pair[0]]['total']\
+= meeting_scores[0]
else:
for idx, bot_id in enumerate(bot_pair):
self.bot_info_by_id[bot_id]['total']\
+= meeting_scores[idx] |
Python | def generate_interaction_lengths(self, w, numMeetings):
"""
Based on a probability of continuing each step, generate
interaction lengths for the bot pairs
ARGS:
- w: probability of interaction continuing at each step
- numMeetings: number of interaction_lengths needed to be
generated
RETURNS:
- interaction_lengths: a list of integers representing how
long each meeting between bots will be (if the list is n
long, it is because each bot pair meets n times)
"""
interaction_lengths = []
i = 0
while i < numMeetings:
meeting_length = 1
while True:
r = random.random()
if r > w:
break
else:
meeting_length += 1
interaction_lengths.append(meeting_length)
i += 1
return interaction_lengths | def generate_interaction_lengths(self, w, numMeetings):
"""
Based on a probability of continuing each step, generate
interaction lengths for the bot pairs
ARGS:
- w: probability of interaction continuing at each step
- numMeetings: number of interaction_lengths needed to be
generated
RETURNS:
- interaction_lengths: a list of integers representing how
long each meeting between bots will be (if the list is n
long, it is because each bot pair meets n times)
"""
interaction_lengths = []
i = 0
while i < numMeetings:
meeting_length = 1
while True:
r = random.random()
if r > w:
break
else:
meeting_length += 1
interaction_lengths.append(meeting_length)
i += 1
return interaction_lengths |
Python | def bot_interaction(self, bot1, bot2, interaction_length,
payoffs={'T': 5,'R': 3,'P': 1,'S': 0}, w=0.995):
"""
Two bots paired together interacting
ARGS:
- bot1, bot2: instances of BotPlayer (presumably subclasses
of BotPlayer), representing the two participating bots
- interaction_length: how many turns bot1 and bot2 play in
this interaction
RETURNS:
- past_moves: list of every move that occurred during the
interaction
"""
past_moves_1 = []
past_moves_2 = []
i = 0
while i < interaction_length:
bot1_move = bot1.getNextMove(past_moves_1,
payoffs=payoffs, w=w)
bot2_move = bot2.getNextMove(past_moves_2,
payoffs=payoffs, w=w)
next_moves_1 = (bot1_move, bot2_move)
next_moves_2 = (bot2_move, bot1_move)
past_moves_1.append(next_moves_1)
past_moves_2.append(next_moves_2)
i += 1
return past_moves_1 | def bot_interaction(self, bot1, bot2, interaction_length,
payoffs={'T': 5,'R': 3,'P': 1,'S': 0}, w=0.995):
"""
Two bots paired together interacting
ARGS:
- bot1, bot2: instances of BotPlayer (presumably subclasses
of BotPlayer), representing the two participating bots
- interaction_length: how many turns bot1 and bot2 play in
this interaction
RETURNS:
- past_moves: list of every move that occurred during the
interaction
"""
past_moves_1 = []
past_moves_2 = []
i = 0
while i < interaction_length:
bot1_move = bot1.getNextMove(past_moves_1,
payoffs=payoffs, w=w)
bot2_move = bot2.getNextMove(past_moves_2,
payoffs=payoffs, w=w)
next_moves_1 = (bot1_move, bot2_move)
next_moves_2 = (bot2_move, bot1_move)
past_moves_1.append(next_moves_1)
past_moves_2.append(next_moves_2)
i += 1
return past_moves_1 |
Python | def validate_tournament_inputs(self, botList, numMeetings, payoffs, w):
"""
Make sure the inputs to runTournament make sense and if they do not,
say why in the list 'errors'
ARGS:
- botList: list of bots to participate in the tournament
- w: probability of interaction continuing at each step
- numMeetings: number of times each bot is paired with each
other bot
- payoffs: defines the scores for each Prisoner's Dilemma situation
RETURNS:
- errors: list or error messages to let the user know what is wrong
with the inputs, if anything
"""
errors = []
# botList has to be a list of BotPlayer instances
for bot in botList:
if not isinstance(bot, bp.BotPlayer):
errors.append("botList must be a list of BotPlayer objects")
break
if int(numMeetings) != numMeetings:
errors.append("numMeetings must represent an integer")
if numMeetings < 1:
errors.append("numMeetings must be at least 1")
if not (payoffs['T'] > payoffs['R'] > payoffs['P'] > payoffs['S']):
errors.append("payoffs must obey T > R > P > S")
if not (2*payoffs['R'] > payoffs['T'] + payoffs['S']):
errors.append("payoffs must obey 2*R > T + S")
if not (0 < w < 1):
errors.append("w must be a number between 0 and 1")
return errors | def validate_tournament_inputs(self, botList, numMeetings, payoffs, w):
"""
Make sure the inputs to runTournament make sense and if they do not,
say why in the list 'errors'
ARGS:
- botList: list of bots to participate in the tournament
- w: probability of interaction continuing at each step
- numMeetings: number of times each bot is paired with each
other bot
- payoffs: defines the scores for each Prisoner's Dilemma situation
RETURNS:
- errors: list or error messages to let the user know what is wrong
with the inputs, if anything
"""
errors = []
# botList has to be a list of BotPlayer instances
for bot in botList:
if not isinstance(bot, bp.BotPlayer):
errors.append("botList must be a list of BotPlayer objects")
break
if int(numMeetings) != numMeetings:
errors.append("numMeetings must represent an integer")
if numMeetings < 1:
errors.append("numMeetings must be at least 1")
if not (payoffs['T'] > payoffs['R'] > payoffs['P'] > payoffs['S']):
errors.append("payoffs must obey T > R > P > S")
if not (2*payoffs['R'] > payoffs['T'] + payoffs['S']):
errors.append("payoffs must obey 2*R > T + S")
if not (0 < w < 1):
errors.append("w must be a number between 0 and 1")
return errors |
Python | def runTournament(self, botList, numMeetings,
payoffs={'T':5,'R':3,'P':1,'S':0}, w=0.995):
"""
Main method, partners each bot with each other bot with
w probability of ending each turn (length of interactions
is determined (using w) before any pairings, so all
pairings use the same list of interaction lengths)
ARGS:
- botList: list of bots to participate in the tournament
- w: probability of interaction continuing at each step
- numMeetings: number of times each bot is paired with each
other bot
- payoffs: defines the scores for each Prisoner's Dilemma situation
RETURNS:
- tourney_res: TournamentResults object with all the info
"""
# validate inputs
error_messages =\
self.validate_tournament_inputs(botList, numMeetings, payoffs, w)
if error_messages:
print(error_messages)
return -1
# dictionary of interactions to pass to TournamentResults
interactions = {}
# determine length of each interaction based on w
interaction_lengths =\
self.generate_interaction_lengths(w, numMeetings)
# assign each bot a tournament id number
for t_id, bot in enumerate(botList):
bot.tournament_id = t_id
# pair each bot with each other bot and save the results
num_bots = len(botList)
for i in xrange(num_bots):
for j in xrange(i, num_bots):
bot1 = botList[i]
bot2 = botList[j]
meeting_results_list = []
for m in xrange(numMeetings):
interaction_length = interaction_lengths[m]
meeting_results =\
self.bot_interaction(bot1, bot2, interaction_length,\
payoffs=payoffs, w=w)
meeting_results_list.append(meeting_results)
interactions[(bot1.tournament_id, bot2.tournament_id)] =\
meeting_results_list
tourney_res = tr.TournamentResults(botList, interactions, payoffs)
return tourney_res | def runTournament(self, botList, numMeetings,
payoffs={'T':5,'R':3,'P':1,'S':0}, w=0.995):
"""
Main method, partners each bot with each other bot with
w probability of ending each turn (length of interactions
is determined (using w) before any pairings, so all
pairings use the same list of interaction lengths)
ARGS:
- botList: list of bots to participate in the tournament
- w: probability of interaction continuing at each step
- numMeetings: number of times each bot is paired with each
other bot
- payoffs: defines the scores for each Prisoner's Dilemma situation
RETURNS:
- tourney_res: TournamentResults object with all the info
"""
# validate inputs
error_messages =\
self.validate_tournament_inputs(botList, numMeetings, payoffs, w)
if error_messages:
print(error_messages)
return -1
# dictionary of interactions to pass to TournamentResults
interactions = {}
# determine length of each interaction based on w
interaction_lengths =\
self.generate_interaction_lengths(w, numMeetings)
# assign each bot a tournament id number
for t_id, bot in enumerate(botList):
bot.tournament_id = t_id
# pair each bot with each other bot and save the results
num_bots = len(botList)
for i in xrange(num_bots):
for j in xrange(i, num_bots):
bot1 = botList[i]
bot2 = botList[j]
meeting_results_list = []
for m in xrange(numMeetings):
interaction_length = interaction_lengths[m]
meeting_results =\
self.bot_interaction(bot1, bot2, interaction_length,\
payoffs=payoffs, w=w)
meeting_results_list.append(meeting_results)
interactions[(bot1.tournament_id, bot2.tournament_id)] =\
meeting_results_list
tourney_res = tr.TournamentResults(botList, interactions, payoffs)
return tourney_res |
Python | def start_service():
"""Start this service
set SENTRY_DSN environmental variable to enable logging with Sentry
"""
# Initialize Sentry
sentry_sdk.init(os.environ.get('SENTRY_DSN'))
# Initialize Falcon
api = falcon.API()
api.add_route('/rows/{row_id}', Row())
api.add_route('/rows', Rows())
api.add_sink(default_error, '')
return api | def start_service():
"""Start this service
set SENTRY_DSN environmental variable to enable logging with Sentry
"""
# Initialize Sentry
sentry_sdk.init(os.environ.get('SENTRY_DSN'))
# Initialize Falcon
api = falcon.API()
api.add_route('/rows/{row_id}', Row())
api.add_route('/rows', Rows())
api.add_sink(default_error, '')
return api |
Python | def validate_post_params(params_json):
"""Enforce parameter inputs for post method"""
validate_spreadsheet_params(params_json)
if 'row_values' not in params_json:
raise Exception(ERR_MISSING_ROW_VALUES) | def validate_post_params(params_json):
"""Enforce parameter inputs for post method"""
validate_spreadsheet_params(params_json)
if 'row_values' not in params_json:
raise Exception(ERR_MISSING_ROW_VALUES) |
Python | def validate_get_params(params):
"""Enforce parameter inputs for get method"""
validate_spreadsheet_params(params)
if 'column_label' not in params:
raise Exception(ERR_MISSING_COLUMN)
if 'value' not in params:
raise Exception(ERR_MISSING_VALUE) | def validate_get_params(params):
"""Enforce parameter inputs for get method"""
validate_spreadsheet_params(params)
if 'column_label' not in params:
raise Exception(ERR_MISSING_COLUMN)
if 'value' not in params:
raise Exception(ERR_MISSING_VALUE) |
Python | def validate_patch_params(params_json):
"""Enforce parameter inputs for patch method"""
validate_spreadsheet_params(params_json)
if 'id_column_label' not in params_json:
raise Exception(ERR_MISSING_ID_COLUMN_LABEL)
if 'label_value_map' not in params_json:
raise Exception(ERR_MISSING_LABEL_VALUE_MAP) | def validate_patch_params(params_json):
"""Enforce parameter inputs for patch method"""
validate_spreadsheet_params(params_json)
if 'id_column_label' not in params_json:
raise Exception(ERR_MISSING_ID_COLUMN_LABEL)
if 'label_value_map' not in params_json:
raise Exception(ERR_MISSING_LABEL_VALUE_MAP) |
Python | def validate_get_params(params_json):
"""Enforce parameter inputs for get method"""
validate_spreadsheet_params(params_json)
if 'id_column_label' not in params_json:
raise Exception(ERR_MISSING_ID_COLUMN_LABEL) | def validate_get_params(params_json):
"""Enforce parameter inputs for get method"""
validate_spreadsheet_params(params_json)
if 'id_column_label' not in params_json:
raise Exception(ERR_MISSING_ID_COLUMN_LABEL) |
Python | def isolate_dQdV_peaks(processed_cycler_run, diag_nr, charge_y_n, cwt_range, max_nr_peaks, rpt_type, half_peak_width=0.075):
"""
Determine the number of cycles to reach a certain level of degradation
Args:
processed_cycler_run: processed_cycler_run (beep.structure.ProcessedCyclerRun): information about cycler run
rpt_type: string indicating which rpt to pick
charge_y_n: if 1 (default), takes charge dQdV, if 0, takes discharge dQdV
diag_nr: if 1 (default), takes dQdV of 1st RPT past the initial diagnostic
cwt_range: range for scaling parameter to use in Continuous Wave Transform method - used for peak finding
Returns:
dataframe with Voltage and dQdV columns for charge or discharge curve in the rpt_type diagnostic cycle.
The peaks will be isolated
"""
rpt_type_data = processed_cycler_run.diagnostic_interpolated[(processed_cycler_run.diagnostic_interpolated.cycle_type == rpt_type)]
cycles = rpt_type_data.cycle_index.unique()
## Take charge or discharge from cycle 'diag_nr'
data = pd.DataFrame({'dQdV': [], 'voltage': []})
if charge_y_n == 1:
data.dQdV = rpt_type_data[
(rpt_type_data.cycle_index == cycles[diag_nr]) & (rpt_type_data.step_type == 0)].charge_dQdV.values
data.voltage = rpt_type_data[
(rpt_type_data.cycle_index == cycles[diag_nr]) & (rpt_type_data.step_type == 0)].voltage.values
elif charge_y_n == 0:
data.dQdV = rpt_type_data[
(rpt_type_data.cycle_index == cycles[diag_nr]) & (rpt_type_data.step_type == 1)].discharge_dQdV.values
data.voltage = rpt_type_data[
(rpt_type_data.cycle_index == cycles[diag_nr]) & (rpt_type_data.step_type == 1)].voltage.values
# Turn values to positive temporarily
data.dQdV = -data.dQdV
else:
raise NotImplementedError('Charge_y_n must be either 0 or 1')
# Remove NaN from x and y
data = data.dropna()
# Reset x and y to values without NaNs
x = data.voltage
y = data.dQdV
# Remove strong outliers
upper_limit = y.sort_values().tail(round(0.01 * len(y))).mean() + y.sort_values().mean()
data = data[(y < upper_limit)]
# Reset x and y to values without outliers
x = data.voltage
y = data.dQdV
# Filter out the x values of the peaks only
no_filter_data = data
# Find peaks
peak_indices = signal.find_peaks_cwt(y, cwt_range)[-max_nr_peaks:]
peak_voltages = {}
peak_dQdVs = {}
for count, i in enumerate(peak_indices):
temp_filter_data = no_filter_data[((x > x.iloc[i] - half_peak_width) & (x < x.iloc[i] + half_peak_width))]
peak_voltages[count] = x.iloc[i]
peak_dQdVs[count] = y.iloc[i]
if count == 0:
filter_data = temp_filter_data
else:
filter_data = filter_data.append(temp_filter_data)
return filter_data, no_filter_data, peak_voltages, peak_dQdVs | def isolate_dQdV_peaks(processed_cycler_run, diag_nr, charge_y_n, cwt_range, max_nr_peaks, rpt_type, half_peak_width=0.075):
"""
Determine the number of cycles to reach a certain level of degradation
Args:
processed_cycler_run: processed_cycler_run (beep.structure.ProcessedCyclerRun): information about cycler run
rpt_type: string indicating which rpt to pick
charge_y_n: if 1 (default), takes charge dQdV, if 0, takes discharge dQdV
diag_nr: if 1 (default), takes dQdV of 1st RPT past the initial diagnostic
cwt_range: range for scaling parameter to use in Continuous Wave Transform method - used for peak finding
Returns:
dataframe with Voltage and dQdV columns for charge or discharge curve in the rpt_type diagnostic cycle.
The peaks will be isolated
"""
rpt_type_data = processed_cycler_run.diagnostic_interpolated[(processed_cycler_run.diagnostic_interpolated.cycle_type == rpt_type)]
cycles = rpt_type_data.cycle_index.unique()
## Take charge or discharge from cycle 'diag_nr'
data = pd.DataFrame({'dQdV': [], 'voltage': []})
if charge_y_n == 1:
data.dQdV = rpt_type_data[
(rpt_type_data.cycle_index == cycles[diag_nr]) & (rpt_type_data.step_type == 0)].charge_dQdV.values
data.voltage = rpt_type_data[
(rpt_type_data.cycle_index == cycles[diag_nr]) & (rpt_type_data.step_type == 0)].voltage.values
elif charge_y_n == 0:
data.dQdV = rpt_type_data[
(rpt_type_data.cycle_index == cycles[diag_nr]) & (rpt_type_data.step_type == 1)].discharge_dQdV.values
data.voltage = rpt_type_data[
(rpt_type_data.cycle_index == cycles[diag_nr]) & (rpt_type_data.step_type == 1)].voltage.values
# Turn values to positive temporarily
data.dQdV = -data.dQdV
else:
raise NotImplementedError('Charge_y_n must be either 0 or 1')
# Remove NaN from x and y
data = data.dropna()
# Reset x and y to values without NaNs
x = data.voltage
y = data.dQdV
# Remove strong outliers
upper_limit = y.sort_values().tail(round(0.01 * len(y))).mean() + y.sort_values().mean()
data = data[(y < upper_limit)]
# Reset x and y to values without outliers
x = data.voltage
y = data.dQdV
# Filter out the x values of the peaks only
no_filter_data = data
# Find peaks
peak_indices = signal.find_peaks_cwt(y, cwt_range)[-max_nr_peaks:]
peak_voltages = {}
peak_dQdVs = {}
for count, i in enumerate(peak_indices):
temp_filter_data = no_filter_data[((x > x.iloc[i] - half_peak_width) & (x < x.iloc[i] + half_peak_width))]
peak_voltages[count] = x.iloc[i]
peak_dQdVs[count] = y.iloc[i]
if count == 0:
filter_data = temp_filter_data
else:
filter_data = filter_data.append(temp_filter_data)
return filter_data, no_filter_data, peak_voltages, peak_dQdVs |
Python | def generate_model(spec):
"""
Method that generates a model to fit the RPT data to for peak extraction, using spec dictionary
:param spec (dict): dictionary containing X, y model types.
:return: composite model objects of lmfit Model class and a parameter object as defined in lmfit.
"""
composite_model = None
params = None
x = spec['x']
y = spec['y']
x_min = np.min(x)
x_max = np.max(x)
x_range = x_max - x_min
y_max = np.max(y)
for i, basis_func in enumerate(spec['model']):
prefix = f'm{i}_'
#models is an lmfit object
model = getattr(models, basis_func['type'])(prefix=prefix)
if basis_func['type'] in ['GaussianModel', 'LorentzianModel',
'VoigtModel']: # for now VoigtModel has gamma constrained to sigma
model.set_param_hint('sigma', min=1e-6, max=x_range)
model.set_param_hint('center', min=x_min, max=x_max)
model.set_param_hint('height', min=1e-6, max=1.1 * y_max)
model.set_param_hint('amplitude', min=1e-6)
default_params = {
prefix + 'center': x_min + x_range * np.random.randn(),
prefix + 'height': y_max * np.random.randn(),
prefix + 'sigma': x_range * np.random.randn()
}
else:
raise NotImplemented(f'model {basis_func["type"]} not implemented yet')
if 'help' in basis_func: # allow override of settings in parameter
for param, options in basis_func['help'].items():
model.set_param_hint(param, **options)
model_params = model.make_params(**default_params, **basis_func.get('params', {}))
if params is None:
params = model_params
else:
params.update(model_params)
if composite_model is None:
composite_model = model
else:
composite_model = composite_model + model
return composite_model, params | def generate_model(spec):
"""
Method that generates a model to fit the RPT data to for peak extraction, using spec dictionary
:param spec (dict): dictionary containing X, y model types.
:return: composite model objects of lmfit Model class and a parameter object as defined in lmfit.
"""
composite_model = None
params = None
x = spec['x']
y = spec['y']
x_min = np.min(x)
x_max = np.max(x)
x_range = x_max - x_min
y_max = np.max(y)
for i, basis_func in enumerate(spec['model']):
prefix = f'm{i}_'
#models is an lmfit object
model = getattr(models, basis_func['type'])(prefix=prefix)
if basis_func['type'] in ['GaussianModel', 'LorentzianModel',
'VoigtModel']: # for now VoigtModel has gamma constrained to sigma
model.set_param_hint('sigma', min=1e-6, max=x_range)
model.set_param_hint('center', min=x_min, max=x_max)
model.set_param_hint('height', min=1e-6, max=1.1 * y_max)
model.set_param_hint('amplitude', min=1e-6)
default_params = {
prefix + 'center': x_min + x_range * np.random.randn(),
prefix + 'height': y_max * np.random.randn(),
prefix + 'sigma': x_range * np.random.randn()
}
else:
raise NotImplemented(f'model {basis_func["type"]} not implemented yet')
if 'help' in basis_func: # allow override of settings in parameter
for param, options in basis_func['help'].items():
model.set_param_hint(param, **options)
model_params = model.make_params(**default_params, **basis_func.get('params', {}))
if params is None:
params = model_params
else:
params.update(model_params)
if composite_model is None:
composite_model = model
else:
composite_model = composite_model + model
return composite_model, params |
Python | def generate_dQdV_peak_fits(processed_cycler_run, rpt_type, diag_nr, charge_y_n, plotting_y_n=0, max_nr_peaks=4, cwt_range = np.arange(10,30)):
"""
Generate fits characteristics from dQdV peaks
Args:
processed_cycler_run: processed_cycler_run (beep.structure.ProcessedCyclerRun)
diag_nr: if 1, takes dQdV of 1st RPT past the initial diagnostic, 0 (default) is initial dianostic
charge_y_n: if 1 (default), takes charge dQdV, if 0, takes discharge dQdV
Returns:
dataframe with Amplitude, mu and sigma of fitted peaks
"""
# Uses isolate_dQdV_peaks function to filter out peaks and returns x(Volt) and y(dQdV) values from peaks
data, no_filter_data, peak_voltages, peak_dQdVs = isolate_dQdV_peaks(processed_cycler_run, rpt_type=rpt_type,
charge_y_n=charge_y_n, diag_nr=diag_nr,
cwt_range = cwt_range,
max_nr_peaks=max_nr_peaks,
half_peak_width=0.07)
no_filter_x = no_filter_data.voltage
no_filter_y = no_filter_data.dQdV
####### Setting spec for gaussian model generation
x = data.voltage
y = data.dQdV
# Set construct spec using number of peaks
model_types = []
for i in np.arange(max_nr_peaks):
model_types.append({'type': 'GaussianModel', 'help': {'sigma': {'max': 0.1}}})
spec = {
'x': x,
'y': y,
'model': model_types
}
# Update spec using the found peaks
update_spec_from_peaks(spec, np.arange(max_nr_peaks), peak_voltages, peak_dQdVs)
if plotting_y_n:
fig, ax = plt.subplots()
ax.scatter(spec['x'], spec['y'], s=4)
for i in peak_voltages:
ax.axvline(x=peak_voltages[i], c='black', linestyle='dotted')
ax.scatter(peak_voltages[i], peak_dQdVs[i], s=30, c='red')
#### Generate fitting model
model, params = generate_model(spec)
output = model.fit(spec['y'], params, x=spec['x'])
if plotting_y_n:
# #Plot residuals
# fig, gridspec = output.plot(data_kws={'markersize': 1})
### Plot components
ax.scatter(no_filter_x, no_filter_y, s=4)
ax.set_xlabel('Voltage')
if charge_y_n:
ax.set_title(f'dQdV for charge diag cycle {diag_nr}')
ax.set_ylabel('dQdV')
else:
ax.set_title(f'dQdV for discharge diag cycle {diag_nr}')
ax.set_ylabel('- dQdV')
components = output.eval_components()
for i, model in enumerate(spec['model']):
ax.plot(spec['x'], components[f'm{i}_'])
# Construct dictionary of peak fits
peak_fit_dict = {}
for i, model in enumerate(spec['model']):
best_values = output.best_values
prefix = f'm{i}_'
peak_fit_dict[prefix+"Amp"+"_"+rpt_type+"_"+str(charge_y_n)] = [peak_dQdVs[i]]
peak_fit_dict[prefix+"Mu"+"_"+rpt_type+"_"+str(charge_y_n)] = [peak_voltages[i]]
# Make dataframe out of dict
peak_fit_df = pd.DataFrame(peak_fit_dict)
# Incorporate troughs of dQdV curve
color_list = ['g', 'b', 'r', 'k', 'c']
for peak_nr in np.arange(0, max_nr_peaks - 1):
between_outer_peak_data = no_filter_data[
(no_filter_data.voltage > peak_voltages[peak_nr]) & (no_filter_data.voltage < peak_voltages[peak_nr + 1])]
pct = 0.05
lowest_dQdV_pct_between_peaks = (between_outer_peak_data.dQdV.sort_values(ascending=False)).tail(
round(len(between_outer_peak_data.dQdV) * pct))
if plotting_y_n:
ax.axhline(y=lowest_dQdV_pct_between_peaks.mean(), color=color_list[peak_nr], linestyle='-')
# Add belly feature to dataframe
peak_fit_df[f'trough_height_{peak_nr}_{rpt_type}_{charge_y_n}'] = lowest_dQdV_pct_between_peaks.mean()
return peak_fit_df | def generate_dQdV_peak_fits(processed_cycler_run, rpt_type, diag_nr, charge_y_n, plotting_y_n=0, max_nr_peaks=4, cwt_range = np.arange(10,30)):
"""
Generate fits characteristics from dQdV peaks
Args:
processed_cycler_run: processed_cycler_run (beep.structure.ProcessedCyclerRun)
diag_nr: if 1, takes dQdV of 1st RPT past the initial diagnostic, 0 (default) is initial dianostic
charge_y_n: if 1 (default), takes charge dQdV, if 0, takes discharge dQdV
Returns:
dataframe with Amplitude, mu and sigma of fitted peaks
"""
# Uses isolate_dQdV_peaks function to filter out peaks and returns x(Volt) and y(dQdV) values from peaks
data, no_filter_data, peak_voltages, peak_dQdVs = isolate_dQdV_peaks(processed_cycler_run, rpt_type=rpt_type,
charge_y_n=charge_y_n, diag_nr=diag_nr,
cwt_range = cwt_range,
max_nr_peaks=max_nr_peaks,
half_peak_width=0.07)
no_filter_x = no_filter_data.voltage
no_filter_y = no_filter_data.dQdV
####### Setting spec for gaussian model generation
x = data.voltage
y = data.dQdV
# Set construct spec using number of peaks
model_types = []
for i in np.arange(max_nr_peaks):
model_types.append({'type': 'GaussianModel', 'help': {'sigma': {'max': 0.1}}})
spec = {
'x': x,
'y': y,
'model': model_types
}
# Update spec using the found peaks
update_spec_from_peaks(spec, np.arange(max_nr_peaks), peak_voltages, peak_dQdVs)
if plotting_y_n:
fig, ax = plt.subplots()
ax.scatter(spec['x'], spec['y'], s=4)
for i in peak_voltages:
ax.axvline(x=peak_voltages[i], c='black', linestyle='dotted')
ax.scatter(peak_voltages[i], peak_dQdVs[i], s=30, c='red')
#### Generate fitting model
model, params = generate_model(spec)
output = model.fit(spec['y'], params, x=spec['x'])
if plotting_y_n:
# #Plot residuals
# fig, gridspec = output.plot(data_kws={'markersize': 1})
### Plot components
ax.scatter(no_filter_x, no_filter_y, s=4)
ax.set_xlabel('Voltage')
if charge_y_n:
ax.set_title(f'dQdV for charge diag cycle {diag_nr}')
ax.set_ylabel('dQdV')
else:
ax.set_title(f'dQdV for discharge diag cycle {diag_nr}')
ax.set_ylabel('- dQdV')
components = output.eval_components()
for i, model in enumerate(spec['model']):
ax.plot(spec['x'], components[f'm{i}_'])
# Construct dictionary of peak fits
peak_fit_dict = {}
for i, model in enumerate(spec['model']):
best_values = output.best_values
prefix = f'm{i}_'
peak_fit_dict[prefix+"Amp"+"_"+rpt_type+"_"+str(charge_y_n)] = [peak_dQdVs[i]]
peak_fit_dict[prefix+"Mu"+"_"+rpt_type+"_"+str(charge_y_n)] = [peak_voltages[i]]
# Make dataframe out of dict
peak_fit_df = pd.DataFrame(peak_fit_dict)
# Incorporate troughs of dQdV curve
color_list = ['g', 'b', 'r', 'k', 'c']
for peak_nr in np.arange(0, max_nr_peaks - 1):
between_outer_peak_data = no_filter_data[
(no_filter_data.voltage > peak_voltages[peak_nr]) & (no_filter_data.voltage < peak_voltages[peak_nr + 1])]
pct = 0.05
lowest_dQdV_pct_between_peaks = (between_outer_peak_data.dQdV.sort_values(ascending=False)).tail(
round(len(between_outer_peak_data.dQdV) * pct))
if plotting_y_n:
ax.axhline(y=lowest_dQdV_pct_between_peaks.mean(), color=color_list[peak_nr], linestyle='-')
# Add belly feature to dataframe
peak_fit_df[f'trough_height_{peak_nr}_{rpt_type}_{charge_y_n}'] = lowest_dQdV_pct_between_peaks.mean()
return peak_fit_df |
Python | def res_calc(chosen, diag_pos, soc, step_ocv, step_cur, index):
"""
This function calculates resistances at different socs and a specific pulse duration for a specified hppc cycle.
Args:
chosen(pd.DataFrame): a dataframe for a specific diagnostic cycle you are interested in.
diag_pos (int): diagnostic cycle occurence for a specific <diagnostic_cycle_type>. e.g.
if rpt_0.2C, occurs at cycle_index = [2, 37, 142, 244 ...], <diag_pos>=0 would correspond to cycle_index 2
soc (int): step index counter corresponding to the soc window of interest.
step_ocv (int): 0 corresponds to the 1h-rest, and 2 corresponds to the 40s-rest.
step_cur (int): 1 is for discharge, and 3 is for charge.
index (float or str): this will input a time scale for resistance (unit is second), e.g. 0.01, 5 or
'last' which is the entire pulse duration.
Returns:
(a number) resistance at a specific soc in hppc cycles
"""
counters = []
if diag_pos == 0:
steps = [11, 12, 13, 14, 15]
else:
steps = [43, 44, 45, 46, 47]
for step in steps:
counters.append(chosen[chosen.step_index == step].step_index_counter.unique().tolist())
if index == 'last':
index = -1
else:
start = chosen[(chosen.step_index_counter == counters[step_cur][soc])].diagnostic_time.min()
stop = start + index / 3600
index = len(chosen[(chosen.step_index_counter == counters[step_cur][soc]) & (chosen.diagnostic_time > start) & (
chosen.diagnostic_time < stop)])
if len(counters[step_ocv]) < soc - 1:
return None
v_ocv = chosen[(chosen.step_index_counter == counters[step_ocv][soc])].voltage.iloc[-1]
# i_ocv = chosen[(chosen.step_index_counter == counters[step_ocv][soc])].current.tail(5).mean()
v_dis = chosen[(chosen.step_index_counter == counters[step_cur][soc])].voltage.iloc[index]
i_dis = chosen[(chosen.step_index_counter == counters[step_cur][soc])].current.iloc[index]
res = (v_dis - v_ocv) / i_dis
return res | def res_calc(chosen, diag_pos, soc, step_ocv, step_cur, index):
"""
This function calculates resistances at different socs and a specific pulse duration for a specified hppc cycle.
Args:
chosen(pd.DataFrame): a dataframe for a specific diagnostic cycle you are interested in.
diag_pos (int): diagnostic cycle occurence for a specific <diagnostic_cycle_type>. e.g.
if rpt_0.2C, occurs at cycle_index = [2, 37, 142, 244 ...], <diag_pos>=0 would correspond to cycle_index 2
soc (int): step index counter corresponding to the soc window of interest.
step_ocv (int): 0 corresponds to the 1h-rest, and 2 corresponds to the 40s-rest.
step_cur (int): 1 is for discharge, and 3 is for charge.
index (float or str): this will input a time scale for resistance (unit is second), e.g. 0.01, 5 or
'last' which is the entire pulse duration.
Returns:
(a number) resistance at a specific soc in hppc cycles
"""
counters = []
if diag_pos == 0:
steps = [11, 12, 13, 14, 15]
else:
steps = [43, 44, 45, 46, 47]
for step in steps:
counters.append(chosen[chosen.step_index == step].step_index_counter.unique().tolist())
if index == 'last':
index = -1
else:
start = chosen[(chosen.step_index_counter == counters[step_cur][soc])].diagnostic_time.min()
stop = start + index / 3600
index = len(chosen[(chosen.step_index_counter == counters[step_cur][soc]) & (chosen.diagnostic_time > start) & (
chosen.diagnostic_time < stop)])
if len(counters[step_ocv]) < soc - 1:
return None
v_ocv = chosen[(chosen.step_index_counter == counters[step_ocv][soc])].voltage.iloc[-1]
# i_ocv = chosen[(chosen.step_index_counter == counters[step_ocv][soc])].current.tail(5).mean()
v_dis = chosen[(chosen.step_index_counter == counters[step_cur][soc])].voltage.iloc[index]
i_dis = chosen[(chosen.step_index_counter == counters[step_cur][soc])].current.iloc[index]
res = (v_dis - v_ocv) / i_dis
return res |
Python | def d_curve_fitting(x, y):
'''
This function fits given data x and y into a linear function.
Argument:
relevant data x and y.
Returns:
the slope of the curve.
'''
def test(x, a, b):
return a * x + b
param, param_cov = curve_fit(test, x, y)
a = param[0]
ans = param[0] * (x) + param[1]
return a | def d_curve_fitting(x, y):
'''
This function fits given data x and y into a linear function.
Argument:
relevant data x and y.
Returns:
the slope of the curve.
'''
def test(x, a, b):
return a * x + b
param, param_cov = curve_fit(test, x, y)
a = param[0]
ans = param[0] * (x) + param[1]
return a |
Python | def from_file(cls, filename, encoding='UTF-8'):
"""
Procedure file ingestion. Invokes Procedure object
from standard Maccor xml file.
Args:
filename (str): xml procedure file.
Returns:
(Procedure): Ordered dictionary with keys corresponding to options or
control variables. Section headers are nested dicts or lists
within the dict.
"""
with open(filename, 'rb') as f:
text = f.read().decode(encoding)
data = xmltodict.parse(text, process_namespaces=False, strip_whitespace=True)
return cls(data) | def from_file(cls, filename, encoding='UTF-8'):
"""
Procedure file ingestion. Invokes Procedure object
from standard Maccor xml file.
Args:
filename (str): xml procedure file.
Returns:
(Procedure): Ordered dictionary with keys corresponding to options or
control variables. Section headers are nested dicts or lists
within the dict.
"""
with open(filename, 'rb') as f:
text = f.read().decode(encoding)
data = xmltodict.parse(text, process_namespaces=False, strip_whitespace=True)
return cls(data) |
Python | def _format_maccor(self):
"""
Dictionary reformatting of the entries in the procedure in
order to match the maccor formats. Mainly re-adding whitespace
to entries that were stripped on injestion.
Returns:
dict: Ordered dictionary with reformatted entries to match the
formatting used in the maccor procedure files.
"""
formatted = deepcopy(self)
for step in formatted['MaccorTestProcedure']['ProcSteps']['TestStep']:
# print(json.dumps(step['StepType'], indent=2))
while len(step['StepType']) < 8:
step['StepType'] = step['StepType'].center(8)
if step['StepMode'] is None:
step['StepMode'] = " "
while len(step['StepMode']) < 8:
step['StepMode'] = step['StepMode'].center(8)
if step['Ends'] is not None:
# If the Ends Element is a list we need to
# check each entry in the list
if isinstance(step['Ends']['EndEntry'], list):
# print(json.dumps(step['Ends'], indent=2))
for end_entry in step['Ends']['EndEntry']:
self.ends_whitespace(end_entry)
if isinstance(step['Ends']['EndEntry'], dict):
self.ends_whitespace(step['Ends']['EndEntry'])
if step['Reports'] is not None:
if isinstance(step['Reports']['ReportEntry'], list):
for rep_entry in step['Reports']['ReportEntry']:
self.reports_whitespace(rep_entry)
if isinstance(step['Reports']['ReportEntry'], dict):
self.reports_whitespace(step['Reports']['ReportEntry'])
return formatted | def _format_maccor(self):
"""
Dictionary reformatting of the entries in the procedure in
order to match the maccor formats. Mainly re-adding whitespace
to entries that were stripped on injestion.
Returns:
dict: Ordered dictionary with reformatted entries to match the
formatting used in the maccor procedure files.
"""
formatted = deepcopy(self)
for step in formatted['MaccorTestProcedure']['ProcSteps']['TestStep']:
# print(json.dumps(step['StepType'], indent=2))
while len(step['StepType']) < 8:
step['StepType'] = step['StepType'].center(8)
if step['StepMode'] is None:
step['StepMode'] = " "
while len(step['StepMode']) < 8:
step['StepMode'] = step['StepMode'].center(8)
if step['Ends'] is not None:
# If the Ends Element is a list we need to
# check each entry in the list
if isinstance(step['Ends']['EndEntry'], list):
# print(json.dumps(step['Ends'], indent=2))
for end_entry in step['Ends']['EndEntry']:
self.ends_whitespace(end_entry)
if isinstance(step['Ends']['EndEntry'], dict):
self.ends_whitespace(step['Ends']['EndEntry'])
if step['Reports'] is not None:
if isinstance(step['Reports']['ReportEntry'], list):
for rep_entry in step['Reports']['ReportEntry']:
self.reports_whitespace(rep_entry)
if isinstance(step['Reports']['ReportEntry'], dict):
self.reports_whitespace(step['Reports']['ReportEntry'])
return formatted |
Python | def to_file(self, filename, encoding='UTF-8'):
"""
Writes object to maccor-formatted xml file using xmltodict
unparse function.
encoding (str): text encoding of output file
Args:
filename (str):file name to save xml to.
"""
formatted = self._format_maccor()
contents = xmltodict.unparse(
input_dict=formatted,
output=None,
encoding=encoding,
short_empty_elements=False,
pretty=True,
newl="\n",
indent=" ")
# Manually inject processing instructions on line 2
line0, remainder = contents.split('\n', 1)
line1 = "<?maccor-application progid=\"Maccor Procedure File\"?>"
contents = "\n".join([line0, line1, remainder])
contents = self._fixup_empty_elements(contents)
contents += "\n"
with open(filename, 'w') as f:
f.write(contents) | def to_file(self, filename, encoding='UTF-8'):
"""
Writes object to maccor-formatted xml file using xmltodict
unparse function.
encoding (str): text encoding of output file
Args:
filename (str):file name to save xml to.
"""
formatted = self._format_maccor()
contents = xmltodict.unparse(
input_dict=formatted,
output=None,
encoding=encoding,
short_empty_elements=False,
pretty=True,
newl="\n",
indent=" ")
# Manually inject processing instructions on line 2
line0, remainder = contents.split('\n', 1)
line1 = "<?maccor-application progid=\"Maccor Procedure File\"?>"
contents = "\n".join([line0, line1, remainder])
contents = self._fixup_empty_elements(contents)
contents += "\n"
with open(filename, 'w') as f:
f.write(contents) |
Python | def _fixup_empty_elements(text):
"""
xml reformatting to match the empty elements that are used
in the maccor procedure format. Writes directly back to the file
and assumes that the empty elements to be replaced are all on a
single line.
Args:
text (str): xml file raw text to be formatted
"""
text = text.replace(r"<Limits></Limits>", "<Limits/>")
text = text.replace(r"<Reports></Reports>", "<Reports/>")
text = text.replace(r"<Ends></Ends>", "<Ends/>")
return text | def _fixup_empty_elements(text):
"""
xml reformatting to match the empty elements that are used
in the maccor procedure format. Writes directly back to the file
and assumes that the empty elements to be replaced are all on a
single line.
Args:
text (str): xml file raw text to be formatted
"""
text = text.replace(r"<Limits></Limits>", "<Limits/>")
text = text.replace(r"<Reports></Reports>", "<Reports/>")
text = text.replace(r"<Ends></Ends>", "<Ends/>")
return text |
Python | def modify_step_value(self, step_num, step_type, step_value):
"""
Modifies the procedure parameters to set a step value at at given step num and type.
Args:
step_num (int): step id at which to set value
step_type (str): step type at which to set value
step_value (str): value to set
Returns:
dict: modified proc_dict with set value
"""
for step_idx, step in enumerate(self['MaccorTestProcedure']['ProcSteps']['TestStep']):
if step_idx == step_num and step['StepType'] == step_type:
step['StepValue'] = step_value
return self | def modify_step_value(self, step_num, step_type, step_value):
"""
Modifies the procedure parameters to set a step value at at given step num and type.
Args:
step_num (int): step id at which to set value
step_type (str): step type at which to set value
step_value (str): value to set
Returns:
dict: modified proc_dict with set value
"""
for step_idx, step in enumerate(self['MaccorTestProcedure']['ProcSteps']['TestStep']):
if step_idx == step_num and step['StepType'] == step_type:
step['StepValue'] = step_value
return self |
Python | def from_exp(cls, cutoff_voltage, charge_rate, discharge_rate,
template=None):
"""
Generates a procedure according to the EXP-style template.
Args:
cutoff_voltage (float): cutoff voltage for.
charge_rate (float): charging C-rate in 1/h.
discharge_rate (float): discharging C-rate in 1/h.
template (str): template name, defaults to EXP in template dir
Returns:
(Procedure): dictionary of procedure parameters.
"""
# Load EXP template
template = template or os.path.join(PROCEDURE_TEMPLATE_DIR, "EXP.000")
obj = cls.from_file(template)
# Modify according to params
loop_idx_start, loop_idx_end = None, None
for step_idx, step in enumerate(obj['MaccorTestProcedure']['ProcSteps']['TestStep']):
if step['StepType'] == "Do 1":
loop_idx_start = step_idx
if step['StepType'] == "Loop 1":
loop_idx_end = step_idx
if loop_idx_start is None or loop_idx_end is None:
raise UnboundLocalError("Loop index is not set")
for step_idx, step in enumerate(obj['MaccorTestProcedure']['ProcSteps']['TestStep']):
if step['StepType'] == 'Charge':
if step['Limits'] is not None and 'Voltage' in step['Limits']:
step['Limits']['Voltage'] = cutoff_voltage
if step['StepMode'] == 'Current' and loop_idx_start < step_idx < loop_idx_end:
step['StepValue'] = charge_rate
if step['StepType'] == "Dischrge" and step['StepMode'] == 'Current' \
and loop_idx_start < step_idx < loop_idx_end:
step['StepValue'] = discharge_rate
return obj | def from_exp(cls, cutoff_voltage, charge_rate, discharge_rate,
template=None):
"""
Generates a procedure according to the EXP-style template.
Args:
cutoff_voltage (float): cutoff voltage for.
charge_rate (float): charging C-rate in 1/h.
discharge_rate (float): discharging C-rate in 1/h.
template (str): template name, defaults to EXP in template dir
Returns:
(Procedure): dictionary of procedure parameters.
"""
# Load EXP template
template = template or os.path.join(PROCEDURE_TEMPLATE_DIR, "EXP.000")
obj = cls.from_file(template)
# Modify according to params
loop_idx_start, loop_idx_end = None, None
for step_idx, step in enumerate(obj['MaccorTestProcedure']['ProcSteps']['TestStep']):
if step['StepType'] == "Do 1":
loop_idx_start = step_idx
if step['StepType'] == "Loop 1":
loop_idx_end = step_idx
if loop_idx_start is None or loop_idx_end is None:
raise UnboundLocalError("Loop index is not set")
for step_idx, step in enumerate(obj['MaccorTestProcedure']['ProcSteps']['TestStep']):
if step['StepType'] == 'Charge':
if step['Limits'] is not None and 'Voltage' in step['Limits']:
step['Limits']['Voltage'] = cutoff_voltage
if step['StepMode'] == 'Current' and loop_idx_start < step_idx < loop_idx_end:
step['StepValue'] = charge_rate
if step['StepType'] == "Dischrge" and step['StepMode'] == 'Current' \
and loop_idx_start < step_idx < loop_idx_end:
step['StepValue'] = discharge_rate
return obj |
Python | def insert_maccor_waveform_discharge(self, waveform_idx, waveform_filename):
"""
Inserts a waveform into procedure dictionary at given id.
Args:
waveform_idx (int): Step in the procedure file to
insert waveform at
waveform_filename (str): Path to .MWF waveform file.
Waveform needs to be pre-scaled for current/power
capabilities of the cell and cycler
"""
steps = self['MaccorTestProcedure']['ProcSteps']['TestStep']
self.set('MaccorTestProcedure.ProcSteps.TestStep.{}.StepType'.format(waveform_idx), 'FastWave')
self.set('MaccorTestProcedure.ProcSteps.TestStep.{}.StepMode'.format(waveform_idx), '')
self.set('MaccorTestProcedure.ProcSteps.TestStep.{}.Ends'.format(waveform_idx), None)
self.set('MaccorTestProcedure.ProcSteps.TestStep.{}.Reports'.format(waveform_idx), None)
self.set('MaccorTestProcedure.ProcSteps.TestStep.{}.Range'.format(waveform_idx), '')
self.set('MaccorTestProcedure.ProcSteps.TestStep.{}.Option1'.format(waveform_idx), '')
self.set('MaccorTestProcedure.ProcSteps.TestStep.{}.Option2'.format(waveform_idx), '')
self.set('MaccorTestProcedure.ProcSteps.TestStep.{}.Option3'.format(waveform_idx), '')
assert steps[waveform_idx]['StepType'] == "FastWave"
assert waveform_filename.split('.')[-1].lower() == 'mwf'
local_name = waveform_filename.split('.')[0]
_, local_name = os.path.split(local_name)
assert len(local_name) < 25, str(len(local_name))
steps[waveform_idx]['StepValue'] = local_name
return self | def insert_maccor_waveform_discharge(self, waveform_idx, waveform_filename):
"""
Inserts a waveform into procedure dictionary at given id.
Args:
waveform_idx (int): Step in the procedure file to
insert waveform at
waveform_filename (str): Path to .MWF waveform file.
Waveform needs to be pre-scaled for current/power
capabilities of the cell and cycler
"""
steps = self['MaccorTestProcedure']['ProcSteps']['TestStep']
self.set('MaccorTestProcedure.ProcSteps.TestStep.{}.StepType'.format(waveform_idx), 'FastWave')
self.set('MaccorTestProcedure.ProcSteps.TestStep.{}.StepMode'.format(waveform_idx), '')
self.set('MaccorTestProcedure.ProcSteps.TestStep.{}.Ends'.format(waveform_idx), None)
self.set('MaccorTestProcedure.ProcSteps.TestStep.{}.Reports'.format(waveform_idx), None)
self.set('MaccorTestProcedure.ProcSteps.TestStep.{}.Range'.format(waveform_idx), '')
self.set('MaccorTestProcedure.ProcSteps.TestStep.{}.Option1'.format(waveform_idx), '')
self.set('MaccorTestProcedure.ProcSteps.TestStep.{}.Option2'.format(waveform_idx), '')
self.set('MaccorTestProcedure.ProcSteps.TestStep.{}.Option3'.format(waveform_idx), '')
assert steps[waveform_idx]['StepType'] == "FastWave"
assert waveform_filename.split('.')[-1].lower() == 'mwf'
local_name = waveform_filename.split('.')[0]
_, local_name = os.path.split(local_name)
assert len(local_name) < 25, str(len(local_name))
steps[waveform_idx]['StepValue'] = local_name
return self |
Python | def insert_resistance_regcyclev2(self, resist_idx, reg_param):
"""
Inserts resistance into procedure dictionary at given id.
Args:
resist_idx (int):
reg_param (pandas.DataFrame):
Returns:
dict:
"""
steps = self['MaccorTestProcedure']['ProcSteps']['TestStep']
# Initial resistance check
assert steps[resist_idx]['StepType'] == "Charge"
assert steps[resist_idx]['StepMode'] == "Current"
steps[resist_idx]['StepValue'] = float(round(1.0 * reg_param['capacity_nominal'], 3))
return self | def insert_resistance_regcyclev2(self, resist_idx, reg_param):
"""
Inserts resistance into procedure dictionary at given id.
Args:
resist_idx (int):
reg_param (pandas.DataFrame):
Returns:
dict:
"""
steps = self['MaccorTestProcedure']['ProcSteps']['TestStep']
# Initial resistance check
assert steps[resist_idx]['StepType'] == "Charge"
assert steps[resist_idx]['StepMode'] == "Current"
steps[resist_idx]['StepValue'] = float(round(1.0 * reg_param['capacity_nominal'], 3))
return self |
Python | def insert_charge_regcyclev2(self, charge_idx, reg_param):
"""
Inserts charge into procedure dictionary at given id.
Args:
charge_idx (int)
reg_param (pandas.DataFrame):
Returns:
dict:
"""
steps = self['MaccorTestProcedure']['ProcSteps']['TestStep']
# Regular cycle constant current charge part 1
step_idx = charge_idx
assert steps[step_idx]['StepType'] == "Charge"
assert steps[step_idx]['StepMode'] == "Current"
steps[step_idx]['StepValue'] = float(round(reg_param['charge_constant_current_1']
* reg_param['capacity_nominal'], 3))
assert steps[step_idx]['Ends']['EndEntry'][0]['EndType'] == "StepTime"
time_s = int(round(3600 * (reg_param['charge_percent_limit_1'] / 100)
/ reg_param['charge_constant_current_1']))
steps[step_idx]['Ends']['EndEntry'][0]['Value'] = time.strftime(
'%H:%M:%S', time.gmtime(time_s))
# Regular cycle constant current charge part 2
step_idx = charge_idx + 1
assert steps[step_idx]['StepType'] == "Charge"
assert steps[step_idx]['StepMode'] == "Current"
steps[step_idx]['StepValue'] = float(round(reg_param['charge_constant_current_2']
* reg_param['capacity_nominal'], 3))
assert steps[step_idx]['Ends']['EndEntry'][0]['EndType'] == "Voltage"
steps[step_idx]['Ends']['EndEntry'][0]['Value'] = float(round(reg_param['charge_cutoff_voltage'], 3))
# Regular cycle constant voltage hold
step_idx = charge_idx + 2
assert steps[step_idx]['StepType'] == "Charge"
assert steps[step_idx]['StepMode'] == "Voltage"
steps[step_idx]['StepValue'] = reg_param['charge_cutoff_voltage']
assert steps[step_idx]['Ends']['EndEntry'][0]['EndType'] == "StepTime"
time_s = int(round(60 * reg_param['charge_constant_voltage_time']))
steps[step_idx]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
# Regular cycle rest at top of charge
step_idx = charge_idx + 3
assert steps[step_idx]['StepType'] == "Rest"
assert steps[step_idx]['Ends']['EndEntry'][0]['EndType'] == "StepTime"
time_s = int(round(60 * reg_param['charge_rest_time']))
steps[step_idx]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
return self | def insert_charge_regcyclev2(self, charge_idx, reg_param):
"""
Inserts charge into procedure dictionary at given id.
Args:
charge_idx (int)
reg_param (pandas.DataFrame):
Returns:
dict:
"""
steps = self['MaccorTestProcedure']['ProcSteps']['TestStep']
# Regular cycle constant current charge part 1
step_idx = charge_idx
assert steps[step_idx]['StepType'] == "Charge"
assert steps[step_idx]['StepMode'] == "Current"
steps[step_idx]['StepValue'] = float(round(reg_param['charge_constant_current_1']
* reg_param['capacity_nominal'], 3))
assert steps[step_idx]['Ends']['EndEntry'][0]['EndType'] == "StepTime"
time_s = int(round(3600 * (reg_param['charge_percent_limit_1'] / 100)
/ reg_param['charge_constant_current_1']))
steps[step_idx]['Ends']['EndEntry'][0]['Value'] = time.strftime(
'%H:%M:%S', time.gmtime(time_s))
# Regular cycle constant current charge part 2
step_idx = charge_idx + 1
assert steps[step_idx]['StepType'] == "Charge"
assert steps[step_idx]['StepMode'] == "Current"
steps[step_idx]['StepValue'] = float(round(reg_param['charge_constant_current_2']
* reg_param['capacity_nominal'], 3))
assert steps[step_idx]['Ends']['EndEntry'][0]['EndType'] == "Voltage"
steps[step_idx]['Ends']['EndEntry'][0]['Value'] = float(round(reg_param['charge_cutoff_voltage'], 3))
# Regular cycle constant voltage hold
step_idx = charge_idx + 2
assert steps[step_idx]['StepType'] == "Charge"
assert steps[step_idx]['StepMode'] == "Voltage"
steps[step_idx]['StepValue'] = reg_param['charge_cutoff_voltage']
assert steps[step_idx]['Ends']['EndEntry'][0]['EndType'] == "StepTime"
time_s = int(round(60 * reg_param['charge_constant_voltage_time']))
steps[step_idx]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
# Regular cycle rest at top of charge
step_idx = charge_idx + 3
assert steps[step_idx]['StepType'] == "Rest"
assert steps[step_idx]['Ends']['EndEntry'][0]['EndType'] == "StepTime"
time_s = int(round(60 * reg_param['charge_rest_time']))
steps[step_idx]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
return self |
Python | def insert_discharge_regcyclev2(self, discharge_idx, reg_param):
"""
Inserts discharge into procedure dictionary at given id.
Args:
discharge_idx (int):
reg_param (pandas.DataFrame):
Returns:
dict:
"""
steps = self['MaccorTestProcedure']['ProcSteps']['TestStep']
# Regular cycle constant current discharge part 1
step_idx = discharge_idx
assert steps[step_idx]['StepType'] == "Dischrge"
assert steps[step_idx]['StepMode'] == "Current"
steps[step_idx]['StepValue'] = float(round(reg_param['discharge_constant_current']
* reg_param['capacity_nominal'], 3))
assert steps[step_idx]['Ends']['EndEntry'][0]['EndType'] == "Voltage"
steps[step_idx]['Ends']['EndEntry'][0]['Value'] = float(round(reg_param['discharge_cutoff_voltage'], 3))
# Regular cycle rest after discharge
step_idx = discharge_idx + 1
assert steps[step_idx]['StepType'] == "Rest"
assert steps[step_idx]['Ends']['EndEntry'][0]['EndType'] == "StepTime"
time_s = int(round(60 * reg_param['discharge_rest_time']))
steps[step_idx]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
# Regular cycle number of times to repeat regular cycle for initial offset and main body
step_idx = discharge_idx + 3
assert steps[step_idx]['StepType'][0:4] == "Loop"
if steps[step_idx]['StepType'] == "Loop 1":
assert steps[step_idx]['Ends']['EndEntry']['EndType'] == "Loop Cnt"
steps[step_idx]['Ends']['EndEntry']['Value'] = reg_param['diagnostic_start_cycle']
elif steps[step_idx]['StepType'] == "Loop 2":
assert steps[step_idx]['Ends']['EndEntry']['EndType'] == "Loop Cnt"
steps[step_idx]['Ends']['EndEntry']['Value'] = reg_param['diagnostic_interval']
return self | def insert_discharge_regcyclev2(self, discharge_idx, reg_param):
"""
Inserts discharge into procedure dictionary at given id.
Args:
discharge_idx (int):
reg_param (pandas.DataFrame):
Returns:
dict:
"""
steps = self['MaccorTestProcedure']['ProcSteps']['TestStep']
# Regular cycle constant current discharge part 1
step_idx = discharge_idx
assert steps[step_idx]['StepType'] == "Dischrge"
assert steps[step_idx]['StepMode'] == "Current"
steps[step_idx]['StepValue'] = float(round(reg_param['discharge_constant_current']
* reg_param['capacity_nominal'], 3))
assert steps[step_idx]['Ends']['EndEntry'][0]['EndType'] == "Voltage"
steps[step_idx]['Ends']['EndEntry'][0]['Value'] = float(round(reg_param['discharge_cutoff_voltage'], 3))
# Regular cycle rest after discharge
step_idx = discharge_idx + 1
assert steps[step_idx]['StepType'] == "Rest"
assert steps[step_idx]['Ends']['EndEntry'][0]['EndType'] == "StepTime"
time_s = int(round(60 * reg_param['discharge_rest_time']))
steps[step_idx]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
# Regular cycle number of times to repeat regular cycle for initial offset and main body
step_idx = discharge_idx + 3
assert steps[step_idx]['StepType'][0:4] == "Loop"
if steps[step_idx]['StepType'] == "Loop 1":
assert steps[step_idx]['Ends']['EndEntry']['EndType'] == "Loop Cnt"
steps[step_idx]['Ends']['EndEntry']['Value'] = reg_param['diagnostic_start_cycle']
elif steps[step_idx]['StepType'] == "Loop 2":
assert steps[step_idx]['Ends']['EndEntry']['EndType'] == "Loop Cnt"
steps[step_idx]['Ends']['EndEntry']['Value'] = reg_param['diagnostic_interval']
return self |
Python | def insert_storage_regcyclev2(self, storage_idx, reg_param):
"""
Inserts storage into procedure dictionary at given id.
Args:
storage_idx (int):
reg_param (pandas.DataFrame):
Returns:
dict:
"""
steps = self['MaccorTestProcedure']['ProcSteps']['TestStep']
# Storage condition
step_idx = storage_idx
assert steps[step_idx]['StepType'] == "Dischrge"
assert steps[step_idx]['StepMode'] == "Current"
steps[step_idx]['StepValue'] = float(round(0.5 * reg_param['capacity_nominal'], 3))
steps[step_idx]['Limits']['Voltage'] = float(round(reg_param['discharge_cutoff_voltage'], 3))
assert steps[step_idx]['Ends']['EndEntry']['EndType'] == "Current"
steps[step_idx]['Ends']['EndEntry']['Value'] = float(round(0.05 * reg_param['capacity_nominal'], 3))
step_idx = storage_idx + 1
assert steps[step_idx]['StepType'] == "Charge"
assert steps[step_idx]['StepMode'] == "Current"
steps[step_idx]['StepValue'] = float(round(0.5 * reg_param['capacity_nominal'], 3))
assert steps[step_idx]['Ends']['EndEntry'][0]['EndType'] == "StepTime"
time_s = int(round(60 * 12))
steps[step_idx]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
return self | def insert_storage_regcyclev2(self, storage_idx, reg_param):
"""
Inserts storage into procedure dictionary at given id.
Args:
storage_idx (int):
reg_param (pandas.DataFrame):
Returns:
dict:
"""
steps = self['MaccorTestProcedure']['ProcSteps']['TestStep']
# Storage condition
step_idx = storage_idx
assert steps[step_idx]['StepType'] == "Dischrge"
assert steps[step_idx]['StepMode'] == "Current"
steps[step_idx]['StepValue'] = float(round(0.5 * reg_param['capacity_nominal'], 3))
steps[step_idx]['Limits']['Voltage'] = float(round(reg_param['discharge_cutoff_voltage'], 3))
assert steps[step_idx]['Ends']['EndEntry']['EndType'] == "Current"
steps[step_idx]['Ends']['EndEntry']['Value'] = float(round(0.05 * reg_param['capacity_nominal'], 3))
step_idx = storage_idx + 1
assert steps[step_idx]['StepType'] == "Charge"
assert steps[step_idx]['StepMode'] == "Current"
steps[step_idx]['StepValue'] = float(round(0.5 * reg_param['capacity_nominal'], 3))
assert steps[step_idx]['Ends']['EndEntry'][0]['EndType'] == "StepTime"
time_s = int(round(60 * 12))
steps[step_idx]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
return self |
Python | def insert_initialrest_regcyclev3(self, rest_idx, index):
"""
Inserts initial rest into procedure dictionary at given id.
Args:
rest_idx (int):
index (int):
Returns:
dict:
"""
steps = self['MaccorTestProcedure']['ProcSteps']['TestStep']
# Initial rest
offset_seconds = 720
assert steps[rest_idx]['StepType'] == "Rest"
assert steps[rest_idx]['Ends']['EndEntry'][0]['EndType'] == "StepTime"
time_s = int(round(3 * 3600 + offset_seconds * (index % 96)))
steps[rest_idx]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
return self | def insert_initialrest_regcyclev3(self, rest_idx, index):
"""
Inserts initial rest into procedure dictionary at given id.
Args:
rest_idx (int):
index (int):
Returns:
dict:
"""
steps = self['MaccorTestProcedure']['ProcSteps']['TestStep']
# Initial rest
offset_seconds = 720
assert steps[rest_idx]['StepType'] == "Rest"
assert steps[rest_idx]['Ends']['EndEntry'][0]['EndType'] == "StepTime"
time_s = int(round(3 * 3600 + offset_seconds * (index % 96)))
steps[rest_idx]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
return self |
Python | def insert_charge_regcyclev3(self, charge_idx, reg_param):
"""
Inserts charge into procedure dictionary at given id.
Args:
charge_idx (int):
reg_param (pandas.DataFrame):
Returns:
dict:
"""
steps = self['MaccorTestProcedure']['ProcSteps']['TestStep']
# Regular cycle constant current charge part 1
step_idx = charge_idx
assert steps[step_idx]['StepType'] == "Charge"
assert steps[step_idx]['StepMode'] == "Current"
steps[step_idx]['StepValue'] = float(round(reg_param['charge_constant_current_1']
* reg_param['capacity_nominal'], 3))
assert steps[step_idx]['Ends']['EndEntry'][0]['EndType'] == "StepTime"
time_s = int(round(3600 * (reg_param['charge_percent_limit_1'] / 100)
/ reg_param['charge_constant_current_1']))
steps[step_idx]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
assert steps[step_idx]['Ends']['EndEntry'][1]['Value'] != 4.4
steps[step_idx]['Ends']['EndEntry'][1]['Value'] = float(round(reg_param['charge_cutoff_voltage'], 3))
# Regular cycle constant current charge part 2
step_idx = charge_idx + 1
assert steps[step_idx]['StepType'] == "Charge"
assert steps[step_idx]['StepMode'] == "Current"
steps[step_idx]['StepValue'] = float(round(reg_param['charge_constant_current_2']
* reg_param['capacity_nominal'], 3))
assert steps[step_idx]['Ends']['EndEntry'][0]['EndType'] == "Voltage"
steps[step_idx]['Ends']['EndEntry'][0]['Value'] = float(round(reg_param['charge_cutoff_voltage'], 3))
# Regular cycle constant voltage hold
step_idx = charge_idx + 2
assert steps[step_idx]['StepType'] == "Charge"
assert steps[step_idx]['StepMode'] == "Voltage"
steps[step_idx]['StepValue'] = reg_param['charge_cutoff_voltage']
assert steps[step_idx]['Ends']['EndEntry'][0]['EndType'] == "StepTime"
time_s = int(round(60 * reg_param['charge_constant_voltage_time']))
steps[step_idx]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
# Regular cycle rest at top of charge
step_idx = charge_idx + 3
assert steps[step_idx]['StepType'] == "Rest"
assert steps[step_idx]['Ends']['EndEntry'][0]['EndType'] == "StepTime"
time_s = int(round(60 * reg_param['charge_rest_time']))
steps[step_idx]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
return self | def insert_charge_regcyclev3(self, charge_idx, reg_param):
"""
Inserts charge into procedure dictionary at given id.
Args:
charge_idx (int):
reg_param (pandas.DataFrame):
Returns:
dict:
"""
steps = self['MaccorTestProcedure']['ProcSteps']['TestStep']
# Regular cycle constant current charge part 1
step_idx = charge_idx
assert steps[step_idx]['StepType'] == "Charge"
assert steps[step_idx]['StepMode'] == "Current"
steps[step_idx]['StepValue'] = float(round(reg_param['charge_constant_current_1']
* reg_param['capacity_nominal'], 3))
assert steps[step_idx]['Ends']['EndEntry'][0]['EndType'] == "StepTime"
time_s = int(round(3600 * (reg_param['charge_percent_limit_1'] / 100)
/ reg_param['charge_constant_current_1']))
steps[step_idx]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
assert steps[step_idx]['Ends']['EndEntry'][1]['Value'] != 4.4
steps[step_idx]['Ends']['EndEntry'][1]['Value'] = float(round(reg_param['charge_cutoff_voltage'], 3))
# Regular cycle constant current charge part 2
step_idx = charge_idx + 1
assert steps[step_idx]['StepType'] == "Charge"
assert steps[step_idx]['StepMode'] == "Current"
steps[step_idx]['StepValue'] = float(round(reg_param['charge_constant_current_2']
* reg_param['capacity_nominal'], 3))
assert steps[step_idx]['Ends']['EndEntry'][0]['EndType'] == "Voltage"
steps[step_idx]['Ends']['EndEntry'][0]['Value'] = float(round(reg_param['charge_cutoff_voltage'], 3))
# Regular cycle constant voltage hold
step_idx = charge_idx + 2
assert steps[step_idx]['StepType'] == "Charge"
assert steps[step_idx]['StepMode'] == "Voltage"
steps[step_idx]['StepValue'] = reg_param['charge_cutoff_voltage']
assert steps[step_idx]['Ends']['EndEntry'][0]['EndType'] == "StepTime"
time_s = int(round(60 * reg_param['charge_constant_voltage_time']))
steps[step_idx]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
# Regular cycle rest at top of charge
step_idx = charge_idx + 3
assert steps[step_idx]['StepType'] == "Rest"
assert steps[step_idx]['Ends']['EndEntry'][0]['EndType'] == "StepTime"
time_s = int(round(60 * reg_param['charge_rest_time']))
steps[step_idx]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
return self |
Python | def insert_storage_regcyclev3(self, storage_idx, reg_param):
"""
Inserts storage into procedure dictionary at given id.
Args:
self (dict):
storage_idx (int):
reg_param (pandas.DataFrame):
Returns:
dict:
"""
steps = self['MaccorTestProcedure']['ProcSteps']['TestStep']
# Storage condition
step_idx = storage_idx
assert steps[step_idx]['StepType'] == "Dischrge"
assert steps[step_idx]['StepMode'] == "Current"
steps[step_idx]['StepValue'] = float(round(0.5 * reg_param['capacity_nominal'], 3))
steps[step_idx]['Limits']['Voltage'] = float(round(reg_param['discharge_cutoff_voltage'], 3))
assert steps[step_idx]['Ends']['EndEntry'][0]['EndType'] == "Current"
steps[step_idx]['Ends']['EndEntry'][0]['Value'] = float(round(0.05 * reg_param['capacity_nominal'], 3))
step_idx = storage_idx + 1
assert steps[step_idx]['StepType'] == "Charge"
assert steps[step_idx]['StepMode'] == "Current"
steps[step_idx]['StepValue'] = float(round(0.5 * reg_param['capacity_nominal'], 3))
assert steps[step_idx]['Ends']['EndEntry'][0]['EndType'] == "StepTime"
time_s = int(round(60 * 12))
steps[step_idx]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
return self | def insert_storage_regcyclev3(self, storage_idx, reg_param):
"""
Inserts storage into procedure dictionary at given id.
Args:
self (dict):
storage_idx (int):
reg_param (pandas.DataFrame):
Returns:
dict:
"""
steps = self['MaccorTestProcedure']['ProcSteps']['TestStep']
# Storage condition
step_idx = storage_idx
assert steps[step_idx]['StepType'] == "Dischrge"
assert steps[step_idx]['StepMode'] == "Current"
steps[step_idx]['StepValue'] = float(round(0.5 * reg_param['capacity_nominal'], 3))
steps[step_idx]['Limits']['Voltage'] = float(round(reg_param['discharge_cutoff_voltage'], 3))
assert steps[step_idx]['Ends']['EndEntry'][0]['EndType'] == "Current"
steps[step_idx]['Ends']['EndEntry'][0]['Value'] = float(round(0.05 * reg_param['capacity_nominal'], 3))
step_idx = storage_idx + 1
assert steps[step_idx]['StepType'] == "Charge"
assert steps[step_idx]['StepMode'] == "Current"
steps[step_idx]['StepValue'] = float(round(0.5 * reg_param['capacity_nominal'], 3))
assert steps[step_idx]['Ends']['EndEntry'][0]['EndType'] == "StepTime"
time_s = int(round(60 * 12))
steps[step_idx]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
return self |
Python | def add_procedure_diagcyclev2(self, nominal_capacity, diagnostic_params):
"""
Modifies a procedure according to the diagnosticV2 template.
Args:
nominal_capacity (float): Standard capacity for this cell.
diagnostic_params (pandas.Series): Series containing all of the
diagnostic parameters.
Returns:
(dict) dictionary of procedure parameters.
"""
start_reset_cycle_1 = 4
self.insert_reset_cyclev2(start_reset_cycle_1, nominal_capacity, diagnostic_params)
start_hppc_cycle_1 = 8
self.insert_hppc_cyclev2(start_hppc_cycle_1, nominal_capacity, diagnostic_params)
start_rpt_cycle_1 = 18
self.insert_rpt_cyclev2(start_rpt_cycle_1, nominal_capacity, diagnostic_params)
start_reset_cycle_2 = 37
self.insert_reset_cyclev2(start_reset_cycle_2, nominal_capacity, diagnostic_params)
start_hppc_cycle_2 = 40
self.insert_hppc_cyclev2(start_hppc_cycle_2, nominal_capacity, diagnostic_params)
start_rpt_cycle_2 = 50
self.insert_rpt_cyclev2(start_rpt_cycle_2, nominal_capacity, diagnostic_params)
return self | def add_procedure_diagcyclev2(self, nominal_capacity, diagnostic_params):
"""
Modifies a procedure according to the diagnosticV2 template.
Args:
nominal_capacity (float): Standard capacity for this cell.
diagnostic_params (pandas.Series): Series containing all of the
diagnostic parameters.
Returns:
(dict) dictionary of procedure parameters.
"""
start_reset_cycle_1 = 4
self.insert_reset_cyclev2(start_reset_cycle_1, nominal_capacity, diagnostic_params)
start_hppc_cycle_1 = 8
self.insert_hppc_cyclev2(start_hppc_cycle_1, nominal_capacity, diagnostic_params)
start_rpt_cycle_1 = 18
self.insert_rpt_cyclev2(start_rpt_cycle_1, nominal_capacity, diagnostic_params)
start_reset_cycle_2 = 37
self.insert_reset_cyclev2(start_reset_cycle_2, nominal_capacity, diagnostic_params)
start_hppc_cycle_2 = 40
self.insert_hppc_cyclev2(start_hppc_cycle_2, nominal_capacity, diagnostic_params)
start_rpt_cycle_2 = 50
self.insert_rpt_cyclev2(start_rpt_cycle_2, nominal_capacity, diagnostic_params)
return self |
Python | def generate_procedure_diagcyclev3(self, nominal_capacity, diagnostic_params):
"""
Generates a diagnostic procedure according
to the diagnosticV3 template.
Args:
nominal_capacity (float): Standard capacity for this cell.
diagnostic_params (pandas.Series): Series containing all of the
diagnostic parameters.
Returns:
dict: dictionary of procedure parameters.
"""
start_reset_cycle_1 = 4
self.insert_reset_cyclev2(start_reset_cycle_1, nominal_capacity, diagnostic_params)
start_hppc_cycle_1 = 8
self.insert_hppc_cyclev2(start_hppc_cycle_1, nominal_capacity, diagnostic_params)
start_rpt_cycle_1 = 18
self.insert_rpt_cyclev2(start_rpt_cycle_1, nominal_capacity, diagnostic_params)
start_reset_cycle_2 = 37
self.insert_reset_cyclev2(start_reset_cycle_2, nominal_capacity, diagnostic_params)
start_hppc_cycle_2 = 40
self.insert_hppc_cyclev2(start_hppc_cycle_2, nominal_capacity, diagnostic_params)
start_rpt_cycle_2 = 50
self.insert_rpt_cyclev2(start_rpt_cycle_2, nominal_capacity, diagnostic_params)
start_reset_cycle_3 = 70
self.insert_reset_cyclev2(start_reset_cycle_3, nominal_capacity, diagnostic_params)
start_hppc_cycle_3 = 74
self.insert_hppc_cyclev2(start_hppc_cycle_3, nominal_capacity, diagnostic_params)
start_rpt_cycle_3 = 84
self.insert_rpt_cyclev2(start_rpt_cycle_3, nominal_capacity, diagnostic_params)
return self | def generate_procedure_diagcyclev3(self, nominal_capacity, diagnostic_params):
"""
Generates a diagnostic procedure according
to the diagnosticV3 template.
Args:
nominal_capacity (float): Standard capacity for this cell.
diagnostic_params (pandas.Series): Series containing all of the
diagnostic parameters.
Returns:
dict: dictionary of procedure parameters.
"""
start_reset_cycle_1 = 4
self.insert_reset_cyclev2(start_reset_cycle_1, nominal_capacity, diagnostic_params)
start_hppc_cycle_1 = 8
self.insert_hppc_cyclev2(start_hppc_cycle_1, nominal_capacity, diagnostic_params)
start_rpt_cycle_1 = 18
self.insert_rpt_cyclev2(start_rpt_cycle_1, nominal_capacity, diagnostic_params)
start_reset_cycle_2 = 37
self.insert_reset_cyclev2(start_reset_cycle_2, nominal_capacity, diagnostic_params)
start_hppc_cycle_2 = 40
self.insert_hppc_cyclev2(start_hppc_cycle_2, nominal_capacity, diagnostic_params)
start_rpt_cycle_2 = 50
self.insert_rpt_cyclev2(start_rpt_cycle_2, nominal_capacity, diagnostic_params)
start_reset_cycle_3 = 70
self.insert_reset_cyclev2(start_reset_cycle_3, nominal_capacity, diagnostic_params)
start_hppc_cycle_3 = 74
self.insert_hppc_cyclev2(start_hppc_cycle_3, nominal_capacity, diagnostic_params)
start_rpt_cycle_3 = 84
self.insert_rpt_cyclev2(start_rpt_cycle_3, nominal_capacity, diagnostic_params)
return self |
Python | def insert_reset_cyclev2(self, start, nominal_capacity, diagnostic_params):
"""
Helper function for parameterizing the reset cycle.
Args:
start:
nominal_capacity:
diagnostic_params:
Returns:
dict:
"""
steps = self['MaccorTestProcedure']['ProcSteps']['TestStep']
# Charge step for reset cycle
assert steps[start]['StepType'] == 'Charge'
assert steps[start]['StepMode'] == 'Current'
steps[start]['StepValue'] = float(round(nominal_capacity * diagnostic_params['reset_cycle_current'], 4))
steps[start]['Limits']['Voltage'] = float(round(diagnostic_params['diagnostic_charge_cutoff_voltage'], 3))
assert steps[start]['Ends']['EndEntry'][0]['EndType'] == 'Current'
steps[start]['Ends']['EndEntry'][0]['Value'] = float(round(nominal_capacity *
diagnostic_params['reset_cycle_cutoff_current'], 4))
# Discharge step for reset cycle
assert steps[start+1]['StepType'] == 'Dischrge'
assert steps[start+1]['StepMode'] == 'Current'
steps[start+1]['StepValue'] = float(round(nominal_capacity * diagnostic_params['reset_cycle_current'], 4))
assert steps[start+1]['Ends']['EndEntry'][0]['EndType'] == 'Voltage'
steps[start+1]['Ends']['EndEntry'][0]['Value'] = \
float(round(diagnostic_params['diagnostic_discharge_cutoff_voltage'], 3))
return self | def insert_reset_cyclev2(self, start, nominal_capacity, diagnostic_params):
"""
Helper function for parameterizing the reset cycle.
Args:
start:
nominal_capacity:
diagnostic_params:
Returns:
dict:
"""
steps = self['MaccorTestProcedure']['ProcSteps']['TestStep']
# Charge step for reset cycle
assert steps[start]['StepType'] == 'Charge'
assert steps[start]['StepMode'] == 'Current'
steps[start]['StepValue'] = float(round(nominal_capacity * diagnostic_params['reset_cycle_current'], 4))
steps[start]['Limits']['Voltage'] = float(round(diagnostic_params['diagnostic_charge_cutoff_voltage'], 3))
assert steps[start]['Ends']['EndEntry'][0]['EndType'] == 'Current'
steps[start]['Ends']['EndEntry'][0]['Value'] = float(round(nominal_capacity *
diagnostic_params['reset_cycle_cutoff_current'], 4))
# Discharge step for reset cycle
assert steps[start+1]['StepType'] == 'Dischrge'
assert steps[start+1]['StepMode'] == 'Current'
steps[start+1]['StepValue'] = float(round(nominal_capacity * diagnostic_params['reset_cycle_current'], 4))
assert steps[start+1]['Ends']['EndEntry'][0]['EndType'] == 'Voltage'
steps[start+1]['Ends']['EndEntry'][0]['Value'] = \
float(round(diagnostic_params['diagnostic_discharge_cutoff_voltage'], 3))
return self |
Python | def insert_hppc_cyclev2(self, start, nominal_capacity, diagnostic_params):
"""
Helper function for parameterizing the hybrid pulse power cycle
Args:
start:
nominal_capacity:
diagnostic_params:
Returns:
dict:
"""
steps = self['MaccorTestProcedure']['ProcSteps']['TestStep']
# Initial charge step for hppc cycle
assert steps[start]['StepType'] == 'Charge'
assert steps[start]['StepMode'] == 'Current'
steps[start]['StepValue'] = float(round(nominal_capacity *
diagnostic_params['HPPC_baseline_constant_current'], 3))
steps[start]['Limits']['Voltage'] = float(round(diagnostic_params['diagnostic_charge_cutoff_voltage'], 3))
assert steps[start]['Ends']['EndEntry'][0]['EndType'] == 'Current'
steps[start]['Ends']['EndEntry'][0]['Value'] = float(round(nominal_capacity *
diagnostic_params['diagnostic_cutoff_current'], 3))
# Rest step for hppc cycle
assert steps[start+2]['StepType'] == 'Rest'
assert steps[start+2]['Ends']['EndEntry'][0]['EndType'] == 'StepTime'
time_s = int(round(60 * diagnostic_params['HPPC_rest_time']))
steps[start+2]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
# Discharge step 1 for hppc cycle
assert steps[start+3]['StepType'] == 'Dischrge'
assert steps[start+3]['StepMode'] == 'Current'
steps[start+3]['StepValue'] = float(round(nominal_capacity *
diagnostic_params['HPPC_pulse_current_1'], 3))
assert steps[start+3]['Ends']['EndEntry'][0]['EndType'] == 'StepTime'
time_s = diagnostic_params['HPPC_pulse_duration_1']
steps[start+3]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
assert steps[start+3]['Ends']['EndEntry'][1]['EndType'] == 'Voltage'
steps[start+3]['Ends']['EndEntry'][1]['Value'] = \
float(round(diagnostic_params['diagnostic_discharge_cutoff_voltage'], 3))
# Pulse rest step for hppc cycle
assert steps[start+4]['StepType'] == 'Rest'
assert steps[start+4]['Ends']['EndEntry'][0]['EndType'] == 'StepTime'
time_s = int(round(diagnostic_params['HPPC_pulse_rest_time']))
steps[start+4]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
# Charge step 1 for hppc cycle
assert steps[start+5]['StepType'] == 'Charge'
assert steps[start+5]['StepMode'] == 'Current'
steps[start+5]['StepValue'] = float(round(nominal_capacity *
diagnostic_params['HPPC_pulse_current_2'], 3))
assert steps[start+5]['Ends']['EndEntry'][0]['EndType'] == 'StepTime'
time_s = diagnostic_params['HPPC_pulse_duration_2']
steps[start+5]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
assert steps[start+5]['Ends']['EndEntry'][1]['EndType'] == 'Voltage'
steps[start+5]['Ends']['EndEntry'][1]['Value'] = \
float(round(diagnostic_params['HPPC_pulse_cutoff_voltage'], 3))
# Discharge step 2 for hppc cycle
assert steps[start+6]['StepType'] == 'Dischrge'
assert steps[start+6]['StepMode'] == 'Current'
steps[start+6]['StepValue'] = float(round(nominal_capacity *
diagnostic_params['HPPC_baseline_constant_current'], 3))
assert steps[start+6]['Ends']['EndEntry'][0]['EndType'] == 'StepTime'
time_s = int(round(3600 * (diagnostic_params['HPPC_interval'] / 100) /
diagnostic_params['HPPC_baseline_constant_current'] - 1))
steps[start+6]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
assert steps[start+6]['Ends']['EndEntry'][1]['EndType'] == 'Voltage'
steps[start+6]['Ends']['EndEntry'][1]['Value'] = \
float(round(diagnostic_params['diagnostic_discharge_cutoff_voltage'], 3))
# Final discharge step for hppc cycle
assert steps[start+8]['StepType'] == 'Dischrge'
assert steps[start+8]['StepMode'] == 'Voltage'
steps[start+8]['StepValue'] = float(round(diagnostic_params['diagnostic_discharge_cutoff_voltage'], 3))
steps[start+8]['Limits']['Current'] = float(round(nominal_capacity *
diagnostic_params['HPPC_baseline_constant_current'], 3))
assert steps[start+8]['Ends']['EndEntry'][0]['EndType'] == 'Current'
steps[start+8]['Ends']['EndEntry'][0]['Value'] = float(round(nominal_capacity *
diagnostic_params['diagnostic_cutoff_current'], 3))
return self | def insert_hppc_cyclev2(self, start, nominal_capacity, diagnostic_params):
"""
Helper function for parameterizing the hybrid pulse power cycle
Args:
start:
nominal_capacity:
diagnostic_params:
Returns:
dict:
"""
steps = self['MaccorTestProcedure']['ProcSteps']['TestStep']
# Initial charge step for hppc cycle
assert steps[start]['StepType'] == 'Charge'
assert steps[start]['StepMode'] == 'Current'
steps[start]['StepValue'] = float(round(nominal_capacity *
diagnostic_params['HPPC_baseline_constant_current'], 3))
steps[start]['Limits']['Voltage'] = float(round(diagnostic_params['diagnostic_charge_cutoff_voltage'], 3))
assert steps[start]['Ends']['EndEntry'][0]['EndType'] == 'Current'
steps[start]['Ends']['EndEntry'][0]['Value'] = float(round(nominal_capacity *
diagnostic_params['diagnostic_cutoff_current'], 3))
# Rest step for hppc cycle
assert steps[start+2]['StepType'] == 'Rest'
assert steps[start+2]['Ends']['EndEntry'][0]['EndType'] == 'StepTime'
time_s = int(round(60 * diagnostic_params['HPPC_rest_time']))
steps[start+2]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
# Discharge step 1 for hppc cycle
assert steps[start+3]['StepType'] == 'Dischrge'
assert steps[start+3]['StepMode'] == 'Current'
steps[start+3]['StepValue'] = float(round(nominal_capacity *
diagnostic_params['HPPC_pulse_current_1'], 3))
assert steps[start+3]['Ends']['EndEntry'][0]['EndType'] == 'StepTime'
time_s = diagnostic_params['HPPC_pulse_duration_1']
steps[start+3]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
assert steps[start+3]['Ends']['EndEntry'][1]['EndType'] == 'Voltage'
steps[start+3]['Ends']['EndEntry'][1]['Value'] = \
float(round(diagnostic_params['diagnostic_discharge_cutoff_voltage'], 3))
# Pulse rest step for hppc cycle
assert steps[start+4]['StepType'] == 'Rest'
assert steps[start+4]['Ends']['EndEntry'][0]['EndType'] == 'StepTime'
time_s = int(round(diagnostic_params['HPPC_pulse_rest_time']))
steps[start+4]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
# Charge step 1 for hppc cycle
assert steps[start+5]['StepType'] == 'Charge'
assert steps[start+5]['StepMode'] == 'Current'
steps[start+5]['StepValue'] = float(round(nominal_capacity *
diagnostic_params['HPPC_pulse_current_2'], 3))
assert steps[start+5]['Ends']['EndEntry'][0]['EndType'] == 'StepTime'
time_s = diagnostic_params['HPPC_pulse_duration_2']
steps[start+5]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
assert steps[start+5]['Ends']['EndEntry'][1]['EndType'] == 'Voltage'
steps[start+5]['Ends']['EndEntry'][1]['Value'] = \
float(round(diagnostic_params['HPPC_pulse_cutoff_voltage'], 3))
# Discharge step 2 for hppc cycle
assert steps[start+6]['StepType'] == 'Dischrge'
assert steps[start+6]['StepMode'] == 'Current'
steps[start+6]['StepValue'] = float(round(nominal_capacity *
diagnostic_params['HPPC_baseline_constant_current'], 3))
assert steps[start+6]['Ends']['EndEntry'][0]['EndType'] == 'StepTime'
time_s = int(round(3600 * (diagnostic_params['HPPC_interval'] / 100) /
diagnostic_params['HPPC_baseline_constant_current'] - 1))
steps[start+6]['Ends']['EndEntry'][0]['Value'] = time.strftime('%H:%M:%S', time.gmtime(time_s))
assert steps[start+6]['Ends']['EndEntry'][1]['EndType'] == 'Voltage'
steps[start+6]['Ends']['EndEntry'][1]['Value'] = \
float(round(diagnostic_params['diagnostic_discharge_cutoff_voltage'], 3))
# Final discharge step for hppc cycle
assert steps[start+8]['StepType'] == 'Dischrge'
assert steps[start+8]['StepMode'] == 'Voltage'
steps[start+8]['StepValue'] = float(round(diagnostic_params['diagnostic_discharge_cutoff_voltage'], 3))
steps[start+8]['Limits']['Current'] = float(round(nominal_capacity *
diagnostic_params['HPPC_baseline_constant_current'], 3))
assert steps[start+8]['Ends']['EndEntry'][0]['EndType'] == 'Current'
steps[start+8]['Ends']['EndEntry'][0]['Value'] = float(round(nominal_capacity *
diagnostic_params['diagnostic_cutoff_current'], 3))
return self |
Python | def insert_rpt_cyclev2(self, start, nominal_capacity, diagnostic_params):
"""
Helper function for parameterizing the Rate Performance Test cycle
Args:
start:
nominal_capacity:
diagnostic_params:
Returns:
dict
"""
steps = self['MaccorTestProcedure']['ProcSteps']['TestStep']
# First charge step for rpt cycle
assert steps[start]['StepType'] == 'Charge'
assert steps[start]['StepMode'] == 'Current'
steps[start]['StepValue'] = float(round(nominal_capacity *
diagnostic_params['RPT_charge_constant_current'], 3))
steps[start]['Limits']['Voltage'] = float(round(diagnostic_params['diagnostic_charge_cutoff_voltage'], 3))
assert steps[start]['Ends']['EndEntry'][0]['EndType'] == 'Current'
steps[start]['Ends']['EndEntry'][0]['Value'] = float(round(nominal_capacity *
diagnostic_params['diagnostic_cutoff_current'], 3))
# 0.2C discharge step for rpt cycle
assert steps[start+1]['StepType'] == 'Dischrge'
assert steps[start+1]['StepMode'] == 'Current'
steps[start+1]['StepValue'] = float(round(nominal_capacity *
diagnostic_params['RPT_discharge_constant_current_1'], 3))
assert steps[start+1]['Ends']['EndEntry'][0]['EndType'] == 'Voltage'
steps[start+1]['Ends']['EndEntry'][0]['Value'] = \
float(round(diagnostic_params['diagnostic_discharge_cutoff_voltage'], 3))
# Second charge step for rpt cycle
assert steps[start+3]['StepType'] == 'Charge'
assert steps[start+3]['StepMode'] == 'Current'
steps[start+3]['StepValue'] = float(round(nominal_capacity *
diagnostic_params['RPT_charge_constant_current'], 3))
steps[start+3]['Limits']['Voltage'] = float(round(diagnostic_params['diagnostic_charge_cutoff_voltage'], 3))
assert steps[start+3]['Ends']['EndEntry'][0]['EndType'] == 'Current'
steps[start+3]['Ends']['EndEntry'][0]['Value'] = float(round(nominal_capacity *
diagnostic_params['diagnostic_cutoff_current'], 3))
# 1C discharge step for rpt cycle
assert steps[start+4]['StepType'] == 'Dischrge'
assert steps[start+4]['StepMode'] == 'Current'
steps[start+4]['StepValue'] = float(round(nominal_capacity *
diagnostic_params['RPT_discharge_constant_current_2'], 3))
assert steps[start+4]['Ends']['EndEntry'][0]['EndType'] == 'Voltage'
steps[start+4]['Ends']['EndEntry'][0]['Value'] = \
float(round(diagnostic_params['diagnostic_discharge_cutoff_voltage'], 3))
# Third charge step for rpt cycle
assert steps[start+6]['StepType'] == 'Charge'
assert steps[start+6]['StepMode'] == 'Current'
steps[start+6]['StepValue'] = float(round(nominal_capacity *
diagnostic_params['RPT_charge_constant_current'], 3))
steps[start+6]['Limits']['Voltage'] = float(round(diagnostic_params['diagnostic_charge_cutoff_voltage'], 3))
assert steps[start+6]['Ends']['EndEntry'][0]['EndType'] == 'Current'
steps[start+6]['Ends']['EndEntry'][0]['Value'] = float(round(nominal_capacity *
diagnostic_params['diagnostic_cutoff_current'], 3))
# 2C discharge step for rpt cycle
assert steps[start+7]['StepType'] == 'Dischrge'
assert steps[start+7]['StepMode'] == 'Current'
steps[start+7]['StepValue'] = float(round(nominal_capacity *
diagnostic_params['RPT_discharge_constant_current_3'], 3))
assert steps[start+7]['Ends']['EndEntry'][0]['EndType'] == 'Voltage'
steps[start+7]['Ends']['EndEntry'][0]['Value'] = \
float(round(diagnostic_params['diagnostic_discharge_cutoff_voltage'], 3))
return self | def insert_rpt_cyclev2(self, start, nominal_capacity, diagnostic_params):
"""
Helper function for parameterizing the Rate Performance Test cycle
Args:
start:
nominal_capacity:
diagnostic_params:
Returns:
dict
"""
steps = self['MaccorTestProcedure']['ProcSteps']['TestStep']
# First charge step for rpt cycle
assert steps[start]['StepType'] == 'Charge'
assert steps[start]['StepMode'] == 'Current'
steps[start]['StepValue'] = float(round(nominal_capacity *
diagnostic_params['RPT_charge_constant_current'], 3))
steps[start]['Limits']['Voltage'] = float(round(diagnostic_params['diagnostic_charge_cutoff_voltage'], 3))
assert steps[start]['Ends']['EndEntry'][0]['EndType'] == 'Current'
steps[start]['Ends']['EndEntry'][0]['Value'] = float(round(nominal_capacity *
diagnostic_params['diagnostic_cutoff_current'], 3))
# 0.2C discharge step for rpt cycle
assert steps[start+1]['StepType'] == 'Dischrge'
assert steps[start+1]['StepMode'] == 'Current'
steps[start+1]['StepValue'] = float(round(nominal_capacity *
diagnostic_params['RPT_discharge_constant_current_1'], 3))
assert steps[start+1]['Ends']['EndEntry'][0]['EndType'] == 'Voltage'
steps[start+1]['Ends']['EndEntry'][0]['Value'] = \
float(round(diagnostic_params['diagnostic_discharge_cutoff_voltage'], 3))
# Second charge step for rpt cycle
assert steps[start+3]['StepType'] == 'Charge'
assert steps[start+3]['StepMode'] == 'Current'
steps[start+3]['StepValue'] = float(round(nominal_capacity *
diagnostic_params['RPT_charge_constant_current'], 3))
steps[start+3]['Limits']['Voltage'] = float(round(diagnostic_params['diagnostic_charge_cutoff_voltage'], 3))
assert steps[start+3]['Ends']['EndEntry'][0]['EndType'] == 'Current'
steps[start+3]['Ends']['EndEntry'][0]['Value'] = float(round(nominal_capacity *
diagnostic_params['diagnostic_cutoff_current'], 3))
# 1C discharge step for rpt cycle
assert steps[start+4]['StepType'] == 'Dischrge'
assert steps[start+4]['StepMode'] == 'Current'
steps[start+4]['StepValue'] = float(round(nominal_capacity *
diagnostic_params['RPT_discharge_constant_current_2'], 3))
assert steps[start+4]['Ends']['EndEntry'][0]['EndType'] == 'Voltage'
steps[start+4]['Ends']['EndEntry'][0]['Value'] = \
float(round(diagnostic_params['diagnostic_discharge_cutoff_voltage'], 3))
# Third charge step for rpt cycle
assert steps[start+6]['StepType'] == 'Charge'
assert steps[start+6]['StepMode'] == 'Current'
steps[start+6]['StepValue'] = float(round(nominal_capacity *
diagnostic_params['RPT_charge_constant_current'], 3))
steps[start+6]['Limits']['Voltage'] = float(round(diagnostic_params['diagnostic_charge_cutoff_voltage'], 3))
assert steps[start+6]['Ends']['EndEntry'][0]['EndType'] == 'Current'
steps[start+6]['Ends']['EndEntry'][0]['Value'] = float(round(nominal_capacity *
diagnostic_params['diagnostic_cutoff_current'], 3))
# 2C discharge step for rpt cycle
assert steps[start+7]['StepType'] == 'Dischrge'
assert steps[start+7]['StepMode'] == 'Current'
steps[start+7]['StepValue'] = float(round(nominal_capacity *
diagnostic_params['RPT_discharge_constant_current_3'], 3))
assert steps[start+7]['Ends']['EndEntry'][0]['EndType'] == 'Voltage'
steps[start+7]['Ends']['EndEntry'][0]['Value'] = \
float(round(diagnostic_params['diagnostic_discharge_cutoff_voltage'], 3))
return self |
Python | def to_file(self, filename, encoding='ISO-8859-1', column_width=20, linesep="\r\n"):
"""
Write DashOrderedDict to a settings file in the Biologic format with a *.mps extension.
Args:
filename (str): output name for settings file, full path
encoding (str): file encoding to use when reading the file
column_width (int): number of characters per step column
linesep (str): characters to use for line separation, usually CRLF for Windows based machines
Returns:
(None): Writes out data to filename
"""
data = deepcopy(self)
blocks = []
meta_data_keys = list(data['Metadata'].keys())
for indx, meta_key in enumerate(meta_data_keys):
if 'Technique_' in meta_key:
blocks.append(' : '.join([meta_key.split('_')[0], data['Metadata'][meta_key]]))
tq_number = data['Metadata'][meta_key]
blocks.append(data['Technique'][tq_number]['Type'])
technique_keys = list(data['Technique'][tq_number]['Step']['1'].keys())
for tq_key in technique_keys:
line = tq_key.ljust(column_width)
for step in data['Technique']['1']['Step'].keys():
line = line + data['Technique']['1']['Step'][step][tq_key].ljust(column_width)
blocks.append(line)
continue
elif data['Metadata'][meta_key] is None:
line = meta_key
elif data['Metadata'][meta_key] == 'blank':
line = ''
elif data['Metadata'][meta_key] is not None:
line = ' : '.join([meta_key, data['Metadata'][meta_key]])
blocks.append(line)
data.unset(data['Metadata'][meta_key])
contents = linesep.join(blocks)
with open(filename, 'wb') as f:
f.write(contents.encode(encoding)) | def to_file(self, filename, encoding='ISO-8859-1', column_width=20, linesep="\r\n"):
"""
Write DashOrderedDict to a settings file in the Biologic format with a *.mps extension.
Args:
filename (str): output name for settings file, full path
encoding (str): file encoding to use when reading the file
column_width (int): number of characters per step column
linesep (str): characters to use for line separation, usually CRLF for Windows based machines
Returns:
(None): Writes out data to filename
"""
data = deepcopy(self)
blocks = []
meta_data_keys = list(data['Metadata'].keys())
for indx, meta_key in enumerate(meta_data_keys):
if 'Technique_' in meta_key:
blocks.append(' : '.join([meta_key.split('_')[0], data['Metadata'][meta_key]]))
tq_number = data['Metadata'][meta_key]
blocks.append(data['Technique'][tq_number]['Type'])
technique_keys = list(data['Technique'][tq_number]['Step']['1'].keys())
for tq_key in technique_keys:
line = tq_key.ljust(column_width)
for step in data['Technique']['1']['Step'].keys():
line = line + data['Technique']['1']['Step'][step][tq_key].ljust(column_width)
blocks.append(line)
continue
elif data['Metadata'][meta_key] is None:
line = meta_key
elif data['Metadata'][meta_key] == 'blank':
line = ''
elif data['Metadata'][meta_key] is not None:
line = ' : '.join([meta_key, data['Metadata'][meta_key]])
blocks.append(line)
data.unset(data['Metadata'][meta_key])
contents = linesep.join(blocks)
with open(filename, 'wb') as f:
f.write(contents.encode(encoding)) |
Python | def create_sdu(self, sdu_input_name, sdu_output_name):
"""
Highest level function in the class. Takes a schedule file and replaces
all of the steps with steps from the procedure file. Then writes the
resulting schedule file to the output file.
Args:
sdu_input_name (str): the full path of the schedule file to use as a
shell for the steps
sdu_output_name (str): the full path of the schedule file to output
"""
schedule = Schedule.from_file(sdu_input_name)
# sdu_dict = Schedule.from_file(sdu_input_name)
keys = list(schedule['Schedule'].keys())
for key in keys:
if 'Schedule' in key:
del schedule['Schedule'][key]
step_name_list, step_flow_ctrl = self.create_metadata()
for step_index, step in enumerate(self.procedure_dict_steps):
step_arbin = self.compile_to_arbin(self.procedure_dict_steps[step_index],
step_index, step_name_list, step_flow_ctrl)
key = 'Step{}'.format(step_index)
schedule.set("Schedule.{}".format(key), step_arbin)
schedule.to_file(sdu_output_name) | def create_sdu(self, sdu_input_name, sdu_output_name):
"""
Highest level function in the class. Takes a schedule file and replaces
all of the steps with steps from the procedure file. Then writes the
resulting schedule file to the output file.
Args:
sdu_input_name (str): the full path of the schedule file to use as a
shell for the steps
sdu_output_name (str): the full path of the schedule file to output
"""
schedule = Schedule.from_file(sdu_input_name)
# sdu_dict = Schedule.from_file(sdu_input_name)
keys = list(schedule['Schedule'].keys())
for key in keys:
if 'Schedule' in key:
del schedule['Schedule'][key]
step_name_list, step_flow_ctrl = self.create_metadata()
for step_index, step in enumerate(self.procedure_dict_steps):
step_arbin = self.compile_to_arbin(self.procedure_dict_steps[step_index],
step_index, step_name_list, step_flow_ctrl)
key = 'Step{}'.format(step_index)
schedule.set("Schedule.{}".format(key), step_arbin)
schedule.to_file(sdu_output_name) |
Python | def create_metadata(self):
"""
Creates the necessary information so that flow control for the steps can be
set up correctly.
Returns:
list: unique strings consisting of the step number and note
dict: key value pairs for the loop control steps indicating
which step the Loop step should GOTO when the end condition
is not matched
"""
step_name_list = []
step_flow_ctrl = {}
for indx, step in enumerate(self.procedure_dict_steps):
step_name_list.append(str(indx + 1) + '-' + str(step['StepNote']))
if 'Loop' in step['StepType']:
loop_counter = int(re.search(r'\d+', step['StepType']).group())
i = 1
while (indx - i) > 1:
if self.procedure_dict_steps[abs(indx - i)]['StepType'] == 'Do {}'.format(loop_counter):
do_index = abs(indx - i)
break
i = i + 1
step_flow_ctrl.update({indx: step_name_list[do_index + 1]})
return step_name_list, step_flow_ctrl | def create_metadata(self):
"""
Creates the necessary information so that flow control for the steps can be
set up correctly.
Returns:
list: unique strings consisting of the step number and note
dict: key value pairs for the loop control steps indicating
which step the Loop step should GOTO when the end condition
is not matched
"""
step_name_list = []
step_flow_ctrl = {}
for indx, step in enumerate(self.procedure_dict_steps):
step_name_list.append(str(indx + 1) + '-' + str(step['StepNote']))
if 'Loop' in step['StepType']:
loop_counter = int(re.search(r'\d+', step['StepType']).group())
i = 1
while (indx - i) > 1:
if self.procedure_dict_steps[abs(indx - i)]['StepType'] == 'Do {}'.format(loop_counter):
do_index = abs(indx - i)
break
i = i + 1
step_flow_ctrl.update({indx: step_name_list[do_index + 1]})
return step_name_list, step_flow_ctrl |
Python | def add_blank_limit(self):
"""
Minor helper function to add a limit that immediately advances to the next step.
Returns:
dict: blank limit that advances to the next step immediately
"""
ARBIN_SCHEMA = loadfn(os.path.join(PROTOCOL_SCHEMA_DIR, "arbin_schedule_schema.yaml"))
limit = ARBIN_SCHEMA['step_blank_limit']
limit['m_bStepLimit'] = "1"
limit['m_bLogDataLimit'] = "0"
limit['m_szGotoStep'] = "Next Step"
limit['Equation0_szLeft'] = 'PV_CHAN_Step_Time'
limit['Equation0_szCompareSign'] = '>'
limit['Equation0_szRight'] = '0'
return limit | def add_blank_limit(self):
"""
Minor helper function to add a limit that immediately advances to the next step.
Returns:
dict: blank limit that advances to the next step immediately
"""
ARBIN_SCHEMA = loadfn(os.path.join(PROTOCOL_SCHEMA_DIR, "arbin_schedule_schema.yaml"))
limit = ARBIN_SCHEMA['step_blank_limit']
limit['m_bStepLimit'] = "1"
limit['m_bLogDataLimit'] = "0"
limit['m_szGotoStep'] = "Next Step"
limit['Equation0_szLeft'] = 'PV_CHAN_Step_Time'
limit['Equation0_szCompareSign'] = '>'
limit['Equation0_szRight'] = '0'
return limit |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.