language
stringclasses 6
values | original_string
stringlengths 25
887k
| text
stringlengths 25
887k
|
---|---|---|
Python | def generateCARs(transactionDB: TransactionDB,
support: float = 1, confidence: float = 50, maxlen: int = 10, **kwargs):
"""Function for generating ClassAssociationRules from a TransactionDB
Parameters
----------
:param transactionDB : TransactionDB
support : float
minimum support in percents if positive
absolute minimum support if negative
confidence : float
minimum confidence in percents if positive
absolute minimum confidence if negative
maxlen : int
maximum length of mined rules
**kwargs :
arbitrary number of arguments that will be
provided to the fim.apriori function
Returns
-------
list of CARs
"""
appear = transactionDB.appeardict
rules = fim.apriori(transactionDB.string_representation, supp=support, conf=confidence, mode="o", target="r",
report="sc", appear=appear, **kwargs, zmax=maxlen)
return createCARs(rules) | def generateCARs(transactionDB: TransactionDB,
support: float = 1, confidence: float = 50, maxlen: int = 10, **kwargs):
"""Function for generating ClassAssociationRules from a TransactionDB
Parameters
----------
:param transactionDB : TransactionDB
support : float
minimum support in percents if positive
absolute minimum support if negative
confidence : float
minimum confidence in percents if positive
absolute minimum confidence if negative
maxlen : int
maximum length of mined rules
**kwargs :
arbitrary number of arguments that will be
provided to the fim.apriori function
Returns
-------
list of CARs
"""
appear = transactionDB.appeardict
rules = fim.apriori(transactionDB.string_representation, supp=support, conf=confidence, mode="o", target="r",
report="sc", appear=appear, **kwargs, zmax=maxlen)
return createCARs(rules) |
Python | def top_rules(transactions,
appearance: Optional[Dict] = None,
target_rule_count: int = 1000,
init_support: float = 0.05,
init_confidence: float = 0.5,
confidence_step: float = 0.05,
support_step: float = 0.05,
min_length: int = 2,
init_max_length: int = 3,
total_timeout: float = 100.0,
max_iterations: int = 30,
verbose: bool = True):
"""
Function for finding the best n (target_rule_count) rules from transaction list
Returns list of mined rules. The rules are not ordered.
:param transactions : 2D array of strings, e.g. [["a:=:1", "b:=:3"], ["a:=:4", "b:=:2"]]
:param appearance : dict - dictionary specifying rule appearance
:param target_rule_count : int - target number of rules to mine
:param init_support : float - support from which to start mining
:param init_confidence : float - confidence from which to start mining
:param confidence_step : float
:param support_step : float
:param min_length : int - minimum len of rules to mine
:param init_max_length : int - maximum len from which to start mining
:param total_timeout : float - maximum execution time of the function
:param max_iterations : int - maximum iterations to try before stopping execution
:param verbose: bool
"""
if appearance is None:
appearance = {}
start_time: float = time.time()
# the length of a rule is at most the length of a transaction. (All transactions have the same length.)
MAX_RULE_LEN: int = len(transactions[0])
current_support: float = init_support
current_confidence: float = init_confidence
current_max_length: int = init_max_length
keep_mining: bool = True
is_max_length_decreased_due_timeout: bool = False
current_iteration: int = 0
last_rule_count = -1
rules: Optional[List] = None
if verbose:
print("STARTING top_rules")
while keep_mining:
current_iteration += 1
if current_iteration > max_iterations:
if verbose:
print("Max iterations reached")
break
if verbose:
print(f"--- iteration {current_iteration} ---")
print((f"Running apriori with setting: "
f"confidence={current_confidence}, "
f"support={current_support}, "
f"min_length={min_length}, "
f"max_length={current_max_length}, "
f"MAX_RULE_LEN={MAX_RULE_LEN}"
))
current_rules = fim.arules(transactions, supp=current_support, conf=current_confidence, mode="o", report="sc",
appear=appearance,
zmax=current_max_length, zmin=min_length)
current_nb_of_rules = len(current_rules)
# assign
rules = current_rules
if verbose:
print(f"Rule count: {current_nb_of_rules}, Iteration: {current_iteration}")
if current_nb_of_rules >= target_rule_count:
keep_mining = False
if verbose:
print(f"\tTarget rule count satisfied: {target_rule_count}")
else:
current_execution_time = time.time() - start_time
# if timeout limit exceeded
if current_execution_time > total_timeout:
if verbose:
print(f"\tExecution time exceeded: {total_timeout}")
keep_mining = False
# if we can still increase our rule length AND
# the number of rules found has changed (increased?) since last time AND
# there has
elif current_max_length < MAX_RULE_LEN and last_rule_count != current_nb_of_rules and not is_max_length_decreased_due_timeout:
current_max_length += 1
last_rule_count = current_nb_of_rules
if verbose:
print(f"\tIncreasing max_length {current_max_length}")
# if we can still increase our rule length AND
#
# we can still increase our support
# THEN:
# increase our support
# increment our max length
elif current_max_length < MAX_RULE_LEN and is_max_length_decreased_due_timeout and current_support <= 1 - support_step:
current_support += support_step
current_max_length += 1
last_rule_count = current_nb_of_rules
is_max_length_decreased_due_timeout = False
if verbose:
print(f"\tIncreasing maxlen to {current_max_length}")
print(f"\tIncreasing minsup to {current_support}")
# IF we can still decrease our confidence
# THEN decrease our confidence
elif current_confidence > confidence_step:
current_confidence -= confidence_step
if verbose:
print(f"\tDecreasing confidence to {current_confidence}")
else:
if verbose:
print("\tAll options exhausted")
keep_mining = False
if verbose:
end_of_current_iteration_message = f"--- end iteration {current_iteration} ---"
print(end_of_current_iteration_message)
print("-" * len(end_of_current_iteration_message))
if verbose:
print(f"FINISHED top_rules after {current_iteration} iterations")
return rules | def top_rules(transactions,
appearance: Optional[Dict] = None,
target_rule_count: int = 1000,
init_support: float = 0.05,
init_confidence: float = 0.5,
confidence_step: float = 0.05,
support_step: float = 0.05,
min_length: int = 2,
init_max_length: int = 3,
total_timeout: float = 100.0,
max_iterations: int = 30,
verbose: bool = True):
"""
Function for finding the best n (target_rule_count) rules from transaction list
Returns list of mined rules. The rules are not ordered.
:param transactions : 2D array of strings, e.g. [["a:=:1", "b:=:3"], ["a:=:4", "b:=:2"]]
:param appearance : dict - dictionary specifying rule appearance
:param target_rule_count : int - target number of rules to mine
:param init_support : float - support from which to start mining
:param init_confidence : float - confidence from which to start mining
:param confidence_step : float
:param support_step : float
:param min_length : int - minimum len of rules to mine
:param init_max_length : int - maximum len from which to start mining
:param total_timeout : float - maximum execution time of the function
:param max_iterations : int - maximum iterations to try before stopping execution
:param verbose: bool
"""
if appearance is None:
appearance = {}
start_time: float = time.time()
# the length of a rule is at most the length of a transaction. (All transactions have the same length.)
MAX_RULE_LEN: int = len(transactions[0])
current_support: float = init_support
current_confidence: float = init_confidence
current_max_length: int = init_max_length
keep_mining: bool = True
is_max_length_decreased_due_timeout: bool = False
current_iteration: int = 0
last_rule_count = -1
rules: Optional[List] = None
if verbose:
print("STARTING top_rules")
while keep_mining:
current_iteration += 1
if current_iteration > max_iterations:
if verbose:
print("Max iterations reached")
break
if verbose:
print(f"--- iteration {current_iteration} ---")
print((f"Running apriori with setting: "
f"confidence={current_confidence}, "
f"support={current_support}, "
f"min_length={min_length}, "
f"max_length={current_max_length}, "
f"MAX_RULE_LEN={MAX_RULE_LEN}"
))
current_rules = fim.arules(transactions, supp=current_support, conf=current_confidence, mode="o", report="sc",
appear=appearance,
zmax=current_max_length, zmin=min_length)
current_nb_of_rules = len(current_rules)
# assign
rules = current_rules
if verbose:
print(f"Rule count: {current_nb_of_rules}, Iteration: {current_iteration}")
if current_nb_of_rules >= target_rule_count:
keep_mining = False
if verbose:
print(f"\tTarget rule count satisfied: {target_rule_count}")
else:
current_execution_time = time.time() - start_time
# if timeout limit exceeded
if current_execution_time > total_timeout:
if verbose:
print(f"\tExecution time exceeded: {total_timeout}")
keep_mining = False
# if we can still increase our rule length AND
# the number of rules found has changed (increased?) since last time AND
# there has
elif current_max_length < MAX_RULE_LEN and last_rule_count != current_nb_of_rules and not is_max_length_decreased_due_timeout:
current_max_length += 1
last_rule_count = current_nb_of_rules
if verbose:
print(f"\tIncreasing max_length {current_max_length}")
# if we can still increase our rule length AND
#
# we can still increase our support
# THEN:
# increase our support
# increment our max length
elif current_max_length < MAX_RULE_LEN and is_max_length_decreased_due_timeout and current_support <= 1 - support_step:
current_support += support_step
current_max_length += 1
last_rule_count = current_nb_of_rules
is_max_length_decreased_due_timeout = False
if verbose:
print(f"\tIncreasing maxlen to {current_max_length}")
print(f"\tIncreasing minsup to {current_support}")
# IF we can still decrease our confidence
# THEN decrease our confidence
elif current_confidence > confidence_step:
current_confidence -= confidence_step
if verbose:
print(f"\tDecreasing confidence to {current_confidence}")
else:
if verbose:
print("\tAll options exhausted")
keep_mining = False
if verbose:
end_of_current_iteration_message = f"--- end iteration {current_iteration} ---"
print(end_of_current_iteration_message)
print("-" * len(end_of_current_iteration_message))
if verbose:
print(f"FINISHED top_rules after {current_iteration} iterations")
return rules |
Python | def mine_cars_for_dataset_fold_target_attribute(
dataset_name: str,
fold_i: int,
target_attribute: str,
min_support: float,
min_confidence: float,
max_length: int,
):
"""
1. load the required training data of the dataset fold.
2. make sure the target attribute is the last attribute
3. mine rules using the parameters settings
--> check the number of rules!
4. save the rules to file
:return:
"""
relative_name: str = f'{dataset_name}{fold_i}_{target_attribute}_{min_confidence}'
logger = create_logger(
logger_name=f'mine_filtered_single_target_cars_' + relative_name,
log_file_name=os.path.join(assoc_vs_tree_based_single_target_car_dir(),
f'{relative_name}_single_target_filtered_car_mining.log')
)
# logger.info(f"rule_cutoff={rule_cutoff}")
# # load the required training data of the dataset fold.
# original_train_data_fold_abs_file_name = get_original_data_fold_abs_file_name(
# dataset_name, fold_i, TrainTestEnum.train)
# df_train_original_column_order = pd.read_csv(original_train_data_fold_abs_file_name, delimiter=',')
# # 2. make sure the target attribute is the last attribute
# df_train_reordered = reorder_columns(df_train_original_column_order, target_attribute)
#
# # REMOVE INSTANCES WITH NAN AS TARGET VALUE:
# df_train_reordered = remove_instances_with_nans_in_column(df_train_reordered, target_attribute)
df_train_reordered = prepare_arc_data(dataset_name, fold_i, target_attribute, TrainTestEnum.train)
logger.info(f"start mining CARs for " + relative_name)
st_mcars: List[MCAR]
timings_dict: Dict[str, float]
filtered_st_mcars, timings_dict = mine_single_target_MCARs_mlext(df_train_reordered,
target_attribute=target_attribute,
min_support=min_support,
min_confidence=min_confidence,
max_length=max_length)
logger.info(f"finished mining CARs for {dataset_name} {fold_i}_{min_support}supp_{min_confidence}conf")
logger.info(
f"found {len(filtered_st_mcars)} CARs for {dataset_name} {fold_i}_{min_support}supp_{min_confidence}conf")
filtered_st_mcars_abs_file_name: str = get_single_target_filtered_cars_abs_filename(
dataset_name=dataset_name, fold_i=fold_i, target_attribute=target_attribute,
confidence_boundary_val=min_confidence
)
store_mcars(filtered_st_mcars_abs_file_name, filtered_st_mcars)
logger.info(f"finished writing CARs to file: {filtered_st_mcars_abs_file_name}")
filtered_st_mcars_mining_timings_abs_file_name = get_single_target_filtered_cars_mining_timings_abs_filename(
dataset_name=dataset_name, fold_i=fold_i, target_attribute=target_attribute,
confidence_boundary_val=min_confidence
)
store_timings_dict(filtered_st_mcars_mining_timings_abs_file_name, timings_dict)
close_logger(logger) | def mine_cars_for_dataset_fold_target_attribute(
dataset_name: str,
fold_i: int,
target_attribute: str,
min_support: float,
min_confidence: float,
max_length: int,
):
"""
1. load the required training data of the dataset fold.
2. make sure the target attribute is the last attribute
3. mine rules using the parameters settings
--> check the number of rules!
4. save the rules to file
:return:
"""
relative_name: str = f'{dataset_name}{fold_i}_{target_attribute}_{min_confidence}'
logger = create_logger(
logger_name=f'mine_filtered_single_target_cars_' + relative_name,
log_file_name=os.path.join(assoc_vs_tree_based_single_target_car_dir(),
f'{relative_name}_single_target_filtered_car_mining.log')
)
# logger.info(f"rule_cutoff={rule_cutoff}")
# # load the required training data of the dataset fold.
# original_train_data_fold_abs_file_name = get_original_data_fold_abs_file_name(
# dataset_name, fold_i, TrainTestEnum.train)
# df_train_original_column_order = pd.read_csv(original_train_data_fold_abs_file_name, delimiter=',')
# # 2. make sure the target attribute is the last attribute
# df_train_reordered = reorder_columns(df_train_original_column_order, target_attribute)
#
# # REMOVE INSTANCES WITH NAN AS TARGET VALUE:
# df_train_reordered = remove_instances_with_nans_in_column(df_train_reordered, target_attribute)
df_train_reordered = prepare_arc_data(dataset_name, fold_i, target_attribute, TrainTestEnum.train)
logger.info(f"start mining CARs for " + relative_name)
st_mcars: List[MCAR]
timings_dict: Dict[str, float]
filtered_st_mcars, timings_dict = mine_single_target_MCARs_mlext(df_train_reordered,
target_attribute=target_attribute,
min_support=min_support,
min_confidence=min_confidence,
max_length=max_length)
logger.info(f"finished mining CARs for {dataset_name} {fold_i}_{min_support}supp_{min_confidence}conf")
logger.info(
f"found {len(filtered_st_mcars)} CARs for {dataset_name} {fold_i}_{min_support}supp_{min_confidence}conf")
filtered_st_mcars_abs_file_name: str = get_single_target_filtered_cars_abs_filename(
dataset_name=dataset_name, fold_i=fold_i, target_attribute=target_attribute,
confidence_boundary_val=min_confidence
)
store_mcars(filtered_st_mcars_abs_file_name, filtered_st_mcars)
logger.info(f"finished writing CARs to file: {filtered_st_mcars_abs_file_name}")
filtered_st_mcars_mining_timings_abs_file_name = get_single_target_filtered_cars_mining_timings_abs_filename(
dataset_name=dataset_name, fold_i=fold_i, target_attribute=target_attribute,
confidence_boundary_val=min_confidence
)
store_timings_dict(filtered_st_mcars_mining_timings_abs_file_name, timings_dict)
close_logger(logger) |
Python | def find_overlap_mask(self, rule1: MIDSRule, rule2: MIDSRule, df: pd.DataFrame) -> np.ndarray:
"""
Compute the number of points which are covered both by r1 and r2 w.r.t. data frame df
:param rule1:
:param rule2:
:param df:
:return:
"""
# if not rule1.head_contains_target_attribute(target_attribute) or not rule2.head_contains_target_attribute(
# target_attribute):
# raise Exception("WARNING: overlap check where one of the two rules does not contain target attribute",
# str(target_attribute))
# if rule1 == rule2:
# raise Exception("Dont check a rule with itself for overlap")
return np.logical_and(
self.cover_checker.get_cover(rule1, df),
self.cover_checker.get_cover(rule2, df)
) | def find_overlap_mask(self, rule1: MIDSRule, rule2: MIDSRule, df: pd.DataFrame) -> np.ndarray:
"""
Compute the number of points which are covered both by r1 and r2 w.r.t. data frame df
:param rule1:
:param rule2:
:param df:
:return:
"""
# if not rule1.head_contains_target_attribute(target_attribute) or not rule2.head_contains_target_attribute(
# target_attribute):
# raise Exception("WARNING: overlap check where one of the two rules does not contain target attribute",
# str(target_attribute))
# if rule1 == rule2:
# raise Exception("Dont check a rule with itself for overlap")
return np.logical_and(
self.cover_checker.get_cover(rule1, df),
self.cover_checker.get_cover(rule2, df)
) |
Python | def calc_f1(self):
"""
F1 score is the harmonic mean of the precision and recall.
:return:
"""
if self.car.support == 0 or self.car.confidence == 0:
return 0
# warnings.warn("possibly not correct for multi-target prediction")
return st.hmean([self.car.support, self.car.confidence]) | def calc_f1(self):
"""
F1 score is the harmonic mean of the precision and recall.
:return:
"""
if self.car.support == 0 or self.car.confidence == 0:
return 0
# warnings.warn("possibly not correct for multi-target prediction")
return st.hmean([self.car.support, self.car.confidence]) |
Python | def does_rule_fire_for_instance(rule: MIDSRule, instance: pd.Series) -> bool:
"""
Return True if rule condition holds for an instance represented as a pandas Series, False otherwise.
:param rule:
:param instance:
:return:
"""
antecedent: Antecedent = rule.get_antecedent()
for literal in antecedent.get_literals():
does_literal_hold = literal.does_literal_hold_for_instance(instance)
if not does_literal_hold:
return False
return True | def does_rule_fire_for_instance(rule: MIDSRule, instance: pd.Series) -> bool:
"""
Return True if rule condition holds for an instance represented as a pandas Series, False otherwise.
:param rule:
:param instance:
:return:
"""
antecedent: Antecedent = rule.get_antecedent()
for literal in antecedent.get_literals():
does_literal_hold = literal.does_literal_hold_for_instance(instance)
if not does_literal_hold:
return False
return True |
Python | def create_f2_f3_cache(total_rule_set: MIDSRuleSet, overlap_checker, quant_dataframe,
f2_f3_target_attr_to_upper_bound_map: Dict[TargetAttr, int],
nb_of_target_attributes: int
):
"""
create a cache, mapping each (unordered) pair of rules
to their intra and inter - class overlap counts
"""
# raise Exception("INCORRECT")
cache = {} # type: Dict[Tuple[RuleID,RuleID], Tuple[Count, Count]]
for i, rule_i in enumerate(total_rule_set.ruleset):
for j, rule_j in enumerate(total_rule_set.ruleset):
if i >= j:
continue
target_attr_rule_i = rule_i.get_target_attributes()
target_attr_rule_j = rule_j.get_target_attributes()
shared_attributes = target_attr_rule_i & target_attr_rule_j
# if both rules have at least one target attribute in common
if len(shared_attributes) > 0:
overlap_count = overlap_checker.get_pure_overlap_count(rule_i, rule_j, quant_dataframe)
weighed_overlap_count_intra_class_sum = 0
weighted_overlap_count_inter_class_sum = 0
for target_attr in shared_attributes:
# check whether the rules predict the same value for the target attribute
target_value_rule_i = rule_i.get_predicted_value_for(target_attr)
target_value_rule_j = rule_j.get_predicted_value_for(target_attr)
f2_f3_upper_bound_for_target_attr = f2_f3_target_attr_to_upper_bound_map[target_attr]
if target_value_rule_i == target_value_rule_j:
weighed_overlap_count_intra_class_sum = weighed_overlap_count_intra_class_sum + \
overlap_count / (nb_of_target_attributes * f2_f3_upper_bound_for_target_attr)
else:
weighted_overlap_count_inter_class_sum = weighted_overlap_count_inter_class_sum + \
overlap_count / (nb_of_target_attributes * f2_f3_upper_bound_for_target_attr)
# weighed_overlap_count_intra_class_sum = weighed_overlap_count_intra_class_sum / nb_of_target_attributes
# weighted_overlap_count_inter_class_sum = weighted_overlap_count_inter_class_sum / nb_of_target_attributes
cache_key = get_cache_key(rule_i, rule_j)
cache[cache_key] = (weighed_overlap_count_intra_class_sum, weighted_overlap_count_inter_class_sum)
return cache | def create_f2_f3_cache(total_rule_set: MIDSRuleSet, overlap_checker, quant_dataframe,
f2_f3_target_attr_to_upper_bound_map: Dict[TargetAttr, int],
nb_of_target_attributes: int
):
"""
create a cache, mapping each (unordered) pair of rules
to their intra and inter - class overlap counts
"""
# raise Exception("INCORRECT")
cache = {} # type: Dict[Tuple[RuleID,RuleID], Tuple[Count, Count]]
for i, rule_i in enumerate(total_rule_set.ruleset):
for j, rule_j in enumerate(total_rule_set.ruleset):
if i >= j:
continue
target_attr_rule_i = rule_i.get_target_attributes()
target_attr_rule_j = rule_j.get_target_attributes()
shared_attributes = target_attr_rule_i & target_attr_rule_j
# if both rules have at least one target attribute in common
if len(shared_attributes) > 0:
overlap_count = overlap_checker.get_pure_overlap_count(rule_i, rule_j, quant_dataframe)
weighed_overlap_count_intra_class_sum = 0
weighted_overlap_count_inter_class_sum = 0
for target_attr in shared_attributes:
# check whether the rules predict the same value for the target attribute
target_value_rule_i = rule_i.get_predicted_value_for(target_attr)
target_value_rule_j = rule_j.get_predicted_value_for(target_attr)
f2_f3_upper_bound_for_target_attr = f2_f3_target_attr_to_upper_bound_map[target_attr]
if target_value_rule_i == target_value_rule_j:
weighed_overlap_count_intra_class_sum = weighed_overlap_count_intra_class_sum + \
overlap_count / (nb_of_target_attributes * f2_f3_upper_bound_for_target_attr)
else:
weighted_overlap_count_inter_class_sum = weighted_overlap_count_inter_class_sum + \
overlap_count / (nb_of_target_attributes * f2_f3_upper_bound_for_target_attr)
# weighed_overlap_count_intra_class_sum = weighed_overlap_count_intra_class_sum / nb_of_target_attributes
# weighted_overlap_count_inter_class_sum = weighted_overlap_count_inter_class_sum / nb_of_target_attributes
cache_key = get_cache_key(rule_i, rule_j)
cache[cache_key] = (weighed_overlap_count_intra_class_sum, weighted_overlap_count_inter_class_sum)
return cache |
Python | def from_DataFrame(clazz, df, unique_transactions=False):
"""
Allows the conversion of pandas DataFrame class to
TransactionDB class.
"""
rows = df.values
header = list(df.columns.values)
return clazz(rows, header, unique_transactions=unique_transactions) | def from_DataFrame(clazz, df, unique_transactions=False):
"""
Allows the conversion of pandas DataFrame class to
TransactionDB class.
"""
rows = df.values
header = list(df.columns.values)
return clazz(rows, header, unique_transactions=unique_transactions) |
Python | def _fraction_overlap(ruleset: MIDSRuleSet, test_dataframe: pd.DataFrame,
target_attr: Optional[TargetAttr] = None,
cover_checker_on_test: Optional[CoverChecker] = None,
overlap_checker_on_test: Optional[OverlapChecker] = None,
debug=False) -> float:
"""
This metric captures the extend of overlap between every pair of rules in a decision set R.
Smaller values of this metric signify higher interpretability.
Boundary values:
0.0 if no rules in R overlap:
1.0 if all data points in are covered by all rules in R.
NOTE:
* this is 0.0 for any decision list,
because their if-else structure ensures that a rule in the list applies only to those data points
which have not been covered by any of the preceeding rules
* this is 0.0 for the empty rule set
:param ruleset:
:param test_dataframe:
:param cover_checker_on_test:
:param overlap_checker_on_test:
:return:
"""
if type(ruleset) != MIDSRuleSet:
raise Exception(f"Type of ruleset must be MIDSRuleSet, but is {type(ruleset)}")
# warnings.warn("FRACTION_OVERLAP IS CURRENTLY NOT RELATIVE TO A TARGET ATTRIBUTE. THIS MIGHT BE INCORRECT")
ruleset_size: int = len(ruleset)
if ruleset_size == 0:
print("Warning: the MIDS rule set is empty.")
return 0.0
nb_of_test_examples: int = test_dataframe.index.size
if nb_of_test_examples == 0:
raise Exception("There are no test instances to calculate overlap on")
if cover_checker_on_test is None:
cover_checker_on_test = DefaultCoverChecker()
if overlap_checker_on_test is None:
overlap_checker_on_test = DefaultOverlapChecker(cover_checker_on_test, debug)
overlap_sum: int = 0
rule_i: MIDSRule
rule_j: MIDSRule
for i, rule_i in enumerate(ruleset.ruleset):
for j, rule_j in enumerate(ruleset.ruleset):
if i <= j:
continue
else:
if target_attr is None:
overlap_sum += overlap_checker_on_test.get_pure_overlap_count(rule_i, rule_j, test_dataframe)
else:
overlap_sum += overlap_checker_on_test.get_relative_overlap_count(rule_i, rule_j,
test_dataframe, target_attr)
if overlap_sum == 0:
warnings.warn("overlap is 0, which is unlikely")
return 0
else:
frac_overlap = 2 / (ruleset_size * (ruleset_size - 1)) * overlap_sum / nb_of_test_examples
if not is_valid_fraction(frac_overlap):
raise Exception("Fraction overlap is not within [0,1]: " + str(frac_overlap))
return frac_overlap | def _fraction_overlap(ruleset: MIDSRuleSet, test_dataframe: pd.DataFrame,
target_attr: Optional[TargetAttr] = None,
cover_checker_on_test: Optional[CoverChecker] = None,
overlap_checker_on_test: Optional[OverlapChecker] = None,
debug=False) -> float:
"""
This metric captures the extend of overlap between every pair of rules in a decision set R.
Smaller values of this metric signify higher interpretability.
Boundary values:
0.0 if no rules in R overlap:
1.0 if all data points in are covered by all rules in R.
NOTE:
* this is 0.0 for any decision list,
because their if-else structure ensures that a rule in the list applies only to those data points
which have not been covered by any of the preceeding rules
* this is 0.0 for the empty rule set
:param ruleset:
:param test_dataframe:
:param cover_checker_on_test:
:param overlap_checker_on_test:
:return:
"""
if type(ruleset) != MIDSRuleSet:
raise Exception(f"Type of ruleset must be MIDSRuleSet, but is {type(ruleset)}")
# warnings.warn("FRACTION_OVERLAP IS CURRENTLY NOT RELATIVE TO A TARGET ATTRIBUTE. THIS MIGHT BE INCORRECT")
ruleset_size: int = len(ruleset)
if ruleset_size == 0:
print("Warning: the MIDS rule set is empty.")
return 0.0
nb_of_test_examples: int = test_dataframe.index.size
if nb_of_test_examples == 0:
raise Exception("There are no test instances to calculate overlap on")
if cover_checker_on_test is None:
cover_checker_on_test = DefaultCoverChecker()
if overlap_checker_on_test is None:
overlap_checker_on_test = DefaultOverlapChecker(cover_checker_on_test, debug)
overlap_sum: int = 0
rule_i: MIDSRule
rule_j: MIDSRule
for i, rule_i in enumerate(ruleset.ruleset):
for j, rule_j in enumerate(ruleset.ruleset):
if i <= j:
continue
else:
if target_attr is None:
overlap_sum += overlap_checker_on_test.get_pure_overlap_count(rule_i, rule_j, test_dataframe)
else:
overlap_sum += overlap_checker_on_test.get_relative_overlap_count(rule_i, rule_j,
test_dataframe, target_attr)
if overlap_sum == 0:
warnings.warn("overlap is 0, which is unlikely")
return 0
else:
frac_overlap = 2 / (ruleset_size * (ruleset_size - 1)) * overlap_sum / nb_of_test_examples
if not is_valid_fraction(frac_overlap):
raise Exception("Fraction overlap is not within [0,1]: " + str(frac_overlap))
return frac_overlap |
Python | def fraction_uncovered_examples(ruleset: MIDSRuleSet, test_dataframe: pd.DataFrame,
cover_checker_on_test: Optional[CoverChecker] = None
) -> float:
"""
This metric computes the fraction of the data points which are not covered by any rule in the decision set.
REMEMBER, COVER is independent of the head of a rule.
Boundary values:
0.0 if every data point is covered by some rule in the data set.
1.0 when no data point is covered by any rule in R
(This could be the case when |R| = 0 )
Note:
* for decision lists, this metric is
the fraction of the data points that are covered by the ELSE clause of the list
(i.e. the default prediction).
:param ruleset:
:param test_dataframe:
:param cover_checker_on_test:
:return:
"""
if type(ruleset) != MIDSRuleSet:
raise Exception("Type of ruleset must be IDSRuleSet")
if cover_checker_on_test is None:
cover_checker_on_test = DefaultCoverChecker()
nb_of_test_examples: int = test_dataframe.index.size
if nb_of_test_examples == 0:
raise Exception("There are no test instances to calculate the fraction uncovered on")
cover_cumulative_mask: np.ndarray = np.zeros(nb_of_test_examples, dtype=bool)
for rule in ruleset.ruleset:
cover_mask = cover_checker_on_test.get_cover(rule, test_dataframe)
cover_cumulative_mask = np.logical_or(cover_cumulative_mask, cover_mask)
nb_of_covered_test_examples: int = np.count_nonzero(cover_cumulative_mask)
frac_uncovered: float = 1 - 1 / nb_of_test_examples * nb_of_covered_test_examples
if not is_valid_fraction(frac_uncovered):
raise Exception("Fraction uncovered examples is not within [0,1]: " + str(frac_uncovered))
return frac_uncovered | def fraction_uncovered_examples(ruleset: MIDSRuleSet, test_dataframe: pd.DataFrame,
cover_checker_on_test: Optional[CoverChecker] = None
) -> float:
"""
This metric computes the fraction of the data points which are not covered by any rule in the decision set.
REMEMBER, COVER is independent of the head of a rule.
Boundary values:
0.0 if every data point is covered by some rule in the data set.
1.0 when no data point is covered by any rule in R
(This could be the case when |R| = 0 )
Note:
* for decision lists, this metric is
the fraction of the data points that are covered by the ELSE clause of the list
(i.e. the default prediction).
:param ruleset:
:param test_dataframe:
:param cover_checker_on_test:
:return:
"""
if type(ruleset) != MIDSRuleSet:
raise Exception("Type of ruleset must be IDSRuleSet")
if cover_checker_on_test is None:
cover_checker_on_test = DefaultCoverChecker()
nb_of_test_examples: int = test_dataframe.index.size
if nb_of_test_examples == 0:
raise Exception("There are no test instances to calculate the fraction uncovered on")
cover_cumulative_mask: np.ndarray = np.zeros(nb_of_test_examples, dtype=bool)
for rule in ruleset.ruleset:
cover_mask = cover_checker_on_test.get_cover(rule, test_dataframe)
cover_cumulative_mask = np.logical_or(cover_cumulative_mask, cover_mask)
nb_of_covered_test_examples: int = np.count_nonzero(cover_cumulative_mask)
frac_uncovered: float = 1 - 1 / nb_of_test_examples * nb_of_covered_test_examples
if not is_valid_fraction(frac_uncovered):
raise Exception("Fraction uncovered examples is not within [0,1]: " + str(frac_uncovered))
return frac_uncovered |
Python | def fraction_predicted_classes(ruleset: MIDSRuleSet, test_dataframe,
target_attributes: List[TargetAttr]
) -> Tuple[float, Dict[TargetAttr, float]]:
"""
This metric denotes the fraction of the classes in the data that are predicted by the ruleset R.
Returns:
1. fraction per target attribute, averaged over the different targets
2. a map from target attribute to fraction for that target attr
Boundary value:
0.0 if no class is predicted (e.g. the ruleset is empty)
1.0 every class is predicted by some rule in R.
Note:
* The same for decision lists, but we not consider the ELSE clause (the default prediction).
:param target_attributes:
:param ruleset:
:param test_dataframe:
:return:
"""
if type(ruleset) != MIDSRuleSet:
raise Exception("Type of ruleset must be IDSRuleSet")
warnings.warn(
"Ugly conversion to string to deal with numerical attributes."
" Clean this up (look at Survived in Titanic).")
values_in_data_per_target_attribute: Dict[TargetAttr, Set[TargetVal]] = {}
predicted_values_per_target_attribute: Dict[TargetAttr, Set[TargetVal]] = {}
for target_attr in target_attributes:
values_as_str: List[str] = [str(val) for val in test_dataframe[target_attr].values]
values_in_data_per_target_attribute[target_attr] = set(values_as_str)
predicted_values_per_target_attribute[target_attr] = set()
target_attribute_set: Set[TargetAttr] = set(target_attributes)
for rule in ruleset.ruleset:
consequent: Consequent = rule.car.consequent
for literal in consequent.get_literals():
predicted_attribute: TargetAttr = literal.get_attribute()
predicted_value: TargetVal = literal.get_value()
if predicted_attribute in target_attribute_set:
predicted_value_str = str(predicted_value)
predicted_values: Set[TargetVal] = predicted_values_per_target_attribute[predicted_attribute]
if predicted_value_str in values_in_data_per_target_attribute[predicted_attribute]:
predicted_values.add(predicted_value_str)
# print("values_in_data_per_target_attribute", values_in_data_per_target_attribute)
# print("predicted_values_per_target_attribute", predicted_values_per_target_attribute)
frac_predicted_classes_per_target_attr: Dict[TargetAttr, float] = {}
avg_frac_predicted_classes: float = 0
for target_attr in values_in_data_per_target_attribute.keys():
values_occuring_in_data = values_in_data_per_target_attribute[target_attr]
predicted_values = predicted_values_per_target_attribute[target_attr]
domain_size_in_test_data = len(values_occuring_in_data)
nb_of_predicted_values = len(predicted_values)
frac_classes: float = nb_of_predicted_values / domain_size_in_test_data
frac_predicted_classes_per_target_attr[target_attr] = frac_classes
avg_frac_predicted_classes += frac_classes
nb_of_target_attrs = len(target_attributes)
avg_frac_predicted_classes = avg_frac_predicted_classes / nb_of_target_attrs
if not is_valid_fraction(avg_frac_predicted_classes):
raise Exception("Avg fraction predicted classes examples is not within [0,1]: "
+ str(avg_frac_predicted_classes))
return avg_frac_predicted_classes, frac_predicted_classes_per_target_attr | def fraction_predicted_classes(ruleset: MIDSRuleSet, test_dataframe,
target_attributes: List[TargetAttr]
) -> Tuple[float, Dict[TargetAttr, float]]:
"""
This metric denotes the fraction of the classes in the data that are predicted by the ruleset R.
Returns:
1. fraction per target attribute, averaged over the different targets
2. a map from target attribute to fraction for that target attr
Boundary value:
0.0 if no class is predicted (e.g. the ruleset is empty)
1.0 every class is predicted by some rule in R.
Note:
* The same for decision lists, but we not consider the ELSE clause (the default prediction).
:param target_attributes:
:param ruleset:
:param test_dataframe:
:return:
"""
if type(ruleset) != MIDSRuleSet:
raise Exception("Type of ruleset must be IDSRuleSet")
warnings.warn(
"Ugly conversion to string to deal with numerical attributes."
" Clean this up (look at Survived in Titanic).")
values_in_data_per_target_attribute: Dict[TargetAttr, Set[TargetVal]] = {}
predicted_values_per_target_attribute: Dict[TargetAttr, Set[TargetVal]] = {}
for target_attr in target_attributes:
values_as_str: List[str] = [str(val) for val in test_dataframe[target_attr].values]
values_in_data_per_target_attribute[target_attr] = set(values_as_str)
predicted_values_per_target_attribute[target_attr] = set()
target_attribute_set: Set[TargetAttr] = set(target_attributes)
for rule in ruleset.ruleset:
consequent: Consequent = rule.car.consequent
for literal in consequent.get_literals():
predicted_attribute: TargetAttr = literal.get_attribute()
predicted_value: TargetVal = literal.get_value()
if predicted_attribute in target_attribute_set:
predicted_value_str = str(predicted_value)
predicted_values: Set[TargetVal] = predicted_values_per_target_attribute[predicted_attribute]
if predicted_value_str in values_in_data_per_target_attribute[predicted_attribute]:
predicted_values.add(predicted_value_str)
# print("values_in_data_per_target_attribute", values_in_data_per_target_attribute)
# print("predicted_values_per_target_attribute", predicted_values_per_target_attribute)
frac_predicted_classes_per_target_attr: Dict[TargetAttr, float] = {}
avg_frac_predicted_classes: float = 0
for target_attr in values_in_data_per_target_attribute.keys():
values_occuring_in_data = values_in_data_per_target_attribute[target_attr]
predicted_values = predicted_values_per_target_attribute[target_attr]
domain_size_in_test_data = len(values_occuring_in_data)
nb_of_predicted_values = len(predicted_values)
frac_classes: float = nb_of_predicted_values / domain_size_in_test_data
frac_predicted_classes_per_target_attr[target_attr] = frac_classes
avg_frac_predicted_classes += frac_classes
nb_of_target_attrs = len(target_attributes)
avg_frac_predicted_classes = avg_frac_predicted_classes / nb_of_target_attrs
if not is_valid_fraction(avg_frac_predicted_classes):
raise Exception("Avg fraction predicted classes examples is not within [0,1]: "
+ str(avg_frac_predicted_classes))
return avg_frac_predicted_classes, frac_predicted_classes_per_target_attr |
Python | def f1_minimize_total_nb_of_literals(self, solution_set: MIDSRuleSet):
"""
Minimize the total number of terms in the rule set
:param solution_set:
:return:
"""
upper_bound_nb_of_literals = self.objective_func_params.f1_upper_bound_nb_literals
f1_unnormalized = upper_bound_nb_of_literals - solution_set.sum_rule_length()
if self.normalize:
f1 = f1_unnormalized / upper_bound_nb_of_literals
else:
f1 = f1_unnormalized
self._normalized_boundary_check(f1, 'f1')
return f1 | def f1_minimize_total_nb_of_literals(self, solution_set: MIDSRuleSet):
"""
Minimize the total number of terms in the rule set
:param solution_set:
:return:
"""
upper_bound_nb_of_literals = self.objective_func_params.f1_upper_bound_nb_literals
f1_unnormalized = upper_bound_nb_of_literals - solution_set.sum_rule_length()
if self.normalize:
f1 = f1_unnormalized / upper_bound_nb_of_literals
else:
f1 = f1_unnormalized
self._normalized_boundary_check(f1, 'f1')
return f1 |
Python | def f4_at_least_one_rule_per_attribute_value_combo(self, solution_set: MIDSRuleSet):
"""
The requirement to have one rule for each value of each attribute might need to be relaxed,
as it is no longer guaranteed that each value of each attribute occurs in at least one rule head.
:param solution_set:
:return:
"""
# 1. gather for each attribute the unique values that are predicted
target_attr_to_val_set_dict: Dict[TargetAttr, Set[TargetVal]] \
= solution_set.get_predicted_values_per_predicted_attribute()
# 2. count the total nb of values that are predicted over all attributes
total_nb_of_attribute_values_covered: int = 0
for target_attr in self.objective_func_params.f4_target_attr_to_dom_size_map.keys():
predicted_values: Optional[Set[TargetVal]] = target_attr_to_val_set_dict.get(target_attr, None)
if predicted_values is None:
nb_of_predicted_values: int = 0
else:
nb_of_predicted_values: int = len(predicted_values)
if self.normalize:
target_attr_dom_size: int = self.objective_func_params.f4_target_attr_to_dom_size_map[target_attr]
total_nb_of_attribute_values_covered += nb_of_predicted_values / target_attr_dom_size
else:
total_nb_of_attribute_values_covered += nb_of_predicted_values
f4: float = total_nb_of_attribute_values_covered / self.objective_func_params.nb_of_target_attrs
self._normalized_boundary_check(f4, 'f4')
return f4 | def f4_at_least_one_rule_per_attribute_value_combo(self, solution_set: MIDSRuleSet):
"""
The requirement to have one rule for each value of each attribute might need to be relaxed,
as it is no longer guaranteed that each value of each attribute occurs in at least one rule head.
:param solution_set:
:return:
"""
# 1. gather for each attribute the unique values that are predicted
target_attr_to_val_set_dict: Dict[TargetAttr, Set[TargetVal]] \
= solution_set.get_predicted_values_per_predicted_attribute()
# 2. count the total nb of values that are predicted over all attributes
total_nb_of_attribute_values_covered: int = 0
for target_attr in self.objective_func_params.f4_target_attr_to_dom_size_map.keys():
predicted_values: Optional[Set[TargetVal]] = target_attr_to_val_set_dict.get(target_attr, None)
if predicted_values is None:
nb_of_predicted_values: int = 0
else:
nb_of_predicted_values: int = len(predicted_values)
if self.normalize:
target_attr_dom_size: int = self.objective_func_params.f4_target_attr_to_dom_size_map[target_attr]
total_nb_of_attribute_values_covered += nb_of_predicted_values / target_attr_dom_size
else:
total_nb_of_attribute_values_covered += nb_of_predicted_values
f4: float = total_nb_of_attribute_values_covered / self.objective_func_params.nb_of_target_attrs
self._normalized_boundary_check(f4, 'f4')
return f4 |
Python | def f5_minimize_incorrect_cover(self, solution_set: MIDSRuleSet):
"""
Mazimize the precision, or minimize the nb examples that are in the incorrect-cover set the rules
Parameters
----------
solution_set
Returns
-------
"""
# nb_of_instances = self.objective_func_params.nb_of_training_examples
# len_all_rules = self.objective_func_params.ground_set_size
quant_dataframe = self.objective_func_params.quant_dataframe
sum_incorrect_cover = 0
for rule in solution_set.ruleset:
# self.cover_checker.
sum_incorrect_cover += get_avg_incorrect_cover_size(rule, quant_dataframe, self.cover_checker)
f5_upper_bound: int = self.objective_func_params.f5_upper_bound
# print(f"MIDS f5 upper bound: {f5_upper_bound}")
# print(f"MIDS f5 sum incorrect cover: {sum_incorrect_cover}")
f5 = f5_upper_bound - sum_incorrect_cover
if self.normalize:
f5 = f5 / f5_upper_bound
self._normalized_boundary_check(f5, 'f5')
return f5 | def f5_minimize_incorrect_cover(self, solution_set: MIDSRuleSet):
"""
Mazimize the precision, or minimize the nb examples that are in the incorrect-cover set the rules
Parameters
----------
solution_set
Returns
-------
"""
# nb_of_instances = self.objective_func_params.nb_of_training_examples
# len_all_rules = self.objective_func_params.ground_set_size
quant_dataframe = self.objective_func_params.quant_dataframe
sum_incorrect_cover = 0
for rule in solution_set.ruleset:
# self.cover_checker.
sum_incorrect_cover += get_avg_incorrect_cover_size(rule, quant_dataframe, self.cover_checker)
f5_upper_bound: int = self.objective_func_params.f5_upper_bound
# print(f"MIDS f5 upper bound: {f5_upper_bound}")
# print(f"MIDS f5 sum incorrect cover: {sum_incorrect_cover}")
f5 = f5_upper_bound - sum_incorrect_cover
if self.normalize:
f5 = f5 / f5_upper_bound
self._normalized_boundary_check(f5, 'f5')
return f5 |
Python | def f6_cover_each_example(self, solution_set: MIDSRuleSet):
"""
Originally:
Each data point should be covered by at least one rule.
In other words,
Each instance should be in the correct cover set (with respect to the target attribute) of at least one rule.
Extension to multi-target rules:
Each instance should be in the correct cover set of at least one rule for each of its attributes.
:param solution_set:
:return:
"""
# TODO: this is super expensive
quant_dataframe = self.objective_func_params.quant_dataframe
nb_of_training_examples = self.objective_func_params.nb_of_training_examples
nb_of_target_attrs = self.objective_func_params.nb_of_target_attrs
target_attrs: List[TargetAttr] = self.objective_func_params.target_attrs
sum_correct_cover_sizes_over_all_attributes = 0
for target_attr in target_attrs:
correctly_covered_instances_for_attribute_by_at_least_one_rule = np.zeros(nb_of_training_examples, dtype=bool)
for rule in solution_set.ruleset:
if target_attr in rule.get_target_attributes():
correct_cover_mask = self.cover_checker.get_correct_cover(
rule, quant_dataframe, target_attribute=target_attr)
correctly_covered_instances_for_attribute_by_at_least_one_rule = np.logical_or(
correctly_covered_instances_for_attribute_by_at_least_one_rule,
correct_cover_mask
)
sum_correct_cover_sizes_over_all_attributes += np.sum(
correctly_covered_instances_for_attribute_by_at_least_one_rule)
f6 = sum_correct_cover_sizes_over_all_attributes / (
nb_of_training_examples * self.objective_func_params.nb_of_target_attrs)
self._normalized_boundary_check(f6, 'f6')
return f6 | def f6_cover_each_example(self, solution_set: MIDSRuleSet):
"""
Originally:
Each data point should be covered by at least one rule.
In other words,
Each instance should be in the correct cover set (with respect to the target attribute) of at least one rule.
Extension to multi-target rules:
Each instance should be in the correct cover set of at least one rule for each of its attributes.
:param solution_set:
:return:
"""
# TODO: this is super expensive
quant_dataframe = self.objective_func_params.quant_dataframe
nb_of_training_examples = self.objective_func_params.nb_of_training_examples
nb_of_target_attrs = self.objective_func_params.nb_of_target_attrs
target_attrs: List[TargetAttr] = self.objective_func_params.target_attrs
sum_correct_cover_sizes_over_all_attributes = 0
for target_attr in target_attrs:
correctly_covered_instances_for_attribute_by_at_least_one_rule = np.zeros(nb_of_training_examples, dtype=bool)
for rule in solution_set.ruleset:
if target_attr in rule.get_target_attributes():
correct_cover_mask = self.cover_checker.get_correct_cover(
rule, quant_dataframe, target_attribute=target_attr)
correctly_covered_instances_for_attribute_by_at_least_one_rule = np.logical_or(
correctly_covered_instances_for_attribute_by_at_least_one_rule,
correct_cover_mask
)
sum_correct_cover_sizes_over_all_attributes += np.sum(
correctly_covered_instances_for_attribute_by_at_least_one_rule)
f6 = sum_correct_cover_sizes_over_all_attributes / (
nb_of_training_examples * self.objective_func_params.nb_of_target_attrs)
self._normalized_boundary_check(f6, 'f6')
return f6 |
Python | def add_encodings(self, original_to_encoding_map: Dict[Attr, List[Attr]]) -> None:
"""
Use this method if you want to add extra columns to an already existing mapping.
"""
if self.__original_to_ohe_attr_map is None:
self.set_original_to_ohe_attr_map(original_to_encoding_map)
else:
for original_attr, ohe_attributes in original_to_encoding_map.items():
if original_attr in self.get_original_columns():
raise Exception("EncodingBookKeeper already contains encodings for " + str(original_attr))
else:
self.__original_to_ohe_attr_map[original_attr] = ohe_attributes
for ohe_attr in ohe_attributes:
if ohe_attr in self.get_one_hot_encoded_columns():
raise Exception("EncodingBookKeeper already contains an encoding with name "
+ str(ohe_attr))
else:
self.__ohe_attr_to_original_map[ohe_attr] = original_attr | def add_encodings(self, original_to_encoding_map: Dict[Attr, List[Attr]]) -> None:
"""
Use this method if you want to add extra columns to an already existing mapping.
"""
if self.__original_to_ohe_attr_map is None:
self.set_original_to_ohe_attr_map(original_to_encoding_map)
else:
for original_attr, ohe_attributes in original_to_encoding_map.items():
if original_attr in self.get_original_columns():
raise Exception("EncodingBookKeeper already contains encodings for " + str(original_attr))
else:
self.__original_to_ohe_attr_map[original_attr] = ohe_attributes
for ohe_attr in ohe_attributes:
if ohe_attr in self.get_one_hot_encoded_columns():
raise Exception("EncodingBookKeeper already contains an encoding with name "
+ str(ohe_attr))
else:
self.__ohe_attr_to_original_map[ohe_attr] = original_attr |
Python | def parse_one_hot_encoded_columns(ohe_columns, ohe_prefix_separator) -> Dict[Attr, List[Attr]]:
"""
Use this static method to parse a list of one-hot encoding columns
into a mapping of original columns to their one-hot encoding columns.
"""
original_to_ohe_columns: Dict[Attr, List[Attr]] = {}
for column in ohe_columns:
splitted_ohe_column_name = str(column).split(ohe_prefix_separator)
if len(splitted_ohe_column_name) == 1:
# don't split it
original_to_ohe_columns[column] = [column]
elif len(splitted_ohe_column_name) == 2:
original_column = splitted_ohe_column_name[0]
if original_to_ohe_columns.get(original_column, None) is None:
original_to_ohe_columns[original_column] = [column]
else:
original_to_ohe_columns[original_column].append(column)
else:
raise Exception("Handling split of " + str(column) + " using separator "
+ ohe_prefix_separator + " failed; got " + str(len(splitted_ohe_column_name))
+ " piece(s)."
)
return original_to_ohe_columns | def parse_one_hot_encoded_columns(ohe_columns, ohe_prefix_separator) -> Dict[Attr, List[Attr]]:
"""
Use this static method to parse a list of one-hot encoding columns
into a mapping of original columns to their one-hot encoding columns.
"""
original_to_ohe_columns: Dict[Attr, List[Attr]] = {}
for column in ohe_columns:
splitted_ohe_column_name = str(column).split(ohe_prefix_separator)
if len(splitted_ohe_column_name) == 1:
# don't split it
original_to_ohe_columns[column] = [column]
elif len(splitted_ohe_column_name) == 2:
original_column = splitted_ohe_column_name[0]
if original_to_ohe_columns.get(original_column, None) is None:
original_to_ohe_columns[original_column] = [column]
else:
original_to_ohe_columns[original_column].append(column)
else:
raise Exception("Handling split of " + str(column) + " using separator "
+ ohe_prefix_separator + " failed; got " + str(len(splitted_ohe_column_name))
+ " piece(s)."
)
return original_to_ohe_columns |
Python | def parse_and_store_one_hot_encoded_columns(self, ohe_columns) -> None:
"""
Use this method to initialize an empty EncodingBookKeeper by paringing the given one-encoding columns.
"""
self.set_original_to_ohe_attr_map(
self.parse_one_hot_encoded_columns(ohe_columns, self.ohe_prefix_separator)) | def parse_and_store_one_hot_encoded_columns(self, ohe_columns) -> None:
"""
Use this method to initialize an empty EncodingBookKeeper by paringing the given one-encoding columns.
"""
self.set_original_to_ohe_attr_map(
self.parse_one_hot_encoded_columns(ohe_columns, self.ohe_prefix_separator)) |
Python | def reorder_columns(df: pd.DataFrame, target_column: TargetAttr) -> pd.DataFrame:
"""
Generates a dataframe with reordered columns, such that the given target column is the last column
:param df:
:param target_column:
:return:
"""
if target_column not in df.columns:
message = f"the given target column {target_column} is not a column of the given dataframe"
raise Exception(message)
columns = df.columns
reordered_columns = []
for possibly_other_column in columns:
if str(possibly_other_column) != str(target_column):
reordered_columns.append(possibly_other_column)
# reordered_columns = [other_col for other_col in columns if str(other_col) is not str(target_column)]
reordered_columns.append(target_column)
new_df = df[reordered_columns]
return new_df | def reorder_columns(df: pd.DataFrame, target_column: TargetAttr) -> pd.DataFrame:
"""
Generates a dataframe with reordered columns, such that the given target column is the last column
:param df:
:param target_column:
:return:
"""
if target_column not in df.columns:
message = f"the given target column {target_column} is not a column of the given dataframe"
raise Exception(message)
columns = df.columns
reordered_columns = []
for possibly_other_column in columns:
if str(possibly_other_column) != str(target_column):
reordered_columns.append(possibly_other_column)
# reordered_columns = [other_col for other_col in columns if str(other_col) is not str(target_column)]
reordered_columns.append(target_column)
new_df = df[reordered_columns]
return new_df |
Python | def predict(self, rules: Iterable[MIDSRule], dataframe: pd.DataFrame, target_attribute: str, default_value=None) -> List[object]:
"""
Predict a value for the given target attribute for each row,
"""
type_check_dataframe(dataframe)
predicted_class_per_row = []
for _, instance_row in dataframe.iterrows():
predicted_class = self.get_combined_prediction(rules, instance_row, target_attribute, default_value)
if predicted_class is not None:
predicted_class_per_row.append(predicted_class)
else:
predicted_class_per_row.append(default_value)
return predicted_class_per_row | def predict(self, rules: Iterable[MIDSRule], dataframe: pd.DataFrame, target_attribute: str, default_value=None) -> List[object]:
"""
Predict a value for the given target attribute for each row,
"""
type_check_dataframe(dataframe)
predicted_class_per_row = []
for _, instance_row in dataframe.iterrows():
predicted_class = self.get_combined_prediction(rules, instance_row, target_attribute, default_value)
if predicted_class is not None:
predicted_class_per_row.append(predicted_class)
else:
predicted_class_per_row.append(default_value)
return predicted_class_per_row |
Python | def f4_one_rule_per_value(self, previous_f4_target_attr_val_rule_counts_map: Dict[TargetAttr, Dict[TargetVal, int]],
previous_f4_nb_of_values_covered: float,
added_rules: Iterable[MIDSRule],
deleted_rules: Iterable[MIDSRule]
) -> Tuple[float, Dict[TargetAttr, Dict[TargetVal, int]]]:
"""
Each target value should be predicted by at least 1 rule.
"""
f4_target_attr_val_rule_counts_map: Dict[TargetAttr, Dict[TargetVal, int]] = copy.deepcopy(
previous_f4_target_attr_val_rule_counts_map)
weighted_total_nb_of_vals_covered: float = previous_f4_nb_of_values_covered
f4_target_attr_to_dom_size_map: Dict[TargetAttr, int] \
= self.objective_func_params.f4_target_attr_to_dom_size_map
nb_of_target_attrs: int = self.objective_func_params.nb_of_target_attrs
rule_a: MIDSRule
for rule_a in added_rules:
cons: Consequent = rule_a.get_consequent()
# for target_attr, target_val in cons.itemset.items():
for literal in cons.get_literals():
target_attr: TargetAttr = literal.get_attribute()
target_val: TargetVal = literal.get_value()
value_to_count_map: Optional[Dict[TargetVal, int]] \
= f4_target_attr_val_rule_counts_map.get(target_attr, None)
if value_to_count_map is None:
# no dictionary yet for the current target attribute
new_dict: Dict[TargetVal, int] = {target_val: 1}
f4_target_attr_val_rule_counts_map[target_attr] = new_dict
weighted_total_nb_of_vals_covered += \
1.0 / (nb_of_target_attrs * f4_target_attr_to_dom_size_map[target_attr])
else:
value_count: Optional[int] = value_to_count_map.get(target_val, None)
if value_count is None:
value_to_count_map[target_val] = 1
weighted_total_nb_of_vals_covered += \
1.0 / (nb_of_target_attrs * f4_target_attr_to_dom_size_map[target_attr])
else:
value_to_count_map[target_val] += 1
rule_d: MIDSRule
for rule_d in deleted_rules:
cons: Consequent = rule_d.get_consequent()
target_att: TargetAttr
target_val: TargetVal
# for target_attr, target_val in cons.itemset.items():
for literal in cons.get_literals():
target_attr: TargetAttr = literal.get_attribute()
target_val: TargetVal = literal.get_value()
value_to_count_map: Optional[Dict[TargetVal, int]] \
= f4_target_attr_val_rule_counts_map.get(target_attr, None)
if value_to_count_map is None:
raise Exception("Should still have counts for target " + str(target_attr))
else:
value_count: Optional[int] = value_to_count_map.get(target_val, None)
if value_count is None:
raise Exception(
"Should still have counts for target " + str(target_attr) + " and value " + str(target_val))
else:
if value_count > 1:
value_to_count_map[target_val] = value_count - 1
else:
# value count should be 1 and become zero
del value_to_count_map[target_val]
if len(value_to_count_map) == 0:
del f4_target_attr_val_rule_counts_map[target_attr]
weighted_total_nb_of_vals_covered -= 1.0 / (
nb_of_target_attrs * f4_target_attr_to_dom_size_map[target_attr])
f4 = weighted_total_nb_of_vals_covered
self._normalized_boundary_check(f4, 'f4')
return f4, f4_target_attr_val_rule_counts_map | def f4_one_rule_per_value(self, previous_f4_target_attr_val_rule_counts_map: Dict[TargetAttr, Dict[TargetVal, int]],
previous_f4_nb_of_values_covered: float,
added_rules: Iterable[MIDSRule],
deleted_rules: Iterable[MIDSRule]
) -> Tuple[float, Dict[TargetAttr, Dict[TargetVal, int]]]:
"""
Each target value should be predicted by at least 1 rule.
"""
f4_target_attr_val_rule_counts_map: Dict[TargetAttr, Dict[TargetVal, int]] = copy.deepcopy(
previous_f4_target_attr_val_rule_counts_map)
weighted_total_nb_of_vals_covered: float = previous_f4_nb_of_values_covered
f4_target_attr_to_dom_size_map: Dict[TargetAttr, int] \
= self.objective_func_params.f4_target_attr_to_dom_size_map
nb_of_target_attrs: int = self.objective_func_params.nb_of_target_attrs
rule_a: MIDSRule
for rule_a in added_rules:
cons: Consequent = rule_a.get_consequent()
# for target_attr, target_val in cons.itemset.items():
for literal in cons.get_literals():
target_attr: TargetAttr = literal.get_attribute()
target_val: TargetVal = literal.get_value()
value_to_count_map: Optional[Dict[TargetVal, int]] \
= f4_target_attr_val_rule_counts_map.get(target_attr, None)
if value_to_count_map is None:
# no dictionary yet for the current target attribute
new_dict: Dict[TargetVal, int] = {target_val: 1}
f4_target_attr_val_rule_counts_map[target_attr] = new_dict
weighted_total_nb_of_vals_covered += \
1.0 / (nb_of_target_attrs * f4_target_attr_to_dom_size_map[target_attr])
else:
value_count: Optional[int] = value_to_count_map.get(target_val, None)
if value_count is None:
value_to_count_map[target_val] = 1
weighted_total_nb_of_vals_covered += \
1.0 / (nb_of_target_attrs * f4_target_attr_to_dom_size_map[target_attr])
else:
value_to_count_map[target_val] += 1
rule_d: MIDSRule
for rule_d in deleted_rules:
cons: Consequent = rule_d.get_consequent()
target_att: TargetAttr
target_val: TargetVal
# for target_attr, target_val in cons.itemset.items():
for literal in cons.get_literals():
target_attr: TargetAttr = literal.get_attribute()
target_val: TargetVal = literal.get_value()
value_to_count_map: Optional[Dict[TargetVal, int]] \
= f4_target_attr_val_rule_counts_map.get(target_attr, None)
if value_to_count_map is None:
raise Exception("Should still have counts for target " + str(target_attr))
else:
value_count: Optional[int] = value_to_count_map.get(target_val, None)
if value_count is None:
raise Exception(
"Should still have counts for target " + str(target_attr) + " and value " + str(target_val))
else:
if value_count > 1:
value_to_count_map[target_val] = value_count - 1
else:
# value count should be 1 and become zero
del value_to_count_map[target_val]
if len(value_to_count_map) == 0:
del f4_target_attr_val_rule_counts_map[target_attr]
weighted_total_nb_of_vals_covered -= 1.0 / (
nb_of_target_attrs * f4_target_attr_to_dom_size_map[target_attr])
f4 = weighted_total_nb_of_vals_covered
self._normalized_boundary_check(f4, 'f4')
return f4, f4_target_attr_val_rule_counts_map |
Python | def _best_rules_to_consider(self,
sorted_target_scores_per_rule: List[Tuple[RuleSetScore, MIDSRule]]
) -> List[Tuple[RuleSetScore, MIDSRule]]:
"""
Given a list of rules sorted on a goodness criterion, take the best rules.
Best could be defined as:
the x highest scoring rules
the rules within a certain percentage of the best rule
:param sorted_target_scores_per_rule:
:return:
"""
best_tuple: Tuple[RuleSetScore, MIDSRule] = sorted_target_scores_per_rule[0]
score_of_best_rule = best_tuple[0]
best_rule_for_target = best_tuple[1]
if self.verbose:
print(f"best rule results in score {score_of_best_rule}")
best_rules = [best_tuple]
for other_tuple in sorted_target_scores_per_rule[1:]:
score_other_rule = other_tuple[0]
if self.close_enough(score_of_best_rule, score_other_rule, self.max_score_diff_with_best_rule):
# other_rule = other_tuple[1]
best_rules.append(other_tuple)
if self.verbose:
print(f"{len(best_rules)} rules are being considered as best...")
return best_rules | def _best_rules_to_consider(self,
sorted_target_scores_per_rule: List[Tuple[RuleSetScore, MIDSRule]]
) -> List[Tuple[RuleSetScore, MIDSRule]]:
"""
Given a list of rules sorted on a goodness criterion, take the best rules.
Best could be defined as:
the x highest scoring rules
the rules within a certain percentage of the best rule
:param sorted_target_scores_per_rule:
:return:
"""
best_tuple: Tuple[RuleSetScore, MIDSRule] = sorted_target_scores_per_rule[0]
score_of_best_rule = best_tuple[0]
best_rule_for_target = best_tuple[1]
if self.verbose:
print(f"best rule results in score {score_of_best_rule}")
best_rules = [best_tuple]
for other_tuple in sorted_target_scores_per_rule[1:]:
score_other_rule = other_tuple[0]
if self.close_enough(score_of_best_rule, score_other_rule, self.max_score_diff_with_best_rule):
# other_rule = other_tuple[1]
best_rules.append(other_tuple)
if self.verbose:
print(f"{len(best_rules)} rules are being considered as best...")
return best_rules |
Python | def _get_rule_that_hurts_the_other_targets_the_least(self,
rules_considered_as_best: List[Tuple[RuleSetScore, MIDSRule]],
rule_to_eval_map: Dict[MIDSRule,
Dict[TargetAttr,
RuleSetScore]],
main_target: TargetAttr,
current_rule_set_scores: Dict[TargetAttr, RuleSetScore]
) -> Optional[MIDSRule]:
"""
We want to limit the damage done to the other targets.
For each rule:
for each target:
calculate the difference in score for this target:
score_diff = new_score - old_score.
if score_diff > 0 --> good: the rule increases the score on this target
if score_diff < 0 --> bad: the rule decreases the score on this target
min_score_diff = the minimal score_diff over the targets of the rule
--> the largest damage the rule can do
we want the rule with the highest min_score diff
:param rules_considered_as_best:
:param rule_to_eval_map:
:param main_target:
:param current_rule_set_scores:
:return:
"""
best_rule: Optional[MIDSRule] = None
min_score_diff_of_best_rule = float('-inf')
for rule_set_score, rule in rules_considered_as_best:
extended_rule_set_scores: Dict[TargetAttr, RuleSetScore] = rule_to_eval_map[rule]
score_diffs_per_target = []
for other_rule_target in extended_rule_set_scores.keys():
if other_rule_target is not main_target:
# print(f"\tconsidering score for {other_rule_target}")
other_target_score = extended_rule_set_scores[other_rule_target]
current_rule_set_score = current_rule_set_scores[other_rule_target]
score_diff = other_target_score - current_rule_set_score
if self.verbose:
print(f"\tconsidering score for {other_rule_target}: {score_diff}")
score_diffs_per_target.append(score_diff)
if len(score_diffs_per_target) == 0:
min_score_diff = 0
else:
min_score_diff = min(score_diffs_per_target)
if min_score_diff > min_score_diff_of_best_rule:
best_rule = rule
min_score_diff_of_best_rule = min_score_diff
return best_rule | def _get_rule_that_hurts_the_other_targets_the_least(self,
rules_considered_as_best: List[Tuple[RuleSetScore, MIDSRule]],
rule_to_eval_map: Dict[MIDSRule,
Dict[TargetAttr,
RuleSetScore]],
main_target: TargetAttr,
current_rule_set_scores: Dict[TargetAttr, RuleSetScore]
) -> Optional[MIDSRule]:
"""
We want to limit the damage done to the other targets.
For each rule:
for each target:
calculate the difference in score for this target:
score_diff = new_score - old_score.
if score_diff > 0 --> good: the rule increases the score on this target
if score_diff < 0 --> bad: the rule decreases the score on this target
min_score_diff = the minimal score_diff over the targets of the rule
--> the largest damage the rule can do
we want the rule with the highest min_score diff
:param rules_considered_as_best:
:param rule_to_eval_map:
:param main_target:
:param current_rule_set_scores:
:return:
"""
best_rule: Optional[MIDSRule] = None
min_score_diff_of_best_rule = float('-inf')
for rule_set_score, rule in rules_considered_as_best:
extended_rule_set_scores: Dict[TargetAttr, RuleSetScore] = rule_to_eval_map[rule]
score_diffs_per_target = []
for other_rule_target in extended_rule_set_scores.keys():
if other_rule_target is not main_target:
# print(f"\tconsidering score for {other_rule_target}")
other_target_score = extended_rule_set_scores[other_rule_target]
current_rule_set_score = current_rule_set_scores[other_rule_target]
score_diff = other_target_score - current_rule_set_score
if self.verbose:
print(f"\tconsidering score for {other_rule_target}: {score_diff}")
score_diffs_per_target.append(score_diff)
if len(score_diffs_per_target) == 0:
min_score_diff = 0
else:
min_score_diff = min(score_diffs_per_target)
if min_score_diff > min_score_diff_of_best_rule:
best_rule = rule
min_score_diff_of_best_rule = min_score_diff
return best_rule |
Python | def convert(self, leaf_info: LeafInfo) -> List[EQLiteral]:
"""
This method converts a LeafInfo object to a Consequent of a rule.
Note: a consequent can predict multiple attributes.
It does this by storing one EQLiteral per predicted original attribute.
A Scikit-learn DecisionTreeClassifier can predict multiple attributes.
-- ONE-HOT ENCODED ATTRIBUTES --
In our framework, some of these target attributes belong to the same original attribute,
using one-hot encodings.
e.g. the following one-hot encoding attributes:
Passenger_Cat=1st_class
Passenger_Cat=2nd_class
Passenger_Cat=3rd_class
Passenger_Cat=crew
all correspond to the same original target attribute: Passenger_Cat.
We should group the decision tree target attributes per original target attribute.
For each original attribute, we have to create an EQLiteral.
Initial idea:
Each one-hot encoding attribute has 2 possible class labels: [0, 1].
Each of these two possible class labels has a count: [c0, c1].
--> 1. take for each one-hot encoding target attribute the class label with the highest count,
and create a literal for it, e.g.:
Passenger_Cat=1st_class=0, (0 has higher count than 1)
Passenger_Cat=2nd_class=0, (0 has higher count than 1)
Passenger_Cat=3rd_class=0, (0 has higher count than 1)
Passenger_Cat=crew=1 (1 has higher count than 0)
2. Only keep the literal with class label 1:
Passenger_Cat=crew=1
3. Convert that literal back to the original attribute:
Passenger_cat = crew
PROBLEM: it might occur that for each one-hot encoded attribute, class label 0 has the highest count, e.g.
Passenger_Cat=1st_class=0, (0 has higher count than 1)
Passenger_Cat=2nd_class=0, (0 has higher count than 1)
Passenger_Cat=3rd_class=0, (0 has higher count than 1)
Passenger_Cat=crew=0 (0 has higher count than 1)
--> NO literal with class value 1
--> EMPTY CONSEQUENT.
SOLUTION:
1. for each one-hot encoding attribute, look at the count of class label 1
e.g. the following one-hot encoding attributes:
Passenger_Cat=1st_class --> c11 for class label 1
Passenger_Cat=2nd_class --> c12 for class label 1
Passenger_Cat=3rd_class --> c13 for class label 1
Passenger_Cat=crew --> c14 for class label 1
2. pick the one-hot encoding attribute with the largest count for class label 1
-- BINARY ATTRIBUTES --
Parameters
----------
leaf_info
nb_of_dt_target_attrs
Returns
-------
"""
nb_of_target_attrs: int = leaf_info.nb_of_target_attributes
self.__check_correct_number_of_target_attr(nb_of_target_attrs)
literals: List[EQLiteral] = []
# get the indices for the decision tree target attributes corresponding to the original attributes:
original_target_attr_to_decision_tree_target_attr_indices: Dict[Attr, List[int]] \
= self.get_original_attr_to_decision_tree_attr_mapping()
original_target_attr: Attr
dt_target_attr_indices: List[int]
for original_target_attr, dt_target_attr_indices in \
original_target_attr_to_decision_tree_target_attr_indices.items():
if not self.__is_original_attr_binary(dt_target_attr_indices):
opt_predictive_literal: Optional[EQLiteral] = self.__convert_n_ary_original_attibute(
original_target_attr, dt_target_attr_indices, leaf_info)
if opt_predictive_literal is not None:
literals.append(opt_predictive_literal)
elif self.__is_original_attr_binary(dt_target_attr_indices):
predictive_literal: EQLiteral = self.__convert_binary_original_attribute(
original_target_attr, dt_target_attr_indices, leaf_info)
literals.append(predictive_literal)
else:
raise Exception("should not be in this situation")
return literals | def convert(self, leaf_info: LeafInfo) -> List[EQLiteral]:
"""
This method converts a LeafInfo object to a Consequent of a rule.
Note: a consequent can predict multiple attributes.
It does this by storing one EQLiteral per predicted original attribute.
A Scikit-learn DecisionTreeClassifier can predict multiple attributes.
-- ONE-HOT ENCODED ATTRIBUTES --
In our framework, some of these target attributes belong to the same original attribute,
using one-hot encodings.
e.g. the following one-hot encoding attributes:
Passenger_Cat=1st_class
Passenger_Cat=2nd_class
Passenger_Cat=3rd_class
Passenger_Cat=crew
all correspond to the same original target attribute: Passenger_Cat.
We should group the decision tree target attributes per original target attribute.
For each original attribute, we have to create an EQLiteral.
Initial idea:
Each one-hot encoding attribute has 2 possible class labels: [0, 1].
Each of these two possible class labels has a count: [c0, c1].
--> 1. take for each one-hot encoding target attribute the class label with the highest count,
and create a literal for it, e.g.:
Passenger_Cat=1st_class=0, (0 has higher count than 1)
Passenger_Cat=2nd_class=0, (0 has higher count than 1)
Passenger_Cat=3rd_class=0, (0 has higher count than 1)
Passenger_Cat=crew=1 (1 has higher count than 0)
2. Only keep the literal with class label 1:
Passenger_Cat=crew=1
3. Convert that literal back to the original attribute:
Passenger_cat = crew
PROBLEM: it might occur that for each one-hot encoded attribute, class label 0 has the highest count, e.g.
Passenger_Cat=1st_class=0, (0 has higher count than 1)
Passenger_Cat=2nd_class=0, (0 has higher count than 1)
Passenger_Cat=3rd_class=0, (0 has higher count than 1)
Passenger_Cat=crew=0 (0 has higher count than 1)
--> NO literal with class value 1
--> EMPTY CONSEQUENT.
SOLUTION:
1. for each one-hot encoding attribute, look at the count of class label 1
e.g. the following one-hot encoding attributes:
Passenger_Cat=1st_class --> c11 for class label 1
Passenger_Cat=2nd_class --> c12 for class label 1
Passenger_Cat=3rd_class --> c13 for class label 1
Passenger_Cat=crew --> c14 for class label 1
2. pick the one-hot encoding attribute with the largest count for class label 1
-- BINARY ATTRIBUTES --
Parameters
----------
leaf_info
nb_of_dt_target_attrs
Returns
-------
"""
nb_of_target_attrs: int = leaf_info.nb_of_target_attributes
self.__check_correct_number_of_target_attr(nb_of_target_attrs)
literals: List[EQLiteral] = []
# get the indices for the decision tree target attributes corresponding to the original attributes:
original_target_attr_to_decision_tree_target_attr_indices: Dict[Attr, List[int]] \
= self.get_original_attr_to_decision_tree_attr_mapping()
original_target_attr: Attr
dt_target_attr_indices: List[int]
for original_target_attr, dt_target_attr_indices in \
original_target_attr_to_decision_tree_target_attr_indices.items():
if not self.__is_original_attr_binary(dt_target_attr_indices):
opt_predictive_literal: Optional[EQLiteral] = self.__convert_n_ary_original_attibute(
original_target_attr, dt_target_attr_indices, leaf_info)
if opt_predictive_literal is not None:
literals.append(opt_predictive_literal)
elif self.__is_original_attr_binary(dt_target_attr_indices):
predictive_literal: EQLiteral = self.__convert_binary_original_attribute(
original_target_attr, dt_target_attr_indices, leaf_info)
literals.append(predictive_literal)
else:
raise Exception("should not be in this situation")
return literals |
Python | def __get_decision_tree_attribute_with_highest_count_for_class_label_one(self,
original_target_attr: Attr,
dt_target_attr_indices: List[int],
leaf_info: LeafInfo
) -> Optional[int]:
"""
Find the decision tree attribute with the highest count for class label 1
"""
current_highest_count_for_class_label_one = float('-inf')
dt_target_attr_index_with_current_highest_count: Optional[int] = None
dt_target_attr_index: int
for dt_target_attr_index in dt_target_attr_indices:
# the possible class labels for the decision tree attribute, an array [0, 1]
possible_class_labels_for_dt_target: SingleAttrClassLabelsList = \
leaf_info.get_possible_class_labels_for_decision_tree_attribute(dt_target_attr_index)
# NOTE: it could be possible that the one-hot encoded lable does not occur.
# in that case, the possible class labels for the decision tree attribute are [1]
if possible_class_labels_for_dt_target.size > 2:
raise Exception(
f"expected two possible class labels (0 and 1) for "
f"{self.dt_target_attr_names[dt_target_attr_index]} (original: {original_target_attr}),"
f" got {possible_class_labels_for_dt_target}")
elif possible_class_labels_for_dt_target.size == 2:
# counts per possible target label [0, 1]
counts_per_label_for_target: np.ndarray = leaf_info.class_label_counts[dt_target_attr_index]
if counts_per_label_for_target.size != 2:
raise Exception(
f"expected two counts for class labels 0 and 1 for "
f"{self.dt_target_attr_names[dt_target_attr_index]} (original: {original_target_attr}),"
f" got {counts_per_label_for_target}")
all_zeros: bool = not np.any(counts_per_label_for_target)
if all_zeros:
raise Exception("all labels have count 0")
indexes_of_class_label_one = np.where(possible_class_labels_for_dt_target == 1)
index_of_class_label_one: int = indexes_of_class_label_one[0][0]
if index_of_class_label_one != 0 and index_of_class_label_one != 1:
raise Exception(
f"expected the index of class label 1 to be either 0 or 1 for "
f"{self.dt_target_attr_names[dt_target_attr_index]} (original: {original_target_attr}),"
f" got {index_of_class_label_one}")
count_of_class_label_one: int = counts_per_label_for_target[index_of_class_label_one]
if count_of_class_label_one > current_highest_count_for_class_label_one:
current_highest_count_for_class_label_one = count_of_class_label_one
dt_target_attr_index_with_current_highest_count = dt_target_attr_index
else:
pass
elif possible_class_labels_for_dt_target.size == 1:
dt_target_attr = self.dt_target_attr_names[dt_target_attr_index]
print(f"possible class labels for {dt_target_attr}: {possible_class_labels_for_dt_target}")
counts_per_label_for_target: np.ndarray = leaf_info.class_label_counts[dt_target_attr_index]
print(f"counts: {counts_per_label_for_target}")
if counts_per_label_for_target.size != 2:
raise Exception(
f"expected two count for class labels 0 and 1"
f"{self.dt_target_attr_names[dt_target_attr_index]} (original: {original_target_attr}),"
f" got {counts_per_label_for_target}")
all_zeros: bool = not np.any(counts_per_label_for_target)
if all_zeros:
raise Exception("all labels have count 0")
print("ONEONEONE")
pass
if dt_target_attr_index_with_current_highest_count is None:
print(
f"WARNING: no highest count for any attribute of {original_target_attr}. It might be constant in the training data.")
return dt_target_attr_index_with_current_highest_count | def __get_decision_tree_attribute_with_highest_count_for_class_label_one(self,
original_target_attr: Attr,
dt_target_attr_indices: List[int],
leaf_info: LeafInfo
) -> Optional[int]:
"""
Find the decision tree attribute with the highest count for class label 1
"""
current_highest_count_for_class_label_one = float('-inf')
dt_target_attr_index_with_current_highest_count: Optional[int] = None
dt_target_attr_index: int
for dt_target_attr_index in dt_target_attr_indices:
# the possible class labels for the decision tree attribute, an array [0, 1]
possible_class_labels_for_dt_target: SingleAttrClassLabelsList = \
leaf_info.get_possible_class_labels_for_decision_tree_attribute(dt_target_attr_index)
# NOTE: it could be possible that the one-hot encoded lable does not occur.
# in that case, the possible class labels for the decision tree attribute are [1]
if possible_class_labels_for_dt_target.size > 2:
raise Exception(
f"expected two possible class labels (0 and 1) for "
f"{self.dt_target_attr_names[dt_target_attr_index]} (original: {original_target_attr}),"
f" got {possible_class_labels_for_dt_target}")
elif possible_class_labels_for_dt_target.size == 2:
# counts per possible target label [0, 1]
counts_per_label_for_target: np.ndarray = leaf_info.class_label_counts[dt_target_attr_index]
if counts_per_label_for_target.size != 2:
raise Exception(
f"expected two counts for class labels 0 and 1 for "
f"{self.dt_target_attr_names[dt_target_attr_index]} (original: {original_target_attr}),"
f" got {counts_per_label_for_target}")
all_zeros: bool = not np.any(counts_per_label_for_target)
if all_zeros:
raise Exception("all labels have count 0")
indexes_of_class_label_one = np.where(possible_class_labels_for_dt_target == 1)
index_of_class_label_one: int = indexes_of_class_label_one[0][0]
if index_of_class_label_one != 0 and index_of_class_label_one != 1:
raise Exception(
f"expected the index of class label 1 to be either 0 or 1 for "
f"{self.dt_target_attr_names[dt_target_attr_index]} (original: {original_target_attr}),"
f" got {index_of_class_label_one}")
count_of_class_label_one: int = counts_per_label_for_target[index_of_class_label_one]
if count_of_class_label_one > current_highest_count_for_class_label_one:
current_highest_count_for_class_label_one = count_of_class_label_one
dt_target_attr_index_with_current_highest_count = dt_target_attr_index
else:
pass
elif possible_class_labels_for_dt_target.size == 1:
dt_target_attr = self.dt_target_attr_names[dt_target_attr_index]
print(f"possible class labels for {dt_target_attr}: {possible_class_labels_for_dt_target}")
counts_per_label_for_target: np.ndarray = leaf_info.class_label_counts[dt_target_attr_index]
print(f"counts: {counts_per_label_for_target}")
if counts_per_label_for_target.size != 2:
raise Exception(
f"expected two count for class labels 0 and 1"
f"{self.dt_target_attr_names[dt_target_attr_index]} (original: {original_target_attr}),"
f" got {counts_per_label_for_target}")
all_zeros: bool = not np.any(counts_per_label_for_target)
if all_zeros:
raise Exception("all labels have count 0")
print("ONEONEONE")
pass
if dt_target_attr_index_with_current_highest_count is None:
print(
f"WARNING: no highest count for any attribute of {original_target_attr}. It might be constant in the training data.")
return dt_target_attr_index_with_current_highest_count |
Python | def ___minmax_class_in_uncovered_examples_for_target_attibute(self,
ruleset: Set[MIDSRule],
dataframe_training_data: pd.DataFrame,
target_attribute: str,
rule_combinator: RuleCombinator,
to_get='MINORITY'
):
"""
Default class = majority class in the uncovered examples
Examples not covered by ANY rule?
Examples not covered by a rule predicting a target? I.e. per target attribute, a different set of attributes.
:return:
"""
# note: following contains None if no predicted value found
predicted_class_per_row = rule_combinator.predict(ruleset, dataframe_training_data, target_attribute,
default_value=None)
indexes_unclassified_instances = [idx for idx, val in enumerate(predicted_class_per_row) if val == None]
actual_classes_unclassified_instances = dataframe_training_data[target_attribute].iloc[
indexes_unclassified_instances]
# return random class if all examples have a predicted value
if len(list(actual_classes_unclassified_instances)) == 0:
distinct_class_values = set(np.unique(dataframe_training_data[target_attribute]))
default_class = random.sample(
distinct_class_values, 1
)[0]
else:
counts = Counter(list(actual_classes_unclassified_instances))
if to_get == 'MAJORITY':
majority_class = max(counts, key=counts.get)
default_class = majority_class
elif to_get == 'MINORITY':
minority_class = min(counts, key=counts.get)
default_class = minority_class
else:
raise Exception("Should not reach this. Got " + str(to_get) + " as value of to_get parameter.")
return default_class | def ___minmax_class_in_uncovered_examples_for_target_attibute(self,
ruleset: Set[MIDSRule],
dataframe_training_data: pd.DataFrame,
target_attribute: str,
rule_combinator: RuleCombinator,
to_get='MINORITY'
):
"""
Default class = majority class in the uncovered examples
Examples not covered by ANY rule?
Examples not covered by a rule predicting a target? I.e. per target attribute, a different set of attributes.
:return:
"""
# note: following contains None if no predicted value found
predicted_class_per_row = rule_combinator.predict(ruleset, dataframe_training_data, target_attribute,
default_value=None)
indexes_unclassified_instances = [idx for idx, val in enumerate(predicted_class_per_row) if val == None]
actual_classes_unclassified_instances = dataframe_training_data[target_attribute].iloc[
indexes_unclassified_instances]
# return random class if all examples have a predicted value
if len(list(actual_classes_unclassified_instances)) == 0:
distinct_class_values = set(np.unique(dataframe_training_data[target_attribute]))
default_class = random.sample(
distinct_class_values, 1
)[0]
else:
counts = Counter(list(actual_classes_unclassified_instances))
if to_get == 'MAJORITY':
majority_class = max(counts, key=counts.get)
default_class = majority_class
elif to_get == 'MINORITY':
minority_class = min(counts, key=counts.get)
default_class = minority_class
else:
raise Exception("Should not reach this. Got " + str(to_get) + " as value of to_get parameter.")
return default_class |
Python | def multi_target_cars_to_st_mcars(multi_target_mcars: List[MCAR],
target_attr_list: Optional[List[TargetAttr]] = None
) -> Dict[TargetAttr, List[MCAR]]:
"""
Given a set of multi-target rules, get the single-target class association rules.
:param target_attr_list:
:param multi_target_mcars:
:return:
"""
target_attr_to_st_rule_list_map: Dict[TargetAttr, List[MCAR]] = dict()
rule: MCAR
for rule in multi_target_mcars:
if len(rule.consequent) == 1:
target_attr: TargetAttr = list(rule.consequent.get_attributes())[0]
# check if it already exists
target_attr_rule_list: Optional[List[MCAR]] = target_attr_to_st_rule_list_map.get(target_attr, None)
if target_attr_rule_list is None:
target_attr_rule_list: List[MCAR] = [rule]
target_attr_to_st_rule_list_map[target_attr] = target_attr_rule_list
else:
target_attr_rule_list.append(rule)
else:
pass
if target_attr_list is not None:
for target_attr in target_attr_list:
if target_attr not in target_attr_to_st_rule_list_map.keys():
target_attr_to_st_rule_list_map[target_attr] = []
return target_attr_to_st_rule_list_map | def multi_target_cars_to_st_mcars(multi_target_mcars: List[MCAR],
target_attr_list: Optional[List[TargetAttr]] = None
) -> Dict[TargetAttr, List[MCAR]]:
"""
Given a set of multi-target rules, get the single-target class association rules.
:param target_attr_list:
:param multi_target_mcars:
:return:
"""
target_attr_to_st_rule_list_map: Dict[TargetAttr, List[MCAR]] = dict()
rule: MCAR
for rule in multi_target_mcars:
if len(rule.consequent) == 1:
target_attr: TargetAttr = list(rule.consequent.get_attributes())[0]
# check if it already exists
target_attr_rule_list: Optional[List[MCAR]] = target_attr_to_st_rule_list_map.get(target_attr, None)
if target_attr_rule_list is None:
target_attr_rule_list: List[MCAR] = [rule]
target_attr_to_st_rule_list_map[target_attr] = target_attr_rule_list
else:
target_attr_rule_list.append(rule)
else:
pass
if target_attr_list is not None:
for target_attr in target_attr_list:
if target_attr not in target_attr_to_st_rule_list_map.keys():
target_attr_to_st_rule_list_map[target_attr] = []
return target_attr_to_st_rule_list_map |
Python | def mine_n_rules(self, df: pd.DataFrame, rule_cutoff: int) -> List[MCAR]:
"""
Tries to find the 'rule_cutoff' best rules in using an iterative approach.
"""
transactions: List[List[str]] = dataframe_to_list_of_transactions(df)
best_rules: Optional[List[MCAR]] = self._iteratively_find_best_rules(
transactions, target_rule_count=rule_cutoff)
if best_rules is None:
raise Exception("no rules found")
if len(best_rules) > rule_cutoff:
if self.should_sample_if_found_too_many_rules:
rule_subset = self.__subsample_found_rules(best_rules, rule_cutoff)
else:
rule_subset = best_rules[:rule_cutoff]
# TODO: this is pretty fishy
else:
rule_subset = best_rules
return rule_subset | def mine_n_rules(self, df: pd.DataFrame, rule_cutoff: int) -> List[MCAR]:
"""
Tries to find the 'rule_cutoff' best rules in using an iterative approach.
"""
transactions: List[List[str]] = dataframe_to_list_of_transactions(df)
best_rules: Optional[List[MCAR]] = self._iteratively_find_best_rules(
transactions, target_rule_count=rule_cutoff)
if best_rules is None:
raise Exception("no rules found")
if len(best_rules) > rule_cutoff:
if self.should_sample_if_found_too_many_rules:
rule_subset = self.__subsample_found_rules(best_rules, rule_cutoff)
else:
rule_subset = best_rules[:rule_cutoff]
# TODO: this is pretty fishy
else:
rule_subset = best_rules
return rule_subset |
Python | def _iteratively_find_best_rules(self,
transactions: List[List[str]],
target_rule_count: int = 1000
):
"""
Function for finding the best n (target_rule_count) rules from transaction list.
PROBLEM: how to define 'best'?
Iteratively:
Search for the rules under the current mining parameters.
Check the properties of the found rules.
If there is still room for improvement,
Then update the mining parameters,
STOP if:
- max nb of iterations is reached (default: 30).
- the current nb of rules is more than the nb of rules we are looking for.
- the time out is reach
FIND all rules with as constraints:
- min_support
- min_confidence
- max_length
Parameters
----------
:param transactions : 2D array of strings, e.g. [["a:=:1", "b:=:3"], ["a:=:4", "b:=:2"]]
:param target_rule_count : int - target number of rules to mine
Returns
-------
list of mined rules. The rules are not ordered.
"""
start_time: float = time.time()
# the length of a rule is at most the length of a transaction. (All transactions have the same length.)
TRANSACTION_LENGTH: int = len(transactions[0])
rule_length_upper_boundary = min(TRANSACTION_LENGTH, self.max_wanted_rule_length)
keep_mining: bool = True
self.__get_initial_mining_parameters()
# current_support: float = self.init_support
# current_confidence: float = self.init_confidence
# current_max_length: int = self.init_max_length
last_rule_count = -1
current_rules: Optional[List[MCAR]] = None
current_iteration = 0
if self.verbose:
print("STARTING top_rules")
while keep_mining and not self._is_max_n_iterations_reached(
current_iteration) and not self._is_time_out_exceeded(start_time):
current_iteration += 1
if self._is_stuck_in_local_optimum():
break
current_mining_params: MiningParameters = self.get_current_mining_params()
if self.verbose:
print(f"--- iteration {current_iteration} ---")
print((f"Running apriori with setting: "
f"confidence={current_mining_params.confidence}, "
f"support={current_mining_params.support}, "
f"min_length={self.min_length}, "
f"max_length={current_mining_params.max_rule_length}, "
f"TRANSACTION_LENGTH={TRANSACTION_LENGTH}",
f"max_wanted_rule_length={self.max_wanted_rule_length}"
))
current_rules: List[MCAR] = mine_MCARs_from_transactions_using_apyori(
transactions, min_support=current_mining_params.support,
min_confidence=current_mining_params.confidence,
max_length=current_mining_params.max_rule_length)
current_nb_of_rules = len(current_rules)
if self.verbose:
print(f"Rule count: {current_nb_of_rules}, Iteration: {current_iteration}")
# if: nb of target rules is succeeded
# then: increase the confidence
if self._is_target_rule_count_exceeded(target_rule_count, current_nb_of_rules):
if self.verbose:
print(f"Target rule count exceeded: {current_nb_of_rules} > {target_rule_count}")
if (1.0 - current_mining_params.confidence) > self.confidence_step:
next_mining_params = current_mining_params.get_copy()
next_mining_params.confidence += self.confidence_step
self.add_update_mining_params(next_mining_params)
if self.verbose:
print(f"\tINcreasing confidence to {next_mining_params.confidence}")
elif (1.0 - current_mining_params.support) > self.support_step:
next_mining_params = current_mining_params.get_copy()
next_mining_params.support += self.support_step
self.add_update_mining_params(next_mining_params)
if self.verbose:
print(f"\tINcreasing support to {next_mining_params.support}")
else:
if self.verbose:
print("Target rule count exceeded, no options left")
keep_mining = False
else:
if self.verbose:
print(f"Target rule count NOT exceeded: {current_nb_of_rules} < {target_rule_count}")
# NB of rules is not exceeded!
# what can we do?
# * IF we have not reached the max rule length
# and the nb of rules went up since last time
# THEN:
# increase the rule length
#
# if we can still increase our rule length AND
# the number of rules found has changed (increased?) since last time AND
# there has
if (
current_mining_params.max_rule_length < rule_length_upper_boundary and
last_rule_count != current_nb_of_rules
):
next_mining_params = current_mining_params.get_copy()
next_mining_params.max_rule_length += 1
self.add_update_mining_params(next_mining_params)
if self.verbose:
print(f"\tIncreasing max_length {next_mining_params.max_rule_length}")
# if we can still increase our rule length AND
#
# we can still increase our support
# THEN:
# increase our support
# increment our max length
elif (
current_mining_params.max_rule_length < rule_length_upper_boundary and
current_mining_params.support <= 1 - self.support_step
):
next_mining_params = current_mining_params.get_copy()
next_mining_params.support -= self.support_step
self.add_update_mining_params(next_mining_params)
if self.verbose:
print(f"\tDecreasing minsup to {next_mining_params.support}")
# IF we can still decrease our confidence
# THEN decrease our confidence
elif current_mining_params.confidence > self.confidence_step:
next_mining_params = current_mining_params.get_copy()
next_mining_params.confidence -= self.confidence_step
self.add_update_mining_params(next_mining_params)
if self.verbose:
print(f"\tDecreasing confidence to {next_mining_params.confidence}")
else:
if self.verbose:
print("\tAll options exhausted")
keep_mining = False
if self.verbose:
end_of_current_iteration_message = f"--- end iteration {current_iteration} ---"
print(end_of_current_iteration_message)
print("-" * len(end_of_current_iteration_message))
last_rule_count = current_nb_of_rules
if self.verbose:
print(f"FINISHED top_rules after {current_iteration} iterations")
return current_rules | def _iteratively_find_best_rules(self,
transactions: List[List[str]],
target_rule_count: int = 1000
):
"""
Function for finding the best n (target_rule_count) rules from transaction list.
PROBLEM: how to define 'best'?
Iteratively:
Search for the rules under the current mining parameters.
Check the properties of the found rules.
If there is still room for improvement,
Then update the mining parameters,
STOP if:
- max nb of iterations is reached (default: 30).
- the current nb of rules is more than the nb of rules we are looking for.
- the time out is reach
FIND all rules with as constraints:
- min_support
- min_confidence
- max_length
Parameters
----------
:param transactions : 2D array of strings, e.g. [["a:=:1", "b:=:3"], ["a:=:4", "b:=:2"]]
:param target_rule_count : int - target number of rules to mine
Returns
-------
list of mined rules. The rules are not ordered.
"""
start_time: float = time.time()
# the length of a rule is at most the length of a transaction. (All transactions have the same length.)
TRANSACTION_LENGTH: int = len(transactions[0])
rule_length_upper_boundary = min(TRANSACTION_LENGTH, self.max_wanted_rule_length)
keep_mining: bool = True
self.__get_initial_mining_parameters()
# current_support: float = self.init_support
# current_confidence: float = self.init_confidence
# current_max_length: int = self.init_max_length
last_rule_count = -1
current_rules: Optional[List[MCAR]] = None
current_iteration = 0
if self.verbose:
print("STARTING top_rules")
while keep_mining and not self._is_max_n_iterations_reached(
current_iteration) and not self._is_time_out_exceeded(start_time):
current_iteration += 1
if self._is_stuck_in_local_optimum():
break
current_mining_params: MiningParameters = self.get_current_mining_params()
if self.verbose:
print(f"--- iteration {current_iteration} ---")
print((f"Running apriori with setting: "
f"confidence={current_mining_params.confidence}, "
f"support={current_mining_params.support}, "
f"min_length={self.min_length}, "
f"max_length={current_mining_params.max_rule_length}, "
f"TRANSACTION_LENGTH={TRANSACTION_LENGTH}",
f"max_wanted_rule_length={self.max_wanted_rule_length}"
))
current_rules: List[MCAR] = mine_MCARs_from_transactions_using_apyori(
transactions, min_support=current_mining_params.support,
min_confidence=current_mining_params.confidence,
max_length=current_mining_params.max_rule_length)
current_nb_of_rules = len(current_rules)
if self.verbose:
print(f"Rule count: {current_nb_of_rules}, Iteration: {current_iteration}")
# if: nb of target rules is succeeded
# then: increase the confidence
if self._is_target_rule_count_exceeded(target_rule_count, current_nb_of_rules):
if self.verbose:
print(f"Target rule count exceeded: {current_nb_of_rules} > {target_rule_count}")
if (1.0 - current_mining_params.confidence) > self.confidence_step:
next_mining_params = current_mining_params.get_copy()
next_mining_params.confidence += self.confidence_step
self.add_update_mining_params(next_mining_params)
if self.verbose:
print(f"\tINcreasing confidence to {next_mining_params.confidence}")
elif (1.0 - current_mining_params.support) > self.support_step:
next_mining_params = current_mining_params.get_copy()
next_mining_params.support += self.support_step
self.add_update_mining_params(next_mining_params)
if self.verbose:
print(f"\tINcreasing support to {next_mining_params.support}")
else:
if self.verbose:
print("Target rule count exceeded, no options left")
keep_mining = False
else:
if self.verbose:
print(f"Target rule count NOT exceeded: {current_nb_of_rules} < {target_rule_count}")
# NB of rules is not exceeded!
# what can we do?
# * IF we have not reached the max rule length
# and the nb of rules went up since last time
# THEN:
# increase the rule length
#
# if we can still increase our rule length AND
# the number of rules found has changed (increased?) since last time AND
# there has
if (
current_mining_params.max_rule_length < rule_length_upper_boundary and
last_rule_count != current_nb_of_rules
):
next_mining_params = current_mining_params.get_copy()
next_mining_params.max_rule_length += 1
self.add_update_mining_params(next_mining_params)
if self.verbose:
print(f"\tIncreasing max_length {next_mining_params.max_rule_length}")
# if we can still increase our rule length AND
#
# we can still increase our support
# THEN:
# increase our support
# increment our max length
elif (
current_mining_params.max_rule_length < rule_length_upper_boundary and
current_mining_params.support <= 1 - self.support_step
):
next_mining_params = current_mining_params.get_copy()
next_mining_params.support -= self.support_step
self.add_update_mining_params(next_mining_params)
if self.verbose:
print(f"\tDecreasing minsup to {next_mining_params.support}")
# IF we can still decrease our confidence
# THEN decrease our confidence
elif current_mining_params.confidence > self.confidence_step:
next_mining_params = current_mining_params.get_copy()
next_mining_params.confidence -= self.confidence_step
self.add_update_mining_params(next_mining_params)
if self.verbose:
print(f"\tDecreasing confidence to {next_mining_params.confidence}")
else:
if self.verbose:
print("\tAll options exhausted")
keep_mining = False
if self.verbose:
end_of_current_iteration_message = f"--- end iteration {current_iteration} ---"
print(end_of_current_iteration_message)
print("-" * len(end_of_current_iteration_message))
last_rule_count = current_nb_of_rules
if self.verbose:
print(f"FINISHED top_rules after {current_iteration} iterations")
return current_rules |
Python | def main():
"""
Example of how decision trees predicting multiple targets can be turned into a rule set.
"""
sys.path.append(os.path.join(project_dir, 'src'))
sys.path.append(os.path.join(project_dir, 'external/pyARC'))
sys.path.append(os.path.join(project_dir, 'external/pyIDS'))
should_plot_trees: bool = True
nb_of_original_targets_to_predict = 1
# --- Loading data ------------------------------------------------------------------------------------------------
dataset_name = 'titanic'
train_test_dir = os.path.join(project_dir, 'data/interim/' + dataset_name)
df_train_one_hot_encoded = pd.read_csv(
os.path.join(train_test_dir, f'{dataset_name}_train_ohe.csv'))
# df_test_one_hot_encoded = pd.read_csv(
# os.path.join(train_test_dir, f'{dataset_name}_test_ohe.csv'))
# --- creating an encoding ----------------------------------------------------------------------------------------
encoding_book_keeper = EncodingBookKeeper(ohe_prefix_separator='=')
encoding_book_keeper.parse_and_store_one_hot_encoded_columns(df_train_one_hot_encoded.columns)
# --- Learning one decision tree per attribute ---------------------------------------------------------------------
tree_classifiers: Dict[Tuple[Attr], DTInfo] = {}
original_target_attr_combo: Tuple[Attr]
for original_target_attr_combo in get_combinations_of_original_target_attributes(
encoding_book_keeper, nb_of_original_targets_to_predict):
# --- Select the descriptive and target attributes -------------------------------------------------------------
ohe_descriptive_attrs: List[Attr]
ohe_target_attrs: List[Attr]
ohe_descriptive_attrs, ohe_target_attrs = get_ohe_descriptive_and_target_attributes(
original_target_attr_combo, encoding_book_keeper)
df_train_one_hot_encoded_descriptive = df_train_one_hot_encoded.loc[:, ohe_descriptive_attrs]
df_train_one_hot_encoded_target = df_train_one_hot_encoded.loc[:, ohe_target_attrs]
print("original targets:", original_target_attr_combo)
print("OHE descriptive attrs:")
print("\t", ohe_descriptive_attrs)
print("OHE target attrs:")
print("\t", ohe_target_attrs)
# --- Fit a decision tree -----------------------------------------------------------------------------------
tree_clf = DecisionTreeClassifier()
tree_clf.fit(df_train_one_hot_encoded_descriptive, df_train_one_hot_encoded_target)
dt_info = DTInfo(original_target_attributes=original_target_attr_combo,
tree_classifier=tree_clf,
ohe_descriptive_attrs=ohe_descriptive_attrs,
ohe_target_attrs=ohe_target_attrs)
tree_classifiers[original_target_attr_combo] = dt_info
print("---")
# --- Convert the fitted decision tree classifiers to rules -------------------------------------------------------
all_rules: List[MIDSRule] = []
original_target_attributes: Tuple[Attr]
dt_info: DTInfo
for original_target_attributes, dt_info in tree_classifiers.items():
tree_clf = dt_info.tree_classifier
if should_plot_trees:
plot_tree(dt_info)
list_of_dt_rules = convert_decision_tree_to_mids_rule_list(
tree_classifier=tree_clf,
one_hot_encoded_feature_names=dt_info.ohe_descriptive_attrs,
target_attribute_names=dt_info.ohe_target_attrs,
encoding_book_keeper=encoding_book_keeper)
print(f"original target attributes: {original_target_attributes}")
for rule in list_of_dt_rules:
print("\t", mids_mcar_to_pretty_string(rule.car))
print()
all_rules.extend(list_of_dt_rules) | def main():
"""
Example of how decision trees predicting multiple targets can be turned into a rule set.
"""
sys.path.append(os.path.join(project_dir, 'src'))
sys.path.append(os.path.join(project_dir, 'external/pyARC'))
sys.path.append(os.path.join(project_dir, 'external/pyIDS'))
should_plot_trees: bool = True
nb_of_original_targets_to_predict = 1
# --- Loading data ------------------------------------------------------------------------------------------------
dataset_name = 'titanic'
train_test_dir = os.path.join(project_dir, 'data/interim/' + dataset_name)
df_train_one_hot_encoded = pd.read_csv(
os.path.join(train_test_dir, f'{dataset_name}_train_ohe.csv'))
# df_test_one_hot_encoded = pd.read_csv(
# os.path.join(train_test_dir, f'{dataset_name}_test_ohe.csv'))
# --- creating an encoding ----------------------------------------------------------------------------------------
encoding_book_keeper = EncodingBookKeeper(ohe_prefix_separator='=')
encoding_book_keeper.parse_and_store_one_hot_encoded_columns(df_train_one_hot_encoded.columns)
# --- Learning one decision tree per attribute ---------------------------------------------------------------------
tree_classifiers: Dict[Tuple[Attr], DTInfo] = {}
original_target_attr_combo: Tuple[Attr]
for original_target_attr_combo in get_combinations_of_original_target_attributes(
encoding_book_keeper, nb_of_original_targets_to_predict):
# --- Select the descriptive and target attributes -------------------------------------------------------------
ohe_descriptive_attrs: List[Attr]
ohe_target_attrs: List[Attr]
ohe_descriptive_attrs, ohe_target_attrs = get_ohe_descriptive_and_target_attributes(
original_target_attr_combo, encoding_book_keeper)
df_train_one_hot_encoded_descriptive = df_train_one_hot_encoded.loc[:, ohe_descriptive_attrs]
df_train_one_hot_encoded_target = df_train_one_hot_encoded.loc[:, ohe_target_attrs]
print("original targets:", original_target_attr_combo)
print("OHE descriptive attrs:")
print("\t", ohe_descriptive_attrs)
print("OHE target attrs:")
print("\t", ohe_target_attrs)
# --- Fit a decision tree -----------------------------------------------------------------------------------
tree_clf = DecisionTreeClassifier()
tree_clf.fit(df_train_one_hot_encoded_descriptive, df_train_one_hot_encoded_target)
dt_info = DTInfo(original_target_attributes=original_target_attr_combo,
tree_classifier=tree_clf,
ohe_descriptive_attrs=ohe_descriptive_attrs,
ohe_target_attrs=ohe_target_attrs)
tree_classifiers[original_target_attr_combo] = dt_info
print("---")
# --- Convert the fitted decision tree classifiers to rules -------------------------------------------------------
all_rules: List[MIDSRule] = []
original_target_attributes: Tuple[Attr]
dt_info: DTInfo
for original_target_attributes, dt_info in tree_classifiers.items():
tree_clf = dt_info.tree_classifier
if should_plot_trees:
plot_tree(dt_info)
list_of_dt_rules = convert_decision_tree_to_mids_rule_list(
tree_classifier=tree_clf,
one_hot_encoded_feature_names=dt_info.ohe_descriptive_attrs,
target_attribute_names=dt_info.ohe_target_attrs,
encoding_book_keeper=encoding_book_keeper)
print(f"original target attributes: {original_target_attributes}")
for rule in list_of_dt_rules:
print("\t", mids_mcar_to_pretty_string(rule.car))
print()
all_rules.extend(list_of_dt_rules) |
Python | def f0_minimize_rule_set_size(self, ground_set_size: int, current_nb_of_rules: int):
"""
Minimize the number of rules in the rule set
:return:
"""
f0_unnormalized = ground_set_size - current_nb_of_rules
if self.normalize and ground_set_size > 0:
f0 = f0_unnormalized / ground_set_size
else:
f0 = f0_unnormalized
self._normalized_boundary_check(f0, 'f0')
return f0 | def f0_minimize_rule_set_size(self, ground_set_size: int, current_nb_of_rules: int):
"""
Minimize the number of rules in the rule set
:return:
"""
f0_unnormalized = ground_set_size - current_nb_of_rules
if self.normalize and ground_set_size > 0:
f0 = f0_unnormalized / ground_set_size
else:
f0 = f0_unnormalized
self._normalized_boundary_check(f0, 'f0')
return f0 |
Python | def fraction_bodily_overlap(ruleset: IDSRuleSet, quant_dataframe: QuantitativeDataFrame) -> float:
"""
This metric captures the extend of overlap between every pair of rules in a decision set R.
Smaller values of this metric signify higher interpretability.
Boundary values:
0.0 if no rules in R overlap:
1.0 if all data points in are covered by all rules in R.
NOTE:
* this is 0.0 for any decision list,
because their if-else structure ensures that a rule in the list applies only to those data points
which have not been covered by any of the preceeding rules
* this is 0.0 for the empty rule set
:param ruleset:
:param quant_dataframe:
:return:
"""
if type(ruleset) != IDSRuleSet:
raise Exception("Type of ruleset must be IDSRuleSet")
if type(quant_dataframe) != QuantitativeDataFrame:
raise Exception("Type of quant_dataframe must be QuantitativeDataFrame")
ruleset_size = len(ruleset)
if ruleset_size == 0:
print("Warning: the IDS rule set is empty.")
return 0.0
nb_of_test_examples: int = quant_dataframe.dataframe.index.size
if nb_of_test_examples == 0:
raise Exception("There are no test instances to calculate overlap on")
rule: IDSRule
for rule in ruleset.ruleset:
rule.calculate_cover(quant_dataframe)
overlap_sum: int = 0
for i, rule_i in enumerate(ruleset.ruleset):
for j, rule_j in enumerate(ruleset.ruleset):
if i <= j:
continue
overlap_sum += np.sum(rule_i.rule_overlap(rule_j, quant_dataframe))
if overlap_sum == 0:
warnings.warn("overlap is 0, which is unlikely")
return 0
else:
frac_overlap: float = 2 / (ruleset_size * (ruleset_size - 1)) * overlap_sum / nb_of_test_examples
if not is_valid_fraction(frac_overlap):
raise Exception("Fraction overlap is not within [0,1]: " + str(frac_overlap))
return frac_overlap | def fraction_bodily_overlap(ruleset: IDSRuleSet, quant_dataframe: QuantitativeDataFrame) -> float:
"""
This metric captures the extend of overlap between every pair of rules in a decision set R.
Smaller values of this metric signify higher interpretability.
Boundary values:
0.0 if no rules in R overlap:
1.0 if all data points in are covered by all rules in R.
NOTE:
* this is 0.0 for any decision list,
because their if-else structure ensures that a rule in the list applies only to those data points
which have not been covered by any of the preceeding rules
* this is 0.0 for the empty rule set
:param ruleset:
:param quant_dataframe:
:return:
"""
if type(ruleset) != IDSRuleSet:
raise Exception("Type of ruleset must be IDSRuleSet")
if type(quant_dataframe) != QuantitativeDataFrame:
raise Exception("Type of quant_dataframe must be QuantitativeDataFrame")
ruleset_size = len(ruleset)
if ruleset_size == 0:
print("Warning: the IDS rule set is empty.")
return 0.0
nb_of_test_examples: int = quant_dataframe.dataframe.index.size
if nb_of_test_examples == 0:
raise Exception("There are no test instances to calculate overlap on")
rule: IDSRule
for rule in ruleset.ruleset:
rule.calculate_cover(quant_dataframe)
overlap_sum: int = 0
for i, rule_i in enumerate(ruleset.ruleset):
for j, rule_j in enumerate(ruleset.ruleset):
if i <= j:
continue
overlap_sum += np.sum(rule_i.rule_overlap(rule_j, quant_dataframe))
if overlap_sum == 0:
warnings.warn("overlap is 0, which is unlikely")
return 0
else:
frac_overlap: float = 2 / (ruleset_size * (ruleset_size - 1)) * overlap_sum / nb_of_test_examples
if not is_valid_fraction(frac_overlap):
raise Exception("Fraction overlap is not within [0,1]: " + str(frac_overlap))
return frac_overlap |
Python | def fraction_uncovered_examples(ruleset: IDSRuleSet, quant_dataframe: QuantitativeDataFrame) -> float:
"""
This metric computes the fraction of the data points which are not covered by any rule in the decision set.
REMEMBER, COVER is independent of the head of a rule.
Boundary values:
0.0 if every data point is covered by some rule in the data set.
1.0 when no data point is covered by any rule in R
(This could be the case when |R| = 0 )
Note:
* for decision lists, this metric is
the fraction of the data points that are covered by the ELSE clause of the list
(i.e. the default prediction).
:param ruleset:
:param quant_dataframe::
:return:
"""
if type(ruleset) != IDSRuleSet:
raise Exception("Type of ruleset must be IDSRuleSet")
if type(quant_dataframe) != QuantitativeDataFrame:
raise Exception("Type of quant_dataframe must be QuantitativeDataFrame")
nb_of_test_examples = quant_dataframe.dataframe.index.size
if nb_of_test_examples == 0:
raise Exception("There are no test instances to calculate the fraction uncovered on")
cover_cumulative_mask: np.ndarray = np.zeros(nb_of_test_examples, dtype=bool)
for rule in ruleset.ruleset:
cover_mask = rule._cover(quant_dataframe)
cover_cumulative_mask = np.logical_or(cover_cumulative_mask, cover_mask)
nb_of_covered_test_examples: int = np.count_nonzero(cover_cumulative_mask)
frac_uncovered = 1 - 1 / nb_of_test_examples * nb_of_covered_test_examples
if not is_valid_fraction(frac_uncovered):
raise Exception("Fraction uncovered examples is not within [0,1]: " + str(frac_uncovered))
return frac_uncovered | def fraction_uncovered_examples(ruleset: IDSRuleSet, quant_dataframe: QuantitativeDataFrame) -> float:
"""
This metric computes the fraction of the data points which are not covered by any rule in the decision set.
REMEMBER, COVER is independent of the head of a rule.
Boundary values:
0.0 if every data point is covered by some rule in the data set.
1.0 when no data point is covered by any rule in R
(This could be the case when |R| = 0 )
Note:
* for decision lists, this metric is
the fraction of the data points that are covered by the ELSE clause of the list
(i.e. the default prediction).
:param ruleset:
:param quant_dataframe::
:return:
"""
if type(ruleset) != IDSRuleSet:
raise Exception("Type of ruleset must be IDSRuleSet")
if type(quant_dataframe) != QuantitativeDataFrame:
raise Exception("Type of quant_dataframe must be QuantitativeDataFrame")
nb_of_test_examples = quant_dataframe.dataframe.index.size
if nb_of_test_examples == 0:
raise Exception("There are no test instances to calculate the fraction uncovered on")
cover_cumulative_mask: np.ndarray = np.zeros(nb_of_test_examples, dtype=bool)
for rule in ruleset.ruleset:
cover_mask = rule._cover(quant_dataframe)
cover_cumulative_mask = np.logical_or(cover_cumulative_mask, cover_mask)
nb_of_covered_test_examples: int = np.count_nonzero(cover_cumulative_mask)
frac_uncovered = 1 - 1 / nb_of_test_examples * nb_of_covered_test_examples
if not is_valid_fraction(frac_uncovered):
raise Exception("Fraction uncovered examples is not within [0,1]: " + str(frac_uncovered))
return frac_uncovered |
Python | def fraction_predicted_classes(ruleset: IDSRuleSet, quant_dataframe: QuantitativeDataFrame) -> float:
"""
This metric denotes the fraction of the classes in the data that are predicted by the ruleset R.
Boundary value:
0.0 if no class is predicted (e.g. the ruleset is empty)
1.0 every class is predicted by some rule in R.
Note:
* The same for decision lists, but we not consider the ELSE clause (the default prediction).
:param ruleset:
:param quant_dataframe:
:return:
"""
if type(ruleset) != IDSRuleSet:
raise Exception("Type of ruleset must be IDSRuleSet")
if type(quant_dataframe) != QuantitativeDataFrame:
raise Exception("Type of quant_dataframe must be QuantitativeDataFrame")
values_occuring_in_data: Set[TargetVal] = set(quant_dataframe.dataframe.iloc[:, -1].values)
values_predicted_by_rules: Set[TargetVal] = set()
for rule in ruleset.ruleset:
covered_class: TargetVal = rule.car.consequent.value
if covered_class in values_occuring_in_data:
values_predicted_by_rules.add(covered_class)
nb_of_values_predicted_by_rules = len(values_predicted_by_rules)
nb_of_values_occuring_in_test_data = len(values_occuring_in_data)
frac_classes: float = nb_of_values_predicted_by_rules / nb_of_values_occuring_in_test_data
if not is_valid_fraction(frac_classes):
raise Exception("Fraction predicted classes examples is not within [0,1]: " + str(frac_classes))
return frac_classes | def fraction_predicted_classes(ruleset: IDSRuleSet, quant_dataframe: QuantitativeDataFrame) -> float:
"""
This metric denotes the fraction of the classes in the data that are predicted by the ruleset R.
Boundary value:
0.0 if no class is predicted (e.g. the ruleset is empty)
1.0 every class is predicted by some rule in R.
Note:
* The same for decision lists, but we not consider the ELSE clause (the default prediction).
:param ruleset:
:param quant_dataframe:
:return:
"""
if type(ruleset) != IDSRuleSet:
raise Exception("Type of ruleset must be IDSRuleSet")
if type(quant_dataframe) != QuantitativeDataFrame:
raise Exception("Type of quant_dataframe must be QuantitativeDataFrame")
values_occuring_in_data: Set[TargetVal] = set(quant_dataframe.dataframe.iloc[:, -1].values)
values_predicted_by_rules: Set[TargetVal] = set()
for rule in ruleset.ruleset:
covered_class: TargetVal = rule.car.consequent.value
if covered_class in values_occuring_in_data:
values_predicted_by_rules.add(covered_class)
nb_of_values_predicted_by_rules = len(values_predicted_by_rules)
nb_of_values_occuring_in_test_data = len(values_occuring_in_data)
frac_classes: float = nb_of_values_predicted_by_rules / nb_of_values_occuring_in_test_data
if not is_valid_fraction(frac_classes):
raise Exception("Fraction predicted classes examples is not within [0,1]: " + str(frac_classes))
return frac_classes |
Python | def find_covered_by_antecedent_mask(self, antecedent) -> np.ndarray:
"""
returns:
mask - an array of boolean values indicating which instances
are covered by antecedent
"""
# todo: compute only once to make function faster
dataset_size = self.size # type: int
cummulated_mask = np.ones(dataset_size).astype(bool) # type: np.ndarray
for literal in antecedent:
current_mask = self.find_covered_by_literal_mask(literal) # type: np.ndarray
cummulated_mask &= current_mask
return cummulated_mask | def find_covered_by_antecedent_mask(self, antecedent) -> np.ndarray:
"""
returns:
mask - an array of boolean values indicating which instances
are covered by antecedent
"""
# todo: compute only once to make function faster
dataset_size = self.size # type: int
cummulated_mask = np.ones(dataset_size).astype(bool) # type: np.ndarray
for literal in antecedent:
current_mask = self.find_covered_by_literal_mask(literal) # type: np.ndarray
cummulated_mask &= current_mask
return cummulated_mask |
Python | def find_covered_by_literal_mask(self, literal):
"""
returns:
mask - an array of boolean values indicating which instances
are covered by literal
"""
dataset_size = self.size
attribute, interval = literal
# the column that concerns the
# iterated attribute
# instead of pandas.Series, grab the ndarray
# using values attribute
relevant_column = self.__dataframe[[attribute]].values.reshape(dataset_size) # type: np.ndarray
# this tells us which instances satisfy the literal
current_mask = self.get_literal_coverage(literal, relevant_column) # type: np.ndarray
return current_mask | def find_covered_by_literal_mask(self, literal):
"""
returns:
mask - an array of boolean values indicating which instances
are covered by literal
"""
dataset_size = self.size
attribute, interval = literal
# the column that concerns the
# iterated attribute
# instead of pandas.Series, grab the ndarray
# using values attribute
relevant_column = self.__dataframe[[attribute]].values.reshape(dataset_size) # type: np.ndarray
# this tells us which instances satisfy the literal
current_mask = self.get_literal_coverage(literal, relevant_column) # type: np.ndarray
return current_mask |
Python | def find_covered_by_rule_mask(self, rule) -> Tuple[np.ndarray, np.ndarray]:
"""
returns:
covered_by_antecedent_mask:
- array of boolean values indicating which
dataset rows satisfy antecedent
covered_by_consequent_mask:
- array of boolean values indicating which
dataset rows satisfy conseqeunt
"""
dataset_size = self.__dataframe.index.size # type: int
# initialize a mask filled with True values
# it will get modified as futher __literals get
# tested
# for optimization - create cummulated mask once
# in constructor
instances_satisfying_antecedent_mask = self.find_covered_by_antecedent_mask(rule.antecedent)
instances_satisfying_consequent_mask = self.__get_consequent_coverage_mask(rule)
instances_satisfying_consequent_mask = instances_satisfying_consequent_mask.reshape(dataset_size)
return instances_satisfying_antecedent_mask, instances_satisfying_consequent_mask | def find_covered_by_rule_mask(self, rule) -> Tuple[np.ndarray, np.ndarray]:
"""
returns:
covered_by_antecedent_mask:
- array of boolean values indicating which
dataset rows satisfy antecedent
covered_by_consequent_mask:
- array of boolean values indicating which
dataset rows satisfy conseqeunt
"""
dataset_size = self.__dataframe.index.size # type: int
# initialize a mask filled with True values
# it will get modified as futher __literals get
# tested
# for optimization - create cummulated mask once
# in constructor
instances_satisfying_antecedent_mask = self.find_covered_by_antecedent_mask(rule.antecedent)
instances_satisfying_consequent_mask = self.__get_consequent_coverage_mask(rule)
instances_satisfying_consequent_mask = instances_satisfying_consequent_mask.reshape(dataset_size)
return instances_satisfying_antecedent_mask, instances_satisfying_consequent_mask |
Python | def calculate_rule_statistics(self, rule):
"""calculates rule's confidence and
support using efficient numpy functions
returns:
--------
support:
float
confidence:
float
"""
dataset_size = self.__dataframe.index.size
# initialize a mask filled with True values
# it will get modified as futher __literals get
# tested
# for optimization - create cummulated mask once
# in constructor
cummulated_mask = np.array([True] * dataset_size)
for literal in rule.antecedent:
attribute, interval = literal
# the column that concerns the
# iterated attribute
# instead of pandas.Series, grab the ndarray
# using values attribute
relevant_column = self.__dataframe[[attribute]].values.reshape(dataset_size)
# this tells us which instances satisfy the literal
current_mask = self.get_literal_coverage(literal, relevant_column)
# add cummulated and current mask using logical AND
cummulated_mask &= current_mask
instances_satisfying_antecedent = self.__dataframe[cummulated_mask].index
instances_satisfying_antecedent_count = instances_satisfying_antecedent.size
# using cummulated mask to filter out instances that satisfy consequent
# but do not satisfy antecedent
instances_satisfying_consequent_mask = self.__get_consequent_coverage_mask(rule)
instances_satisfying_consequent_mask = instances_satisfying_consequent_mask.reshape(dataset_size)
instances_satisfying_consequent_and_antecedent = self.__dataframe[
instances_satisfying_consequent_mask & cummulated_mask
].index
instances_satisfying_consequent_and_antecedent_count = instances_satisfying_consequent_and_antecedent.size
instances_satisfying_consequent_count = self.__dataframe[instances_satisfying_consequent_mask].index.size
# instances satisfying consequent both antecedent and consequent
support = instances_satisfying_antecedent_count / dataset_size
confidence = 0
if instances_satisfying_antecedent_count != 0:
confidence = instances_satisfying_consequent_and_antecedent_count / instances_satisfying_antecedent_count
return support, confidence | def calculate_rule_statistics(self, rule):
"""calculates rule's confidence and
support using efficient numpy functions
returns:
--------
support:
float
confidence:
float
"""
dataset_size = self.__dataframe.index.size
# initialize a mask filled with True values
# it will get modified as futher __literals get
# tested
# for optimization - create cummulated mask once
# in constructor
cummulated_mask = np.array([True] * dataset_size)
for literal in rule.antecedent:
attribute, interval = literal
# the column that concerns the
# iterated attribute
# instead of pandas.Series, grab the ndarray
# using values attribute
relevant_column = self.__dataframe[[attribute]].values.reshape(dataset_size)
# this tells us which instances satisfy the literal
current_mask = self.get_literal_coverage(literal, relevant_column)
# add cummulated and current mask using logical AND
cummulated_mask &= current_mask
instances_satisfying_antecedent = self.__dataframe[cummulated_mask].index
instances_satisfying_antecedent_count = instances_satisfying_antecedent.size
# using cummulated mask to filter out instances that satisfy consequent
# but do not satisfy antecedent
instances_satisfying_consequent_mask = self.__get_consequent_coverage_mask(rule)
instances_satisfying_consequent_mask = instances_satisfying_consequent_mask.reshape(dataset_size)
instances_satisfying_consequent_and_antecedent = self.__dataframe[
instances_satisfying_consequent_mask & cummulated_mask
].index
instances_satisfying_consequent_and_antecedent_count = instances_satisfying_consequent_and_antecedent.size
instances_satisfying_consequent_count = self.__dataframe[instances_satisfying_consequent_mask].index.size
# instances satisfying consequent both antecedent and consequent
support = instances_satisfying_antecedent_count / dataset_size
confidence = 0
if instances_satisfying_antecedent_count != 0:
confidence = instances_satisfying_consequent_and_antecedent_count / instances_satisfying_antecedent_count
return support, confidence |
Python | def fit(self, quant_dataframe,
use_targets_from_rule_set: bool,
targets_to_use: Optional[List[str]] = None,
class_association_rules: Optional[Iterable[MCAR]] = None,
lambda_array: Optional[List[float]] = None,
algorithm="RDGS",
cache_cover_checks=True,
cache_overlap_checks=True,
default_class_type: DefaultClassStrategy = DefaultClassStrategy.MAJORITY_VALUE_OVER_WHOLE_TRAINING_SET,
rule_combination_strategy=RuleCombiningStrategy.WEIGHTED_VOTE,
debug=True,
objective_scale_factor=1,
):
"""
Run the MIDS object on a dataset.
"""
type_check_dataframe(quant_dataframe)
# --- Make sure the ground rule set is initialized ------------------------------------------------------------
if self.mids_ruleset is None and class_association_rules is not None:
ids_rules = list(map(MIDSRule, class_association_rules)) # type: List[MIDSRule]
mids_ruleset = MIDSRuleSet(ids_rules)
elif self.mids_ruleset is not None:
print("using provided mids ruleset and not class association rules")
mids_ruleset = self.mids_ruleset
else:
raise Exception("Neither MCARs or MIDSRules are provided for fitting")
# --- Use all target or only those in the ruleset? -----------------------------------------------------------
if targets_to_use is not None:
targets_to_predict = set(targets_to_use)
self.targets_to_predict = targets_to_use
else:
self.use_targets_from_rule_set = use_targets_from_rule_set
if use_targets_from_rule_set:
targets_to_predict: Set[TargetAttr] = mids_ruleset.get_target_attributes()
else:
targets_to_predict = set(quant_dataframe.columns)
self.targets_to_predict = targets_to_predict
# --- Initialize objective function --------------------------------------------------------------------------
objective_function_parameters = ObjectiveFunctionParameters(
all_rules=mids_ruleset, quant_dataframe=quant_dataframe, lambda_array=lambda_array,
target_attributes=list(targets_to_predict)
)
# --- Initialize cover checker and overlap checker ------------------------------------------------------------
if self.cover_checker is None:
if cache_cover_checks:
self.cover_checker = CachedCoverChecker(mids_ruleset, quant_dataframe)
else:
self.cover_checker = CoverChecker()
else:
print("Reusing previously instantiated cover checker of type", str(type(self.cover_checker)))
if self.overlap_checker is None:
if cache_overlap_checks:
self.overlap_checker = CachedOverlapChecker(mids_ruleset, quant_dataframe, self.cover_checker,
debug=debug)
else:
self.overlap_checker = OverlapChecker(self.cover_checker, debug=debug)
else:
print("Reusing previously instantiated overlap checker of type", str(type(self.overlap_checker)))
# --- Submodular maximization --------------------------------------------------------------------------------
# if len(mids_ruleset) > 0:
# pass
# else:
# warnings.warn("Empty rule list was given")
solution_set: Set[MIDSRule] = self._optimize(
objective_function_parameters=objective_function_parameters, algorithm=algorithm,
objective_scale_factor=objective_scale_factor, debug=debug
)
optimization_meta_data: MIDSOptimizationMetaData = MIDSOptimizationMetaData(
mids_objective_function=self.objective_function,
optimization_algorithm=algorithm,
solution_set_size=len(solution_set)
)
self.classifier = MIDSClassifier(solution_set, quant_dataframe,
list(targets_to_predict),
optimization_meta_data,
default_class_type, rule_combination_strategy)
return self | def fit(self, quant_dataframe,
use_targets_from_rule_set: bool,
targets_to_use: Optional[List[str]] = None,
class_association_rules: Optional[Iterable[MCAR]] = None,
lambda_array: Optional[List[float]] = None,
algorithm="RDGS",
cache_cover_checks=True,
cache_overlap_checks=True,
default_class_type: DefaultClassStrategy = DefaultClassStrategy.MAJORITY_VALUE_OVER_WHOLE_TRAINING_SET,
rule_combination_strategy=RuleCombiningStrategy.WEIGHTED_VOTE,
debug=True,
objective_scale_factor=1,
):
"""
Run the MIDS object on a dataset.
"""
type_check_dataframe(quant_dataframe)
# --- Make sure the ground rule set is initialized ------------------------------------------------------------
if self.mids_ruleset is None and class_association_rules is not None:
ids_rules = list(map(MIDSRule, class_association_rules)) # type: List[MIDSRule]
mids_ruleset = MIDSRuleSet(ids_rules)
elif self.mids_ruleset is not None:
print("using provided mids ruleset and not class association rules")
mids_ruleset = self.mids_ruleset
else:
raise Exception("Neither MCARs or MIDSRules are provided for fitting")
# --- Use all target or only those in the ruleset? -----------------------------------------------------------
if targets_to_use is not None:
targets_to_predict = set(targets_to_use)
self.targets_to_predict = targets_to_use
else:
self.use_targets_from_rule_set = use_targets_from_rule_set
if use_targets_from_rule_set:
targets_to_predict: Set[TargetAttr] = mids_ruleset.get_target_attributes()
else:
targets_to_predict = set(quant_dataframe.columns)
self.targets_to_predict = targets_to_predict
# --- Initialize objective function --------------------------------------------------------------------------
objective_function_parameters = ObjectiveFunctionParameters(
all_rules=mids_ruleset, quant_dataframe=quant_dataframe, lambda_array=lambda_array,
target_attributes=list(targets_to_predict)
)
# --- Initialize cover checker and overlap checker ------------------------------------------------------------
if self.cover_checker is None:
if cache_cover_checks:
self.cover_checker = CachedCoverChecker(mids_ruleset, quant_dataframe)
else:
self.cover_checker = CoverChecker()
else:
print("Reusing previously instantiated cover checker of type", str(type(self.cover_checker)))
if self.overlap_checker is None:
if cache_overlap_checks:
self.overlap_checker = CachedOverlapChecker(mids_ruleset, quant_dataframe, self.cover_checker,
debug=debug)
else:
self.overlap_checker = OverlapChecker(self.cover_checker, debug=debug)
else:
print("Reusing previously instantiated overlap checker of type", str(type(self.overlap_checker)))
# --- Submodular maximization --------------------------------------------------------------------------------
# if len(mids_ruleset) > 0:
# pass
# else:
# warnings.warn("Empty rule list was given")
solution_set: Set[MIDSRule] = self._optimize(
objective_function_parameters=objective_function_parameters, algorithm=algorithm,
objective_scale_factor=objective_scale_factor, debug=debug
)
optimization_meta_data: MIDSOptimizationMetaData = MIDSOptimizationMetaData(
mids_objective_function=self.objective_function,
optimization_algorithm=algorithm,
solution_set_size=len(solution_set)
)
self.classifier = MIDSClassifier(solution_set, quant_dataframe,
list(targets_to_predict),
optimization_meta_data,
default_class_type, rule_combination_strategy)
return self |
Python | def __convert_apyori_result_to_MCARs(relation_record_generator,
item_encoder: Optional[ItemEncoder] = None) -> List[MCAR]:
"""
Converts the output of apyori.apriori into MCARs
:return:
"""
mcars = []
for relation_record in relation_record_generator: # type: RelationRecord
# print("-- relation record ---")
# print_relation_record(relation_record)
# print("----------------------")
# items = relation_record.items
support = relation_record.support
for ordered_statistic in relation_record.ordered_statistics:
antecedent_tmp = ordered_statistic.items_base
consequent_tmp = ordered_statistic.items_add
confidence = ordered_statistic.confidence
lift = ordered_statistic.lift
if item_encoder is not None:
antecedent_tmp = [item_encoder.decode_item(encoding) for encoding in antecedent_tmp]
consequent_tmp = [item_encoder.decode_item(encoding) for encoding in consequent_tmp]
antecedent_items = [EQLiteral(*item.split(attribute_value_separator)) for item in antecedent_tmp]
consequent_items = [EQLiteral(*item.split(attribute_value_separator)) for item in consequent_tmp]
# antecedent_items = [Item(*item.split(attribute_value_separator)) for item in antecedent_tmp]
# consequent_items = [Item(*item.split(attribute_value_separator)) for item in consequent_tmp]
antecedent = GeneralizedAntecedent(antecedent_items)
# antecedent = Antecedent(antecedent_items)
consequent = Consequent(consequent_items)
rule = MCAR(antecedent, consequent, support, confidence)
mcars.append(rule)
return mcars | def __convert_apyori_result_to_MCARs(relation_record_generator,
item_encoder: Optional[ItemEncoder] = None) -> List[MCAR]:
"""
Converts the output of apyori.apriori into MCARs
:return:
"""
mcars = []
for relation_record in relation_record_generator: # type: RelationRecord
# print("-- relation record ---")
# print_relation_record(relation_record)
# print("----------------------")
# items = relation_record.items
support = relation_record.support
for ordered_statistic in relation_record.ordered_statistics:
antecedent_tmp = ordered_statistic.items_base
consequent_tmp = ordered_statistic.items_add
confidence = ordered_statistic.confidence
lift = ordered_statistic.lift
if item_encoder is not None:
antecedent_tmp = [item_encoder.decode_item(encoding) for encoding in antecedent_tmp]
consequent_tmp = [item_encoder.decode_item(encoding) for encoding in consequent_tmp]
antecedent_items = [EQLiteral(*item.split(attribute_value_separator)) for item in antecedent_tmp]
consequent_items = [EQLiteral(*item.split(attribute_value_separator)) for item in consequent_tmp]
# antecedent_items = [Item(*item.split(attribute_value_separator)) for item in antecedent_tmp]
# consequent_items = [Item(*item.split(attribute_value_separator)) for item in consequent_tmp]
antecedent = GeneralizedAntecedent(antecedent_items)
# antecedent = Antecedent(antecedent_items)
consequent = Consequent(consequent_items)
rule = MCAR(antecedent, consequent, support, confidence)
mcars.append(rule)
return mcars |
Python | def _top_rules_MIDS(transactions: List[List[str]],
appearance: Optional[Dict] = None,
target_rule_count: int = 1000,
init_support: float = 0.05,
init_confidence: float = 0.5,
confidence_step: float = 0.05,
support_step: float = 0.05,
min_length: int = 2,
init_max_length: int = 3,
total_timeout: float = 100.0, # max time in seconds
max_iterations: int = 30,
verbose: bool = True
):
"""
Function for finding the best n (target_rule_count) rules from transaction list.
PROBLEM: how to define 'best'?
Iteratively:
Search for the rules under the current mining parameters.
Check the properties of the found rules.
If there is still room for improvement,
Then update the mining parameters,
STOP if:
- max nb of iterations is reached (default: 30).
- the current nb of rules is more than the nb of rules we are looking for.
- the time out is reach
FIND all rules with as constraints:
- min_support
- min_confidence
- max_length
Parameters
----------
:param transactions : 2D array of strings, e.g. [["a:=:1", "b:=:3"], ["a:=:4", "b:=:2"]]
:param appearance : dict - dictionary specifying rule appearance
:param target_rule_count : int - target number of rules to mine
:param init_support : float - support from which to start mining
:param init_confidence : float - confidence from which to start mining
:param confidence_step : float
:param support_step : float
:param min_length : int - minimum len of rules to mine
:param init_max_length : int - maximum len from which to start mining
:param total_timeout : float - maximum execution time of the function
:param max_iterations : int - maximum iterations to try before stopping execution
:param verbose : bool
Returns
-------
list of mined rules. The rules are not ordered.
"""
if appearance is None:
appearance = {}
start_time: float = time.time()
# the length of a rule is at most the length of a transaction. (All transactions have the same length.)
# max_rule_length_wanted = 10
# MAX_RULE_LEN: int = min(len(transactions[0]), max_rule_length_wanted)
MAX_RULE_LEN: int = len(transactions[0])
current_support: float = init_support
current_confidence: float = init_confidence
current_max_length: int = init_max_length
keep_mining: bool = True
is_max_length_decreased_due_timeout = False
current_iteration = 0
last_rule_count = -1
rules: Optional[List[MCAR]] = None
if verbose:
print("STARTING top_rules")
while keep_mining:
current_iteration += 1
if current_iteration > max_iterations:
if verbose:
print("Max iterations reached")
break
if verbose:
print(f"--- iteration {current_iteration} ---")
print((f"Running apriori with setting: "
f"confidence={current_confidence}, "
f"support={current_support}, "
f"min_length={min_length}, "
f"max_length={current_max_length}, "
f"MAX_RULE_LEN={MAX_RULE_LEN}"
))
current_rules: List[MCAR] = mine_MCARs_from_transactions_using_apyori(
transactions, min_support=current_support, min_confidence=current_confidence, max_length=current_max_length)
# rules_current = fim.arules(transactions, supp=support, conf=conf, mode="o", report="sc", appear=appearance,
# zmax=maxlen, zmin=minlen)
current_nb_of_rules = len(current_rules)
# assign
rules = current_rules
if verbose:
print(f"Rule count: {current_nb_of_rules}, Iteration: {current_iteration}")
if current_nb_of_rules >= target_rule_count:
keep_mining = False
if verbose:
print(f"\tTarget rule count satisfied: {target_rule_count}")
else:
current_execution_time = time.time() - start_time
# if timeout limit exceeded
if current_execution_time > total_timeout:
if verbose:
print("Execution time exceeded:", total_timeout)
keep_mining = False
# if we can still increase our rule length AND
# the number of rules found has changed (increased?) since last time AND
# there has
elif current_max_length < MAX_RULE_LEN and last_rule_count != current_nb_of_rules and not is_max_length_decreased_due_timeout:
current_max_length += 1
last_rule_count = current_nb_of_rules
if verbose:
print(f"\tIncreasing max_length {current_max_length}")
# if we can still increase our rule length AND
#
# we can still increase our support
# THEN:
# increase our support
# increment our max length
elif current_max_length < MAX_RULE_LEN and is_max_length_decreased_due_timeout and current_support <= 1 - support_step:
current_support += support_step
current_max_length += 1
last_rule_count = current_nb_of_rules
is_max_length_decreased_due_timeout = False
if verbose:
print(f"\tIncreasing maxlen to {current_max_length}")
print(f"\tIncreasing minsup to {current_support}")
# IF we can still decrease our confidence
# THEN decrease our confidence
elif current_confidence > confidence_step:
current_confidence -= confidence_step
if verbose:
print(f"\tDecreasing confidence to {current_confidence}")
else:
if verbose:
print("\tAll options exhausted")
keep_mining = False
if verbose:
end_of_current_iteration_message = f"--- end iteration {current_iteration} ---"
print(end_of_current_iteration_message)
print("-" * len(end_of_current_iteration_message))
if verbose:
print(f"FINISHED top_rules after {current_iteration} iterations")
return rules | def _top_rules_MIDS(transactions: List[List[str]],
appearance: Optional[Dict] = None,
target_rule_count: int = 1000,
init_support: float = 0.05,
init_confidence: float = 0.5,
confidence_step: float = 0.05,
support_step: float = 0.05,
min_length: int = 2,
init_max_length: int = 3,
total_timeout: float = 100.0, # max time in seconds
max_iterations: int = 30,
verbose: bool = True
):
"""
Function for finding the best n (target_rule_count) rules from transaction list.
PROBLEM: how to define 'best'?
Iteratively:
Search for the rules under the current mining parameters.
Check the properties of the found rules.
If there is still room for improvement,
Then update the mining parameters,
STOP if:
- max nb of iterations is reached (default: 30).
- the current nb of rules is more than the nb of rules we are looking for.
- the time out is reach
FIND all rules with as constraints:
- min_support
- min_confidence
- max_length
Parameters
----------
:param transactions : 2D array of strings, e.g. [["a:=:1", "b:=:3"], ["a:=:4", "b:=:2"]]
:param appearance : dict - dictionary specifying rule appearance
:param target_rule_count : int - target number of rules to mine
:param init_support : float - support from which to start mining
:param init_confidence : float - confidence from which to start mining
:param confidence_step : float
:param support_step : float
:param min_length : int - minimum len of rules to mine
:param init_max_length : int - maximum len from which to start mining
:param total_timeout : float - maximum execution time of the function
:param max_iterations : int - maximum iterations to try before stopping execution
:param verbose : bool
Returns
-------
list of mined rules. The rules are not ordered.
"""
if appearance is None:
appearance = {}
start_time: float = time.time()
# the length of a rule is at most the length of a transaction. (All transactions have the same length.)
# max_rule_length_wanted = 10
# MAX_RULE_LEN: int = min(len(transactions[0]), max_rule_length_wanted)
MAX_RULE_LEN: int = len(transactions[0])
current_support: float = init_support
current_confidence: float = init_confidence
current_max_length: int = init_max_length
keep_mining: bool = True
is_max_length_decreased_due_timeout = False
current_iteration = 0
last_rule_count = -1
rules: Optional[List[MCAR]] = None
if verbose:
print("STARTING top_rules")
while keep_mining:
current_iteration += 1
if current_iteration > max_iterations:
if verbose:
print("Max iterations reached")
break
if verbose:
print(f"--- iteration {current_iteration} ---")
print((f"Running apriori with setting: "
f"confidence={current_confidence}, "
f"support={current_support}, "
f"min_length={min_length}, "
f"max_length={current_max_length}, "
f"MAX_RULE_LEN={MAX_RULE_LEN}"
))
current_rules: List[MCAR] = mine_MCARs_from_transactions_using_apyori(
transactions, min_support=current_support, min_confidence=current_confidence, max_length=current_max_length)
# rules_current = fim.arules(transactions, supp=support, conf=conf, mode="o", report="sc", appear=appearance,
# zmax=maxlen, zmin=minlen)
current_nb_of_rules = len(current_rules)
# assign
rules = current_rules
if verbose:
print(f"Rule count: {current_nb_of_rules}, Iteration: {current_iteration}")
if current_nb_of_rules >= target_rule_count:
keep_mining = False
if verbose:
print(f"\tTarget rule count satisfied: {target_rule_count}")
else:
current_execution_time = time.time() - start_time
# if timeout limit exceeded
if current_execution_time > total_timeout:
if verbose:
print("Execution time exceeded:", total_timeout)
keep_mining = False
# if we can still increase our rule length AND
# the number of rules found has changed (increased?) since last time AND
# there has
elif current_max_length < MAX_RULE_LEN and last_rule_count != current_nb_of_rules and not is_max_length_decreased_due_timeout:
current_max_length += 1
last_rule_count = current_nb_of_rules
if verbose:
print(f"\tIncreasing max_length {current_max_length}")
# if we can still increase our rule length AND
#
# we can still increase our support
# THEN:
# increase our support
# increment our max length
elif current_max_length < MAX_RULE_LEN and is_max_length_decreased_due_timeout and current_support <= 1 - support_step:
current_support += support_step
current_max_length += 1
last_rule_count = current_nb_of_rules
is_max_length_decreased_due_timeout = False
if verbose:
print(f"\tIncreasing maxlen to {current_max_length}")
print(f"\tIncreasing minsup to {current_support}")
# IF we can still decrease our confidence
# THEN decrease our confidence
elif current_confidence > confidence_step:
current_confidence -= confidence_step
if verbose:
print(f"\tDecreasing confidence to {current_confidence}")
else:
if verbose:
print("\tAll options exhausted")
keep_mining = False
if verbose:
end_of_current_iteration_message = f"--- end iteration {current_iteration} ---"
print(end_of_current_iteration_message)
print("-" * len(end_of_current_iteration_message))
if verbose:
print(f"FINISHED top_rules after {current_iteration} iterations")
return rules |
Python | def ruleset_size(self) -> int:
"""
Returns the size of the rule set.
:return:
"""
return self.rule_length_counter.count | def ruleset_size(self) -> int:
"""
Returns the size of the rule set.
:return:
"""
return self.rule_length_counter.count |
Python | def total_nb_of_literals(self) -> int:
"""
Returns the total nb of __literals in the rule set.
"""
return self.rule_length_counter.sum | def total_nb_of_literals(self) -> int:
"""
Returns the total nb of __literals in the rule set.
"""
return self.rule_length_counter.sum |
Python | def avg_nb_of_literals_per_rule(self) -> float:
"""
Returns the avg nb of __literals over the rules in the rule set.
"""
return self.rule_length_counter.get_avg() | def avg_nb_of_literals_per_rule(self) -> float:
"""
Returns the avg nb of __literals over the rules in the rule set.
"""
return self.rule_length_counter.get_avg() |
Python | def min_nb_of_literals(self) -> float:
"""
Returns the nb of __literals in the shortest rule
"""
return self.rule_length_counter.min | def min_nb_of_literals(self) -> float:
"""
Returns the nb of __literals in the shortest rule
"""
return self.rule_length_counter.min |
Python | def max_nb_of_literals(self) -> float:
"""
Returns the nb of __literals in the longest rule
"""
return self.rule_length_counter.max | def max_nb_of_literals(self) -> float:
"""
Returns the nb of __literals in the longest rule
"""
return self.rule_length_counter.max |
Python | def parse_unibet_api(id_league, sport):
"""
Get Unibet odds from league id and sport
"""
parameter = ""
if sport == "tennis":
parameter = "Vainqueur%2520du%2520match"
elif sport == "basketball":
parameter = "Vainqueur%2520du%2520match%2520%2528prolong.%2520incluses%2529"
else:
parameter = "R%25C3%25A9sultat%2520du%2520match"
url = ("https://www.unibet.fr/zones/sportnode/markets.json?nodeId={}&filter=R%25C3%25A9sultat&marketname={}"
.format(id_league, parameter))
content = requests.get(url).content
parsed = json.loads(content)
markets_by_type = parsed.get("marketsByType", [])
odds_match = {}
for market_by_type in markets_by_type:
days = market_by_type["days"]
for day in days:
events = day["events"]
for event in events:
markets = event["markets"]
for market in markets:
name = (market["eventHomeTeamName"].replace(" - ", "-")
+ " - " + market["eventAwayTeamName"].replace(" - ", "-"))
date = datetime.datetime.fromtimestamp(market["eventStartDate"]/1000)
odds = []
selections = market["selections"]
for selection in selections:
price_up = int(selection["currentPriceUp"])
price_down = int(selection["currentPriceDown"])
odds.append(round(price_up / price_down + 1, 2))
odds_match[name] = {"date":date, "odds":{"unibet":odds}, "id":{"unibet":event["eventId"]}}
return odds_match | def parse_unibet_api(id_league, sport):
"""
Get Unibet odds from league id and sport
"""
parameter = ""
if sport == "tennis":
parameter = "Vainqueur%2520du%2520match"
elif sport == "basketball":
parameter = "Vainqueur%2520du%2520match%2520%2528prolong.%2520incluses%2529"
else:
parameter = "R%25C3%25A9sultat%2520du%2520match"
url = ("https://www.unibet.fr/zones/sportnode/markets.json?nodeId={}&filter=R%25C3%25A9sultat&marketname={}"
.format(id_league, parameter))
content = requests.get(url).content
parsed = json.loads(content)
markets_by_type = parsed.get("marketsByType", [])
odds_match = {}
for market_by_type in markets_by_type:
days = market_by_type["days"]
for day in days:
events = day["events"]
for event in events:
markets = event["markets"]
for market in markets:
name = (market["eventHomeTeamName"].replace(" - ", "-")
+ " - " + market["eventAwayTeamName"].replace(" - ", "-"))
date = datetime.datetime.fromtimestamp(market["eventStartDate"]/1000)
odds = []
selections = market["selections"]
for selection in selections:
price_up = int(selection["currentPriceUp"])
price_down = int(selection["currentPriceDown"])
odds.append(round(price_up / price_down + 1, 2))
odds_match[name] = {"date":date, "odds":{"unibet":odds}, "id":{"unibet":event["eventId"]}}
return odds_match |
Python | def parse_winamax(url):
"""
Retourne les cotes disponibles sur winamax
"""
ids = url.split("/sports/")[1]
try:
tournament_id = int(ids.split("/")[2])
except IndexError:
tournament_id = -1
sport_id = int(ids.split("/")[0])
try:
req = urllib.request.Request(
url, headers={'User-Agent': sb.USER_AGENT})
webpage = urllib.request.urlopen(req, timeout=10).read()
soup = BeautifulSoup(webpage, features="lxml")
except urllib.error.HTTPError:
raise sb.UnavailableSiteException
match_odds_hash = {}
for line in soup.find_all(['script']):
if "PRELOADED_STATE" in str(line.string):
json_text = (line.string.split("var PRELOADED_STATE = ")[1]
.split(";var BETTING_CONFIGURATION")[0])
if json_text[-1] == ";":
json_text = json_text[:-1]
dict_matches = json.loads(json_text)
if "matches" in dict_matches:
for match in dict_matches["matches"].values():
if (tournament_id in (match['tournamentId'], -1) and match["competitor1Id"] != 0
and match['sportId'] == sport_id and 'isOutright' not in match.keys()):
try:
match_name = match["title"].strip().replace(" ", " ")
date_time = datetime.datetime.fromtimestamp(match["matchStart"])
if date_time < datetime.datetime.today():
continue
main_bet_id = match["mainBetId"]
odds_ids = dict_matches["bets"][str(
main_bet_id)]["outcomes"]
odds = [dict_matches["odds"]
[str(x)] for x in odds_ids]
match_odds_hash[match_name] = {}
match_odds_hash[match_name]['odds'] = {
"winamax": odds}
match_odds_hash[match_name]['date'] = date_time
match_odds_hash[match_name]['id'] = {
"winamax": str(match["matchId"])}
except KeyError:
pass
if not match_odds_hash:
raise sb.UnavailableCompetitionException
return match_odds_hash
raise sb.UnavailableSiteException | def parse_winamax(url):
"""
Retourne les cotes disponibles sur winamax
"""
ids = url.split("/sports/")[1]
try:
tournament_id = int(ids.split("/")[2])
except IndexError:
tournament_id = -1
sport_id = int(ids.split("/")[0])
try:
req = urllib.request.Request(
url, headers={'User-Agent': sb.USER_AGENT})
webpage = urllib.request.urlopen(req, timeout=10).read()
soup = BeautifulSoup(webpage, features="lxml")
except urllib.error.HTTPError:
raise sb.UnavailableSiteException
match_odds_hash = {}
for line in soup.find_all(['script']):
if "PRELOADED_STATE" in str(line.string):
json_text = (line.string.split("var PRELOADED_STATE = ")[1]
.split(";var BETTING_CONFIGURATION")[0])
if json_text[-1] == ";":
json_text = json_text[:-1]
dict_matches = json.loads(json_text)
if "matches" in dict_matches:
for match in dict_matches["matches"].values():
if (tournament_id in (match['tournamentId'], -1) and match["competitor1Id"] != 0
and match['sportId'] == sport_id and 'isOutright' not in match.keys()):
try:
match_name = match["title"].strip().replace(" ", " ")
date_time = datetime.datetime.fromtimestamp(match["matchStart"])
if date_time < datetime.datetime.today():
continue
main_bet_id = match["mainBetId"]
odds_ids = dict_matches["bets"][str(
main_bet_id)]["outcomes"]
odds = [dict_matches["odds"]
[str(x)] for x in odds_ids]
match_odds_hash[match_name] = {}
match_odds_hash[match_name]['odds'] = {
"winamax": odds}
match_odds_hash[match_name]['date'] = date_time
match_odds_hash[match_name]['id'] = {
"winamax": str(match["matchId"])}
except KeyError:
pass
if not match_odds_hash:
raise sb.UnavailableCompetitionException
return match_odds_hash
raise sb.UnavailableSiteException |
Python | def parse_sport_betclic(id_sport):
"""
Get odds from Betclic sport id
"""
url = ("https://offer.cdn.betclic.fr/api/pub/v2/sports/{}?application=2&countrycode=fr&language=fr&sitecode=frfr"
.format(id_sport))
content = urllib.request.urlopen(url).read()
parsed = json.loads(content)
list_odds = []
competitions = parsed["competitions"]
for competition in competitions:
id_competition = competition["id"]
list_odds.append(parse_betclic_api(id_competition))
return merge_dicts(list_odds) | def parse_sport_betclic(id_sport):
"""
Get odds from Betclic sport id
"""
url = ("https://offer.cdn.betclic.fr/api/pub/v2/sports/{}?application=2&countrycode=fr&language=fr&sitecode=frfr"
.format(id_sport))
content = urllib.request.urlopen(url).read()
parsed = json.loads(content)
list_odds = []
competitions = parsed["competitions"]
for competition in competitions:
id_competition = competition["id"]
list_odds.append(parse_betclic_api(id_competition))
return merge_dicts(list_odds) |
Python | def parse_parionssport_match_basketball(id_match):
"""
Get ParionsSport odds from baskteball match id
"""
url = ("https://www.enligne.parionssport.fdj.fr/lvs-api/ff/{}?originId=3&lineId=1&showMarketTypeGroups=true&ext=1"
"&showPromotions=true".format(id_match))
req = urllib.request.Request(url, headers={'X-LVS-HSToken': sb.TOKENS["parionssport"]})
content = urllib.request.urlopen(req).read()
parsed = json.loads(content)
items = parsed["items"]
odds = []
odds_match = {}
for item in items:
if not item.startswith("o"):
continue
odd = items[item]
market = items[odd["parent"]]
if not "desc" in market:
continue
if not market["desc"] == "Face à Face":
continue
if not "period" in market:
continue
if not market["period"] == "Match":
continue
event = items[market["parent"]]
if "date" not in odds_match:
odds_match["date"] = datetime.datetime.strptime(event["start"], "%y%m%d%H%M") + datetime.timedelta(hours=2)
odds.append(float(odd["price"].replace(",", ".")))
if not odds:
return odds_match
odds_match["odds"] = {"parionssport" : odds}
odds_match["id"] = {"parionssport" : market["parent"]}
return odds_match | def parse_parionssport_match_basketball(id_match):
"""
Get ParionsSport odds from baskteball match id
"""
url = ("https://www.enligne.parionssport.fdj.fr/lvs-api/ff/{}?originId=3&lineId=1&showMarketTypeGroups=true&ext=1"
"&showPromotions=true".format(id_match))
req = urllib.request.Request(url, headers={'X-LVS-HSToken': sb.TOKENS["parionssport"]})
content = urllib.request.urlopen(req).read()
parsed = json.loads(content)
items = parsed["items"]
odds = []
odds_match = {}
for item in items:
if not item.startswith("o"):
continue
odd = items[item]
market = items[odd["parent"]]
if not "desc" in market:
continue
if not market["desc"] == "Face à Face":
continue
if not "period" in market:
continue
if not market["period"] == "Match":
continue
event = items[market["parent"]]
if "date" not in odds_match:
odds_match["date"] = datetime.datetime.strptime(event["start"], "%y%m%d%H%M") + datetime.timedelta(hours=2)
odds.append(float(odd["price"].replace(",", ".")))
if not odds:
return odds_match
odds_match["odds"] = {"parionssport" : odds}
odds_match["id"] = {"parionssport" : market["parent"]}
return odds_match |
Python | def parse_parionssport_api(id_league):
"""
Get ParionsSport odds from league id
"""
url = ("https://www.enligne.parionssport.fdj.fr/lvs-api/next/50/{}?originId=3&lineId=1&breakdownEventsIntoDays=true"
"&eType=G&showPromotions=true".format(id_league))
req = urllib.request.Request(url, headers={'X-LVS-HSToken': sb.TOKENS["parionssport"]})
content = urllib.request.urlopen(req).read()
parsed = json.loads(content)
odds_match = {}
if "items" not in parsed:
return odds_match
items = parsed["items"]
for item in items:
if not item.startswith("o"):
continue
odd = items[item]
market = items[odd["parent"]]
if not market["style"] in ["WIN_DRAW_WIN", "TWO_OUTCOME_LONG"]:
continue
event = items[market["parent"]]
name = event["a"] + " - " + event["b"]
if event["code"] == "BASK":
if name not in odds_match:
odds = parse_parionssport_match_basketball(market["parent"])
if odds:
odds_match[name] = odds
else:
if not name in odds_match:
odds_match[name] = {}
odds_match[name]["date"] = (datetime.datetime.strptime(event["start"], "%y%m%d%H%M")
+ datetime.timedelta(hours=2))
odds_match[name]["odds"] = {"parionssport":[]}
odds_match[name]["odds"]["parionssport"].append(float(odd["price"].replace(",", ".")))
odds_match[name]["id"] = {"parionssport":market["parent"]}
return odds_match | def parse_parionssport_api(id_league):
"""
Get ParionsSport odds from league id
"""
url = ("https://www.enligne.parionssport.fdj.fr/lvs-api/next/50/{}?originId=3&lineId=1&breakdownEventsIntoDays=true"
"&eType=G&showPromotions=true".format(id_league))
req = urllib.request.Request(url, headers={'X-LVS-HSToken': sb.TOKENS["parionssport"]})
content = urllib.request.urlopen(req).read()
parsed = json.loads(content)
odds_match = {}
if "items" not in parsed:
return odds_match
items = parsed["items"]
for item in items:
if not item.startswith("o"):
continue
odd = items[item]
market = items[odd["parent"]]
if not market["style"] in ["WIN_DRAW_WIN", "TWO_OUTCOME_LONG"]:
continue
event = items[market["parent"]]
name = event["a"] + " - " + event["b"]
if event["code"] == "BASK":
if name not in odds_match:
odds = parse_parionssport_match_basketball(market["parent"])
if odds:
odds_match[name] = odds
else:
if not name in odds_match:
odds_match[name] = {}
odds_match[name]["date"] = (datetime.datetime.strptime(event["start"], "%y%m%d%H%M")
+ datetime.timedelta(hours=2))
odds_match[name]["odds"] = {"parionssport":[]}
odds_match[name]["odds"]["parionssport"].append(float(odd["price"].replace(",", ".")))
odds_match[name]["id"] = {"parionssport":market["parent"]}
return odds_match |
Python | def parse_pmu_html(soup):
"""
Retourne les cotes disponibles sur une page html pmu
"""
match_odds_hash = {}
match = ""
date_time = "undefined"
live = False
handicap = False
date = ""
match_id = None
for line in soup.find_all():
if "n'est pas accessible pour le moment !" in line.text:
raise sb.UnavailableSiteException
if "data-date" in line.attrs and "shadow" in line["class"]:
date = line["data-date"]
elif "class" in line.attrs and "trow--live--remaining-time" in line["class"]:
hour = line.text
if "'" in hour:
date_time = datetime.datetime.today()+datetime.timedelta(minutes=int(hour.strip().strip("'")) - 1)
date_time = truncate_datetime(date_time)
continue
try:
date_time = datetime.datetime.strptime(
date + " " + hour, "%Y-%m-%d %Hh%M")
except ValueError:
date_time = "undefined"
elif "class" in line.attrs and "trow--live--logo-active" in line["class"]:
live = True
elif "class" in line.attrs and "trow--event--name" in line["class"]:
string = "".join(list(line.stripped_strings))
if "//" in string:
try:
is_rugby_13 = line.find_parent("a")["data-sport_id"] == "rugby_a_xiii"
except TypeError:
is_rugby_13 = False
if is_rugby_13 or live:
continue
handicap = False
if "+" in string or "Egalité" in string:
handicap = True
match, odds = parse_page_match_pmu("https://paris-sportifs.pmu.fr"
+ line.parent["href"])
else:
match = string.replace(" - ", "-")
match = match.replace(" // ", " - ")
match = match.replace("//", " - ")
elif "class" in line.attrs and "event-list-odds-list" in line["class"]:
if live or is_rugby_13:
live = False
is_rugby_13 = False
continue
if not handicap:
odds = list(
map(lambda x: float(x.replace(",", ".")), list(line.stripped_strings)))
match_odds_hash[match] = {}
match_odds_hash[match]['odds'] = {"pmu": odds}
match_odds_hash[match]['date'] = date_time
match_odds_hash[match]['id'] = {"pmu": match_id}
elif "data-ev_id" in line.attrs:
match_id = line["data-ev_id"]
if not match_odds_hash:
raise sb.UnavailableCompetitionException
return match_odds_hash | def parse_pmu_html(soup):
"""
Retourne les cotes disponibles sur une page html pmu
"""
match_odds_hash = {}
match = ""
date_time = "undefined"
live = False
handicap = False
date = ""
match_id = None
for line in soup.find_all():
if "n'est pas accessible pour le moment !" in line.text:
raise sb.UnavailableSiteException
if "data-date" in line.attrs and "shadow" in line["class"]:
date = line["data-date"]
elif "class" in line.attrs and "trow--live--remaining-time" in line["class"]:
hour = line.text
if "'" in hour:
date_time = datetime.datetime.today()+datetime.timedelta(minutes=int(hour.strip().strip("'")) - 1)
date_time = truncate_datetime(date_time)
continue
try:
date_time = datetime.datetime.strptime(
date + " " + hour, "%Y-%m-%d %Hh%M")
except ValueError:
date_time = "undefined"
elif "class" in line.attrs and "trow--live--logo-active" in line["class"]:
live = True
elif "class" in line.attrs and "trow--event--name" in line["class"]:
string = "".join(list(line.stripped_strings))
if "//" in string:
try:
is_rugby_13 = line.find_parent("a")["data-sport_id"] == "rugby_a_xiii"
except TypeError:
is_rugby_13 = False
if is_rugby_13 or live:
continue
handicap = False
if "+" in string or "Egalité" in string:
handicap = True
match, odds = parse_page_match_pmu("https://paris-sportifs.pmu.fr"
+ line.parent["href"])
else:
match = string.replace(" - ", "-")
match = match.replace(" // ", " - ")
match = match.replace("//", " - ")
elif "class" in line.attrs and "event-list-odds-list" in line["class"]:
if live or is_rugby_13:
live = False
is_rugby_13 = False
continue
if not handicap:
odds = list(
map(lambda x: float(x.replace(",", ".")), list(line.stripped_strings)))
match_odds_hash[match] = {}
match_odds_hash[match]['odds'] = {"pmu": odds}
match_odds_hash[match]['date'] = date_time
match_odds_hash[match]['id'] = {"pmu": match_id}
elif "data-ev_id" in line.attrs:
match_id = line["data-ev_id"]
if not match_odds_hash:
raise sb.UnavailableCompetitionException
return match_odds_hash |
Python | def display_name(self) -> str:
"""Calculate display name for a room.
Prefer returning the room name if it exists, falling back to
a group-style name if not.
Follows:
https://matrix.org/docs/spec/client_server/r0.6.0#id342
"""
return self.named_room_name() or self.group_name() | def display_name(self) -> str:
"""Calculate display name for a room.
Prefer returning the room name if it exists, falling back to
a group-style name if not.
Follows:
https://matrix.org/docs/spec/client_server/r0.6.0#id342
"""
return self.named_room_name() or self.group_name() |
Python | def group_name(self) -> str:
"""Return the group-style name of the room.
In other words, a display name based on the names of room members. This
is used for ad-hoc groups of people (usually direct chats).
"""
empty, user_ids, others = self.group_name_structure()
names = [self.user_name(u) or u for u in user_ids]
if others:
text = "{} and {} other{}".format(
", ".join(names), others, "" if others == 1 else "s",
)
elif len(names) == 0:
text = ""
elif len(names) == 1:
text = names[0]
else:
text = "{} and {}".format(", ".join(names[:-1]), names[-1])
if empty and text:
text = f"Empty Room (had {text})"
elif empty:
text = "Empty Room"
return text | def group_name(self) -> str:
"""Return the group-style name of the room.
In other words, a display name based on the names of room members. This
is used for ad-hoc groups of people (usually direct chats).
"""
empty, user_ids, others = self.group_name_structure()
names = [self.user_name(u) or u for u in user_ids]
if others:
text = "{} and {} other{}".format(
", ".join(names), others, "" if others == 1 else "s",
)
elif len(names) == 0:
text = ""
elif len(names) == 1:
text = names[0]
else:
text = "{} and {}".format(", ".join(names[:-1]), names[-1])
if empty and text:
text = f"Empty Room (had {text})"
elif empty:
text = "Empty Room"
return text |
Python | def group_name_structure(self) -> Tuple[bool, List[str], int]:
"""Get if room is empty, ID for listed users and the N others count.
"""
try:
heroes, joined, invited = self._summary_details()
except ValueError:
users = [
u for u in sorted(self.users, key=lambda u: self.user_name(u))
if u != self.own_user_id
]
empty = not users
if len(users) <= 5:
return (empty, users, 0)
return (empty, users[:5], len(users) - 5)
empty = self.member_count <= 1
if len(heroes) >= self.member_count - 1:
return (empty, heroes, 0)
return (empty, heroes, self.member_count - 1 - len(heroes)) | def group_name_structure(self) -> Tuple[bool, List[str], int]:
"""Get if room is empty, ID for listed users and the N others count.
"""
try:
heroes, joined, invited = self._summary_details()
except ValueError:
users = [
u for u in sorted(self.users, key=lambda u: self.user_name(u))
if u != self.own_user_id
]
empty = not users
if len(users) <= 5:
return (empty, users, 0)
return (empty, users[:5], len(users) - 5)
empty = self.member_count <= 1
if len(heroes) >= self.member_count - 1:
return (empty, heroes, 0)
return (empty, heroes, self.member_count - 1 - len(heroes)) |
Python | def user_name(self, user_id: str) -> Optional[str]:
"""Get disambiguated display name for a user.
Returns display name of a user if display name is unique or returns
a display name in form "<display name> (<matrix id>)" if there is
more than one user with same display name.
"""
if user_id not in self.users:
return None
user = self.users[user_id]
if len(self.names[user.name]) > 1:
return user.disambiguated_name
return user.name | def user_name(self, user_id: str) -> Optional[str]:
"""Get disambiguated display name for a user.
Returns display name of a user if display name is unique or returns
a display name in form "<display name> (<matrix id>)" if there is
more than one user with same display name.
"""
if user_id not in self.users:
return None
user = self.users[user_id]
if len(self.names[user.name]) > 1:
return user.disambiguated_name
return user.name |
Python | def avatar_url(self, user_id: str) -> Optional[str]:
"""Get avatar url for a user.
Returns a matrix content URI, or None if the user has no avatar.
"""
if user_id not in self.users:
return None
return self.users[user_id].avatar_url | def avatar_url(self, user_id: str) -> Optional[str]:
"""Get avatar url for a user.
Returns a matrix content URI, or None if the user has no avatar.
"""
if user_id not in self.users:
return None
return self.users[user_id].avatar_url |
Python | def gen_avatar_url(self) -> Optional[str]:
"""
Get the calculated room's avatar url.
Either the room's avatar if one is set, or the avatar of the
first user that's not ourselves if the room is an unnamed group or
has exactly two users.
"""
if self.room_avatar_url:
return self.room_avatar_url
try:
heroes, _, _ = self._summary_details()
except ValueError:
if self.is_group and len(self.users) == 2:
return self.avatar_url(next(
u for u in sorted(self.users,
key=lambda u: self.user_name(u))
if u != self.own_user_id
))
return None
if self.is_group and self.member_count == 2 and len(heroes) >= 1:
return self.avatar_url(heroes[0])
return None | def gen_avatar_url(self) -> Optional[str]:
"""
Get the calculated room's avatar url.
Either the room's avatar if one is set, or the avatar of the
first user that's not ourselves if the room is an unnamed group or
has exactly two users.
"""
if self.room_avatar_url:
return self.room_avatar_url
try:
heroes, _, _ = self._summary_details()
except ValueError:
if self.is_group and len(self.users) == 2:
return self.avatar_url(next(
u for u in sorted(self.users,
key=lambda u: self.user_name(u))
if u != self.own_user_id
))
return None
if self.is_group and self.member_count == 2 and len(heroes) >= 1:
return self.avatar_url(heroes[0])
return None |
Python | def machine_name(self) -> str:
"""Calculate an unambiguous, unique machine name for a room.
Either use the more human-friendly canonical alias, if it exists, or
the internal room ID if not.
"""
return self.canonical_alias or self.room_id | def machine_name(self) -> str:
"""Calculate an unambiguous, unique machine name for a room.
Either use the more human-friendly canonical alias, if it exists, or
the internal room ID if not.
"""
return self.canonical_alias or self.room_id |
Python | def is_named(self) -> bool:
"""Determine whether a room is named.
A named room is a room with either the name or a canonical alias set.
"""
return bool(self.canonical_alias or self.name) | def is_named(self) -> bool:
"""Determine whether a room is named.
A named room is a room with either the name or a canonical alias set.
"""
return bool(self.canonical_alias or self.name) |
Python | def is_group(self) -> bool:
"""Determine whether a room is an ad-hoc group (often a direct chat).
A group is an unnamed room with no canonical alias.
"""
return not self.is_named | def is_group(self) -> bool:
"""Determine whether a room is an ad-hoc group (often a direct chat).
A group is an unnamed room with no canonical alias.
"""
return not self.is_named |
Python | def handle_membership(
self, event: Union[RoomMemberEvent, InviteMemberEvent],
) -> bool:
"""Handle a membership event for the room.
Args:
event (RoomMemberEvent): The event that should be handled that
updates the room state.
Returns True if the member list of the room has changed False
otherwise.
"""
target_user = event.state_key
invited = event.membership == "invite"
if event.membership in ("invite", "join"):
# Add member if not already present in self.users,
# or the member is invited but not present in self.invited_users
if (target_user not in self.users or
(invited and target_user not in self.invited_users)):
display_name = event.content.get("displayname", None)
avatar_url = event.content.get("avatar_url", None)
return self.add_member(
target_user, display_name, avatar_url, invited,
)
user = self.users[target_user]
# Handle membership change
user.invited = invited
if not invited and target_user in self.invited_users:
del self.invited_users[target_user]
# Handle profile changes
if "displayname" in event.content:
self.names[user.name].remove(user.user_id)
user.display_name = event.content["displayname"]
self.names[user.name].append(user.user_id)
if "avatar_url" in event.content:
user.avatar_url = event.content["avatar_url"]
return False
elif event.membership in ("leave", "ban"):
return self.remove_member(target_user)
return False | def handle_membership(
self, event: Union[RoomMemberEvent, InviteMemberEvent],
) -> bool:
"""Handle a membership event for the room.
Args:
event (RoomMemberEvent): The event that should be handled that
updates the room state.
Returns True if the member list of the room has changed False
otherwise.
"""
target_user = event.state_key
invited = event.membership == "invite"
if event.membership in ("invite", "join"):
# Add member if not already present in self.users,
# or the member is invited but not present in self.invited_users
if (target_user not in self.users or
(invited and target_user not in self.invited_users)):
display_name = event.content.get("displayname", None)
avatar_url = event.content.get("avatar_url", None)
return self.add_member(
target_user, display_name, avatar_url, invited,
)
user = self.users[target_user]
# Handle membership change
user.invited = invited
if not invited and target_user in self.invited_users:
del self.invited_users[target_user]
# Handle profile changes
if "displayname" in event.content:
self.names[user.name].remove(user.user_id)
user.display_name = event.content["displayname"]
self.names[user.name].append(user.user_id)
if "avatar_url" in event.content:
user.avatar_url = event.content["avatar_url"]
return False
elif event.membership in ("leave", "ban"):
return self.remove_member(target_user)
return False |
Python | def _summary_details(self) -> Tuple[List[str], int, int]:
"""Return the summary attributes if it can be used for calculations."""
valid = bool(
self.summary is not None and
self.summary.joined_member_count is not None and
self.summary.invited_member_count is not None,
)
if not valid:
raise ValueError("Unusable summary")
return ( # type: ignore
self.summary.heroes, # type: ignore
self.summary.joined_member_count, # type: ignore
self.summary.invited_member_count, # type: ignore
) | def _summary_details(self) -> Tuple[List[str], int, int]:
"""Return the summary attributes if it can be used for calculations."""
valid = bool(
self.summary is not None and
self.summary.joined_member_count is not None and
self.summary.invited_member_count is not None,
)
if not valid:
raise ValueError("Unusable summary")
return ( # type: ignore
self.summary.heroes, # type: ignore
self.summary.joined_member_count, # type: ignore
self.summary.invited_member_count, # type: ignore
) |
Python | def members_synced(self) -> bool:
"""Check if the room member state is fully synced.
Room members can be missing from the room if syncs are done using lazy
member loading, the room summary will contain the full member count but
other member info will be missing.
A `joined_members` request should be done for this room to populate the
member list. This is crucial for encrypted rooms before sending any
messages.
"""
try:
_, joined, invited = self._summary_details()
except ValueError:
return True
return joined + invited == len(self.users) | def members_synced(self) -> bool:
"""Check if the room member state is fully synced.
Room members can be missing from the room if syncs are done using lazy
member loading, the room summary will contain the full member count but
other member info will be missing.
A `joined_members` request should be done for this room to populate the
member list. This is crucial for encrypted rooms before sending any
messages.
"""
try:
_, joined, invited = self._summary_details()
except ValueError:
return True
return joined + invited == len(self.users) |
Python | def handle_membership(
self, event: Union[RoomMemberEvent, InviteMemberEvent],
) -> bool:
"""Handle a membership event for the invited room.
Args:
event (RoomMemberEvent): The event that should be handled that
updates the room state.
Returns True if the member list of the room has changed False
otherwise.
"""
if (event.membership == "invite"
and event.state_key == self.own_user_id):
self.inviter = event.sender
return super().handle_membership(event) | def handle_membership(
self, event: Union[RoomMemberEvent, InviteMemberEvent],
) -> bool:
"""Handle a membership event for the invited room.
Args:
event (RoomMemberEvent): The event that should be handled that
updates the room state.
Returns True if the member list of the room has changed False
otherwise.
"""
if (event.membership == "invite"
and event.state_key == self.own_user_id):
self.inviter = event.sender
return super().handle_membership(event) |
Python | def logged_in(self) -> bool:
"""Check if we are logged in.
Returns True if the client is logged in to the server, False otherwise.
"""
return bool(self.access_token) | def logged_in(self) -> bool:
"""Check if we are logged in.
Returns True if the client is logged in to the server, False otherwise.
"""
return bool(self.access_token) |
Python | def device_store(self) -> DeviceStore:
"""Store containing known devices.
Returns a ``DeviceStore`` holding all known olm devices.
"""
assert self.olm
return self.olm.device_store | def device_store(self) -> DeviceStore:
"""Store containing known devices.
Returns a ``DeviceStore`` holding all known olm devices.
"""
assert self.olm
return self.olm.device_store |
Python | def olm_account_shared(self) -> bool:
"""Check if the clients Olm account is shared with the server.
Returns True if the Olm account is shared, False otherwise.
"""
assert self.olm
return self.olm.account.shared | def olm_account_shared(self) -> bool:
"""Check if the clients Olm account is shared with the server.
Returns True if the Olm account is shared, False otherwise.
"""
assert self.olm
return self.olm.account.shared |
Python | def users_for_key_query(self) -> Set[str]:
"""Users for whom we should make a key query."""
if not self.olm:
return set()
return self.olm.users_for_key_query | def users_for_key_query(self) -> Set[str]:
"""Users for whom we should make a key query."""
if not self.olm:
return set()
return self.olm.users_for_key_query |
Python | def should_upload_keys(self) -> bool:
"""Check if the client should upload encryption keys.
Returns True if encryption keys need to be uploaded, false otherwise.
"""
if not self.olm:
return False
return self.olm.should_upload_keys | def should_upload_keys(self) -> bool:
"""Check if the client should upload encryption keys.
Returns True if encryption keys need to be uploaded, false otherwise.
"""
if not self.olm:
return False
return self.olm.should_upload_keys |
Python | def should_query_keys(self) -> bool:
"""Check if the client should make a key query call to the server.
Returns True if a key query is necessary, false otherwise.
"""
if not self.olm:
return False
return self.olm.should_query_keys | def should_query_keys(self) -> bool:
"""Check if the client should make a key query call to the server.
Returns True if a key query is necessary, false otherwise.
"""
if not self.olm:
return False
return self.olm.should_query_keys |
Python | def should_claim_keys(self) -> bool:
"""Check if the client should claim one-time keys for some users.
This should be periodically checked and if true a keys claim request
should be made with the return value of a
`get_users_for_key_claiming()` call as the payload.
Keys need to be claimed for various reasons. Every time we need to send
an encrypted message to a device and we don't have a working Olm
session with them we need to claim one-time keys to create a new Olm
session.
Returns True if a key query is necessary, false otherwise.
"""
if not self.olm:
return False
return bool(
self.olm.wedged_devices or self.olm.key_request_devices_no_session
) | def should_claim_keys(self) -> bool:
"""Check if the client should claim one-time keys for some users.
This should be periodically checked and if true a keys claim request
should be made with the return value of a
`get_users_for_key_claiming()` call as the payload.
Keys need to be claimed for various reasons. Every time we need to send
an encrypted message to a device and we don't have a working Olm
session with them we need to claim one-time keys to create a new Olm
session.
Returns True if a key query is necessary, false otherwise.
"""
if not self.olm:
return False
return bool(
self.olm.wedged_devices or self.olm.key_request_devices_no_session
) |
Python | def load_store(self):
"""Load the session store and olm account.
Raises LocalProtocolError if the session_path, user_id and device_id
are not set.
"""
if self.store:
raise LocalProtocolError("Store is already loaded")
if not self.store_path:
raise LocalProtocolError("Store path is not defined.")
if not self.user_id:
raise LocalProtocolError("User id is not set")
if not self.device_id:
raise LocalProtocolError("Device id is not set")
if not self.config.store:
raise LocalProtocolError(
"No store class was provided in the config."
)
if self.config.encryption_enabled:
self.store = self.config.store(
self.user_id,
self.device_id,
self.store_path,
self.config.pickle_key,
self.config.store_name,
)
assert self.store
self.olm = Olm(self.user_id, self.device_id, self.store)
self.encrypted_rooms = self.store.load_encrypted_rooms()
if self.config.store_sync_tokens:
self.loaded_sync_token = self.store.load_sync_token() | def load_store(self):
"""Load the session store and olm account.
Raises LocalProtocolError if the session_path, user_id and device_id
are not set.
"""
if self.store:
raise LocalProtocolError("Store is already loaded")
if not self.store_path:
raise LocalProtocolError("Store path is not defined.")
if not self.user_id:
raise LocalProtocolError("User id is not set")
if not self.device_id:
raise LocalProtocolError("Device id is not set")
if not self.config.store:
raise LocalProtocolError(
"No store class was provided in the config."
)
if self.config.encryption_enabled:
self.store = self.config.store(
self.user_id,
self.device_id,
self.store_path,
self.config.pickle_key,
self.config.store_name,
)
assert self.store
self.olm = Olm(self.user_id, self.device_id, self.store)
self.encrypted_rooms = self.store.load_encrypted_rooms()
if self.config.store_sync_tokens:
self.loaded_sync_token = self.store.load_sync_token() |
Python | def room_contains_unverified(self, room_id: str) -> bool:
"""Check if a room contains unverified devices.
Args:
room_id (str): Room id of the room that should be checked.
Returns True if the room contains unverified devices, false otherwise.
Returns False if no Olm session is loaded or if the room isn't
encrypted.
"""
try:
room = self.rooms[room_id]
except KeyError:
raise LocalProtocolError(
"No room found with room id {}".format(room_id)
)
if not room.encrypted:
return False
if not self.olm:
return False
for user in room.users:
if not self.olm.user_fully_verified(user):
return True
return False | def room_contains_unverified(self, room_id: str) -> bool:
"""Check if a room contains unverified devices.
Args:
room_id (str): Room id of the room that should be checked.
Returns True if the room contains unverified devices, false otherwise.
Returns False if no Olm session is loaded or if the room isn't
encrypted.
"""
try:
room = self.rooms[room_id]
except KeyError:
raise LocalProtocolError(
"No room found with room id {}".format(room_id)
)
if not room.encrypted:
return False
if not self.olm:
return False
for user in room.users:
if not self.olm.user_fully_verified(user):
return True
return False |
Python | def invalidate_outbound_session(self, room_id: str):
"""Explicitely remove encryption keys for a room.
Args:
room_id (str): Room id for the room the encryption keys should be
removed.
"""
assert self.olm
session = self.olm.outbound_group_sessions.pop(room_id, None)
# There is no need to invalidate the session if it was never
# shared, put it back where it was.
if session and not session.shared:
self.olm.outbound_group_sessions[room_id] = session
elif session:
logger.info("Invalidating session for {}".format(room_id)) | def invalidate_outbound_session(self, room_id: str):
"""Explicitely remove encryption keys for a room.
Args:
room_id (str): Room id for the room the encryption keys should be
removed.
"""
assert self.olm
session = self.olm.outbound_group_sessions.pop(room_id, None)
# There is no need to invalidate the session if it was never
# shared, put it back where it was.
if session and not session.shared:
self.olm.outbound_group_sessions[room_id] = session
elif session:
logger.info("Invalidating session for {}".format(room_id)) |
Python | def verify_device(self, device: OlmDevice) -> bool:
"""Mark a device as verified.
A device needs to be either trusted or blacklisted to either share room
encryption keys with it or not.
This method adds the device to the trusted devices and enables sharing
room encryption keys with it.
Args:
device (OlmDevice): The device which should be added to the trust
list.
Returns true if the device was verified, false if it was already
verified.
"""
assert self.olm
changed = self.olm.verify_device(device)
if changed:
self._invalidate_outbound_sessions(device)
return changed | def verify_device(self, device: OlmDevice) -> bool:
"""Mark a device as verified.
A device needs to be either trusted or blacklisted to either share room
encryption keys with it or not.
This method adds the device to the trusted devices and enables sharing
room encryption keys with it.
Args:
device (OlmDevice): The device which should be added to the trust
list.
Returns true if the device was verified, false if it was already
verified.
"""
assert self.olm
changed = self.olm.verify_device(device)
if changed:
self._invalidate_outbound_sessions(device)
return changed |
Python | def unverify_device(self, device: OlmDevice) -> bool:
"""Unmark a device as verified.
This method removes the device from the trusted devices and disables
sharing room encryption keys with it. It also invalidates any
encryption keys for rooms that the device takes part of.
Args:
device (OlmDevice): The device which should be added to the trust
list.
Returns true if the device was unverified, false if it was already
unverified.
"""
assert self.olm
changed = self.olm.unverify_device(device)
if changed:
self._invalidate_outbound_sessions(device)
return changed | def unverify_device(self, device: OlmDevice) -> bool:
"""Unmark a device as verified.
This method removes the device from the trusted devices and disables
sharing room encryption keys with it. It also invalidates any
encryption keys for rooms that the device takes part of.
Args:
device (OlmDevice): The device which should be added to the trust
list.
Returns true if the device was unverified, false if it was already
unverified.
"""
assert self.olm
changed = self.olm.unverify_device(device)
if changed:
self._invalidate_outbound_sessions(device)
return changed |
Python | def blacklist_device(self, device: OlmDevice) -> bool:
"""Mark a device as blacklisted.
Devices on the blacklist will not receive room encryption keys and
therefore won't be able to decrypt messages coming from this client.
Args:
device (OlmDevice): The device which should be added to the
blacklist.
Returns true if the device was added, false if it was on the blacklist
already.
"""
assert self.olm
changed = self.olm.blacklist_device(device)
if changed:
self._invalidate_outbound_sessions(device)
return changed | def blacklist_device(self, device: OlmDevice) -> bool:
"""Mark a device as blacklisted.
Devices on the blacklist will not receive room encryption keys and
therefore won't be able to decrypt messages coming from this client.
Args:
device (OlmDevice): The device which should be added to the
blacklist.
Returns true if the device was added, false if it was on the blacklist
already.
"""
assert self.olm
changed = self.olm.blacklist_device(device)
if changed:
self._invalidate_outbound_sessions(device)
return changed |
Python | def unblacklist_device(self, device: OlmDevice) -> bool:
"""Unmark a device as blacklisted.
Args:
device (OlmDevice): The device which should be removed from the
blacklist.
Returns true if the device was removed, false if it wasn't on the
blacklist and no removal happened.
"""
assert self.olm
changed = self.olm.unblacklist_device(device)
if changed:
self._invalidate_outbound_sessions(device)
return changed | def unblacklist_device(self, device: OlmDevice) -> bool:
"""Unmark a device as blacklisted.
Args:
device (OlmDevice): The device which should be removed from the
blacklist.
Returns true if the device was removed, false if it wasn't on the
blacklist and no removal happened.
"""
assert self.olm
changed = self.olm.unblacklist_device(device)
if changed:
self._invalidate_outbound_sessions(device)
return changed |
Python | def ignore_device(self, device: OlmDevice) -> bool:
"""Mark a device as ignored.
Ignored devices will still receive room encryption keys, despire not
being verified.
Args:
device (OlmDevice): the device to ignore
Returns true if device is ignored, or false if it is already on the
list of ignored devices.
"""
assert self.olm
changed = self.olm.ignore_device(device)
if changed:
self._invalidate_outbound_sessions(device)
return changed | def ignore_device(self, device: OlmDevice) -> bool:
"""Mark a device as ignored.
Ignored devices will still receive room encryption keys, despire not
being verified.
Args:
device (OlmDevice): the device to ignore
Returns true if device is ignored, or false if it is already on the
list of ignored devices.
"""
assert self.olm
changed = self.olm.ignore_device(device)
if changed:
self._invalidate_outbound_sessions(device)
return changed |
Python | def unignore_device(self, device: OlmDevice) -> bool:
"""Unmark a device as ignored.
Args:
device (OlmDevice): The device which should be removed from the
list of ignored devices.
Returns true if the device was removed, false if it wasn't on the
list and no removal happened.
"""
assert self.olm
changed = self.olm.unignore_device(device)
if changed:
self._invalidate_outbound_sessions(device)
return changed | def unignore_device(self, device: OlmDevice) -> bool:
"""Unmark a device as ignored.
Args:
device (OlmDevice): The device which should be removed from the
list of ignored devices.
Returns true if the device was removed, false if it wasn't on the
list and no removal happened.
"""
assert self.olm
changed = self.olm.unignore_device(device)
if changed:
self._invalidate_outbound_sessions(device)
return changed |
Python | def decrypt_event(self, event: MegolmEvent) -> Union[Event, BadEventType]:
"""Try to decrypt an undecrypted megolm event.
Args:
event (MegolmEvent): Event that should be decrypted.
Returns the decrypted event, raises EncryptionError if there was an
error while decrypting.
"""
if not isinstance(event, MegolmEvent):
raise ValueError(
"Invalid event, this function can only decrypt " "MegolmEvents"
)
assert self.olm
return self.olm.decrypt_megolm_event(event) | def decrypt_event(self, event: MegolmEvent) -> Union[Event, BadEventType]:
"""Try to decrypt an undecrypted megolm event.
Args:
event (MegolmEvent): Event that should be decrypted.
Returns the decrypted event, raises EncryptionError if there was an
error while decrypting.
"""
if not isinstance(event, MegolmEvent):
raise ValueError(
"Invalid event, this function can only decrypt " "MegolmEvents"
)
assert self.olm
return self.olm.decrypt_megolm_event(event) |
Python | def receive_response(
self, response: Response
) -> Union[None, Coroutine[Any, Any, None]]:
"""Receive a Matrix Response and change the client state accordingly.
Some responses will get edited for the callers convenience e.g. sync
responses that contain encrypted messages. The encrypted messages will
be replaced by decrypted ones if decryption is possible.
Args:
response (Response): the response that we wish the client to handle
"""
if not isinstance(response, Response):
raise ValueError("Invalid response received")
if isinstance(response, LoginResponse):
self._handle_login(response)
elif isinstance(response, LogoutResponse):
self._handle_logout(response)
elif isinstance(response, RegisterResponse):
self._handle_register(response)
elif isinstance(response, (SyncResponse, PartialSyncResponse)):
self._handle_sync(response)
elif isinstance(response, RoomMessagesResponse):
self._handle_messages_response(response)
elif isinstance(response, RoomContextResponse):
self._handle_context_response(response)
elif isinstance(response, KeysUploadResponse):
self._handle_olm_response(response)
elif isinstance(response, KeysQueryResponse):
self._handle_olm_response(response)
elif isinstance(response, KeysClaimResponse):
self._handle_olm_response(response)
elif isinstance(response, ShareGroupSessionResponse):
self._handle_olm_response(response)
elif isinstance(response, JoinedMembersResponse):
self._handle_joined_members(response)
elif isinstance(response, RoomKeyRequestResponse):
self._handle_olm_response(response)
elif isinstance(response, RoomForgetResponse):
self._handle_room_forget_response(response)
elif isinstance(response, ToDeviceResponse):
self._handle_olm_response(response)
elif isinstance(response, ErrorResponse):
if response.soft_logout:
self.access_token = ""
return None | def receive_response(
self, response: Response
) -> Union[None, Coroutine[Any, Any, None]]:
"""Receive a Matrix Response and change the client state accordingly.
Some responses will get edited for the callers convenience e.g. sync
responses that contain encrypted messages. The encrypted messages will
be replaced by decrypted ones if decryption is possible.
Args:
response (Response): the response that we wish the client to handle
"""
if not isinstance(response, Response):
raise ValueError("Invalid response received")
if isinstance(response, LoginResponse):
self._handle_login(response)
elif isinstance(response, LogoutResponse):
self._handle_logout(response)
elif isinstance(response, RegisterResponse):
self._handle_register(response)
elif isinstance(response, (SyncResponse, PartialSyncResponse)):
self._handle_sync(response)
elif isinstance(response, RoomMessagesResponse):
self._handle_messages_response(response)
elif isinstance(response, RoomContextResponse):
self._handle_context_response(response)
elif isinstance(response, KeysUploadResponse):
self._handle_olm_response(response)
elif isinstance(response, KeysQueryResponse):
self._handle_olm_response(response)
elif isinstance(response, KeysClaimResponse):
self._handle_olm_response(response)
elif isinstance(response, ShareGroupSessionResponse):
self._handle_olm_response(response)
elif isinstance(response, JoinedMembersResponse):
self._handle_joined_members(response)
elif isinstance(response, RoomKeyRequestResponse):
self._handle_olm_response(response)
elif isinstance(response, RoomForgetResponse):
self._handle_room_forget_response(response)
elif isinstance(response, ToDeviceResponse):
self._handle_olm_response(response)
elif isinstance(response, ErrorResponse):
if response.soft_logout:
self.access_token = ""
return None |
Python | def export_keys(self, outfile: str, passphrase: str, count: int = 10000):
"""Export all the Megolm decryption keys of this device.
The keys will be encrypted using the passphrase.
Note that this does not save other information such as the private
identity keys of the device.
Args:
outfile (str): The file to write the keys to.
passphrase (str): The encryption passphrase.
count (int): Optional. Round count for the underlying key
derivation. It is not recommended to specify it unless
absolutely sure of the consequences.
"""
assert self.olm
self.olm.export_keys(outfile, passphrase, count=count) | def export_keys(self, outfile: str, passphrase: str, count: int = 10000):
"""Export all the Megolm decryption keys of this device.
The keys will be encrypted using the passphrase.
Note that this does not save other information such as the private
identity keys of the device.
Args:
outfile (str): The file to write the keys to.
passphrase (str): The encryption passphrase.
count (int): Optional. Round count for the underlying key
derivation. It is not recommended to specify it unless
absolutely sure of the consequences.
"""
assert self.olm
self.olm.export_keys(outfile, passphrase, count=count) |
Python | def import_keys(self, infile: str, passphrase: str):
"""Import Megolm decryption keys.
The keys will be added to the current instance as well as written to
database.
Args:
infile (str): The file containing the keys.
passphrase (str): The decryption passphrase.
Raises `EncryptionError` if the file is invalid or couldn't be
decrypted.
Raises the usual file errors if the file couldn't be opened.
"""
assert self.olm
self.olm.import_keys(infile, passphrase) | def import_keys(self, infile: str, passphrase: str):
"""Import Megolm decryption keys.
The keys will be added to the current instance as well as written to
database.
Args:
infile (str): The file containing the keys.
passphrase (str): The decryption passphrase.
Raises `EncryptionError` if the file is invalid or couldn't be
decrypted.
Raises the usual file errors if the file couldn't be opened.
"""
assert self.olm
self.olm.import_keys(infile, passphrase) |
Python | def encrypt(
self, room_id: str, message_type: str, content: Dict[Any, Any]
) -> Tuple[str, Dict[str, str]]:
"""Encrypt a message to be sent to the provided room.
Args:
room_id (str): The room id of the room where the message will be
sent.
message_type (str): The type of the message.
content (str): The dictionary containing the content of the
message.
Raises `GroupEncryptionError` if the group session for the provided
room isn't shared yet.
Raises `MembersSyncError` if the room is encrypted but the room members
aren't fully loaded due to member lazy loading.
Returns a tuple containing the new message type and the new encrypted
content.
"""
assert self.olm
try:
room = self.rooms[room_id]
except KeyError:
raise LocalProtocolError(
"No such room with id {} found.".format(room_id)
)
if not room.encrypted:
raise LocalProtocolError(
"Room {} is not encrypted".format(room_id)
)
if not room.members_synced:
raise MembersSyncError(
"The room is encrypted and the members " "aren't fully synced."
)
encrypted_content = self.olm.group_encrypt(
room_id, {"content": content, "type": message_type},
)
# The relationship needs to be sent unencrypted, so put it in the
# unencrypted content.
if "m.relates_to" in content:
encrypted_content["m.relates_to"] = content["m.relates_to"]
message_type = "m.room.encrypted"
return message_type, encrypted_content | def encrypt(
self, room_id: str, message_type: str, content: Dict[Any, Any]
) -> Tuple[str, Dict[str, str]]:
"""Encrypt a message to be sent to the provided room.
Args:
room_id (str): The room id of the room where the message will be
sent.
message_type (str): The type of the message.
content (str): The dictionary containing the content of the
message.
Raises `GroupEncryptionError` if the group session for the provided
room isn't shared yet.
Raises `MembersSyncError` if the room is encrypted but the room members
aren't fully loaded due to member lazy loading.
Returns a tuple containing the new message type and the new encrypted
content.
"""
assert self.olm
try:
room = self.rooms[room_id]
except KeyError:
raise LocalProtocolError(
"No such room with id {} found.".format(room_id)
)
if not room.encrypted:
raise LocalProtocolError(
"Room {} is not encrypted".format(room_id)
)
if not room.members_synced:
raise MembersSyncError(
"The room is encrypted and the members " "aren't fully synced."
)
encrypted_content = self.olm.group_encrypt(
room_id, {"content": content, "type": message_type},
)
# The relationship needs to be sent unencrypted, so put it in the
# unencrypted content.
if "m.relates_to" in content:
encrypted_content["m.relates_to"] = content["m.relates_to"]
message_type = "m.room.encrypted"
return message_type, encrypted_content |
Python | def add_event_callback(
self,
callback: Callable[[MatrixRoom, Event], None],
filter: Union[Type, Tuple[Type]],
):
"""Add a callback that will be executed on room events.
The callback can be used on joined rooms as well as on invited rooms.
The room parameter for the callback will have a different type
depending on if the room is joined or invited.
Args:
callback (Callable[[MatrixRoom, Event], None]): A
function that will be called if the event type in the filter
argument is found in a room timeline.
filter (Union[Type, Tuple[Type]]): The event type or a tuple
containing multiple types for which the function will be
called.
"""
cb = ClientCallback(callback, filter)
self.event_callbacks.append(cb) | def add_event_callback(
self,
callback: Callable[[MatrixRoom, Event], None],
filter: Union[Type, Tuple[Type]],
):
"""Add a callback that will be executed on room events.
The callback can be used on joined rooms as well as on invited rooms.
The room parameter for the callback will have a different type
depending on if the room is joined or invited.
Args:
callback (Callable[[MatrixRoom, Event], None]): A
function that will be called if the event type in the filter
argument is found in a room timeline.
filter (Union[Type, Tuple[Type]]): The event type or a tuple
containing multiple types for which the function will be
called.
"""
cb = ClientCallback(callback, filter)
self.event_callbacks.append(cb) |
Python | def add_ephemeral_callback(
self,
callback: Callable[[MatrixRoom, Event], None],
filter: Union[Type, Tuple[Type]],
):
"""Add a callback that will be executed on ephemeral room events.
Args:
callback (Callable[MatrixRoom, Event]): A function that will be
called if the event type in the filter argument is found in the
ephemeral room event list.
filter (Type, Tuple[Type]): The event type or a tuple containing
multiple types for which the function will be called.
"""
cb = ClientCallback(callback, filter)
self.ephemeral_callbacks.append(cb) | def add_ephemeral_callback(
self,
callback: Callable[[MatrixRoom, Event], None],
filter: Union[Type, Tuple[Type]],
):
"""Add a callback that will be executed on ephemeral room events.
Args:
callback (Callable[MatrixRoom, Event]): A function that will be
called if the event type in the filter argument is found in the
ephemeral room event list.
filter (Type, Tuple[Type]): The event type or a tuple containing
multiple types for which the function will be called.
"""
cb = ClientCallback(callback, filter)
self.ephemeral_callbacks.append(cb) |
Python | def add_to_device_callback(
self,
callback: Callable[[ToDeviceEvent], None],
filter: Union[Type, Tuple[Type]],
):
"""Add a callback that will be executed on to-device events.
Args:
callback (Callable[[ToDeviceEvent], None]): A function that will be
called if the event type in the filter argument is found in a
the to-device part of the sync response.
filter (Union[Type, Tuple[Type]]): The event type or a tuple
containing multiple types for which the function
will be called.
"""
cb = ClientCallback(callback, filter)
self.to_device_callbacks.append(cb) | def add_to_device_callback(
self,
callback: Callable[[ToDeviceEvent], None],
filter: Union[Type, Tuple[Type]],
):
"""Add a callback that will be executed on to-device events.
Args:
callback (Callable[[ToDeviceEvent], None]): A function that will be
called if the event type in the filter argument is found in a
the to-device part of the sync response.
filter (Union[Type, Tuple[Type]]): The event type or a tuple
containing multiple types for which the function
will be called.
"""
cb = ClientCallback(callback, filter)
self.to_device_callbacks.append(cb) |
Python | def create_key_verification(self, device: OlmDevice) -> ToDeviceMessage:
"""Start a new key verification process with the given device.
Args:
device (OlmDevice): The device which we would like to verify
Returns a ``ToDeviceMessage`` that should be sent to to the homeserver.
"""
assert self.olm
return self.olm.create_sas(device) | def create_key_verification(self, device: OlmDevice) -> ToDeviceMessage:
"""Start a new key verification process with the given device.
Args:
device (OlmDevice): The device which we would like to verify
Returns a ``ToDeviceMessage`` that should be sent to to the homeserver.
"""
assert self.olm
return self.olm.create_sas(device) |
Python | def confirm_key_verification(self, transaction_id: str) -> ToDeviceMessage:
"""Confirm that the short auth string of a key verification matches.
Args:
transaction_id (str): The transaction id of the interactive key
verification.
Returns a ``ToDeviceMessage`` that should be sent to to the homeserver.
If the other user already confirmed the short auth string on their side
this function will also verify the device that is partaking in the
verification process.
"""
if transaction_id not in self.key_verifications:
raise LocalProtocolError(
"Key verification with the transaction "
"id {} does not exist.".format(transaction_id)
)
sas = self.key_verifications[transaction_id]
sas.accept_sas()
message = sas.get_mac()
if sas.verified:
self.verify_device(sas.other_olm_device)
return message | def confirm_key_verification(self, transaction_id: str) -> ToDeviceMessage:
"""Confirm that the short auth string of a key verification matches.
Args:
transaction_id (str): The transaction id of the interactive key
verification.
Returns a ``ToDeviceMessage`` that should be sent to to the homeserver.
If the other user already confirmed the short auth string on their side
this function will also verify the device that is partaking in the
verification process.
"""
if transaction_id not in self.key_verifications:
raise LocalProtocolError(
"Key verification with the transaction "
"id {} does not exist.".format(transaction_id)
)
sas = self.key_verifications[transaction_id]
sas.accept_sas()
message = sas.get_mac()
if sas.verified:
self.verify_device(sas.other_olm_device)
return message |
Python | def room_devices(self, room_id: str) -> Dict[str, Dict[str, OlmDevice]]:
"""Get all Olm devices participating in a room.
Args:
room_id (str): The id of the room for which we would like to
collect all the devices.
Returns a dictionary holding the user as the key and a dictionary of
the device id as the key and OlmDevice as the value.
Raises LocalProtocolError if no room is found with the given room_id.
"""
devices: Dict[str, Dict[str, OlmDevice]] = defaultdict(dict)
if not self.olm:
return devices
try:
room = self.rooms[room_id]
except KeyError:
raise LocalProtocolError(
"No room found with room id {}".format(room_id)
)
if not room.encrypted:
return devices
users = room.users.keys()
for user in users:
user_devices = self.device_store.active_user_devices(user)
devices[user] = {d.id: d for d in user_devices}
return devices | def room_devices(self, room_id: str) -> Dict[str, Dict[str, OlmDevice]]:
"""Get all Olm devices participating in a room.
Args:
room_id (str): The id of the room for which we would like to
collect all the devices.
Returns a dictionary holding the user as the key and a dictionary of
the device id as the key and OlmDevice as the value.
Raises LocalProtocolError if no room is found with the given room_id.
"""
devices: Dict[str, Dict[str, OlmDevice]] = defaultdict(dict)
if not self.olm:
return devices
try:
room = self.rooms[room_id]
except KeyError:
raise LocalProtocolError(
"No room found with room id {}".format(room_id)
)
if not room.encrypted:
return devices
users = room.users.keys()
for user in users:
user_devices = self.device_store.active_user_devices(user)
devices[user] = {d.id: d for d in user_devices}
return devices |
Python | def continue_key_share(self, event: RoomKeyRequest) -> bool:
"""Continue a previously interrupted key share event.
To handle room key requests properly client users need to add a
callback for RoomKeyRequest:
>>> client.add_to_device_callback(callback, RoomKeyRequest)
This callback will be run only if a room key request needs user
interaction, that is if a room key request is coming from an untrusted
device.
After a user has verified the requesting device the key sharing can be
continued using this method:
>>> client.continue_key_share(room_key_request)
Args:
event (RoomKeyRequest): The event which we would like to continue.
If the key share event is continued successfully a to-device message
will be queued up in the `client.outgoing_to_device_messages` list
waiting to be sent out
Returns:
bool: True if the request was continued, False otherwise.
"""
assert self.olm
return self.olm.continue_key_share(event) | def continue_key_share(self, event: RoomKeyRequest) -> bool:
"""Continue a previously interrupted key share event.
To handle room key requests properly client users need to add a
callback for RoomKeyRequest:
>>> client.add_to_device_callback(callback, RoomKeyRequest)
This callback will be run only if a room key request needs user
interaction, that is if a room key request is coming from an untrusted
device.
After a user has verified the requesting device the key sharing can be
continued using this method:
>>> client.continue_key_share(room_key_request)
Args:
event (RoomKeyRequest): The event which we would like to continue.
If the key share event is continued successfully a to-device message
will be queued up in the `client.outgoing_to_device_messages` list
waiting to be sent out
Returns:
bool: True if the request was continued, False otherwise.
"""
assert self.olm
return self.olm.continue_key_share(event) |
Python | def cancel_key_share(self, event: RoomKeyRequest) -> bool:
"""Cancel a previously interrupted key share event.
This method is the counterpart to the `continue_key_share()` method. If
a user choses not to verify a device and does not want to share room
keys with such a device it should cancel the request with this method.
>>> client.cancel_key_share(room_key_request)
Args:
event (RoomKeyRequest): The event which we would like to cancel.
Returns:
bool: True if the request was cancelled, False otherwise.
"""
assert self.olm
return self.olm.cancel_key_share(event) | def cancel_key_share(self, event: RoomKeyRequest) -> bool:
"""Cancel a previously interrupted key share event.
This method is the counterpart to the `continue_key_share()` method. If
a user choses not to verify a device and does not want to share room
keys with such a device it should cancel the request with this method.
>>> client.cancel_key_share(room_key_request)
Args:
event (RoomKeyRequest): The event which we would like to cancel.
Returns:
bool: True if the request was cancelled, False otherwise.
"""
assert self.olm
return self.olm.cancel_key_share(event) |
Python | def client_session(func):
"""Ensure that the Async client has a valid client session."""
@wraps(func)
async def wrapper(self, *args, **kwargs):
if not self.client_session:
trace = TraceConfig()
trace.on_request_chunk_sent.append(on_request_chunk_sent)
self.client_session = ClientSession(
timeout=ClientTimeout(total=self.config.request_timeout),
trace_configs=[trace],
)
self.client_session.connector.connect = partial(
connect_wrapper, self.client_session.connector,
)
return await func(self, *args, **kwargs)
return wrapper | def client_session(func):
"""Ensure that the Async client has a valid client session."""
@wraps(func)
async def wrapper(self, *args, **kwargs):
if not self.client_session:
trace = TraceConfig()
trace.on_request_chunk_sent.append(on_request_chunk_sent)
self.client_session = ClientSession(
timeout=ClientTimeout(total=self.config.request_timeout),
trace_configs=[trace],
)
self.client_session.connector.connect = partial(
connect_wrapper, self.client_session.connector,
)
return await func(self, *args, **kwargs)
return wrapper |
Python | async def parse_body(
self, transport_response: ClientResponse
) -> Dict[Any, Any]:
"""Parse the body of the response.
Args:
transport_response(ClientResponse): The transport response that
contains the body of the response.
Returns a dictionary representing the response.
"""
try:
return await transport_response.json()
except (JSONDecodeError, ContentTypeError):
return {} | async def parse_body(
self, transport_response: ClientResponse
) -> Dict[Any, Any]:
"""Parse the body of the response.
Args:
transport_response(ClientResponse): The transport response that
contains the body of the response.
Returns a dictionary representing the response.
"""
try:
return await transport_response.json()
except (JSONDecodeError, ContentTypeError):
return {} |
Python | async def create_matrix_response(
self,
response_class: Type,
transport_response: ClientResponse,
data: Tuple[Any, ...] = None,
) -> Response:
"""Transform a transport response into a nio matrix response.
Args:
response_class (Type): The class that the requests belongs to.
transport_response (ClientResponse): The underlying transport
response that contains our response body.
data (Tuple, optional): Extra data that is required to instantiate
the response class.
Returns a subclass of `Response` depending on the type of the
response_class argument.
"""
data = data or ()
content_type = transport_response.content_type
is_json = content_type == "application/json"
name = None
if transport_response.content_disposition:
name = transport_response.content_disposition.filename
if issubclass(response_class, FileResponse) and is_json:
parsed_dict = await self.parse_body(transport_response)
resp = response_class.from_data(parsed_dict, content_type, name)
elif issubclass(response_class, FileResponse):
body = await transport_response.read()
resp = response_class.from_data(body, content_type, name)
elif (
transport_response.status == 401
and response_class == DeleteDevicesResponse
):
parsed_dict = await self.parse_body(transport_response)
resp = DeleteDevicesAuthResponse.from_dict(parsed_dict)
else:
parsed_dict = await self.parse_body(transport_response)
resp = response_class.from_dict(parsed_dict, *data)
resp.transport_response = transport_response
return resp | async def create_matrix_response(
self,
response_class: Type,
transport_response: ClientResponse,
data: Tuple[Any, ...] = None,
) -> Response:
"""Transform a transport response into a nio matrix response.
Args:
response_class (Type): The class that the requests belongs to.
transport_response (ClientResponse): The underlying transport
response that contains our response body.
data (Tuple, optional): Extra data that is required to instantiate
the response class.
Returns a subclass of `Response` depending on the type of the
response_class argument.
"""
data = data or ()
content_type = transport_response.content_type
is_json = content_type == "application/json"
name = None
if transport_response.content_disposition:
name = transport_response.content_disposition.filename
if issubclass(response_class, FileResponse) and is_json:
parsed_dict = await self.parse_body(transport_response)
resp = response_class.from_data(parsed_dict, content_type, name)
elif issubclass(response_class, FileResponse):
body = await transport_response.read()
resp = response_class.from_data(body, content_type, name)
elif (
transport_response.status == 401
and response_class == DeleteDevicesResponse
):
parsed_dict = await self.parse_body(transport_response)
resp = DeleteDevicesAuthResponse.from_dict(parsed_dict)
else:
parsed_dict = await self.parse_body(transport_response)
resp = response_class.from_dict(parsed_dict, *data)
resp.transport_response = transport_response
return resp |
Python | async def receive_response(self, response: Response) -> None:
"""Receive a Matrix Response and change the client state accordingly.
Some responses will get edited for the callers convenience e.g. sync
responses that contain encrypted messages. The encrypted messages will
be replaced by decrypted ones if decryption is possible.
Args:
response (Response): the response that we wish the client to handle
"""
if not isinstance(response, Response):
raise ValueError("Invalid response received")
if isinstance(response, (SyncResponse, PartialSyncResponse)):
await self._handle_sync(response)
else:
super().receive_response(response) | async def receive_response(self, response: Response) -> None:
"""Receive a Matrix Response and change the client state accordingly.
Some responses will get edited for the callers convenience e.g. sync
responses that contain encrypted messages. The encrypted messages will
be replaced by decrypted ones if decryption is possible.
Args:
response (Response): the response that we wish the client to handle
"""
if not isinstance(response, Response):
raise ValueError("Invalid response received")
if isinstance(response, (SyncResponse, PartialSyncResponse)):
await self._handle_sync(response)
else:
super().receive_response(response) |
Python | async def send(
self,
method: str,
path: str,
data: Union[None, str, AsyncDataT] = None,
headers: Optional[Dict[str, str]] = None,
trace_context: Any = None,
timeout: Optional[float] = None,
) -> ClientResponse:
"""Send a request to the homeserver.
Args:
method (str): The request method that should be used. One of get,
post, put, delete.
path (str): The URL path of the request.
data (str, optional): Data that will be posted with the request.
headers (Dict[str,str] , optional): Additional request headers that
should be used with the request.
trace_context (Any, optional): An object to use for the
ClientSession TraceConfig context
timeout (int, optional): How many seconds the request has before
raising `asyncio.TimeoutError`.
Overrides `AsyncClient.config.request_timeout` if not `None`.
"""
assert self.client_session
return await self.client_session.request(
method,
self.homeserver + path,
data=data,
ssl=self.ssl,
proxy=self.proxy,
headers=headers,
trace_request_ctx=trace_context,
timeout=self.config.request_timeout
if timeout is None
else timeout,
) | async def send(
self,
method: str,
path: str,
data: Union[None, str, AsyncDataT] = None,
headers: Optional[Dict[str, str]] = None,
trace_context: Any = None,
timeout: Optional[float] = None,
) -> ClientResponse:
"""Send a request to the homeserver.
Args:
method (str): The request method that should be used. One of get,
post, put, delete.
path (str): The URL path of the request.
data (str, optional): Data that will be posted with the request.
headers (Dict[str,str] , optional): Additional request headers that
should be used with the request.
trace_context (Any, optional): An object to use for the
ClientSession TraceConfig context
timeout (int, optional): How many seconds the request has before
raising `asyncio.TimeoutError`.
Overrides `AsyncClient.config.request_timeout` if not `None`.
"""
assert self.client_session
return await self.client_session.request(
method,
self.homeserver + path,
data=data,
ssl=self.ssl,
proxy=self.proxy,
headers=headers,
trace_request_ctx=trace_context,
timeout=self.config.request_timeout
if timeout is None
else timeout,
) |
Python | async def sync(
self,
timeout: Optional[int] = None,
sync_filter: _FilterT = None,
since: Optional[str] = None,
full_state: Optional[bool] = None,
) -> Union[SyncResponse, SyncError]:
"""Synchronise the client's state with the latest state on the server.
Args:
timeout(int, optional): The maximum time that the server should
wait for new events before it should return the request
anyways, in milliseconds.
If the server fails to return after 15 seconds of expected
timeout, the client will timeout by itself.
sync_filter (Union[None, str, Dict[Any, Any]):
A filter ID or dict that should be used for this sync request.
full_state (bool, optional): Controls whether to include the full
state for all rooms the user is a member of. If this is set to
true, then all state events will be returned, even if since is
non-empty. The timeline will still be limited by the since
parameter.
since (str, optional): A token specifying a point in time where to
continue the sync from. Defaults to the last sync token we
received from the server using this API call.
Returns either a `SyncResponse` if the request was successful or
a `SyncError` if there was an error with the request.
"""
sync_token = since or self.next_batch
method, path = Api.sync(
self.access_token,
since=sync_token or self.loaded_sync_token,
timeout=timeout,
filter=sync_filter,
full_state=full_state,
)
response = await self._send(
SyncResponse,
method,
path,
# + 15: give server a chance to naturally return before we timeout
timeout=None if timeout is None else timeout / 1000 + 15,
)
self.synced.set()
self.synced.clear()
return response | async def sync(
self,
timeout: Optional[int] = None,
sync_filter: _FilterT = None,
since: Optional[str] = None,
full_state: Optional[bool] = None,
) -> Union[SyncResponse, SyncError]:
"""Synchronise the client's state with the latest state on the server.
Args:
timeout(int, optional): The maximum time that the server should
wait for new events before it should return the request
anyways, in milliseconds.
If the server fails to return after 15 seconds of expected
timeout, the client will timeout by itself.
sync_filter (Union[None, str, Dict[Any, Any]):
A filter ID or dict that should be used for this sync request.
full_state (bool, optional): Controls whether to include the full
state for all rooms the user is a member of. If this is set to
true, then all state events will be returned, even if since is
non-empty. The timeline will still be limited by the since
parameter.
since (str, optional): A token specifying a point in time where to
continue the sync from. Defaults to the last sync token we
received from the server using this API call.
Returns either a `SyncResponse` if the request was successful or
a `SyncError` if there was an error with the request.
"""
sync_token = since or self.next_batch
method, path = Api.sync(
self.access_token,
since=sync_token or self.loaded_sync_token,
timeout=timeout,
filter=sync_filter,
full_state=full_state,
)
response = await self._send(
SyncResponse,
method,
path,
# + 15: give server a chance to naturally return before we timeout
timeout=None if timeout is None else timeout / 1000 + 15,
)
self.synced.set()
self.synced.clear()
return response |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.