language
stringclasses
6 values
original_string
stringlengths
25
887k
text
stringlengths
25
887k
Python
def FusedBnGrad1(dy, data, mean, target=utils.CCE): """Gradient for fused_batch_norm, reduce axis H and W.""" check_inputs(1, dy, data, mean) dim_info = set_dim_func_bng1_(dy)[0] attrs = attrs_bng1_.copy() single_sum = attrs.pop("single_sum", False) ori_dtype = dy.dtype if ori_dtype != "float32": dy = akg.topi.cast(dy, "float32") data = akg.topi.cast(data, "float32") axes = (2, 3) dbeta_red_hw = sum_data(dy, axes, keepdims=True, single_sum=single_sum) mean = akg.lang.ascend.broadcast(mean, data.shape) data_minus_mean = akg.tvm.compute( data.shape, lambda *i: data(*i) - mean(*i), "data_minus_mean") dgamma_param = akg.tvm.compute( data.shape, lambda *i: dy(*i) * data_minus_mean(*i), "dgamma_param") dgamma_red_hw = sum_data( dgamma_param, axes, keepdims=True, single_sum=single_sum) if dim_info != "": attrs["dim"] = dim_info attrs["custom_tiling"] = bng1_tiling_strategy(data) return dgamma_red_hw, dbeta_red_hw, data_minus_mean, attrs
def FusedBnGrad1(dy, data, mean, target=utils.CCE): """Gradient for fused_batch_norm, reduce axis H and W.""" check_inputs(1, dy, data, mean) dim_info = set_dim_func_bng1_(dy)[0] attrs = attrs_bng1_.copy() single_sum = attrs.pop("single_sum", False) ori_dtype = dy.dtype if ori_dtype != "float32": dy = akg.topi.cast(dy, "float32") data = akg.topi.cast(data, "float32") axes = (2, 3) dbeta_red_hw = sum_data(dy, axes, keepdims=True, single_sum=single_sum) mean = akg.lang.ascend.broadcast(mean, data.shape) data_minus_mean = akg.tvm.compute( data.shape, lambda *i: data(*i) - mean(*i), "data_minus_mean") dgamma_param = akg.tvm.compute( data.shape, lambda *i: dy(*i) * data_minus_mean(*i), "dgamma_param") dgamma_red_hw = sum_data( dgamma_param, axes, keepdims=True, single_sum=single_sum) if dim_info != "": attrs["dim"] = dim_info attrs["custom_tiling"] = bng1_tiling_strategy(data) return dgamma_red_hw, dbeta_red_hw, data_minus_mean, attrs
Python
def FusedBnGrad2(dgamma_red_hw, dbeta_red_hw, var, gamma, eps, data_shape, target=utils.CCE): """Second part of fused_bn_grad, reduce axis N, calculate the result of dgamma and dbeta.""" check_inputs(2, dgamma_red_hw, dbeta_red_hw, var, gamma, eps, data_shape) attrs = attrs_bng2_.copy() dim_info = set_dim_func_bng2_(data_shape)[0] m = data_shape[0] * data_shape[2] * data_shape[3] neg_m_rec = akg.tvm.const((-1.0 / m), dtype=var.dtype) eps = akg.tvm.const(eps, var.dtype) shape = get_shape(var) dbeta = akg.topi.sum(dbeta_red_hw, 0, keepdims=True) # rsqvar = 1/sqrt(var + eps) v = akg.tvm.compute(shape, lambda *i: var(*i) + eps, name="var_plus_eps") if product_is_mini(): v = akg.topi.cast(v, "float16") rsqvar = akg.tvm.compute(shape, lambda *i: akg.tvm.exp(akg.tvm.log(v(*i)) * akg.tvm.const(-0.5, v.dtype)), name="rsqvar", attrs={'no_inline': 1}) if product_is_mini(): rsqvar = akg.topi.cast(rsqvar, "float32") dgamma_red_n = akg.topi.sum(dgamma_red_hw, 0, keepdims=True) dgamma = akg.tvm.compute(shape, lambda *i: dgamma_red_n(*i) * rsqvar(*i), name="dgamma") # rs = gamma / sqrt(var+eps) rs = akg.tvm.compute(shape, lambda *i: gamma(*i) * rsqvar(*i), name="rs", attrs={'no_inline': 1}) rs_div_m = akg.tvm.compute(shape, lambda *i: rs(*i) * neg_m_rec, name="rs_div_m", attrs={'no_inline': 1}) dgamma_dx = akg.tvm.compute(shape, lambda *i: rs_div_m(*i) * rsqvar(*i) * dgamma(*i), name="dgamma_dx") dbeta_dx = akg.tvm.compute(shape, lambda *i: rs_div_m(*i) * dbeta(*i), name="dbeta_dx") if dim_info != "": attrs["dim"] = dim_info return dgamma, dbeta, rs, dgamma_dx, dbeta_dx, attrs
def FusedBnGrad2(dgamma_red_hw, dbeta_red_hw, var, gamma, eps, data_shape, target=utils.CCE): """Second part of fused_bn_grad, reduce axis N, calculate the result of dgamma and dbeta.""" check_inputs(2, dgamma_red_hw, dbeta_red_hw, var, gamma, eps, data_shape) attrs = attrs_bng2_.copy() dim_info = set_dim_func_bng2_(data_shape)[0] m = data_shape[0] * data_shape[2] * data_shape[3] neg_m_rec = akg.tvm.const((-1.0 / m), dtype=var.dtype) eps = akg.tvm.const(eps, var.dtype) shape = get_shape(var) dbeta = akg.topi.sum(dbeta_red_hw, 0, keepdims=True) # rsqvar = 1/sqrt(var + eps) v = akg.tvm.compute(shape, lambda *i: var(*i) + eps, name="var_plus_eps") if product_is_mini(): v = akg.topi.cast(v, "float16") rsqvar = akg.tvm.compute(shape, lambda *i: akg.tvm.exp(akg.tvm.log(v(*i)) * akg.tvm.const(-0.5, v.dtype)), name="rsqvar", attrs={'no_inline': 1}) if product_is_mini(): rsqvar = akg.topi.cast(rsqvar, "float32") dgamma_red_n = akg.topi.sum(dgamma_red_hw, 0, keepdims=True) dgamma = akg.tvm.compute(shape, lambda *i: dgamma_red_n(*i) * rsqvar(*i), name="dgamma") # rs = gamma / sqrt(var+eps) rs = akg.tvm.compute(shape, lambda *i: gamma(*i) * rsqvar(*i), name="rs", attrs={'no_inline': 1}) rs_div_m = akg.tvm.compute(shape, lambda *i: rs(*i) * neg_m_rec, name="rs_div_m", attrs={'no_inline': 1}) dgamma_dx = akg.tvm.compute(shape, lambda *i: rs_div_m(*i) * rsqvar(*i) * dgamma(*i), name="dgamma_dx") dbeta_dx = akg.tvm.compute(shape, lambda *i: rs_div_m(*i) * dbeta(*i), name="dbeta_dx") if dim_info != "": attrs["dim"] = dim_info return dgamma, dbeta, rs, dgamma_dx, dbeta_dx, attrs
Python
def _truncatemod_compute_mini(x, y): """ Computes truncatemod value of x and y on mini device. Args: x(tvm.tensor.Tensor): Tensor, float16. y(tvm.tensor.Tensor): Tensor with same type as x. Returns: tvm.tensor.Tensor of same type as x. """ def truncatemod_positive(x_abs, y_abs): """Computes truncatemod value for positive number""" x_abs_fp32 = akg.topi.cast(x_abs, "float32") y_abs_fp32 = akg.topi.cast(y_abs, "float32") def truncatemod_func(a, b): """function for truncatemod formula""" # For positive numbers, floor and trunc are equivalent return akg.topi.subtract(a, akg.topi.multiply(b, Cast(Floor(Divide(a, b, utils.CCE)), b.dtype, target=utils.CCE))) mod_value = truncatemod_func(x_abs_fp32, y_abs_fp32) # Because there are precision errors in division on mini, etc., # the calculation results need to be corrected mod_value = truncatemod_func(mod_value, y_abs_fp32) mod_value = akg.topi.cast(mod_value, "float16") mod_value = akg.tvm.compute(mod_value.shape, lambda *indice: akg.tvm.expr.Select(mod_value(*indice) >= y_abs(*indice), mod_value(*indice) - y_abs(*indice), mod_value(*indice)), name="mod_value") return mod_value _, _, out_shape = produce_shapes(utils.get_shape(x), utils.get_shape(y)) x = akg.topi.broadcast_to(x, out_shape) y = akg.topi.broadcast_to(y, out_shape) # Scenarios for correcting calculation results are complex, # using absolute values can simplify the scenario: # truncatemod(x,y) = Sign(x) * truncatemod(|x|, |y|) mod_abs = truncatemod_positive(akg.topi.abs(x), akg.topi.abs(y)) mod = akg.topi.multiply(akg.topi.sign(x), mod_abs) return mod
def _truncatemod_compute_mini(x, y): """ Computes truncatemod value of x and y on mini device. Args: x(tvm.tensor.Tensor): Tensor, float16. y(tvm.tensor.Tensor): Tensor with same type as x. Returns: tvm.tensor.Tensor of same type as x. """ def truncatemod_positive(x_abs, y_abs): """Computes truncatemod value for positive number""" x_abs_fp32 = akg.topi.cast(x_abs, "float32") y_abs_fp32 = akg.topi.cast(y_abs, "float32") def truncatemod_func(a, b): """function for truncatemod formula""" # For positive numbers, floor and trunc are equivalent return akg.topi.subtract(a, akg.topi.multiply(b, Cast(Floor(Divide(a, b, utils.CCE)), b.dtype, target=utils.CCE))) mod_value = truncatemod_func(x_abs_fp32, y_abs_fp32) # Because there are precision errors in division on mini, etc., # the calculation results need to be corrected mod_value = truncatemod_func(mod_value, y_abs_fp32) mod_value = akg.topi.cast(mod_value, "float16") mod_value = akg.tvm.compute(mod_value.shape, lambda *indice: akg.tvm.expr.Select(mod_value(*indice) >= y_abs(*indice), mod_value(*indice) - y_abs(*indice), mod_value(*indice)), name="mod_value") return mod_value _, _, out_shape = produce_shapes(utils.get_shape(x), utils.get_shape(y)) x = akg.topi.broadcast_to(x, out_shape) y = akg.topi.broadcast_to(y, out_shape) # Scenarios for correcting calculation results are complex, # using absolute values can simplify the scenario: # truncatemod(x,y) = Sign(x) * truncatemod(|x|, |y|) mod_abs = truncatemod_positive(akg.topi.abs(x), akg.topi.abs(y)) mod = akg.topi.multiply(akg.topi.sign(x), mod_abs) return mod
Python
def truncatemod_positive(x_abs, y_abs): """Computes truncatemod value for positive number""" x_abs_fp32 = akg.topi.cast(x_abs, "float32") y_abs_fp32 = akg.topi.cast(y_abs, "float32") def truncatemod_func(a, b): """function for truncatemod formula""" # For positive numbers, floor and trunc are equivalent return akg.topi.subtract(a, akg.topi.multiply(b, Cast(Floor(Divide(a, b, utils.CCE)), b.dtype, target=utils.CCE))) mod_value = truncatemod_func(x_abs_fp32, y_abs_fp32) # Because there are precision errors in division on mini, etc., # the calculation results need to be corrected mod_value = truncatemod_func(mod_value, y_abs_fp32) mod_value = akg.topi.cast(mod_value, "float16") mod_value = akg.tvm.compute(mod_value.shape, lambda *indice: akg.tvm.expr.Select(mod_value(*indice) >= y_abs(*indice), mod_value(*indice) - y_abs(*indice), mod_value(*indice)), name="mod_value") return mod_value
def truncatemod_positive(x_abs, y_abs): """Computes truncatemod value for positive number""" x_abs_fp32 = akg.topi.cast(x_abs, "float32") y_abs_fp32 = akg.topi.cast(y_abs, "float32") def truncatemod_func(a, b): """function for truncatemod formula""" # For positive numbers, floor and trunc are equivalent return akg.topi.subtract(a, akg.topi.multiply(b, Cast(Floor(Divide(a, b, utils.CCE)), b.dtype, target=utils.CCE))) mod_value = truncatemod_func(x_abs_fp32, y_abs_fp32) # Because there are precision errors in division on mini, etc., # the calculation results need to be corrected mod_value = truncatemod_func(mod_value, y_abs_fp32) mod_value = akg.topi.cast(mod_value, "float16") mod_value = akg.tvm.compute(mod_value.shape, lambda *indice: akg.tvm.expr.Select(mod_value(*indice) >= y_abs(*indice), mod_value(*indice) - y_abs(*indice), mod_value(*indice)), name="mod_value") return mod_value
Python
def reduce_any_d(x, axis=None, keepdims=False): """ Reduce a tensor on a certain axis based on max. Args: x (tvm.tensor.Tensor): The input tensor to reduce. Should be of type int8. axis (Union[list, tuple, int, None]): The dimensions to reduce. If None, all dimensions will be reduced. each dim must be in the range [-len(data.shape), len(data.shape) - 1]. keepdims (Union[bool, None]): If True, retains reduced dimensions with length 1, defaults to False. Returns: tvm.tensor.Tensor of same type as input tensor x. """ # check type utils.ops_dtype_check(x.dtype, utils.DtypeForDavinci.INT8) utils.check_shape(x.shape) # check axis utils.reduce_axis_check(x.shape, axis) refined_axis = refine_reduce_axis(x, axis) if len(set(refined_axis)) == len(x.shape) and not keepdims: keepdims = True res = _reduce_any_d_compute(x, refined_axis, keepdims) if len(set(refined_axis)) == len(x.shape): res = topi.reshape(res, (1, )) return res
def reduce_any_d(x, axis=None, keepdims=False): """ Reduce a tensor on a certain axis based on max. Args: x (tvm.tensor.Tensor): The input tensor to reduce. Should be of type int8. axis (Union[list, tuple, int, None]): The dimensions to reduce. If None, all dimensions will be reduced. each dim must be in the range [-len(data.shape), len(data.shape) - 1]. keepdims (Union[bool, None]): If True, retains reduced dimensions with length 1, defaults to False. Returns: tvm.tensor.Tensor of same type as input tensor x. """ # check type utils.ops_dtype_check(x.dtype, utils.DtypeForDavinci.INT8) utils.check_shape(x.shape) # check axis utils.reduce_axis_check(x.shape, axis) refined_axis = refine_reduce_axis(x, axis) if len(set(refined_axis)) == len(x.shape) and not keepdims: keepdims = True res = _reduce_any_d_compute(x, refined_axis, keepdims) if len(set(refined_axis)) == len(x.shape): res = topi.reshape(res, (1, )) return res
Python
def space_to_batch_nd(data, block_shape, paddings): """ The N-D version of SpaceToBatch. Zero padding, then rearranging spatial data blocks into batch. Args: data (tvn.tensor.Tensor): Spacial data of type float16, float32, int8, uint8, int32. block_shape (Union[tuple, list]): 1-D shape of length `L`. paddings (Union[tuple, list]): 2-D list of shape `[L][2]`, all values must be greater than or equal to 0. Returns: tvn.tensor.Tensor, has the same type as inputs """ check_inputs(data, block_shape, paddings) dim_info, _ = space_to_batch_nd_set_dim_func(data, block_shape, paddings) attrs = {"dim": dim_info} block_shape = list(block_shape) pad_before = [] pad_after = [] n = len(data.shape) m = len(block_shape) _get_pad_before_and_after(n, m, paddings, pad_before, pad_after) prod_of_block_shape = reduce(lambda x, y: x * y, block_shape) data_shape_padded = nn.pad(data, pad_before, pad_after) M = len(block_shape) batch = data_shape_padded.shape[0] spatial_shape = data_shape_padded.shape[1:1 + M] remain_shape = data_shape_padded.shape[1 + M:] oshape = [batch * prod_of_block_shape] + \ [dim // bsize for dim, bsize in zip(spatial_shape, block_shape)] + remain_shape def map_index(*index): ibatch = index[0] % batch ispatial = list(index[1:1 + M]) iremain = list(index[1 + M:]) coef = index[0] // batch for i in reversed(range(M)): ispatial[i] = coef % block_shape[i] + index[1 + i] * block_shape[i] coef = coef // block_shape[i] return [ibatch] + ispatial + iremain output = akg.tvm.compute(oshape, lambda *i: data_shape_padded(*map_index(*i)), name='output') return output, attrs
def space_to_batch_nd(data, block_shape, paddings): """ The N-D version of SpaceToBatch. Zero padding, then rearranging spatial data blocks into batch. Args: data (tvn.tensor.Tensor): Spacial data of type float16, float32, int8, uint8, int32. block_shape (Union[tuple, list]): 1-D shape of length `L`. paddings (Union[tuple, list]): 2-D list of shape `[L][2]`, all values must be greater than or equal to 0. Returns: tvn.tensor.Tensor, has the same type as inputs """ check_inputs(data, block_shape, paddings) dim_info, _ = space_to_batch_nd_set_dim_func(data, block_shape, paddings) attrs = {"dim": dim_info} block_shape = list(block_shape) pad_before = [] pad_after = [] n = len(data.shape) m = len(block_shape) _get_pad_before_and_after(n, m, paddings, pad_before, pad_after) prod_of_block_shape = reduce(lambda x, y: x * y, block_shape) data_shape_padded = nn.pad(data, pad_before, pad_after) M = len(block_shape) batch = data_shape_padded.shape[0] spatial_shape = data_shape_padded.shape[1:1 + M] remain_shape = data_shape_padded.shape[1 + M:] oshape = [batch * prod_of_block_shape] + \ [dim // bsize for dim, bsize in zip(spatial_shape, block_shape)] + remain_shape def map_index(*index): ibatch = index[0] % batch ispatial = list(index[1:1 + M]) iremain = list(index[1 + M:]) coef = index[0] // batch for i in reversed(range(M)): ispatial[i] = coef % block_shape[i] + index[1 + i] * block_shape[i] coef = coef // block_shape[i] return [ibatch] + ispatial + iremain output = akg.tvm.compute(oshape, lambda *i: data_shape_padded(*map_index(*i)), name='output') return output, attrs
Python
def Cast(data, dst_type, target=utils.CCE): """ cast data to target type. Args: data (tvm.tensor.Tensor): Tensor to be casted. dst_type (str): target cast type. Returns: tvm.tensor.Tensor, type is dst_type. Supported Platforms: 'Ascend', 'GPU', 'CPU' """ utils.check_supported_target(target) if target == utils.CCE: return _cast_ascend(data, dst_type) else: return _cast(data, dst_type)
def Cast(data, dst_type, target=utils.CCE): """ cast data to target type. Args: data (tvm.tensor.Tensor): Tensor to be casted. dst_type (str): target cast type. Returns: tvm.tensor.Tensor, type is dst_type. Supported Platforms: 'Ascend', 'GPU', 'CPU' """ utils.check_supported_target(target) if target == utils.CCE: return _cast_ascend(data, dst_type) else: return _cast(data, dst_type)
Python
def ReduceOr(inputs, axis=None, keepdims=False, target=utils.CCE): """ Compute the logical or of elements across dimensions of a tensor. Args: inputs (tvm.tensor.Tensor): Tensor. axis (Union[list, tuple, int, None]): If the list or tuple is empty, the axis equal to None. keepdims (bool): If keepdims equal to True, the result shape length is same to input shape length. Returns: tvm.tensor.Tensor, has same type as input. If keepdims is True, all reduced dimensions are retained with length 1, else these reduced axis will be eliminate. Supported Platforms: 'Ascend', 'GPU', 'CPU' """ utils.check_supported_target(target) axis = refine_reduce_axis(inputs, axis) utils.check_shape(inputs.shape) output = akg.topi.any(inputs, axis=axis, keepdims=keepdims) return output
def ReduceOr(inputs, axis=None, keepdims=False, target=utils.CCE): """ Compute the logical or of elements across dimensions of a tensor. Args: inputs (tvm.tensor.Tensor): Tensor. axis (Union[list, tuple, int, None]): If the list or tuple is empty, the axis equal to None. keepdims (bool): If keepdims equal to True, the result shape length is same to input shape length. Returns: tvm.tensor.Tensor, has same type as input. If keepdims is True, all reduced dimensions are retained with length 1, else these reduced axis will be eliminate. Supported Platforms: 'Ascend', 'GPU', 'CPU' """ utils.check_supported_target(target) axis = refine_reduce_axis(inputs, axis) utils.check_shape(inputs.shape) output = akg.topi.any(inputs, axis=axis, keepdims=keepdims) return output
Python
def prelu_grad(dy, A, w): """ brief Computes backgrad prelu value of a tensor. \f[ dw = sum(dy * \\partial(prelu(A)) / \\partial w) dA = A > 0 ? dy : dy * w \f] param inputs akg.tvm.Tensor of type float16, float32 return akg.tvm.Tensor of same type and shape as inputs """ shape = [x.value for x in dy.shape] dtype = dy.dtype shape1 = [x.value for x in A.shape] dtype1 = A.dtype shape2 = [x.value for x in w.shape] dtype2 = w.dtype assert len(shape) == 4, "only support 4-dim pooling" # NCHW assert len(shape1) == 4, "only support 4-dim pooling" # NCHW assert len(shape2) == 1, "only support 1-dim a" assert (shape2[0] == shape1[1] or shape2[0] == 1), "there is only two values are legitimate: 1, or the number of channels at input. Default: 1" assert (shape[0] == shape1[0] and shape[1] == shape1[1] and shape[2] == shape1[2] and shape[3] == shape1[3]), "dim number must be equal" check_list = ["float16", "float32"] if not (dtype1.lower() in check_list and dtype2.lower() in check_list and dtype.lower() in check_list): raise RuntimeError("tile_cce only support %s while dtype is %s and %s and %s" % (",".join(check_list), dtype, dtype1, dtype2)) utils.check_shape(shape) utils.check_shape(shape1) utils.check_shape(shape2) def grad_dsl(): w_reshape = akg.topi.reshape(w, (1, shape2[0], 1, 1)) w_broadcast = akg.topi.broadcast_to(w_reshape, shape1) dA = akg.tvm.compute(shape, lambda *i: akg.tvm.if_then_else( A(*i) >= akg.tvm.const(0, dtype), dy(*i), dy(*i) * w_broadcast(*i) )) # dy * \partial(prelu(A)) / \partial w dw_intermediate = akg.tvm.compute(shape, lambda *i: akg.tvm.if_then_else( A(*i) >= akg.tvm.const(0, dtype), akg.tvm.const(0, dtype), dy(*i) * A(*i) )) # hybrid accuracy: sum use float32, other use fp16 # if dtype.lower() is not "float32": # dw_intermediate = akg.topi.cast(dw_intermediate, "float32") if shape2[0] == 1: # all channel share one w #dw = akg.topi.sum(dw_intermediate) dw = akg.topi.sum(dw_intermediate, axis=3) dw = akg.topi.sum(dw, axis=2) dw = akg.topi.sum(dw, axis=1) dw = akg.topi.sum(dw, axis=0) # dw = akg.topi.sum(dw_intermediate, axis=1) # dw = akg.topi.sum(dw, axis=2) # dw = akg.topi.sum(dw, axis=1) # dw = akg.topi.sum(dw, axis=0) #dw = akg.tvm.compute(shape, lambda *indice: akg.tvm.sum(dw_intermediate(*indice), axis=[0,1,2,3]), name="dw") #dw = akg.lang.ascend.sum(dw_intermediate, axis=3, keepdims=False) #dw = akg.lang.ascend.sum(dw_intermediate, axis=2, keepdims=False) #dw = akg.lang.ascend.sum(dw_intermediate, axis=1, keepdims=False) #dw = akg.lang.ascend.sum(dw_intermediate, axis=0, keepdims=False) else: # all channel use separate w # dw = akg.topi.sum(dw_intermediate, axis=[0,2,3]) # Accuracy is not up to standard dw = akg.topi.sum(dw_intermediate, axis=3) dw = akg.topi.sum(dw, axis=2) dw = akg.topi.sum(dw, axis=0) # dw = akg.topi.sum(dw_intermediate, axis=1) # dw = akg.topi.sum(dw, axis=1) # dw = akg.topi.sum(dw, axis=0) # hybrid accuracy: sum use float32, other use fp16 # if dtype.lower() is not "float32": # dw = akg.topi.cast(dw, "float16") return dA, dw attrs = {"pragma_checkcoincident": 0, "pragma_modshift": 1} return grad_dsl(), attrs
def prelu_grad(dy, A, w): """ brief Computes backgrad prelu value of a tensor. \f[ dw = sum(dy * \\partial(prelu(A)) / \\partial w) dA = A > 0 ? dy : dy * w \f] param inputs akg.tvm.Tensor of type float16, float32 return akg.tvm.Tensor of same type and shape as inputs """ shape = [x.value for x in dy.shape] dtype = dy.dtype shape1 = [x.value for x in A.shape] dtype1 = A.dtype shape2 = [x.value for x in w.shape] dtype2 = w.dtype assert len(shape) == 4, "only support 4-dim pooling" # NCHW assert len(shape1) == 4, "only support 4-dim pooling" # NCHW assert len(shape2) == 1, "only support 1-dim a" assert (shape2[0] == shape1[1] or shape2[0] == 1), "there is only two values are legitimate: 1, or the number of channels at input. Default: 1" assert (shape[0] == shape1[0] and shape[1] == shape1[1] and shape[2] == shape1[2] and shape[3] == shape1[3]), "dim number must be equal" check_list = ["float16", "float32"] if not (dtype1.lower() in check_list and dtype2.lower() in check_list and dtype.lower() in check_list): raise RuntimeError("tile_cce only support %s while dtype is %s and %s and %s" % (",".join(check_list), dtype, dtype1, dtype2)) utils.check_shape(shape) utils.check_shape(shape1) utils.check_shape(shape2) def grad_dsl(): w_reshape = akg.topi.reshape(w, (1, shape2[0], 1, 1)) w_broadcast = akg.topi.broadcast_to(w_reshape, shape1) dA = akg.tvm.compute(shape, lambda *i: akg.tvm.if_then_else( A(*i) >= akg.tvm.const(0, dtype), dy(*i), dy(*i) * w_broadcast(*i) )) # dy * \partial(prelu(A)) / \partial w dw_intermediate = akg.tvm.compute(shape, lambda *i: akg.tvm.if_then_else( A(*i) >= akg.tvm.const(0, dtype), akg.tvm.const(0, dtype), dy(*i) * A(*i) )) # hybrid accuracy: sum use float32, other use fp16 # if dtype.lower() is not "float32": # dw_intermediate = akg.topi.cast(dw_intermediate, "float32") if shape2[0] == 1: # all channel share one w #dw = akg.topi.sum(dw_intermediate) dw = akg.topi.sum(dw_intermediate, axis=3) dw = akg.topi.sum(dw, axis=2) dw = akg.topi.sum(dw, axis=1) dw = akg.topi.sum(dw, axis=0) # dw = akg.topi.sum(dw_intermediate, axis=1) # dw = akg.topi.sum(dw, axis=2) # dw = akg.topi.sum(dw, axis=1) # dw = akg.topi.sum(dw, axis=0) #dw = akg.tvm.compute(shape, lambda *indice: akg.tvm.sum(dw_intermediate(*indice), axis=[0,1,2,3]), name="dw") #dw = akg.lang.ascend.sum(dw_intermediate, axis=3, keepdims=False) #dw = akg.lang.ascend.sum(dw_intermediate, axis=2, keepdims=False) #dw = akg.lang.ascend.sum(dw_intermediate, axis=1, keepdims=False) #dw = akg.lang.ascend.sum(dw_intermediate, axis=0, keepdims=False) else: # all channel use separate w # dw = akg.topi.sum(dw_intermediate, axis=[0,2,3]) # Accuracy is not up to standard dw = akg.topi.sum(dw_intermediate, axis=3) dw = akg.topi.sum(dw, axis=2) dw = akg.topi.sum(dw, axis=0) # dw = akg.topi.sum(dw_intermediate, axis=1) # dw = akg.topi.sum(dw, axis=1) # dw = akg.topi.sum(dw, axis=0) # hybrid accuracy: sum use float32, other use fp16 # if dtype.lower() is not "float32": # dw = akg.topi.cast(dw, "float16") return dA, dw attrs = {"pragma_checkcoincident": 0, "pragma_modshift": 1} return grad_dsl(), attrs
Python
def apply_ada_max_run(shape, dtype, epsilon, attrs=None): """run function for dsl function apply_ada_max.""" shapes = [shape, shape, shape, shape, (1,), (1,), (1,), (1,)] dtypes = [dtype] * len(shapes) op_attrs = [epsilon] mod = utils.op_build_test(apply_ada_max, shapes, dtypes, op_attrs=op_attrs, kernel_name="apply_ada_max", attrs=attrs) inputs, expects, args = gen_data(shape, dtype, epsilon) outputs = utils.mod_launch(mod, args, outputs=(0, 1, 2), expect=expects) rtol, atol = get_rtol_atol("apply_delta", dtype) results = list(map(lambda x, y: compare_tensor(x, y, rtol=rtol, atol=atol), outputs, expects)) return inputs, outputs, expects, all(results)
def apply_ada_max_run(shape, dtype, epsilon, attrs=None): """run function for dsl function apply_ada_max.""" shapes = [shape, shape, shape, shape, (1,), (1,), (1,), (1,)] dtypes = [dtype] * len(shapes) op_attrs = [epsilon] mod = utils.op_build_test(apply_ada_max, shapes, dtypes, op_attrs=op_attrs, kernel_name="apply_ada_max", attrs=attrs) inputs, expects, args = gen_data(shape, dtype, epsilon) outputs = utils.mod_launch(mod, args, outputs=(0, 1, 2), expect=expects) rtol, atol = get_rtol_atol("apply_delta", dtype) results = list(map(lambda x, y: compare_tensor(x, y, rtol=rtol, atol=atol), outputs, expects)) return inputs, outputs, expects, all(results)
Python
def gen_data(shape, dtype, epsilon): """Generate data for testing the op.""" var = random_gaussian(shape, miu=1, sigma=0.3).astype(dtype) m = random_gaussian(shape, miu=1, sigma=0.3).astype(dtype) v = random_gaussian(shape, miu=1, sigma=0.3).astype(dtype) grad = random_gaussian(shape, miu=1, sigma=0.3).astype(dtype) lr = np.random.rand(1).astype(dtype) beta1 = np.random.rand(1).astype(dtype) beta2 = np.random.rand(1).astype(dtype) beta1_power = beta1 * beta1 inputs = [var, m, v, grad, lr, beta1, beta1_power, beta2] one = np.array([1]).astype(dtype) epsilon = np.array([epsilon]).astype(dtype) out_m = beta1 * m + (one - beta1) * grad out_v = np.maximum(beta2 * v, np.abs(grad)) out_var = var - lr * out_m / ((one - beta1_power) * (out_v + epsilon)) expects = [out_var, out_m, out_v] args = inputs return inputs, expects, args
def gen_data(shape, dtype, epsilon): """Generate data for testing the op.""" var = random_gaussian(shape, miu=1, sigma=0.3).astype(dtype) m = random_gaussian(shape, miu=1, sigma=0.3).astype(dtype) v = random_gaussian(shape, miu=1, sigma=0.3).astype(dtype) grad = random_gaussian(shape, miu=1, sigma=0.3).astype(dtype) lr = np.random.rand(1).astype(dtype) beta1 = np.random.rand(1).astype(dtype) beta2 = np.random.rand(1).astype(dtype) beta1_power = beta1 * beta1 inputs = [var, m, v, grad, lr, beta1, beta1_power, beta2] one = np.array([1]).astype(dtype) epsilon = np.array([epsilon]).astype(dtype) out_m = beta1 * m + (one - beta1) * grad out_v = np.maximum(beta2 * v, np.abs(grad)) out_var = var - lr * out_m / ((one - beta1_power) * (out_v + epsilon)) expects = [out_var, out_m, out_v] args = inputs return inputs, expects, args
Python
def Exp(data, target=utils.CCE): """ Calculate exponential of input data. Args: input (tvm.tensor.Tensor): Tensor. Returns: tvm.tensor.Tensor, has the same type as input. Supported Platforms: 'Ascend', 'GPU', 'CPU' """ utils.check_supported_target(target) if target == utils.CCE: return _exp_ascend(data) else: return _exp(data)
def Exp(data, target=utils.CCE): """ Calculate exponential of input data. Args: input (tvm.tensor.Tensor): Tensor. Returns: tvm.tensor.Tensor, has the same type as input. Supported Platforms: 'Ascend', 'GPU', 'CPU' """ utils.check_supported_target(target) if target == utils.CCE: return _exp_ascend(data) else: return _exp(data)
Python
def produce_shapes(shape1, shape2): """two input shapes produce three output shape.""" shape1 = list(shape1) shape2 = list(shape2) flag = 0 if len(shape1) < len(shape2): shape1, shape2 = shape2, shape1 flag = 1 output_shape_len = len(shape1) dec = output_shape_len - len(shape2) for i in range(dec): shape2 = [1] + shape2 out_shape = [] for i in range(output_shape_len): if (shape1[i] != shape2[i]) and (shape1[i] != 1) and (shape2[i] != 1): raise RuntimeError("input shapes not match!") if isinstance(shape1[i], int) and isinstance(shape2[i], int) and shape1[i] > shape2[i]: out_shape.append(shape1[i]) else: out_shape.append(shape2[i]) if flag == 1: shape1, shape2 = shape2, shape1 return shape1, shape2, out_shape
def produce_shapes(shape1, shape2): """two input shapes produce three output shape.""" shape1 = list(shape1) shape2 = list(shape2) flag = 0 if len(shape1) < len(shape2): shape1, shape2 = shape2, shape1 flag = 1 output_shape_len = len(shape1) dec = output_shape_len - len(shape2) for i in range(dec): shape2 = [1] + shape2 out_shape = [] for i in range(output_shape_len): if (shape1[i] != shape2[i]) and (shape1[i] != 1) and (shape2[i] != 1): raise RuntimeError("input shapes not match!") if isinstance(shape1[i], int) and isinstance(shape2[i], int) and shape1[i] > shape2[i]: out_shape.append(shape1[i]) else: out_shape.append(shape2[i]) if flag == 1: shape1, shape2 = shape2, shape1 return shape1, shape2, out_shape
Python
def mul_axis_sum(data, axes, keepdims, name=None, attrs=None): """calculate sum one by one.""" if name is None and attrs is None: for axis in axes: data = akg.topi.sum(data, axis=axis, keepdims=keepdims) else: shape = [x.value for x in data.shape] for axis in axes[:-1]: data = akg.topi.sum(data, axis=axis, keepdims=keepdims) l_axis = shape[axes[-1]] k = akg.tvm.reduce_axis((0, l_axis), name="k") res_shape = [1 if i in axes else shape[i] for i in range(len(shape))] def sumfunc(*i): new_i = list(i) new_i[axes[-1]] = k return akg.tvm.sum(data(*tuple(new_i)), axis=k) if name is None: data = akg.tvm.compute(res_shape, sumfunc, attrs=attrs) elif attrs is None: data = akg.tvm.compute(res_shape, sumfunc, name=name) else: data = akg.tvm.compute(res_shape, sumfunc, name=name, attrs=attrs) return data
def mul_axis_sum(data, axes, keepdims, name=None, attrs=None): """calculate sum one by one.""" if name is None and attrs is None: for axis in axes: data = akg.topi.sum(data, axis=axis, keepdims=keepdims) else: shape = [x.value for x in data.shape] for axis in axes[:-1]: data = akg.topi.sum(data, axis=axis, keepdims=keepdims) l_axis = shape[axes[-1]] k = akg.tvm.reduce_axis((0, l_axis), name="k") res_shape = [1 if i in axes else shape[i] for i in range(len(shape))] def sumfunc(*i): new_i = list(i) new_i[axes[-1]] = k return akg.tvm.sum(data(*tuple(new_i)), axis=k) if name is None: data = akg.tvm.compute(res_shape, sumfunc, attrs=attrs) elif attrs is None: data = akg.tvm.compute(res_shape, sumfunc, name=name) else: data = akg.tvm.compute(res_shape, sumfunc, name=name, attrs=attrs) return data
Python
def cal_pad_shapes_by_strategy(shape, kernel, stride, strategy): """ Calculate the pad size and output shape by padding strategy. Args: shape (Union[list, tuple]): Input shape, a list or tuple of 5 int numbers. kernel (Union[list, tuple]): List or tuple of two int numbers for pooling window's size. stride (Union[list, tuple]): List or tuple of two int numbers for window's stride. strategy (Union[str, list]): A string or list for padding strategy, should be 'VALID', 'SAME' or instance of list(including four int numbers, as 'CONSTANTS' strategy). Returns: pad_sizes: Padding sizes(a list of four int numbers: [H_head_pad, H_tail_pad, W_head_pad, W_tail_pad]). out_shape: Output tensor's shape(a list of two int numbers: [output_H, output_W]). """ pool_shapes = [shape[2], shape[3]] out_shape = [] pad_sizes = [] contrain_var = False for sh in [shape, kernel, stride]: for s in sh: if not isinstance(s, (int, akg.tvm.expr.IntImm)): contrain_var = True if isinstance(strategy, str) and strategy.upper() == "VALID": for i in range(2): out_shape.append(math.ceil((pool_shapes[i] - (kernel[i] - 1)) / stride[i])) if out_shape[i] <= 0: raise ValueError("With pad mode {0}, the value of the kernel " "(or window) size should be less than or " "equal to that of the corresponding input " "shape!".format(strategy)) pad_sizes += [0, 0] # for h pad_sizes += [0, 0] # for w elif isinstance(strategy, str) and strategy.upper() == "SAME": for i in range(2): out_shape.append(math.ceil(pool_shapes[i] / stride[i])) diff_shape = ((out_shape[i] - 1) * stride[i] + kernel[i]) - pool_shapes[i] diff_shape = diff_shape if diff_shape > 0 else 0 pad_shape = [math.floor(diff_shape / 2), math.ceil(diff_shape / 2)] pad_sizes += pad_shape elif isinstance(strategy, (list, tuple)): if len(strategy) != 4: raise RuntimeError( "When with strateg 'CONSTANTS', strategy should be list or tuple of 4 int numbers but get {}". format(strategy)) vc_util.check_pad('pad', strategy, 4) for i in range(2): pad_shape = [strategy[i * 2], strategy[i * 2 + 1]] if contrain_var: out_shape.append(akg.tvm.floordiv((pool_shapes[i] + (pad_shape[0] + pad_shape[1]) - kernel[i]), (stride[i])) + 1) else: out_shape.append(math.floor((pool_shapes[i] + (pad_shape[0] + pad_shape[1]) - kernel[i]) / float(stride[i])) + 1) pad_sizes += pad_shape height, width = out_shape if (isinstance(height, int) and height <= 0) or (isinstance(width, int) and width <= 0): raise ValueError("The height and witdth of calculated output" " shape [{}, {}] are invalid. Please check the " "input parameters!".format(height, width)) else: raise RuntimeError("Padding strategies only support 'VALID', 'CONSTANTS' or 'SAME', but get {}". format(strategy)) return pad_sizes, out_shape
def cal_pad_shapes_by_strategy(shape, kernel, stride, strategy): """ Calculate the pad size and output shape by padding strategy. Args: shape (Union[list, tuple]): Input shape, a list or tuple of 5 int numbers. kernel (Union[list, tuple]): List or tuple of two int numbers for pooling window's size. stride (Union[list, tuple]): List or tuple of two int numbers for window's stride. strategy (Union[str, list]): A string or list for padding strategy, should be 'VALID', 'SAME' or instance of list(including four int numbers, as 'CONSTANTS' strategy). Returns: pad_sizes: Padding sizes(a list of four int numbers: [H_head_pad, H_tail_pad, W_head_pad, W_tail_pad]). out_shape: Output tensor's shape(a list of two int numbers: [output_H, output_W]). """ pool_shapes = [shape[2], shape[3]] out_shape = [] pad_sizes = [] contrain_var = False for sh in [shape, kernel, stride]: for s in sh: if not isinstance(s, (int, akg.tvm.expr.IntImm)): contrain_var = True if isinstance(strategy, str) and strategy.upper() == "VALID": for i in range(2): out_shape.append(math.ceil((pool_shapes[i] - (kernel[i] - 1)) / stride[i])) if out_shape[i] <= 0: raise ValueError("With pad mode {0}, the value of the kernel " "(or window) size should be less than or " "equal to that of the corresponding input " "shape!".format(strategy)) pad_sizes += [0, 0] # for h pad_sizes += [0, 0] # for w elif isinstance(strategy, str) and strategy.upper() == "SAME": for i in range(2): out_shape.append(math.ceil(pool_shapes[i] / stride[i])) diff_shape = ((out_shape[i] - 1) * stride[i] + kernel[i]) - pool_shapes[i] diff_shape = diff_shape if diff_shape > 0 else 0 pad_shape = [math.floor(diff_shape / 2), math.ceil(diff_shape / 2)] pad_sizes += pad_shape elif isinstance(strategy, (list, tuple)): if len(strategy) != 4: raise RuntimeError( "When with strateg 'CONSTANTS', strategy should be list or tuple of 4 int numbers but get {}". format(strategy)) vc_util.check_pad('pad', strategy, 4) for i in range(2): pad_shape = [strategy[i * 2], strategy[i * 2 + 1]] if contrain_var: out_shape.append(akg.tvm.floordiv((pool_shapes[i] + (pad_shape[0] + pad_shape[1]) - kernel[i]), (stride[i])) + 1) else: out_shape.append(math.floor((pool_shapes[i] + (pad_shape[0] + pad_shape[1]) - kernel[i]) / float(stride[i])) + 1) pad_sizes += pad_shape height, width = out_shape if (isinstance(height, int) and height <= 0) or (isinstance(width, int) and width <= 0): raise ValueError("The height and witdth of calculated output" " shape [{}, {}] are invalid. Please check the " "input parameters!".format(height, width)) else: raise RuntimeError("Padding strategies only support 'VALID', 'CONSTANTS' or 'SAME', but get {}". format(strategy)) return pad_sizes, out_shape
Python
def broadcast_gradient_args(x, y): """ Return the reduction indices for computing gradients of x op y with broadcast. Args: x (Union[list, tuple]): the shape of data input y (Union[list, tuple]): the shape of data input Returns: rx (list): the reduction indices for computing gradients of x ry (list): the reduction indices for computing gradients of y """ rx = [] ry = [] for i, item in enumerate(x): if item < y[i]: rx.append(i) elif item > y[i]: ry.append(i) return rx, ry
def broadcast_gradient_args(x, y): """ Return the reduction indices for computing gradients of x op y with broadcast. Args: x (Union[list, tuple]): the shape of data input y (Union[list, tuple]): the shape of data input Returns: rx (list): the reduction indices for computing gradients of x ry (list): the reduction indices for computing gradients of y """ rx = [] ry = [] for i, item in enumerate(x): if item < y[i]: rx.append(i) elif item > y[i]: ry.append(i) return rx, ry
Python
def ReduceProd(data, axis=None, keepdims=False, target=utils.CCE): """ Computes the product of elements along specific axis Args: data (tvm.tensor.Tensor): indicating the input tensor. axis (Union[list, tuple, int, None]): indicating the dimensions to reduce at. if it's None, all dimensions will be reduced. keepdims (Union[bool, None]): if true, keep the dimensions with length 1. Returns: Tensor, the product of elements of input tensor. Supported Platforms: 'Ascend', 'GPU' """ utils.check_supported_target(target) shape = [x.value for x in data.shape] utils.ops_dtype_check(data.dtype, [utils.DtypeForDavinci.ALL_FLOAT, utils.DtypeForDavinci.INT8, utils.DtypeForDavinci.UINT8]) if axis is None and keepdims is False: raise ValueError("keepdims must be True when axis is None!") axis_new = refine_reduce_axis(data, axis) if target == utils.CUDA: return akg.topi.prod(data, axis=axis, keepdims=keepdims) utils.check_shape(shape) dtype = data.dtype if dtype in ["int8", "uint8"]: data = akg.topi.cast(data, "float16") vlog_t = Log(data, target) res = akg.topi.sum(vlog_t, axis=axis_new, keepdims=keepdims) res = Exp(res, target) if dtype in ["int8", "uint8"]: res = akg.topi.cast(res, dtype) return res
def ReduceProd(data, axis=None, keepdims=False, target=utils.CCE): """ Computes the product of elements along specific axis Args: data (tvm.tensor.Tensor): indicating the input tensor. axis (Union[list, tuple, int, None]): indicating the dimensions to reduce at. if it's None, all dimensions will be reduced. keepdims (Union[bool, None]): if true, keep the dimensions with length 1. Returns: Tensor, the product of elements of input tensor. Supported Platforms: 'Ascend', 'GPU' """ utils.check_supported_target(target) shape = [x.value for x in data.shape] utils.ops_dtype_check(data.dtype, [utils.DtypeForDavinci.ALL_FLOAT, utils.DtypeForDavinci.INT8, utils.DtypeForDavinci.UINT8]) if axis is None and keepdims is False: raise ValueError("keepdims must be True when axis is None!") axis_new = refine_reduce_axis(data, axis) if target == utils.CUDA: return akg.topi.prod(data, axis=axis, keepdims=keepdims) utils.check_shape(shape) dtype = data.dtype if dtype in ["int8", "uint8"]: data = akg.topi.cast(data, "float16") vlog_t = Log(data, target) res = akg.topi.sum(vlog_t, axis=axis_new, keepdims=keepdims) res = Exp(res, target) if dtype in ["int8", "uint8"]: res = akg.topi.cast(res, dtype) return res
Python
def sigmoid(data, target="cce"): """ Computes sigmoid of x element-wise. \f[ y = \frac{1}{e^{-x} + 1} \f] Args: data (tvm.tensor.Tensor): Tensor of type float16, float32. Returns: tvm.tensor.Tensor, has same type and shape as data. """ check_list = ["float16", "float32"] dtype = data.dtype if not dtype in check_list: raise RuntimeError("sigmoid_cce only support %s while dtype is %s" % (",".join(check_list), dtype)) shape = data.shape utils.check_shape(shape) res = vrec(vadds(vexp(vmuls(data, -1.0)), 1.0)) return res
def sigmoid(data, target="cce"): """ Computes sigmoid of x element-wise. \f[ y = \frac{1}{e^{-x} + 1} \f] Args: data (tvm.tensor.Tensor): Tensor of type float16, float32. Returns: tvm.tensor.Tensor, has same type and shape as data. """ check_list = ["float16", "float32"] dtype = data.dtype if not dtype in check_list: raise RuntimeError("sigmoid_cce only support %s while dtype is %s" % (",".join(check_list), dtype)) shape = data.shape utils.check_shape(shape) res = vrec(vadds(vexp(vmuls(data, -1.0)), 1.0)) return res
Python
def launch(kernel, args, output=(-1,)): """ simulated run CCE kernel by aic model. Args: kernel (str): str of kernel name, or CCE Module. args (Union[list, tuple]): list or tuple of numpy array. output (Union[list, tuple]): list or tuple of output argment index. Returns: output numpy array, or tuple of numpy array if multi-output. """ if isinstance(kernel, akg.tvm.module.Module): code = kernel.imported_modules[0].get_source() kernel_name = code.split("_kernel")[0].split(" ")[-1] else: kernel_name = kernel hbm_addr = 0x4000000 hbm_unit = 0x1000000 aic_model_path = os.getenv('AIC_MODEL_PATH') if not aic_model_path: msg = "AIC_MODEL_PATH environment variable is not set. Please set it to the dir of model_exe" raise RuntimeError(msg) aic_model_path = os.path.realpath(aic_model_path) # spec : target chip specification. spec_name = os.getenv('AIC_MODEL_SPEC_NAME') if not spec_name: msg = "AIC_MODEL_SPEC_NAME environment variable is not set. Please set it to the name of spec(" \ "It should be xxx.spec and the xxx.spec file is under the AIC_MODEL_PATH directory)" raise RuntimeError(msg) aic_out_path = os.path.realpath("aic_out") if not os.path.exists(aic_out_path): os.mkdir(aic_out_path) calog_path = aic_out_path + "/calog" if not os.path.exists(calog_path): os.mkdir(calog_path) model_path = aic_out_path + "/model" if not os.path.exists(model_path): subprocess.call(["ln", "-s", aic_model_path + "/model", model_path]) kernel_meta_path = get_kernel_meta_path() kernel_meta_realpath = os.path.realpath(kernel_meta_path) if not os.path.exists(kernel_meta_realpath): msg = "The parameter kernel_meta_realpath can not be found, please check" raise RuntimeError(msg) o_name = kernel_meta_realpath + "/" + kernel_name + ".o" bin_name = aic_out_path + "/kernel.bin" subprocess.call(["aicore-elf-objcopy", "-O", "binary", "-j", ".text", o_name, bin_name]) load_dict = {} with open("%s/%s.json" % (kernel_meta_realpath, kernel_name), "r") as f: load_dict = json.load(f) arg_info = [] # [{"bin": "xx.bin", "out" : False, "size":100, "addr": 200},] desc = {"args": arg_info, "para_addr": hbm_addr, "bin_addr": hbm_addr + 0x100000, "bin": "kernel.bin", "block": load_dict["blockDim"], "spec": aic_model_path + '/' + spec_name, "path": aic_out_path} hbm_addr += hbm_unit for i, arg in enumerate(args): bin_name = "a_%d.bin" % (i) arg.tofile(os.path.join(aic_out_path, bin_name)) info = {"bin": bin_name, "size": arg.size * arg.dtype.itemsize, "addr": hbm_addr, "out": False} arg_info.append(info) need_size = arg.size if need_size % hbm_unit: need_size += hbm_unit - (need_size % hbm_unit) hbm_addr += need_size for i in output: arg_info[len(arg_info) + i if i < 0 else i]['out'] = True config_path = aic_out_path + "/config.toml" if os.path.exists(config_path): os.remove(config_path) with os.fdopen(os.open(config_path, os.O_WRONLY | os.O_CREAT, 0o400), 'w') as f: f.write('title="Sim Config"\n') f.write('log_open_value=0xffffffff\n') f.write('chip_version=1\n') f.write('block_dim=%d\n' % (desc['block'])) f.write('specPathName="%s"\n' % (desc["spec"])) f.write('path="%s/"\n' % (desc["path"])) f.write('hbm_para_addr=0x%x\n' % (desc["para_addr"])) f.write('[BIN]\n') f.write('name="%s"\n' % (desc['bin'])) f.write('addr=0x%x\n' % (desc['bin_addr'])) for arg in arg_info: f.write('[[output_para_array]]\n' if arg['out'] else '[[input_para_array]]\n') f.write('name="%s"\n' % (arg['bin'])) f.write('addr=0x%x\n' % (arg['addr'])) f.write('valid=1\n') if arg['out']: f.write('size=0x%x\n' % (arg['size'])) run_path = aic_out_path + "/run.sh" if os.path.exists(run_path): os.remove(run_path) with os.fdopen(os.open(run_path, os.O_WRONLY | os.O_CREAT, 0o500), 'w') as f: f.write("cd " + aic_out_path + "\n") f.write("export DVCSPEC_DIR=" + aic_model_path + "\n") f.write(aic_model_path + "/v100_ca_tag_master --gtest_filter=test_st_case.test_st_ca\n") subprocess.call(["sh", aic_out_path + "/run.sh"]) out_list = [] for i, arg_ in enumerate(args): if arg_info[i]['out']: out_data = np.fromfile(os.path.join(aic_out_path, arg_info[i]['bin']), arg_.dtype) if out_data.size > args[i].size: # strip unneeded data copied back by aic model out_data = out_data[0:arg_.size] out_arg = out_data.reshape(arg_.shape) out_list.append(out_arg) return out_list[0] if len(out_list) == 1 else tuple(out_list)
def launch(kernel, args, output=(-1,)): """ simulated run CCE kernel by aic model. Args: kernel (str): str of kernel name, or CCE Module. args (Union[list, tuple]): list or tuple of numpy array. output (Union[list, tuple]): list or tuple of output argment index. Returns: output numpy array, or tuple of numpy array if multi-output. """ if isinstance(kernel, akg.tvm.module.Module): code = kernel.imported_modules[0].get_source() kernel_name = code.split("_kernel")[0].split(" ")[-1] else: kernel_name = kernel hbm_addr = 0x4000000 hbm_unit = 0x1000000 aic_model_path = os.getenv('AIC_MODEL_PATH') if not aic_model_path: msg = "AIC_MODEL_PATH environment variable is not set. Please set it to the dir of model_exe" raise RuntimeError(msg) aic_model_path = os.path.realpath(aic_model_path) # spec : target chip specification. spec_name = os.getenv('AIC_MODEL_SPEC_NAME') if not spec_name: msg = "AIC_MODEL_SPEC_NAME environment variable is not set. Please set it to the name of spec(" \ "It should be xxx.spec and the xxx.spec file is under the AIC_MODEL_PATH directory)" raise RuntimeError(msg) aic_out_path = os.path.realpath("aic_out") if not os.path.exists(aic_out_path): os.mkdir(aic_out_path) calog_path = aic_out_path + "/calog" if not os.path.exists(calog_path): os.mkdir(calog_path) model_path = aic_out_path + "/model" if not os.path.exists(model_path): subprocess.call(["ln", "-s", aic_model_path + "/model", model_path]) kernel_meta_path = get_kernel_meta_path() kernel_meta_realpath = os.path.realpath(kernel_meta_path) if not os.path.exists(kernel_meta_realpath): msg = "The parameter kernel_meta_realpath can not be found, please check" raise RuntimeError(msg) o_name = kernel_meta_realpath + "/" + kernel_name + ".o" bin_name = aic_out_path + "/kernel.bin" subprocess.call(["aicore-elf-objcopy", "-O", "binary", "-j", ".text", o_name, bin_name]) load_dict = {} with open("%s/%s.json" % (kernel_meta_realpath, kernel_name), "r") as f: load_dict = json.load(f) arg_info = [] # [{"bin": "xx.bin", "out" : False, "size":100, "addr": 200},] desc = {"args": arg_info, "para_addr": hbm_addr, "bin_addr": hbm_addr + 0x100000, "bin": "kernel.bin", "block": load_dict["blockDim"], "spec": aic_model_path + '/' + spec_name, "path": aic_out_path} hbm_addr += hbm_unit for i, arg in enumerate(args): bin_name = "a_%d.bin" % (i) arg.tofile(os.path.join(aic_out_path, bin_name)) info = {"bin": bin_name, "size": arg.size * arg.dtype.itemsize, "addr": hbm_addr, "out": False} arg_info.append(info) need_size = arg.size if need_size % hbm_unit: need_size += hbm_unit - (need_size % hbm_unit) hbm_addr += need_size for i in output: arg_info[len(arg_info) + i if i < 0 else i]['out'] = True config_path = aic_out_path + "/config.toml" if os.path.exists(config_path): os.remove(config_path) with os.fdopen(os.open(config_path, os.O_WRONLY | os.O_CREAT, 0o400), 'w') as f: f.write('title="Sim Config"\n') f.write('log_open_value=0xffffffff\n') f.write('chip_version=1\n') f.write('block_dim=%d\n' % (desc['block'])) f.write('specPathName="%s"\n' % (desc["spec"])) f.write('path="%s/"\n' % (desc["path"])) f.write('hbm_para_addr=0x%x\n' % (desc["para_addr"])) f.write('[BIN]\n') f.write('name="%s"\n' % (desc['bin'])) f.write('addr=0x%x\n' % (desc['bin_addr'])) for arg in arg_info: f.write('[[output_para_array]]\n' if arg['out'] else '[[input_para_array]]\n') f.write('name="%s"\n' % (arg['bin'])) f.write('addr=0x%x\n' % (arg['addr'])) f.write('valid=1\n') if arg['out']: f.write('size=0x%x\n' % (arg['size'])) run_path = aic_out_path + "/run.sh" if os.path.exists(run_path): os.remove(run_path) with os.fdopen(os.open(run_path, os.O_WRONLY | os.O_CREAT, 0o500), 'w') as f: f.write("cd " + aic_out_path + "\n") f.write("export DVCSPEC_DIR=" + aic_model_path + "\n") f.write(aic_model_path + "/v100_ca_tag_master --gtest_filter=test_st_case.test_st_ca\n") subprocess.call(["sh", aic_out_path + "/run.sh"]) out_list = [] for i, arg_ in enumerate(args): if arg_info[i]['out']: out_data = np.fromfile(os.path.join(aic_out_path, arg_info[i]['bin']), arg_.dtype) if out_data.size > args[i].size: # strip unneeded data copied back by aic model out_data = out_data[0:arg_.size] out_arg = out_data.reshape(arg_.shape) out_list.append(out_arg) return out_list[0] if len(out_list) == 1 else tuple(out_list)
Python
def StandardNormal(seed, shape, target=utils.CUDA): """ Operator dsl function for standard_normal. Args: seed (int): Random seed. shape (tuple(int)): Output shape. Returns: Tensor with the given shape. Supported Platforms: 'GPU' """ return cuda_standard_normal(None, {"seed": seed, "shape": shape})
def StandardNormal(seed, shape, target=utils.CUDA): """ Operator dsl function for standard_normal. Args: seed (int): Random seed. shape (tuple(int)): Output shape. Returns: Tensor with the given shape. Supported Platforms: 'GPU' """ return cuda_standard_normal(None, {"seed": seed, "shape": shape})
Python
def intrin_load_im2col(dtype, stride_w, stride_h, kernel_w, kernel_h, dilation_h=1, dilation_w=1): ''' Create intrin function call for im2col Args: dtype: type of the data Return: cce intrin function call for im2col ''' input_w = akg.tvm.var('input_width') input_h = akg.tvm.var('input_height') pad_left = akg.tvm.var('padding_left') pad_right = akg.tvm.var('padding_right') pad_top = akg.tvm.var('padding_top') pad_bottom = akg.tvm.var('padding_bottom') w_idx_kernel = akg.tvm.var('fetch_position_inside_kernel_width') h_idx_kernel = akg.tvm.var('fetch_position_inside_kernel_height') h_idx = akg.tvm.var('kernel_h_index_in_input') w_idx = akg.tvm.var('kernel_w_index_in_input') window_size = 16 input_b = 1 input_c1 = 1 input_c0 = 16 input_data = akg.tvm.placeholder( (input_b, input_c1, input_h, input_w, input_c0), dtype=dtype) result = akg.tvm.compute((window_size, input_c0), lambda window, c0: input_data[0, 0, h_idx + h_idx_kernel + pad_bottom, w_idx + w_idx_kernel + pad_left + window*stride_w, c0], name='img2col_intrinsic') input_data_buff = akg.tvm.decl_buffer(input_data.shape, input_data.dtype, name="input_data_buff", offset_factor=1, scope="local.L1") result_buff = akg.tvm.decl_buffer(result.shape, result.dtype, name="result_buff", offset_factor=1, scope="local.UB") def intrin_func(ins, outs, sp): c1_idx = 0 offset = 1 mode = 0 time = 1 csize = 0 aa = ins[0] bb = outs[0] ib = akg.tvm.ir_builder.create() call_args = [sp[0], sp[1], sp[2], sp[3], sp[4], sp[5], sp[6], sp[7], sp[8], sp[9], c1_idx, stride_w, stride_h, kernel_w, kernel_h, dilation_w, dilation_h, offset, mode, time, csize] ib.emit(akg.tvm.call_extern(dtype, "img2col_cbuf_to_ub", bb.access_ptr("w"), aa.access_ptr("r"), *call_args)) return ib.get() with akg.tvm.build_config(offset_factor=1): return akg.tvm.decl_tensor_intrin(result.op, intrin_func, binds={ input_data: input_data_buff, result: result_buff}, scalar_params=[input_w, input_h, pad_left, pad_right, pad_top, pad_bottom, w_idx_kernel, h_idx_kernel, w_idx, h_idx])
def intrin_load_im2col(dtype, stride_w, stride_h, kernel_w, kernel_h, dilation_h=1, dilation_w=1): ''' Create intrin function call for im2col Args: dtype: type of the data Return: cce intrin function call for im2col ''' input_w = akg.tvm.var('input_width') input_h = akg.tvm.var('input_height') pad_left = akg.tvm.var('padding_left') pad_right = akg.tvm.var('padding_right') pad_top = akg.tvm.var('padding_top') pad_bottom = akg.tvm.var('padding_bottom') w_idx_kernel = akg.tvm.var('fetch_position_inside_kernel_width') h_idx_kernel = akg.tvm.var('fetch_position_inside_kernel_height') h_idx = akg.tvm.var('kernel_h_index_in_input') w_idx = akg.tvm.var('kernel_w_index_in_input') window_size = 16 input_b = 1 input_c1 = 1 input_c0 = 16 input_data = akg.tvm.placeholder( (input_b, input_c1, input_h, input_w, input_c0), dtype=dtype) result = akg.tvm.compute((window_size, input_c0), lambda window, c0: input_data[0, 0, h_idx + h_idx_kernel + pad_bottom, w_idx + w_idx_kernel + pad_left + window*stride_w, c0], name='img2col_intrinsic') input_data_buff = akg.tvm.decl_buffer(input_data.shape, input_data.dtype, name="input_data_buff", offset_factor=1, scope="local.L1") result_buff = akg.tvm.decl_buffer(result.shape, result.dtype, name="result_buff", offset_factor=1, scope="local.UB") def intrin_func(ins, outs, sp): c1_idx = 0 offset = 1 mode = 0 time = 1 csize = 0 aa = ins[0] bb = outs[0] ib = akg.tvm.ir_builder.create() call_args = [sp[0], sp[1], sp[2], sp[3], sp[4], sp[5], sp[6], sp[7], sp[8], sp[9], c1_idx, stride_w, stride_h, kernel_w, kernel_h, dilation_w, dilation_h, offset, mode, time, csize] ib.emit(akg.tvm.call_extern(dtype, "img2col_cbuf_to_ub", bb.access_ptr("w"), aa.access_ptr("r"), *call_args)) return ib.get() with akg.tvm.build_config(offset_factor=1): return akg.tvm.decl_tensor_intrin(result.op, intrin_func, binds={ input_data: input_data_buff, result: result_buff}, scalar_params=[input_w, input_h, pad_left, pad_right, pad_top, pad_bottom, w_idx_kernel, h_idx_kernel, w_idx, h_idx])
Python
def im2col_manual_schedule(data, kernel, stride, pad, target="cce"): ''' Compute im2col via cce im2col intrin function call directly Args: data (akg.tvm.tensor.Tensor): Tensor of type float16, float32. kernel (Union[list, tuple]): List or tuple of two int numbers for pooling window's size. stride (Union[list, tuple]): List or tuple of two int numbers for window's stride. pad (Union[List, tuple]): List or tuple of four int numbers for padding(top, bottom, left, and right). Return: akg.tvm.tensor.Tensor of same type as data, shape is the zN?. ''' b, c1, h, w, c0 = data.shape stride_h, stride_w = stride kernel_h, kernel_w = kernel pad_t, pad_b, pad_l, pad_r = pad # output size <=> number of windows ho = (h + pad_b + pad_t - kernel_h) // stride_h + 1 wo = (w + pad_r + pad_l - kernel_w) // stride_w + 1 load_im2col = intrin_load_im2col( data.dtype, stride_w, stride_h, kernel_w, kernel_h) im2col_shape = (b, (ho * wo + BLOCK_SIZE - 1) // BLOCK_SIZE, c1 * kernel_h * kernel_w, BLOCK_SIZE, c0) def _im2col_compute(i, j, k, data): j_h = (((j * BLOCK_SIZE) // wo) * stride_h) - pad_t j_w = (((j * BLOCK_SIZE) % wo) * stride_w) - pad_l h_3d = kernel_h - akg.tvm.max(((j_h + kernel_h) - h), 0) pad_t_3d = akg.tvm.max(-j_h, 0) pad_b_3d = akg.tvm.max(((j_h + kernel_h) - h), 0) w_idx_kernel = (k % kernel_w) h_idx_kernel = ((k // kernel_w) % kernel_h) w_idx = j_w h_idx = akg.tvm.min(j_h, 0) c1_idx = (k // kernel_w) // kernel_h load_im2col_input = data[i, c1_idx, akg.tvm.max(j_h, 0):akg.tvm.min(j_h + kernel_h, h), 0:w, 0:c0] return load_im2col(load_im2col_input, w, h_3d, pad_l, pad_r, pad_t_3d, pad_b_3d, w_idx_kernel, h_idx_kernel, w_idx, h_idx) # assume we need the whole width of a # choose a section of the rows of a that encompasses all of the windows in the current window-batch res = akg.tvm.compute(im2col_shape, lambda i, j, k: _im2col_compute(i, j, k, data), name='im2col_fractal') def comp_func(s): data_l1 = s.cache_read(data, "local.L1", [res]) res_ub = s.cache_write(res, "local.UB") b_ax, hw1_ax, c1_kh_kw_ax, hw0_ax, c0_ax = res.op.axis hw1_out = hw1_ax if akg.tvm.all([wo > BLOCK_SIZE]): cut_w1 = wo // BLOCK_SIZE cut_h1 = 1 cut_hw1 = cut_h1 * cut_w1 hw1_out, hw1_in = s[res].split(hw1_ax, cut_hw1) s[data_l1].compute_at(s[res], hw1_out) s[res_ub].compute_at(s[res], c1_kh_kw_ax) return res, comp_func
def im2col_manual_schedule(data, kernel, stride, pad, target="cce"): ''' Compute im2col via cce im2col intrin function call directly Args: data (akg.tvm.tensor.Tensor): Tensor of type float16, float32. kernel (Union[list, tuple]): List or tuple of two int numbers for pooling window's size. stride (Union[list, tuple]): List or tuple of two int numbers for window's stride. pad (Union[List, tuple]): List or tuple of four int numbers for padding(top, bottom, left, and right). Return: akg.tvm.tensor.Tensor of same type as data, shape is the zN?. ''' b, c1, h, w, c0 = data.shape stride_h, stride_w = stride kernel_h, kernel_w = kernel pad_t, pad_b, pad_l, pad_r = pad # output size <=> number of windows ho = (h + pad_b + pad_t - kernel_h) // stride_h + 1 wo = (w + pad_r + pad_l - kernel_w) // stride_w + 1 load_im2col = intrin_load_im2col( data.dtype, stride_w, stride_h, kernel_w, kernel_h) im2col_shape = (b, (ho * wo + BLOCK_SIZE - 1) // BLOCK_SIZE, c1 * kernel_h * kernel_w, BLOCK_SIZE, c0) def _im2col_compute(i, j, k, data): j_h = (((j * BLOCK_SIZE) // wo) * stride_h) - pad_t j_w = (((j * BLOCK_SIZE) % wo) * stride_w) - pad_l h_3d = kernel_h - akg.tvm.max(((j_h + kernel_h) - h), 0) pad_t_3d = akg.tvm.max(-j_h, 0) pad_b_3d = akg.tvm.max(((j_h + kernel_h) - h), 0) w_idx_kernel = (k % kernel_w) h_idx_kernel = ((k // kernel_w) % kernel_h) w_idx = j_w h_idx = akg.tvm.min(j_h, 0) c1_idx = (k // kernel_w) // kernel_h load_im2col_input = data[i, c1_idx, akg.tvm.max(j_h, 0):akg.tvm.min(j_h + kernel_h, h), 0:w, 0:c0] return load_im2col(load_im2col_input, w, h_3d, pad_l, pad_r, pad_t_3d, pad_b_3d, w_idx_kernel, h_idx_kernel, w_idx, h_idx) # assume we need the whole width of a # choose a section of the rows of a that encompasses all of the windows in the current window-batch res = akg.tvm.compute(im2col_shape, lambda i, j, k: _im2col_compute(i, j, k, data), name='im2col_fractal') def comp_func(s): data_l1 = s.cache_read(data, "local.L1", [res]) res_ub = s.cache_write(res, "local.UB") b_ax, hw1_ax, c1_kh_kw_ax, hw0_ax, c0_ax = res.op.axis hw1_out = hw1_ax if akg.tvm.all([wo > BLOCK_SIZE]): cut_w1 = wo // BLOCK_SIZE cut_h1 = 1 cut_hw1 = cut_h1 * cut_w1 hw1_out, hw1_in = s[res].split(hw1_ax, cut_hw1) s[data_l1].compute_at(s[res], hw1_out) s[res_ub].compute_at(s[res], c1_kh_kw_ax) return res, comp_func
Python
def find_best(self, model, num, exclusive, n_iter=None): """find best configs based on simulated annealing""" tic = time.time() temp, early_stop, log_interval = self.temp, self.early_stop, self.log_interval if n_iter is None: n_iter = self.n_iter if self.persistent and self.points is not None: points = self.points else: points = np.random.choice(self.space.length, self.parallel_size) # change points in space to configs configs = self.get_configs(points) scores = 1e8 / model.predict(configs, x_type="config") # build heap and insert initial points heap_items = [(float('-inf'), -i) for i in range(num)] heapq.heapify(heap_items) in_heap = set(exclusive) in_heap.update([-i for i in range(num)]) for s, p in zip(scores, points): if s > heap_items[0][0] and p not in in_heap: pop = heapq.heapreplace(heap_items, (s, p)) in_heap.remove(pop[1]) in_heap.add(p) k = 0 k_last_modify = 0 if isinstance(temp, (tuple, list, np.ndarray)): t = temp[0] cool = 1.0 * (temp[0] - temp[1]) / (n_iter + 1) else: t = temp cool = 0 while k < n_iter and k < k_last_modify + early_stop: new_points = np.empty_like(points) for i, p in enumerate(points): new_points[i] = self.space.random_walk(p) new_configs = self.get_configs(new_points) new_scores = 1e8 / model.predict(new_configs, x_type="config") ac_prob = np.exp(np.minimum((new_scores - scores) / (t + 1e-5), 1)) ac_index = np.random.random(len(ac_prob)) < ac_prob points[ac_index] = new_points[ac_index] scores[ac_index] = new_scores[ac_index] for s, p in zip(new_scores, new_points): if s > heap_items[0][0] and p not in in_heap: pop = heapq.heapreplace(heap_items, (s, p)) in_heap.remove(pop[1]) in_heap.add(p) k_last_modify = k k += 1 t -= cool if log_interval and k % log_interval == 0: t_str = "%.2f" % t logger.debug("SA iter: %d\tlast_update: %d\tmax-0: %.2f\tmax-1: %.2f\ttemp: %s\t" "elapsed: %.2f", k, k_last_modify, heap_items[0][0], np.max([v for v, _ in heap_items]), t_str, time.time() - tic) heap_items.sort(key=lambda item: -item[0]) logger.debug("SA iter: %d\tlast_update: %d\tmax-0: %.2f\tmax-1: %.2f\telapsed: %.2f", k, k_last_modify, heap_items[-1][0], heap_items[0][0], time.time() - tic) logger.debug("SA Maximums: %s", heap_items) if self.persistent: self.points = points return [x[1] for x in heap_items]
def find_best(self, model, num, exclusive, n_iter=None): """find best configs based on simulated annealing""" tic = time.time() temp, early_stop, log_interval = self.temp, self.early_stop, self.log_interval if n_iter is None: n_iter = self.n_iter if self.persistent and self.points is not None: points = self.points else: points = np.random.choice(self.space.length, self.parallel_size) # change points in space to configs configs = self.get_configs(points) scores = 1e8 / model.predict(configs, x_type="config") # build heap and insert initial points heap_items = [(float('-inf'), -i) for i in range(num)] heapq.heapify(heap_items) in_heap = set(exclusive) in_heap.update([-i for i in range(num)]) for s, p in zip(scores, points): if s > heap_items[0][0] and p not in in_heap: pop = heapq.heapreplace(heap_items, (s, p)) in_heap.remove(pop[1]) in_heap.add(p) k = 0 k_last_modify = 0 if isinstance(temp, (tuple, list, np.ndarray)): t = temp[0] cool = 1.0 * (temp[0] - temp[1]) / (n_iter + 1) else: t = temp cool = 0 while k < n_iter and k < k_last_modify + early_stop: new_points = np.empty_like(points) for i, p in enumerate(points): new_points[i] = self.space.random_walk(p) new_configs = self.get_configs(new_points) new_scores = 1e8 / model.predict(new_configs, x_type="config") ac_prob = np.exp(np.minimum((new_scores - scores) / (t + 1e-5), 1)) ac_index = np.random.random(len(ac_prob)) < ac_prob points[ac_index] = new_points[ac_index] scores[ac_index] = new_scores[ac_index] for s, p in zip(new_scores, new_points): if s > heap_items[0][0] and p not in in_heap: pop = heapq.heapreplace(heap_items, (s, p)) in_heap.remove(pop[1]) in_heap.add(p) k_last_modify = k k += 1 t -= cool if log_interval and k % log_interval == 0: t_str = "%.2f" % t logger.debug("SA iter: %d\tlast_update: %d\tmax-0: %.2f\tmax-1: %.2f\ttemp: %s\t" "elapsed: %.2f", k, k_last_modify, heap_items[0][0], np.max([v for v, _ in heap_items]), t_str, time.time() - tic) heap_items.sort(key=lambda item: -item[0]) logger.debug("SA iter: %d\tlast_update: %d\tmax-0: %.2f\tmax-1: %.2f\telapsed: %.2f", k, k_last_modify, heap_items[-1][0], heap_items[0][0], time.time() - tic) logger.debug("SA Maximums: %s", heap_items) if self.persistent: self.points = points return [x[1] for x in heap_items]
Python
def concat(raw_tensors, axis): """ concat shapes at axis, support int8, uint8, int16, int32 float16, float32 Args: raw_tensors (list[tvm.tensor.Tensor]): list of tensors axis (int): concat axis Returns: concat tensor """ concat_para_check(raw_tensors, axis) def _get_input_tensors(): shapes = [] for in_tensor in list(raw_tensors): shape = [int(in_tensor.shape[i].value) for i in range(len(in_tensor.shape))] shapes.append(shape) shapes_list = list(shapes) return shapes_list shapes = _get_input_tensors() res_shape = shapes[0][:] for i in range(1, len(shapes)): res_shape[axis] += shapes[i][axis] sel = [] n_tensor = len(raw_tensors) def compute_func(*indice): if n_tensor > 1: for nn in range(n_tensor - 1): if nn == 0: tensor_a = raw_tensors[0] tensor_b = raw_tensors[1] c_shape = shapes[0][:] indice2 = list(indice[:]) indice2[axis] = indice[axis] - tensor_a.shape[axis] sel.append(akg.tvm.expr.Select(indice[axis] < c_shape[axis], tensor_a[indice], tensor_b[tuple(indice2)])) c_shape[axis] += shapes[1][axis] else: tensor_a = sel[nn - 1] tensor_b = raw_tensors[nn + 1] indice2 = list(indice[:]) indice2[axis] = indice[axis] - c_shape[axis] sel.append(akg.tvm.expr.Select(indice[axis] < c_shape[axis], tensor_a, tensor_b[tuple(indice2)])) c_shape[axis] += shapes[nn + 1][axis] else: return raw_tensors[0][indice] return sel[-1] res = akg.tvm.compute(res_shape, compute_func, name="concat", tag="concat") return res
def concat(raw_tensors, axis): """ concat shapes at axis, support int8, uint8, int16, int32 float16, float32 Args: raw_tensors (list[tvm.tensor.Tensor]): list of tensors axis (int): concat axis Returns: concat tensor """ concat_para_check(raw_tensors, axis) def _get_input_tensors(): shapes = [] for in_tensor in list(raw_tensors): shape = [int(in_tensor.shape[i].value) for i in range(len(in_tensor.shape))] shapes.append(shape) shapes_list = list(shapes) return shapes_list shapes = _get_input_tensors() res_shape = shapes[0][:] for i in range(1, len(shapes)): res_shape[axis] += shapes[i][axis] sel = [] n_tensor = len(raw_tensors) def compute_func(*indice): if n_tensor > 1: for nn in range(n_tensor - 1): if nn == 0: tensor_a = raw_tensors[0] tensor_b = raw_tensors[1] c_shape = shapes[0][:] indice2 = list(indice[:]) indice2[axis] = indice[axis] - tensor_a.shape[axis] sel.append(akg.tvm.expr.Select(indice[axis] < c_shape[axis], tensor_a[indice], tensor_b[tuple(indice2)])) c_shape[axis] += shapes[1][axis] else: tensor_a = sel[nn - 1] tensor_b = raw_tensors[nn + 1] indice2 = list(indice[:]) indice2[axis] = indice[axis] - c_shape[axis] sel.append(akg.tvm.expr.Select(indice[axis] < c_shape[axis], tensor_a, tensor_b[tuple(indice2)])) c_shape[axis] += shapes[nn + 1][axis] else: return raw_tensors[0][indice] return sel[-1] res = akg.tvm.compute(res_shape, compute_func, name="concat", tag="concat") return res
Python
def add_ad(head, a, b, scale, target="cce"): """Compute gradient of add operator using automatic differentiate.""" output = Add(a, b, scale, target=target) jacs = list(akg.differentiate(output, [a], head)) return jacs[0]
def add_ad(head, a, b, scale, target="cce"): """Compute gradient of add operator using automatic differentiate.""" output = Add(a, b, scale, target=target) jacs = list(akg.differentiate(output, [a], head)) return jacs[0]
Python
def genData(shape_dz, shape_x, shape_y, grad_x, grad_y, op_type, dtype): """ Generate data for testing the op """ shapes = [shape_x, shape_y, shape_dz] inputs = [] for i in range(len(shapes)): shape = shapes[i] input = random_gaussian(shape, miu=1, sigma=0.1 + i * 0.1).astype(dtype) inputs.append(input) input_x = np.broadcast_to(inputs[0], shape_dz) input_y = np.broadcast_to(inputs[1], shape_dz) if op_type is "LE": dx = np.where(input_x <= input_y, inputs[2], 0).astype(dtype) dy = np.where(input_x <= input_y, 0, inputs[2]).astype(dtype) elif op_type is "GE": dx = np.where(input_x >= input_y, inputs[2], 0).astype(dtype) dy = np.where(input_x >= input_y, 0, inputs[2]).astype(dtype) dx = broadcast_grad(dx, shape_x) dy = broadcast_grad(dy, shape_y) outs = [] if grad_x and grad_y: outs = [dx, dy] elif grad_x and grad_y is False: outs = dx elif grad_y and grad_x is False: outs = dy return inputs, outs
def genData(shape_dz, shape_x, shape_y, grad_x, grad_y, op_type, dtype): """ Generate data for testing the op """ shapes = [shape_x, shape_y, shape_dz] inputs = [] for i in range(len(shapes)): shape = shapes[i] input = random_gaussian(shape, miu=1, sigma=0.1 + i * 0.1).astype(dtype) inputs.append(input) input_x = np.broadcast_to(inputs[0], shape_dz) input_y = np.broadcast_to(inputs[1], shape_dz) if op_type is "LE": dx = np.where(input_x <= input_y, inputs[2], 0).astype(dtype) dy = np.where(input_x <= input_y, 0, inputs[2]).astype(dtype) elif op_type is "GE": dx = np.where(input_x >= input_y, inputs[2], 0).astype(dtype) dy = np.where(input_x >= input_y, 0, inputs[2]).astype(dtype) dx = broadcast_grad(dx, shape_x) dy = broadcast_grad(dy, shape_y) outs = [] if grad_x and grad_y: outs = [dx, dy] elif grad_x and grad_y is False: outs = dx elif grad_y and grad_x is False: outs = dy return inputs, outs
Python
def detection_five2four(data, box_num, target=utils.CCE): """ Change data from five dims to specific four dims format. Shape changes: [N, ceil((box_num * 4) / 16), H, W, 16] -> [N, box_num * H * W, 4, 1]. Note: With detection_five2four + concat, it can make datas with shape [16, 16//16, 38, 38, 16], [16, 24//16+1, 19, 19, 16], [16, 24//16+1, 10, 10, 16], [16, 24//16+1, 5, 5, 16], [16, 16//16, 3, 3, 16] and [16, 16//16, 1, 1, 16] to one data with shape [16, 8732, 4, 1]. Args: data (Tensor): tvm.Tensor of type float16 with five dims format which the length of its third and fourth dim is equal (H == W). box_num (Integer): number of box. Returns: A tvm.Tensor with 4 dims shape which the length of its last dim is 1. """ utils.ops_dtype_check(data.dtype, utils.DtypeForDavinci.FLOAT16) block_size = 16 batch_size, c1, wh, _, c0 = data.shape # each box has 4 numbers pad = (box_num * 4) % block_size @script(capture=locals()) def reshape(inputs): out = allocate((batch_size, wh * wh, box_num * 4), 'float16', 'local') for i in range(batch_size): for j in range(c1): for k in range(wh): for l in range(wh): for m in range(c0): out[i, k * wh + l, j * c0 + m] = inputs[i, j, k, l, m] return out @script(capture=locals()) def reshape_with_pad(inputs): out = allocate((batch_size, wh * wh, box_num * 4), 'float16', 'local') for i in range(batch_size): for j in range(box_num // 4 + 1): for k in range(wh): for l in range(wh): if j == box_num // 4: for m1 in range(pad): out[i, k * wh + l, j * block_size + m1] = inputs[i, j, k, l, m1] else: for m in range(c0): out[i, k * wh + l, j * block_size + m] = inputs[i, j, k, l, m] return out if pad == 0: data_rs = reshape(data) else: data_rs = reshape_with_pad(data) return data_rs
def detection_five2four(data, box_num, target=utils.CCE): """ Change data from five dims to specific four dims format. Shape changes: [N, ceil((box_num * 4) / 16), H, W, 16] -> [N, box_num * H * W, 4, 1]. Note: With detection_five2four + concat, it can make datas with shape [16, 16//16, 38, 38, 16], [16, 24//16+1, 19, 19, 16], [16, 24//16+1, 10, 10, 16], [16, 24//16+1, 5, 5, 16], [16, 16//16, 3, 3, 16] and [16, 16//16, 1, 1, 16] to one data with shape [16, 8732, 4, 1]. Args: data (Tensor): tvm.Tensor of type float16 with five dims format which the length of its third and fourth dim is equal (H == W). box_num (Integer): number of box. Returns: A tvm.Tensor with 4 dims shape which the length of its last dim is 1. """ utils.ops_dtype_check(data.dtype, utils.DtypeForDavinci.FLOAT16) block_size = 16 batch_size, c1, wh, _, c0 = data.shape # each box has 4 numbers pad = (box_num * 4) % block_size @script(capture=locals()) def reshape(inputs): out = allocate((batch_size, wh * wh, box_num * 4), 'float16', 'local') for i in range(batch_size): for j in range(c1): for k in range(wh): for l in range(wh): for m in range(c0): out[i, k * wh + l, j * c0 + m] = inputs[i, j, k, l, m] return out @script(capture=locals()) def reshape_with_pad(inputs): out = allocate((batch_size, wh * wh, box_num * 4), 'float16', 'local') for i in range(batch_size): for j in range(box_num // 4 + 1): for k in range(wh): for l in range(wh): if j == box_num // 4: for m1 in range(pad): out[i, k * wh + l, j * block_size + m1] = inputs[i, j, k, l, m1] else: for m in range(c0): out[i, k * wh + l, j * block_size + m] = inputs[i, j, k, l, m] return out if pad == 0: data_rs = reshape(data) else: data_rs = reshape_with_pad(data) return data_rs
Python
def apply_ftrl(var, accum, linear, grad, lr, l1, l2, lr_power, target=utils.CCE): """ Ftrl-proximal optimization algorithm. Note: accum_new = accum + grad * grad linear_new = linear + grad - (accum_new^(-lr_power) - accum^(-lr_power)) / lr * var x = clip(linear_new, -l1, l1) - linear_new y = accum_new^(-lr_power) / lr + 2 * l2 var_new = x / y Args: var (tvm.tensor.Tensor): The tensor to be updated. Should be float16 or float32. accum (tvm.tensor.Tensor): A tensor of same shape and type as var. Eatch entry in it must be greater or equal to zero. linear (tvm.tensor.Tensor): A tensor of same shape and type as var. grad (tvm.tensor.Tensor): A tensor of same shape and type as var. lr (tvm.tensor.Tensor): A scalar tensor of the same type as `var`. l1 (tvm.tensor.Tensor): A scalar tensor of the same type as `var`. l2 (tvm.tensor.Tensor): A scalar tensor of the same type as `var`. lr_power (tvm.tensor.Tensor): A scalar tensor of the same type as `var`. Value of it must be less or equal to zero. Returns: tvm.tensor.Tensor, updated var. tvm.tensor.Tensor, updated accum. tvm.tensor.Tensor, updated linear. """ # As vlog instruction on mini product has a percision problem and mini product used to infer # rather than train if product_is_mini(): raise RuntimeError("The apply_ftrl operator does not support the mini product") # check_shape utils.check_shape(var) shape = get_shape(var) for tensor in (accum, linear, grad): utils.elemwise_shape_check(shape, tensor.shape) sclar_shape = (1,) for sclar in (lr, l1, l2, lr_power): utils.elemwise_shape_check(sclar.shape, sclar_shape) # check dtype dtype = var.dtype utils.ops_dtype_check(dtype, [utils.DtypeForDavinci.FLOAT16, utils.DtypeForDavinci.FLOAT32]) for tensor in (var, accum, linear, grad, lr, l1, l2, lr_power): utils.elemwise_dtype_check(tensor.dtype, dtype) var_new, accum_new, linear_new = apply_ftrl_impl(var, accum, linear, grad, lr, l1, l2, None, lr_power, with_l2_shrinkage=False) # update by inplace (var_new, accum_new, linear_new), binds_info = \ TensorUtils.inplace_set_tensors((var, accum, linear), (var_new, accum_new, linear_new)) attrs = {utils.BINDS: binds_info} return var_new, accum_new, linear_new, attrs
def apply_ftrl(var, accum, linear, grad, lr, l1, l2, lr_power, target=utils.CCE): """ Ftrl-proximal optimization algorithm. Note: accum_new = accum + grad * grad linear_new = linear + grad - (accum_new^(-lr_power) - accum^(-lr_power)) / lr * var x = clip(linear_new, -l1, l1) - linear_new y = accum_new^(-lr_power) / lr + 2 * l2 var_new = x / y Args: var (tvm.tensor.Tensor): The tensor to be updated. Should be float16 or float32. accum (tvm.tensor.Tensor): A tensor of same shape and type as var. Eatch entry in it must be greater or equal to zero. linear (tvm.tensor.Tensor): A tensor of same shape and type as var. grad (tvm.tensor.Tensor): A tensor of same shape and type as var. lr (tvm.tensor.Tensor): A scalar tensor of the same type as `var`. l1 (tvm.tensor.Tensor): A scalar tensor of the same type as `var`. l2 (tvm.tensor.Tensor): A scalar tensor of the same type as `var`. lr_power (tvm.tensor.Tensor): A scalar tensor of the same type as `var`. Value of it must be less or equal to zero. Returns: tvm.tensor.Tensor, updated var. tvm.tensor.Tensor, updated accum. tvm.tensor.Tensor, updated linear. """ # As vlog instruction on mini product has a percision problem and mini product used to infer # rather than train if product_is_mini(): raise RuntimeError("The apply_ftrl operator does not support the mini product") # check_shape utils.check_shape(var) shape = get_shape(var) for tensor in (accum, linear, grad): utils.elemwise_shape_check(shape, tensor.shape) sclar_shape = (1,) for sclar in (lr, l1, l2, lr_power): utils.elemwise_shape_check(sclar.shape, sclar_shape) # check dtype dtype = var.dtype utils.ops_dtype_check(dtype, [utils.DtypeForDavinci.FLOAT16, utils.DtypeForDavinci.FLOAT32]) for tensor in (var, accum, linear, grad, lr, l1, l2, lr_power): utils.elemwise_dtype_check(tensor.dtype, dtype) var_new, accum_new, linear_new = apply_ftrl_impl(var, accum, linear, grad, lr, l1, l2, None, lr_power, with_l2_shrinkage=False) # update by inplace (var_new, accum_new, linear_new), binds_info = \ TensorUtils.inplace_set_tensors((var, accum, linear), (var_new, accum_new, linear_new)) attrs = {utils.BINDS: binds_info} return var_new, accum_new, linear_new, attrs
Python
def depthwise(data, N, H, W, CI, k_ch, KH, KW, PAD_H, PAD_W, SH, SW, block_size, use_bias=False): """ Depthwise 5-D convolutions,every channel has its filter-kernel Args: data (list):a list,the size is 3 if use_bias else the size is 2; data[0] tvm.tensor.Tensor of type float16 ,shape 5D(N, CI//C0, C0, H, W) data[1] tvm.tensor.Tensor of type float16 ,shape 6D(CI//(CI//C0)//C0, KH, KW, k_ch*CI//C0, C0, C0) data[2] tvm.tensor.Tensor of type float16 ,shape 5D(N, CI*k_ch//C0, OH, OW, C0) N (int): batchsize H (int): height of featureMap W (int): width of featureMap CI (int): channel of featureMap k_ch (int): channel of Filter KH (int): height of Filter KW (int): width of Filter PAD_H (int): padding pixels in vertical direction PAD_W (int): padding pixels in horizontal direction SH (int): stride in vertical direction SW (int): stride in horizontal direction block_size (int): a int var also called "C0" use_bias (bool ): If True need add bias, else bias equal to zero. Returns: akg.tvm.Tensor of same type as data, shape is 5D(N, CI*k_ch//C0, OH, OW, C0) """ check_list = ["float16"] dtype = data[0].dtype if not (dtype in check_list): raise RuntimeError("depthwise only support %s while dtype is %s" % (",".join(check_list), dtype)) for i in range(len(data)): shape = data[i].shape utils.check_shape(shape) conv_dtype = 'float16' group = CI // block_size CO = CI * k_ch assert k_ch == 1 assert CO % group == 0 and CI % group == 0 assert CO % block_size == 0 and (CI // group) % block_size == 0 clear = False # if clear, use auto tiling # (N, CI, H, W) -> (N, C0, H, W, C1) A = data[0] # (CO, CI // group, KH, KW) -> (CI // group // block * KH * KW, CO // block, block, block) B = data[1] if use_bias: bias = data[2] bias_name = bias.op.name else: bias = None bias_name = "bias_name" key = [N, H, W, CI, k_ch, KH, KW, PAD_H, PAD_W, SH, SW] hash_key = str((tuple(key))) if hash_key in depthwise_set_dim_map: cutH, cutCo, cutM, cutK, cutN = depthwise_set_dim_map[hash_key] else: # raise RuntimeError("other can not find cutH, cutCo, cutM, cutK, cutN") cutH = (KH - 1) * KH + 1 cutCo = 16 cutM = 16 cutK = 16 * KH * KW cutN = 16 clear = True # use auto tiling OH = (H + 2 * PAD_H - KH) // SH + 1 OW = (W + 2 * PAD_W - KW) // SW + 1 kc1 = akg.tvm.reduce_axis((0, CI // block_size // group), name="kc1") kh = akg.tvm.reduce_axis((0, KH), name="kh") kw = akg.tvm.reduce_axis((0, KW), name="kw") kc0 = akg.tvm.reduce_axis((0, block_size), name="kc0") p_top, p_bottom, p_left, p_right = PAD_H, PAD_H, PAD_W, PAD_W output_name = "output" output_bias_name = "output_bias" attr = { "pragma_conv_kernel_n": CO, "pragma_conv_kernel_h": KH, "pragma_conv_kernel_w": KW, "pragma_conv_padding_top": p_top, "pragma_conv_padding_bottom": p_bottom, "pragma_conv_padding_left": p_left, "pragma_conv_padding_right": p_right, "pragma_conv_bypass_l1": 1, "pragma_conv_stride_h": SH, "pragma_conv_stride_w": SW, "pragma_conv_fm_n": N, "pragma_conv_fm_c": CI, "pragma_conv_fm_h": H, "pragma_conv_fm_w": W, "pragma_conv_dilation_h": 1, "pragma_conv_dilation_w": 1, "feature": A.op.name, "filter": B.op.name, "bias": bias_name, "res": output_name, "res_bias": output_bias_name } if not clear: attr["pragma_conv_h_cut"] = cutH attr["pragma_conv_w_cut"] = W + 2 * PAD_W attr["pragma_conv_co_cut"] = cutCo attr["pragma_conv_m_cut"] = cutM attr["pragma_conv_k_cut"] = cutK attr["pragma_conv_n_cut"] = cutN C = akg.tvm.compute((N, CO // block_size, OH, OW, block_size), lambda n, c1, h, w, c0: akg.lang.ascend.mmad( akg.tvm.if_then_else(akg.tvm.any((h * SH + kh) < p_top, (h * SH + kh) > (H + p_top - 1), (w * SW + kw) < p_left, (w * SW + kw) > (W + p_left - 1)), akg.tvm.const(0.0, conv_dtype), A[n, c1 // ((CO // block_size) // group) * ( (CI // block_size) // group) + kc1, ( h * SH + kh - p_top), (w * SW + kw - p_left), kc0]) # A[n, kc1, (h * SH + kh - p_top), (w * SW + kw - p_left), kc0]) * B[(kc1 * KH + kh) * KW + kw, c1, c0, kc0], axis=[kc1, kh, kw, kc0]), attrs=attr, name=output_name) if use_bias: out = akg.tvm.compute(C.shape, lambda n, c1, h, w, c0: C[n, c1, h, w, c0] + bias[0, c1, 0, 0, c0], name=output_bias_name) else: out = C return out
def depthwise(data, N, H, W, CI, k_ch, KH, KW, PAD_H, PAD_W, SH, SW, block_size, use_bias=False): """ Depthwise 5-D convolutions,every channel has its filter-kernel Args: data (list):a list,the size is 3 if use_bias else the size is 2; data[0] tvm.tensor.Tensor of type float16 ,shape 5D(N, CI//C0, C0, H, W) data[1] tvm.tensor.Tensor of type float16 ,shape 6D(CI//(CI//C0)//C0, KH, KW, k_ch*CI//C0, C0, C0) data[2] tvm.tensor.Tensor of type float16 ,shape 5D(N, CI*k_ch//C0, OH, OW, C0) N (int): batchsize H (int): height of featureMap W (int): width of featureMap CI (int): channel of featureMap k_ch (int): channel of Filter KH (int): height of Filter KW (int): width of Filter PAD_H (int): padding pixels in vertical direction PAD_W (int): padding pixels in horizontal direction SH (int): stride in vertical direction SW (int): stride in horizontal direction block_size (int): a int var also called "C0" use_bias (bool ): If True need add bias, else bias equal to zero. Returns: akg.tvm.Tensor of same type as data, shape is 5D(N, CI*k_ch//C0, OH, OW, C0) """ check_list = ["float16"] dtype = data[0].dtype if not (dtype in check_list): raise RuntimeError("depthwise only support %s while dtype is %s" % (",".join(check_list), dtype)) for i in range(len(data)): shape = data[i].shape utils.check_shape(shape) conv_dtype = 'float16' group = CI // block_size CO = CI * k_ch assert k_ch == 1 assert CO % group == 0 and CI % group == 0 assert CO % block_size == 0 and (CI // group) % block_size == 0 clear = False # if clear, use auto tiling # (N, CI, H, W) -> (N, C0, H, W, C1) A = data[0] # (CO, CI // group, KH, KW) -> (CI // group // block * KH * KW, CO // block, block, block) B = data[1] if use_bias: bias = data[2] bias_name = bias.op.name else: bias = None bias_name = "bias_name" key = [N, H, W, CI, k_ch, KH, KW, PAD_H, PAD_W, SH, SW] hash_key = str((tuple(key))) if hash_key in depthwise_set_dim_map: cutH, cutCo, cutM, cutK, cutN = depthwise_set_dim_map[hash_key] else: # raise RuntimeError("other can not find cutH, cutCo, cutM, cutK, cutN") cutH = (KH - 1) * KH + 1 cutCo = 16 cutM = 16 cutK = 16 * KH * KW cutN = 16 clear = True # use auto tiling OH = (H + 2 * PAD_H - KH) // SH + 1 OW = (W + 2 * PAD_W - KW) // SW + 1 kc1 = akg.tvm.reduce_axis((0, CI // block_size // group), name="kc1") kh = akg.tvm.reduce_axis((0, KH), name="kh") kw = akg.tvm.reduce_axis((0, KW), name="kw") kc0 = akg.tvm.reduce_axis((0, block_size), name="kc0") p_top, p_bottom, p_left, p_right = PAD_H, PAD_H, PAD_W, PAD_W output_name = "output" output_bias_name = "output_bias" attr = { "pragma_conv_kernel_n": CO, "pragma_conv_kernel_h": KH, "pragma_conv_kernel_w": KW, "pragma_conv_padding_top": p_top, "pragma_conv_padding_bottom": p_bottom, "pragma_conv_padding_left": p_left, "pragma_conv_padding_right": p_right, "pragma_conv_bypass_l1": 1, "pragma_conv_stride_h": SH, "pragma_conv_stride_w": SW, "pragma_conv_fm_n": N, "pragma_conv_fm_c": CI, "pragma_conv_fm_h": H, "pragma_conv_fm_w": W, "pragma_conv_dilation_h": 1, "pragma_conv_dilation_w": 1, "feature": A.op.name, "filter": B.op.name, "bias": bias_name, "res": output_name, "res_bias": output_bias_name } if not clear: attr["pragma_conv_h_cut"] = cutH attr["pragma_conv_w_cut"] = W + 2 * PAD_W attr["pragma_conv_co_cut"] = cutCo attr["pragma_conv_m_cut"] = cutM attr["pragma_conv_k_cut"] = cutK attr["pragma_conv_n_cut"] = cutN C = akg.tvm.compute((N, CO // block_size, OH, OW, block_size), lambda n, c1, h, w, c0: akg.lang.ascend.mmad( akg.tvm.if_then_else(akg.tvm.any((h * SH + kh) < p_top, (h * SH + kh) > (H + p_top - 1), (w * SW + kw) < p_left, (w * SW + kw) > (W + p_left - 1)), akg.tvm.const(0.0, conv_dtype), A[n, c1 // ((CO // block_size) // group) * ( (CI // block_size) // group) + kc1, ( h * SH + kh - p_top), (w * SW + kw - p_left), kc0]) # A[n, kc1, (h * SH + kh - p_top), (w * SW + kw - p_left), kc0]) * B[(kc1 * KH + kh) * KW + kw, c1, c0, kc0], axis=[kc1, kh, kw, kc0]), attrs=attr, name=output_name) if use_bias: out = akg.tvm.compute(C.shape, lambda n, c1, h, w, c0: C[n, c1, h, w, c0] + bias[0, c1, 0, 0, c0], name=output_bias_name) else: out = C return out
Python
def gen_data(begin, begin_mask, dtype, ellipsis_mask, end, end_mask, new_axis_mask, shape, shrink_axis_mask, strides): """ Generate data for testing the op """ input = np.random.uniform(low=-1.0, high=1.0, size=tuple(shape)).astype(dtype) # get numpy result slices = args_to_slices(begin, end, strides, begin_mask, end_mask, ellipsis_mask, new_axis_mask, shrink_axis_mask) expect = input[tuple(slices)] out_shape = expect.shape if expect.shape != (0,) else (1,) output = np.full(out_shape, np.nan, dtype) return expect, input, output
def gen_data(begin, begin_mask, dtype, ellipsis_mask, end, end_mask, new_axis_mask, shape, shrink_axis_mask, strides): """ Generate data for testing the op """ input = np.random.uniform(low=-1.0, high=1.0, size=tuple(shape)).astype(dtype) # get numpy result slices = args_to_slices(begin, end, strides, begin_mask, end_mask, ellipsis_mask, new_axis_mask, shrink_axis_mask) expect = input[tuple(slices)] out_shape = expect.shape if expect.shape != (0,) else (1,) output = np.full(out_shape, np.nan, dtype) return expect, input, output
Python
def apply_ftrl_v2(var, accum, linear, grad, lr, l1, l2, l2_shrinkage, lr_power, target=utils.CCE): """ Ftrl-proximal optimization algorithm with l2_shrinkage. Note: grad_shrinkage = grad + 2 * l2_shrinkage * var accum_new = accum + grad * grad linear_new = linear + grad_shrinkage - (accum_new^(-lr_power) - accum^(-lr_power)) / lr * var x = clip(linear_new, -l1, l1) - linear_new y = accum_new^(-lr_power) / lr + 2 * l2 var_new = x / y Args: var (tvm.tensor.Tensor): The tensor to be updated. Should be float16 or float32. accum (tvm.tensor.Tensor): A tensor of same shape and type as var. Eatch entry in it must be greater or equal to zero. linear (tvm.tensor.Tensor): A tensor of same shape and type as var. grad (tvm.tensor.Tensor): A tensor of same shape and type as var. lr (tvm.tensor.Tensor): A scalar tensor of the same type as `var`. l1 (tvm.tensor.Tensor): A scalar tensor of the same type as `var`. l2 (tvm.tensor.Tensor): A scalar tensor of the same type as `var`. l2_shrinkage (tvm.tensor.Tensor): A scalar tensor of the same type as `var`. lr_power (tvm.tensor.Tensor): A scalar tensor of the same type as `var`. Value of it must be less or equal to zero. Returns: tvm.tensor.Tensor, updated var. tvm.tensor.Tensor, updated accum. tvm.tensor.Tensor, updated linear. """ # As vlog instruction on mini product has a percision problem and mini product used to infer # rather than train if product_is_mini(): raise RuntimeError("The apply_ftrl_v2 operator does not support the mini product") # check_shape utils.check_shape(var) shape = get_shape(var) for tensor in (accum, linear, grad): utils.elemwise_shape_check(shape, tensor.shape) sclar_shape = (1,) for sclar in (lr, l1, l2, l2_shrinkage, lr_power): utils.elemwise_shape_check(sclar.shape, sclar_shape) # check dtype dtype = var.dtype utils.ops_dtype_check(dtype, [utils.DtypeForDavinci.FLOAT16, utils.DtypeForDavinci.FLOAT32]) for tensor in (var, accum, linear, grad, lr, l1, l2, l2_shrinkage, lr_power): utils.elemwise_dtype_check(tensor.dtype, dtype) var_new, accum_new, linear_new = apply_ftrl_impl(var, accum, linear, grad, lr, l1, l2, l2_shrinkage, lr_power, with_l2_shrinkage=True) # update by inplace (var_new, accum_new, linear_new), binds_info = TensorUtils.\ inplace_set_tensors((var, accum, linear), (var_new, accum_new, linear_new)) attrs = {utils.BINDS: binds_info} return var_new, accum_new, linear_new, attrs
def apply_ftrl_v2(var, accum, linear, grad, lr, l1, l2, l2_shrinkage, lr_power, target=utils.CCE): """ Ftrl-proximal optimization algorithm with l2_shrinkage. Note: grad_shrinkage = grad + 2 * l2_shrinkage * var accum_new = accum + grad * grad linear_new = linear + grad_shrinkage - (accum_new^(-lr_power) - accum^(-lr_power)) / lr * var x = clip(linear_new, -l1, l1) - linear_new y = accum_new^(-lr_power) / lr + 2 * l2 var_new = x / y Args: var (tvm.tensor.Tensor): The tensor to be updated. Should be float16 or float32. accum (tvm.tensor.Tensor): A tensor of same shape and type as var. Eatch entry in it must be greater or equal to zero. linear (tvm.tensor.Tensor): A tensor of same shape and type as var. grad (tvm.tensor.Tensor): A tensor of same shape and type as var. lr (tvm.tensor.Tensor): A scalar tensor of the same type as `var`. l1 (tvm.tensor.Tensor): A scalar tensor of the same type as `var`. l2 (tvm.tensor.Tensor): A scalar tensor of the same type as `var`. l2_shrinkage (tvm.tensor.Tensor): A scalar tensor of the same type as `var`. lr_power (tvm.tensor.Tensor): A scalar tensor of the same type as `var`. Value of it must be less or equal to zero. Returns: tvm.tensor.Tensor, updated var. tvm.tensor.Tensor, updated accum. tvm.tensor.Tensor, updated linear. """ # As vlog instruction on mini product has a percision problem and mini product used to infer # rather than train if product_is_mini(): raise RuntimeError("The apply_ftrl_v2 operator does not support the mini product") # check_shape utils.check_shape(var) shape = get_shape(var) for tensor in (accum, linear, grad): utils.elemwise_shape_check(shape, tensor.shape) sclar_shape = (1,) for sclar in (lr, l1, l2, l2_shrinkage, lr_power): utils.elemwise_shape_check(sclar.shape, sclar_shape) # check dtype dtype = var.dtype utils.ops_dtype_check(dtype, [utils.DtypeForDavinci.FLOAT16, utils.DtypeForDavinci.FLOAT32]) for tensor in (var, accum, linear, grad, lr, l1, l2, l2_shrinkage, lr_power): utils.elemwise_dtype_check(tensor.dtype, dtype) var_new, accum_new, linear_new = apply_ftrl_impl(var, accum, linear, grad, lr, l1, l2, l2_shrinkage, lr_power, with_l2_shrinkage=True) # update by inplace (var_new, accum_new, linear_new), binds_info = TensorUtils.\ inplace_set_tensors((var, accum, linear), (var_new, accum_new, linear_new)) attrs = {utils.BINDS: binds_info} return var_new, accum_new, linear_new, attrs
Python
def modify_common_constraints(value, constraint, level=TileLevel.C1): """api for dsl to modify some default constraint used in auto tiling.""" if constraint not in TileConstraint: raise ValueError("Tile constraints must be chosen from {0}".format(TileConstraint)) if constraint == TileConstraint.SET_MEM_RATIO: return create_custom_tiling_node(TileMode.COMMON, tile_level=level, mem_ratio=double(value)) if constraint == TileConstraint.THREAD_MIN: return create_custom_tiling_node(TileMode.COMMON, thread_min=value) if constraint == TileConstraint.THREAD_MAX: return create_custom_tiling_node(TileMode.COMMON, thread_max=value) if constraint == TileConstraint.THREAD_MOD: return create_custom_tiling_node(TileMode.COMMON, thread_mod=value) if constraint == TileConstraint.BLOCK_MIN: return create_custom_tiling_node(TileMode.COMMON, block_min=value) if constraint == TileConstraint.BLOCK_MAX: return create_custom_tiling_node(TileMode.COMMON, block_max=value) if constraint == TileConstraint.BLOCK_MOD: return create_custom_tiling_node(TileMode.COMMON, block_mod=value) raise TypeError("Constraint {} is not supported in this api, please use other api" .format(constraint.value))
def modify_common_constraints(value, constraint, level=TileLevel.C1): """api for dsl to modify some default constraint used in auto tiling.""" if constraint not in TileConstraint: raise ValueError("Tile constraints must be chosen from {0}".format(TileConstraint)) if constraint == TileConstraint.SET_MEM_RATIO: return create_custom_tiling_node(TileMode.COMMON, tile_level=level, mem_ratio=double(value)) if constraint == TileConstraint.THREAD_MIN: return create_custom_tiling_node(TileMode.COMMON, thread_min=value) if constraint == TileConstraint.THREAD_MAX: return create_custom_tiling_node(TileMode.COMMON, thread_max=value) if constraint == TileConstraint.THREAD_MOD: return create_custom_tiling_node(TileMode.COMMON, thread_mod=value) if constraint == TileConstraint.BLOCK_MIN: return create_custom_tiling_node(TileMode.COMMON, block_min=value) if constraint == TileConstraint.BLOCK_MAX: return create_custom_tiling_node(TileMode.COMMON, block_max=value) if constraint == TileConstraint.BLOCK_MOD: return create_custom_tiling_node(TileMode.COMMON, block_mod=value) raise TypeError("Constraint {} is not supported in this api, please use other api" .format(constraint.value))
Python
def create_constraint_on_axis(values, constraints, band=0, axis=None, level=TileLevel.C1): """api for dsl to create tiling constraints on certain axis.""" if constraints not in TileConstraint: raise ValueError("Tile constraints must be chosen from {0}".format(TileConstraint)) res = [] if axis is None: axis = [i for i in range(len(values))] elif not isinstance(axis, (int, list, tuple)): raise TypeError("Axis should be int, list or tuple") if isinstance(axis, int): axis = [axis] if isinstance(values, (str, int)): values = [values] else: raise TypeError("Tiling factor must be string or int, while receives {}".format(type(values))) if len(axis) != len(values): raise ValueError("Length of axis must equal to length of values") for a, v in zip(axis, values): if constraints == TileConstraint.MIN: res.append(create_custom_tiling_node(TileMode.AXIS, tile_level=level, tile_band=band, tile_axis=a, tile_min=v)) elif constraints == TileConstraint.MOD: res.append(create_custom_tiling_node(TileMode.AXIS, tile_level=level, tile_band=band, tile_axis=a, tile_mod=v)) elif constraints == TileConstraint.FACTOR: res.append(create_custom_tiling_node(TileMode.AXIS, tile_level=level, tile_band=band, tile_axis=a, tile_factor=v)) elif constraints == TileConstraint.CANDIDATE: res.append(create_custom_tiling_node(TileMode.AXIS, tile_level=level, tile_band=band, tile_axis=a, tile_candidate=v)) elif constraints == TileConstraint.MAX: res.append(create_custom_tiling_node(TileMode.AXIS, tile_level=level, tile_band=band, tile_axis=a, tile_max=v)) elif constraints == TileConstraint.FORBID_ISOLATE: res.append(create_custom_tiling_node(TileMode.AXIS, tile_level=level, tile_band=band, tile_axis=a, forbid_isolate=v)) elif constraints == TileConstraint.SET_AXIS_INFO: res.append(create_custom_tiling_node(TileMode.AXIS, tile_level=level, tile_band=band, tile_axis=a, axis_info=v)) elif constraints == TileConstraint.SET_PRIORITY: res.append(create_custom_tiling_node(TileMode.AXIS, tile_level=level, tile_band=band, tile_axis=a, priority=v)) else: raise TypeError("Constraint {} is not supported in this api, please use other api" .format(constraints.value)) return res
def create_constraint_on_axis(values, constraints, band=0, axis=None, level=TileLevel.C1): """api for dsl to create tiling constraints on certain axis.""" if constraints not in TileConstraint: raise ValueError("Tile constraints must be chosen from {0}".format(TileConstraint)) res = [] if axis is None: axis = [i for i in range(len(values))] elif not isinstance(axis, (int, list, tuple)): raise TypeError("Axis should be int, list or tuple") if isinstance(axis, int): axis = [axis] if isinstance(values, (str, int)): values = [values] else: raise TypeError("Tiling factor must be string or int, while receives {}".format(type(values))) if len(axis) != len(values): raise ValueError("Length of axis must equal to length of values") for a, v in zip(axis, values): if constraints == TileConstraint.MIN: res.append(create_custom_tiling_node(TileMode.AXIS, tile_level=level, tile_band=band, tile_axis=a, tile_min=v)) elif constraints == TileConstraint.MOD: res.append(create_custom_tiling_node(TileMode.AXIS, tile_level=level, tile_band=band, tile_axis=a, tile_mod=v)) elif constraints == TileConstraint.FACTOR: res.append(create_custom_tiling_node(TileMode.AXIS, tile_level=level, tile_band=band, tile_axis=a, tile_factor=v)) elif constraints == TileConstraint.CANDIDATE: res.append(create_custom_tiling_node(TileMode.AXIS, tile_level=level, tile_band=band, tile_axis=a, tile_candidate=v)) elif constraints == TileConstraint.MAX: res.append(create_custom_tiling_node(TileMode.AXIS, tile_level=level, tile_band=band, tile_axis=a, tile_max=v)) elif constraints == TileConstraint.FORBID_ISOLATE: res.append(create_custom_tiling_node(TileMode.AXIS, tile_level=level, tile_band=band, tile_axis=a, forbid_isolate=v)) elif constraints == TileConstraint.SET_AXIS_INFO: res.append(create_custom_tiling_node(TileMode.AXIS, tile_level=level, tile_band=band, tile_axis=a, axis_info=v)) elif constraints == TileConstraint.SET_PRIORITY: res.append(create_custom_tiling_node(TileMode.AXIS, tile_level=level, tile_band=band, tile_axis=a, priority=v)) else: raise TypeError("Constraint {} is not supported in this api, please use other api" .format(constraints.value)) return res
Python
def create_constraint_on_tensor(tensor, values, constraints, tensor_pos=None, level=TileLevel.C1): """api for dsl to create tiling constraints on certain tensor.""" if constraints not in TileConstraint: raise ValueError("Tile constraint must be chosen from {0}".format(TileConstraint)) if isinstance(tensor, (list, tuple)): for t in tensor: if not isinstance(t, akg.tvm.tensor.Tensor): raise TypeError("Tensor should be tvm.tensor.Tensor or a list/tuple of tvm.tensor.Tensor.") tensor_name = [tensor.op.name] if isinstance(tensor, akg.tvm.tensor.Tensor) else [t.op.name for t in tensor] values = [values] if isinstance(values, (str, int)) else values if tensor_pos is None: tensor_pos = [i for i in range(len(values))] else: tensor_pos = [tensor_pos] if isinstance(tensor_pos, int) else tensor_pos if len(tensor_pos) != len(values): raise ValueError("Length of tensor position is not compatible with length of constraint values") strategy = list() for t in tensor_name: for p, v in zip(tensor_pos, values): if constraints == TileConstraint.MIN: strategy.append(create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=t, tile_pos=p, tile_min=v)) elif constraints == TileConstraint.MOD: strategy.append(create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=t, tile_pos=p, tile_mod=v)) elif constraints == TileConstraint.FACTOR: strategy.append(create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=t, tile_pos=p, tile_factor=v)) elif constraints == TileConstraint.CANDIDATE: strategy.append(create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=t, tile_pos=p, tile_candidate=v)) elif constraints == TileConstraint.MAX: strategy.append(create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=t, tile_pos=p, tile_max=v)) elif constraints == TileConstraint.FORBID_ISOLATE: strategy.append(create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=t, tile_pos=p, forbid_isolate=v)) elif constraints == TileConstraint.SET_PRIORITY: strategy.append(create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=t, tile_pos=p, priority=v)) elif constraints == TileConstraint.SET_EXPANSION: strategy.append(create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=t, expansion=v)) else: raise TypeError("Constraint {} is not supported in this api, please use other api" .format(constraints.value)) return strategy
def create_constraint_on_tensor(tensor, values, constraints, tensor_pos=None, level=TileLevel.C1): """api for dsl to create tiling constraints on certain tensor.""" if constraints not in TileConstraint: raise ValueError("Tile constraint must be chosen from {0}".format(TileConstraint)) if isinstance(tensor, (list, tuple)): for t in tensor: if not isinstance(t, akg.tvm.tensor.Tensor): raise TypeError("Tensor should be tvm.tensor.Tensor or a list/tuple of tvm.tensor.Tensor.") tensor_name = [tensor.op.name] if isinstance(tensor, akg.tvm.tensor.Tensor) else [t.op.name for t in tensor] values = [values] if isinstance(values, (str, int)) else values if tensor_pos is None: tensor_pos = [i for i in range(len(values))] else: tensor_pos = [tensor_pos] if isinstance(tensor_pos, int) else tensor_pos if len(tensor_pos) != len(values): raise ValueError("Length of tensor position is not compatible with length of constraint values") strategy = list() for t in tensor_name: for p, v in zip(tensor_pos, values): if constraints == TileConstraint.MIN: strategy.append(create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=t, tile_pos=p, tile_min=v)) elif constraints == TileConstraint.MOD: strategy.append(create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=t, tile_pos=p, tile_mod=v)) elif constraints == TileConstraint.FACTOR: strategy.append(create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=t, tile_pos=p, tile_factor=v)) elif constraints == TileConstraint.CANDIDATE: strategy.append(create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=t, tile_pos=p, tile_candidate=v)) elif constraints == TileConstraint.MAX: strategy.append(create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=t, tile_pos=p, tile_max=v)) elif constraints == TileConstraint.FORBID_ISOLATE: strategy.append(create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=t, tile_pos=p, forbid_isolate=v)) elif constraints == TileConstraint.SET_PRIORITY: strategy.append(create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=t, tile_pos=p, priority=v)) elif constraints == TileConstraint.SET_EXPANSION: strategy.append(create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=t, expansion=v)) else: raise TypeError("Constraint {} is not supported in this api, please use other api" .format(constraints.value)) return strategy
Python
def create_template(tensor, template, level=TileLevel.C1): """create template according to given template arg.""" tensor_name = tensor.op.name if template not in TileTemplate: raise ValueError("Invalid template name {0}, must chosen from {1}". format(template, TileTemplate)) if template in [TileTemplate.NCHW, TileTemplate.DEFAULT_FORMAT]: return template_nchw(tensor_name, level) if template == TileTemplate.NC1HWC0: return template_nc1hwc0(tensor_name, level) if template == TileTemplate.NHWC: return template_nhwc(tensor_name, level) return []
def create_template(tensor, template, level=TileLevel.C1): """create template according to given template arg.""" tensor_name = tensor.op.name if template not in TileTemplate: raise ValueError("Invalid template name {0}, must chosen from {1}". format(template, TileTemplate)) if template in [TileTemplate.NCHW, TileTemplate.DEFAULT_FORMAT]: return template_nchw(tensor_name, level) if template == TileTemplate.NC1HWC0: return template_nc1hwc0(tensor_name, level) if template == TileTemplate.NHWC: return template_nhwc(tensor_name, level) return []
Python
def to_tvm_type(value, t_type): """transform integer and string to corresponding type in tvm.""" if isinstance(value, int): return akg.tvm.expr.IntImm("int32", value) if isinstance(value, str): return akg.tvm.expr.StringImm(value) if isinstance(value, (akg.tvm.expr.IntImm, akg.tvm.expr.StringImm)): return value raise TypeError("{} only support integer or string, found {}".format(t_type, type(value)))
def to_tvm_type(value, t_type): """transform integer and string to corresponding type in tvm.""" if isinstance(value, int): return akg.tvm.expr.IntImm("int32", value) if isinstance(value, str): return akg.tvm.expr.StringImm(value) if isinstance(value, (akg.tvm.expr.IntImm, akg.tvm.expr.StringImm)): return value raise TypeError("{} only support integer or string, found {}".format(t_type, type(value)))
Python
def create_custom_tiling_node(tile_mode, tile_level=TileLevel.C1, tensor_name=DEFAULT_STRING, tile_pos=DEFAULT_VALUE, tile_band=DEFAULT_VALUE, tile_axis=DEFAULT_VALUE, tile_min=DEFAULT_VALUE, tile_max=DEFAULT_VALUE, tile_mod=DEFAULT_VALUE, tile_factor=DEFAULT_VALUE, tile_candidate=DEFAULT_VALUE, forbid_isolate=DEFAULT_VALUE, axis_info=DEFAULT_STRING, priority=DEFAULT_VALUE, expansion=DEFAULT_VALUE, mem_ratio=double(DEFAULT_VALUE), thread_min=[], thread_max=[], thread_mod=[], block_min=[], block_max=[], block_mod=[]): """default method to create custom tiling node, all values are default except tile mode.""" tile_min = to_tvm_type(tile_min, "tile_min") tile_max = to_tvm_type(tile_max, "tile_max") tile_mod = to_tvm_type(tile_mod, "tile_mod") tile_factor = to_tvm_type(tile_factor, "tile_factor") tile_candidate = to_tvm_type(tile_candidate, "tile_candidate") return akg.tvm.make.node(NODE_TYPE, tile_level=akg.tvm.expr.StringImm(tile_level.value), tile_mode=akg.tvm.expr.StringImm(tile_mode.value), tensor_name=akg.tvm.expr.StringImm(tensor_name), tile_pos=tile_pos, tile_band=tile_band, tile_axis=tile_axis, tile_min=tile_min, tile_max=tile_max, tile_mod=tile_mod, tile_factor=tile_factor, tile_candidate=tile_candidate, forbid_isolate=forbid_isolate, axis_info=akg.tvm.expr.StringImm(axis_info), priority=priority, expansion=expansion, mem_ratio=mem_ratio, thread_min=thread_min, thread_max=thread_max, thread_mod=thread_mod, block_min=block_min, block_max=block_max, block_mod=block_mod)
def create_custom_tiling_node(tile_mode, tile_level=TileLevel.C1, tensor_name=DEFAULT_STRING, tile_pos=DEFAULT_VALUE, tile_band=DEFAULT_VALUE, tile_axis=DEFAULT_VALUE, tile_min=DEFAULT_VALUE, tile_max=DEFAULT_VALUE, tile_mod=DEFAULT_VALUE, tile_factor=DEFAULT_VALUE, tile_candidate=DEFAULT_VALUE, forbid_isolate=DEFAULT_VALUE, axis_info=DEFAULT_STRING, priority=DEFAULT_VALUE, expansion=DEFAULT_VALUE, mem_ratio=double(DEFAULT_VALUE), thread_min=[], thread_max=[], thread_mod=[], block_min=[], block_max=[], block_mod=[]): """default method to create custom tiling node, all values are default except tile mode.""" tile_min = to_tvm_type(tile_min, "tile_min") tile_max = to_tvm_type(tile_max, "tile_max") tile_mod = to_tvm_type(tile_mod, "tile_mod") tile_factor = to_tvm_type(tile_factor, "tile_factor") tile_candidate = to_tvm_type(tile_candidate, "tile_candidate") return akg.tvm.make.node(NODE_TYPE, tile_level=akg.tvm.expr.StringImm(tile_level.value), tile_mode=akg.tvm.expr.StringImm(tile_mode.value), tensor_name=akg.tvm.expr.StringImm(tensor_name), tile_pos=tile_pos, tile_band=tile_band, tile_axis=tile_axis, tile_min=tile_min, tile_max=tile_max, tile_mod=tile_mod, tile_factor=tile_factor, tile_candidate=tile_candidate, forbid_isolate=forbid_isolate, axis_info=akg.tvm.expr.StringImm(axis_info), priority=priority, expansion=expansion, mem_ratio=mem_ratio, thread_min=thread_min, thread_max=thread_max, thread_mod=thread_mod, block_min=block_min, block_max=block_max, block_mod=block_mod)
Python
def template_nc1hwc0(tensor_name, level): """create default tiling strategy for nc1hwc0 template.""" node_n = create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=tensor_name, tile_pos=0, tile_factor=to_tvm_type(1, "tile_factor")) node_c0 = create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=tensor_name, tile_pos=4, tile_max="FULL") return [node_n, node_c0]
def template_nc1hwc0(tensor_name, level): """create default tiling strategy for nc1hwc0 template.""" node_n = create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=tensor_name, tile_pos=0, tile_factor=to_tvm_type(1, "tile_factor")) node_c0 = create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=tensor_name, tile_pos=4, tile_max="FULL") return [node_n, node_c0]
Python
def template_nchw(tensor_name, level): """create default tiling strategy for nchw template.""" node_n = create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=tensor_name, tile_pos=0, tile_factor=to_tvm_type(1, "tile_factor")) node_c = create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=tensor_name, tile_pos=1, tile_mod=to_tvm_type(CUBE_UNIT, "tile_factor")) return [node_n, node_c]
def template_nchw(tensor_name, level): """create default tiling strategy for nchw template.""" node_n = create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=tensor_name, tile_pos=0, tile_factor=to_tvm_type(1, "tile_factor")) node_c = create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=tensor_name, tile_pos=1, tile_mod=to_tvm_type(CUBE_UNIT, "tile_factor")) return [node_n, node_c]
Python
def template_nhwc(tensor_name, level): """create default tiling strategy for nhwc template.""" node_n = create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=tensor_name, tile_pos=0, tile_factor=to_tvm_type(1, "tile_factor")) node_c = create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=tensor_name, tile_pos=3, tile_mod=to_tvm_type(CUBE_UNIT, "tile_factor")) return [node_n, node_c]
def template_nhwc(tensor_name, level): """create default tiling strategy for nhwc template.""" node_n = create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=tensor_name, tile_pos=0, tile_factor=to_tvm_type(1, "tile_factor")) node_c = create_custom_tiling_node(TileMode.TENSOR, tile_level=level, tensor_name=tensor_name, tile_pos=3, tile_mod=to_tvm_type(CUBE_UNIT, "tile_factor")) return [node_n, node_c]
Python
def reg_gen_key_func(gen_key_func): """register generated key by function.""" def decorate(func_): @wraps(func_) def wrapper(*args, **kwargs): gen_key_func_map[func_.__name__] = gen_key_func return func_(*args, **kwargs) return wrapper return decorate
def reg_gen_key_func(gen_key_func): """register generated key by function.""" def decorate(func_): @wraps(func_) def wrapper(*args, **kwargs): gen_key_func_map[func_.__name__] = gen_key_func return func_(*args, **kwargs) return wrapper return decorate
Python
def _parse_merged_json(desc_d, stitch_tensor_name, input_tensor_name, output_tensor_name): """ Parse merged json to get subgraph splitted by stitch nodes and input-output relationship of merged graph. Args: desc_d (dict): The dict of compute description. stitch_tensor_name (list[string]): The list of stitch node tensors. stitch nodes are regarded as edges of sub_graphs. The smallest number of sub_graph is the length of stitch_tensor_name + 1. input_tensor_name (list[string]): The list of input tensors. output_tensor_name (list[string]): The list of output tensors. output tensors would be regarded as inter_output_tensor and final_output_tensor. The main difference of the two kinds of tensors is whether out-degree is zero, in which final_output_tensor is the tensor with zero out-degree in merged graph and otherwise, it is inter_output_tensor. Returns: extra_subgraph_output (dict): The dict of extra output tensors for each sub_graph. final_output_list (list[string]): The list of final output tensors. output tensors in this list are are final_output_tensor and the subgraph they belong to doesn't include stitch nodes. final_output_within_graph (list[string]): The list of final output tensors. output tensors in this list are final_output_tensor and the subgraph they belong to also includes stitch node. """ # Initialize sub_graph number as the smallest possible number of sub graph. # sub graphs number might increase based on graph structure. sub_graph_length = len(stitch_tensor_name) sub_graph_node = [set() for _ in range(sub_graph_length)] # use dict to save extra outputs for each sub_graph. extra_subgraph_output = dict(zip(stitch_tensor_name, [[] for _ in range(sub_graph_length)])) in_out_dict = {} inter_output_list = set() final_output_list = set() final_output_within_graph = [] idx = 0 final_output_graph = False for i in range(len(desc_d['op_desc']) - 1, -1, -1): op_info = desc_d['op_desc'][i] for out_desc in op_info['output_desc']: # switch to next subgraph if find stitch node. if out_desc['tensor_name'] in stitch_tensor_name: idx += 1 cur_stitch_node = out_desc['tensor_name'] # when current subgraph concludes final output and encounters with stitch node, # increase number of subgraph. if final_output_graph: final_output_list.add(cur_final_node) final_output_within_graph.remove(cur_final_node) sub_graph_length += 1 sub_graph_node += [set()] final_output_graph = False # out_desc not in in_out_dict means out-degree is zero. if out_desc['tensor_name'] not in in_out_dict: final_output_graph = True cur_final_node = out_desc['tensor_name'] final_output_within_graph.append(cur_final_node) sub_graph_node[idx].add(out_desc['tensor_name']) for input_desc in op_info['input_desc']: for sub_input_desc in input_desc: sub_graph_node[idx].add(sub_input_desc['tensor_name']) tmp_name = sub_input_desc['tensor_name'] if tmp_name in output_tensor_name: inter_output_list.add(sub_input_desc['tensor_name']) for subgraph in sub_graph_node[0: idx]: extra_output = _is_tensor(sub_input_desc) and tmp_name not in stitch_tensor_name \ and tmp_name not in input_tensor_name used_by_other_sg = tmp_name in subgraph used_as_output = tmp_name in output_tensor_name extra_output = extra_output and (used_by_other_sg or used_as_output) if extra_output and cur_stitch_node and not final_output_graph: extra_subgraph_output[cur_stitch_node].insert(0, tmp_name) break if sub_input_desc['tensor_name'] not in in_out_dict: in_out_dict[sub_input_desc['tensor_name']] = [out_desc['tensor_name']] else: in_out_dict[sub_input_desc['tensor_name']].append(out_desc['tensor_name']) return extra_subgraph_output, list(final_output_list), final_output_within_graph
def _parse_merged_json(desc_d, stitch_tensor_name, input_tensor_name, output_tensor_name): """ Parse merged json to get subgraph splitted by stitch nodes and input-output relationship of merged graph. Args: desc_d (dict): The dict of compute description. stitch_tensor_name (list[string]): The list of stitch node tensors. stitch nodes are regarded as edges of sub_graphs. The smallest number of sub_graph is the length of stitch_tensor_name + 1. input_tensor_name (list[string]): The list of input tensors. output_tensor_name (list[string]): The list of output tensors. output tensors would be regarded as inter_output_tensor and final_output_tensor. The main difference of the two kinds of tensors is whether out-degree is zero, in which final_output_tensor is the tensor with zero out-degree in merged graph and otherwise, it is inter_output_tensor. Returns: extra_subgraph_output (dict): The dict of extra output tensors for each sub_graph. final_output_list (list[string]): The list of final output tensors. output tensors in this list are are final_output_tensor and the subgraph they belong to doesn't include stitch nodes. final_output_within_graph (list[string]): The list of final output tensors. output tensors in this list are final_output_tensor and the subgraph they belong to also includes stitch node. """ # Initialize sub_graph number as the smallest possible number of sub graph. # sub graphs number might increase based on graph structure. sub_graph_length = len(stitch_tensor_name) sub_graph_node = [set() for _ in range(sub_graph_length)] # use dict to save extra outputs for each sub_graph. extra_subgraph_output = dict(zip(stitch_tensor_name, [[] for _ in range(sub_graph_length)])) in_out_dict = {} inter_output_list = set() final_output_list = set() final_output_within_graph = [] idx = 0 final_output_graph = False for i in range(len(desc_d['op_desc']) - 1, -1, -1): op_info = desc_d['op_desc'][i] for out_desc in op_info['output_desc']: # switch to next subgraph if find stitch node. if out_desc['tensor_name'] in stitch_tensor_name: idx += 1 cur_stitch_node = out_desc['tensor_name'] # when current subgraph concludes final output and encounters with stitch node, # increase number of subgraph. if final_output_graph: final_output_list.add(cur_final_node) final_output_within_graph.remove(cur_final_node) sub_graph_length += 1 sub_graph_node += [set()] final_output_graph = False # out_desc not in in_out_dict means out-degree is zero. if out_desc['tensor_name'] not in in_out_dict: final_output_graph = True cur_final_node = out_desc['tensor_name'] final_output_within_graph.append(cur_final_node) sub_graph_node[idx].add(out_desc['tensor_name']) for input_desc in op_info['input_desc']: for sub_input_desc in input_desc: sub_graph_node[idx].add(sub_input_desc['tensor_name']) tmp_name = sub_input_desc['tensor_name'] if tmp_name in output_tensor_name: inter_output_list.add(sub_input_desc['tensor_name']) for subgraph in sub_graph_node[0: idx]: extra_output = _is_tensor(sub_input_desc) and tmp_name not in stitch_tensor_name \ and tmp_name not in input_tensor_name used_by_other_sg = tmp_name in subgraph used_as_output = tmp_name in output_tensor_name extra_output = extra_output and (used_by_other_sg or used_as_output) if extra_output and cur_stitch_node and not final_output_graph: extra_subgraph_output[cur_stitch_node].insert(0, tmp_name) break if sub_input_desc['tensor_name'] not in in_out_dict: in_out_dict[sub_input_desc['tensor_name']] = [out_desc['tensor_name']] else: in_out_dict[sub_input_desc['tensor_name']].append(out_desc['tensor_name']) return extra_subgraph_output, list(final_output_list), final_output_within_graph
Python
def stitch_json_split(desc_d): """ split sub graph from merged json file. Using 'buffer_stitch' to store stitch info from graph kernel. Args: desc_d: dict of compute description Returns: List of spilted json info. List of original input. Dict of dominance info. """ stitch_jsons = [] input_tensor_name = [tensor[0]['tensor_name'] for tensor in desc_d['input_desc']] output_tensor_name = [tensor['tensor_name'] for tensor in desc_d['output_desc']] stitch_node = desc_d['buffer_stitch']['stitch_op'] stitch_node_name = [node for stitchnode in stitch_node for node in stitchnode] extra_subgraph_output, final_output_list, final_output_within_graph = \ _parse_merged_json(desc_d, stitch_node_name, input_tensor_name, output_tensor_name) # traverse extra_subgraph_output to save extra output into subgraph. stitch_node = [] extra_list = [] for item in extra_subgraph_output: cur_list = [item] for node in extra_subgraph_output[item]: if node not in extra_list: extra_list.append(node) cur_list.append(node) stitch_node.append(cur_list) stitch_node_name = [node for stitchnode in stitch_node for node in stitchnode] # initialize req_map req_op_size = [0] * len(stitch_node_name) req_map = dict(zip(stitch_node_name, req_op_size)) # add final output within subgraph into the last initialized stitch sub_graph. stitch_node = stitch_node[:-1] + [stitch_node[-1] + final_output_within_graph] # add final output into stitch_op. stitch_node += [[op] for op in final_output_list if op not in stitch_node_name] stitchnode_list = [node for stitchnode in stitch_node for node in stitchnode] # each output tensor can only be parsed as output once in all subgraphs. # All tensors in stitch_node_list will be put into output_name. # Save other output tensors which are not in stitch_node_name for the output collection of subgraphs. complement_output = [tensor for tensor in output_tensor_name if tensor not in stitchnode_list] # initialize sub_stitch_graphs. sub_stitch_graphs = [] for i, stitch_op in enumerate(stitch_node): sub_stitch_graphs.append(Graph(stitch_op)) sub_stitch_graphs, inplace_assign_map, fake_output_list = \ _collect_subgraph_info(desc_d, sub_stitch_graphs, req_map, input_tensor_name, complement_output, stitchnode_list) # reverse op order to generate topological subgraph for i, sg in enumerate(sub_stitch_graphs): sg.ops = list(reversed(sg.ops)) sg.op_name = desc_d['op'] stitch_json_str = _sub_graph_info(sg, desc_d) if os.getenv(get_dump_ir_flag()) == "on": if not os.path.exists("stitch_info"): try: os.mkdir("stitch_info") except OSError as err: # 17, OSError: [Errno 17] File exists if err.errno == 17: pass else: raise err with open('stitch_info/' + sg.op_name + '_stitch_' + str(i + 1) + '.json', 'w+') as f: f.write(stitch_json_str) with open('stitch_info/' + sg.op_name + '_stitch.json', 'w+') as f: f.write(json.dumps(desc_d)) stitch_jsons.append(stitch_json_str) clean_op_list = [fake_op for fake_op in fake_output_list if fake_op in stitch_node_name] # add fake outputs into output_tensor_name output_tensor_name += clean_op_list # start node for dominance tree is final_output_list + final_output_within_graph. start_node = final_output_list + final_output_within_graph alloc_map, reuse_map = _shared_memory_optimization(desc_d, req_map, output_tensor_name) # remove fake output from alloc_map and store them into clean_op_map clean_op_map = dict() for fake_op in clean_op_list: if fake_op in alloc_map: clean_info = alloc_map[fake_op] alloc_map.pop(fake_op) else: clean_info = reuse_map[fake_op] reuse_map.pop(fake_op) clean_op_map[inplace_assign_map[fake_op]] = clean_info if not alloc_map: alloc_map['EMPTY'] = [] if not clean_op_map: clean_op_map['EMPTY'] = [] if not reuse_map: reuse_map['EMPTY'] = [] return stitch_jsons, input_tensor_name, output_tensor_name, alloc_map, reuse_map, clean_op_map
def stitch_json_split(desc_d): """ split sub graph from merged json file. Using 'buffer_stitch' to store stitch info from graph kernel. Args: desc_d: dict of compute description Returns: List of spilted json info. List of original input. Dict of dominance info. """ stitch_jsons = [] input_tensor_name = [tensor[0]['tensor_name'] for tensor in desc_d['input_desc']] output_tensor_name = [tensor['tensor_name'] for tensor in desc_d['output_desc']] stitch_node = desc_d['buffer_stitch']['stitch_op'] stitch_node_name = [node for stitchnode in stitch_node for node in stitchnode] extra_subgraph_output, final_output_list, final_output_within_graph = \ _parse_merged_json(desc_d, stitch_node_name, input_tensor_name, output_tensor_name) # traverse extra_subgraph_output to save extra output into subgraph. stitch_node = [] extra_list = [] for item in extra_subgraph_output: cur_list = [item] for node in extra_subgraph_output[item]: if node not in extra_list: extra_list.append(node) cur_list.append(node) stitch_node.append(cur_list) stitch_node_name = [node for stitchnode in stitch_node for node in stitchnode] # initialize req_map req_op_size = [0] * len(stitch_node_name) req_map = dict(zip(stitch_node_name, req_op_size)) # add final output within subgraph into the last initialized stitch sub_graph. stitch_node = stitch_node[:-1] + [stitch_node[-1] + final_output_within_graph] # add final output into stitch_op. stitch_node += [[op] for op in final_output_list if op not in stitch_node_name] stitchnode_list = [node for stitchnode in stitch_node for node in stitchnode] # each output tensor can only be parsed as output once in all subgraphs. # All tensors in stitch_node_list will be put into output_name. # Save other output tensors which are not in stitch_node_name for the output collection of subgraphs. complement_output = [tensor for tensor in output_tensor_name if tensor not in stitchnode_list] # initialize sub_stitch_graphs. sub_stitch_graphs = [] for i, stitch_op in enumerate(stitch_node): sub_stitch_graphs.append(Graph(stitch_op)) sub_stitch_graphs, inplace_assign_map, fake_output_list = \ _collect_subgraph_info(desc_d, sub_stitch_graphs, req_map, input_tensor_name, complement_output, stitchnode_list) # reverse op order to generate topological subgraph for i, sg in enumerate(sub_stitch_graphs): sg.ops = list(reversed(sg.ops)) sg.op_name = desc_d['op'] stitch_json_str = _sub_graph_info(sg, desc_d) if os.getenv(get_dump_ir_flag()) == "on": if not os.path.exists("stitch_info"): try: os.mkdir("stitch_info") except OSError as err: # 17, OSError: [Errno 17] File exists if err.errno == 17: pass else: raise err with open('stitch_info/' + sg.op_name + '_stitch_' + str(i + 1) + '.json', 'w+') as f: f.write(stitch_json_str) with open('stitch_info/' + sg.op_name + '_stitch.json', 'w+') as f: f.write(json.dumps(desc_d)) stitch_jsons.append(stitch_json_str) clean_op_list = [fake_op for fake_op in fake_output_list if fake_op in stitch_node_name] # add fake outputs into output_tensor_name output_tensor_name += clean_op_list # start node for dominance tree is final_output_list + final_output_within_graph. start_node = final_output_list + final_output_within_graph alloc_map, reuse_map = _shared_memory_optimization(desc_d, req_map, output_tensor_name) # remove fake output from alloc_map and store them into clean_op_map clean_op_map = dict() for fake_op in clean_op_list: if fake_op in alloc_map: clean_info = alloc_map[fake_op] alloc_map.pop(fake_op) else: clean_info = reuse_map[fake_op] reuse_map.pop(fake_op) clean_op_map[inplace_assign_map[fake_op]] = clean_info if not alloc_map: alloc_map['EMPTY'] = [] if not clean_op_map: clean_op_map['EMPTY'] = [] if not reuse_map: reuse_map['EMPTY'] = [] return stitch_jsons, input_tensor_name, output_tensor_name, alloc_map, reuse_map, clean_op_map
Python
def ApproximateEqual(x, y, tolerance=1e-5, target=utils.CCE): """ abs(x-y) less than or equal to the tolerance Args: x (tvm.tensor.Tensor): Tensor of type float16, float32. y (tvm.tensor.Tensor): Tensor of type float16, float32. tolerance (float): default is 1e-5 Returns: tvm.tensor.Tensor. If abs(x-y) less than or equal to the tolerance return True, else return False. Supported Platforms: 'Ascend' """ if tolerance < 0: raise RuntimeError("tolerance should >= 0") # check shape utils.check_shape(x) utils.check_shape(y) shape = get_shape(x) if shape != get_shape(y): raise RuntimeError("input shape must be same, but got %s vs %s", shape, get_shape(y)) # check input tensor data_type utils.ops_dtype_check(x.dtype, utils.DtypeForDavinci.ALL_FLOAT) utils.ops_dtype_check(y.dtype, utils.DtypeForDavinci.ALL_FLOAT) dtype = x.dtype if dtype != y.dtype: raise RuntimeError("input type must be same, but got %s vs %s", dtype, y.dtype) res_vsub = Sub(x, y, target) res_vabs = Abs(res_vsub, target) # As vcmp_lt and vsel instruction don't support fp32 on mini # It can be simplified by some methods, such as , "auto cast" if product_is_mini(): dtype = "float16" res_vabs = Cast(res_vabs, dtype, target) t = akg.tvm.compute(shape, lambda *indice: akg.tvm.const(1, dtype), "t") f = akg.tvm.compute(shape, lambda *indice: akg.tvm.const(0, dtype), "f") res = akg.tvm.compute(shape, lambda *indice: akg.tvm.expr.Select( res_vabs[indice] <= akg.tvm.const(tolerance, dtype), t[indice], f[indice])) # It can be be simplified that let cast op support fp16 and fp32 to bool type res_fp16 = Cast(res, "float16", target) res_bool = akg.tvm.compute(shape, lambda *indice: res_fp16(*indice).astype("bool")) return res_bool
def ApproximateEqual(x, y, tolerance=1e-5, target=utils.CCE): """ abs(x-y) less than or equal to the tolerance Args: x (tvm.tensor.Tensor): Tensor of type float16, float32. y (tvm.tensor.Tensor): Tensor of type float16, float32. tolerance (float): default is 1e-5 Returns: tvm.tensor.Tensor. If abs(x-y) less than or equal to the tolerance return True, else return False. Supported Platforms: 'Ascend' """ if tolerance < 0: raise RuntimeError("tolerance should >= 0") # check shape utils.check_shape(x) utils.check_shape(y) shape = get_shape(x) if shape != get_shape(y): raise RuntimeError("input shape must be same, but got %s vs %s", shape, get_shape(y)) # check input tensor data_type utils.ops_dtype_check(x.dtype, utils.DtypeForDavinci.ALL_FLOAT) utils.ops_dtype_check(y.dtype, utils.DtypeForDavinci.ALL_FLOAT) dtype = x.dtype if dtype != y.dtype: raise RuntimeError("input type must be same, but got %s vs %s", dtype, y.dtype) res_vsub = Sub(x, y, target) res_vabs = Abs(res_vsub, target) # As vcmp_lt and vsel instruction don't support fp32 on mini # It can be simplified by some methods, such as , "auto cast" if product_is_mini(): dtype = "float16" res_vabs = Cast(res_vabs, dtype, target) t = akg.tvm.compute(shape, lambda *indice: akg.tvm.const(1, dtype), "t") f = akg.tvm.compute(shape, lambda *indice: akg.tvm.const(0, dtype), "f") res = akg.tvm.compute(shape, lambda *indice: akg.tvm.expr.Select( res_vabs[indice] <= akg.tvm.const(tolerance, dtype), t[indice], f[indice])) # It can be be simplified that let cast op support fp16 and fp32 to bool type res_fp16 = Cast(res, "float16", target) res_bool = akg.tvm.compute(shape, lambda *indice: res_fp16(*indice).astype("bool")) return res_bool
Python
def sum_data(data, axes, keepdims): """sum one axis data at a time""" for x in axes: data = akg.topi.sum(data, axis=x, keepdims=keepdims) return data
def sum_data(data, axes, keepdims): """sum one axis data at a time""" for x in axes: data = akg.topi.sum(data, axis=x, keepdims=keepdims) return data
Python
def apply_adadelta_run(shape, dtype, epsilon, attrs=None): """run function for dsl function apply_adadelta.""" shapes = [shape, shape, shape, shape, (1,), (1,)] dtypes = [dtype] * len(shapes) op_attrs = [epsilon] mod = utils.op_build_test(apply_adadelta, shapes, dtypes, op_attrs=op_attrs, kernel_name="apply_adadelta", attrs=attrs) inputs, expects, args = gen_data(shape, dtype, epsilon) outputs = utils.mod_launch(mod, args, outputs=(0, 1, 2), expect=expects) rtol, atol = get_rtol_atol("apply_delta", dtype) results = list(map(lambda x, y: compare_tensor(x, y, rtol=rtol, atol=atol), outputs, expects)) return inputs, outputs, expects, all(results)
def apply_adadelta_run(shape, dtype, epsilon, attrs=None): """run function for dsl function apply_adadelta.""" shapes = [shape, shape, shape, shape, (1,), (1,)] dtypes = [dtype] * len(shapes) op_attrs = [epsilon] mod = utils.op_build_test(apply_adadelta, shapes, dtypes, op_attrs=op_attrs, kernel_name="apply_adadelta", attrs=attrs) inputs, expects, args = gen_data(shape, dtype, epsilon) outputs = utils.mod_launch(mod, args, outputs=(0, 1, 2), expect=expects) rtol, atol = get_rtol_atol("apply_delta", dtype) results = list(map(lambda x, y: compare_tensor(x, y, rtol=rtol, atol=atol), outputs, expects)) return inputs, outputs, expects, all(results)
Python
def gen_data(shape, dtype, epsilon): """Generate data for testing the op.""" var = random_gaussian(shape, miu=1, sigma=0.3).astype(dtype) accum = np.abs(random_gaussian(shape, miu=1, sigma=0.3).astype(dtype)) accum_update = np.abs(random_gaussian(shape, miu=1, sigma=0.3).astype(dtype)) grad = random_gaussian(shape, miu=1, sigma=0.3).astype(dtype) lr = np.random.rand(1).astype(dtype) rho = np.random.rand(1).astype(dtype) inputs = [var, accum, accum_update, grad, lr, rho] one = np.array([1]).astype(dtype) epsilon = np.array([epsilon]).astype(dtype) out_accum = rho * accum + (one - rho) * grad * grad update = np.sqrt(accum_update + epsilon) / np.sqrt(out_accum + epsilon) * grad out_accum_update = rho * accum_update + (one - rho) * update * update out_var = var - update * lr expects = [out_var, out_accum, out_accum_update] args = inputs return inputs, expects, args
def gen_data(shape, dtype, epsilon): """Generate data for testing the op.""" var = random_gaussian(shape, miu=1, sigma=0.3).astype(dtype) accum = np.abs(random_gaussian(shape, miu=1, sigma=0.3).astype(dtype)) accum_update = np.abs(random_gaussian(shape, miu=1, sigma=0.3).astype(dtype)) grad = random_gaussian(shape, miu=1, sigma=0.3).astype(dtype) lr = np.random.rand(1).astype(dtype) rho = np.random.rand(1).astype(dtype) inputs = [var, accum, accum_update, grad, lr, rho] one = np.array([1]).astype(dtype) epsilon = np.array([epsilon]).astype(dtype) out_accum = rho * accum + (one - rho) * grad * grad update = np.sqrt(accum_update + epsilon) / np.sqrt(out_accum + epsilon) * grad out_accum_update = rho * accum_update + (one - rho) * update * update out_var = var - update * lr expects = [out_var, out_accum, out_accum_update] args = inputs return inputs, expects, args
Python
def Add(data1, data2, scale=1.0, polyhedral=True, attrs={}, target=utils.CCE): """ Computes data1 + data2 elementwise, broadcast is supported. Args: data1 (tvm.tensor.Tensor): Tensor. data2 (tvm.tensor.Tensor): Tensor of same type as data1, if shape(data2) != shape(data1), broadcast will happen. Returns: tvm.tensor.Tensor, add result, with same type as input tensors and broadcasted shape of data1 and data2. Supported Platforms: 'Ascend', 'GPU', 'CPU' """ utils.check_supported_target(target) if target == utils.CCE: return _add_ascend(data1, data2, scale, polyhedral, attrs) else: return _add(data1, data2)
def Add(data1, data2, scale=1.0, polyhedral=True, attrs={}, target=utils.CCE): """ Computes data1 + data2 elementwise, broadcast is supported. Args: data1 (tvm.tensor.Tensor): Tensor. data2 (tvm.tensor.Tensor): Tensor of same type as data1, if shape(data2) != shape(data1), broadcast will happen. Returns: tvm.tensor.Tensor, add result, with same type as input tensors and broadcasted shape of data1 and data2. Supported Platforms: 'Ascend', 'GPU', 'CPU' """ utils.check_supported_target(target) if target == utils.CCE: return _add_ascend(data1, data2, scale, polyhedral, attrs) else: return _add(data1, data2)
Python
def cce(options=None): """Returns a cce target. Parameters ---------- options : list of str Additional options """ options = options if options else [] return _api_internal._TargetCreate("cce", *options)
def cce(options=None): """Returns a cce target. Parameters ---------- options : list of str Additional options """ options = options if options else [] return _api_internal._TargetCreate("cce", *options)
Python
def opengl(model='unknown', options=None): """Returns a OpenGL target. Parameters ---------- options : str or list of str Additional options """ opts = _merge_opts(["-model=%s" % model], options) return _api_internal._TargetCreate("opengl", *opts)
def opengl(model='unknown', options=None): """Returns a OpenGL target. Parameters ---------- options : str or list of str Additional options """ opts = _merge_opts(["-model=%s" % model], options) return _api_internal._TargetCreate("opengl", *opts)
Python
def bifrost(model='unknown', options=None): """Return an ARM Mali GPU target (Bifrost architecture). Parameters ---------- options : str or list of str Additional options """ opts = ["-device=bifrost", '-model=%s' % model] opts = _merge_opts(opts, options) return _api_internal._TargetCreate("opencl", *opts)
def bifrost(model='unknown', options=None): """Return an ARM Mali GPU target (Bifrost architecture). Parameters ---------- options : str or list of str Additional options """ opts = ["-device=bifrost", '-model=%s' % model] opts = _merge_opts(opts, options) return _api_internal._TargetCreate("opencl", *opts)
Python
def broadcast(var, shape, output_dtype=None): """ broadcast scalar to tensor, only support float16 Args: var (Union[int, float, tvm.const]): input shape (tvm.tensor.Tensor): shape output_dtype (tvm.tensor.Tensor): var.dtype Returns: tvm.tensor.Tensor, broadcast tensor """ if isinstance(shape, akg.tvm.container.Array): shape = shape_to_list(shape) if isinstance(var, akg.tvm.tensor.Tensor): tensor = var orig_shape = shape_to_list(tensor.shape) if len(orig_shape) > len(shape): raise RuntimeError( "Length of shape of input must be less than or equal to output for Tensor Broadcasting, while " + "input shape is %s, and output shape is %s" % (str(orig_shape), str(shape))) expand_shape_len = len(shape) - len(orig_shape) check_equal = 0 for so, sd in zip(orig_shape, shape[expand_shape_len:]): if so == sd: check_equal += 1 continue elif so == 1: continue raise RuntimeError( "For tensor broadcasting, shape must be the same or corresponding shape of src tensor is 1" "while src shape is %s, and dst shape is %s" % (str(orig_shape), str(shape))) if check_equal == len(shape): return tensor name = "broadcast_tensor_" + str(_name_index[0]) _name_index[0] += 1 op = 'broadcast_for_tensor' lambda_func = lambda *indice: tensor(*([0 if orig_shape[i] == 1 else indice[i + expand_shape_len] for i in range(len(orig_shape))])) with akg.tvm.tag_scope(op): out = akg.tvm.compute(shape, lambda_func, name=name) return out var_type = judge_var(var) tmp_args = var if var_type == "python_const": if isinstance(tmp_args, float): tmp_args = akg.tvm.const(tmp_args, dtype="float16") else: tmp_args = akg.tvm.const(tmp_args, dtype="int32") if not output_dtype: output_dtype = tmp_args.dtype tmp_args = tmp_args.astype(output_dtype) lambda_func = lambda *indice: tmp_args name = "broadcast_" + str(_name_index[0]) _name_index[0] += 1 op = 'broadcast' with akg.tvm.tag_scope(op): out = akg.tvm.compute(shape, lambda_func, name=name) return out
def broadcast(var, shape, output_dtype=None): """ broadcast scalar to tensor, only support float16 Args: var (Union[int, float, tvm.const]): input shape (tvm.tensor.Tensor): shape output_dtype (tvm.tensor.Tensor): var.dtype Returns: tvm.tensor.Tensor, broadcast tensor """ if isinstance(shape, akg.tvm.container.Array): shape = shape_to_list(shape) if isinstance(var, akg.tvm.tensor.Tensor): tensor = var orig_shape = shape_to_list(tensor.shape) if len(orig_shape) > len(shape): raise RuntimeError( "Length of shape of input must be less than or equal to output for Tensor Broadcasting, while " + "input shape is %s, and output shape is %s" % (str(orig_shape), str(shape))) expand_shape_len = len(shape) - len(orig_shape) check_equal = 0 for so, sd in zip(orig_shape, shape[expand_shape_len:]): if so == sd: check_equal += 1 continue elif so == 1: continue raise RuntimeError( "For tensor broadcasting, shape must be the same or corresponding shape of src tensor is 1" "while src shape is %s, and dst shape is %s" % (str(orig_shape), str(shape))) if check_equal == len(shape): return tensor name = "broadcast_tensor_" + str(_name_index[0]) _name_index[0] += 1 op = 'broadcast_for_tensor' lambda_func = lambda *indice: tensor(*([0 if orig_shape[i] == 1 else indice[i + expand_shape_len] for i in range(len(orig_shape))])) with akg.tvm.tag_scope(op): out = akg.tvm.compute(shape, lambda_func, name=name) return out var_type = judge_var(var) tmp_args = var if var_type == "python_const": if isinstance(tmp_args, float): tmp_args = akg.tvm.const(tmp_args, dtype="float16") else: tmp_args = akg.tvm.const(tmp_args, dtype="int32") if not output_dtype: output_dtype = tmp_args.dtype tmp_args = tmp_args.astype(output_dtype) lambda_func = lambda *indice: tmp_args name = "broadcast_" + str(_name_index[0]) _name_index[0] += 1 op = 'broadcast' with akg.tvm.tag_scope(op): out = akg.tvm.compute(shape, lambda_func, name=name) return out
Python
def maxpool_ad_no_custom_diff_poly_all_max(head, data, kernel, stride, pad): """automatic differentiate of maxpool with polyhedral""" attrs = {"enable_post_poly_loop_partition": False, "enable_pre_poly_loop_partition": False} maxpool_fwd = OldMaxPool(data, kernel, stride, pad) [dl_ddata] = akg.differentiate(maxpool_fwd, [data], head, None, None) return dl_ddata, attrs
def maxpool_ad_no_custom_diff_poly_all_max(head, data, kernel, stride, pad): """automatic differentiate of maxpool with polyhedral""" attrs = {"enable_post_poly_loop_partition": False, "enable_pre_poly_loop_partition": False} maxpool_fwd = OldMaxPool(data, kernel, stride, pad) [dl_ddata] = akg.differentiate(maxpool_fwd, [data], head, None, None) return dl_ddata, attrs
Python
def maxpool_ad_no_custom_diff_manual_schedule_all_max(head, data, kernel, stride, pad): """automatic differentiate of maxpool with manual schedule.""" attrs = {"enable_post_poly_loop_partition": False, "enable_pre_poly_loop_partition": False} maxpool_fwd = OldMaxPool(data, kernel, stride, pad) [dl_ddata] = akg.differentiate(maxpool_fwd, [data], head, None, None) # schedule for differetiation operation s = akg.tvm.create_schedule([dl_ddata.op]) new_tensor_red = dl_ddata new_tensor = new_tensor_red.op.input_tensors[0] data = new_tensor.op.input_tensors[0] broadcast = new_tensor.op.input_tensors[1] head = new_tensor.op.input_tensors[2] forward = broadcast.op.input_tensors[0] def comp_func(s): data_ub = s.cache_read(data, "local.UB", [forward, new_tensor]) head_ub = s.cache_read(head, "local.UB", [new_tensor]) result_ub = s.cache_write(new_tensor_red, "local.UB") s[broadcast].set_scope("local.UB") s[forward].set_scope("local.UB") b, c1, h, w, c0 = forward.op.axis oh, ow = forward.op.reduce_axis s[forward].reorder(oh, ow, b, c1, h, w, c0) s[new_tensor].set_scope("local.UB") b, c1, h, w, c0 = result_ub.op.axis s[result_ub].reorder(*result_ub.op.reduce_axis, b, c1, h, w, c0) s[broadcast].compute_at(s[result_ub], b) s[new_tensor].compute_at(s[result_ub], b) return dl_ddata, comp_func, attrs
def maxpool_ad_no_custom_diff_manual_schedule_all_max(head, data, kernel, stride, pad): """automatic differentiate of maxpool with manual schedule.""" attrs = {"enable_post_poly_loop_partition": False, "enable_pre_poly_loop_partition": False} maxpool_fwd = OldMaxPool(data, kernel, stride, pad) [dl_ddata] = akg.differentiate(maxpool_fwd, [data], head, None, None) # schedule for differetiation operation s = akg.tvm.create_schedule([dl_ddata.op]) new_tensor_red = dl_ddata new_tensor = new_tensor_red.op.input_tensors[0] data = new_tensor.op.input_tensors[0] broadcast = new_tensor.op.input_tensors[1] head = new_tensor.op.input_tensors[2] forward = broadcast.op.input_tensors[0] def comp_func(s): data_ub = s.cache_read(data, "local.UB", [forward, new_tensor]) head_ub = s.cache_read(head, "local.UB", [new_tensor]) result_ub = s.cache_write(new_tensor_red, "local.UB") s[broadcast].set_scope("local.UB") s[forward].set_scope("local.UB") b, c1, h, w, c0 = forward.op.axis oh, ow = forward.op.reduce_axis s[forward].reorder(oh, ow, b, c1, h, w, c0) s[new_tensor].set_scope("local.UB") b, c1, h, w, c0 = result_ub.op.axis s[result_ub].reorder(*result_ub.op.reduce_axis, b, c1, h, w, c0) s[broadcast].compute_at(s[result_ub], b) s[new_tensor].compute_at(s[result_ub], b) return dl_ddata, comp_func, attrs
Python
def maxpool_ad_manual_schedule_no_overlap_all_max(shape, kernel, stride, pad, dtype, attrs=None, polyhedral=False): """automatic differentiate of maxpool with manual schedule for no overlap case.""" kernel_h, kernel_w = kernel stride_h, stride_w = stride pad_h, pad_w, _, _ = pad batch_size, input_c1, input_h, input_w, input_c0 = shape pad_shape = (batch_size, input_c1, input_h + 2 * pad_h, input_w + 2 * pad_w, input_c0) def custom_maxpool_fdiff(out, inputs, head_, ad_attrs, new_pld_array): in_data = inputs[0] if stride_w != kernel_w: raise RuntimeError("Only supports kernels with same dimensions as stride size!") if stride_h != kernel_h: raise RuntimeError("Only supports kernels with same dimensions as stride size!") out_broadcast = akg.tvm.compute(pad_shape, lambda b, c1, h, w, c0: out(b, c1, akg.tvm.floordiv(h, stride_h), akg.tvm.floordiv(w, stride_w), c0), name="out_broadcast") # copy output to the shape of the padded input, copying the same value for the entire kernel size out_broadcast = akg.tvm.compute(pad_shape, lambda b, c1, h, w, c0: out(b, c1, akg.tvm.floordiv(h, stride_h), akg.tvm.floordiv(w, stride_w), c0), name="out_broadcast") # copy head to the shape of the padded input, copying the same value for the entire kernel size head_broadcast = akg.tvm.compute(pad_shape, lambda b, c1, h, w, c0: head_(b, c1, akg.tvm.floordiv(h, stride_h), akg.tvm.floordiv(w, stride_w), c0), name="head_broadcast") # check if value was a maximum and assign head of that position if it was # this is done for all the maximum values within one kernel result = akg.tvm.compute(in_data.shape, lambda b, c1, h, w, c0: akg.tvm.expr.Select( in_data(b, c1, h, w, c0) == out_broadcast(b, c1, h + pad_h, w + pad_w, c0), head_broadcast(b, c1, h + pad_h, w + pad_w, c0), akg.tvm.const(0, dtype=in_data.dtype)), name="result") return [result] out_size_h = (input_h + 2 * pad_h - kernel_h) // stride_h + 1 out_size_w = (input_w + 2 * pad_w - kernel_w) // stride_w + 1 out_shape = (batch_size, input_c1, out_size_h, out_size_w, input_c0) # tensor for the input data data = akg.tvm.placeholder(shape, dtype, name="input_data") # maxpool output forward = akg.tvm.placeholder(out_shape, name="forward", dtype=dtype) # adjoint tensor for the differentiation head = akg.tvm.placeholder(out_shape, name="head", dtype=dtype) # override differentiation computation with custom function [dl_ddata] = akg.differentiate(forward, [data], head, None, None, override={forward: ([data], custom_maxpool_fdiff)}) # schedule for differetiation operation s = akg.tvm.create_schedule([dl_ddata.op]) # get computations result = dl_ddata forward_broadcast = result.op.input_tensors[1] head_broadcast = result.op.input_tensors[2] # cache reads and writes result_ub = s.cache_write(result, "local.UB") data_ub = s.cache_read(data, "local.UB", [result_ub]) head_ub = s.cache_read(head, "local.UB", [head_broadcast]) forward_ub = s.cache_read(forward, "local.UB", [forward_broadcast]) s[head_broadcast].set_scope("local.UB") s[forward_broadcast].set_scope("local.UB") s[head_ub].compute_at(s[head_broadcast], head_broadcast.op.axis[0]) s[forward_ub].compute_at(s[forward_broadcast], forward_broadcast.op.axis[0]) s[data_ub].compute_at(s[result_ub], result_ub.op.axis[0]) s[forward_broadcast].compute_at(s[result_ub], result_ub.op.axis[0]) s[head_broadcast].compute_at(s[result_ub], result_ub.op.axis[0]) _, c1, h, _, _ = result.op.axis if input_h + 2 * pad_h > 32 or input_w + 2 * pad_w > 32: h_outer, _ = s[result].split(h, 4) s[result_ub].compute_at(s[result], h_outer) else: s[result_ub].compute_at(s[result], c1) with akg.build_config(add_lower_pass=debug_mode(0), dump_pass_ir=True): mod = akg.build(s, [head, data, forward, dl_ddata], "cce", name="maxpool_ad_manual_schedule_no_overlap_all_max", attrs=attrs, polyhedral=polyhedral) source_code = mod.imported_modules[0].get_source() kernel_name = "maxpool_ad_manual_schedule_no_overlap_all_max" create_code(kernel_name, './', source_code) return mod
def maxpool_ad_manual_schedule_no_overlap_all_max(shape, kernel, stride, pad, dtype, attrs=None, polyhedral=False): """automatic differentiate of maxpool with manual schedule for no overlap case.""" kernel_h, kernel_w = kernel stride_h, stride_w = stride pad_h, pad_w, _, _ = pad batch_size, input_c1, input_h, input_w, input_c0 = shape pad_shape = (batch_size, input_c1, input_h + 2 * pad_h, input_w + 2 * pad_w, input_c0) def custom_maxpool_fdiff(out, inputs, head_, ad_attrs, new_pld_array): in_data = inputs[0] if stride_w != kernel_w: raise RuntimeError("Only supports kernels with same dimensions as stride size!") if stride_h != kernel_h: raise RuntimeError("Only supports kernels with same dimensions as stride size!") out_broadcast = akg.tvm.compute(pad_shape, lambda b, c1, h, w, c0: out(b, c1, akg.tvm.floordiv(h, stride_h), akg.tvm.floordiv(w, stride_w), c0), name="out_broadcast") # copy output to the shape of the padded input, copying the same value for the entire kernel size out_broadcast = akg.tvm.compute(pad_shape, lambda b, c1, h, w, c0: out(b, c1, akg.tvm.floordiv(h, stride_h), akg.tvm.floordiv(w, stride_w), c0), name="out_broadcast") # copy head to the shape of the padded input, copying the same value for the entire kernel size head_broadcast = akg.tvm.compute(pad_shape, lambda b, c1, h, w, c0: head_(b, c1, akg.tvm.floordiv(h, stride_h), akg.tvm.floordiv(w, stride_w), c0), name="head_broadcast") # check if value was a maximum and assign head of that position if it was # this is done for all the maximum values within one kernel result = akg.tvm.compute(in_data.shape, lambda b, c1, h, w, c0: akg.tvm.expr.Select( in_data(b, c1, h, w, c0) == out_broadcast(b, c1, h + pad_h, w + pad_w, c0), head_broadcast(b, c1, h + pad_h, w + pad_w, c0), akg.tvm.const(0, dtype=in_data.dtype)), name="result") return [result] out_size_h = (input_h + 2 * pad_h - kernel_h) // stride_h + 1 out_size_w = (input_w + 2 * pad_w - kernel_w) // stride_w + 1 out_shape = (batch_size, input_c1, out_size_h, out_size_w, input_c0) # tensor for the input data data = akg.tvm.placeholder(shape, dtype, name="input_data") # maxpool output forward = akg.tvm.placeholder(out_shape, name="forward", dtype=dtype) # adjoint tensor for the differentiation head = akg.tvm.placeholder(out_shape, name="head", dtype=dtype) # override differentiation computation with custom function [dl_ddata] = akg.differentiate(forward, [data], head, None, None, override={forward: ([data], custom_maxpool_fdiff)}) # schedule for differetiation operation s = akg.tvm.create_schedule([dl_ddata.op]) # get computations result = dl_ddata forward_broadcast = result.op.input_tensors[1] head_broadcast = result.op.input_tensors[2] # cache reads and writes result_ub = s.cache_write(result, "local.UB") data_ub = s.cache_read(data, "local.UB", [result_ub]) head_ub = s.cache_read(head, "local.UB", [head_broadcast]) forward_ub = s.cache_read(forward, "local.UB", [forward_broadcast]) s[head_broadcast].set_scope("local.UB") s[forward_broadcast].set_scope("local.UB") s[head_ub].compute_at(s[head_broadcast], head_broadcast.op.axis[0]) s[forward_ub].compute_at(s[forward_broadcast], forward_broadcast.op.axis[0]) s[data_ub].compute_at(s[result_ub], result_ub.op.axis[0]) s[forward_broadcast].compute_at(s[result_ub], result_ub.op.axis[0]) s[head_broadcast].compute_at(s[result_ub], result_ub.op.axis[0]) _, c1, h, _, _ = result.op.axis if input_h + 2 * pad_h > 32 or input_w + 2 * pad_w > 32: h_outer, _ = s[result].split(h, 4) s[result_ub].compute_at(s[result], h_outer) else: s[result_ub].compute_at(s[result], c1) with akg.build_config(add_lower_pass=debug_mode(0), dump_pass_ir=True): mod = akg.build(s, [head, data, forward, dl_ddata], "cce", name="maxpool_ad_manual_schedule_no_overlap_all_max", attrs=attrs, polyhedral=polyhedral) source_code = mod.imported_modules[0].get_source() kernel_name = "maxpool_ad_manual_schedule_no_overlap_all_max" create_code(kernel_name, './', source_code) return mod
Python
def UnsortedSegmentSum(data, indices, num, op_id=0, target=utils.CUDA): """ Computes the sum value along ids_tensor of a akg.tvm.Tensor Args: input_data (tvm.tensor.Tensor): Tensor of type float16, float32, int32 ids_tensor (tvm.tensor.Tensor): Tensor of type int32, shape is a prefix of input_data.shape. num_segments (int): the number of classes in ids_tensor Returns: tvm.tensor.Tensor of same type as input_data, Raises: RuntimeError: If the type of input_data is invalid. Supported Platforms: 'Ascend', 'GPU' """ if target == utils.CCE: return unsorted_segment_sum_ascend(data, indices, num) return tensor_unsorted_segment_sum((data, indices), {'num_segments': num, 'op_id': op_id})
def UnsortedSegmentSum(data, indices, num, op_id=0, target=utils.CUDA): """ Computes the sum value along ids_tensor of a akg.tvm.Tensor Args: input_data (tvm.tensor.Tensor): Tensor of type float16, float32, int32 ids_tensor (tvm.tensor.Tensor): Tensor of type int32, shape is a prefix of input_data.shape. num_segments (int): the number of classes in ids_tensor Returns: tvm.tensor.Tensor of same type as input_data, Raises: RuntimeError: If the type of input_data is invalid. Supported Platforms: 'Ascend', 'GPU' """ if target == utils.CCE: return unsorted_segment_sum_ascend(data, indices, num) return tensor_unsorted_segment_sum((data, indices), {'num_segments': num, 'op_id': op_id})
Python
def pack(x, axis): """ Concatenates tensors along one dimension. Args: x (Union[tuple, list]): Inprut tensor. Support int8, uint8, int16, uint16, int32, uint32, int64, uint64, float16, float32. axis (int): in the range [-rank(x), rank(x)) Returns: tvm.tensor.Tensor """ for _, tensor in enumerate(x): shape_tensor = get_shape(tensor) utils.check_shape(shape_tensor) utils.ops_dtype_check( tensor.dtype, [ utils.DtypeForDavinci.BOOL, utils.DtypeForDavinci.INT8, utils.DtypeForDavinci.INT16, utils.DtypeForDavinci.INT32, utils.DtypeForDavinci.INT64, utils.DtypeForDavinci.UINT8, utils.DtypeForDavinci.UINT16, utils.DtypeForDavinci.UINT32, utils.DtypeForDavinci.UINT64, utils.DtypeForDavinci.FLOAT16, utils.DtypeForDavinci.FLOAT32 ]) if (axis < -len(get_shape(x[0])) - 1) or (axis > len(get_shape(x[0]))): raise RuntimeError( "pack axis must be in [-%d , %d), " "actual is %d" % ( len(get_shape(x[0])) + 1, len(get_shape(x[0])) + 1, axis)) if axis == -1 or axis == len(get_shape(x[0])): raise RuntimeError("pack does not support the last dimension") if axis < -1: axis = axis + 1 return topi.concatenate(tuple(x), axis=axis)
def pack(x, axis): """ Concatenates tensors along one dimension. Args: x (Union[tuple, list]): Inprut tensor. Support int8, uint8, int16, uint16, int32, uint32, int64, uint64, float16, float32. axis (int): in the range [-rank(x), rank(x)) Returns: tvm.tensor.Tensor """ for _, tensor in enumerate(x): shape_tensor = get_shape(tensor) utils.check_shape(shape_tensor) utils.ops_dtype_check( tensor.dtype, [ utils.DtypeForDavinci.BOOL, utils.DtypeForDavinci.INT8, utils.DtypeForDavinci.INT16, utils.DtypeForDavinci.INT32, utils.DtypeForDavinci.INT64, utils.DtypeForDavinci.UINT8, utils.DtypeForDavinci.UINT16, utils.DtypeForDavinci.UINT32, utils.DtypeForDavinci.UINT64, utils.DtypeForDavinci.FLOAT16, utils.DtypeForDavinci.FLOAT32 ]) if (axis < -len(get_shape(x[0])) - 1) or (axis > len(get_shape(x[0]))): raise RuntimeError( "pack axis must be in [-%d , %d), " "actual is %d" % ( len(get_shape(x[0])) + 1, len(get_shape(x[0])) + 1, axis)) if axis == -1 or axis == len(get_shape(x[0])): raise RuntimeError("pack does not support the last dimension") if axis < -1: axis = axis + 1 return topi.concatenate(tuple(x), axis=axis)
Python
def Reciprocal(data, high_precision=True, target=utils.CCE): """ Computes the reciprocal of data element-wise. Args: data (list[tvm.tensor.Tensor]): a list of tvm.tensor.Tensor of type float16, float32. high_precision (bool): a bool value, whether to use high-precision version. Returns: tvm.tensor.Tensor of same type and shape as data. Supported Platforms: 'Ascend', 'GPU' """ utils.ops_dtype_check(data.dtype, utils.DtypeForDavinci.ALL_FLOAT) shape = [x.value for x in data.shape] utils.check_shape(shape) res = akg.tvm.compute(shape, lambda *indice: akg.tvm.const(1, data.dtype) / (data(*indice)), name="res") # When product is mini, using Newtom iteration method to achieve higher precision. if product_is_mini() and high_precision: steps = 1 for _ in range(steps): temp1 = data * res temp2 = temp1 * akg.tvm.const(-1, data.dtype) temp3 = temp2 + akg.tvm.const(2, data.dtype) res = temp3 * res return res
def Reciprocal(data, high_precision=True, target=utils.CCE): """ Computes the reciprocal of data element-wise. Args: data (list[tvm.tensor.Tensor]): a list of tvm.tensor.Tensor of type float16, float32. high_precision (bool): a bool value, whether to use high-precision version. Returns: tvm.tensor.Tensor of same type and shape as data. Supported Platforms: 'Ascend', 'GPU' """ utils.ops_dtype_check(data.dtype, utils.DtypeForDavinci.ALL_FLOAT) shape = [x.value for x in data.shape] utils.check_shape(shape) res = akg.tvm.compute(shape, lambda *indice: akg.tvm.const(1, data.dtype) / (data(*indice)), name="res") # When product is mini, using Newtom iteration method to achieve higher precision. if product_is_mini() and high_precision: steps = 1 for _ in range(steps): temp1 = data * res temp2 = temp1 * akg.tvm.const(-1, data.dtype) temp3 = temp2 + akg.tvm.const(2, data.dtype) res = temp3 * res return res
Python
def load_data(path, printout=True): """ This function loads the time series data. Parameters ---------- path : str The path to the csv file. Returns ------- df : pandas.core.frame.DataFrame The DataFrame containing the data. """ df = pd.read_csv(path).rename(columns={'Unnamed: 0': 'Date'}) df.Date = pd.to_datetime(df.Date) df = df.set_index('Date') df = df.set_index(df.index.to_period()) if printout: print('Loaded: %d samples x %d features' %df.shape) return df
def load_data(path, printout=True): """ This function loads the time series data. Parameters ---------- path : str The path to the csv file. Returns ------- df : pandas.core.frame.DataFrame The DataFrame containing the data. """ df = pd.read_csv(path).rename(columns={'Unnamed: 0': 'Date'}) df.Date = pd.to_datetime(df.Date) df = df.set_index('Date') df = df.set_index(df.index.to_period()) if printout: print('Loaded: %d samples x %d features' %df.shape) return df
Python
def compute_error(trues, predicted): """ This function takes as input the true and predicted series, then computes and returns the Correlation Coefficient, the Mean Average Error, the Relative Absolute Error, the Root Mean Square Error and the r coefficient. """ #corr = np.corrcoef(predicted, trues)[0,1] mae = np.mean(np.abs(predicted - trues)) rae = np.sum(np.abs(predicted - trues)) / np.sum(np.abs(trues - np.mean(trues))) rmse = np.sqrt(np.mean((predicted - trues)**2)) r2 = max(0, 1 - np.sum((trues-predicted)**2) / np.sum((trues - np.mean(trues))**2)) return mae, rae, rmse, r2
def compute_error(trues, predicted): """ This function takes as input the true and predicted series, then computes and returns the Correlation Coefficient, the Mean Average Error, the Relative Absolute Error, the Root Mean Square Error and the r coefficient. """ #corr = np.corrcoef(predicted, trues)[0,1] mae = np.mean(np.abs(predicted - trues)) rae = np.sum(np.abs(predicted - trues)) / np.sum(np.abs(trues - np.mean(trues))) rmse = np.sqrt(np.mean((predicted - trues)**2)) r2 = max(0, 1 - np.sum((trues-predicted)**2) / np.sum((trues - np.mean(trues))**2)) return mae, rae, rmse, r2
Python
def gen_embeddings(n_words, word2index, emb_dim=300, emb_file='glove.6B.300d.txt'): """ Generate an initial embedding matrix for `word_dict`. If an embedding file is not given or a word is not in the embedding file, a randomly initialized vector will be used. """ embeddings = np.random.randn(n_words, emb_dim) * 0.01 print('Embeddings: %d x %d' % (n_words, emb_dim)) if emb_file is not None: print('Loading embedding file: %s' % emb_file) pre_trained = 0 for line in open(emb_file).readlines(): sp = line.split() if(len(sp) == emb_dim + 1): if sp[0] in word2index: pre_trained += 1 embeddings[word2index[sp[0]]] = [float(x) for x in sp[1:]] else: print(sp[0]) print('Pre-trained: %d (%.2f%%)' % (pre_trained, pre_trained * 100.0 / n_words)) return embeddings
def gen_embeddings(n_words, word2index, emb_dim=300, emb_file='glove.6B.300d.txt'): """ Generate an initial embedding matrix for `word_dict`. If an embedding file is not given or a word is not in the embedding file, a randomly initialized vector will be used. """ embeddings = np.random.randn(n_words, emb_dim) * 0.01 print('Embeddings: %d x %d' % (n_words, emb_dim)) if emb_file is not None: print('Loading embedding file: %s' % emb_file) pre_trained = 0 for line in open(emb_file).readlines(): sp = line.split() if(len(sp) == emb_dim + 1): if sp[0] in word2index: pre_trained += 1 embeddings[word2index[sp[0]]] = [float(x) for x in sp[1:]] else: print(sp[0]) print('Pre-trained: %d (%.2f%%)' % (pre_trained, pre_trained * 100.0 / n_words)) return embeddings
Python
def emotion_intensity(NRC, word): ''' Function to calculate emotion intensity (Eq. 1 in our paper) :param NRC: NRC_VAD vectors :param word: query word :return: ''' v, a, d = NRC[word] a = a/2 return (np.linalg.norm(np.array([v, a]) - np.array([0.5, 0])) - 0.06467)/0.607468
def emotion_intensity(NRC, word): ''' Function to calculate emotion intensity (Eq. 1 in our paper) :param NRC: NRC_VAD vectors :param word: query word :return: ''' v, a, d = NRC[word] a = a/2 return (np.linalg.norm(np.array([v, a]) - np.array([0.5, 0])) - 0.06467)/0.607468
Python
def advance(self, word_prob): "Update beam status and check if finished or not." num_words = word_prob.size(1) # Sum the previous scores. if len(self.prev_ks) > 0: beam_lk = word_prob + self.scores.unsqueeze(1).expand_as(word_prob) else: beam_lk = word_prob[0] flat_beam_lk = beam_lk.view(-1) best_scores, best_scores_id = flat_beam_lk.topk(self.size, 0, True, True) # 1st sort best_scores, best_scores_id = flat_beam_lk.topk(self.size, 0, True, True) # 2nd sort self.all_scores.append(self.scores) self.scores = best_scores # bestScoresId is flattened as a (beam x word) array, # so we need to calculate which word and beam each score came from prev_k = best_scores_id / num_words self.prev_ks.append(prev_k) self.next_ys.append(best_scores_id - prev_k * num_words) # End condition is when top-of-beam is EOS. if self.next_ys[-1][0].item() == self.args.EOS_idx: self._done = True self.all_scores.append(self.scores) return self._done
def advance(self, word_prob): "Update beam status and check if finished or not." num_words = word_prob.size(1) # Sum the previous scores. if len(self.prev_ks) > 0: beam_lk = word_prob + self.scores.unsqueeze(1).expand_as(word_prob) else: beam_lk = word_prob[0] flat_beam_lk = beam_lk.view(-1) best_scores, best_scores_id = flat_beam_lk.topk(self.size, 0, True, True) # 1st sort best_scores, best_scores_id = flat_beam_lk.topk(self.size, 0, True, True) # 2nd sort self.all_scores.append(self.scores) self.scores = best_scores # bestScoresId is flattened as a (beam x word) array, # so we need to calculate which word and beam each score came from prev_k = best_scores_id / num_words self.prev_ks.append(prev_k) self.next_ys.append(best_scores_id - prev_k * num_words) # End condition is when top-of-beam is EOS. if self.next_ys[-1][0].item() == self.args.EOS_idx: self._done = True self.all_scores.append(self.scores) return self._done
Python
def beam_decode_step(inst_dec_beams, len_dec_seq, src_seq, enc_output, inst_idx_to_position_map, n_bm, enc_batch_extend_vocab, extra_zeros, mask_src, encoder_db, mask_transformer_db, DB_ext_vocab_batch): ''' Decode and update beam status, and then return active beam idx ''' def prepare_beam_dec_seq(inst_dec_beams, len_dec_seq): dec_partial_seq = [b.get_current_state() for b in inst_dec_beams if not b.done] dec_partial_seq = torch.stack(dec_partial_seq).to(self.device) dec_partial_seq = dec_partial_seq.view(-1, len_dec_seq) return dec_partial_seq def prepare_beam_dec_pos(len_dec_seq, n_active_inst, n_bm): dec_partial_pos = torch.arange(1, len_dec_seq + 1, dtype=torch.long, device=self.device) dec_partial_pos = dec_partial_pos.unsqueeze(0).repeat(n_active_inst * n_bm, 1) return dec_partial_pos def predict_word(dec_seq, dec_pos, src_seq, enc_output, n_active_inst, n_bm, enc_batch_extend_vocab, extra_zeros, mask_src, encoder_db, mask_transformer_db, DB_ext_vocab_batch): ## masking mask_trg = dec_seq.data.eq(self.args.PAD_idx).unsqueeze(1) mask_src = torch.cat([mask_src[0].unsqueeze(0)] * mask_trg.size(0), 0) dec_output, attn_dist = self.model.decoder(self.model.embedding(dec_seq), enc_output, (mask_src, mask_trg)) db_dist = None prob = self.model.generator(dec_output, attn_dist, enc_batch_extend_vocab, extra_zeros, 1, True, attn_dist_db=db_dist) # prob = F.log_softmax(prob,dim=-1) #fix the name later word_prob = prob[:, -1] word_prob = word_prob.view(n_active_inst, n_bm, -1) return word_prob def collect_active_inst_idx_list(inst_beams, word_prob, inst_idx_to_position_map): active_inst_idx_list = [] for inst_idx, inst_position in inst_idx_to_position_map.items(): is_inst_complete = inst_beams[inst_idx].advance(word_prob[inst_position]) if not is_inst_complete: active_inst_idx_list += [inst_idx] return active_inst_idx_list n_active_inst = len(inst_idx_to_position_map) dec_seq = prepare_beam_dec_seq(inst_dec_beams, len_dec_seq) dec_pos = prepare_beam_dec_pos(len_dec_seq, n_active_inst, n_bm) word_prob = predict_word(dec_seq, dec_pos, src_seq, enc_output, n_active_inst, n_bm, enc_batch_extend_vocab, extra_zeros, mask_src, encoder_db, mask_transformer_db, DB_ext_vocab_batch) # Update the beam with predicted word prob information and collect incomplete instances active_inst_idx_list = collect_active_inst_idx_list(inst_dec_beams, word_prob, inst_idx_to_position_map) return active_inst_idx_list
def beam_decode_step(inst_dec_beams, len_dec_seq, src_seq, enc_output, inst_idx_to_position_map, n_bm, enc_batch_extend_vocab, extra_zeros, mask_src, encoder_db, mask_transformer_db, DB_ext_vocab_batch): ''' Decode and update beam status, and then return active beam idx ''' def prepare_beam_dec_seq(inst_dec_beams, len_dec_seq): dec_partial_seq = [b.get_current_state() for b in inst_dec_beams if not b.done] dec_partial_seq = torch.stack(dec_partial_seq).to(self.device) dec_partial_seq = dec_partial_seq.view(-1, len_dec_seq) return dec_partial_seq def prepare_beam_dec_pos(len_dec_seq, n_active_inst, n_bm): dec_partial_pos = torch.arange(1, len_dec_seq + 1, dtype=torch.long, device=self.device) dec_partial_pos = dec_partial_pos.unsqueeze(0).repeat(n_active_inst * n_bm, 1) return dec_partial_pos def predict_word(dec_seq, dec_pos, src_seq, enc_output, n_active_inst, n_bm, enc_batch_extend_vocab, extra_zeros, mask_src, encoder_db, mask_transformer_db, DB_ext_vocab_batch): ## masking mask_trg = dec_seq.data.eq(self.args.PAD_idx).unsqueeze(1) mask_src = torch.cat([mask_src[0].unsqueeze(0)] * mask_trg.size(0), 0) dec_output, attn_dist = self.model.decoder(self.model.embedding(dec_seq), enc_output, (mask_src, mask_trg)) db_dist = None prob = self.model.generator(dec_output, attn_dist, enc_batch_extend_vocab, extra_zeros, 1, True, attn_dist_db=db_dist) # prob = F.log_softmax(prob,dim=-1) #fix the name later word_prob = prob[:, -1] word_prob = word_prob.view(n_active_inst, n_bm, -1) return word_prob def collect_active_inst_idx_list(inst_beams, word_prob, inst_idx_to_position_map): active_inst_idx_list = [] for inst_idx, inst_position in inst_idx_to_position_map.items(): is_inst_complete = inst_beams[inst_idx].advance(word_prob[inst_position]) if not is_inst_complete: active_inst_idx_list += [inst_idx] return active_inst_idx_list n_active_inst = len(inst_idx_to_position_map) dec_seq = prepare_beam_dec_seq(inst_dec_beams, len_dec_seq) dec_pos = prepare_beam_dec_pos(len_dec_seq, n_active_inst, n_bm) word_prob = predict_word(dec_seq, dec_pos, src_seq, enc_output, n_active_inst, n_bm, enc_batch_extend_vocab, extra_zeros, mask_src, encoder_db, mask_transformer_db, DB_ext_vocab_batch) # Update the beam with predicted word prob information and collect incomplete instances active_inst_idx_list = collect_active_inst_idx_list(inst_dec_beams, word_prob, inst_idx_to_position_map) return active_inst_idx_list
Python
def compute_bleu(reference_corpus, translation_corpus, max_order=4, smooth=False): """Computes BLEU score of translated segments against one or more references. Args: reference_corpus: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. translation_corpus: list of translations to score. Each translation should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 3-Tuple with the BLEU score, n-gram precisions, geometric mean of n-gram precisions and brevity penalty. """ matches_by_order = [0] * max_order possible_matches_by_order = [0] * max_order reference_length = 0 translation_length = 0 for (references, translation) in zip(reference_corpus, translation_corpus): reference_length += min(len(r) for r in references) translation_length += len(translation) merged_ref_ngram_counts = collections.Counter() for reference in references: merged_ref_ngram_counts |= _get_ngrams(reference, max_order) translation_ngram_counts = _get_ngrams(translation, max_order) overlap = translation_ngram_counts & merged_ref_ngram_counts for ngram in overlap: matches_by_order[len(ngram) - 1] += overlap[ngram] for order in range(1, max_order + 1): possible_matches = len(translation) - order + 1 if possible_matches > 0: possible_matches_by_order[order - 1] += possible_matches precisions = [0] * max_order for i in range(0, max_order): if smooth: precisions[i] = ((matches_by_order[i] + 1.) / (possible_matches_by_order[i] + 1.)) else: if possible_matches_by_order[i] > 0: precisions[i] = (float(matches_by_order[i]) / possible_matches_by_order[i]) else: precisions[i] = 0.0 if min(precisions) > 0: p_log_sum = sum((1. / max_order) * math.log(p) for p in precisions) geo_mean = math.exp(p_log_sum) else: geo_mean = 0 ratio = float(translation_length) / reference_length if ratio > 1.0: bp = 1. else: bp = math.exp(1 - 1. / (ratio + 1e-16)) bleu = geo_mean * bp return (bleu, precisions, bp, ratio, translation_length, reference_length)
def compute_bleu(reference_corpus, translation_corpus, max_order=4, smooth=False): """Computes BLEU score of translated segments against one or more references. Args: reference_corpus: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. translation_corpus: list of translations to score. Each translation should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 3-Tuple with the BLEU score, n-gram precisions, geometric mean of n-gram precisions and brevity penalty. """ matches_by_order = [0] * max_order possible_matches_by_order = [0] * max_order reference_length = 0 translation_length = 0 for (references, translation) in zip(reference_corpus, translation_corpus): reference_length += min(len(r) for r in references) translation_length += len(translation) merged_ref_ngram_counts = collections.Counter() for reference in references: merged_ref_ngram_counts |= _get_ngrams(reference, max_order) translation_ngram_counts = _get_ngrams(translation, max_order) overlap = translation_ngram_counts & merged_ref_ngram_counts for ngram in overlap: matches_by_order[len(ngram) - 1] += overlap[ngram] for order in range(1, max_order + 1): possible_matches = len(translation) - order + 1 if possible_matches > 0: possible_matches_by_order[order - 1] += possible_matches precisions = [0] * max_order for i in range(0, max_order): if smooth: precisions[i] = ((matches_by_order[i] + 1.) / (possible_matches_by_order[i] + 1.)) else: if possible_matches_by_order[i] > 0: precisions[i] = (float(matches_by_order[i]) / possible_matches_by_order[i]) else: precisions[i] = 0.0 if min(precisions) > 0: p_log_sum = sum((1. / max_order) * math.log(p) for p in precisions) geo_mean = math.exp(p_log_sum) else: geo_mean = 0 ratio = float(translation_length) / reference_length if ratio > 1.0: bp = 1. else: bp = math.exp(1 - 1. / (ratio + 1e-16)) bleu = geo_mean * bp return (bleu, precisions, bp, ratio, translation_length, reference_length)
Python
def gen_embeddings(args, n_words, word2index): """ Generate an initial embedding matrix for `word_dict`. If an embedding file is not given or a word is not in the embedding file, a randomly initialized vector will be used. """ embeddings = np.random.randn(n_words, args.emb_dim) * 0.01 print('Embeddings: %d x %d' % (n_words, args.emb_dim)) if args.emb_file is not None: print('Loading embedding file: %s' % args.emb_file) pre_trained = 0 for line in open(args.emb_file).readlines(): sp = line.split() if(len(sp) == args.emb_dim + 1): if sp[0] in word2index: pre_trained += 1 embeddings[word2index[sp[0]]] = [float(x) for x in sp[1:]] else: print(sp[0]) print('Pre-trained: %d (%.2f%%)' % (pre_trained, pre_trained * 100.0 / n_words)) return embeddings
def gen_embeddings(args, n_words, word2index): """ Generate an initial embedding matrix for `word_dict`. If an embedding file is not given or a word is not in the embedding file, a randomly initialized vector will be used. """ embeddings = np.random.randn(n_words, args.emb_dim) * 0.01 print('Embeddings: %d x %d' % (n_words, args.emb_dim)) if args.emb_file is not None: print('Loading embedding file: %s' % args.emb_file) pre_trained = 0 for line in open(args.emb_file).readlines(): sp = line.split() if(len(sp) == args.emb_dim + 1): if sp[0] in word2index: pre_trained += 1 embeddings[word2index[sp[0]]] = [float(x) for x in sp[1:]] else: print(sp[0]) print('Pre-trained: %d (%.2f%%)' % (pre_trained, pre_trained * 100.0 / n_words)) return embeddings
Python
def _lint(self): """Run linter in a subprocess.""" command = self._get_command() process = subprocess.run(command, stdout=subprocess.PIPE) LOG.info('Finished %s', ' '.join(command)) return process.stdout.decode('utf-8')
def _lint(self): """Run linter in a subprocess.""" command = self._get_command() process = subprocess.run(command, stdout=subprocess.PIPE) LOG.info('Finished %s', ' '.join(command)) return process.stdout.decode('utf-8')
Python
def _get_command(self): """Return command with options and targets, ready for execution.""" targets = ' '.join(self.targets) cmd_str = self._linter.command_with_options + ' ' + targets cmd_shlex = shlex.split(cmd_str) return list(cmd_shlex)
def _get_command(self): """Return command with options and targets, ready for execution.""" targets = ' '.join(self.targets) cmd_str = self._linter.command_with_options + ' ' + targets cmd_shlex = shlex.split(cmd_str) return list(cmd_shlex)
Python
def lint(self, targets): """Run linters in parallel and sort all results. Args: targets (list): List of files and folders to lint. """ LinterRunner.targets = targets linters = self._config.get_linter_classes() with Pool() as pool: linters_results = pool.map(LinterRunner.run, linters) return sorted(chain.from_iterable(linters_results))
def lint(self, targets): """Run linters in parallel and sort all results. Args: targets (list): List of files and folders to lint. """ LinterRunner.targets = targets linters = self._config.get_linter_classes() with Pool() as pool: linters_results = pool.map(LinterRunner.run, linters) return sorted(chain.from_iterable(linters_results))
Python
def run_from_cli(self, args): """Read arguments, run and print results. Args: args (dict): Arguments parsed by docopt. """ if args['--dump-config']: self._config.print_config() else: results = self.lint(args['<path>']) self.print_results(results)
def run_from_cli(self, args): """Read arguments, run and print results. Args: args (dict): Arguments parsed by docopt. """ if args['--dump-config']: self._config.print_config() else: results = self.lint(args['<path>']) self.print_results(results)
Python
def print_results(results): """Print linter results and exits with an error if there's any.""" if results: for result in results: print(result) issue = 'issues' if len(results) > 1 else 'issue' sys.exit('\n:( {} {} found.'.format(len(results), issue)) else: print(':) No issues found.')
def print_results(results): """Print linter results and exits with an error if there's any.""" if results: for result in results: print(result) issue = 'issues' if len(results) > 1 else 'issue' sys.exit('\n:( {} {} found.'.format(len(results), issue)) else: print(':) No issues found.')
Python
def sleep(seconds: int = 0): """The Python sleep () time method suspends execution for the given number of seconds. The argument can be a floating point number to indicate a more accurate sleep time. :param seconds: Total of seconds that the program will be sleeping """ time.sleep(seconds)
def sleep(seconds: int = 0): """The Python sleep () time method suspends execution for the given number of seconds. The argument can be a floating point number to indicate a more accurate sleep time. :param seconds: Total of seconds that the program will be sleeping """ time.sleep(seconds)
Python
def cors( methods: str = METHODS, has_credentials: bool = HAS_CREDENTIALS, origin: str = ORIGIN, headers: str = HEADERS, expose_headers: str = EXPOSE_HEADERS ): """CORS is an abbreviation that stands for 'Cross-Origin Resource Sharing' and, as the name implies, allows sharing of resources from a variety of sources. A simple cross-origin request would be when domain1.com would be accessing a resource from domain2.com (the resource is an image, a CSS file, or something else). This has some massive security implications, of course, and the built-in behavior for browsers is that they would restrict the cross-origin HTTP request. :param methods: The Access-Control-Allow-Methods response header indicates which HTTP methods are allowed on a particular endpoint for cross-origin requests. :param has_credentials: Access-Control-Allow-Credentials response header tells the browser that the server allows credentials for a cross-origin request. :param origin: The Access-Control-Allow-Origin response header indicates whether the resources in the response can be shared with the given origin. :param headers: The Access-Control-Allow-Headers response header is used in response to a preflight request that includes the Access-Control-Request-Headers to indicate which HTTP headers can be used during the actual request :param expose_headers: The Access-Control-Expose-Headers response header indicates which headers can be exposed as part of the response by listing ``from retic import Router`` ``router = Router()`` ``router.use(cors())`` """ def set_middleware(req, res, next): """Set all cors headers in a response to Client. :param req: Request is used to describe an request to a server. :param res: Represents a response from a web request. :param next: It must call next() to pass control to the next middleware function """ res.set_headers('Access-Control-Allow-Methods', has_credentials) res.set_headers('Access-Control-Allow-Credentials', methods) res.set_headers('Access-Control-Allow-Origin', origin) res.set_headers('Access-Control-Allow-Headers', headers) res.set_headers('Access-Control-Expose-Headers', expose_headers) next() return set_middleware
def cors( methods: str = METHODS, has_credentials: bool = HAS_CREDENTIALS, origin: str = ORIGIN, headers: str = HEADERS, expose_headers: str = EXPOSE_HEADERS ): """CORS is an abbreviation that stands for 'Cross-Origin Resource Sharing' and, as the name implies, allows sharing of resources from a variety of sources. A simple cross-origin request would be when domain1.com would be accessing a resource from domain2.com (the resource is an image, a CSS file, or something else). This has some massive security implications, of course, and the built-in behavior for browsers is that they would restrict the cross-origin HTTP request. :param methods: The Access-Control-Allow-Methods response header indicates which HTTP methods are allowed on a particular endpoint for cross-origin requests. :param has_credentials: Access-Control-Allow-Credentials response header tells the browser that the server allows credentials for a cross-origin request. :param origin: The Access-Control-Allow-Origin response header indicates whether the resources in the response can be shared with the given origin. :param headers: The Access-Control-Allow-Headers response header is used in response to a preflight request that includes the Access-Control-Request-Headers to indicate which HTTP headers can be used during the actual request :param expose_headers: The Access-Control-Expose-Headers response header indicates which headers can be exposed as part of the response by listing ``from retic import Router`` ``router = Router()`` ``router.use(cors())`` """ def set_middleware(req, res, next): """Set all cors headers in a response to Client. :param req: Request is used to describe an request to a server. :param res: Represents a response from a web request. :param next: It must call next() to pass control to the next middleware function """ res.set_headers('Access-Control-Allow-Methods', has_credentials) res.set_headers('Access-Control-Allow-Credentials', methods) res.set_headers('Access-Control-Allow-Origin', origin) res.set_headers('Access-Control-Allow-Headers', headers) res.set_headers('Access-Control-Expose-Headers', expose_headers) next() return set_middleware
Python
def handle_request(self, req, res, next): # dispatch """Return a handle request for specific route""" try: return self.handle(req, res, next) except Exception as e: get_file_error_exception(3) raise RuntimeError( "error: Some controller has a problem, check it please. {0}".format( str(e) ) )
def handle_request(self, req, res, next): # dispatch """Return a handle request for specific route""" try: return self.handle(req, res, next) except Exception as e: get_file_error_exception(3) raise RuntimeError( "error: Some controller has a problem, check it please. {0}".format( str(e) ) )
Python
def match(self, path: str): # self """Search to specific layer for a path :param path: Route to searching in the layer :return: Specific layer that was matched with the path""" _match = self.regexp.match(path) if not _match: self.path = self.params = None return None self.path = _match.string self.params = _match.groupdict() return self
def match(self, path: str): # self """Search to specific layer for a path :param path: Route to searching in the layer :return: Specific layer that was matched with the path""" _match = self.regexp.match(path) if not _match: self.path = self.params = None return None self.path = _match.string self.params = _match.groupdict() return self
Python
def main(self, environ: dict, start_response: dict): # [] """Router main for handle all routes :param environ: Request is used to describe an request to a server. :param start_response: Represents a response from a web request.""" try: _request = Request(environ)._config() _response = Response()._config(environ, start_response, self._set_response) self._endpoint(_request, _response) _result = self._response_request(_response, self.result) self.result = None return _result except Exception as e: return Response(str(e))(environ, start_response)
def main(self, environ: dict, start_response: dict): # [] """Router main for handle all routes :param environ: Request is used to describe an request to a server. :param start_response: Represents a response from a web request.""" try: _request = Request(environ)._config() _response = Response()._config(environ, start_response, self._set_response) self._endpoint(_request, _response) _result = self._response_request(_response, self.result) self.result = None return _result except Exception as e: return Response(str(e))(environ, start_response)
Python
def use(self, fn): """Use to add a middleware that is execute for all routes :param fn: Route dispatch function for the request """ """Set middle to routes""" self.middlewares.append( self._set_handler_to_layer(fn) )
def use(self, fn): """Use to add a middleware that is execute for all routes :param fn: Route dispatch function for the request """ """Set middle to routes""" self.middlewares.append( self._set_handler_to_layer(fn) )
Python
def route(self, path: str, method: str, handlers: list): # Route """Create a Route instance and adds this route to specific controller of a HTTP method in a Router. :param path: Route to searching in the layer :param method: HTTP Request Method from the client request :param handlers: List of controllers functions from a routes files """ _route = Route(path) for _handler in handlers: """Set handler to route""" _route.stack.append( self._set_handler_to_layer(_handler) ) _layer = Layer( path, { u"strict": self.rules.get('strict_slashes', False), u"end": True }, _route.dispatch ) _layer.route = _route self.methods[method].append(_layer) return _route
def route(self, path: str, method: str, handlers: list): # Route """Create a Route instance and adds this route to specific controller of a HTTP method in a Router. :param path: Route to searching in the layer :param method: HTTP Request Method from the client request :param handlers: List of controllers functions from a routes files """ _route = Route(path) for _handler in handlers: """Set handler to route""" _route.stack.append( self._set_handler_to_layer(_handler) ) _layer = Layer( path, { u"strict": self.rules.get('strict_slashes', False), u"end": True }, _route.dispatch ) _layer.route = _route self.methods[method].append(_layer) return _route
Python
def _response_request(self, res, result): """Response to a client request. If response was not specific, return status 200 and message 200 for default :param res: Represents a response from a web request. :param result: Instance of the object with the werkzeug response """ if result: return result return res.ok()
def _response_request(self, res, result): """Response to a client request. If response was not specific, return status 200 and message 200 for default :param res: Represents a response from a web request. :param result: Instance of the object with the werkzeug response """ if result: return result return res.ok()
Python
def _endpoint(self, req: Request, res: Response): # [] """This function handle any request from a client, search in the Route List :param req: Request is used to describe an request to a server. :param res: Represents a response from a web request.""" try: # validate if path contains slash and it isn't a "/" path if self.rules.get('strict_slashes', False) \ and len(req.path) > 1 \ and "/" in req.path[-1]: raise ValueError(req.path[:-1]) # search the specific method _method = self.methods[req.method] if not _method: raise KeyError( "error: The HTTP method {0} doesn't exist".format( req.method) ) # search the layer for this method _layer: Layer = self._search_layer(req.path, _method) if not _layer: raise KeyError( "error: The HTTP method {0} doesn't exist".format( req.method) ) # search the first handle for this one _has_method = self._handles_method(_layer) assert _has_method, "error: The route has the next format: METHOD(path, [...handlers functions])" # set the params to request req.params = _layer.params # return the handle logic return _layer.handle_request(req, res, Next(req, res, _layer, self.middlewares)) except ValueError as e: return res.redirect(str(e)) except KeyError as e: return res.not_found(str(e)) except Exception as e: traceback.print_exc(file=sys.stdout) return res.bad_request(str(e))
def _endpoint(self, req: Request, res: Response): # [] """This function handle any request from a client, search in the Route List :param req: Request is used to describe an request to a server. :param res: Represents a response from a web request.""" try: # validate if path contains slash and it isn't a "/" path if self.rules.get('strict_slashes', False) \ and len(req.path) > 1 \ and "/" in req.path[-1]: raise ValueError(req.path[:-1]) # search the specific method _method = self.methods[req.method] if not _method: raise KeyError( "error: The HTTP method {0} doesn't exist".format( req.method) ) # search the layer for this method _layer: Layer = self._search_layer(req.path, _method) if not _layer: raise KeyError( "error: The HTTP method {0} doesn't exist".format( req.method) ) # search the first handle for this one _has_method = self._handles_method(_layer) assert _has_method, "error: The route has the next format: METHOD(path, [...handlers functions])" # set the params to request req.params = _layer.params # return the handle logic return _layer.handle_request(req, res, Next(req, res, _layer, self.middlewares)) except ValueError as e: return res.redirect(str(e)) except KeyError as e: return res.not_found(str(e)) except Exception as e: traceback.print_exc(file=sys.stdout) return res.bad_request(str(e))
Python
def _search_layer(self, path: str, method: str): # Layer """Search a specific Layer using a path and method. :param path: Route to searching in the layer :param method: HTTP Request Method from the client request :return: None if the layer doesn't exists, and a Layer Object if the layer is found.""" _match = None for _layer in method: _match = _layer.match(path) if _match: break return _match
def _search_layer(self, path: str, method: str): # Layer """Search a specific Layer using a path and method. :param path: Route to searching in the layer :param method: HTTP Request Method from the client request :return: None if the layer doesn't exists, and a Layer Object if the layer is found.""" _match = None for _layer in method: _match = _layer.match(path) if _match: break return _match
Python
def validate_obligate_fields(fields: any = None): """Validate if a list of obligate params are valid :param fields: object that contains all params that are obligate, these values can be arrays or simple values.""" '''You can use the following example: _validate = validate_obligate_fields({ u'files': req.files.get("files", None) }) if _validate["valid"] is False: return res.bad_request( error_response( "The param {} is necesary.".format(_validate["error"]) ) ) ''' if not fields: raise ValueError("error: A value for fields is necessary.") for field in fields: _item = fields.get(field, None) if _item == None \ or (isinstance(_item, str) and _item == "") \ or (isinstance(_item, list) and not _item): return { u'valid': False, u'error': field } return { u'valid': True, u'error': None }
def validate_obligate_fields(fields: any = None): """Validate if a list of obligate params are valid :param fields: object that contains all params that are obligate, these values can be arrays or simple values.""" '''You can use the following example: _validate = validate_obligate_fields({ u'files': req.files.get("files", None) }) if _validate["valid"] is False: return res.bad_request( error_response( "The param {} is necesary.".format(_validate["error"]) ) ) ''' if not fields: raise ValueError("error: A value for fields is necessary.") for field in fields: _item = fields.get(field, None) if _item == None \ or (isinstance(_item, str) and _item == "") \ or (isinstance(_item, list) and not _item): return { u'valid': False, u'error': field } return { u'valid': True, u'error': None }
Python
def application(self, environ, start_response): """Application for send the response returned by the application to the client :param environ: Request is used to describe an request to a server. :param start_response: Represents a response from a web request.""" if not self.router: if environ.get('PATH_INFO') == '/': _status = '200 OK' _message = "Welcome to Retic!" else: _status = '404 Not found' _message = "error: The HTTP method {0} doesn't exist".format( environ.get('REQUEST_METHOD') ) start_response(_status, [('Content-Type', 'text/html')]) return [_message.encode("utf8")] else: return self.router.main(environ, start_response)
def application(self, environ, start_response): """Application for send the response returned by the application to the client :param environ: Request is used to describe an request to a server. :param start_response: Represents a response from a web request.""" if not self.router: if environ.get('PATH_INFO') == '/': _status = '200 OK' _message = "Welcome to Retic!" else: _status = '404 Not found' _message = "error: The HTTP method {0} doesn't exist".format( environ.get('REQUEST_METHOD') ) start_response(_status, [('Content-Type', 'text/html')]) return [_message.encode("utf8")] else: return self.router.main(environ, start_response)
Python
def use(self, item: any, name: str = ""): """method of configuring the middleware. :param item: Item of specific type for specific settings in a app :param name: Name of the item to save """ """TODO: implement another types of item""" if isinstance(item, Router): self.router = item elif name: self.apps.setdefault(name, item) else: raise KeyError("error: A name for the item is necesary")
def use(self, item: any, name: str = ""): """method of configuring the middleware. :param item: Item of specific type for specific settings in a app :param name: Name of the item to save """ """TODO: implement another types of item""" if isinstance(item, Router): self.router = item elif name: self.apps.setdefault(name, item) else: raise KeyError("error: A name for the item is necesary")
Python
def listen( self, hostname: str = APP_HOSTNAME, port: int = APP_PORT, application: any = None, use_reloader: bool = False, use_debugger: bool = False, use_evalex: bool = True, extra_files: any = None, reloader_interval: int = 1, reloader_type: str = 'auto', threaded: bool = False, processes: int = 1, request_handler: any = None, static_files: any = None, passthrough_errors=False, ssl_context: any = None ): """Create a server based in settings parameters. :param hostname: The host to bind to, for example ``'localhost'``. If the value is a path that starts with ``unix://`` it will bind to a Unix socket instead of a TCP socket.. :param port: The port for the server. eg: ``8080`` :param application: the WSGI application to execute :param use_reloader: should the server automatically restart the python process if modules were changed? :param use_debugger: should the werkzeug debugging system be used? :param use_evalex: should the exception evaluation feature be enabled? :param extra_files: a list of files the reloader should watch additionally to the modules. For example configuration files. :param reloader_interval: the interval for the reloader in seconds. :param reloader_type: the type of reloader to use. The default is auto detection. Valid values are ``'stat'`` and ``'watchdog'``. See :ref:`reloader` for more information. :param threaded: should the process handle each request in a separate thread? :param processes: if greater than 1 then handle each request in a new process up to this maximum number of concurrent processes. :param request_handler: optional parameter that can be used to replace the default one. You can use this to replace it with a different :class:`~BaseHTTPServer.BaseHTTPRequestHandler` subclass. :param static_files: a list or dict of paths for static files. This works exactly like :class:`SharedDataMiddleware`, it's actually just wrapping the application in that middleware before serving. :param passthrough_errors: set this to `True` to disable the error catching. This means that the server will die on errors but it can be useful to hook debuggers in (pdb etc.) :param ssl_context: an SSL context for the connection. Either an :class:`ssl.SSLContext`, a tuple in the form ``(cert_file, pkey_file)``, the string ``'adhoc'`` if the server should automatically create one, or ``None`` to disable SSL (which is the default). source by: werkzeug.serving """ """TODO: Welcome message after the server is created""" run_simple( hostname=hostname, port=int(port), application=application or self.application, use_reloader=use_reloader, use_debugger=use_debugger, use_evalex=use_evalex, extra_files=extra_files, reloader_interval=reloader_interval, reloader_type=reloader_type, threaded=threaded, processes=processes, request_handler=request_handler, static_files=static_files, passthrough_errors=passthrough_errors, ssl_context=ssl_context )
def listen( self, hostname: str = APP_HOSTNAME, port: int = APP_PORT, application: any = None, use_reloader: bool = False, use_debugger: bool = False, use_evalex: bool = True, extra_files: any = None, reloader_interval: int = 1, reloader_type: str = 'auto', threaded: bool = False, processes: int = 1, request_handler: any = None, static_files: any = None, passthrough_errors=False, ssl_context: any = None ): """Create a server based in settings parameters. :param hostname: The host to bind to, for example ``'localhost'``. If the value is a path that starts with ``unix://`` it will bind to a Unix socket instead of a TCP socket.. :param port: The port for the server. eg: ``8080`` :param application: the WSGI application to execute :param use_reloader: should the server automatically restart the python process if modules were changed? :param use_debugger: should the werkzeug debugging system be used? :param use_evalex: should the exception evaluation feature be enabled? :param extra_files: a list of files the reloader should watch additionally to the modules. For example configuration files. :param reloader_interval: the interval for the reloader in seconds. :param reloader_type: the type of reloader to use. The default is auto detection. Valid values are ``'stat'`` and ``'watchdog'``. See :ref:`reloader` for more information. :param threaded: should the process handle each request in a separate thread? :param processes: if greater than 1 then handle each request in a new process up to this maximum number of concurrent processes. :param request_handler: optional parameter that can be used to replace the default one. You can use this to replace it with a different :class:`~BaseHTTPServer.BaseHTTPRequestHandler` subclass. :param static_files: a list or dict of paths for static files. This works exactly like :class:`SharedDataMiddleware`, it's actually just wrapping the application in that middleware before serving. :param passthrough_errors: set this to `True` to disable the error catching. This means that the server will die on errors but it can be useful to hook debuggers in (pdb etc.) :param ssl_context: an SSL context for the connection. Either an :class:`ssl.SSLContext`, a tuple in the form ``(cert_file, pkey_file)``, the string ``'adhoc'`` if the server should automatically create one, or ``None`` to disable SSL (which is the default). source by: werkzeug.serving """ """TODO: Welcome message after the server is created""" run_simple( hostname=hostname, port=int(port), application=application or self.application, use_reloader=use_reloader, use_debugger=use_debugger, use_evalex=use_evalex, extra_files=extra_files, reloader_interval=reloader_interval, reloader_type=reloader_type, threaded=threaded, processes=processes, request_handler=request_handler, static_files=static_files, passthrough_errors=passthrough_errors, ssl_context=ssl_context )
Python
def config(self, value): """If the type of the value is not dict, it is not allowed""" if not isinstance(value, dict): raise TypeError( "error: A settings dictionary of type dict is necesary" ) self.__config = value
def config(self, value): """If the type of the value is not dict, it is not allowed""" if not isinstance(value, dict): raise TypeError( "error: A settings dictionary of type dict is necesary" ) self.__config = value
Python
def from_object(self, settings: dict): """Set settings in based a dictionary, for example, if you want to set a additional configuration you nedd pass: ``app.config.from_object( { u'port': 8080 } )`` :param settings: An object of type dictionary that contains the configurations """ if not isinstance(settings, dict): raise TypeError( "error: A settings dictionary of type dict is necesary" ) self.__config = {**self.__config, **settings}
def from_object(self, settings: dict): """Set settings in based a dictionary, for example, if you want to set a additional configuration you nedd pass: ``app.config.from_object( { u'port': 8080 } )`` :param settings: An object of type dictionary that contains the configurations """ if not isinstance(settings, dict): raise TypeError( "error: A settings dictionary of type dict is necesary" ) self.__config = {**self.__config, **settings}
Python
def clear(self): """Clear the actual settings, however, the settings from the environment variables isn't clear. You can search variables in the environment with the function ``app.config.get("environment_name")`` """ self.__config.clear()
def clear(self): """Clear the actual settings, however, the settings from the environment variables isn't clear. You can search variables in the environment with the function ``app.config.get("environment_name")`` """ self.__config.clear()
Python
def urlencode(url: str): """This function is convenient when encoding a string to use in a query part of a URL, as a convenient way to pass variables to the next page. :param url: URL to encode. """ key = urllib.parse.quote_plus(url) return key
def urlencode(url: str): """This function is convenient when encoding a string to use in a query part of a URL, as a convenient way to pass variables to the next page. :param url: URL to encode. """ key = urllib.parse.quote_plus(url) return key
Python
def slugify(text: str = ""): """Simplifies ugly strings into something URL-friendly. :param text: Text to simplifies in ``str`` type """ # Reference: https://github.com/mikaelho/docgen/blob/master/docgen.py # "[Some] _ Article's Title--" # "[some] _ article's title--" text = str(text).lower() # "[some] _ article's_title--" # "[some]___article's_title__" for c in [' ', '-', '.', '/']: text = text.replace(c, '_') # "[some]___article's_title__" # "some___articles_title__" text = re.sub('\W', '', text) # "some___articles_title__" # "some articles title " text = text.replace('_', ' ') # "some articles title " # "some articles title " text = re.sub('\s+', ' ', text) # "some articles title " # "some articles title" text = text.strip() # "some articles title" # "some-articles-title" text = text.replace(' ', '-') # delete acents text = unicodedata.normalize("NFD", text) text = text.encode("utf8").decode("ascii", "ignore") text = urlencode(text) return text
def slugify(text: str = ""): """Simplifies ugly strings into something URL-friendly. :param text: Text to simplifies in ``str`` type """ # Reference: https://github.com/mikaelho/docgen/blob/master/docgen.py # "[Some] _ Article's Title--" # "[some] _ article's title--" text = str(text).lower() # "[some] _ article's_title--" # "[some]___article's_title__" for c in [' ', '-', '.', '/']: text = text.replace(c, '_') # "[some]___article's_title__" # "some___articles_title__" text = re.sub('\W', '', text) # "some___articles_title__" # "some articles title " text = text.replace('_', ' ') # "some articles title " # "some articles title " text = re.sub('\s+', ' ', text) # "some articles title " # "some articles title" text = text.strip() # "some articles title" # "some-articles-title" text = text.replace(' ', '-') # delete acents text = unicodedata.normalize("NFD", text) text = text.encode("utf8").decode("ascii", "ignore") text = urlencode(text) return text
Python
def _config( self, environ, start_response, set_response ): """Config instance of the Responses Class :param environ: Represents a request from a web request. :param start_response: Represents a response from a web request. :param set_response: Response function for the request. """ self._environ = environ self._start_response = start_response self._set_response = set_response # set default headers self.set_headers('content-type', "application/json") return self
def _config( self, environ, start_response, set_response ): """Config instance of the Responses Class :param environ: Represents a request from a web request. :param start_response: Represents a response from a web request. :param set_response: Response function for the request. """ self._environ = environ self._start_response = start_response self._set_response = set_response # set default headers self.set_headers('content-type', "application/json") return self
Python
def bad_request(self, content: any = ""): # Response """This method response a *400 Bad Request* response to the client, this indicate that the request is invalid. This generally means that the request contained invalid parameters or headers, or that you tried to do something that your application logic does not support. :param content: Information to send the client, a message, a dict, etc. If it doesn't exist, it sends a status message from the status code. """ return self._send_by_status(400, content)
def bad_request(self, content: any = ""): # Response """This method response a *400 Bad Request* response to the client, this indicate that the request is invalid. This generally means that the request contained invalid parameters or headers, or that you tried to do something that your application logic does not support. :param content: Information to send the client, a message, a dict, etc. If it doesn't exist, it sends a status message from the status code. """ return self._send_by_status(400, content)
Python
def forbidden(self, content: any = ""): # Response """This method is used to send a *403 Forbidden* response to the client, indicating that a request is not authorized. This generally means that the user agent tried to do something that they were not authorized to do, such as changing another user's password. :param content: Information to send the client, a message, a dict, etc. If it doesn't exist, it sends a status message from the status code. """ return self._send_by_status(403, content)
def forbidden(self, content: any = ""): # Response """This method is used to send a *403 Forbidden* response to the client, indicating that a request is not authorized. This generally means that the user agent tried to do something that they were not authorized to do, such as changing another user's password. :param content: Information to send the client, a message, a dict, etc. If it doesn't exist, it sends a status message from the status code. """ return self._send_by_status(403, content)
Python
def not_found(self, content: any = ""): # Response """This method is used to send a *404 Not found* response. When called manually from your application code, this method is normally used to indicate that the user agent tried to find, update, or delete something that doesn't exist. :param content: Information to send the client, a message, a dict, etc. If it doesn't exist, it sends a status message from the status code. """ return self._send_by_status(404, content)
def not_found(self, content: any = ""): # Response """This method is used to send a *404 Not found* response. When called manually from your application code, this method is normally used to indicate that the user agent tried to find, update, or delete something that doesn't exist. :param content: Information to send the client, a message, a dict, etc. If it doesn't exist, it sends a status message from the status code. """ return self._send_by_status(404, content)
Python
def ok(self, content: dict = None): # Response """This method is used to send a *200 OK* response to the client. :param content: Information to send the client, a message, a dict, etc. If it doesn't exist, it sends a status message from the status code. """ return self._send_by_status(200, content)
def ok(self, content: dict = None): # Response """This method is used to send a *200 OK* response to the client. :param content: Information to send the client, a message, a dict, etc. If it doesn't exist, it sends a status message from the status code. """ return self._send_by_status(200, content)
Python
def server_error(self, content: any = ""): """This method is used to send a *500 Server Error* response to the client, indicating that some kind of server error occurred. :param content: Information to send the client, a message, a dict, etc. If it doesn't exist, it sends a status message from the status code. """ return self._send_by_status(500, content)
def server_error(self, content: any = ""): """This method is used to send a *500 Server Error* response to the client, indicating that some kind of server error occurred. :param content: Information to send the client, a message, a dict, etc. If it doesn't exist, it sends a status message from the status code. """ return self._send_by_status(500, content)
Python
def send(self, content: any = None): # Response """Send a string response in a non-JSON format (XML, CSV, plain text, etc.). This method is used in the underlying implementation of most other terminal response methods. :param content: Information to send the client, a message, a dict, etc. If it doesn't exist, it sends a status message from the status code. """ return self._send_string(content if content else {})
def send(self, content: any = None): # Response """Send a string response in a non-JSON format (XML, CSV, plain text, etc.). This method is used in the underlying implementation of most other terminal response methods. :param content: Information to send the client, a message, a dict, etc. If it doesn't exist, it sends a status message from the status code. """ return self._send_string(content if content else {})
Python
def redirect(self, new_url: str): # Response """Redirect to another url with the actual request :param new_url: URL to redirect. """ _result = RequestRedirect(new_url=new_url).get_response(self._environ) return self._set_response(_result(self._environ, self._start_response))
def redirect(self, new_url: str): # Response """Redirect to another url with the actual request :param new_url: URL to redirect. """ _result = RequestRedirect(new_url=new_url).get_response(self._environ) return self._set_response(_result(self._environ, self._start_response))
Python
def _send_string(self, content: str = ""): # Response """Send a response to http requests. :param content: Information to send the client, a message, a dict, etc. If it doesn't exist, it sends a status message from the status code. """ self.set_data(jsonify(content)) return self._set_response(self(self._environ, self._start_response))
def _send_string(self, content: str = ""): # Response """Send a response to http requests. :param content: Information to send the client, a message, a dict, etc. If it doesn't exist, it sends a status message from the status code. """ self.set_data(jsonify(content)) return self._set_response(self(self._environ, self._start_response))
Python
def path_regexp(path, keys, options): """ Return a regular expression function for a specific route :param path: Route to searching in the layer :param keys: List of keys from the route :param options: Options for the regexp expression :return: A regular expression pattern string """ _reg_exp = re.compile(pattern(path, **options)) for _key in _reg_exp.groupindex: keys.append({ u"name": _key, u"optional": False }) return _reg_exp
def path_regexp(path, keys, options): """ Return a regular expression function for a specific route :param path: Route to searching in the layer :param keys: List of keys from the route :param options: Options for the regexp expression :return: A regular expression pattern string """ _reg_exp = re.compile(pattern(path, **options)) for _key in _reg_exp.groupindex: keys.append({ u"name": _key, u"optional": False }) return _reg_exp