language
stringclasses
6 values
original_string
stringlengths
25
887k
text
stringlengths
25
887k
Python
def wrap_fhir_resource( entry: dict, patient_time: Union[str, datetime.datetime], environment_id: Optional[Union[str, int]] = None, interactions: Optional[List[str]] = None, simulation_step: Optional[int] = None, tag: Optional[str] = None, raw_fhir_resource: Optional[dict] = None, ) -> dict: """Wraps a minimal record 'entry' into a dictionary that can be used in the PatientRecordEntry constructor. Parameters ---------- entry : dict Entry to be wrapped, written in the internal patient record representation. Must at least have "name", "start" and "resource_type" keys. Please refer to the notebook 'patient-agent.ipynb' in the notebooks folder for an example. patient_time : Union[str, datetime.datetime] The timestamp in patient-time attached to the entry environment_id : Optional[Union[str, int]], optional If the entry was the result of interacting with an environment, this is the environment_id, by default None interactions : Optional[List[str]], optional If the entry was the result of interacting with an environment, this is the list of interactions that were used in that process, by default None simulation_step : Optional[int], optional If this entry was generated in a simulation, this is the simulation step that produced the entry (useful if, say, a simulation step generated multiple entries), by default None tag : Optional[str], optional A human-readable name for the the entry, by default None raw_fhir_resource : Optional[dict], optional Additional raw FHIR data that can be added to the entry when converting to FHIR, by default None Returns ------- dict A wrapped entry """ return { "patient_time": string_to_datetime(patient_time), "environment_id": environment_id, "interactions": interactions, "simulation_step": simulation_step, "fhir_resource_time": string_to_datetime(entry.get("start")), "fhir_resource_type": entry["resource_type"], "fhir_resource": copy.deepcopy(raw_fhir_resource), "entry": copy.deepcopy(entry), "tag": tag, }
def wrap_fhir_resource( entry: dict, patient_time: Union[str, datetime.datetime], environment_id: Optional[Union[str, int]] = None, interactions: Optional[List[str]] = None, simulation_step: Optional[int] = None, tag: Optional[str] = None, raw_fhir_resource: Optional[dict] = None, ) -> dict: """Wraps a minimal record 'entry' into a dictionary that can be used in the PatientRecordEntry constructor. Parameters ---------- entry : dict Entry to be wrapped, written in the internal patient record representation. Must at least have "name", "start" and "resource_type" keys. Please refer to the notebook 'patient-agent.ipynb' in the notebooks folder for an example. patient_time : Union[str, datetime.datetime] The timestamp in patient-time attached to the entry environment_id : Optional[Union[str, int]], optional If the entry was the result of interacting with an environment, this is the environment_id, by default None interactions : Optional[List[str]], optional If the entry was the result of interacting with an environment, this is the list of interactions that were used in that process, by default None simulation_step : Optional[int], optional If this entry was generated in a simulation, this is the simulation step that produced the entry (useful if, say, a simulation step generated multiple entries), by default None tag : Optional[str], optional A human-readable name for the the entry, by default None raw_fhir_resource : Optional[dict], optional Additional raw FHIR data that can be added to the entry when converting to FHIR, by default None Returns ------- dict A wrapped entry """ return { "patient_time": string_to_datetime(patient_time), "environment_id": environment_id, "interactions": interactions, "simulation_step": simulation_step, "fhir_resource_time": string_to_datetime(entry.get("start")), "fhir_resource_type": entry["resource_type"], "fhir_resource": copy.deepcopy(raw_fhir_resource), "entry": copy.deepcopy(entry), "tag": tag, }
Python
def update( self, record: List[dict], skip_existing: bool = False, logger: logging.Logger = None, print_: bool = False, wrapped: bool = True, ) -> None: """Update patient record by appending new 'record' entries and perform validation (deduplication and time order checking) and subsequently updating conditions, medications and actions numbers. The record contains 'entries' which each get converted into PatientRecordEntry objects. To facilitate this, they may need to be wrapped by wrap_fhir_resource. An unwrapped entry (or equivalently, the 'entry' field of a wrapped entry) must at least have the following fields: "name", "start" and "resource_type". Please refer to the notebook 'patient-agent.ipynb' in the notebooks folder for an example. Parameters ---------- record : List[dict] The new list of entries to append to existing patient record skip_existing : bool, optional Whether to skip the addition of new record entries if they are already present in the existing patient record (deduplication), by default False logger : logging.Logger, optional Logger to write validation messages to, by default None print_ : bool, optional Whether to also print validation messages, by default False wrapped : bool, optional Whether each entry in record should be wrapped using wrap_fhir_resource """ self._update_record(record, skip_existing, logger, print_, wrapped) for attrs_name in self._dataframe_attributes_to_kwargs: self._update_dataframe_attributes( attrs_name, self.record, getattr(self, attrs_name) )
def update( self, record: List[dict], skip_existing: bool = False, logger: logging.Logger = None, print_: bool = False, wrapped: bool = True, ) -> None: """Update patient record by appending new 'record' entries and perform validation (deduplication and time order checking) and subsequently updating conditions, medications and actions numbers. The record contains 'entries' which each get converted into PatientRecordEntry objects. To facilitate this, they may need to be wrapped by wrap_fhir_resource. An unwrapped entry (or equivalently, the 'entry' field of a wrapped entry) must at least have the following fields: "name", "start" and "resource_type". Please refer to the notebook 'patient-agent.ipynb' in the notebooks folder for an example. Parameters ---------- record : List[dict] The new list of entries to append to existing patient record skip_existing : bool, optional Whether to skip the addition of new record entries if they are already present in the existing patient record (deduplication), by default False logger : logging.Logger, optional Logger to write validation messages to, by default None print_ : bool, optional Whether to also print validation messages, by default False wrapped : bool, optional Whether each entry in record should be wrapped using wrap_fhir_resource """ self._update_record(record, skip_existing, logger, print_, wrapped) for attrs_name in self._dataframe_attributes_to_kwargs: self._update_dataframe_attributes( attrs_name, self.record, getattr(self, attrs_name) )
Python
def from_fhir( cls, fhir_data: Union[dict, str, Path], resource_type: str = "Bundle", patient_id: Optional[Union[int, str]] = None, start_time: Optional[Union[str, datetime.datetime]] = None, **kwargs, ) -> PatientAgentType: """Load patient from FHIR resource data. The data can either be a Patient resource, or a Bundle resource containing a Patient resource. The Patient resource is used to populate the patient profile, and (if Bundle) any other resources form populate the patient record. Parameters ---------- fhir_data : Union[dict, str, Path] A dictionary contaning FHIR data, or a path to FHIR data resource_type : str, optional The resource type of the FHIR data, by default "Bundle" patient_id : Optional[Union[int, str]], optional Patient ID, if not set then is taken from the FHIR data Patient resource, by default None start_time : Optional[str, datetime.datetime], optional Start time in patient perspective, automatically set to datetime.datetime.now() if not supplied, by default None Returns ------- PatientAgent An instance of the PatientAgent class loaded from fhir_data. Raises ------ ValueError If more than one Patient resource is detected in fhir_data KeyError If any key in input kwargs has prefix patient__. This is not allowed here as all patient resource data should be contained in fhir_data ValueError If a non-None patient_id is passed as an argument, then a consistency check is made against the patient resource 'id' field in fhir_data. An error is raised if there is a mismatch """ if start_time is None: start_time = datetime.datetime.now(datetime.timezone.utc) created_at = start_time else: created_at = None if isinstance(fhir_data, str) or isinstance(fhir_data, Path): data = FHIRHandler().load( fhir_data, input_resource_type=resource_type, output_resource_type=resource_type, ) else: data = fhir_data if isinstance(data, dict): if resource_type == "Bundle": data = [item["resource"] for item in data["entry"]] else: data = [data] try: [patient_resource] = [ item for item in data if item["resourceType"] == "Patient" ] except ValueError: raise ValueError("There must be one patient resource") record_unwrapped = [ convert_fhir_to_patient_record_entry( item, ) for item in data if item["resourceType"] != "Patient" ] record = [ wrap_fhir_resource( item, patient_time=item["start"] if item.get("end") is None else item["end"], ) for item in record_unwrapped ] patient_kwargs = { f"patient__{key}": value for key, value in patient_resource.items() if key not in ["resourceType", "id", "gender", "birthDate"] } for key in kwargs: if key.startswith("patient__"): raise KeyError( "The keys of the kwargs supplied to the `from_fhir` " "method should not start with 'patient_'. This prefix is " "reserved for FHIR patient resource field names. " "If you want to add a field to the FHIR patient resource, " "then this must be included in `fhir_path`. Other " "PatientAgent attributes may be added through `kwargs`, " "but their attribute names cannot start with 'patient_'." ) kwargs = {**patient_kwargs, **kwargs} if patient_id is not None: if patient_id != patient_resource["id"]: raise ValueError( f"patient_id={patient_id} does not match value" f"{patient_resource['id']} from the input FHIR data." ) return cls( patient_id=( patient_resource["id"] if patient_id is None else patient_id ), gender=patient_resource["gender"], birth_date=patient_resource["birthDate"], record=record, start_time=start_time, created_at=created_at, **kwargs, )
def from_fhir( cls, fhir_data: Union[dict, str, Path], resource_type: str = "Bundle", patient_id: Optional[Union[int, str]] = None, start_time: Optional[Union[str, datetime.datetime]] = None, **kwargs, ) -> PatientAgentType: """Load patient from FHIR resource data. The data can either be a Patient resource, or a Bundle resource containing a Patient resource. The Patient resource is used to populate the patient profile, and (if Bundle) any other resources form populate the patient record. Parameters ---------- fhir_data : Union[dict, str, Path] A dictionary contaning FHIR data, or a path to FHIR data resource_type : str, optional The resource type of the FHIR data, by default "Bundle" patient_id : Optional[Union[int, str]], optional Patient ID, if not set then is taken from the FHIR data Patient resource, by default None start_time : Optional[str, datetime.datetime], optional Start time in patient perspective, automatically set to datetime.datetime.now() if not supplied, by default None Returns ------- PatientAgent An instance of the PatientAgent class loaded from fhir_data. Raises ------ ValueError If more than one Patient resource is detected in fhir_data KeyError If any key in input kwargs has prefix patient__. This is not allowed here as all patient resource data should be contained in fhir_data ValueError If a non-None patient_id is passed as an argument, then a consistency check is made against the patient resource 'id' field in fhir_data. An error is raised if there is a mismatch """ if start_time is None: start_time = datetime.datetime.now(datetime.timezone.utc) created_at = start_time else: created_at = None if isinstance(fhir_data, str) or isinstance(fhir_data, Path): data = FHIRHandler().load( fhir_data, input_resource_type=resource_type, output_resource_type=resource_type, ) else: data = fhir_data if isinstance(data, dict): if resource_type == "Bundle": data = [item["resource"] for item in data["entry"]] else: data = [data] try: [patient_resource] = [ item for item in data if item["resourceType"] == "Patient" ] except ValueError: raise ValueError("There must be one patient resource") record_unwrapped = [ convert_fhir_to_patient_record_entry( item, ) for item in data if item["resourceType"] != "Patient" ] record = [ wrap_fhir_resource( item, patient_time=item["start"] if item.get("end") is None else item["end"], ) for item in record_unwrapped ] patient_kwargs = { f"patient__{key}": value for key, value in patient_resource.items() if key not in ["resourceType", "id", "gender", "birthDate"] } for key in kwargs: if key.startswith("patient__"): raise KeyError( "The keys of the kwargs supplied to the `from_fhir` " "method should not start with 'patient_'. This prefix is " "reserved for FHIR patient resource field names. " "If you want to add a field to the FHIR patient resource, " "then this must be included in `fhir_path`. Other " "PatientAgent attributes may be added through `kwargs`, " "but their attribute names cannot start with 'patient_'." ) kwargs = {**patient_kwargs, **kwargs} if patient_id is not None: if patient_id != patient_resource["id"]: raise ValueError( f"patient_id={patient_id} does not match value" f"{patient_resource['id']} from the input FHIR data." ) return cls( patient_id=( patient_resource["id"] if patient_id is None else patient_id ), gender=patient_resource["gender"], birth_date=patient_resource["birthDate"], record=record, start_time=start_time, created_at=created_at, **kwargs, )
Python
def string_to_datetime( dt: Optional[Union[str, datetime.datetime]], format_str: Optional[str] = None, tzinfo: datetime.timezone = datetime.timezone.utc, ) -> datetime.datetime: """Convert datetime-like string as datetime object. The default settings uses dateutil to automatically parse the string, and returns a datetime object with timezone datetime.timezone.utc Parameters ---------- dt : Optional[Union[str, datetime.datetime]] Datetime string. If dt is already a datetime object or None, returns dt format_str : Optional[str], optional Input format string, by default None tzinfo : datetime.timezone, optional Timezone, by default datetime.timezone.utc Returns ------- datetime.datetime Returns dt as a datetime object """ if dt is None or isinstance(dt, datetime.datetime): return dt if format_str is None: return dateutil.parser.parse(dt).astimezone(UTC) else: return datetime.datetime.strptime(dt, format_str, tzinfo=tzinfo)
def string_to_datetime( dt: Optional[Union[str, datetime.datetime]], format_str: Optional[str] = None, tzinfo: datetime.timezone = datetime.timezone.utc, ) -> datetime.datetime: """Convert datetime-like string as datetime object. The default settings uses dateutil to automatically parse the string, and returns a datetime object with timezone datetime.timezone.utc Parameters ---------- dt : Optional[Union[str, datetime.datetime]] Datetime string. If dt is already a datetime object or None, returns dt format_str : Optional[str], optional Input format string, by default None tzinfo : datetime.timezone, optional Timezone, by default datetime.timezone.utc Returns ------- datetime.datetime Returns dt as a datetime object """ if dt is None or isinstance(dt, datetime.datetime): return dt if format_str is None: return dateutil.parser.parse(dt).astimezone(UTC) else: return datetime.datetime.strptime(dt, format_str, tzinfo=tzinfo)
Python
def print_log( msg: str, print_: bool = False, logger: logging.Logger = None ) -> None: """Print and / or log a message Parameters ---------- msg : str Message string print_ : bool, optional Whether to pring message, by default False logger : logging.Logger, optional Logger that, if supplied, message will be written to, by default None """ if logger is None or print_: print(msg) if logger is not None: logger.info(msg)
def print_log( msg: str, print_: bool = False, logger: logging.Logger = None ) -> None: """Print and / or log a message Parameters ---------- msg : str Message string print_ : bool, optional Whether to pring message, by default False logger : logging.Logger, optional Logger that, if supplied, message will be written to, by default None """ if logger is None or print_: print(msg) if logger is not None: logger.info(msg)
Python
def an_interaction_0( patient: PatientAgent, environment: EnvironmentAgent, patient_time: datetime.datetime, ): """Interaction between patient and environment: - generates new Patient record entries; - decides which Environment the patient should visit next and at what time; - optionally applies custom updates the Patient and Environment agents. Parameters ---------- patient : PatientAgent The patient agent environment : EnvironmentAgent The environment agent patient_time : datetime.datetime The time from the patient's persective Returns ------- patient : PatientAgent Patient agent, possible updated environment : EnvironmentAgent The environment agent, possible updated patient_time : datetime.datetime The time from the patient's persective for the next interaction update_data : Dict[str, List[dict]] Dictionary containing new patient record entries as {"new_patient_record_entries": [entry_0, entry_1,...]}, where each entry is itself a dictionary. These will get automatically added to the patient record. In future, update_data could contain other data too, which is why it is strucured in this way. next_environment_id_to_prob : Dict[Union[str, int], float] Dictionary contaning next environment_ids as keys and the proabiilties to transition to them next_environment_id_to_time : Dict[Union[str, int], datetime.timedelta] Dictionary contaning next environment_ids as keys and time period from initial patient_time to transition to them """ # ADD CODE # Makes new patient record entries, decides next environment transition # probability and time. Can update patient and environment # Note that the intelligence layer, which receives the outputs of the # interaction functions, must be able to handle cases where # next_environment_id_to_prob and next_environment_id_to_time are empty # (these are the outputs of the default death interaction) return ( patient, environment, update_data, next_environment_id_to_prob, next_environment_id_to_time, )
def an_interaction_0( patient: PatientAgent, environment: EnvironmentAgent, patient_time: datetime.datetime, ): """Interaction between patient and environment: - generates new Patient record entries; - decides which Environment the patient should visit next and at what time; - optionally applies custom updates the Patient and Environment agents. Parameters ---------- patient : PatientAgent The patient agent environment : EnvironmentAgent The environment agent patient_time : datetime.datetime The time from the patient's persective Returns ------- patient : PatientAgent Patient agent, possible updated environment : EnvironmentAgent The environment agent, possible updated patient_time : datetime.datetime The time from the patient's persective for the next interaction update_data : Dict[str, List[dict]] Dictionary containing new patient record entries as {"new_patient_record_entries": [entry_0, entry_1,...]}, where each entry is itself a dictionary. These will get automatically added to the patient record. In future, update_data could contain other data too, which is why it is strucured in this way. next_environment_id_to_prob : Dict[Union[str, int], float] Dictionary contaning next environment_ids as keys and the proabiilties to transition to them next_environment_id_to_time : Dict[Union[str, int], datetime.timedelta] Dictionary contaning next environment_ids as keys and time period from initial patient_time to transition to them """ # ADD CODE # Makes new patient record entries, decides next environment transition # probability and time. Can update patient and environment # Note that the intelligence layer, which receives the outputs of the # interaction functions, must be able to handle cases where # next_environment_id_to_prob and next_environment_id_to_time are empty # (these are the outputs of the default death interaction) return ( patient, environment, update_data, next_environment_id_to_prob, next_environment_id_to_time, )
Python
def intelligence( patient: PatientAgent, environment: EnvironmentAgent, patient_time: datetime.datetime, interaction_mapper: Dict[str, Callable], ): """Intelligence layer - decides which interaction(s) to apply to patient and environment. Parameters ---------- patient : PatientAgent The patient agent environment : EnvironmentAgent The environment agent patient_time : datetime.datetime The time from the patient's persective interaction_mapper : Dict[str, Callable] Dictionary mapping interaction names to corresponding function handles Returns ------- patient : PatientAgent Patient agent, possible updated environment : EnvironmentAgent The environment agent, possible updated patient_time : datetime.datetime The time from the patient's persective for the next interaction update_data : Dict[str, List[dict]] Dictionary containing new patient record entries as {"new_patient_record_entries": [entry_0, entry_1,...]}, where each entry is itself a dictionary. These will get automatically added to the patient record. In future, update_data could contain other data too, which is why it is strucured in this way. next_environment_id : Union[int, str] environment_id of the next environment the patient should visit, sampled from next_environment_id_to_prob interaction_name : List[str] Name of the interactions that were applied here. next_environment_id_to_prob : Dict[Union[str, int], float] Dictionary contaning next environment_ids as keys and the proabiilties to transition to them next_environment_id_to_time : Dict[Union[str, int], datetime.timedelta] Dictionary contaning next environment_ids as keys and time period from initial patient_time to transition to them """ # ADD CODE # < some logic that decides which # interaction function to apply to the patient and environment, # and samples from next_environment_id_to_prob > return ( patient, environment, patient_time, update_data, next_environment_id, interaction_names, next_environment_id_to_prob, next_environment_id_to_time, )
def intelligence( patient: PatientAgent, environment: EnvironmentAgent, patient_time: datetime.datetime, interaction_mapper: Dict[str, Callable], ): """Intelligence layer - decides which interaction(s) to apply to patient and environment. Parameters ---------- patient : PatientAgent The patient agent environment : EnvironmentAgent The environment agent patient_time : datetime.datetime The time from the patient's persective interaction_mapper : Dict[str, Callable] Dictionary mapping interaction names to corresponding function handles Returns ------- patient : PatientAgent Patient agent, possible updated environment : EnvironmentAgent The environment agent, possible updated patient_time : datetime.datetime The time from the patient's persective for the next interaction update_data : Dict[str, List[dict]] Dictionary containing new patient record entries as {"new_patient_record_entries": [entry_0, entry_1,...]}, where each entry is itself a dictionary. These will get automatically added to the patient record. In future, update_data could contain other data too, which is why it is strucured in this way. next_environment_id : Union[int, str] environment_id of the next environment the patient should visit, sampled from next_environment_id_to_prob interaction_name : List[str] Name of the interactions that were applied here. next_environment_id_to_prob : Dict[Union[str, int], float] Dictionary contaning next environment_ids as keys and the proabiilties to transition to them next_environment_id_to_time : Dict[Union[str, int], datetime.timedelta] Dictionary contaning next environment_ids as keys and time period from initial patient_time to transition to them """ # ADD CODE # < some logic that decides which # interaction function to apply to the patient and environment, # and samples from next_environment_id_to_prob > return ( patient, environment, patient_time, update_data, next_environment_id, interaction_names, next_environment_id_to_prob, next_environment_id_to_time, )
Python
def convert_path(function: Callable): """ Decorator function to convert path to pathlib.Path """ @wraps(function) def wrapper(self, path: Union[Path, str], *args, **kwargs): if isinstance(path, Path): pass elif isinstance(path, str): path = Path(path) else: raise ValueError("`path` must be string or pathlib.Path type") return function(self, path, *args, **kwargs) return wrapper
def convert_path(function: Callable): """ Decorator function to convert path to pathlib.Path """ @wraps(function) def wrapper(self, path: Union[Path, str], *args, **kwargs): if isinstance(path, Path): pass elif isinstance(path, str): path = Path(path) else: raise ValueError("`path` must be string or pathlib.Path type") return function(self, path, *args, **kwargs) return wrapper
Python
def make_dir(function: Callable): """ Decorator function to make path directory """ @wraps(function) def wrapper(self, path: Union[Path, str], *args, **kwargs): if path.suffix == "": path.mkdir(exist_ok=True, parents=True) else: path.parent.mkdir(exist_ok=True, parents=True) return function(self, path, *args, **kwargs) return wrapper
def make_dir(function: Callable): """ Decorator function to make path directory """ @wraps(function) def wrapper(self, path: Union[Path, str], *args, **kwargs): if path.suffix == "": path.mkdir(exist_ok=True, parents=True) else: path.parent.mkdir(exist_ok=True, parents=True) return function(self, path, *args, **kwargs) return wrapper
Python
def parse_config(config: Union[dict, str, Path]) -> dict: """Parse and validate config file Parameters ---------- config : Union[dict, str, Path] Config data, either loaded as dictionary or path to file Returns ------- dict Return config if passes validation, else error is raised """ if isinstance(config, str) or isinstance(config, Path): config = DataHandler().load_json(config) for agents in ["patients", "environments"]: if isinstance(config[agents], str): config[agents] = _parse_agents_config_from_file( config[agents], agents ) validate_unique_environment_ids(config["environments"], "environment_id") Config(**config) return config
def parse_config(config: Union[dict, str, Path]) -> dict: """Parse and validate config file Parameters ---------- config : Union[dict, str, Path] Config data, either loaded as dictionary or path to file Returns ------- dict Return config if passes validation, else error is raised """ if isinstance(config, str) or isinstance(config, Path): config = DataHandler().load_json(config) for agents in ["patients", "environments"]: if isinstance(config[agents], str): config[agents] = _parse_agents_config_from_file( config[agents], agents ) validate_unique_environment_ids(config["environments"], "environment_id") Config(**config) return config
Python
def _enter_transaction_management(self, managed): """ Switch the isolation level when needing transaction support, so that the same transaction is visible across all the queries. """ if self.features.uses_autocommit and managed and not self.isolation_level: self._set_isolation_level(1)
def _enter_transaction_management(self, managed): """ Switch the isolation level when needing transaction support, so that the same transaction is visible across all the queries. """ if self.features.uses_autocommit and managed and not self.isolation_level: self._set_isolation_level(1)
Python
def _leave_transaction_management(self, managed): """ If the normal operating mode is "autocommit", switch back to that when leaving transaction management. """ if self.features.uses_autocommit and not managed and self.isolation_level: self._set_isolation_level(0)
def _leave_transaction_management(self, managed): """ If the normal operating mode is "autocommit", switch back to that when leaving transaction management. """ if self.features.uses_autocommit and not managed and self.isolation_level: self._set_isolation_level(0)
Python
def _set_isolation_level(self, level): """ Do all the related feature configurations for changing isolation levels. This doesn't touch the uses_autocommit feature, since that controls the movement *between* isolation levels. """ assert level in (0, 1) try: if self.connection is not None: self.connection.set_isolation_level(level) finally: self.isolation_level = level self.features.uses_savepoints = bool(level)
def _set_isolation_level(self, level): """ Do all the related feature configurations for changing isolation levels. This doesn't touch the uses_autocommit feature, since that controls the movement *between* isolation levels. """ assert level in (0, 1) try: if self.connection is not None: self.connection.set_isolation_level(level) finally: self.isolation_level = level self.features.uses_savepoints = bool(level)
Python
def lazy(func, *resultclasses): """ Turns any callable into a lazy evaluated callable. You need to give result classes or types -- at least one is needed so that the automatic forcing of the lazy evaluation code is triggered. Results are not memoized; the function is evaluated on every access. """ class __proxy__(Promise): """ Encapsulate a function call and act as a proxy for methods that are called on the result of that function. The function is not evaluated until one of the methods on the result is called. """ __dispatch = None def __init__(self, args, kw): self.__func = func self.__args = args self.__kw = kw if self.__dispatch is None: self.__prepare_class__() def __reduce__(self): return ( _lazy_proxy_unpickle, (self.__func, self.__args, self.__kw) + resultclasses ) def __prepare_class__(cls): cls.__dispatch = {} for resultclass in resultclasses: cls.__dispatch[resultclass] = {} for type_ in reversed(resultclass.mro()): for (k, v) in type_.__dict__.items(): # All __promise__ return the same wrapper method, but they # also do setup, inserting the method into the dispatch # dict. meth = cls.__promise__(resultclass, k, v) if hasattr(cls, k): continue setattr(cls, k, meth) cls._delegate_str = str in resultclasses cls._delegate_unicode = unicode in resultclasses assert not (cls._delegate_str and cls._delegate_unicode), "Cannot call lazy() with both str and unicode return types." if cls._delegate_unicode: cls.__unicode__ = cls.__unicode_cast elif cls._delegate_str: cls.__str__ = cls.__str_cast __prepare_class__ = classmethod(__prepare_class__) def __promise__(cls, klass, funcname, func): # Builds a wrapper around some magic method and registers that magic # method for the given type and method name. def __wrapper__(self, *args, **kw): # Automatically triggers the evaluation of a lazy value and # applies the given magic method of the result type. res = self.__func(*self.__args, **self.__kw) for t in type(res).mro(): if t in self.__dispatch: return self.__dispatch[t][funcname](res, *args, **kw) raise TypeError("Lazy object returned unexpected type.") if klass not in cls.__dispatch: cls.__dispatch[klass] = {} cls.__dispatch[klass][funcname] = func return __wrapper__ __promise__ = classmethod(__promise__) def __unicode_cast(self): return self.__func(*self.__args, **self.__kw) def __str_cast(self): return str(self.__func(*self.__args, **self.__kw)) def __cmp__(self, rhs): if self._delegate_str: s = str(self.__func(*self.__args, **self.__kw)) elif self._delegate_unicode: s = unicode(self.__func(*self.__args, **self.__kw)) else: s = self.__func(*self.__args, **self.__kw) if isinstance(rhs, Promise): return -cmp(rhs, s) else: return cmp(s, rhs) def __mod__(self, rhs): if self._delegate_str: return str(self) % rhs elif self._delegate_unicode: return unicode(self) % rhs else: raise AssertionError('__mod__ not supported for non-string types') def __deepcopy__(self, memo): # Instances of this class are effectively immutable. It's just a # collection of functions. So we don't need to do anything # complicated for copying. memo[id(self)] = self return self @wraps(func) def __wrapper__(*args, **kw): # Creates the proxy object, instead of the actual value. return __proxy__(args, kw) return __wrapper__
def lazy(func, *resultclasses): """ Turns any callable into a lazy evaluated callable. You need to give result classes or types -- at least one is needed so that the automatic forcing of the lazy evaluation code is triggered. Results are not memoized; the function is evaluated on every access. """ class __proxy__(Promise): """ Encapsulate a function call and act as a proxy for methods that are called on the result of that function. The function is not evaluated until one of the methods on the result is called. """ __dispatch = None def __init__(self, args, kw): self.__func = func self.__args = args self.__kw = kw if self.__dispatch is None: self.__prepare_class__() def __reduce__(self): return ( _lazy_proxy_unpickle, (self.__func, self.__args, self.__kw) + resultclasses ) def __prepare_class__(cls): cls.__dispatch = {} for resultclass in resultclasses: cls.__dispatch[resultclass] = {} for type_ in reversed(resultclass.mro()): for (k, v) in type_.__dict__.items(): # All __promise__ return the same wrapper method, but they # also do setup, inserting the method into the dispatch # dict. meth = cls.__promise__(resultclass, k, v) if hasattr(cls, k): continue setattr(cls, k, meth) cls._delegate_str = str in resultclasses cls._delegate_unicode = unicode in resultclasses assert not (cls._delegate_str and cls._delegate_unicode), "Cannot call lazy() with both str and unicode return types." if cls._delegate_unicode: cls.__unicode__ = cls.__unicode_cast elif cls._delegate_str: cls.__str__ = cls.__str_cast __prepare_class__ = classmethod(__prepare_class__) def __promise__(cls, klass, funcname, func): # Builds a wrapper around some magic method and registers that magic # method for the given type and method name. def __wrapper__(self, *args, **kw): # Automatically triggers the evaluation of a lazy value and # applies the given magic method of the result type. res = self.__func(*self.__args, **self.__kw) for t in type(res).mro(): if t in self.__dispatch: return self.__dispatch[t][funcname](res, *args, **kw) raise TypeError("Lazy object returned unexpected type.") if klass not in cls.__dispatch: cls.__dispatch[klass] = {} cls.__dispatch[klass][funcname] = func return __wrapper__ __promise__ = classmethod(__promise__) def __unicode_cast(self): return self.__func(*self.__args, **self.__kw) def __str_cast(self): return str(self.__func(*self.__args, **self.__kw)) def __cmp__(self, rhs): if self._delegate_str: s = str(self.__func(*self.__args, **self.__kw)) elif self._delegate_unicode: s = unicode(self.__func(*self.__args, **self.__kw)) else: s = self.__func(*self.__args, **self.__kw) if isinstance(rhs, Promise): return -cmp(rhs, s) else: return cmp(s, rhs) def __mod__(self, rhs): if self._delegate_str: return str(self) % rhs elif self._delegate_unicode: return unicode(self) % rhs else: raise AssertionError('__mod__ not supported for non-string types') def __deepcopy__(self, memo): # Instances of this class are effectively immutable. It's just a # collection of functions. So we don't need to do anything # complicated for copying. memo[id(self)] = self return self @wraps(func) def __wrapper__(*args, **kw): # Creates the proxy object, instead of the actual value. return __proxy__(args, kw) return __wrapper__
Python
def allow_lazy(func, *resultclasses): """ A decorator that allows a function to be called with one or more lazy arguments. If none of the args are lazy, the function is evaluated immediately, otherwise a __proxy__ is returned that will evaluate the function when needed. """ @wraps(func) def wrapper(*args, **kwargs): for arg in list(args) + kwargs.values(): if isinstance(arg, Promise): break else: return func(*args, **kwargs) return lazy(func, *resultclasses)(*args, **kwargs) return wrapper
def allow_lazy(func, *resultclasses): """ A decorator that allows a function to be called with one or more lazy arguments. If none of the args are lazy, the function is evaluated immediately, otherwise a __proxy__ is returned that will evaluate the function when needed. """ @wraps(func) def wrapper(*args, **kwargs): for arg in list(args) + kwargs.values(): if isinstance(arg, Promise): break else: return func(*args, **kwargs) return lazy(func, *resultclasses)(*args, **kwargs) return wrapper
Python
def _setup(self): """ Must be implemented by subclasses to initialise the wrapped object. """ raise NotImplementedError
def _setup(self): """ Must be implemented by subclasses to initialise the wrapped object. """ raise NotImplementedError
Python
def intcomma(value, use_l10n=True): """ Converts an integer to a string containing commas every three digits. For example, 3000 becomes '3,000' and 45000 becomes '45,000'. """ if settings.USE_L10N and use_l10n: try: if not isinstance(value, float): value = int(value) except (TypeError, ValueError): return intcomma(value, False) else: return number_format(value) orig = force_unicode(value) new = re.sub("^(-?\d+)(\d{3})", '\g<1>,\g<2>', orig) if orig == new: return new else: return intcomma(new, use_l10n)
def intcomma(value, use_l10n=True): """ Converts an integer to a string containing commas every three digits. For example, 3000 becomes '3,000' and 45000 becomes '45,000'. """ if settings.USE_L10N and use_l10n: try: if not isinstance(value, float): value = int(value) except (TypeError, ValueError): return intcomma(value, False) else: return number_format(value) orig = force_unicode(value) new = re.sub("^(-?\d+)(\d{3})", '\g<1>,\g<2>', orig) if orig == new: return new else: return intcomma(new, use_l10n)
Python
def intword(value): """ Converts a large integer to a friendly text representation. Works best for numbers over 1 million. For example, 1000000 becomes '1.0 million', 1200000 becomes '1.2 million' and '1200000000' becomes '1.2 billion'. """ try: value = int(value) except (TypeError, ValueError): return value if value < 1000000: return value def _check_for_i18n(value, float_formatted, string_formatted): """ Use the i18n enabled defaultfilters.floatformat if possible """ if settings.USE_L10N: return defaultfilters.floatformat(value, 1), string_formatted return value, float_formatted if value < 1000000000: new_value = value / 1000000.0 new_value, value_string = _check_for_i18n(new_value, ungettext('%(value).1f million', '%(value).1f million', new_value), ungettext('%(value)s million', '%(value)s million', new_value)) return value_string % {'value': new_value} if value < 1000000000000: new_value = value / 1000000000.0 new_value, value_string = _check_for_i18n(new_value, ungettext('%(value).1f billion', '%(value).1f billion', new_value), ungettext('%(value)s billion', '%(value)s billion', new_value)) return value_string % {'value': new_value} if value < 1000000000000000: new_value = value / 1000000000000.0 new_value, value_string = _check_for_i18n(new_value, ungettext('%(value).1f trillion', '%(value).1f trillion', new_value), ungettext('%(value)s trillion', '%(value)s trillion', new_value)) return value_string % {'value': new_value} return value
def intword(value): """ Converts a large integer to a friendly text representation. Works best for numbers over 1 million. For example, 1000000 becomes '1.0 million', 1200000 becomes '1.2 million' and '1200000000' becomes '1.2 billion'. """ try: value = int(value) except (TypeError, ValueError): return value if value < 1000000: return value def _check_for_i18n(value, float_formatted, string_formatted): """ Use the i18n enabled defaultfilters.floatformat if possible """ if settings.USE_L10N: return defaultfilters.floatformat(value, 1), string_formatted return value, float_formatted if value < 1000000000: new_value = value / 1000000.0 new_value, value_string = _check_for_i18n(new_value, ungettext('%(value).1f million', '%(value).1f million', new_value), ungettext('%(value)s million', '%(value)s million', new_value)) return value_string % {'value': new_value} if value < 1000000000000: new_value = value / 1000000000.0 new_value, value_string = _check_for_i18n(new_value, ungettext('%(value).1f billion', '%(value).1f billion', new_value), ungettext('%(value)s billion', '%(value)s billion', new_value)) return value_string % {'value': new_value} if value < 1000000000000000: new_value = value / 1000000000000.0 new_value, value_string = _check_for_i18n(new_value, ungettext('%(value).1f trillion', '%(value).1f trillion', new_value), ungettext('%(value)s trillion', '%(value)s trillion', new_value)) return value_string % {'value': new_value} return value
Python
def _check_for_i18n(value, float_formatted, string_formatted): """ Use the i18n enabled defaultfilters.floatformat if possible """ if settings.USE_L10N: return defaultfilters.floatformat(value, 1), string_formatted return value, float_formatted
def _check_for_i18n(value, float_formatted, string_formatted): """ Use the i18n enabled defaultfilters.floatformat if possible """ if settings.USE_L10N: return defaultfilters.floatformat(value, 1), string_formatted return value, float_formatted
Python
def assertFieldOutput(self, fieldclass, valid, invalid, field_args=None, field_kwargs=None, empty_value=u''): """ Asserts that a field behaves correctly with various inputs. Args: fieldclass: the class of the field to be tested. valid: a dictionary mapping valid inputs to their expected cleaned values. invalid: a dictionary mapping invalid inputs to one or more raised error messages. field_args: the args passed to instantiate the field field_kwargs: the kwargs passed to instantiate the field empty_value: the expected clean output for inputs in EMPTY_VALUES """ if field_args is None: field_args = [] if field_kwargs is None: field_kwargs = {} required = fieldclass(*field_args, **field_kwargs) optional = fieldclass(*field_args, **dict(field_kwargs, required=False)) # test valid inputs for input, output in valid.items(): self.assertEqual(required.clean(input), output) self.assertEqual(optional.clean(input), output) # test invalid inputs for input, errors in invalid.items(): with self.assertRaises(ValidationError) as context_manager: required.clean(input) self.assertEqual(context_manager.exception.messages, errors) with self.assertRaises(ValidationError) as context_manager: optional.clean(input) self.assertEqual(context_manager.exception.messages, errors) # test required inputs error_required = [u'This field is required.'] for e in EMPTY_VALUES: with self.assertRaises(ValidationError) as context_manager: required.clean(e) self.assertEqual(context_manager.exception.messages, error_required) self.assertEqual(optional.clean(e), empty_value) # test that max_length and min_length are always accepted if issubclass(fieldclass, CharField): field_kwargs.update({'min_length':2, 'max_length':20}) self.assertTrue(isinstance(fieldclass(*field_args, **field_kwargs), fieldclass))
def assertFieldOutput(self, fieldclass, valid, invalid, field_args=None, field_kwargs=None, empty_value=u''): """ Asserts that a field behaves correctly with various inputs. Args: fieldclass: the class of the field to be tested. valid: a dictionary mapping valid inputs to their expected cleaned values. invalid: a dictionary mapping invalid inputs to one or more raised error messages. field_args: the args passed to instantiate the field field_kwargs: the kwargs passed to instantiate the field empty_value: the expected clean output for inputs in EMPTY_VALUES """ if field_args is None: field_args = [] if field_kwargs is None: field_kwargs = {} required = fieldclass(*field_args, **field_kwargs) optional = fieldclass(*field_args, **dict(field_kwargs, required=False)) # test valid inputs for input, output in valid.items(): self.assertEqual(required.clean(input), output) self.assertEqual(optional.clean(input), output) # test invalid inputs for input, errors in invalid.items(): with self.assertRaises(ValidationError) as context_manager: required.clean(input) self.assertEqual(context_manager.exception.messages, errors) with self.assertRaises(ValidationError) as context_manager: optional.clean(input) self.assertEqual(context_manager.exception.messages, errors) # test required inputs error_required = [u'This field is required.'] for e in EMPTY_VALUES: with self.assertRaises(ValidationError) as context_manager: required.clean(e) self.assertEqual(context_manager.exception.messages, error_required) self.assertEqual(optional.clean(e), empty_value) # test that max_length and min_length are always accepted if issubclass(fieldclass, CharField): field_kwargs.update({'min_length':2, 'max_length':20}) self.assertTrue(isinstance(fieldclass(*field_args, **field_kwargs), fieldclass))
Python
def assertNotContains(self, response, text, status_code=200, msg_prefix=''): """ Asserts that a response indicates that some content was retrieved successfully, (i.e., the HTTP status code was as expected), and that ``text`` doesn't occurs in the content of the response. """ if msg_prefix: msg_prefix += ": " self.assertEqual(response.status_code, status_code, msg_prefix + "Couldn't retrieve content: Response code was %d" " (expected %d)" % (response.status_code, status_code)) text = smart_str(text, response._charset) self.assertEqual(response.content.count(text), 0, msg_prefix + "Response should not contain '%s'" % text)
def assertNotContains(self, response, text, status_code=200, msg_prefix=''): """ Asserts that a response indicates that some content was retrieved successfully, (i.e., the HTTP status code was as expected), and that ``text`` doesn't occurs in the content of the response. """ if msg_prefix: msg_prefix += ": " self.assertEqual(response.status_code, status_code, msg_prefix + "Couldn't retrieve content: Response code was %d" " (expected %d)" % (response.status_code, status_code)) text = smart_str(text, response._charset) self.assertEqual(response.content.count(text), 0, msg_prefix + "Response should not contain '%s'" % text)
Python
def assertTemplateUsed(self, response, template_name, msg_prefix=''): """ Asserts that the template with the provided name was used in rendering the response. """ if msg_prefix: msg_prefix += ": " template_names = [t.name for t in response.templates] if not template_names: self.fail(msg_prefix + "No templates used to render the response") self.assertTrue(template_name in template_names, msg_prefix + "Template '%s' was not a template used to render" " the response. Actual template(s) used: %s" % (template_name, u', '.join(template_names)))
def assertTemplateUsed(self, response, template_name, msg_prefix=''): """ Asserts that the template with the provided name was used in rendering the response. """ if msg_prefix: msg_prefix += ": " template_names = [t.name for t in response.templates] if not template_names: self.fail(msg_prefix + "No templates used to render the response") self.assertTrue(template_name in template_names, msg_prefix + "Template '%s' was not a template used to render" " the response. Actual template(s) used: %s" % (template_name, u', '.join(template_names)))
Python
def assertTemplateNotUsed(self, response, template_name, msg_prefix=''): """ Asserts that the template with the provided name was NOT used in rendering the response. """ if msg_prefix: msg_prefix += ": " template_names = [t.name for t in response.templates] self.assertFalse(template_name in template_names, msg_prefix + "Template '%s' was used unexpectedly in rendering" " the response" % template_name)
def assertTemplateNotUsed(self, response, template_name, msg_prefix=''): """ Asserts that the template with the provided name was NOT used in rendering the response. """ if msg_prefix: msg_prefix += ": " template_names = [t.name for t in response.templates] self.assertFalse(template_name in template_names, msg_prefix + "Template '%s' was used unexpectedly in rendering" " the response" % template_name)
Python
def connections_support_transactions(): """ Returns True if all connections support transactions. """ return all(conn.features.supports_transactions for conn in connections.all())
def connections_support_transactions(): """ Returns True if all connections support transactions. """ return all(conn.features.supports_transactions for conn in connections.all())
Python
def PNN(feature_dim_dict, embedding_size=8, hidden_size=(128, 128), l2_reg_embedding=1e-5, l2_reg_deep=0, init_std=0.0001, seed=1024, keep_prob=1, activation='relu', final_activation='sigmoid', use_inner=True, use_outter=False, kernel_type='mat',output_dim=1, ): """Instantiates the Product-based Neural Network architecture. :param feature_dim_dict: dict,to indicate sparse field and dense field like {'sparse':{'field_1':4,'field_2':3,'field_3':2},'dense':['field_4','field_5']} :param embedding_size: positive integer,sparse feature embedding_size :param hidden_size: list,list of positive integer or empty list, the layer number and units in each layer of deep net :param l2_reg_embedding: float . L2 regularizer strength applied to embedding vector :param l2_reg_deep: float. L2 regularizer strength applied to deep net :param init_std: float,to use as the initialize std of embedding vector :param seed: integer ,to use as random seed. :param keep_prob: float in (0,1]. keep_prob used in deep net :param activation: Activation function to use in deep net :param final_activation: str,output activation,usually ``'sigmoid'`` or ``'linear'`` :param use_inner: bool,whether use inner-product or not. :param use_outter: bool,whether use outter-product or not. :param kernel_type: str,kernel_type used in outter-product,can be ``'mat'`` , ``'vec'`` or ``'num'`` :return: A Keras model instance. """ check_feature_config_dict(feature_dim_dict) if kernel_type not in ['mat', 'vec', 'num']: raise ValueError("kernel_type must be mat,vec or num") deep_emb_list, _, inputs_list = preprocess_input_embedding(feature_dim_dict, embedding_size, l2_reg_embedding, 0, init_std, seed, True) inner_product = tf.keras.layers.Flatten()(InnerProductLayer()(deep_emb_list)) outter_product = OutterProductLayer(kernel_type)(deep_emb_list) # ipnn deep input linear_signal = tf.keras.layers.Reshape( [len(deep_emb_list)*embedding_size])(concat_fun(deep_emb_list)) if use_inner and use_outter: deep_input = tf.keras.layers.Concatenate()( [linear_signal, inner_product, outter_product]) elif use_inner: deep_input = tf.keras.layers.Concatenate()( [linear_signal, inner_product]) elif use_outter: deep_input = tf.keras.layers.Concatenate()( [linear_signal, outter_product]) else: deep_input = linear_signal output=[] for _ in range(output_dim): deep_out = MLP(hidden_size, activation, l2_reg_deep, keep_prob, False, seed)(deep_input) deep_logit = tf.keras.layers.Dense( 1, use_bias=False, activation=None)(deep_out) output.append(PredictionLayer(final_activation)(deep_logit)) model = tf.keras.models.Model(inputs=inputs_list, outputs=output) return model
def PNN(feature_dim_dict, embedding_size=8, hidden_size=(128, 128), l2_reg_embedding=1e-5, l2_reg_deep=0, init_std=0.0001, seed=1024, keep_prob=1, activation='relu', final_activation='sigmoid', use_inner=True, use_outter=False, kernel_type='mat',output_dim=1, ): """Instantiates the Product-based Neural Network architecture. :param feature_dim_dict: dict,to indicate sparse field and dense field like {'sparse':{'field_1':4,'field_2':3,'field_3':2},'dense':['field_4','field_5']} :param embedding_size: positive integer,sparse feature embedding_size :param hidden_size: list,list of positive integer or empty list, the layer number and units in each layer of deep net :param l2_reg_embedding: float . L2 regularizer strength applied to embedding vector :param l2_reg_deep: float. L2 regularizer strength applied to deep net :param init_std: float,to use as the initialize std of embedding vector :param seed: integer ,to use as random seed. :param keep_prob: float in (0,1]. keep_prob used in deep net :param activation: Activation function to use in deep net :param final_activation: str,output activation,usually ``'sigmoid'`` or ``'linear'`` :param use_inner: bool,whether use inner-product or not. :param use_outter: bool,whether use outter-product or not. :param kernel_type: str,kernel_type used in outter-product,can be ``'mat'`` , ``'vec'`` or ``'num'`` :return: A Keras model instance. """ check_feature_config_dict(feature_dim_dict) if kernel_type not in ['mat', 'vec', 'num']: raise ValueError("kernel_type must be mat,vec or num") deep_emb_list, _, inputs_list = preprocess_input_embedding(feature_dim_dict, embedding_size, l2_reg_embedding, 0, init_std, seed, True) inner_product = tf.keras.layers.Flatten()(InnerProductLayer()(deep_emb_list)) outter_product = OutterProductLayer(kernel_type)(deep_emb_list) # ipnn deep input linear_signal = tf.keras.layers.Reshape( [len(deep_emb_list)*embedding_size])(concat_fun(deep_emb_list)) if use_inner and use_outter: deep_input = tf.keras.layers.Concatenate()( [linear_signal, inner_product, outter_product]) elif use_inner: deep_input = tf.keras.layers.Concatenate()( [linear_signal, inner_product]) elif use_outter: deep_input = tf.keras.layers.Concatenate()( [linear_signal, outter_product]) else: deep_input = linear_signal output=[] for _ in range(output_dim): deep_out = MLP(hidden_size, activation, l2_reg_deep, keep_prob, False, seed)(deep_input) deep_logit = tf.keras.layers.Dense( 1, use_bias=False, activation=None)(deep_out) output.append(PredictionLayer(final_activation)(deep_logit)) model = tf.keras.models.Model(inputs=inputs_list, outputs=output) return model
Python
def WDL(deep_feature_dim_dict, wide_feature_dim_dict, embedding_size=8, hidden_size=(128, 128), l2_reg_linear=1e-5, l2_reg_embedding=1e-5, l2_reg_deep=0, init_std=0.0001, seed=1024, keep_prob=1, activation='relu', final_activation='sigmoid',output_dim=1,): """Instantiates the Wide&Deep Learning architecture. :param deep_feature_dim_dict: dict,to indicate sparse field and dense field in deep part like {'sparse':{'field_1':4,'field_2':3,'field_3':2},'dense':['field_4','field_5']} :param wide_feature_dim_dict: dict,to indicate sparse field and dense field in wide part like {'sparse':{'field_1':4,'field_2':3,'field_3':2},'dense':['field_4','field_5']} :param embedding_size: positive integer,sparse feature embedding_size :param hidden_size: list,list of positive integer or empty list, the layer number and units in each layer of deep net :param l2_reg_linear: float. L2 regularizer strength applied to wide part :param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector :param l2_reg_deep: float. L2 regularizer strength applied to deep net :param init_std: float,to use as the initialize std of embedding vector :param seed: integer ,to use as random seed. :param keep_prob: float in (0,1]. keep_prob used in deep net :param activation: Activation function to use in deep net :param final_activation: str,output activation,usually ``'sigmoid'`` or ``'linear'`` :return: A Keras model instance. """ if not isinstance(deep_feature_dim_dict, dict) or "sparse" not in deep_feature_dim_dict or "dense" not in deep_feature_dim_dict: raise ValueError( "feature_dim must be a dict like {'sparse':{'field_1':4,'field_2':3,'field_3':2},'dense':['field_5',]}") sparse_input, dense_input, = create_singlefeat_dict( deep_feature_dim_dict) bias_sparse_input, bias_dense_input = create_singlefeat_dict( wide_feature_dim_dict, 'bias') sparse_embedding = create_embedding_dict( deep_feature_dim_dict, embedding_size, init_std, seed, l2_reg_embedding) wide_linear_embedding = create_embedding_dict( wide_feature_dim_dict, 1, init_std, seed, l2_reg_linear, 'linear') embed_list = get_embedding_vec_list(sparse_embedding, sparse_input) deep_input = Concatenate()(embed_list) if len( embed_list) > 1 else embed_list[0] deep_input = Flatten()(deep_input) if len(dense_input) > 0: deep_input = Concatenate()([deep_input]+list(dense_input.values())) output=[] for _ in range(output_dim): deep_out = MLP(hidden_size, activation, l2_reg_deep, keep_prob, False, seed)(deep_input) deep_logit = Dense(1, use_bias=False, activation=None)(deep_out) final_logit = deep_logit if len(wide_feature_dim_dict['dense']) + len(wide_feature_dim_dict['sparse']) > 0: if len(wide_feature_dim_dict['sparse']) > 0: bias_embed_list = get_embedding_vec_list( wide_linear_embedding, bias_sparse_input) linear_term = add(bias_embed_list) if len( bias_embed_list) > 1 else bias_embed_list[0] final_logit = add([final_logit, linear_term]) if len(wide_feature_dim_dict['dense']) > 0: wide_dense_term = Dense(1, use_bias=False, activation=None)(Concatenate()( list(bias_dense_input.values())) if len(bias_dense_input) > 1 else list(bias_dense_input.values())[0]) final_logit = add([final_logit, wide_dense_term]) output.append(PredictionLayer(final_activation)(final_logit)) inputs_list = get_inputs_list( [sparse_input, dense_input, bias_sparse_input, bias_dense_input]) model = Model(inputs=inputs_list, outputs=output) return model
def WDL(deep_feature_dim_dict, wide_feature_dim_dict, embedding_size=8, hidden_size=(128, 128), l2_reg_linear=1e-5, l2_reg_embedding=1e-5, l2_reg_deep=0, init_std=0.0001, seed=1024, keep_prob=1, activation='relu', final_activation='sigmoid',output_dim=1,): """Instantiates the Wide&Deep Learning architecture. :param deep_feature_dim_dict: dict,to indicate sparse field and dense field in deep part like {'sparse':{'field_1':4,'field_2':3,'field_3':2},'dense':['field_4','field_5']} :param wide_feature_dim_dict: dict,to indicate sparse field and dense field in wide part like {'sparse':{'field_1':4,'field_2':3,'field_3':2},'dense':['field_4','field_5']} :param embedding_size: positive integer,sparse feature embedding_size :param hidden_size: list,list of positive integer or empty list, the layer number and units in each layer of deep net :param l2_reg_linear: float. L2 regularizer strength applied to wide part :param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector :param l2_reg_deep: float. L2 regularizer strength applied to deep net :param init_std: float,to use as the initialize std of embedding vector :param seed: integer ,to use as random seed. :param keep_prob: float in (0,1]. keep_prob used in deep net :param activation: Activation function to use in deep net :param final_activation: str,output activation,usually ``'sigmoid'`` or ``'linear'`` :return: A Keras model instance. """ if not isinstance(deep_feature_dim_dict, dict) or "sparse" not in deep_feature_dim_dict or "dense" not in deep_feature_dim_dict: raise ValueError( "feature_dim must be a dict like {'sparse':{'field_1':4,'field_2':3,'field_3':2},'dense':['field_5',]}") sparse_input, dense_input, = create_singlefeat_dict( deep_feature_dim_dict) bias_sparse_input, bias_dense_input = create_singlefeat_dict( wide_feature_dim_dict, 'bias') sparse_embedding = create_embedding_dict( deep_feature_dim_dict, embedding_size, init_std, seed, l2_reg_embedding) wide_linear_embedding = create_embedding_dict( wide_feature_dim_dict, 1, init_std, seed, l2_reg_linear, 'linear') embed_list = get_embedding_vec_list(sparse_embedding, sparse_input) deep_input = Concatenate()(embed_list) if len( embed_list) > 1 else embed_list[0] deep_input = Flatten()(deep_input) if len(dense_input) > 0: deep_input = Concatenate()([deep_input]+list(dense_input.values())) output=[] for _ in range(output_dim): deep_out = MLP(hidden_size, activation, l2_reg_deep, keep_prob, False, seed)(deep_input) deep_logit = Dense(1, use_bias=False, activation=None)(deep_out) final_logit = deep_logit if len(wide_feature_dim_dict['dense']) + len(wide_feature_dim_dict['sparse']) > 0: if len(wide_feature_dim_dict['sparse']) > 0: bias_embed_list = get_embedding_vec_list( wide_linear_embedding, bias_sparse_input) linear_term = add(bias_embed_list) if len( bias_embed_list) > 1 else bias_embed_list[0] final_logit = add([final_logit, linear_term]) if len(wide_feature_dim_dict['dense']) > 0: wide_dense_term = Dense(1, use_bias=False, activation=None)(Concatenate()( list(bias_dense_input.values())) if len(bias_dense_input) > 1 else list(bias_dense_input.values())[0]) final_logit = add([final_logit, wide_dense_term]) output.append(PredictionLayer(final_activation)(final_logit)) inputs_list = get_inputs_list( [sparse_input, dense_input, bias_sparse_input, bias_dense_input]) model = Model(inputs=inputs_list, outputs=output) return model
Python
def DeepFM(feature_dim_dict, embedding_size=8, use_fm=True, hidden_size=(128, 128), l2_reg_linear=0.00001, l2_reg_embedding=0.00001, l2_reg_deep=0, init_std=0.0001, seed=1024, keep_prob=1, activation='relu', final_activation='sigmoid', use_bn=False, output_dim=1,): """Instantiates the DeepFM Network architecture. :param feature_dim_dict: dict,to indicate sparse field and dense field like {'sparse':{'field_1':4,'field_2':3,'field_3':2},'dense':['field_4','field_5']} :param embedding_size: positive integer,sparse feature embedding_size :param use_fm: bool,use FM part or not :param hidden_size: list,list of positive integer or empty list, the layer number and units in each layer of deep net :param l2_reg_linear: float. L2 regularizer strength applied to linear part :param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector :param l2_reg_deep: float. L2 regularizer strength applied to deep net :param init_std: float,to use as the initialize std of embedding vector :param seed: integer ,to use as random seed. :param keep_prob: float in (0,1]. keep_prob used in deep net :param activation: Activation function to use in deep net :param final_activation: str,output activation,usually ``'sigmoid'`` or ``'linear'`` :param use_bn: bool. Whether use BatchNormalization before activation or not.in deep net :return: A Keras model instance. """ check_feature_config_dict(feature_dim_dict) deep_emb_list, linear_logit, inputs_list = preprocess_input_embedding(feature_dim_dict, embedding_size, l2_reg_embedding, l2_reg_linear, init_std, seed, True) fm_input = concat_fun(deep_emb_list, axis=1) deep_input = tf.keras.layers.Flatten()(fm_input) output=[] for _ in range(output_dim): fm_out = FM()(fm_input) deep_out = MLP(hidden_size, activation, l2_reg_deep, keep_prob, use_bn, seed)(deep_input) deep_logit = tf.keras.layers.Dense( 1, use_bias=False, activation=None)(deep_out) if len(hidden_size) == 0 and use_fm == False: # only linear final_logit = linear_logit elif len(hidden_size) == 0 and use_fm == True: # linear + FM final_logit = tf.keras.layers.add([linear_logit, fm_out]) elif len(hidden_size) > 0 and use_fm == False: # linear + Deep final_logit = tf.keras.layers.add([linear_logit, deep_logit]) elif len(hidden_size) > 0 and use_fm == True: # linear + FM + Deep final_logit = tf.keras.layers.add([linear_logit, fm_out, deep_logit]) else: raise NotImplementedError output.append(PredictionLayer(final_activation)(final_logit)) model = tf.keras.models.Model(inputs=inputs_list, outputs=output) return model
def DeepFM(feature_dim_dict, embedding_size=8, use_fm=True, hidden_size=(128, 128), l2_reg_linear=0.00001, l2_reg_embedding=0.00001, l2_reg_deep=0, init_std=0.0001, seed=1024, keep_prob=1, activation='relu', final_activation='sigmoid', use_bn=False, output_dim=1,): """Instantiates the DeepFM Network architecture. :param feature_dim_dict: dict,to indicate sparse field and dense field like {'sparse':{'field_1':4,'field_2':3,'field_3':2},'dense':['field_4','field_5']} :param embedding_size: positive integer,sparse feature embedding_size :param use_fm: bool,use FM part or not :param hidden_size: list,list of positive integer or empty list, the layer number and units in each layer of deep net :param l2_reg_linear: float. L2 regularizer strength applied to linear part :param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector :param l2_reg_deep: float. L2 regularizer strength applied to deep net :param init_std: float,to use as the initialize std of embedding vector :param seed: integer ,to use as random seed. :param keep_prob: float in (0,1]. keep_prob used in deep net :param activation: Activation function to use in deep net :param final_activation: str,output activation,usually ``'sigmoid'`` or ``'linear'`` :param use_bn: bool. Whether use BatchNormalization before activation or not.in deep net :return: A Keras model instance. """ check_feature_config_dict(feature_dim_dict) deep_emb_list, linear_logit, inputs_list = preprocess_input_embedding(feature_dim_dict, embedding_size, l2_reg_embedding, l2_reg_linear, init_std, seed, True) fm_input = concat_fun(deep_emb_list, axis=1) deep_input = tf.keras.layers.Flatten()(fm_input) output=[] for _ in range(output_dim): fm_out = FM()(fm_input) deep_out = MLP(hidden_size, activation, l2_reg_deep, keep_prob, use_bn, seed)(deep_input) deep_logit = tf.keras.layers.Dense( 1, use_bias=False, activation=None)(deep_out) if len(hidden_size) == 0 and use_fm == False: # only linear final_logit = linear_logit elif len(hidden_size) == 0 and use_fm == True: # linear + FM final_logit = tf.keras.layers.add([linear_logit, fm_out]) elif len(hidden_size) > 0 and use_fm == False: # linear + Deep final_logit = tf.keras.layers.add([linear_logit, deep_logit]) elif len(hidden_size) > 0 and use_fm == True: # linear + FM + Deep final_logit = tf.keras.layers.add([linear_logit, fm_out, deep_logit]) else: raise NotImplementedError output.append(PredictionLayer(final_activation)(final_logit)) model = tf.keras.models.Model(inputs=inputs_list, outputs=output) return model
Python
def AutoInt(feature_dim_dict, embedding_size=8, att_layer_num=3, att_embedding_size=8, att_head_num=2, att_res=True, hidden_size=(256, 256), activation='relu', l2_reg_deep=0, l2_reg_embedding=1e-5, use_bn=False, keep_prob=1.0, init_std=0.0001, seed=1024, final_activation='sigmoid', output_dim=1,): """Instantiates the AutoInt Network architecture. :param feature_dim_dict: dict,to indicate sparse field and dense field like {'sparse':{'field_1':4,'field_2':3,'field_3':2},'dense':['field_4','field_5']} :param embedding_size: positive integer,sparse feature embedding_size :param att_layer_num: int.The InteractingLayer number to be used. :param att_embedding_size: int.The embedding size in multi-head self-attention network. :param att_head_num: int.The head number in multi-head self-attention network. :param att_res: bool.Whether or not use standard residual connections before output. :param hidden_size: list,list of positive integer or empty list, the layer number and units in each layer of deep net :param activation: Activation function to use in deep net :param l2_reg_deep: float. L2 regularizer strength applied to deep net :param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector :param use_bn: bool. Whether use BatchNormalization before activation or not.in deep net :param keep_prob: float in (0,1]. keep_prob used in deep net :param init_std: float,to use as the initialize std of embedding vector :param seed: integer ,to use as random seed. :param final_activation: output activation,usually ``'sigmoid'`` or ``'linear'`` :return: A Keras model instance. """ if len(hidden_size) <= 0 and att_layer_num <= 0: raise ValueError("Either hidden_layer or att_layer_num must > 0") check_feature_config_dict(feature_dim_dict) deep_emb_list, _, inputs_list = preprocess_input_embedding(feature_dim_dict, embedding_size, l2_reg_embedding, 0, init_std, seed, False) att_input = concat_fun(deep_emb_list, axis=1) output=[] for _ in range(output_dim): for _ in range(att_layer_num): att_input = InteractingLayer( att_embedding_size, att_head_num, att_res)(att_input) att_output = tf.keras.layers.Flatten()(att_input) deep_input = tf.keras.layers.Flatten()(concat_fun(deep_emb_list)) if len(hidden_size) > 0 and att_layer_num > 0: # Deep & Interacting Layer deep_out = MLP(hidden_size, activation, l2_reg_deep, keep_prob, use_bn, seed)(deep_input) stack_out = tf.keras.layers.Concatenate()([att_output, deep_out]) final_logit = tf.keras.layers.Dense( 1, use_bias=False, activation=None)(stack_out) elif len(hidden_size) > 0: # Only Deep deep_out = MLP(hidden_size, activation, l2_reg_deep, keep_prob, use_bn, seed)(deep_input) final_logit = tf.keras.layers.Dense( 1, use_bias=False, activation=None)(deep_out) elif att_layer_num > 0: # Only Interacting Layer final_logit = tf.keras.layers.Dense( 1, use_bias=False, activation=None)(att_output) else: # Error raise NotImplementedError output.append(PredictionLayer(final_activation)(final_logit)) model = tf.keras.models.Model(inputs=inputs_list, outputs=output) return model
def AutoInt(feature_dim_dict, embedding_size=8, att_layer_num=3, att_embedding_size=8, att_head_num=2, att_res=True, hidden_size=(256, 256), activation='relu', l2_reg_deep=0, l2_reg_embedding=1e-5, use_bn=False, keep_prob=1.0, init_std=0.0001, seed=1024, final_activation='sigmoid', output_dim=1,): """Instantiates the AutoInt Network architecture. :param feature_dim_dict: dict,to indicate sparse field and dense field like {'sparse':{'field_1':4,'field_2':3,'field_3':2},'dense':['field_4','field_5']} :param embedding_size: positive integer,sparse feature embedding_size :param att_layer_num: int.The InteractingLayer number to be used. :param att_embedding_size: int.The embedding size in multi-head self-attention network. :param att_head_num: int.The head number in multi-head self-attention network. :param att_res: bool.Whether or not use standard residual connections before output. :param hidden_size: list,list of positive integer or empty list, the layer number and units in each layer of deep net :param activation: Activation function to use in deep net :param l2_reg_deep: float. L2 regularizer strength applied to deep net :param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector :param use_bn: bool. Whether use BatchNormalization before activation or not.in deep net :param keep_prob: float in (0,1]. keep_prob used in deep net :param init_std: float,to use as the initialize std of embedding vector :param seed: integer ,to use as random seed. :param final_activation: output activation,usually ``'sigmoid'`` or ``'linear'`` :return: A Keras model instance. """ if len(hidden_size) <= 0 and att_layer_num <= 0: raise ValueError("Either hidden_layer or att_layer_num must > 0") check_feature_config_dict(feature_dim_dict) deep_emb_list, _, inputs_list = preprocess_input_embedding(feature_dim_dict, embedding_size, l2_reg_embedding, 0, init_std, seed, False) att_input = concat_fun(deep_emb_list, axis=1) output=[] for _ in range(output_dim): for _ in range(att_layer_num): att_input = InteractingLayer( att_embedding_size, att_head_num, att_res)(att_input) att_output = tf.keras.layers.Flatten()(att_input) deep_input = tf.keras.layers.Flatten()(concat_fun(deep_emb_list)) if len(hidden_size) > 0 and att_layer_num > 0: # Deep & Interacting Layer deep_out = MLP(hidden_size, activation, l2_reg_deep, keep_prob, use_bn, seed)(deep_input) stack_out = tf.keras.layers.Concatenate()([att_output, deep_out]) final_logit = tf.keras.layers.Dense( 1, use_bias=False, activation=None)(stack_out) elif len(hidden_size) > 0: # Only Deep deep_out = MLP(hidden_size, activation, l2_reg_deep, keep_prob, use_bn, seed)(deep_input) final_logit = tf.keras.layers.Dense( 1, use_bias=False, activation=None)(deep_out) elif att_layer_num > 0: # Only Interacting Layer final_logit = tf.keras.layers.Dense( 1, use_bias=False, activation=None)(att_output) else: # Error raise NotImplementedError output.append(PredictionLayer(final_activation)(final_logit)) model = tf.keras.models.Model(inputs=inputs_list, outputs=output) return model
Python
def FNN(feature_dim_dict, embedding_size=8, hidden_size=(128, 128), l2_reg_embedding=1e-5, l2_reg_linear=1e-5, l2_reg_deep=0, init_std=0.0001, seed=1024, keep_prob=1, activation='relu', final_activation='sigmoid', output_dim=1,): """Instantiates the Factorization-supported Neural Network architecture. :param feature_dim_dict: dict,to indicate sparse field and dense field like {'sparse':{'field_1':4,'field_2':3,'field_3':2},'dense':['field_4','field_5']} :param embedding_size: positive integer,sparse feature embedding_size :param hidden_size: list,list of positive integer or empty list, the layer number and units in each layer of deep net :param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector :param l2_reg_linear: float. L2 regularizer strength applied to linear weight :param l2_reg_deep: float . L2 regularizer strength applied to deep net :param init_std: float,to use as the initialize std of embedding vector :param seed: integer ,to use as random seed. :param keep_prob: float in (0,1]. keep_prob used in deep net :param activation: Activation function to use in deep net :param final_activation: str,output activation,usually ``'sigmoid'`` or ``'linear'`` :return: A Keras model instance. """ check_feature_config_dict(feature_dim_dict) deep_emb_list, linear_logit, inputs_list = preprocess_input_embedding(feature_dim_dict, embedding_size, l2_reg_embedding, l2_reg_linear, init_std, seed, True) deep_input = tf.keras.layers.Flatten()(concat_fun(deep_emb_list)) output=[] for _ in range(output_dim): deep_out = MLP(hidden_size, activation, l2_reg_deep, keep_prob, False, seed)(deep_input) deep_logit = tf.keras.layers.Dense( 1, use_bias=False, activation=None)(deep_out) final_logit = tf.keras.layers.add([deep_logit, linear_logit]) output.append(PredictionLayer(final_activation)(final_logit)) model = tf.keras.models.Model(inputs=inputs_list, outputs=output) return model
def FNN(feature_dim_dict, embedding_size=8, hidden_size=(128, 128), l2_reg_embedding=1e-5, l2_reg_linear=1e-5, l2_reg_deep=0, init_std=0.0001, seed=1024, keep_prob=1, activation='relu', final_activation='sigmoid', output_dim=1,): """Instantiates the Factorization-supported Neural Network architecture. :param feature_dim_dict: dict,to indicate sparse field and dense field like {'sparse':{'field_1':4,'field_2':3,'field_3':2},'dense':['field_4','field_5']} :param embedding_size: positive integer,sparse feature embedding_size :param hidden_size: list,list of positive integer or empty list, the layer number and units in each layer of deep net :param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector :param l2_reg_linear: float. L2 regularizer strength applied to linear weight :param l2_reg_deep: float . L2 regularizer strength applied to deep net :param init_std: float,to use as the initialize std of embedding vector :param seed: integer ,to use as random seed. :param keep_prob: float in (0,1]. keep_prob used in deep net :param activation: Activation function to use in deep net :param final_activation: str,output activation,usually ``'sigmoid'`` or ``'linear'`` :return: A Keras model instance. """ check_feature_config_dict(feature_dim_dict) deep_emb_list, linear_logit, inputs_list = preprocess_input_embedding(feature_dim_dict, embedding_size, l2_reg_embedding, l2_reg_linear, init_std, seed, True) deep_input = tf.keras.layers.Flatten()(concat_fun(deep_emb_list)) output=[] for _ in range(output_dim): deep_out = MLP(hidden_size, activation, l2_reg_deep, keep_prob, False, seed)(deep_input) deep_logit = tf.keras.layers.Dense( 1, use_bias=False, activation=None)(deep_out) final_logit = tf.keras.layers.add([deep_logit, linear_logit]) output.append(PredictionLayer(final_activation)(final_logit)) model = tf.keras.models.Model(inputs=inputs_list, outputs=output) return model
Python
def NFM(feature_dim_dict, embedding_size=8, hidden_size=(128, 128), l2_reg_embedding=1e-5, l2_reg_linear=1e-5, l2_reg_deep=0, init_std=0.0001, seed=1024, keep_prob=1, activation='relu', final_activation='sigmoid', output_dim=1, ): """Instantiates the Neural Factorization Machine architecture. :param feature_dim_dict: dict,to indicate sparse field and dense field like {'sparse':{'field_1':4,'field_2':3,'field_3':2},'dense':['field_4','field_5']} :param embedding_size: positive integer,sparse feature embedding_size :param hidden_size: list,list of positive integer or empty list, the layer number and units in each layer of deep net :param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector :param l2_reg_linear: float. L2 regularizer strength applied to linear part. :param l2_reg_deep: float . L2 regularizer strength applied to deep net :param init_std: float,to use as the initialize std of embedding vector :param seed: integer ,to use as random seed. :param keep_prob: float in (0,1]. keep_prob used in deep net :param activation: Activation function to use in deep net :param final_activation: str,output activation,usually ``'sigmoid'`` or ``'linear'`` :return: A Keras model instance. """ check_feature_config_dict(feature_dim_dict) deep_emb_list, linear_logit, inputs_list = preprocess_input_embedding(feature_dim_dict, embedding_size, l2_reg_embedding, l2_reg_linear, init_std, seed, True) fm_input = concat_fun(deep_emb_list, axis=1) bi_out = BiInteractionPooling()(fm_input) bi_out = tf.keras.layers.Dropout(1 - keep_prob)(bi_out) deep_out = MLP(hidden_size, activation, l2_reg_deep, keep_prob, False, seed)(bi_out) deep_logit = tf.keras.layers.Dense( 1, use_bias=False, activation=None)(deep_out) final_logit = linear_logit output=[] for _ in range(output_dim): if len(hidden_size) > 0: final_logit = tf.keras.layers.add([final_logit, deep_logit]) output.append(PredictionLayer(final_activation)(final_logit)) model = tf.keras.models.Model(inputs=inputs_list, outputs=output) return model
def NFM(feature_dim_dict, embedding_size=8, hidden_size=(128, 128), l2_reg_embedding=1e-5, l2_reg_linear=1e-5, l2_reg_deep=0, init_std=0.0001, seed=1024, keep_prob=1, activation='relu', final_activation='sigmoid', output_dim=1, ): """Instantiates the Neural Factorization Machine architecture. :param feature_dim_dict: dict,to indicate sparse field and dense field like {'sparse':{'field_1':4,'field_2':3,'field_3':2},'dense':['field_4','field_5']} :param embedding_size: positive integer,sparse feature embedding_size :param hidden_size: list,list of positive integer or empty list, the layer number and units in each layer of deep net :param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector :param l2_reg_linear: float. L2 regularizer strength applied to linear part. :param l2_reg_deep: float . L2 regularizer strength applied to deep net :param init_std: float,to use as the initialize std of embedding vector :param seed: integer ,to use as random seed. :param keep_prob: float in (0,1]. keep_prob used in deep net :param activation: Activation function to use in deep net :param final_activation: str,output activation,usually ``'sigmoid'`` or ``'linear'`` :return: A Keras model instance. """ check_feature_config_dict(feature_dim_dict) deep_emb_list, linear_logit, inputs_list = preprocess_input_embedding(feature_dim_dict, embedding_size, l2_reg_embedding, l2_reg_linear, init_std, seed, True) fm_input = concat_fun(deep_emb_list, axis=1) bi_out = BiInteractionPooling()(fm_input) bi_out = tf.keras.layers.Dropout(1 - keep_prob)(bi_out) deep_out = MLP(hidden_size, activation, l2_reg_deep, keep_prob, False, seed)(bi_out) deep_logit = tf.keras.layers.Dense( 1, use_bias=False, activation=None)(deep_out) final_logit = linear_logit output=[] for _ in range(output_dim): if len(hidden_size) > 0: final_logit = tf.keras.layers.add([final_logit, deep_logit]) output.append(PredictionLayer(final_activation)(final_logit)) model = tf.keras.models.Model(inputs=inputs_list, outputs=output) return model
Python
def DCN(feature_dim_dict, embedding_size='auto', cross_num=2, hidden_size=(128, 128, ), l2_reg_embedding=1e-5, l2_reg_cross=1e-5, l2_reg_deep=0, init_std=0.0001, seed=1024, keep_prob=1, use_bn=False, activation='relu', final_activation='sigmoid', output_dim=1,): """Instantiates the Deep&Cross Network architecture. :param feature_dim_dict: dict,to indicate sparse field and dense field like {'sparse':{'field_1':4,'field_2':3,'field_3':2},'dense':['field_4','field_5']} :param embedding_size: positive int or str,sparse feature embedding_size.If set to "auto",it will be 6*pow(cardinality,025) :param cross_num: positive integet,cross layer number :param hidden_size: list,list of positive integer or empty list, the layer number and units in each layer of deep net :param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector :param l2_reg_cross: float. L2 regularizer strength applied to cross net :param l2_reg_deep: float. L2 regularizer strength applied to deep net :param init_std: float,to use as the initialize std of embedding vector :param seed: integer ,to use as random seed. :param keep_prob: float in (0,1]. keep_prob used in deep net :param use_bn: bool. Whether use BatchNormalization before activation or not.in deep net :param activation: Activation function to use in deep net :param final_activation: str,output activation,usually ``'sigmoid'`` or ``'linear'`` :return: A Keras model instance. """ if len(hidden_size) == 0 and cross_num == 0: raise ValueError("Either hidden_layer or cross layer must > 0") check_feature_config_dict(feature_dim_dict) deep_emb_list, _, inputs_list = preprocess_input_embedding(feature_dim_dict, embedding_size, l2_reg_embedding, 0, init_std, seed, False) deep_input = tf.keras.layers.Flatten()(concat_fun(deep_emb_list)) output=[] for _ in range(output_dim): if len(hidden_size) > 0 and cross_num > 0: # Deep & Cross deep_out = MLP(hidden_size, activation, l2_reg_deep, keep_prob, use_bn, seed)(deep_input) cross_out = CrossNet(cross_num, l2_reg=l2_reg_cross)(deep_input) stack_out = tf.keras.layers.Concatenate()([cross_out, deep_out]) final_logit = tf.keras.layers.Dense(1, use_bias=False, activation=None)(stack_out) elif len(hidden_size) > 0: # Only Deep deep_out = MLP(hidden_size, activation, l2_reg_deep, keep_prob, use_bn, seed)(deep_input) final_logit = tf.keras.layers.Dense(1, use_bias=False, activation=None)(deep_out) elif cross_num > 0: # Only Cross cross_out = CrossNet(cross_num, l2_reg=l2_reg_cross)(deep_input) final_logit = tf.keras.layers.Dense(1, use_bias=False, activation=None)(cross_out) else: # Error raise NotImplementedError output.append(PredictionLayer(final_activation)(final_logit)) model = tf.keras.models.Model(inputs=inputs_list, outputs=output) return model
def DCN(feature_dim_dict, embedding_size='auto', cross_num=2, hidden_size=(128, 128, ), l2_reg_embedding=1e-5, l2_reg_cross=1e-5, l2_reg_deep=0, init_std=0.0001, seed=1024, keep_prob=1, use_bn=False, activation='relu', final_activation='sigmoid', output_dim=1,): """Instantiates the Deep&Cross Network architecture. :param feature_dim_dict: dict,to indicate sparse field and dense field like {'sparse':{'field_1':4,'field_2':3,'field_3':2},'dense':['field_4','field_5']} :param embedding_size: positive int or str,sparse feature embedding_size.If set to "auto",it will be 6*pow(cardinality,025) :param cross_num: positive integet,cross layer number :param hidden_size: list,list of positive integer or empty list, the layer number and units in each layer of deep net :param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector :param l2_reg_cross: float. L2 regularizer strength applied to cross net :param l2_reg_deep: float. L2 regularizer strength applied to deep net :param init_std: float,to use as the initialize std of embedding vector :param seed: integer ,to use as random seed. :param keep_prob: float in (0,1]. keep_prob used in deep net :param use_bn: bool. Whether use BatchNormalization before activation or not.in deep net :param activation: Activation function to use in deep net :param final_activation: str,output activation,usually ``'sigmoid'`` or ``'linear'`` :return: A Keras model instance. """ if len(hidden_size) == 0 and cross_num == 0: raise ValueError("Either hidden_layer or cross layer must > 0") check_feature_config_dict(feature_dim_dict) deep_emb_list, _, inputs_list = preprocess_input_embedding(feature_dim_dict, embedding_size, l2_reg_embedding, 0, init_std, seed, False) deep_input = tf.keras.layers.Flatten()(concat_fun(deep_emb_list)) output=[] for _ in range(output_dim): if len(hidden_size) > 0 and cross_num > 0: # Deep & Cross deep_out = MLP(hidden_size, activation, l2_reg_deep, keep_prob, use_bn, seed)(deep_input) cross_out = CrossNet(cross_num, l2_reg=l2_reg_cross)(deep_input) stack_out = tf.keras.layers.Concatenate()([cross_out, deep_out]) final_logit = tf.keras.layers.Dense(1, use_bias=False, activation=None)(stack_out) elif len(hidden_size) > 0: # Only Deep deep_out = MLP(hidden_size, activation, l2_reg_deep, keep_prob, use_bn, seed)(deep_input) final_logit = tf.keras.layers.Dense(1, use_bias=False, activation=None)(deep_out) elif cross_num > 0: # Only Cross cross_out = CrossNet(cross_num, l2_reg=l2_reg_cross)(deep_input) final_logit = tf.keras.layers.Dense(1, use_bias=False, activation=None)(cross_out) else: # Error raise NotImplementedError output.append(PredictionLayer(final_activation)(final_logit)) model = tf.keras.models.Model(inputs=inputs_list, outputs=output) return model
Python
def check_version(version): """Return version of package on pypi.python.org using json.""" def check(version): try: url_pattern = 'https://pypi.python.org/pypi/mdeepctr/json' req = requests.get(url_pattern) latest_version = parse('0') version = parse(version) if req.status_code == requests.codes.ok: j = json.loads(req.text.encode('utf-8')) releases = j.get('releases', []) for release in releases: ver = parse(release) if not ver.is_prerelease: latest_version = max(latest_version, ver) if latest_version > version: logging.warning('\nDeepCTR version {0} detected. Your version is {1}.\nUse `pip install -U mdeepctr` to upgrade.Changelog: https://github.com/shenweichen/DeepCTR/releases/tag/v{0}'.format( latest_version, version)) except Exception: return Thread(target=check, args=(version,)).start()
def check_version(version): """Return version of package on pypi.python.org using json.""" def check(version): try: url_pattern = 'https://pypi.python.org/pypi/mdeepctr/json' req = requests.get(url_pattern) latest_version = parse('0') version = parse(version) if req.status_code == requests.codes.ok: j = json.loads(req.text.encode('utf-8')) releases = j.get('releases', []) for release in releases: ver = parse(release) if not ver.is_prerelease: latest_version = max(latest_version, ver) if latest_version > version: logging.warning('\nDeepCTR version {0} detected. Your version is {1}.\nUse `pip install -U mdeepctr` to upgrade.Changelog: https://github.com/shenweichen/DeepCTR/releases/tag/v{0}'.format( latest_version, version)) except Exception: return Thread(target=check, args=(version,)).start()
Python
def MLR(region_feature_dim_dict, base_feature_dim_dict={"sparse": [], "dense": []}, region_num=4, l2_reg_linear=1e-5, init_std=0.0001, seed=1024, final_activation='sigmoid', bias_feature_dim_dict={"sparse": [], "dense": []}, output_dim=1,): """Instantiates the Mixed Logistic Regression/Piece-wise Linear Model. :param region_feature_dim_dict: dict,to indicate sparse field and dense field like {'sparse':{'field_1':4,'field_2':3,'field_3':2},'dense':['field_4','field_5']} :param base_feature_dim_dict: dict or None,to indicate sparse field and dense field of base learner.if None, it is same as region_feature_dim_dict :param region_num: integer > 1,indicate the piece number :param l2_reg_linear: float. L2 regularizer strength applied to weight :param init_std: float,to use as the initialize std of embedding vector :param seed: integer ,to use as random seed. :param final_activation: str,output activation,usually ``'sigmoid'`` or ``'linear'`` :param bias_feature_dim_dict: dict,to indicate sparse field and dense field like {'sparse':{'field_1':4,'field_2':3,'field_3':2},'dense':['field_4','field_5']} :return: A Keras model instance. """ if region_num <= 1: raise ValueError("region_num must > 1") if not isinstance(region_feature_dim_dict, dict) or "sparse" not in region_feature_dim_dict or "dense" not in region_feature_dim_dict: raise ValueError( "feature_dim must be a dict like {'sparse':{'field_1':4,'field_2':3,'field_3':2},'dense':['field_5',]}") same_flag = False if base_feature_dim_dict == {"sparse": [], "dense": []}: base_feature_dim_dict = region_feature_dim_dict same_flag = True region_sparse_input, region_dense_input, base_sparse_input, base_dense_input, bias_sparse_input, bias_dense_input = get_input( region_feature_dim_dict, base_feature_dim_dict, bias_feature_dim_dict, same_flag) region_embeddings, base_embeddings, bias_embedding = get_embedding( region_num, region_feature_dim_dict, base_feature_dim_dict, bias_feature_dim_dict, init_std, seed, l2_reg_linear) if same_flag: base_dense_input_ = region_dense_input base_sparse_input_ = region_sparse_input else: base_dense_input_ = base_dense_input base_sparse_input_ = base_sparse_input region_dense_feature_num = len(region_feature_dim_dict['dense']) region_sparse_feature_num = len(region_feature_dim_dict['sparse']) base_dense_feature_num = len(base_feature_dim_dict['dense']) base_sparse_feature_num = len(base_feature_dim_dict['sparse']) bias_dense_feature_num = len(bias_feature_dim_dict['dense']) bias_sparse_feature_num = len(bias_feature_dim_dict['sparse']) if region_dense_feature_num > 1: region_dense_logits_ = [Dense(1, )(Concatenate()(region_dense_input)) for _ in range(region_num)] elif region_dense_feature_num == 1: region_dense_logits_ = [Dense(1, )(region_dense_input[0]) for _ in range(region_num)] if base_dense_feature_num > 1: base_dense_logits = [Dense(1, )(Concatenate()(base_dense_input_))for _ in range(region_num)] elif base_dense_feature_num == 1: base_dense_logits = [Dense(1, )(base_dense_input_[0])for _ in range(region_num)] if region_dense_feature_num > 0 and region_sparse_feature_num == 0: region_logits = Concatenate()(region_dense_logits_) elif region_dense_feature_num == 0 and region_sparse_feature_num > 0: region_sparse_logits = [ add([region_embeddings[j][i](region_sparse_input[i]) for i in range(region_sparse_feature_num)]) if region_sparse_feature_num > 1 else region_embeddings[j][0](region_sparse_input[0]) for j in range(region_num)] region_logits = Concatenate()(region_sparse_logits) else: region_sparse_logits = [ add([region_embeddings[j][i](region_sparse_input[i]) for i in range(region_sparse_feature_num)]) for j in range(region_num)] region_logits = Concatenate()( [add([region_sparse_logits[i], region_dense_logits_[i]]) for i in range(region_num)]) if base_dense_feature_num > 0 and base_sparse_feature_num == 0: base_logits = base_dense_logits elif base_dense_feature_num == 0 and base_sparse_feature_num > 0: base_sparse_logits = [add( [base_embeddings[j][i](base_sparse_input_[i]) for i in range(base_sparse_feature_num)]) if base_sparse_feature_num > 1 else base_embeddings[j][0](base_sparse_input_[0]) for j in range(region_num)] base_logits = base_sparse_logits else: base_sparse_logits = [add( [base_embeddings[j][i](base_sparse_input_[i]) for i in range(base_sparse_feature_num)]) if base_sparse_feature_num > 1 else base_embeddings[j][0](base_sparse_input_[0]) for j in range(region_num)] base_logits = [add([base_sparse_logits[i], base_dense_logits[i]]) for i in range(region_num)] # Dense(self.region_num, activation='softmax')(final_logit) region_weights = Activation("softmax")(region_logits) learner_score = Concatenate()( [Activation(final_activation, name='learner' + str(i))(base_logits[i]) for i in range(region_num)]) final_logit = dot([region_weights, learner_score], axes=-1) if bias_dense_feature_num + bias_sparse_feature_num > 0: if bias_dense_feature_num > 1: bias_dense_logits = Dense(1,)(Concatenate()(bias_dense_input)) elif bias_dense_feature_num == 1: bias_dense_logits = Dense(1,)(bias_dense_input[0]) else: pass if bias_sparse_feature_num > 1: bias_cate_logits = add([bias_embedding[i](bias_sparse_input[i]) for i, feat in enumerate(bias_feature_dim_dict['sparse'])]) elif bias_sparse_feature_num == 1: bias_cate_logits = bias_embedding[0](bias_sparse_input[0]) else: pass if bias_dense_feature_num > 0 and bias_sparse_feature_num > 0: bias_logits = add([bias_dense_logits, bias_cate_logits]) elif bias_dense_feature_num > 0: bias_logits = bias_dense_logits else: bias_logits = bias_cate_logits bias_prob = Activation('sigmoid')(bias_logits) final_logit = dot([final_logit, bias_prob], axes=-1) output = Reshape([1])(final_logit) model = Model(inputs=region_sparse_input + region_dense_input+base_sparse_input + base_dense_input+bias_sparse_input+bias_dense_input, outputs=output) return model
def MLR(region_feature_dim_dict, base_feature_dim_dict={"sparse": [], "dense": []}, region_num=4, l2_reg_linear=1e-5, init_std=0.0001, seed=1024, final_activation='sigmoid', bias_feature_dim_dict={"sparse": [], "dense": []}, output_dim=1,): """Instantiates the Mixed Logistic Regression/Piece-wise Linear Model. :param region_feature_dim_dict: dict,to indicate sparse field and dense field like {'sparse':{'field_1':4,'field_2':3,'field_3':2},'dense':['field_4','field_5']} :param base_feature_dim_dict: dict or None,to indicate sparse field and dense field of base learner.if None, it is same as region_feature_dim_dict :param region_num: integer > 1,indicate the piece number :param l2_reg_linear: float. L2 regularizer strength applied to weight :param init_std: float,to use as the initialize std of embedding vector :param seed: integer ,to use as random seed. :param final_activation: str,output activation,usually ``'sigmoid'`` or ``'linear'`` :param bias_feature_dim_dict: dict,to indicate sparse field and dense field like {'sparse':{'field_1':4,'field_2':3,'field_3':2},'dense':['field_4','field_5']} :return: A Keras model instance. """ if region_num <= 1: raise ValueError("region_num must > 1") if not isinstance(region_feature_dim_dict, dict) or "sparse" not in region_feature_dim_dict or "dense" not in region_feature_dim_dict: raise ValueError( "feature_dim must be a dict like {'sparse':{'field_1':4,'field_2':3,'field_3':2},'dense':['field_5',]}") same_flag = False if base_feature_dim_dict == {"sparse": [], "dense": []}: base_feature_dim_dict = region_feature_dim_dict same_flag = True region_sparse_input, region_dense_input, base_sparse_input, base_dense_input, bias_sparse_input, bias_dense_input = get_input( region_feature_dim_dict, base_feature_dim_dict, bias_feature_dim_dict, same_flag) region_embeddings, base_embeddings, bias_embedding = get_embedding( region_num, region_feature_dim_dict, base_feature_dim_dict, bias_feature_dim_dict, init_std, seed, l2_reg_linear) if same_flag: base_dense_input_ = region_dense_input base_sparse_input_ = region_sparse_input else: base_dense_input_ = base_dense_input base_sparse_input_ = base_sparse_input region_dense_feature_num = len(region_feature_dim_dict['dense']) region_sparse_feature_num = len(region_feature_dim_dict['sparse']) base_dense_feature_num = len(base_feature_dim_dict['dense']) base_sparse_feature_num = len(base_feature_dim_dict['sparse']) bias_dense_feature_num = len(bias_feature_dim_dict['dense']) bias_sparse_feature_num = len(bias_feature_dim_dict['sparse']) if region_dense_feature_num > 1: region_dense_logits_ = [Dense(1, )(Concatenate()(region_dense_input)) for _ in range(region_num)] elif region_dense_feature_num == 1: region_dense_logits_ = [Dense(1, )(region_dense_input[0]) for _ in range(region_num)] if base_dense_feature_num > 1: base_dense_logits = [Dense(1, )(Concatenate()(base_dense_input_))for _ in range(region_num)] elif base_dense_feature_num == 1: base_dense_logits = [Dense(1, )(base_dense_input_[0])for _ in range(region_num)] if region_dense_feature_num > 0 and region_sparse_feature_num == 0: region_logits = Concatenate()(region_dense_logits_) elif region_dense_feature_num == 0 and region_sparse_feature_num > 0: region_sparse_logits = [ add([region_embeddings[j][i](region_sparse_input[i]) for i in range(region_sparse_feature_num)]) if region_sparse_feature_num > 1 else region_embeddings[j][0](region_sparse_input[0]) for j in range(region_num)] region_logits = Concatenate()(region_sparse_logits) else: region_sparse_logits = [ add([region_embeddings[j][i](region_sparse_input[i]) for i in range(region_sparse_feature_num)]) for j in range(region_num)] region_logits = Concatenate()( [add([region_sparse_logits[i], region_dense_logits_[i]]) for i in range(region_num)]) if base_dense_feature_num > 0 and base_sparse_feature_num == 0: base_logits = base_dense_logits elif base_dense_feature_num == 0 and base_sparse_feature_num > 0: base_sparse_logits = [add( [base_embeddings[j][i](base_sparse_input_[i]) for i in range(base_sparse_feature_num)]) if base_sparse_feature_num > 1 else base_embeddings[j][0](base_sparse_input_[0]) for j in range(region_num)] base_logits = base_sparse_logits else: base_sparse_logits = [add( [base_embeddings[j][i](base_sparse_input_[i]) for i in range(base_sparse_feature_num)]) if base_sparse_feature_num > 1 else base_embeddings[j][0](base_sparse_input_[0]) for j in range(region_num)] base_logits = [add([base_sparse_logits[i], base_dense_logits[i]]) for i in range(region_num)] # Dense(self.region_num, activation='softmax')(final_logit) region_weights = Activation("softmax")(region_logits) learner_score = Concatenate()( [Activation(final_activation, name='learner' + str(i))(base_logits[i]) for i in range(region_num)]) final_logit = dot([region_weights, learner_score], axes=-1) if bias_dense_feature_num + bias_sparse_feature_num > 0: if bias_dense_feature_num > 1: bias_dense_logits = Dense(1,)(Concatenate()(bias_dense_input)) elif bias_dense_feature_num == 1: bias_dense_logits = Dense(1,)(bias_dense_input[0]) else: pass if bias_sparse_feature_num > 1: bias_cate_logits = add([bias_embedding[i](bias_sparse_input[i]) for i, feat in enumerate(bias_feature_dim_dict['sparse'])]) elif bias_sparse_feature_num == 1: bias_cate_logits = bias_embedding[0](bias_sparse_input[0]) else: pass if bias_dense_feature_num > 0 and bias_sparse_feature_num > 0: bias_logits = add([bias_dense_logits, bias_cate_logits]) elif bias_dense_feature_num > 0: bias_logits = bias_dense_logits else: bias_logits = bias_cate_logits bias_prob = Activation('sigmoid')(bias_logits) final_logit = dot([final_logit, bias_prob], axes=-1) output = Reshape([1])(final_logit) model = Model(inputs=region_sparse_input + region_dense_input+base_sparse_input + base_dense_input+bias_sparse_input+bias_dense_input, outputs=output) return model
Python
def mean_fscore(predict_mask_seq, truth_mask_seq, iou_thresholds=THRESHOLDS, beta=2.0): """ calculates the average FScore for the predictions in an image over the iou_thresholds sets. predict_mask_seq: list of masks of the predicted objects in the image truth_mask_seq: list of masks of ground-truth objects in the image """ return np.mean( [ fscore(tp, fn, fp, beta) for (tp, fn, fp ) in [confusion_counts(predict_mask_seq, truth_mask_seq, iou_thresh) for iou_thresh in iou_thresholds] ] )
def mean_fscore(predict_mask_seq, truth_mask_seq, iou_thresholds=THRESHOLDS, beta=2.0): """ calculates the average FScore for the predictions in an image over the iou_thresholds sets. predict_mask_seq: list of masks of the predicted objects in the image truth_mask_seq: list of masks of ground-truth objects in the image """ return np.mean( [ fscore(tp, fn, fp, beta) for (tp, fn, fp ) in [confusion_counts(predict_mask_seq, truth_mask_seq, iou_thresh) for iou_thresh in iou_thresholds] ] )
Python
def clean_sub_graphs(G_, min_length=150, max_nodes_to_skip=100, weight='length_pix', verbose=False, super_verbose=False): '''Remove subgraphs with a max path length less than min_length, if the subgraph has more than max_noxes_to_skip, don't check length (this step great improves processing time)''' if len(G_.nodes()) == 0: return G_ print("Running clean_sub_graphs...") sub_graphs = list(nx.connected_component_subgraphs(G_)) bad_nodes = [] if verbose: print(" len(G_.nodes()):", len(G_.nodes())) print(" len(G_.edges()):", len(G_.edges())) if super_verbose: print("G_.nodes:", G_.nodes()) edge_tmp = G_.edges()[np.random.randint(len(G_.edges()))] print(edge_tmp, "G.edge props:", G_.edge[edge_tmp[0]][edge_tmp[1]]) for G_sub in sub_graphs: # don't check length if too many nodes in subgraph if len(G_sub.nodes()) > max_nodes_to_skip: continue else: all_lengths = dict(nx.all_pairs_dijkstra_path_length(G_sub, weight=weight)) if super_verbose: print(" \nGs.nodes:", G_sub.nodes()) print(" all_lengths:", all_lengths) # get all lenghts lens = [] # for u,v in all_lengths.iteritems(): for u in all_lengths.keys(): v = all_lengths[u] # for uprime, vprime in v.iteritems(): for uprime in v.keys(): vprime = v[uprime] lens.append(vprime) if super_verbose: print(" u, v", u, v) print(" uprime, vprime:", uprime, vprime) max_len = np.max(lens) if super_verbose: print(" Max length of path:", max_len) if max_len < min_length: bad_nodes.extend(G_sub.nodes()) if super_verbose: print(" appending to bad_nodes:", G_sub.nodes()) # remove bad_nodes G_.remove_nodes_from(bad_nodes) if verbose: print(" num bad_nodes:", len(bad_nodes)) # print ("bad_nodes:", bad_nodes) print(" len(G'.nodes()):", len(G_.nodes())) print(" len(G'.edges()):", len(G_.edges())) if super_verbose: print(" G_.nodes:", G_.nodes()) return G_
def clean_sub_graphs(G_, min_length=150, max_nodes_to_skip=100, weight='length_pix', verbose=False, super_verbose=False): '''Remove subgraphs with a max path length less than min_length, if the subgraph has more than max_noxes_to_skip, don't check length (this step great improves processing time)''' if len(G_.nodes()) == 0: return G_ print("Running clean_sub_graphs...") sub_graphs = list(nx.connected_component_subgraphs(G_)) bad_nodes = [] if verbose: print(" len(G_.nodes()):", len(G_.nodes())) print(" len(G_.edges()):", len(G_.edges())) if super_verbose: print("G_.nodes:", G_.nodes()) edge_tmp = G_.edges()[np.random.randint(len(G_.edges()))] print(edge_tmp, "G.edge props:", G_.edge[edge_tmp[0]][edge_tmp[1]]) for G_sub in sub_graphs: # don't check length if too many nodes in subgraph if len(G_sub.nodes()) > max_nodes_to_skip: continue else: all_lengths = dict(nx.all_pairs_dijkstra_path_length(G_sub, weight=weight)) if super_verbose: print(" \nGs.nodes:", G_sub.nodes()) print(" all_lengths:", all_lengths) # get all lenghts lens = [] # for u,v in all_lengths.iteritems(): for u in all_lengths.keys(): v = all_lengths[u] # for uprime, vprime in v.iteritems(): for uprime in v.keys(): vprime = v[uprime] lens.append(vprime) if super_verbose: print(" u, v", u, v) print(" uprime, vprime:", uprime, vprime) max_len = np.max(lens) if super_verbose: print(" Max length of path:", max_len) if max_len < min_length: bad_nodes.extend(G_sub.nodes()) if super_verbose: print(" appending to bad_nodes:", G_sub.nodes()) # remove bad_nodes G_.remove_nodes_from(bad_nodes) if verbose: print(" num bad_nodes:", len(bad_nodes)) # print ("bad_nodes:", bad_nodes) print(" len(G'.nodes()):", len(G_.nodes())) print(" len(G'.edges()):", len(G_.edges())) if super_verbose: print(" G_.nodes:", G_.nodes()) return G_
Python
def dl_post_process_pred(mask, glob_thresh=80, kernel_size=9, min_area=2000, contour_smoothing=0.001, adapt_kernel=85, adapt_const=-3, outplot_file='', dpi=500, use_glob_thresh=False, kernel_open=19, verbose=False): '''Refine mask file and return both refined mask and skeleton''' t0 = time.time() kernel_blur = kernel_size # 9 kernel_close = kernel_size # 9 # kernel_open = kernel_size #9 kernel_close = np.ones((kernel_close, kernel_close), np.uint8) kernel_open = np.ones((kernel_open, kernel_open), np.uint8) blur = cv2.medianBlur(mask, kernel_blur) # global thresh glob_thresh_arr = cv2.threshold(blur, glob_thresh, 1, cv2.THRESH_BINARY)[1] glob_thresh_arr_smooth = cv2.medianBlur(glob_thresh_arr, kernel_blur) t1 = time.time() print("Time to compute open(), close(), and get thresholds:", t1 - t0, "seconds") if use_glob_thresh: mask_thresh = glob_thresh_arr_smooth else: adapt_thresh = cv2.adaptiveThreshold(mask, 1, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, \ cv2.THRESH_BINARY, adapt_kernel, adapt_const) # resmooth adapt_thresh_smooth = cv2.medianBlur(adapt_thresh, kernel_blur) mask_thresh = adapt_thresh_smooth # opening and closing # http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html # gradient = cv2.morphologyEx(mask_thresh, cv2.MORPH_GRADIENT, kernel) closing = cv2.morphologyEx(mask_thresh, cv2.MORPH_CLOSE, kernel_close) opening = cv2.morphologyEx(closing, cv2.MORPH_OPEN, kernel_open) # try on bgRemoved? t2 = time.time() print("Time to compute adaptive_thresh, second open(), close():", t2 - t1, "seconds") # set output if contour_smoothing < 0: final_mask = opening else: # contours # remove small items contours, cont_plot, hole_idxs = get_contours_complex(opening, min_thresh=glob_thresh, min_area=min_area, contour_smoothing=contour_smoothing) # for some reason contours don't extend to the edge, so clip the edge # and resize mask_filt_raw = get_mask(mask_thresh, cont_plot, hole_idxs=hole_idxs) shape_tmp = mask_filt_raw.shape mask_filt1 = 200 * cv2.resize(mask_filt_raw[2:-2, 2:-2], shape_tmp).astype(np.uint8) if verbose: print("mask:", mask) print("mask.dtype:", mask.dtype) print("mask_fi1t1.dtype:", mask_filt1.dtype) print("mask.shape == mask_filt1.shape:", mask.shape == mask_filt1.shape) print("mask_filt1.shape:", mask_filt1.shape) print("mask_filt1", mask_filt1) # thresh and resmooth mask_filt = cv2.GaussianBlur(mask_filt1, (kernel_blur, kernel_blur), 0) # mask_filt = cv2.threshold(mask_filt2, glob_thresh, 1, cv2.THRESH_BINARY) final_mask = mask_filt t3 = time.time() print("Time to smooth contours:", t3 - t2, "seconds") # skeletonize # medial = medial_axis(final_mask) # medial_int = medial.astype(np.uint8) medial_int = medial_axis(final_mask).astype(np.uint8) print("Time to compute medial_axis:", time.time() - t3, "seconds") print("Time to run dl_post_process_pred():", time.time() - t0, "seconds") return final_mask, medial_int
def dl_post_process_pred(mask, glob_thresh=80, kernel_size=9, min_area=2000, contour_smoothing=0.001, adapt_kernel=85, adapt_const=-3, outplot_file='', dpi=500, use_glob_thresh=False, kernel_open=19, verbose=False): '''Refine mask file and return both refined mask and skeleton''' t0 = time.time() kernel_blur = kernel_size # 9 kernel_close = kernel_size # 9 # kernel_open = kernel_size #9 kernel_close = np.ones((kernel_close, kernel_close), np.uint8) kernel_open = np.ones((kernel_open, kernel_open), np.uint8) blur = cv2.medianBlur(mask, kernel_blur) # global thresh glob_thresh_arr = cv2.threshold(blur, glob_thresh, 1, cv2.THRESH_BINARY)[1] glob_thresh_arr_smooth = cv2.medianBlur(glob_thresh_arr, kernel_blur) t1 = time.time() print("Time to compute open(), close(), and get thresholds:", t1 - t0, "seconds") if use_glob_thresh: mask_thresh = glob_thresh_arr_smooth else: adapt_thresh = cv2.adaptiveThreshold(mask, 1, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, \ cv2.THRESH_BINARY, adapt_kernel, adapt_const) # resmooth adapt_thresh_smooth = cv2.medianBlur(adapt_thresh, kernel_blur) mask_thresh = adapt_thresh_smooth # opening and closing # http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html # gradient = cv2.morphologyEx(mask_thresh, cv2.MORPH_GRADIENT, kernel) closing = cv2.morphologyEx(mask_thresh, cv2.MORPH_CLOSE, kernel_close) opening = cv2.morphologyEx(closing, cv2.MORPH_OPEN, kernel_open) # try on bgRemoved? t2 = time.time() print("Time to compute adaptive_thresh, second open(), close():", t2 - t1, "seconds") # set output if contour_smoothing < 0: final_mask = opening else: # contours # remove small items contours, cont_plot, hole_idxs = get_contours_complex(opening, min_thresh=glob_thresh, min_area=min_area, contour_smoothing=contour_smoothing) # for some reason contours don't extend to the edge, so clip the edge # and resize mask_filt_raw = get_mask(mask_thresh, cont_plot, hole_idxs=hole_idxs) shape_tmp = mask_filt_raw.shape mask_filt1 = 200 * cv2.resize(mask_filt_raw[2:-2, 2:-2], shape_tmp).astype(np.uint8) if verbose: print("mask:", mask) print("mask.dtype:", mask.dtype) print("mask_fi1t1.dtype:", mask_filt1.dtype) print("mask.shape == mask_filt1.shape:", mask.shape == mask_filt1.shape) print("mask_filt1.shape:", mask_filt1.shape) print("mask_filt1", mask_filt1) # thresh and resmooth mask_filt = cv2.GaussianBlur(mask_filt1, (kernel_blur, kernel_blur), 0) # mask_filt = cv2.threshold(mask_filt2, glob_thresh, 1, cv2.THRESH_BINARY) final_mask = mask_filt t3 = time.time() print("Time to smooth contours:", t3 - t2, "seconds") # skeletonize # medial = medial_axis(final_mask) # medial_int = medial.astype(np.uint8) medial_int = medial_axis(final_mask).astype(np.uint8) print("Time to compute medial_axis:", time.time() - t3, "seconds") print("Time to run dl_post_process_pred():", time.time() - t0, "seconds") return final_mask, medial_int
Python
def make_skeleton(img_loc, thresh, debug, fix_borders, replicate=5, clip=2, img_shape=(1300, 1300), img_mult=255, hole_size=300, cv2_kernel_close=7, cv2_kernel_open=7, use_medial_axis=False, max_out_size=(200000, 200000), num_classes=1, skeleton_band='all'): ''' Extract a skeleton from a mask. skeleton_band is the index of the band of the mask to use for skeleton extractionk, set to string 'all' to use all bands ''' print("Executing make_skeleton...") t0 = time.time() # replicate = 5 # clip = 2 rec = replicate + clip # read in data if num_classes == 1: try: img = cv2.imread(img_loc, cv2.IMREAD_GRAYSCALE) except: img = skimage.io.imread(img_loc, as_gray=True).astype(np.uint8) # [::-1] else: # ensure 8bit? img_tmp = skimage.io.imread(img_loc).astype(np.uint8) # we want skimage to read in (channels, h, w) for multi-channel # assume less than 20 channels if img_tmp.shape[0] > 20: img_full = np.moveaxis(img_tmp, 0, -1) else: img_full = img_tmp # select the desired band for skeleton extraction # if < 0, sum all bands if type(skeleton_band) == str: # skeleton_band < 0: img = np.sum(img_full, axis=0).astype(np.int8) else: img = img_full[skeleton_band, :, :] print("make_skeleton(), input img_shape:", img_shape) print("make_skeleton(), img.shape:", img.shape) print("make_skeleton(), img.size:", img.size) print("make_skeleton(), img dtype:", img.dtype) # print ("make_skeleton(), img unique:", np.unique(img)) ########## # potentially keep only subset of data shape0 = img.shape img = img[:max_out_size[0], :max_out_size[1]] if img.shape != shape0: print("Using only subset of data!!!!!!!!") print("make_skeletion() new img.shape:", img.shape) ########## if fix_borders: img = cv2.copyMakeBorder(img, replicate, replicate, replicate, replicate, cv2.BORDER_REPLICATE) img_copy = None if debug: if fix_borders: img_copy = np.copy(img[replicate:-replicate, replicate:-replicate]) else: img_copy = np.copy(img) print("run preprocess()...") t1 = time.time() img = preprocess(img, thresh, img_mult=img_mult, hole_size=hole_size, cv2_kernel_close=cv2_kernel_close, cv2_kernel_open=cv2_kernel_open) t2 = time.time() print("Time to run preprocess():", t2 - t1, "seconds") if not np.any(img): return None, None if not use_medial_axis: print("skeletonize...") ske = skeletonize(img).astype(np.uint16) t3 = time.time() print("Time to run skimage.skeletonize():", t3 - t2, "seconds") else: print("running skimaage.medial_axis...") ske = skimage.morphology.medial_axis(img).astype(np.uint16) t3 = time.time() print("Time to run skimage.medial_axis():", t3 - t2, "seconds") if fix_borders: print("fix_borders...") ske = ske[rec:-rec, rec:-rec] ske = cv2.copyMakeBorder(ske, clip, clip, clip, clip, cv2.BORDER_CONSTANT, value=0) t4 = time.time() print("Time fix borders:", t4 - t3, "seconds") t1 = time.time() print("ske.shape:", ske.shape) print("Time to run make_skeleton:", t1 - t0, "seconds") return img, ske
def make_skeleton(img_loc, thresh, debug, fix_borders, replicate=5, clip=2, img_shape=(1300, 1300), img_mult=255, hole_size=300, cv2_kernel_close=7, cv2_kernel_open=7, use_medial_axis=False, max_out_size=(200000, 200000), num_classes=1, skeleton_band='all'): ''' Extract a skeleton from a mask. skeleton_band is the index of the band of the mask to use for skeleton extractionk, set to string 'all' to use all bands ''' print("Executing make_skeleton...") t0 = time.time() # replicate = 5 # clip = 2 rec = replicate + clip # read in data if num_classes == 1: try: img = cv2.imread(img_loc, cv2.IMREAD_GRAYSCALE) except: img = skimage.io.imread(img_loc, as_gray=True).astype(np.uint8) # [::-1] else: # ensure 8bit? img_tmp = skimage.io.imread(img_loc).astype(np.uint8) # we want skimage to read in (channels, h, w) for multi-channel # assume less than 20 channels if img_tmp.shape[0] > 20: img_full = np.moveaxis(img_tmp, 0, -1) else: img_full = img_tmp # select the desired band for skeleton extraction # if < 0, sum all bands if type(skeleton_band) == str: # skeleton_band < 0: img = np.sum(img_full, axis=0).astype(np.int8) else: img = img_full[skeleton_band, :, :] print("make_skeleton(), input img_shape:", img_shape) print("make_skeleton(), img.shape:", img.shape) print("make_skeleton(), img.size:", img.size) print("make_skeleton(), img dtype:", img.dtype) # print ("make_skeleton(), img unique:", np.unique(img)) ########## # potentially keep only subset of data shape0 = img.shape img = img[:max_out_size[0], :max_out_size[1]] if img.shape != shape0: print("Using only subset of data!!!!!!!!") print("make_skeletion() new img.shape:", img.shape) ########## if fix_borders: img = cv2.copyMakeBorder(img, replicate, replicate, replicate, replicate, cv2.BORDER_REPLICATE) img_copy = None if debug: if fix_borders: img_copy = np.copy(img[replicate:-replicate, replicate:-replicate]) else: img_copy = np.copy(img) print("run preprocess()...") t1 = time.time() img = preprocess(img, thresh, img_mult=img_mult, hole_size=hole_size, cv2_kernel_close=cv2_kernel_close, cv2_kernel_open=cv2_kernel_open) t2 = time.time() print("Time to run preprocess():", t2 - t1, "seconds") if not np.any(img): return None, None if not use_medial_axis: print("skeletonize...") ske = skeletonize(img).astype(np.uint16) t3 = time.time() print("Time to run skimage.skeletonize():", t3 - t2, "seconds") else: print("running skimaage.medial_axis...") ske = skimage.morphology.medial_axis(img).astype(np.uint16) t3 = time.time() print("Time to run skimage.medial_axis():", t3 - t2, "seconds") if fix_borders: print("fix_borders...") ske = ske[rec:-rec, rec:-rec] ske = cv2.copyMakeBorder(ske, clip, clip, clip, clip, cv2.BORDER_CONSTANT, value=0) t4 = time.time() print("Time fix borders:", t4 - t3, "seconds") t1 = time.time() print("ske.shape:", ske.shape) print("Time to run make_skeleton:", t1 - t0, "seconds") return img, ske
Python
def build_wkt_dir(indir, outfile, out_ske_dir, out_gdir='', thresh=0.3, # threshes={'2': .3, '3': .3, '4': .3, '5': .2}, im_prefix='', debug=False, add_small=True, fix_borders=True, img_shape=(1300, 1300), skel_replicate=5, skel_clip=2, img_mult=255, hole_size=300, cv2_kernel_close=7, cv2_kernel_open=7, min_subgraph_length_pix=50, spacenet_naming_convention=False, num_classes=1, max_out_size=(100000, 100000), skeleton_band='all'): '''Execute built_graph_wkt for an entire folder Split image name on AOI, keep only name after AOI. This is necessary for scoring''' all_data = [] im_files = np.sort([z for z in os.listdir(indir) if z.endswith('.tif')]) nfiles = len(im_files) imfiles_args = [[imf, nfiles, indir, outfile, out_ske_dir, out_gdir, thresh, im_prefix, debug, add_small, fix_borders, img_shape, skel_replicate, skel_clip, img_mult, hole_size, cv2_kernel_close, cv2_kernel_open, min_subgraph_length_pix, spacenet_naming_convention, num_classes, max_out_size, skeleton_band] for imf in im_files] with multiprocessing.Pool(16) as pool: all_data = list(pool.starmap(build_wkt_imfile, imfiles_args)) all_data = [data for cur_data in all_data for data in cur_data] # for i,imfile in enumerate(im_files): # t1 = time.time() # print ("\n\n", i+1, "/", nfiles, ":", imfile) # logger1.info("{x} / {y} : {z}".format(x=i+1, y=nfiles, z=imfile)) # img_loc = os.path.join(indir, imfile) # # if spacenet_naming_convention: # im_root = 'AOI' + imfile.split('AOI')[-1].split('.')[0] # else: # im_root = imfile.split('.')[0] # if len(im_prefix) > 0: # im_root = im_root.split(im_prefix)[-1] # # print (" img_loc:", img_loc) # print (" im_root:", im_root) # if out_ske_dir: # out_ske_file = os.path.join(out_ske_dir, imfile) # else: # out_ske_file = '' # print (" out_ske_file:", out_ske_file) # if len(out_gdir) > 0: # out_gpickle = os.path.join(out_gdir, imfile.split('.')[0] + '.gpickle') # else: # out_gpickle = '' # # # create wkt list # wkt_list = build_graph_wkt(img_loc, out_ske_file, # out_gpickle=out_gpickle, thresh=thresh, #threshes={'2': .3, '3': .3, '4': .3, '5': .2}, # debug=debug, add_small=add_small, fix_borders=fix_borders, # img_shape=img_shape, # skel_replicate=skel_replicate, skel_clip=skel_clip, # img_mult=img_mult, hole_size=hole_size, # cv2_kernel_close=cv2_kernel_close, cv2_kernel_open=cv2_kernel_open, # min_subgraph_length_pix=min_subgraph_length_pix, # max_out_size=max_out_size, # num_classes=num_classes, # skeleton_band=skeleton_band) # # add to all_data # for v in wkt_list: # all_data.append((im_root, v)) # #all_data.append((imfile, v)) # t2 = time.time() # logger1.info("Time to build graph: {} seconds".format(t2-t1)) # # save to csv df = pd.DataFrame(all_data, columns=['ImageId', 'WKT_Pix']) df.to_csv(outfile, index=False) return df
def build_wkt_dir(indir, outfile, out_ske_dir, out_gdir='', thresh=0.3, # threshes={'2': .3, '3': .3, '4': .3, '5': .2}, im_prefix='', debug=False, add_small=True, fix_borders=True, img_shape=(1300, 1300), skel_replicate=5, skel_clip=2, img_mult=255, hole_size=300, cv2_kernel_close=7, cv2_kernel_open=7, min_subgraph_length_pix=50, spacenet_naming_convention=False, num_classes=1, max_out_size=(100000, 100000), skeleton_band='all'): '''Execute built_graph_wkt for an entire folder Split image name on AOI, keep only name after AOI. This is necessary for scoring''' all_data = [] im_files = np.sort([z for z in os.listdir(indir) if z.endswith('.tif')]) nfiles = len(im_files) imfiles_args = [[imf, nfiles, indir, outfile, out_ske_dir, out_gdir, thresh, im_prefix, debug, add_small, fix_borders, img_shape, skel_replicate, skel_clip, img_mult, hole_size, cv2_kernel_close, cv2_kernel_open, min_subgraph_length_pix, spacenet_naming_convention, num_classes, max_out_size, skeleton_band] for imf in im_files] with multiprocessing.Pool(16) as pool: all_data = list(pool.starmap(build_wkt_imfile, imfiles_args)) all_data = [data for cur_data in all_data for data in cur_data] # for i,imfile in enumerate(im_files): # t1 = time.time() # print ("\n\n", i+1, "/", nfiles, ":", imfile) # logger1.info("{x} / {y} : {z}".format(x=i+1, y=nfiles, z=imfile)) # img_loc = os.path.join(indir, imfile) # # if spacenet_naming_convention: # im_root = 'AOI' + imfile.split('AOI')[-1].split('.')[0] # else: # im_root = imfile.split('.')[0] # if len(im_prefix) > 0: # im_root = im_root.split(im_prefix)[-1] # # print (" img_loc:", img_loc) # print (" im_root:", im_root) # if out_ske_dir: # out_ske_file = os.path.join(out_ske_dir, imfile) # else: # out_ske_file = '' # print (" out_ske_file:", out_ske_file) # if len(out_gdir) > 0: # out_gpickle = os.path.join(out_gdir, imfile.split('.')[0] + '.gpickle') # else: # out_gpickle = '' # # # create wkt list # wkt_list = build_graph_wkt(img_loc, out_ske_file, # out_gpickle=out_gpickle, thresh=thresh, #threshes={'2': .3, '3': .3, '4': .3, '5': .2}, # debug=debug, add_small=add_small, fix_borders=fix_borders, # img_shape=img_shape, # skel_replicate=skel_replicate, skel_clip=skel_clip, # img_mult=img_mult, hole_size=hole_size, # cv2_kernel_close=cv2_kernel_close, cv2_kernel_open=cv2_kernel_open, # min_subgraph_length_pix=min_subgraph_length_pix, # max_out_size=max_out_size, # num_classes=num_classes, # skeleton_band=skeleton_band) # # add to all_data # for v in wkt_list: # all_data.append((im_root, v)) # #all_data.append((imfile, v)) # t2 = time.time() # logger1.info("Time to build graph: {} seconds".format(t2-t1)) # # save to csv df = pd.DataFrame(all_data, columns=['ImageId', 'WKT_Pix']) df.to_csv(outfile, index=False) return df
Python
def weighted_avg_and_std(values, weights): """ Return the weighted average and standard deviation. values, weights -- Numpy ndarrays with the same shape. """ weighted_stats = DescrStatsW(values, weights=weights, ddof=0) mean = weighted_stats.mean # weighted mean of data (equivalent to np.average(array, weights=weights)) std = weighted_stats.std # standard deviation with default degrees of freedom correction var = weighted_stats.var # variance with default degrees of freedom correction return (mean, std, var)
def weighted_avg_and_std(values, weights): """ Return the weighted average and standard deviation. values, weights -- Numpy ndarrays with the same shape. """ weighted_stats = DescrStatsW(values, weights=weights, ddof=0) mean = weighted_stats.mean # weighted mean of data (equivalent to np.average(array, weights=weights)) std = weighted_stats.std # standard deviation with default degrees of freedom correction var = weighted_stats.var # variance with default degrees of freedom correction return (mean, std, var)
Python
def load_speed_conversion_dict_contin(csv_loc): '''Load speed to burn_val conversion dataframe and create conversion dictionary. Assume continuous conversion''' df_ = pd.read_csv(csv_loc, index_col=0) # get dict of pixel value to speed df_tmp = df_.set_index('burn_val') dic = df_tmp.to_dict()['speed'] return df_, dic
def load_speed_conversion_dict_contin(csv_loc): '''Load speed to burn_val conversion dataframe and create conversion dictionary. Assume continuous conversion''' df_ = pd.read_csv(csv_loc, index_col=0) # get dict of pixel value to speed df_tmp = df_.set_index('burn_val') dic = df_tmp.to_dict()['speed'] return df_, dic
Python
def load_speed_conversion_dict_binned(csv_loc, speed_increment=5): '''Load speed to burn_val conversion dataframe and create conversion dictionary. speed_increment is the increment of speed limits in mph 10 mph bins go from 1-10, and 21-30, etc. breakdown of speed limits in training set: # 15.0 5143 # 18.75 6232 # 20.0 18098 # 22.5 347 # 25.0 16526 # 26.25 50 # 30.0 734 # 33.75 26 # 35.0 3583 # 41.25 16 # 45.0 2991 # 48.75 17 # 55.0 2081 # 65.0 407 Assuming a similar distribut in the test set allos us to ''' df_ = pd.read_csv(csv_loc, index_col=0) # get dict of channel to speed df = df_[['channel', 'speed']] # simple mean of speed bins means = df.groupby(['channel']).mean().astype(int) dic = means.to_dict()['speed'] # speeds are every 5 mph, so take the mean of the 5 mph bins # z = [tmp for tmp in a if tmp%5==0] # or just add increment/2 to means... dic.update((x, y + speed_increment / 2) for x, y in dic.items()) ########## # OPTIONAL # if using 10mph bins, update dic dic[0] = 7.5 dic[1] = 15 # 15, 18.75, and 20 are all common dic[2] = 18.75 # 15, 18.75, and 20 are all common dic[3] = 20 # 15, 18.75, and 20 are all common dic[4] = 25 # 25 mph speed limit is ubiquitous dic[5] = 30 # 35 mph speed limit is ubiquitous dic[6] = 35 # 35 mph speed limit is ubiquitous dic[7] = 45 # 45 mph speed limit is ubiquitous dic[8] = 55 # 55 mph speed limit is ubiquitous dic[9] = 65 # 65 mph speed limit is ubiquitous ########## return df_, dic
def load_speed_conversion_dict_binned(csv_loc, speed_increment=5): '''Load speed to burn_val conversion dataframe and create conversion dictionary. speed_increment is the increment of speed limits in mph 10 mph bins go from 1-10, and 21-30, etc. breakdown of speed limits in training set: # 15.0 5143 # 18.75 6232 # 20.0 18098 # 22.5 347 # 25.0 16526 # 26.25 50 # 30.0 734 # 33.75 26 # 35.0 3583 # 41.25 16 # 45.0 2991 # 48.75 17 # 55.0 2081 # 65.0 407 Assuming a similar distribut in the test set allos us to ''' df_ = pd.read_csv(csv_loc, index_col=0) # get dict of channel to speed df = df_[['channel', 'speed']] # simple mean of speed bins means = df.groupby(['channel']).mean().astype(int) dic = means.to_dict()['speed'] # speeds are every 5 mph, so take the mean of the 5 mph bins # z = [tmp for tmp in a if tmp%5==0] # or just add increment/2 to means... dic.update((x, y + speed_increment / 2) for x, y in dic.items()) ########## # OPTIONAL # if using 10mph bins, update dic dic[0] = 7.5 dic[1] = 15 # 15, 18.75, and 20 are all common dic[2] = 18.75 # 15, 18.75, and 20 are all common dic[3] = 20 # 15, 18.75, and 20 are all common dic[4] = 25 # 25 mph speed limit is ubiquitous dic[5] = 30 # 35 mph speed limit is ubiquitous dic[6] = 35 # 35 mph speed limit is ubiquitous dic[7] = 45 # 45 mph speed limit is ubiquitous dic[8] = 55 # 55 mph speed limit is ubiquitous dic[9] = 65 # 65 mph speed limit is ubiquitous ########## return df_, dic
Python
def infer_travel_time(G_, mask, conv_dict, min_z=128, dx=4, dy=4, percentile=90, use_totband=True, use_weighted_mean=True, variable_edge_speed=False, verbose=False): '''Get an estimate of the average speed and travel time of each edge in the graph from the mask and conversion dictionary For each edge, get the geometry in pixel coords For each point, get the neareast neighbors in the maks and infer the local speed''' mph_to_mps = 0.44704 # miles per hour to meters per second for i, (u, v, edge_data) in enumerate(G_.edges(data=True)): if verbose: # (i % 100) == 0: logger1.info("\n" + str(i) + " " + str(u) + " " + str(v) + " " \ + str(edge_data)) if (i % 1000) == 0: logger1.info(str(i) + " / " + str(len(G_.edges())) + " edges") tot_hours, mean_speed_mph, length_miles = \ get_edge_time_properties(mask, edge_data, conv_dict, min_z=min_z, dx=dx, dy=dy, percentile=percentile, use_totband=use_totband, use_weighted_mean=use_weighted_mean, variable_edge_speed=variable_edge_speed, verbose=verbose) # update edges edge_data['Travel Time (h)'] = tot_hours edge_data['inferred_speed_mph'] = np.round(mean_speed_mph, 2) edge_data['length_miles'] = length_miles edge_data['inferred_speed_mps'] = np.round(mean_speed_mph * mph_to_mps, 2) edge_data['travel_time_s'] = np.round(3600. * tot_hours, 3) # edge_data['travel_time'] = np.round(3600. * tot_hours, 3) return G_
def infer_travel_time(G_, mask, conv_dict, min_z=128, dx=4, dy=4, percentile=90, use_totband=True, use_weighted_mean=True, variable_edge_speed=False, verbose=False): '''Get an estimate of the average speed and travel time of each edge in the graph from the mask and conversion dictionary For each edge, get the geometry in pixel coords For each point, get the neareast neighbors in the maks and infer the local speed''' mph_to_mps = 0.44704 # miles per hour to meters per second for i, (u, v, edge_data) in enumerate(G_.edges(data=True)): if verbose: # (i % 100) == 0: logger1.info("\n" + str(i) + " " + str(u) + " " + str(v) + " " \ + str(edge_data)) if (i % 1000) == 0: logger1.info(str(i) + " / " + str(len(G_.edges())) + " edges") tot_hours, mean_speed_mph, length_miles = \ get_edge_time_properties(mask, edge_data, conv_dict, min_z=min_z, dx=dx, dy=dy, percentile=percentile, use_totband=use_totband, use_weighted_mean=use_weighted_mean, variable_edge_speed=variable_edge_speed, verbose=verbose) # update edges edge_data['Travel Time (h)'] = tot_hours edge_data['inferred_speed_mph'] = np.round(mean_speed_mph, 2) edge_data['length_miles'] = length_miles edge_data['inferred_speed_mps'] = np.round(mean_speed_mph * mph_to_mps, 2) edge_data['travel_time_s'] = np.round(3600. * tot_hours, 3) # edge_data['travel_time'] = np.round(3600. * tot_hours, 3) return G_
Python
def add_travel_time_dir(graph_dir, mask_dir, conv_dict, graph_dir_out, min_z=128, dx=4, dy=4, percentile=90, use_totband=True, use_weighted_mean=True, variable_edge_speed=False, mask_prefix='', save_shapefiles=True, verbose=False): '''Update graph properties to include travel time for entire directory''' pickle_protocol = 4 # 4 is most recent, python 2.7 can't read 4 logger1.info("Updating graph properties to include travel time") logger1.info(" Writing to: " + str(graph_dir_out)) os.makedirs(graph_dir_out, exist_ok=True) image_names = sorted([z for z in os.listdir(mask_dir) if z.endswith('.tif')]) for i, image_name in enumerate(image_names): im_root = image_name.split('.')[0] if len(mask_prefix) > 0: im_root = im_root.split(mask_prefix)[-1] out_file = os.path.join(graph_dir_out, im_root + '.gpickle') if (i % 1) == 0: logger1.info("\n" + str(i + 1) + " / " + str(len(image_names)) + " " + image_name + " " + im_root) mask_path = os.path.join(mask_dir, image_name) graph_path = os.path.join(graph_dir, im_root + '.gpickle') if not os.path.exists(graph_path): logger1.info(" ", i, "DNE, skipping: " + str(graph_path)) return # continue if verbose: logger1.info("mask_path: " + mask_path) logger1.info("graph_path: " + graph_path) mask = skimage.io.imread(mask_path) if mask.shape[0] > 20: mask = np.moveaxis(mask, -1, 0) G_raw = nx.read_gpickle(graph_path) # see if it's empty if len(G_raw.nodes()) == 0: nx.write_gpickle(G_raw, out_file, protocol=pickle_protocol) continue G = infer_travel_time(G_raw, mask, conv_dict, min_z=min_z, dx=dx, dy=dy, percentile=percentile, use_totband=use_totband, use_weighted_mean=use_weighted_mean, variable_edge_speed=variable_edge_speed, verbose=verbose) G = G.to_undirected() # save graph # logger1.info("Saving graph to directory: " + graph_dir) # out_file = os.path.join(graph_dir_out, image_name.split('.')[0] + '.gpickle') nx.write_gpickle(G, out_file, protocol=pickle_protocol) # save shapefile as well? if save_shapefiles: G_out = G # ox.simplify_graph(G.to_directed()) logger1.info("Saving shapefile to directory: {}".format(graph_dir_out)) ox.save_graph_shapefile(G_out, filename=im_root, folder=graph_dir_out, encoding='utf-8') # out_file2 = os.path.join(graph_dir, image_id.split('.')[0] + '.graphml') # ox.save_graphml(G, image_id.split('.')[0] + '.graphml', folder=graph_dir) return
def add_travel_time_dir(graph_dir, mask_dir, conv_dict, graph_dir_out, min_z=128, dx=4, dy=4, percentile=90, use_totband=True, use_weighted_mean=True, variable_edge_speed=False, mask_prefix='', save_shapefiles=True, verbose=False): '''Update graph properties to include travel time for entire directory''' pickle_protocol = 4 # 4 is most recent, python 2.7 can't read 4 logger1.info("Updating graph properties to include travel time") logger1.info(" Writing to: " + str(graph_dir_out)) os.makedirs(graph_dir_out, exist_ok=True) image_names = sorted([z for z in os.listdir(mask_dir) if z.endswith('.tif')]) for i, image_name in enumerate(image_names): im_root = image_name.split('.')[0] if len(mask_prefix) > 0: im_root = im_root.split(mask_prefix)[-1] out_file = os.path.join(graph_dir_out, im_root + '.gpickle') if (i % 1) == 0: logger1.info("\n" + str(i + 1) + " / " + str(len(image_names)) + " " + image_name + " " + im_root) mask_path = os.path.join(mask_dir, image_name) graph_path = os.path.join(graph_dir, im_root + '.gpickle') if not os.path.exists(graph_path): logger1.info(" ", i, "DNE, skipping: " + str(graph_path)) return # continue if verbose: logger1.info("mask_path: " + mask_path) logger1.info("graph_path: " + graph_path) mask = skimage.io.imread(mask_path) if mask.shape[0] > 20: mask = np.moveaxis(mask, -1, 0) G_raw = nx.read_gpickle(graph_path) # see if it's empty if len(G_raw.nodes()) == 0: nx.write_gpickle(G_raw, out_file, protocol=pickle_protocol) continue G = infer_travel_time(G_raw, mask, conv_dict, min_z=min_z, dx=dx, dy=dy, percentile=percentile, use_totband=use_totband, use_weighted_mean=use_weighted_mean, variable_edge_speed=variable_edge_speed, verbose=verbose) G = G.to_undirected() # save graph # logger1.info("Saving graph to directory: " + graph_dir) # out_file = os.path.join(graph_dir_out, image_name.split('.')[0] + '.gpickle') nx.write_gpickle(G, out_file, protocol=pickle_protocol) # save shapefile as well? if save_shapefiles: G_out = G # ox.simplify_graph(G.to_directed()) logger1.info("Saving shapefile to directory: {}".format(graph_dir_out)) ox.save_graph_shapefile(G_out, filename=im_root, folder=graph_dir_out, encoding='utf-8') # out_file2 = os.path.join(graph_dir, image_id.split('.')[0] + '.graphml') # ox.save_graphml(G, image_id.split('.')[0] + '.graphml', folder=graph_dir) return
Python
def clean_sub_graphs(G_, min_length=150, max_nodes_to_skip=30, weight='length_pix', verbose=True, super_verbose=False): '''Remove subgraphs with a max path length less than min_length, if the subgraph has more than max_noxes_to_skip, don't check length (this step great improves processing time)''' if len(list(G_.nodes())) == 0: return G_ print("Running clean_sub_graphs...") sub_graphs = list(nx.connected_component_subgraphs(G_)) bad_nodes = [] if verbose: print(" len(G_.nodes()):", len(list(G_.nodes()))) print(" len(G_.edges()):", len(list(G_.edges()))) if super_verbose: print("G_.nodes:", G_.nodes()) edge_tmp = G_.edges()[np.random.randint(len(G_.edges()))] print(edge_tmp, "G.edge props:", G_.edge[edge_tmp[0]][edge_tmp[1]]) for G_sub in sub_graphs: # don't check length if too many nodes in subgraph if len(G_sub.nodes()) > max_nodes_to_skip: continue else: all_lengths = dict(nx.all_pairs_dijkstra_path_length(G_sub, weight=weight)) if super_verbose: print(" \nGs.nodes:", G_sub.nodes()) print(" all_lengths:", all_lengths) # get all lenghts lens = [] # for u,v in all_lengths.iteritems(): for u in all_lengths.keys(): v = all_lengths[u] # for uprime, vprime in v.iteritems(): for uprime in v.keys(): vprime = v[uprime] lens.append(vprime) if super_verbose: print(" u, v", u, v) print(" uprime, vprime:", uprime, vprime) max_len = np.max(lens) if super_verbose: print(" Max length of path:", max_len) if max_len < min_length: bad_nodes.extend(G_sub.nodes()) if super_verbose: print(" appending to bad_nodes:", G_sub.nodes()) # remove bad_nodes G_.remove_nodes_from(bad_nodes) if verbose: print(" num bad_nodes:", len(bad_nodes)) # print ("bad_nodes:", bad_nodes) print(" len(G'.nodes()):", len(G_.nodes())) print(" len(G'.edges()):", len(G_.edges())) if super_verbose: print(" G_.nodes:", G_.nodes()) return G_
def clean_sub_graphs(G_, min_length=150, max_nodes_to_skip=30, weight='length_pix', verbose=True, super_verbose=False): '''Remove subgraphs with a max path length less than min_length, if the subgraph has more than max_noxes_to_skip, don't check length (this step great improves processing time)''' if len(list(G_.nodes())) == 0: return G_ print("Running clean_sub_graphs...") sub_graphs = list(nx.connected_component_subgraphs(G_)) bad_nodes = [] if verbose: print(" len(G_.nodes()):", len(list(G_.nodes()))) print(" len(G_.edges()):", len(list(G_.edges()))) if super_verbose: print("G_.nodes:", G_.nodes()) edge_tmp = G_.edges()[np.random.randint(len(G_.edges()))] print(edge_tmp, "G.edge props:", G_.edge[edge_tmp[0]][edge_tmp[1]]) for G_sub in sub_graphs: # don't check length if too many nodes in subgraph if len(G_sub.nodes()) > max_nodes_to_skip: continue else: all_lengths = dict(nx.all_pairs_dijkstra_path_length(G_sub, weight=weight)) if super_verbose: print(" \nGs.nodes:", G_sub.nodes()) print(" all_lengths:", all_lengths) # get all lenghts lens = [] # for u,v in all_lengths.iteritems(): for u in all_lengths.keys(): v = all_lengths[u] # for uprime, vprime in v.iteritems(): for uprime in v.keys(): vprime = v[uprime] lens.append(vprime) if super_verbose: print(" u, v", u, v) print(" uprime, vprime:", uprime, vprime) max_len = np.max(lens) if super_verbose: print(" Max length of path:", max_len) if max_len < min_length: bad_nodes.extend(G_sub.nodes()) if super_verbose: print(" appending to bad_nodes:", G_sub.nodes()) # remove bad_nodes G_.remove_nodes_from(bad_nodes) if verbose: print(" num bad_nodes:", len(bad_nodes)) # print ("bad_nodes:", bad_nodes) print(" len(G'.nodes()):", len(G_.nodes())) print(" len(G'.edges()):", len(G_.edges())) if super_verbose: print(" G_.nodes:", G_.nodes()) return G_
Python
def remove_short_edges(G_, min_spur_length_m=100, verbose=True): """Remove unconnected edges shorter than the desired length""" if verbose: print("Remove shoert edges") deg_list = list(G_.degree) # iterate through list bad_nodes = [] for i, (n, deg) in enumerate(deg_list): # if verbose and (i % 500) == 0: # print(n, deg) # check if node has only one neighbor if deg == 1: # get edge edge = list(G_.edges(n)) u, v = edge[0] # get edge length edge_props = G_.get_edge_data(u, v, 0) length = edge_props['length'] # edge_props = G_.edges([u, v]) if length < min_spur_length_m: bad_nodes.append(n) if verbose: print(i, "/", len(list(G_.nodes())), "n, deg, u, v, length:", n, deg, u, v, length) if verbose: print("bad_nodes:", bad_nodes) G_.remove_nodes_from(bad_nodes) if verbose: print("num remaining nodes:", len(list(G_.nodes()))) return G_
def remove_short_edges(G_, min_spur_length_m=100, verbose=True): """Remove unconnected edges shorter than the desired length""" if verbose: print("Remove shoert edges") deg_list = list(G_.degree) # iterate through list bad_nodes = [] for i, (n, deg) in enumerate(deg_list): # if verbose and (i % 500) == 0: # print(n, deg) # check if node has only one neighbor if deg == 1: # get edge edge = list(G_.edges(n)) u, v = edge[0] # get edge length edge_props = G_.get_edge_data(u, v, 0) length = edge_props['length'] # edge_props = G_.edges([u, v]) if length < min_spur_length_m: bad_nodes.append(n) if verbose: print(i, "/", len(list(G_.nodes())), "n, deg, u, v, length:", n, deg, u, v, length) if verbose: print("bad_nodes:", bad_nodes) G_.remove_nodes_from(bad_nodes) if verbose: print("num remaining nodes:", len(list(G_.nodes()))) return G_
Python
def wkt_list_to_nodes_edges(wkt_list): '''Convert wkt list to nodes and edges Make an edge between each node in linestring. Since one linestring may contain multiple edges, this is the safest approach''' node_loc_set = set() # set of edge locations node_loc_dic = {} # key = node idx, val = location node_loc_dic_rev = {} # key = location, val = node idx edge_loc_set = set() # set of edge locations edge_dic = {} # edge properties node_iter = 0 edge_iter = 0 for i, lstring in enumerate(wkt_list): # get lstring properties shape = shapely.wkt.loads(lstring) xs, ys = shape.coords.xy length_orig = shape.length # iterate through coords in line to create edges between every point for j, (x, y) in enumerate(zip(xs, ys)): loc = (x, y) # for first item just make node, not edge if j == 0: # if not yet seen, create new node if loc not in node_loc_set: node_loc_set.add(loc) node_loc_dic[node_iter] = loc node_loc_dic_rev[loc] = node_iter node = node_iter node_iter += 1 # if not first node in edge, retrieve previous node and build edge else: prev_loc = (xs[j - 1], ys[j - 1]) # print ("prev_loc:", prev_loc) prev_node = node_loc_dic_rev[prev_loc] # if new, create new node if loc not in node_loc_set: node_loc_set.add(loc) node_loc_dic[node_iter] = loc node_loc_dic_rev[loc] = node_iter node = node_iter node_iter += 1 # if seen before, retrieve node properties else: node = node_loc_dic_rev[loc] # add edge, which is start_node to end_node edge_loc = (loc, prev_loc) edge_loc_rev = (prev_loc, loc) # shouldn't be duplicate edges, so break if we see one if (edge_loc in edge_loc_set) or (edge_loc_rev in edge_loc_set): print("Oops, edge already seen, returning:", edge_loc) return # get distance to prev_loc and current loc proj_prev = shape.project(Point(prev_loc)) proj = shape.project(Point(loc)) # edge length is the diffence of the two projected lengths # along the linestring edge_length = abs(proj - proj_prev) # make linestring line_out = LineString([prev_loc, loc]) line_out_wkt = line_out.wkt edge_props = {'start': prev_node, 'start_loc_pix': prev_loc, 'end': node, 'end_loc_pix': loc, 'length_pix': edge_length, 'wkt_pix': line_out_wkt, 'geometry_pix': line_out, 'osmid': i} # print ("edge_props", edge_props) edge_loc_set.add(edge_loc) edge_dic[edge_iter] = edge_props edge_iter += 1 return node_loc_dic, edge_dic
def wkt_list_to_nodes_edges(wkt_list): '''Convert wkt list to nodes and edges Make an edge between each node in linestring. Since one linestring may contain multiple edges, this is the safest approach''' node_loc_set = set() # set of edge locations node_loc_dic = {} # key = node idx, val = location node_loc_dic_rev = {} # key = location, val = node idx edge_loc_set = set() # set of edge locations edge_dic = {} # edge properties node_iter = 0 edge_iter = 0 for i, lstring in enumerate(wkt_list): # get lstring properties shape = shapely.wkt.loads(lstring) xs, ys = shape.coords.xy length_orig = shape.length # iterate through coords in line to create edges between every point for j, (x, y) in enumerate(zip(xs, ys)): loc = (x, y) # for first item just make node, not edge if j == 0: # if not yet seen, create new node if loc not in node_loc_set: node_loc_set.add(loc) node_loc_dic[node_iter] = loc node_loc_dic_rev[loc] = node_iter node = node_iter node_iter += 1 # if not first node in edge, retrieve previous node and build edge else: prev_loc = (xs[j - 1], ys[j - 1]) # print ("prev_loc:", prev_loc) prev_node = node_loc_dic_rev[prev_loc] # if new, create new node if loc not in node_loc_set: node_loc_set.add(loc) node_loc_dic[node_iter] = loc node_loc_dic_rev[loc] = node_iter node = node_iter node_iter += 1 # if seen before, retrieve node properties else: node = node_loc_dic_rev[loc] # add edge, which is start_node to end_node edge_loc = (loc, prev_loc) edge_loc_rev = (prev_loc, loc) # shouldn't be duplicate edges, so break if we see one if (edge_loc in edge_loc_set) or (edge_loc_rev in edge_loc_set): print("Oops, edge already seen, returning:", edge_loc) return # get distance to prev_loc and current loc proj_prev = shape.project(Point(prev_loc)) proj = shape.project(Point(loc)) # edge length is the diffence of the two projected lengths # along the linestring edge_length = abs(proj - proj_prev) # make linestring line_out = LineString([prev_loc, loc]) line_out_wkt = line_out.wkt edge_props = {'start': prev_node, 'start_loc_pix': prev_loc, 'end': node, 'end_loc_pix': loc, 'length_pix': edge_length, 'wkt_pix': line_out_wkt, 'geometry_pix': line_out, 'osmid': i} # print ("edge_props", edge_props) edge_loc_set.add(edge_loc) edge_dic[edge_iter] = edge_props edge_iter += 1 return node_loc_dic, edge_dic
Python
def wkt_list_to_nodes_edges_sloppy(wkt_list): '''Convert wkt list to nodes and edges Assumes each linestring corresponds to a unique edge Since this is not always the case, this function fails if a linestring contains multiple edges''' node_loc_set = set() # set of edge locations node_loc_dic = {} # key = node idx, val = location node_loc_dic_rev = {} # key = location, val = node idx edge_dic = {} # edge properties node_iter = 0 edge_iter = 0 for lstring in wkt_list: # get lstring properties shape = shapely.wkt.loads(lstring) x, y = shape.coords.xy length = shape.length # set start node start_loc = (x[0], y[0]) # if new, create new node if start_loc not in node_loc_set: node_loc_set.add(start_loc) node_loc_dic[node_iter] = start_loc node_loc_dic_rev[start_loc] = node_iter start_node = node_iter node_iter += 1 # if seen before, retrieve node properties else: start_node = node_loc_dic_rev[start_loc] # set end node (just like start node) end_loc = (x[-1], y[-1]) # if new, create new node if end_loc not in node_loc_set: node_loc_set.add(end_loc) node_loc_dic[node_iter] = end_loc node_loc_dic_rev[end_loc] = node_iter end_node = node_iter node_iter += 1 # if seen before, retrieve node properties else: end_node = node_loc_dic_rev[end_loc] # add edge, which is start_node to end_node edge_props = {'start': start_node, 'start_loc_pix': start_loc, 'end': end_node, 'end_loc_pix': end_loc, 'length_pix': length, 'wkt_pix': lstring, 'geometry_pix': shape} edge_dic[edge_iter] = edge_props edge_iter += 1 return node_loc_dic, edge_dic
def wkt_list_to_nodes_edges_sloppy(wkt_list): '''Convert wkt list to nodes and edges Assumes each linestring corresponds to a unique edge Since this is not always the case, this function fails if a linestring contains multiple edges''' node_loc_set = set() # set of edge locations node_loc_dic = {} # key = node idx, val = location node_loc_dic_rev = {} # key = location, val = node idx edge_dic = {} # edge properties node_iter = 0 edge_iter = 0 for lstring in wkt_list: # get lstring properties shape = shapely.wkt.loads(lstring) x, y = shape.coords.xy length = shape.length # set start node start_loc = (x[0], y[0]) # if new, create new node if start_loc not in node_loc_set: node_loc_set.add(start_loc) node_loc_dic[node_iter] = start_loc node_loc_dic_rev[start_loc] = node_iter start_node = node_iter node_iter += 1 # if seen before, retrieve node properties else: start_node = node_loc_dic_rev[start_loc] # set end node (just like start node) end_loc = (x[-1], y[-1]) # if new, create new node if end_loc not in node_loc_set: node_loc_set.add(end_loc) node_loc_dic[node_iter] = end_loc node_loc_dic_rev[end_loc] = node_iter end_node = node_iter node_iter += 1 # if seen before, retrieve node properties else: end_node = node_loc_dic_rev[end_loc] # add edge, which is start_node to end_node edge_props = {'start': start_node, 'start_loc_pix': start_loc, 'end': end_node, 'end_loc_pix': end_loc, 'length_pix': length, 'wkt_pix': lstring, 'geometry_pix': shape} edge_dic[edge_iter] = edge_props edge_iter += 1 return node_loc_dic, edge_dic
Python
def shp_to_G(shp_file): '''Ingest G from shapefile DOES NOT APPEAR TO WORK CORRECTLY''' G = nx.read_shp(shp_file) return G
def shp_to_G(shp_file): '''Ingest G from shapefile DOES NOT APPEAR TO WORK CORRECTLY''' G = nx.read_shp(shp_file) return G
Python
def convert_pix_lstring_to_geo(wkt_lstring, im_file, utm_zone=None, utm_letter=None, verbose=False): '''Convert linestring in pixel coords to geo coords If zone or letter changes inthe middle of line, it's all screwed up, so force zone and letter based on first point (latitude, longitude, force_zone_number=None, force_zone_letter=None) Or just force utm zone and letter explicitly ''' shape = wkt_lstring # shapely.wkt.loads(lstring) x_pixs, y_pixs = shape.coords.xy coords_latlon = [] coords_utm = [] for i, (x, y) in enumerate(zip(x_pixs, y_pixs)): targetSR = osr.SpatialReference() targetSR.ImportFromEPSG(4326) lon, lat = pixelToGeoCoord(x, y, im_file, targetSR=targetSR) if utm_zone and utm_letter: [utm_east, utm_north, _, _] = utm.from_latlon(lat, lon, force_zone_number=utm_zone, force_zone_letter=utm_letter) else: [utm_east, utm_north, utm_zone, utm_letter] = utm.from_latlon(lat, lon) # # If zone or letter changes inthe middle of line, it's all screwed up, so # # force zone and letter based on first point # if i == 0: # [utm_east, utm_north, utm_zone, utm_letter] = utm.from_latlon(lat, lon) # else: # [utm_east, utm_north, _, _] = utm.from_latlon(lat, lon, # force_zone_number=utm_zone, force_zone_letter=utm_letter) if verbose: print("lat lon, utm_east, utm_north, utm_zone, utm_letter]", [lat, lon, utm_east, utm_north, utm_zone, utm_letter]) coords_utm.append([utm_east, utm_north]) coords_latlon.append([lon, lat]) lstring_latlon = LineString([Point(z) for z in coords_latlon]) lstring_utm = LineString([Point(z) for z in coords_utm]) return lstring_latlon, lstring_utm, utm_zone, utm_letter
def convert_pix_lstring_to_geo(wkt_lstring, im_file, utm_zone=None, utm_letter=None, verbose=False): '''Convert linestring in pixel coords to geo coords If zone or letter changes inthe middle of line, it's all screwed up, so force zone and letter based on first point (latitude, longitude, force_zone_number=None, force_zone_letter=None) Or just force utm zone and letter explicitly ''' shape = wkt_lstring # shapely.wkt.loads(lstring) x_pixs, y_pixs = shape.coords.xy coords_latlon = [] coords_utm = [] for i, (x, y) in enumerate(zip(x_pixs, y_pixs)): targetSR = osr.SpatialReference() targetSR.ImportFromEPSG(4326) lon, lat = pixelToGeoCoord(x, y, im_file, targetSR=targetSR) if utm_zone and utm_letter: [utm_east, utm_north, _, _] = utm.from_latlon(lat, lon, force_zone_number=utm_zone, force_zone_letter=utm_letter) else: [utm_east, utm_north, utm_zone, utm_letter] = utm.from_latlon(lat, lon) # # If zone or letter changes inthe middle of line, it's all screwed up, so # # force zone and letter based on first point # if i == 0: # [utm_east, utm_north, utm_zone, utm_letter] = utm.from_latlon(lat, lon) # else: # [utm_east, utm_north, _, _] = utm.from_latlon(lat, lon, # force_zone_number=utm_zone, force_zone_letter=utm_letter) if verbose: print("lat lon, utm_east, utm_north, utm_zone, utm_letter]", [lat, lon, utm_east, utm_north, utm_zone, utm_letter]) coords_utm.append([utm_east, utm_north]) coords_latlon.append([lon, lat]) lstring_latlon = LineString([Point(z) for z in coords_latlon]) lstring_utm = LineString([Point(z) for z in coords_utm]) return lstring_latlon, lstring_utm, utm_zone, utm_letter
Python
def load_speed_conversion_dict_binned(csv_loc, speed_increment=5): '''Load speed to burn_val conversion dataframe and create conversion dictionary. speed_increment is the increment of speed limits in mph 10 mph bins go from 1-10, and 21-30, etc. breakdown of speed limits in training set: # 15.0 5143 # 18.75 6232 # 20.0 18098 # 22.5 347 # 25.0 16526 # 26.25 50 # 30.0 734 # 33.75 26 # 35.0 3583 # 41.25 16 # 45.0 2991 # 48.75 17 # 55.0 2081 # 65.0 407 Assuming a similar distribut in the test set allos us to ''' df_ = pd.read_csv(csv_loc, index_col=0) # get dict of channel to speed df = df_[['channel', 'speed']] # simple mean of speed bins means = df.groupby(['channel']).mean().astype(int) dic = means.to_dict()['speed'] # speeds are every 5 mph, so take the mean of the 5 mph bins # z = [tmp for tmp in a if tmp%5==0] # or just add increment/2 to means... dic.update((x, y + speed_increment / 2) for x, y in dic.items()) ########## # OPTIONAL # if using 10mph bins, update dic dic[0] = 7.5 dic[1] = 17.5 # 15, 18.75, and 20 are all common dic[2] = 25 # 25 mph speed limit is ubiquitous dic[3] = 35 # 35 mph speed limit is ubiquitous dic[4] = 45 # 45 mph speed limit is ubiquitous dic[5] = 55 # 55 mph speed limit is ubiquitous dic[6] = 65 # 65 mph speed limit is ubiquitous ########## return df_, dic
def load_speed_conversion_dict_binned(csv_loc, speed_increment=5): '''Load speed to burn_val conversion dataframe and create conversion dictionary. speed_increment is the increment of speed limits in mph 10 mph bins go from 1-10, and 21-30, etc. breakdown of speed limits in training set: # 15.0 5143 # 18.75 6232 # 20.0 18098 # 22.5 347 # 25.0 16526 # 26.25 50 # 30.0 734 # 33.75 26 # 35.0 3583 # 41.25 16 # 45.0 2991 # 48.75 17 # 55.0 2081 # 65.0 407 Assuming a similar distribut in the test set allos us to ''' df_ = pd.read_csv(csv_loc, index_col=0) # get dict of channel to speed df = df_[['channel', 'speed']] # simple mean of speed bins means = df.groupby(['channel']).mean().astype(int) dic = means.to_dict()['speed'] # speeds are every 5 mph, so take the mean of the 5 mph bins # z = [tmp for tmp in a if tmp%5==0] # or just add increment/2 to means... dic.update((x, y + speed_increment / 2) for x, y in dic.items()) ########## # OPTIONAL # if using 10mph bins, update dic dic[0] = 7.5 dic[1] = 17.5 # 15, 18.75, and 20 are all common dic[2] = 25 # 25 mph speed limit is ubiquitous dic[3] = 35 # 35 mph speed limit is ubiquitous dic[4] = 45 # 45 mph speed limit is ubiquitous dic[5] = 55 # 55 mph speed limit is ubiquitous dic[6] = 65 # 65 mph speed limit is ubiquitous ########## return df_, dic
Python
def add_travel_time_dir(graph_dir, mask_dir, conv_dict, graph_dir_out, min_z=128, dx=4, dy=4, percentile=90, use_totband=True, use_weighted_mean=True, variable_edge_speed=False, mask_prefix='', save_shapefiles=True, verbose=False): '''Update graph properties to include travel time for entire directory''' pickle_protocol = 4 # 4 is most recent, python 2.7 can't read 4 logger1.info("Updating graph properties to include travel time") logger1.info(" Writing to: " + str(graph_dir_out)) os.makedirs(graph_dir_out, exist_ok=True) image_names = sorted([z for z in os.listdir(mask_dir) if z.endswith('.tif')]) imfiles_args = [[image_name, pickle_protocol, graph_dir, mask_dir, conv_dict, graph_dir_out, min_z, dx, dy, percentile, use_totband, use_weighted_mean, variable_edge_speed, mask_prefix, save_shapefiles, verbose] for image_name in image_names] with multiprocessing.Pool(16) as pool: list(pool.starmap(add_travel_time_img, imfiles_args)) # all_data = [data for cur_data in all_data for data in cur_data] # for i, image_name in enumerate(image_names): # im_root = image_name.split('.')[0] # if len(mask_prefix) > 0: # im_root = im_root.split(mask_prefix)[-1] # out_file = os.path.join(graph_dir_out, im_root + '.gpickle') # # if (i % 1) == 0: # logger1.info("\n" + str(i + 1) + " / " + str(len(image_names)) + " " + image_name + " " + im_root) # mask_path = os.path.join(mask_dir, image_name) # graph_path = os.path.join(graph_dir, im_root + '.gpickle') # # if not os.path.exists(graph_path): # logger1.info(" ", i, "DNE, skipping: " + str(graph_path)) # return # # continue # # if verbose: # logger1.info("mask_path: " + mask_path) # logger1.info("graph_path: " + graph_path) # # mask = skimage.io.imread(mask_path) # G_raw = nx.read_gpickle(graph_path) # # # see if it's empty # if len(G_raw.nodes()) == 0: # nx.write_gpickle(G_raw, out_file, protocol=pickle_protocol) # continue # # G = infer_travel_time(G_raw, mask, conv_dict, # min_z=min_z, dx=dx, dy=dy, # percentile=percentile, # use_totband=use_totband, # use_weighted_mean=use_weighted_mean, # variable_edge_speed=variable_edge_speed, # verbose=verbose) # G = G.to_undirected() # # save graph # # logger1.info("Saving graph to directory: " + graph_dir) # # out_file = os.path.join(graph_dir_out, image_name.split('.')[0] + '.gpickle') # nx.write_gpickle(G, out_file, protocol=pickle_protocol) # # # save shapefile as well? # if save_shapefiles: # G_out = G # ox.simplify_graph(G.to_directed()) # logger1.info("Saving shapefile to directory: {}".format(graph_dir_out)) # ox.save_graph_shapefile(G_out, filename=im_root, folder=graph_dir_out, # encoding='utf-8') # # out_file2 = os.path.join(graph_dir, image_id.split('.')[0] + '.graphml') # # ox.save_graphml(G, image_id.split('.')[0] + '.graphml', folder=graph_dir) return
def add_travel_time_dir(graph_dir, mask_dir, conv_dict, graph_dir_out, min_z=128, dx=4, dy=4, percentile=90, use_totband=True, use_weighted_mean=True, variable_edge_speed=False, mask_prefix='', save_shapefiles=True, verbose=False): '''Update graph properties to include travel time for entire directory''' pickle_protocol = 4 # 4 is most recent, python 2.7 can't read 4 logger1.info("Updating graph properties to include travel time") logger1.info(" Writing to: " + str(graph_dir_out)) os.makedirs(graph_dir_out, exist_ok=True) image_names = sorted([z for z in os.listdir(mask_dir) if z.endswith('.tif')]) imfiles_args = [[image_name, pickle_protocol, graph_dir, mask_dir, conv_dict, graph_dir_out, min_z, dx, dy, percentile, use_totband, use_weighted_mean, variable_edge_speed, mask_prefix, save_shapefiles, verbose] for image_name in image_names] with multiprocessing.Pool(16) as pool: list(pool.starmap(add_travel_time_img, imfiles_args)) # all_data = [data for cur_data in all_data for data in cur_data] # for i, image_name in enumerate(image_names): # im_root = image_name.split('.')[0] # if len(mask_prefix) > 0: # im_root = im_root.split(mask_prefix)[-1] # out_file = os.path.join(graph_dir_out, im_root + '.gpickle') # # if (i % 1) == 0: # logger1.info("\n" + str(i + 1) + " / " + str(len(image_names)) + " " + image_name + " " + im_root) # mask_path = os.path.join(mask_dir, image_name) # graph_path = os.path.join(graph_dir, im_root + '.gpickle') # # if not os.path.exists(graph_path): # logger1.info(" ", i, "DNE, skipping: " + str(graph_path)) # return # # continue # # if verbose: # logger1.info("mask_path: " + mask_path) # logger1.info("graph_path: " + graph_path) # # mask = skimage.io.imread(mask_path) # G_raw = nx.read_gpickle(graph_path) # # # see if it's empty # if len(G_raw.nodes()) == 0: # nx.write_gpickle(G_raw, out_file, protocol=pickle_protocol) # continue # # G = infer_travel_time(G_raw, mask, conv_dict, # min_z=min_z, dx=dx, dy=dy, # percentile=percentile, # use_totband=use_totband, # use_weighted_mean=use_weighted_mean, # variable_edge_speed=variable_edge_speed, # verbose=verbose) # G = G.to_undirected() # # save graph # # logger1.info("Saving graph to directory: " + graph_dir) # # out_file = os.path.join(graph_dir_out, image_name.split('.')[0] + '.gpickle') # nx.write_gpickle(G, out_file, protocol=pickle_protocol) # # # save shapefile as well? # if save_shapefiles: # G_out = G # ox.simplify_graph(G.to_directed()) # logger1.info("Saving shapefile to directory: {}".format(graph_dir_out)) # ox.save_graph_shapefile(G_out, filename=im_root, folder=graph_dir_out, # encoding='utf-8') # # out_file2 = os.path.join(graph_dir, image_id.split('.')[0] + '.graphml') # # ox.save_graphml(G, image_id.split('.')[0] + '.graphml', folder=graph_dir) return
Python
def clean_sub_graphs(G_, min_length=150, max_nodes_to_skip=100, weight='length_pix', verbose=True, super_verbose=False): '''Remove subgraphs with a max path length less than min_length, if the subgraph has more than max_noxes_to_skip, don't check length (this step great improves processing time)''' if len(G_.nodes()) == 0: return G_ # print ("Running clean_sub_graphs...") sub_graphs = list(nx.connected_component_subgraphs(G_)) bad_nodes = [] for G_sub in sub_graphs: # don't check length if too many nodes in subgraph if len(G_sub.nodes()) > max_nodes_to_skip: continue else: all_lengths = dict(nx.all_pairs_dijkstra_path_length(G_sub, weight=weight)) # get all lenghts lens = [] #for u,v in all_lengths.iteritems(): for u in all_lengths.keys(): v = all_lengths[u] #for uprime, vprime in v.iteritems(): for uprime in v.keys(): vprime = v[uprime] lens.append(vprime) max_len = np.max(lens) if max_len < min_length: bad_nodes.extend(G_sub.nodes()) # remove bad_nodes G_.remove_nodes_from(bad_nodes) return G_
def clean_sub_graphs(G_, min_length=150, max_nodes_to_skip=100, weight='length_pix', verbose=True, super_verbose=False): '''Remove subgraphs with a max path length less than min_length, if the subgraph has more than max_noxes_to_skip, don't check length (this step great improves processing time)''' if len(G_.nodes()) == 0: return G_ # print ("Running clean_sub_graphs...") sub_graphs = list(nx.connected_component_subgraphs(G_)) bad_nodes = [] for G_sub in sub_graphs: # don't check length if too many nodes in subgraph if len(G_sub.nodes()) > max_nodes_to_skip: continue else: all_lengths = dict(nx.all_pairs_dijkstra_path_length(G_sub, weight=weight)) # get all lenghts lens = [] #for u,v in all_lengths.iteritems(): for u in all_lengths.keys(): v = all_lengths[u] #for uprime, vprime in v.iteritems(): for uprime in v.keys(): vprime = v[uprime] lens.append(vprime) max_len = np.max(lens) if max_len < min_length: bad_nodes.extend(G_sub.nodes()) # remove bad_nodes G_.remove_nodes_from(bad_nodes) return G_
Python
def dl_post_process_pred(mask, glob_thresh=80, kernel_size=9, min_area=2000, contour_smoothing=0.001, adapt_kernel=85, adapt_const=-3, outplot_file='', dpi=500, use_glob_thresh=False, kernel_open=19, verbose=False): '''Refine mask file and return both refined mask and skeleton''' t0 = time.time() kernel_blur = kernel_size #9 kernel_close = kernel_size #9 #kernel_open = kernel_size #9 kernel_close = np.ones((kernel_close,kernel_close), np.uint8) kernel_open = np.ones((kernel_open, kernel_open), np.uint8) blur = cv2.medianBlur(mask, kernel_blur) # global thresh glob_thresh_arr = cv2.threshold(blur, glob_thresh, 1, cv2.THRESH_BINARY)[1] glob_thresh_arr_smooth = cv2.medianBlur(glob_thresh_arr, kernel_blur) t1 = time.time() # print ("Time to compute open(), close(), and get thresholds:", t1-t0, "seconds") if use_glob_thresh: mask_thresh = glob_thresh_arr_smooth else: adapt_thresh = cv2.adaptiveThreshold(mask,1,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\ cv2.THRESH_BINARY,adapt_kernel, adapt_const) # resmooth adapt_thresh_smooth = cv2.medianBlur(adapt_thresh, kernel_blur) mask_thresh = adapt_thresh_smooth closing = cv2.morphologyEx(mask_thresh, cv2.MORPH_CLOSE, kernel_close) opening = cv2.morphologyEx(closing, cv2.MORPH_OPEN, kernel_open) # try on bgRemoved? t2 = time.time() # set output if contour_smoothing < 0: final_mask = opening else: # contours # remove small items contours, cont_plot, hole_idxs = get_contours_complex(opening, min_thresh=glob_thresh, min_area=min_area, contour_smoothing=contour_smoothing) # for some reason contours don't extend to the edge, so clip the edge # and resize mask_filt_raw = get_mask(mask_thresh, cont_plot, hole_idxs=hole_idxs) shape_tmp = mask_filt_raw.shape mask_filt1 = 200 * cv2.resize(mask_filt_raw[2:-2, 2:-2], shape_tmp).astype(np.uint8) # thresh and resmooth mask_filt = cv2.GaussianBlur(mask_filt1, (kernel_blur, kernel_blur), 0) #mask_filt = cv2.threshold(mask_filt2, glob_thresh, 1, cv2.THRESH_BINARY) final_mask = mask_filt t3 = time.time() # print ("Time to smooth contours:", t3-t2, "seconds") # skeletonize #medial = medial_axis(final_mask) #medial_int = medial.astype(np.uint8) medial_int = medial_axis(final_mask).astype(np.uint8) # print ("Time to compute medial_axis:", time.time() - t3, "seconds") # print ("Time to run dl_post_process_pred():", time.time() - t0, "seconds") return final_mask, medial_int
def dl_post_process_pred(mask, glob_thresh=80, kernel_size=9, min_area=2000, contour_smoothing=0.001, adapt_kernel=85, adapt_const=-3, outplot_file='', dpi=500, use_glob_thresh=False, kernel_open=19, verbose=False): '''Refine mask file and return both refined mask and skeleton''' t0 = time.time() kernel_blur = kernel_size #9 kernel_close = kernel_size #9 #kernel_open = kernel_size #9 kernel_close = np.ones((kernel_close,kernel_close), np.uint8) kernel_open = np.ones((kernel_open, kernel_open), np.uint8) blur = cv2.medianBlur(mask, kernel_blur) # global thresh glob_thresh_arr = cv2.threshold(blur, glob_thresh, 1, cv2.THRESH_BINARY)[1] glob_thresh_arr_smooth = cv2.medianBlur(glob_thresh_arr, kernel_blur) t1 = time.time() # print ("Time to compute open(), close(), and get thresholds:", t1-t0, "seconds") if use_glob_thresh: mask_thresh = glob_thresh_arr_smooth else: adapt_thresh = cv2.adaptiveThreshold(mask,1,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\ cv2.THRESH_BINARY,adapt_kernel, adapt_const) # resmooth adapt_thresh_smooth = cv2.medianBlur(adapt_thresh, kernel_blur) mask_thresh = adapt_thresh_smooth closing = cv2.morphologyEx(mask_thresh, cv2.MORPH_CLOSE, kernel_close) opening = cv2.morphologyEx(closing, cv2.MORPH_OPEN, kernel_open) # try on bgRemoved? t2 = time.time() # set output if contour_smoothing < 0: final_mask = opening else: # contours # remove small items contours, cont_plot, hole_idxs = get_contours_complex(opening, min_thresh=glob_thresh, min_area=min_area, contour_smoothing=contour_smoothing) # for some reason contours don't extend to the edge, so clip the edge # and resize mask_filt_raw = get_mask(mask_thresh, cont_plot, hole_idxs=hole_idxs) shape_tmp = mask_filt_raw.shape mask_filt1 = 200 * cv2.resize(mask_filt_raw[2:-2, 2:-2], shape_tmp).astype(np.uint8) # thresh and resmooth mask_filt = cv2.GaussianBlur(mask_filt1, (kernel_blur, kernel_blur), 0) #mask_filt = cv2.threshold(mask_filt2, glob_thresh, 1, cv2.THRESH_BINARY) final_mask = mask_filt t3 = time.time() # print ("Time to smooth contours:", t3-t2, "seconds") # skeletonize #medial = medial_axis(final_mask) #medial_int = medial.astype(np.uint8) medial_int = medial_axis(final_mask).astype(np.uint8) # print ("Time to compute medial_axis:", time.time() - t3, "seconds") # print ("Time to run dl_post_process_pred():", time.time() - t0, "seconds") return final_mask, medial_int
Python
def make_skeleton(img_loc, thresh, debug, fix_borders, replicate=5, clip=2, img_mult=255, hole_size=300, cv2_kernel_close=7, cv2_kernel_open=7, use_medial_axis=False, num_classes=1, skeleton_band='all'): ''' Extract a skeleton from a mask. skeleton_band is the index of the band of the mask to use for skeleton extractionk, set to string 'all' to use all bands ''' # print ("Executing make_skeleton...") t0 = time.time() #replicate = 5 #clip = 2 rec = replicate + clip # read in data if num_classes == 1: try: img = cv2.imread(img_loc, cv2.IMREAD_GRAYSCALE) except: img = skimage.io.imread(img_loc, as_gray=True).astype(np.uint8)#[::-1] else: # ensure 8bit? img_tmp = skimage.io.imread(img_loc).astype(np.uint8) #img_tmp = skimage.io.imread(img_loc) # we want skimage to read in (channels, h, w) for multi-channel # assume less than 20 channels if img_tmp.shape[0] > 20: img_full = np.moveaxis(img_tmp, 0, -1) else: img_full = img_tmp # select the desired band for skeleton extraction # if < 0, sum all bands if type(skeleton_band) == str: #skeleton_band < 0: img = np.sum(img_full, axis=0).astype(np.int8) else: img = img_full[skeleton_band, :, :] # potentially keep only subset of data shape0 = img.shape if fix_borders: img = cv2.copyMakeBorder(img, replicate, replicate, replicate, replicate, cv2.BORDER_REPLICATE) img_copy = None if debug: if fix_borders: img_copy = np.copy(img[replicate:-replicate,replicate:-replicate]) else: img_copy = np.copy(img) t1 = time.time() img = preprocess(img, thresh, img_mult=img_mult, hole_size=hole_size, cv2_kernel_close=cv2_kernel_close, cv2_kernel_open=cv2_kernel_open) t2 = time.time() if not np.any(img): return None, None if not use_medial_axis: ske = skeletonize(img).astype(np.uint16) t3 = time.time() else: ske = skimage.morphology.medial_axis(img).astype(np.uint16) t3 = time.time() if fix_borders: ske = ske[rec:-rec, rec:-rec] ske = cv2.copyMakeBorder(ske, clip, clip, clip, clip, cv2.BORDER_CONSTANT, value=0) t4 = time.time() t1 = time.time() return img, ske
def make_skeleton(img_loc, thresh, debug, fix_borders, replicate=5, clip=2, img_mult=255, hole_size=300, cv2_kernel_close=7, cv2_kernel_open=7, use_medial_axis=False, num_classes=1, skeleton_band='all'): ''' Extract a skeleton from a mask. skeleton_band is the index of the band of the mask to use for skeleton extractionk, set to string 'all' to use all bands ''' # print ("Executing make_skeleton...") t0 = time.time() #replicate = 5 #clip = 2 rec = replicate + clip # read in data if num_classes == 1: try: img = cv2.imread(img_loc, cv2.IMREAD_GRAYSCALE) except: img = skimage.io.imread(img_loc, as_gray=True).astype(np.uint8)#[::-1] else: # ensure 8bit? img_tmp = skimage.io.imread(img_loc).astype(np.uint8) #img_tmp = skimage.io.imread(img_loc) # we want skimage to read in (channels, h, w) for multi-channel # assume less than 20 channels if img_tmp.shape[0] > 20: img_full = np.moveaxis(img_tmp, 0, -1) else: img_full = img_tmp # select the desired band for skeleton extraction # if < 0, sum all bands if type(skeleton_band) == str: #skeleton_band < 0: img = np.sum(img_full, axis=0).astype(np.int8) else: img = img_full[skeleton_band, :, :] # potentially keep only subset of data shape0 = img.shape if fix_borders: img = cv2.copyMakeBorder(img, replicate, replicate, replicate, replicate, cv2.BORDER_REPLICATE) img_copy = None if debug: if fix_borders: img_copy = np.copy(img[replicate:-replicate,replicate:-replicate]) else: img_copy = np.copy(img) t1 = time.time() img = preprocess(img, thresh, img_mult=img_mult, hole_size=hole_size, cv2_kernel_close=cv2_kernel_close, cv2_kernel_open=cv2_kernel_open) t2 = time.time() if not np.any(img): return None, None if not use_medial_axis: ske = skeletonize(img).astype(np.uint16) t3 = time.time() else: ske = skimage.morphology.medial_axis(img).astype(np.uint16) t3 = time.time() if fix_borders: ske = ske[rec:-rec, rec:-rec] ske = cv2.copyMakeBorder(ske, clip, clip, clip, clip, cv2.BORDER_CONSTANT, value=0) t4 = time.time() t1 = time.time() return img, ske
Python
def build_wkt_dir(indir, outfile, out_ske_dir, out_gdir='', thresh=0.3, im_prefix='', debug=False, add_small=True, fix_borders=True, skel_replicate=5, skel_clip=2, img_mult=255, hole_size=300, cv2_kernel_close=7, cv2_kernel_open=7, min_subgraph_length_pix=50, spacenet_naming_convention=False, num_classes=1, skeleton_band='all'): '''Execute built_graph_wkt for an entire folder Split image name on AOI, keep only name after AOI. This is necessary for scoring''' all_data = [] im_files = np.sort([z for z in os.listdir(indir) if z.endswith('.tif')]) nfiles = len(im_files) print(indir, nfiles) args_list = [] for i, imfile in tqdm.tqdm(enumerate(im_files), total=nfiles): args = ( imfile, im_prefix, indir, spacenet_naming_convention, out_ske_dir, out_gdir, thresh, debug, add_small, fix_borders, skel_replicate, skel_clip, img_mult, hole_size, cv2_kernel_close, cv2_kernel_open, min_subgraph_length_pix, num_classes, skeleton_band, ) args_list.append(args) with Pool(cpu_count()) as p: data = list(tqdm.tqdm( iterable=p.imap_unordered(_build_graph_wkt_iterable, args_list), total=len(args_list))) for im_root, wkt_list in sorted(data): for v in wkt_list: all_data.append((im_root, v)) # save to csv df = pd.DataFrame(all_data, columns=['ImageId', 'WKT_Pix']) df.to_csv(outfile, index=False) return df
def build_wkt_dir(indir, outfile, out_ske_dir, out_gdir='', thresh=0.3, im_prefix='', debug=False, add_small=True, fix_borders=True, skel_replicate=5, skel_clip=2, img_mult=255, hole_size=300, cv2_kernel_close=7, cv2_kernel_open=7, min_subgraph_length_pix=50, spacenet_naming_convention=False, num_classes=1, skeleton_band='all'): '''Execute built_graph_wkt for an entire folder Split image name on AOI, keep only name after AOI. This is necessary for scoring''' all_data = [] im_files = np.sort([z for z in os.listdir(indir) if z.endswith('.tif')]) nfiles = len(im_files) print(indir, nfiles) args_list = [] for i, imfile in tqdm.tqdm(enumerate(im_files), total=nfiles): args = ( imfile, im_prefix, indir, spacenet_naming_convention, out_ske_dir, out_gdir, thresh, debug, add_small, fix_borders, skel_replicate, skel_clip, img_mult, hole_size, cv2_kernel_close, cv2_kernel_open, min_subgraph_length_pix, num_classes, skeleton_band, ) args_list.append(args) with Pool(cpu_count()) as p: data = list(tqdm.tqdm( iterable=p.imap_unordered(_build_graph_wkt_iterable, args_list), total=len(args_list))) for im_root, wkt_list in sorted(data): for v in wkt_list: all_data.append((im_root, v)) # save to csv df = pd.DataFrame(all_data, columns=['ImageId', 'WKT_Pix']) df.to_csv(outfile, index=False) return df
Python
def efficientnet_params(model_name): """ Map EfficientNet model name to parameter coefficients. """ params_dict = { # Coefficients: width,depth,res,dropout 'efficientnet_b0': (1.0, 1.0, 224, 0.2), 'efficientnet_b1': (1.0, 1.1, 240, 0.2), 'efficientnet_b2': (1.1, 1.2, 260, 0.3), 'efficientnet_b3': (1.2, 1.4, 300, 0.3), 'efficientnet_b4': (1.4, 1.8, 380, 0.4), 'efficientnet_b5': (1.6, 2.2, 456, 0.4), 'efficientnet_b6': (1.8, 2.6, 528, 0.5), 'efficientnet_b7': (2.0, 3.1, 600, 0.5), } return params_dict[model_name]
def efficientnet_params(model_name): """ Map EfficientNet model name to parameter coefficients. """ params_dict = { # Coefficients: width,depth,res,dropout 'efficientnet_b0': (1.0, 1.0, 224, 0.2), 'efficientnet_b1': (1.0, 1.1, 240, 0.2), 'efficientnet_b2': (1.1, 1.2, 260, 0.3), 'efficientnet_b3': (1.2, 1.4, 300, 0.3), 'efficientnet_b4': (1.4, 1.8, 380, 0.4), 'efficientnet_b5': (1.6, 2.2, 456, 0.4), 'efficientnet_b6': (1.8, 2.6, 528, 0.5), 'efficientnet_b7': (2.0, 3.1, 600, 0.5), } return params_dict[model_name]
Python
def extract_features(self, inputs): """ Returns output of the final convolution layer """ # Stem x = relu_fn(self._bn0(self._conv_stem(inputs))) print(x.size()) # Blocks for idx, block in enumerate(self._blocks): drop_connect_rate = self._global_params.drop_connect_rate if drop_connect_rate: drop_connect_rate *= float(idx) / len(self._blocks) x = block(x) # , drop_connect_rate) # see https://github.com/tensorflow/tpu/issues/381 print(idx, x.size()) return x
def extract_features(self, inputs): """ Returns output of the final convolution layer """ # Stem x = relu_fn(self._bn0(self._conv_stem(inputs))) print(x.size()) # Blocks for idx, block in enumerate(self._blocks): drop_connect_rate = self._global_params.drop_connect_rate if drop_connect_rate: drop_connect_rate *= float(idx) / len(self._blocks) x = block(x) # , drop_connect_rate) # see https://github.com/tensorflow/tpu/issues/381 print(idx, x.size()) return x
Python
def forward(self, inputs): """ Calls extract_features to extract features, applies final linear layer, and returns logits. """ # Convolution layers x = self.extract_features(inputs) # Head x = relu_fn(self._bn1(self._conv_head(x))) x = F.adaptive_avg_pool2d(x, 1).squeeze(-1).squeeze(-1) if self._dropout: x = F.dropout(x, p=self._dropout, training=self.training) x = self._fc(x) return x
def forward(self, inputs): """ Calls extract_features to extract features, applies final linear layer, and returns logits. """ # Convolution layers x = self.extract_features(inputs) # Head x = relu_fn(self._bn1(self._conv_head(x))) x = F.adaptive_avg_pool2d(x, 1).squeeze(-1).squeeze(-1) if self._dropout: x = F.dropout(x, p=self._dropout, training=self.training) x = self._fc(x) return x
Python
def _check_model_name_is_valid(cls, model_name, also_need_pretrained_weights=False): """ Validates model name. None that pretrained weights are only available for the first four models (efficientnet-b{i} for i in 0,1,2,3) at the moment. """ num_models = 4 if also_need_pretrained_weights else 8 valid_models = ['efficientnet_b' + str(i) for i in range(num_models)] if model_name.replace('-', '_') not in valid_models: raise ValueError('model_name should be one of: ' + ', '.join(valid_models))
def _check_model_name_is_valid(cls, model_name, also_need_pretrained_weights=False): """ Validates model name. None that pretrained weights are only available for the first four models (efficientnet-b{i} for i in 0,1,2,3) at the moment. """ num_models = 4 if also_need_pretrained_weights else 8 valid_models = ['efficientnet_b' + str(i) for i in range(num_models)] if model_name.replace('-', '_') not in valid_models: raise ValueError('model_name should be one of: ' + ', '.join(valid_models))
Python
def efficientnet_b0(pretrained=False, progress=True, **kwargs): """Constructs a EfficientNet-B0 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _efficientnet('efficientnet_b0', pretrained, progress, **kwargs)
def efficientnet_b0(pretrained=False, progress=True, **kwargs): """Constructs a EfficientNet-B0 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _efficientnet('efficientnet_b0', pretrained, progress, **kwargs)
Python
def efficientnet_b1(pretrained=False, progress=True, **kwargs): """Constructs a EfficientNet-B1 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _efficientnet('efficientnet_b1', pretrained, progress, **kwargs)
def efficientnet_b1(pretrained=False, progress=True, **kwargs): """Constructs a EfficientNet-B1 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _efficientnet('efficientnet_b1', pretrained, progress, **kwargs)
Python
def efficientnet_b2(pretrained=False, progress=True, **kwargs): """Constructs a EfficientNet-B2 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _efficientnet('efficientnet_b2', pretrained, progress, **kwargs)
def efficientnet_b2(pretrained=False, progress=True, **kwargs): """Constructs a EfficientNet-B2 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _efficientnet('efficientnet_b2', pretrained, progress, **kwargs)
Python
def efficientnet_b3(pretrained=False, progress=True, **kwargs): """Constructs a EfficientNet-B3 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _efficientnet('efficientnet_b3', pretrained, progress, **kwargs)
def efficientnet_b3(pretrained=False, progress=True, **kwargs): """Constructs a EfficientNet-B3 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _efficientnet('efficientnet_b3', pretrained, progress, **kwargs)
Python
def efficientnet_b4(progress=True, **kwargs): """Constructs a EfficientNet-B4 model. Args: progress (bool): If True, displays a progress bar of the download to stderr """ return _efficientnet('efficientnet_b4', False, progress, **kwargs)
def efficientnet_b4(progress=True, **kwargs): """Constructs a EfficientNet-B4 model. Args: progress (bool): If True, displays a progress bar of the download to stderr """ return _efficientnet('efficientnet_b4', False, progress, **kwargs)
Python
def efficientnet_b5(progress=True, **kwargs): """Constructs a EfficientNet-B5 model. Args: progress (bool): If True, displays a progress bar of the download to stderr """ return _efficientnet('efficientnet_b5', False, progress, **kwargs)
def efficientnet_b5(progress=True, **kwargs): """Constructs a EfficientNet-B5 model. Args: progress (bool): If True, displays a progress bar of the download to stderr """ return _efficientnet('efficientnet_b5', False, progress, **kwargs)
Python
def efficientnet_b6(progress=True, **kwargs): """Constructs a EfficientNet-B6 model. Args: progress (bool): If True, displays a progress bar of the download to stderr """ return _efficientnet('efficientnet_b6', False, progress, **kwargs)
def efficientnet_b6(progress=True, **kwargs): """Constructs a EfficientNet-B6 model. Args: progress (bool): If True, displays a progress bar of the download to stderr """ return _efficientnet('efficientnet_b6', False, progress, **kwargs)
Python
def efficientnet_b7(progress=True, **kwargs): """Constructs a EfficientNet-B7 model. Args: progress (bool): If True, displays a progress bar of the download to stderr """ return _efficientnet('efficientnet_b7', False, progress, **kwargs)
def efficientnet_b7(progress=True, **kwargs): """Constructs a EfficientNet-B7 model. Args: progress (bool): If True, displays a progress bar of the download to stderr """ return _efficientnet('efficientnet_b7', False, progress, **kwargs)
Python
def convert_pix_lstring_to_geo(wkt_lstring, im_file, utm_zone=None, utm_letter=None, verbose=False): '''Convert linestring in pixel coords to geo coords If zone or letter changes inthe middle of line, it's all screwed up, so force zone and letter based on first point (latitude, longitude, force_zone_number=None, force_zone_letter=None) Or just force utm zone and letter explicitly ''' shape = wkt_lstring #shapely.wkt.loads(lstring) x_pixs, y_pixs = shape.coords.xy coords_latlon = [] coords_utm = [] for i,(x,y) in enumerate(zip(x_pixs, y_pixs)): targetSR = osr.SpatialReference() targetSR.ImportFromEPSG(4326) lon, lat = pixelToGeoCoord(x, y, im_file, targetSR=targetSR) if utm_zone and utm_letter: [utm_east, utm_north, _, _] = utm.from_latlon(lat, lon, force_zone_number=utm_zone, force_zone_letter=utm_letter) else: [utm_east, utm_north, utm_zone, utm_letter] = utm.from_latlon(lat, lon) if verbose: print("lat lon, utm_east, utm_north, utm_zone, utm_letter]", [lat, lon, utm_east, utm_north, utm_zone, utm_letter]) coords_utm.append([utm_east, utm_north]) coords_latlon.append([lon, lat]) lstring_latlon = LineString([Point(z) for z in coords_latlon]) lstring_utm = LineString([Point(z) for z in coords_utm]) return lstring_latlon, lstring_utm, utm_zone, utm_letter
def convert_pix_lstring_to_geo(wkt_lstring, im_file, utm_zone=None, utm_letter=None, verbose=False): '''Convert linestring in pixel coords to geo coords If zone or letter changes inthe middle of line, it's all screwed up, so force zone and letter based on first point (latitude, longitude, force_zone_number=None, force_zone_letter=None) Or just force utm zone and letter explicitly ''' shape = wkt_lstring #shapely.wkt.loads(lstring) x_pixs, y_pixs = shape.coords.xy coords_latlon = [] coords_utm = [] for i,(x,y) in enumerate(zip(x_pixs, y_pixs)): targetSR = osr.SpatialReference() targetSR.ImportFromEPSG(4326) lon, lat = pixelToGeoCoord(x, y, im_file, targetSR=targetSR) if utm_zone and utm_letter: [utm_east, utm_north, _, _] = utm.from_latlon(lat, lon, force_zone_number=utm_zone, force_zone_letter=utm_letter) else: [utm_east, utm_north, utm_zone, utm_letter] = utm.from_latlon(lat, lon) if verbose: print("lat lon, utm_east, utm_north, utm_zone, utm_letter]", [lat, lon, utm_east, utm_north, utm_zone, utm_letter]) coords_utm.append([utm_east, utm_north]) coords_latlon.append([lon, lat]) lstring_latlon = LineString([Point(z) for z in coords_latlon]) lstring_utm = LineString([Point(z) for z in coords_utm]) return lstring_latlon, lstring_utm, utm_zone, utm_letter
Python
def post_process_image(df_pos_, data_dir, num_classes=1, im_prefix='', super_verbose=False): ''' For a dataframe of image positions (df_pos_), and the tiles of that image, reconstruct the image. Image can be a single band mask, a 3-band image, a multiband mask, or a multiband image. Adapted from basiss.py Assume that only one image root is in df_pos_ ''' # make sure we don't saturate overlapping, images, so rescale by a factor # of 4 (this allows us to not use np.uint16 for mask_raw) rescale_factor = 1 # get image width and height w, h = df_pos_['im_x'].values[0], df_pos_['im_y'].values[0] if num_classes == 1: # create numpy zeros of appropriate shape #mask_raw = np.zeros((h,w), dtype=np.uint8) # dtype=np.uint16) mask_raw = np.zeros((h,w), dtype=np.uint16) # = create another zero array to record which pixels are overlaid mask_norm = np.zeros((h,w), dtype=np.uint8) # dtype=np.uint16) else: # create numpy zeros of appropriate shape #mask_raw = np.zeros((h,w), dtype=np.uint8) # dtype=np.uint16) mask_raw = np.zeros((h,w, num_classes), dtype=np.uint16) # = create another zero array to record which pixels are overlaid mask_norm = np.zeros((h,w, num_classes), dtype=np.uint8) # dtype=np.uint16) overlay_count = np.zeros((h,w), dtype=np.uint8) # iterate through slices for i, (idx_tmp, item) in enumerate(df_pos_.iterrows()): if (i % 50) == 0: print (i, "/", len(df_pos_)) #print (i, "\n", idx_tmp, "\n", item) [row_val, idx, name, name_full, xmin, ymin, slice_x, slice_y, im_x, im_y] = item # add prefix, if required if len(im_prefix) > 0: name = im_prefix + name name_full = im_prefix + name_full if num_classes == 1: mask_slice_refine = cv2.imread(os.path.join(data_dir, name_full), 0) elif num_classes == 3: mask_slice_refine = cv2.imread(os.path.join(data_dir, name_full), 1) else: t01 = time.time() # mask_slice_refine = gdal.Open(os.path.join(data_dir, name_full)).ReadAsArray() # # make sure image is h,w,channels (assume less than 20 channels) # if (len(mask_slice_refine.shape) == 3) and (mask_slice_refine.shape[0] < 20): # mask_slice_refine = np.moveaxis(mask_slice_refine, 0, -1) # gdal is much faster, just needs some work !!!! # skimage plugin = 'tifffile' mask_slice_refine = skimage.io.imread(os.path.join(data_dir, name_full), plugin=plugin) # assume channels, h, w, so we want to reorder to h,w, channels? # assume less than 20 channels if mask_slice_refine.shape[0] <= 20: # print("reorder mask_slice_refine.shape", mask_slice_refine.shape) mask_slice_refine = np.moveaxis(mask_slice_refine, 0, -1) #print ("mask_slice_refine.shape:", mask_slice_refine.shape) #print ("Time to read image:", time.time() - t01, "seconds") # # we want skimage to read in (channels, h, w) for multi-channel # # assume less than 20 channels # #print ("mask_channels.shape:", mask_channels.shape) # if prob_arr_tmp.shape[0] > 20: # #print ("mask_channels.shape:", mask_channels.shape) # prob_arr = np.moveaxis(prob_arr_tmp, 0, -1) # #print ("mask.shape:", mask.shape) # rescale make slice? if rescale_factor != 1: mask_slice_refine = (mask_slice_refine / rescale_factor).astype(np.uint8) #print ("mask_slice_refine:", mask_slice_refine) if super_verbose: print ("item:", item) x0, x1 = xmin, xmin + slice_x y0, y1 = ymin, ymin + slice_y if num_classes == 1: # add mask to mask_raw mask_raw[y0:y1, x0:x1] += mask_slice_refine else: # add mask to mask_raw mask_raw[y0:y1, x0:x1, :] += mask_slice_refine # per channel #for c in range(num_classes): # mask_raw[y0:y1, x0:x1, c] += mask_slice_refine[:,:,c] # update count overlay_count[y0:y1, x0:x1] += np.ones((slice_y, slice_x), dtype=np.uint8) # compute normalized mask # if overlay_count == 0, reset to 1 overlay_count[np.where(overlay_count == 0)] = 1 if rescale_factor != 1: mask_raw = mask_raw.astype(np.uint8) #print ("np.max(overlay_count):", np.max(overlay_count)) #print ("np.min(overlay_count):", np.min(overlay_count)) # throws a memory error if using np.divide... if (w < 60000) and (h < 60000): if num_classes == 1: mask_norm = np.divide(mask_raw, overlay_count).astype(np.uint8) else: for j in range(num_classes): mask_norm[:,:,j] = np.divide(mask_raw[:,:,j], overlay_count).astype(np.uint8) else: for j in range(h): #print ("j:", j) mask_norm[j] = (mask_raw[j] / overlay_count[j]).astype(np.uint8) # # throws a memory error if using np.divide... # if (w < 60000) and (h < 60000): # mask_norm = np.divide(mask_raw, overlay_count).astype(np.uint8) # else: # for j in range(h): # #print ("j:", j) # mask_norm[j] = (mask_raw[j] / overlay_count[j]).astype(np.uint8) # #for k in range(w): # # mask_norm[j,k] = (mask_raw[j,k] / overlay_count[j,k]).astype(np.uint8) # rescale mask_norm if rescale_factor != 1: mask_norm = (mask_norm * rescale_factor).astype(np.uint8) #print ("mask_norm.shape:", mask_norm.shape) #print ("mask_norm.dtype:", mask_norm.dtype) return name, mask_norm, mask_raw, overlay_count
def post_process_image(df_pos_, data_dir, num_classes=1, im_prefix='', super_verbose=False): ''' For a dataframe of image positions (df_pos_), and the tiles of that image, reconstruct the image. Image can be a single band mask, a 3-band image, a multiband mask, or a multiband image. Adapted from basiss.py Assume that only one image root is in df_pos_ ''' # make sure we don't saturate overlapping, images, so rescale by a factor # of 4 (this allows us to not use np.uint16 for mask_raw) rescale_factor = 1 # get image width and height w, h = df_pos_['im_x'].values[0], df_pos_['im_y'].values[0] if num_classes == 1: # create numpy zeros of appropriate shape #mask_raw = np.zeros((h,w), dtype=np.uint8) # dtype=np.uint16) mask_raw = np.zeros((h,w), dtype=np.uint16) # = create another zero array to record which pixels are overlaid mask_norm = np.zeros((h,w), dtype=np.uint8) # dtype=np.uint16) else: # create numpy zeros of appropriate shape #mask_raw = np.zeros((h,w), dtype=np.uint8) # dtype=np.uint16) mask_raw = np.zeros((h,w, num_classes), dtype=np.uint16) # = create another zero array to record which pixels are overlaid mask_norm = np.zeros((h,w, num_classes), dtype=np.uint8) # dtype=np.uint16) overlay_count = np.zeros((h,w), dtype=np.uint8) # iterate through slices for i, (idx_tmp, item) in enumerate(df_pos_.iterrows()): if (i % 50) == 0: print (i, "/", len(df_pos_)) #print (i, "\n", idx_tmp, "\n", item) [row_val, idx, name, name_full, xmin, ymin, slice_x, slice_y, im_x, im_y] = item # add prefix, if required if len(im_prefix) > 0: name = im_prefix + name name_full = im_prefix + name_full if num_classes == 1: mask_slice_refine = cv2.imread(os.path.join(data_dir, name_full), 0) elif num_classes == 3: mask_slice_refine = cv2.imread(os.path.join(data_dir, name_full), 1) else: t01 = time.time() # mask_slice_refine = gdal.Open(os.path.join(data_dir, name_full)).ReadAsArray() # # make sure image is h,w,channels (assume less than 20 channels) # if (len(mask_slice_refine.shape) == 3) and (mask_slice_refine.shape[0] < 20): # mask_slice_refine = np.moveaxis(mask_slice_refine, 0, -1) # gdal is much faster, just needs some work !!!! # skimage plugin = 'tifffile' mask_slice_refine = skimage.io.imread(os.path.join(data_dir, name_full), plugin=plugin) # assume channels, h, w, so we want to reorder to h,w, channels? # assume less than 20 channels if mask_slice_refine.shape[0] <= 20: # print("reorder mask_slice_refine.shape", mask_slice_refine.shape) mask_slice_refine = np.moveaxis(mask_slice_refine, 0, -1) #print ("mask_slice_refine.shape:", mask_slice_refine.shape) #print ("Time to read image:", time.time() - t01, "seconds") # # we want skimage to read in (channels, h, w) for multi-channel # # assume less than 20 channels # #print ("mask_channels.shape:", mask_channels.shape) # if prob_arr_tmp.shape[0] > 20: # #print ("mask_channels.shape:", mask_channels.shape) # prob_arr = np.moveaxis(prob_arr_tmp, 0, -1) # #print ("mask.shape:", mask.shape) # rescale make slice? if rescale_factor != 1: mask_slice_refine = (mask_slice_refine / rescale_factor).astype(np.uint8) #print ("mask_slice_refine:", mask_slice_refine) if super_verbose: print ("item:", item) x0, x1 = xmin, xmin + slice_x y0, y1 = ymin, ymin + slice_y if num_classes == 1: # add mask to mask_raw mask_raw[y0:y1, x0:x1] += mask_slice_refine else: # add mask to mask_raw mask_raw[y0:y1, x0:x1, :] += mask_slice_refine # per channel #for c in range(num_classes): # mask_raw[y0:y1, x0:x1, c] += mask_slice_refine[:,:,c] # update count overlay_count[y0:y1, x0:x1] += np.ones((slice_y, slice_x), dtype=np.uint8) # compute normalized mask # if overlay_count == 0, reset to 1 overlay_count[np.where(overlay_count == 0)] = 1 if rescale_factor != 1: mask_raw = mask_raw.astype(np.uint8) #print ("np.max(overlay_count):", np.max(overlay_count)) #print ("np.min(overlay_count):", np.min(overlay_count)) # throws a memory error if using np.divide... if (w < 60000) and (h < 60000): if num_classes == 1: mask_norm = np.divide(mask_raw, overlay_count).astype(np.uint8) else: for j in range(num_classes): mask_norm[:,:,j] = np.divide(mask_raw[:,:,j], overlay_count).astype(np.uint8) else: for j in range(h): #print ("j:", j) mask_norm[j] = (mask_raw[j] / overlay_count[j]).astype(np.uint8) # # throws a memory error if using np.divide... # if (w < 60000) and (h < 60000): # mask_norm = np.divide(mask_raw, overlay_count).astype(np.uint8) # else: # for j in range(h): # #print ("j:", j) # mask_norm[j] = (mask_raw[j] / overlay_count[j]).astype(np.uint8) # #for k in range(w): # # mask_norm[j,k] = (mask_raw[j,k] / overlay_count[j,k]).astype(np.uint8) # rescale mask_norm if rescale_factor != 1: mask_norm = (mask_norm * rescale_factor).astype(np.uint8) #print ("mask_norm.shape:", mask_norm.shape) #print ("mask_norm.dtype:", mask_norm.dtype) return name, mask_norm, mask_raw, overlay_count
Python
def post_process_image_3band(df_pos_, data_dir, n_bands=3, im_prefix='', super_verbose=False): ''' For a dataframe of image positions (df_pos_), and the tiles of that image, reconstruct the image. Adapted from basiss.py Assume that only one image root is in df_pos_ ''' # make sure we don't saturate overlapping, images, so rescale by a factor # of 4 (this allows us to not use np.uint16 for im_raw) rescale_factor = 1 # get image width and height w, h = df_pos_['im_x'].values[0], df_pos_['im_y'].values[0] # create numpy zeros of appropriate shape #im_raw = np.zeros((h,w), dtype=np.uint8) # dtype=np.uint16) im_raw = np.zeros((h,w,n_bands), dtype=np.uint16) # = create another zero array to record which pixels are overlaid im_norm = np.zeros((h,w,n_bands), dtype=np.uint8) # dtype=np.uint16) overlay_count = np.zeros((h,w), dtype=np.uint8) # iterate through slices for i, (idx_tmp, item) in enumerate(df_pos_.iterrows()): if (i % 100) == 0: print (i, "/", len(df_pos_)) #print (i, "\n", idx_tmp, "\n", item) [row_val, idx, name, name_full, xmin, ymin, slice_x, slice_y, im_x, im_y] = item if len(im_prefix) > 0: name = im_prefix + name name_full = im_prefix + name_full # read in image if n_bands == 3: im_slice_refine = cv2.imread(os.path.join(data_dir, name_full), 1) else: print ("Still need to write code to handle multispecral data...") return # rescale make slice? if rescale_factor != 1: im_slice_refine = (im_slice_refine / rescale_factor).astype(np.uint8) #print ("im_slice_refine:", im_slice_refine) if super_verbose: print ("item:", item) x0, x1 = xmin, xmin + slice_x y0, y1 = ymin, ymin + slice_y #print ("x0, x1, y0, y1,", x0, x1, y0, y1) # add data to im_raw for each band for j in range(n_bands): im_raw[y0:y1, x0:x1, j] += im_slice_refine[:,:,j] # update count overlay_count[y0:y1, x0:x1] += np.ones((slice_y, slice_x), dtype=np.uint8) # compute normalized im # if overlay_count == 0, reset to 1 overlay_count[np.where(overlay_count == 0)] = 1 if rescale_factor != 1: im_raw = im_raw.astype(np.uint8) #print ("np.max(overlay_count):", np.max(overlay_count)) #print ("np.min(overlay_count):", np.min(overlay_count)) # throws a memory error if using np.divide... if h < 60000: for j in range(n_bands): im_norm[:,:,j] = np.divide(im_raw[:,:,j], overlay_count).astype(np.uint8) else: for j in range(h): #print ("j:", j) im_norm[j] = (im_raw[j] / overlay_count[j]).astype(np.uint8) # rescale im_norm if rescale_factor != 1: im_norm = (im_norm * rescale_factor).astype(np.uint8) #print ("im_norm.shape:", im_norm.shape) #print ("im_norm.dtype:", im_norm.dtype) return name, im_norm, im_raw, overlay_count
def post_process_image_3band(df_pos_, data_dir, n_bands=3, im_prefix='', super_verbose=False): ''' For a dataframe of image positions (df_pos_), and the tiles of that image, reconstruct the image. Adapted from basiss.py Assume that only one image root is in df_pos_ ''' # make sure we don't saturate overlapping, images, so rescale by a factor # of 4 (this allows us to not use np.uint16 for im_raw) rescale_factor = 1 # get image width and height w, h = df_pos_['im_x'].values[0], df_pos_['im_y'].values[0] # create numpy zeros of appropriate shape #im_raw = np.zeros((h,w), dtype=np.uint8) # dtype=np.uint16) im_raw = np.zeros((h,w,n_bands), dtype=np.uint16) # = create another zero array to record which pixels are overlaid im_norm = np.zeros((h,w,n_bands), dtype=np.uint8) # dtype=np.uint16) overlay_count = np.zeros((h,w), dtype=np.uint8) # iterate through slices for i, (idx_tmp, item) in enumerate(df_pos_.iterrows()): if (i % 100) == 0: print (i, "/", len(df_pos_)) #print (i, "\n", idx_tmp, "\n", item) [row_val, idx, name, name_full, xmin, ymin, slice_x, slice_y, im_x, im_y] = item if len(im_prefix) > 0: name = im_prefix + name name_full = im_prefix + name_full # read in image if n_bands == 3: im_slice_refine = cv2.imread(os.path.join(data_dir, name_full), 1) else: print ("Still need to write code to handle multispecral data...") return # rescale make slice? if rescale_factor != 1: im_slice_refine = (im_slice_refine / rescale_factor).astype(np.uint8) #print ("im_slice_refine:", im_slice_refine) if super_verbose: print ("item:", item) x0, x1 = xmin, xmin + slice_x y0, y1 = ymin, ymin + slice_y #print ("x0, x1, y0, y1,", x0, x1, y0, y1) # add data to im_raw for each band for j in range(n_bands): im_raw[y0:y1, x0:x1, j] += im_slice_refine[:,:,j] # update count overlay_count[y0:y1, x0:x1] += np.ones((slice_y, slice_x), dtype=np.uint8) # compute normalized im # if overlay_count == 0, reset to 1 overlay_count[np.where(overlay_count == 0)] = 1 if rescale_factor != 1: im_raw = im_raw.astype(np.uint8) #print ("np.max(overlay_count):", np.max(overlay_count)) #print ("np.min(overlay_count):", np.min(overlay_count)) # throws a memory error if using np.divide... if h < 60000: for j in range(n_bands): im_norm[:,:,j] = np.divide(im_raw[:,:,j], overlay_count).astype(np.uint8) else: for j in range(h): #print ("j:", j) im_norm[j] = (im_raw[j] / overlay_count[j]).astype(np.uint8) # rescale im_norm if rescale_factor != 1: im_norm = (im_norm * rescale_factor).astype(np.uint8) #print ("im_norm.shape:", im_norm.shape) #print ("im_norm.dtype:", im_norm.dtype) return name, im_norm, im_raw, overlay_count
Python
def clipped(func): """ wrapper to clip results of transform to image dtype value range """ @wraps(func) def wrapped_function(img, *args, **kwargs): dtype, maxval = img.dtype, np.max(img) return clip(func(img, *args, **kwargs), dtype, maxval) return wrapped_function
def clipped(func): """ wrapper to clip results of transform to image dtype value range """ @wraps(func) def wrapped_function(img, *args, **kwargs): dtype, maxval = img.dtype, np.max(img) return clip(func(img, *args, **kwargs), dtype, maxval) return wrapped_function
Python
def fix_shift_values(img, *args): """ shift values are normally specified in uint, but if your data is float - you need to remap values """ if img.dtype == np.float32: return list(map(lambda x: x / 255, args)) return args
def fix_shift_values(img, *args): """ shift values are normally specified in uint, but if your data is float - you need to remap values """ if img.dtype == np.float32: return list(map(lambda x: x / 255, args)) return args
Python
def apply(self, img, **params): """ override this method with transform you need to apply """ raise NotImplementedError
def apply(self, img, **params): """ override this method with transform you need to apply """ raise NotImplementedError
Python
def mixup_data(x, y, alpha=0.2, use_cuda=True): """Returns mixed inputs, pairs of targets, and lambda""" if alpha > 0: lam = np.random.beta(alpha, alpha) else: lam = 1 batch_size = x.size()[0] if use_cuda: index = torch.randperm(batch_size).cuda() else: index = torch.randperm(batch_size) mixed_x = lam * x + (1 - lam) * x[index, :] y_a, y_b = y, y[index] return mixed_x, y_a, y_b, lam
def mixup_data(x, y, alpha=0.2, use_cuda=True): """Returns mixed inputs, pairs of targets, and lambda""" if alpha > 0: lam = np.random.beta(alpha, alpha) else: lam = 1 batch_size = x.size()[0] if use_cuda: index = torch.randperm(batch_size).cuda() else: index = torch.randperm(batch_size) mixed_x = lam * x + (1 - lam) * x[index, :] y_a, y_b = y, y[index] return mixed_x, y_a, y_b, lam
Python
def resnext101_32x8d_wsl(progress=True, pretrained=True, **kwargs): """Constructs a ResNeXt-101 32x8 model pre-trained on weakly-supervised data and finetuned on ImageNet from Figure 5 in `"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_ Args: progress (bool): If True, displays a progress bar of the download to stderr. """ kwargs['groups'] = 32 kwargs['width_per_group'] = 8 return _resnext('resnext101_32x8d', Bottleneck, [3, 4, 23, 3], True, progress, **kwargs)
def resnext101_32x8d_wsl(progress=True, pretrained=True, **kwargs): """Constructs a ResNeXt-101 32x8 model pre-trained on weakly-supervised data and finetuned on ImageNet from Figure 5 in `"Exploring the Limits of Weakly Supervised Pretraining" <https://arxiv.org/abs/1805.00932>`_ Args: progress (bool): If True, displays a progress bar of the download to stderr. """ kwargs['groups'] = 32 kwargs['width_per_group'] = 8 return _resnext('resnext101_32x8d', Bottleneck, [3, 4, 23, 3], True, progress, **kwargs)
Python
def create_masks(path_data, buffer_meters=2, n_bands=3, burnValue=150, make_plots=True, overwrite_ims=False, output_df_file='', header=['name', 'im_file', 'im_vis_file', 'mask_file', 'mask_vis_file']): ''' Create masks from files in path_data. Write 8bit images and masks to file. Return a dataframe of file locations with the following columns: ['name', 'im_file', 'im_vis_file', 'mask_file', 'mask_vis_file'] We record locations of im_vis_file and mask_vis_file in case im_file or mask_file is not 8-bit or has n_channels != [1,3] if using 8band data, the RGB-PanSharpen_8bit should already exist, so 3band should be run prior to 8band ''' t0 = time.time() # set paths path_labels = os.path.join(path_data, 'geojson/spacenetroads') # output directories path_masks = os.path.join(path_data, 'masks_' + str(buffer_meters) + 'm') path_masks_plot = os.path.join( path_data, 'masks_' + str(buffer_meters) + 'm_plots') # image directories path_images_vis = os.path.join(path_data, 'RGB-PanSharpen_8bit') if n_bands == 3: path_images_raw = os.path.join(path_data, 'PS-RGB') path_images_8bit = os.path.join(path_data, 'RGB-PanSharpen_8bit') else: path_images_raw = os.path.join(path_data, 'MUL-PanSharpen') path_images_8bit = os.path.join(path_data, 'MUL-PanSharpen_8bit') if not os.path.exists(path_images_vis): print("Need to run 3band prior to 8band!") return # create directories for d in [path_images_8bit, path_masks, path_masks_plot]: if not os.path.exists(d): os.mkdir(d) # iterate through images, convert to 8-bit, and create masks outfile_list = [] im_files = os.listdir(path_images_raw) nfiles = len(im_files) for i, im_name in enumerate(im_files): if not im_name.endswith('.tif'): continue # define files name_root = 'AOI' + im_name.split('AOI')[1].split('.')[0] im_file_raw = os.path.join(path_images_raw, im_name) im_file_out = os.path.join(path_images_8bit, im_name) im_file_out_vis = im_file_out.replace('MUL', 'RGB') # get visible file (if using 8band imagery we want the 3band file # for plotting purposes) # if n_bands == 3: # im_file_out_vis = im_file_out # else: # name_vis = im_name.replace('MUL', 'RGB') # im_file_out_vis = os.path.join(path_images_vis, name_vis) # convert to 8bit, if desired if not os.path.exists(im_file_out) or overwrite_ims: apls_utils.convertTo8Bit(im_file_raw, im_file_out, outputPixType='Byte', outputFormat='GTiff', rescale_type='rescale', percentiles=[2, 98]) # determine output files # label_file = os.path.join(path_labels, 'spacenetroads_AOI_2_Vegas_' \ # + name_root + '.geojson') label_file = os.path.join(path_labels, 'spacenetroads_' + name_root + '.geojson') label_file_tot = os.path.join(path_labels, label_file) mask_file = os.path.join(path_masks, name_root + '.png') if make_plots: plot_file = os.path.join(path_masks_plot, name_root + '.png') else: plot_file = '' print("\n", i + 1, "/", nfiles) print(" im_name:", im_name) print(" name_root:", name_root) print(" im_file_out:", im_file_out) print(" mask_file:", mask_file) print(" output_plot_file:", plot_file) # create masks if not os.path.exists(mask_file) or overwrite_ims: mask, gdf_buffer = apls_utils._get_road_buffer(label_file_tot, im_file_out_vis, mask_file, buffer_meters=buffer_meters, burnValue=burnValue, # bufferRoundness=6, plot_file=plot_file, figsize=(6, 6), fontsize=8, dpi=500, show_plot=False, verbose=False) # resize in ingest so we don't have to save the very large arrays outfile_list.append([im_name, im_file_out, im_file_out_vis, mask_file, mask_file]) # make dataframe and save df = pd.DataFrame(outfile_list, columns=header) if len(output_df_file) > 0: df.to_csv(output_df_file, index=False) print("\ndf.ix[0]:", df.ix[0]) print("\nTotal data length:", len(df)) t4 = time.time() print("Time to run create_masks():", t4 - t0, "seconds") return df
def create_masks(path_data, buffer_meters=2, n_bands=3, burnValue=150, make_plots=True, overwrite_ims=False, output_df_file='', header=['name', 'im_file', 'im_vis_file', 'mask_file', 'mask_vis_file']): ''' Create masks from files in path_data. Write 8bit images and masks to file. Return a dataframe of file locations with the following columns: ['name', 'im_file', 'im_vis_file', 'mask_file', 'mask_vis_file'] We record locations of im_vis_file and mask_vis_file in case im_file or mask_file is not 8-bit or has n_channels != [1,3] if using 8band data, the RGB-PanSharpen_8bit should already exist, so 3band should be run prior to 8band ''' t0 = time.time() # set paths path_labels = os.path.join(path_data, 'geojson/spacenetroads') # output directories path_masks = os.path.join(path_data, 'masks_' + str(buffer_meters) + 'm') path_masks_plot = os.path.join( path_data, 'masks_' + str(buffer_meters) + 'm_plots') # image directories path_images_vis = os.path.join(path_data, 'RGB-PanSharpen_8bit') if n_bands == 3: path_images_raw = os.path.join(path_data, 'PS-RGB') path_images_8bit = os.path.join(path_data, 'RGB-PanSharpen_8bit') else: path_images_raw = os.path.join(path_data, 'MUL-PanSharpen') path_images_8bit = os.path.join(path_data, 'MUL-PanSharpen_8bit') if not os.path.exists(path_images_vis): print("Need to run 3band prior to 8band!") return # create directories for d in [path_images_8bit, path_masks, path_masks_plot]: if not os.path.exists(d): os.mkdir(d) # iterate through images, convert to 8-bit, and create masks outfile_list = [] im_files = os.listdir(path_images_raw) nfiles = len(im_files) for i, im_name in enumerate(im_files): if not im_name.endswith('.tif'): continue # define files name_root = 'AOI' + im_name.split('AOI')[1].split('.')[0] im_file_raw = os.path.join(path_images_raw, im_name) im_file_out = os.path.join(path_images_8bit, im_name) im_file_out_vis = im_file_out.replace('MUL', 'RGB') # get visible file (if using 8band imagery we want the 3band file # for plotting purposes) # if n_bands == 3: # im_file_out_vis = im_file_out # else: # name_vis = im_name.replace('MUL', 'RGB') # im_file_out_vis = os.path.join(path_images_vis, name_vis) # convert to 8bit, if desired if not os.path.exists(im_file_out) or overwrite_ims: apls_utils.convertTo8Bit(im_file_raw, im_file_out, outputPixType='Byte', outputFormat='GTiff', rescale_type='rescale', percentiles=[2, 98]) # determine output files # label_file = os.path.join(path_labels, 'spacenetroads_AOI_2_Vegas_' \ # + name_root + '.geojson') label_file = os.path.join(path_labels, 'spacenetroads_' + name_root + '.geojson') label_file_tot = os.path.join(path_labels, label_file) mask_file = os.path.join(path_masks, name_root + '.png') if make_plots: plot_file = os.path.join(path_masks_plot, name_root + '.png') else: plot_file = '' print("\n", i + 1, "/", nfiles) print(" im_name:", im_name) print(" name_root:", name_root) print(" im_file_out:", im_file_out) print(" mask_file:", mask_file) print(" output_plot_file:", plot_file) # create masks if not os.path.exists(mask_file) or overwrite_ims: mask, gdf_buffer = apls_utils._get_road_buffer(label_file_tot, im_file_out_vis, mask_file, buffer_meters=buffer_meters, burnValue=burnValue, # bufferRoundness=6, plot_file=plot_file, figsize=(6, 6), fontsize=8, dpi=500, show_plot=False, verbose=False) # resize in ingest so we don't have to save the very large arrays outfile_list.append([im_name, im_file_out, im_file_out_vis, mask_file, mask_file]) # make dataframe and save df = pd.DataFrame(outfile_list, columns=header) if len(output_df_file) > 0: df.to_csv(output_df_file, index=False) print("\ndf.ix[0]:", df.ix[0]) print("\nTotal data length:", len(df)) t4 = time.time() print("Time to run create_masks():", t4 - t0, "seconds") return df
Python
def pkl_dir_to_wkt(pkl_dir, output_csv_path='', weight_keys=['length', 'travel_time_s'], verbose=False): """ Create submission wkt from directory full of graph pickles """ wkt_list = [] pkl_list = sorted([z for z in os.listdir(pkl_dir) if z.endswith('.gpickle')]) with multiprocessing.Pool(16) as pool: wkt_list = list(pool.map(process_pkl, pkl_list)) wkt_list = [data for cur_data in wkt_list for data in cur_data] # for i, pkl_name in enumerate(pkl_list): # G = nx.read_gpickle(os.path.join(pkl_dir, pkl_name)) # # # ensure an undirected graph # print(i, "/", len(pkl_list), "num G.nodes:", len(G.nodes())) # # # name_root = pkl_name.replace('PS-RGB_', '').replace('PS-MS_', '').split('.')[0] # # name_root = pkl_name.split('AOI')[-1] # AOI_root = 'AOI' + pkl_name.split('AOI')[-1] # name_root = AOI_root.split('.')[0].replace('PS-RGB_', '').replace('PS-MS_', '') # print("name_root:", name_root) # # # if empty, still add to submission # if len(G.nodes()) == 0: # wkt_item_root = [name_root, 'LINESTRING EMPTY'] # if len(weight_keys) > 0: # weights = [0 for w in weight_keys] # wkt_list.append(wkt_item_root + weights) # else: # wkt_list.append(wkt_item_root) # # # extract geometry pix wkt, save to list # seen_edges = set([]) # for i, (u, v, attr_dict) in enumerate(G.edges(data=True)): # # make sure we haven't already seen this edge # if (u, v) in seen_edges or (v, u) in seen_edges: # print(u, v, "already catalogued!") # continue # else: # seen_edges.add((u, v)) # seen_edges.add((v, u)) # geom_pix_wkt = attr_dict['geometry_pix'].wkt # # # check edge lnegth # if attr_dict['length'] > 5000: # print("Edge too long!, u,v,data:", u,v,attr_dict) # return # # if verbose: # print(i, "/", len(G.edges()), "u, v:", u, v) # print(" attr_dict:", attr_dict) # print(" geom_pix_wkt:", geom_pix_wkt) # # wkt_item_root = [name_root, geom_pix_wkt] # if len(weight_keys) > 0: # weights = [attr_dict[w] for w in weight_keys] # if verbose: # print(" weights:", weights) # wkt_list.append(wkt_item_root + weights) # else: # wkt_list.append(wkt_item_root) if verbose: print("wkt_list:", wkt_list) # create dataframe if len(weight_keys) > 0: cols = ['ImageId', 'WKT_Pix'] + weight_keys else: cols = ['ImageId', 'WKT_Pix'] # use 'length_m' and 'travel_time_s' instead? cols_new = [] for z in cols: if z == 'length': cols_new.append('length_m') elif z == 'travel_time': cols_new.append('travel_time_s') else: cols_new.append(z) cols = cols_new print("cols:", cols) df = pd.DataFrame(wkt_list, columns=cols) print("df:", df) # save if len(output_csv_path) > 0: df.to_csv(output_csv_path, index=False) return df
def pkl_dir_to_wkt(pkl_dir, output_csv_path='', weight_keys=['length', 'travel_time_s'], verbose=False): """ Create submission wkt from directory full of graph pickles """ wkt_list = [] pkl_list = sorted([z for z in os.listdir(pkl_dir) if z.endswith('.gpickle')]) with multiprocessing.Pool(16) as pool: wkt_list = list(pool.map(process_pkl, pkl_list)) wkt_list = [data for cur_data in wkt_list for data in cur_data] # for i, pkl_name in enumerate(pkl_list): # G = nx.read_gpickle(os.path.join(pkl_dir, pkl_name)) # # # ensure an undirected graph # print(i, "/", len(pkl_list), "num G.nodes:", len(G.nodes())) # # # name_root = pkl_name.replace('PS-RGB_', '').replace('PS-MS_', '').split('.')[0] # # name_root = pkl_name.split('AOI')[-1] # AOI_root = 'AOI' + pkl_name.split('AOI')[-1] # name_root = AOI_root.split('.')[0].replace('PS-RGB_', '').replace('PS-MS_', '') # print("name_root:", name_root) # # # if empty, still add to submission # if len(G.nodes()) == 0: # wkt_item_root = [name_root, 'LINESTRING EMPTY'] # if len(weight_keys) > 0: # weights = [0 for w in weight_keys] # wkt_list.append(wkt_item_root + weights) # else: # wkt_list.append(wkt_item_root) # # # extract geometry pix wkt, save to list # seen_edges = set([]) # for i, (u, v, attr_dict) in enumerate(G.edges(data=True)): # # make sure we haven't already seen this edge # if (u, v) in seen_edges or (v, u) in seen_edges: # print(u, v, "already catalogued!") # continue # else: # seen_edges.add((u, v)) # seen_edges.add((v, u)) # geom_pix_wkt = attr_dict['geometry_pix'].wkt # # # check edge lnegth # if attr_dict['length'] > 5000: # print("Edge too long!, u,v,data:", u,v,attr_dict) # return # # if verbose: # print(i, "/", len(G.edges()), "u, v:", u, v) # print(" attr_dict:", attr_dict) # print(" geom_pix_wkt:", geom_pix_wkt) # # wkt_item_root = [name_root, geom_pix_wkt] # if len(weight_keys) > 0: # weights = [attr_dict[w] for w in weight_keys] # if verbose: # print(" weights:", weights) # wkt_list.append(wkt_item_root + weights) # else: # wkt_list.append(wkt_item_root) if verbose: print("wkt_list:", wkt_list) # create dataframe if len(weight_keys) > 0: cols = ['ImageId', 'WKT_Pix'] + weight_keys else: cols = ['ImageId', 'WKT_Pix'] # use 'length_m' and 'travel_time_s' instead? cols_new = [] for z in cols: if z == 'length': cols_new.append('length_m') elif z == 'travel_time': cols_new.append('travel_time_s') else: cols_new.append(z) cols = cols_new print("cols:", cols) df = pd.DataFrame(wkt_list, columns=cols) print("df:", df) # save if len(output_csv_path) > 0: df.to_csv(output_csv_path, index=False) return df
Python
def infer_travel_time(G_, mask, conv_dict, min_z=128, dx=4, dy=4, percentile=90, use_totband=True, use_weighted_mean=True, variable_edge_speed=False, verbose=False): '''Get an estimate of the average speed and travel time of each edge in the graph from the mask and conversion dictionary For each edge, get the geometry in pixel coords For each point, get the neareast neighbors in the maks and infer the local speed''' mph_to_mps = 0.44704 # miles per hour to meters per second for i,(u, v, edge_data) in enumerate(G_.edges(data=True)): if verbose: #(i % 100) == 0: logger.info("\n" + str(i) + " " + str(u) + " " + str(v) + " " \ + str(edge_data)) if (i % 1000) == 0: logger.info(str(i) + " / " + str(len(G_.edges())) + " edges") tot_hours, mean_speed_mph, length_miles = \ get_edge_time_properties(mask, edge_data, conv_dict, min_z=min_z, dx=dx, dy=dy, percentile=percentile, use_totband=use_totband, use_weighted_mean=use_weighted_mean, variable_edge_speed=variable_edge_speed, verbose=verbose) # update edges edge_data['Travel Time (h)'] = tot_hours edge_data['inferred_speed_mph'] = np.round(mean_speed_mph, 2) edge_data['length_miles'] = length_miles edge_data['inferred_speed_mps'] = np.round(mean_speed_mph * mph_to_mps, 2) edge_data['travel_time_s'] = np.round(3600. * tot_hours, 3) # edge_data['travel_time'] = np.round(3600. * tot_hours, 3) return G_
def infer_travel_time(G_, mask, conv_dict, min_z=128, dx=4, dy=4, percentile=90, use_totband=True, use_weighted_mean=True, variable_edge_speed=False, verbose=False): '''Get an estimate of the average speed and travel time of each edge in the graph from the mask and conversion dictionary For each edge, get the geometry in pixel coords For each point, get the neareast neighbors in the maks and infer the local speed''' mph_to_mps = 0.44704 # miles per hour to meters per second for i,(u, v, edge_data) in enumerate(G_.edges(data=True)): if verbose: #(i % 100) == 0: logger.info("\n" + str(i) + " " + str(u) + " " + str(v) + " " \ + str(edge_data)) if (i % 1000) == 0: logger.info(str(i) + " / " + str(len(G_.edges())) + " edges") tot_hours, mean_speed_mph, length_miles = \ get_edge_time_properties(mask, edge_data, conv_dict, min_z=min_z, dx=dx, dy=dy, percentile=percentile, use_totband=use_totband, use_weighted_mean=use_weighted_mean, variable_edge_speed=variable_edge_speed, verbose=verbose) # update edges edge_data['Travel Time (h)'] = tot_hours edge_data['inferred_speed_mph'] = np.round(mean_speed_mph, 2) edge_data['length_miles'] = length_miles edge_data['inferred_speed_mps'] = np.round(mean_speed_mph * mph_to_mps, 2) edge_data['travel_time_s'] = np.round(3600. * tot_hours, 3) # edge_data['travel_time'] = np.round(3600. * tot_hours, 3) return G_
Python
def add_travel_time_dir(graph_dir, mask_dir, conv_dict, graph_dir_out, min_z=128, dx=4, dy=4, percentile=90, use_totband=True, use_weighted_mean=True, variable_edge_speed=False, mask_prefix='', save_shapefiles=True, verbose=False): '''Update graph properties to include travel time for entire directory''' pickle_protocol = 4 # 4 is most recent, python 2.7 can't read 4 logger.info("Updating graph properties to include travel time") logger.info(" Writing to: " + str(graph_dir_out)) os.makedirs(graph_dir_out, exist_ok=True) image_names = sorted([z for z in os.listdir(mask_dir) if z.endswith('.tif')]) for i,image_name in enumerate(image_names): im_root = image_name.split('.')[0] if len(mask_prefix) > 0: im_root = im_root.split(mask_prefix)[-1] out_file = os.path.join(graph_dir_out, im_root + '.gpickle') if (i % 1) == 0: logger.info("\n" + str(i+1) + " / " + str(len(image_names)) + " " + image_name + " " + im_root) mask_path = os.path.join(mask_dir, image_name) graph_path = os.path.join(graph_dir, im_root + '.gpickle') if not os.path.exists(graph_path): logger.info(" ", i, "DNE, skipping: " + str(graph_path)) return # continue mask = skimage.io.imread(mask_path) G_raw = nx.read_gpickle(graph_path) # see if it's empty if len(G_raw.nodes()) == 0: nx.write_gpickle(G_raw, out_file, protocol=pickle_protocol) continue G = infer_travel_time(G_raw, mask, conv_dict, min_z=min_z, dx=dx, dy=dy, percentile=percentile, use_totband=use_totband, use_weighted_mean=use_weighted_mean, variable_edge_speed=variable_edge_speed, verbose=verbose) G = G.to_undirected() nx.write_gpickle(G, out_file, protocol=pickle_protocol) return
def add_travel_time_dir(graph_dir, mask_dir, conv_dict, graph_dir_out, min_z=128, dx=4, dy=4, percentile=90, use_totband=True, use_weighted_mean=True, variable_edge_speed=False, mask_prefix='', save_shapefiles=True, verbose=False): '''Update graph properties to include travel time for entire directory''' pickle_protocol = 4 # 4 is most recent, python 2.7 can't read 4 logger.info("Updating graph properties to include travel time") logger.info(" Writing to: " + str(graph_dir_out)) os.makedirs(graph_dir_out, exist_ok=True) image_names = sorted([z for z in os.listdir(mask_dir) if z.endswith('.tif')]) for i,image_name in enumerate(image_names): im_root = image_name.split('.')[0] if len(mask_prefix) > 0: im_root = im_root.split(mask_prefix)[-1] out_file = os.path.join(graph_dir_out, im_root + '.gpickle') if (i % 1) == 0: logger.info("\n" + str(i+1) + " / " + str(len(image_names)) + " " + image_name + " " + im_root) mask_path = os.path.join(mask_dir, image_name) graph_path = os.path.join(graph_dir, im_root + '.gpickle') if not os.path.exists(graph_path): logger.info(" ", i, "DNE, skipping: " + str(graph_path)) return # continue mask = skimage.io.imread(mask_path) G_raw = nx.read_gpickle(graph_path) # see if it's empty if len(G_raw.nodes()) == 0: nx.write_gpickle(G_raw, out_file, protocol=pickle_protocol) continue G = infer_travel_time(G_raw, mask, conv_dict, min_z=min_z, dx=dx, dy=dy, percentile=percentile, use_totband=use_totband, use_weighted_mean=use_weighted_mean, variable_edge_speed=variable_edge_speed, verbose=verbose) G = G.to_undirected() nx.write_gpickle(G, out_file, protocol=pickle_protocol) return
Python
def infer_speed(conf): '''See _arr_slicing_speed.ipynb for better tests''' t0 = time.time() percentile = 85 dx, dy = 4, 4 # nearest neighbors patch size min_z = 128 # min z value to consider a hit #width_key, width_mult = 4, 1 # constant width if conf.num_classes == 8: use_totband = True else: use_totband = False save_shapefiles = False use_weighted_mean = True variable_edge_speed = False verbose = False # output pkl graph_dir = "{}/working/sp5r2/models/graphs/{}".format( "/wdata", conf.modelname) Path(graph_dir).mkdir(parents=True, exist_ok=True) preds_dirname = conf.modelname.replace('_th06', '') merge_dir = ( "/wdata" + "/working/sp5r2/models/preds/" + preds_dirname + "/merged_test") mask_dir = merge_dir mask_prefix = '' if conf.num_folds == 1: folds_dir = ( "/wdata" + "/working/sp5r2/models/preds/" + preds_dirname + "/fold0_test") mask_dir = folds_dir mask_prefix = 'fold0_' # output pkl graph_speed_dir = "{}/working/sp5r2/models/graphs_speed/{}".format( "/wdata", conf.modelname) Path(graph_speed_dir).mkdir(parents=True, exist_ok=True) logger.info("graph_speed_dir: " + graph_speed_dir) # speed conversion dataframes (see _speed_data_prep.ipynb) speed_conversion_file_binned = os.path.join( "/wdata" + '/input/train/masks_base/', 'roads_train_speed_conversion_binned.csv', ) # load conversion file # get the conversion diction between pixel mask values and road speed (mph) assert conf.num_classes > 1 conv_df, conv_dict \ = load_speed_conversion_dict_binned(speed_conversion_file_binned) logger.info("speed conv_dict: " + str(conv_dict)) # Add travel time to entire dir add_travel_time_dir(graph_dir, mask_dir, conv_dict, graph_speed_dir, min_z=min_z, dx=dx, dy=dy, percentile=percentile, use_totband=use_totband, use_weighted_mean=use_weighted_mean, variable_edge_speed=variable_edge_speed, mask_prefix=mask_prefix, save_shapefiles=save_shapefiles, verbose=verbose) t1 = time.time() logger.info("Time to execute add_travel_time_dir(): {x} seconds".format(x=t1-t0))
def infer_speed(conf): '''See _arr_slicing_speed.ipynb for better tests''' t0 = time.time() percentile = 85 dx, dy = 4, 4 # nearest neighbors patch size min_z = 128 # min z value to consider a hit #width_key, width_mult = 4, 1 # constant width if conf.num_classes == 8: use_totband = True else: use_totband = False save_shapefiles = False use_weighted_mean = True variable_edge_speed = False verbose = False # output pkl graph_dir = "{}/working/sp5r2/models/graphs/{}".format( "/wdata", conf.modelname) Path(graph_dir).mkdir(parents=True, exist_ok=True) preds_dirname = conf.modelname.replace('_th06', '') merge_dir = ( "/wdata" + "/working/sp5r2/models/preds/" + preds_dirname + "/merged_test") mask_dir = merge_dir mask_prefix = '' if conf.num_folds == 1: folds_dir = ( "/wdata" + "/working/sp5r2/models/preds/" + preds_dirname + "/fold0_test") mask_dir = folds_dir mask_prefix = 'fold0_' # output pkl graph_speed_dir = "{}/working/sp5r2/models/graphs_speed/{}".format( "/wdata", conf.modelname) Path(graph_speed_dir).mkdir(parents=True, exist_ok=True) logger.info("graph_speed_dir: " + graph_speed_dir) # speed conversion dataframes (see _speed_data_prep.ipynb) speed_conversion_file_binned = os.path.join( "/wdata" + '/input/train/masks_base/', 'roads_train_speed_conversion_binned.csv', ) # load conversion file # get the conversion diction between pixel mask values and road speed (mph) assert conf.num_classes > 1 conv_df, conv_dict \ = load_speed_conversion_dict_binned(speed_conversion_file_binned) logger.info("speed conv_dict: " + str(conv_dict)) # Add travel time to entire dir add_travel_time_dir(graph_dir, mask_dir, conv_dict, graph_speed_dir, min_z=min_z, dx=dx, dy=dy, percentile=percentile, use_totband=use_totband, use_weighted_mean=use_weighted_mean, variable_edge_speed=variable_edge_speed, mask_prefix=mask_prefix, save_shapefiles=save_shapefiles, verbose=verbose) t1 = time.time() logger.info("Time to execute add_travel_time_dir(): {x} seconds".format(x=t1-t0))
Python
def clean_sub_graphs(G_, min_length=150, max_nodes_to_skip=30, weight='length_pix', verbose=True, super_verbose=False): '''Remove subgraphs with a max path length less than min_length, if the subgraph has more than max_noxes_to_skip, don't check length (this step great improves processing time)''' if len(list(G_.nodes())) == 0: return G_ if verbose: print ("Running clean_sub_graphs...") sub_graphs = list(nx.connected_component_subgraphs(G_)) bad_nodes = [] if verbose: print (" len(G_.nodes()):", len(list(G_.nodes())) ) print (" len(G_.edges()):", len(list(G_.edges())) ) if super_verbose: print ("G_.nodes:", G_.nodes()) edge_tmp = G_.edges()[np.random.randint(len(G_.edges()))] print (edge_tmp, "G.edge props:", G_.edge[edge_tmp[0]][edge_tmp[1]]) for G_sub in sub_graphs: # don't check length if too many nodes in subgraph if len(G_sub.nodes()) > max_nodes_to_skip: continue else: all_lengths = dict(nx.all_pairs_dijkstra_path_length(G_sub, weight=weight)) if super_verbose: print (" \nGs.nodes:", G_sub.nodes() ) print (" all_lengths:", all_lengths ) # get all lenghts lens = [] #for u,v in all_lengths.iteritems(): for u in all_lengths.keys(): v = all_lengths[u] #for uprime, vprime in v.iteritems(): for uprime in v.keys(): vprime = v[uprime] lens.append(vprime) if super_verbose: print (" u, v", u,v ) print (" uprime, vprime:", uprime, vprime ) max_len = np.max(lens) if super_verbose: print (" Max length of path:", max_len) if max_len < min_length: bad_nodes.extend(G_sub.nodes()) if super_verbose: print (" appending to bad_nodes:", G_sub.nodes()) # remove bad_nodes G_.remove_nodes_from(bad_nodes) if verbose: print (" num bad_nodes:", len(bad_nodes)) #print ("bad_nodes:", bad_nodes) print (" len(G'.nodes()):", len(G_.nodes())) print (" len(G'.edges()):", len(G_.edges())) if super_verbose: print (" G_.nodes:", G_.nodes()) return G_
def clean_sub_graphs(G_, min_length=150, max_nodes_to_skip=30, weight='length_pix', verbose=True, super_verbose=False): '''Remove subgraphs with a max path length less than min_length, if the subgraph has more than max_noxes_to_skip, don't check length (this step great improves processing time)''' if len(list(G_.nodes())) == 0: return G_ if verbose: print ("Running clean_sub_graphs...") sub_graphs = list(nx.connected_component_subgraphs(G_)) bad_nodes = [] if verbose: print (" len(G_.nodes()):", len(list(G_.nodes())) ) print (" len(G_.edges()):", len(list(G_.edges())) ) if super_verbose: print ("G_.nodes:", G_.nodes()) edge_tmp = G_.edges()[np.random.randint(len(G_.edges()))] print (edge_tmp, "G.edge props:", G_.edge[edge_tmp[0]][edge_tmp[1]]) for G_sub in sub_graphs: # don't check length if too many nodes in subgraph if len(G_sub.nodes()) > max_nodes_to_skip: continue else: all_lengths = dict(nx.all_pairs_dijkstra_path_length(G_sub, weight=weight)) if super_verbose: print (" \nGs.nodes:", G_sub.nodes() ) print (" all_lengths:", all_lengths ) # get all lenghts lens = [] #for u,v in all_lengths.iteritems(): for u in all_lengths.keys(): v = all_lengths[u] #for uprime, vprime in v.iteritems(): for uprime in v.keys(): vprime = v[uprime] lens.append(vprime) if super_verbose: print (" u, v", u,v ) print (" uprime, vprime:", uprime, vprime ) max_len = np.max(lens) if super_verbose: print (" Max length of path:", max_len) if max_len < min_length: bad_nodes.extend(G_sub.nodes()) if super_verbose: print (" appending to bad_nodes:", G_sub.nodes()) # remove bad_nodes G_.remove_nodes_from(bad_nodes) if verbose: print (" num bad_nodes:", len(bad_nodes)) #print ("bad_nodes:", bad_nodes) print (" len(G'.nodes()):", len(G_.nodes())) print (" len(G'.edges()):", len(G_.edges())) if super_verbose: print (" G_.nodes:", G_.nodes()) return G_
Python
def remove_short_edges(G_, min_spur_length_m=100, verbose=False): """Remove unconnected edges shorter than the desired length""" if verbose: print("Remove shoert edges") deg_list = list(G_.degree) # iterate through list bad_nodes = [] for i, (n, deg) in enumerate(deg_list): # if verbose and (i % 500) == 0: # print(n, deg) # check if node has only one neighbor if deg == 1: # get edge edge = list(G_.edges(n)) u, v = edge[0] # get edge length edge_props = G_.get_edge_data(u, v, 0) length = edge_props['length'] # edge_props = G_.edges([u, v]) if length < min_spur_length_m: bad_nodes.append(n) if verbose: print(i, "/", len(list(G_.nodes())), "n, deg, u, v, length:", n, deg, u, v, length) if verbose: print("bad_nodes:", bad_nodes) G_.remove_nodes_from(bad_nodes) if verbose: print("num remaining nodes:", len(list(G_.nodes()))) return G_
def remove_short_edges(G_, min_spur_length_m=100, verbose=False): """Remove unconnected edges shorter than the desired length""" if verbose: print("Remove shoert edges") deg_list = list(G_.degree) # iterate through list bad_nodes = [] for i, (n, deg) in enumerate(deg_list): # if verbose and (i % 500) == 0: # print(n, deg) # check if node has only one neighbor if deg == 1: # get edge edge = list(G_.edges(n)) u, v = edge[0] # get edge length edge_props = G_.get_edge_data(u, v, 0) length = edge_props['length'] # edge_props = G_.edges([u, v]) if length < min_spur_length_m: bad_nodes.append(n) if verbose: print(i, "/", len(list(G_.nodes())), "n, deg, u, v, length:", n, deg, u, v, length) if verbose: print("bad_nodes:", bad_nodes) G_.remove_nodes_from(bad_nodes) if verbose: print("num remaining nodes:", len(list(G_.nodes()))) return G_
Python
def wkt_list_to_nodes_edges(wkt_list): '''Convert wkt list to nodes and edges Make an edge between each node in linestring. Since one linestring may contain multiple edges, this is the safest approach''' node_loc_set = set() # set of edge locations node_loc_dic = {} # key = node idx, val = location node_loc_dic_rev = {} # key = location, val = node idx edge_loc_set = set() # set of edge locations edge_dic = {} # edge properties node_iter = 0 edge_iter = 0 for i,lstring in enumerate(wkt_list): # get lstring properties shape = shapely.wkt.loads(lstring) xs, ys = shape.coords.xy length_orig = shape.length # iterate through coords in line to create edges between every point for j,(x,y) in enumerate(zip(xs, ys)): loc = (x,y) # for first item just make node, not edge if j == 0: # if not yet seen, create new node if loc not in node_loc_set: node_loc_set.add(loc) node_loc_dic[node_iter] = loc node_loc_dic_rev[loc] = node_iter node = node_iter node_iter += 1 # if not first node in edge, retrieve previous node and build edge else: prev_loc = (xs[j-1], ys[j-1]) #print ("prev_loc:", prev_loc) prev_node = node_loc_dic_rev[prev_loc] # if new, create new node if loc not in node_loc_set: node_loc_set.add(loc) node_loc_dic[node_iter] = loc node_loc_dic_rev[loc] = node_iter node = node_iter node_iter += 1 # if seen before, retrieve node properties else: node = node_loc_dic_rev[loc] # add edge, which is start_node to end_node edge_loc = (loc, prev_loc) edge_loc_rev = (prev_loc, loc) # shouldn't be duplicate edges, so break if we see one if (edge_loc in edge_loc_set) or (edge_loc_rev in edge_loc_set): print ("Oops, edge already seen, returning:", edge_loc) return # get distance to prev_loc and current loc proj_prev = shape.project(Point(prev_loc)) proj = shape.project(Point(loc)) # edge length is the diffence of the two projected lengths # along the linestring edge_length = abs(proj - proj_prev) # make linestring line_out = LineString([prev_loc, loc]) line_out_wkt = line_out.wkt edge_props = {'start': prev_node, 'start_loc_pix': prev_loc, 'end': node, 'end_loc_pix': loc, 'length_pix': edge_length, 'wkt_pix': line_out_wkt, 'geometry_pix': line_out, 'osmid': i} #print ("edge_props", edge_props) edge_loc_set.add(edge_loc) edge_dic[edge_iter] = edge_props edge_iter += 1 return node_loc_dic, edge_dic
def wkt_list_to_nodes_edges(wkt_list): '''Convert wkt list to nodes and edges Make an edge between each node in linestring. Since one linestring may contain multiple edges, this is the safest approach''' node_loc_set = set() # set of edge locations node_loc_dic = {} # key = node idx, val = location node_loc_dic_rev = {} # key = location, val = node idx edge_loc_set = set() # set of edge locations edge_dic = {} # edge properties node_iter = 0 edge_iter = 0 for i,lstring in enumerate(wkt_list): # get lstring properties shape = shapely.wkt.loads(lstring) xs, ys = shape.coords.xy length_orig = shape.length # iterate through coords in line to create edges between every point for j,(x,y) in enumerate(zip(xs, ys)): loc = (x,y) # for first item just make node, not edge if j == 0: # if not yet seen, create new node if loc not in node_loc_set: node_loc_set.add(loc) node_loc_dic[node_iter] = loc node_loc_dic_rev[loc] = node_iter node = node_iter node_iter += 1 # if not first node in edge, retrieve previous node and build edge else: prev_loc = (xs[j-1], ys[j-1]) #print ("prev_loc:", prev_loc) prev_node = node_loc_dic_rev[prev_loc] # if new, create new node if loc not in node_loc_set: node_loc_set.add(loc) node_loc_dic[node_iter] = loc node_loc_dic_rev[loc] = node_iter node = node_iter node_iter += 1 # if seen before, retrieve node properties else: node = node_loc_dic_rev[loc] # add edge, which is start_node to end_node edge_loc = (loc, prev_loc) edge_loc_rev = (prev_loc, loc) # shouldn't be duplicate edges, so break if we see one if (edge_loc in edge_loc_set) or (edge_loc_rev in edge_loc_set): print ("Oops, edge already seen, returning:", edge_loc) return # get distance to prev_loc and current loc proj_prev = shape.project(Point(prev_loc)) proj = shape.project(Point(loc)) # edge length is the diffence of the two projected lengths # along the linestring edge_length = abs(proj - proj_prev) # make linestring line_out = LineString([prev_loc, loc]) line_out_wkt = line_out.wkt edge_props = {'start': prev_node, 'start_loc_pix': prev_loc, 'end': node, 'end_loc_pix': loc, 'length_pix': edge_length, 'wkt_pix': line_out_wkt, 'geometry_pix': line_out, 'osmid': i} #print ("edge_props", edge_props) edge_loc_set.add(edge_loc) edge_dic[edge_iter] = edge_props edge_iter += 1 return node_loc_dic, edge_dic
Python
def wkt_list_to_nodes_edges_sloppy(wkt_list): '''Convert wkt list to nodes and edges Assumes each linestring corresponds to a unique edge Since this is not always the case, this function fails if a linestring contains multiple edges''' node_loc_set = set() # set of edge locations node_loc_dic = {} # key = node idx, val = location node_loc_dic_rev = {} # key = location, val = node idx edge_dic = {} # edge properties node_iter = 0 edge_iter = 0 for lstring in wkt_list: # get lstring properties shape = shapely.wkt.loads(lstring) x, y = shape.coords.xy length = shape.length # set start node start_loc = (x[0], y[0]) # if new, create new node if start_loc not in node_loc_set: node_loc_set.add(start_loc) node_loc_dic[node_iter] = start_loc node_loc_dic_rev[start_loc] = node_iter start_node = node_iter node_iter += 1 # if seen before, retrieve node properties else: start_node = node_loc_dic_rev[start_loc] # set end node (just like start node) end_loc = (x[-1], y[-1]) # if new, create new node if end_loc not in node_loc_set: node_loc_set.add(end_loc) node_loc_dic[node_iter] = end_loc node_loc_dic_rev[end_loc] = node_iter end_node = node_iter node_iter += 1 # if seen before, retrieve node properties else: end_node = node_loc_dic_rev[end_loc] # add edge, which is start_node to end_node edge_props = {'start': start_node, 'start_loc_pix': start_loc, 'end': end_node, 'end_loc_pix': end_loc, 'length_pix': length, 'wkt_pix': lstring, 'geometry_pix': shape} edge_dic[edge_iter] = edge_props edge_iter += 1 return node_loc_dic, edge_dic
def wkt_list_to_nodes_edges_sloppy(wkt_list): '''Convert wkt list to nodes and edges Assumes each linestring corresponds to a unique edge Since this is not always the case, this function fails if a linestring contains multiple edges''' node_loc_set = set() # set of edge locations node_loc_dic = {} # key = node idx, val = location node_loc_dic_rev = {} # key = location, val = node idx edge_dic = {} # edge properties node_iter = 0 edge_iter = 0 for lstring in wkt_list: # get lstring properties shape = shapely.wkt.loads(lstring) x, y = shape.coords.xy length = shape.length # set start node start_loc = (x[0], y[0]) # if new, create new node if start_loc not in node_loc_set: node_loc_set.add(start_loc) node_loc_dic[node_iter] = start_loc node_loc_dic_rev[start_loc] = node_iter start_node = node_iter node_iter += 1 # if seen before, retrieve node properties else: start_node = node_loc_dic_rev[start_loc] # set end node (just like start node) end_loc = (x[-1], y[-1]) # if new, create new node if end_loc not in node_loc_set: node_loc_set.add(end_loc) node_loc_dic[node_iter] = end_loc node_loc_dic_rev[end_loc] = node_iter end_node = node_iter node_iter += 1 # if seen before, retrieve node properties else: end_node = node_loc_dic_rev[end_loc] # add edge, which is start_node to end_node edge_props = {'start': start_node, 'start_loc_pix': start_loc, 'end': end_node, 'end_loc_pix': end_loc, 'length_pix': length, 'wkt_pix': lstring, 'geometry_pix': shape} edge_dic[edge_iter] = edge_props edge_iter += 1 return node_loc_dic, edge_dic
Python
def convert_pix_lstring_to_geo(wkt_lstring, im_file, utm_zone=None, utm_letter=None, verbose=False): '''Convert linestring in pixel coords to geo coords If zone or letter changes inthe middle of line, it's all screwed up, so force zone and letter based on first point (latitude, longitude, force_zone_number=None, force_zone_letter=None) Or just force utm zone and letter explicitly ''' shape = wkt_lstring #shapely.wkt.loads(lstring) x_pixs, y_pixs = shape.coords.xy coords_latlon = [] coords_utm = [] for i,(x,y) in enumerate(zip(x_pixs, y_pixs)): targetSR = osr.SpatialReference() targetSR.ImportFromEPSG(4326) lon, lat = pixelToGeoCoord(x, y, im_file, targetSR=targetSR) if utm_zone and utm_letter: [utm_east, utm_north, _, _] = utm.from_latlon(lat, lon, force_zone_number=utm_zone, force_zone_letter=utm_letter) else: [utm_east, utm_north, utm_zone, utm_letter] = utm.from_latlon(lat, lon) if verbose: print("lat lon, utm_east, utm_north, utm_zone, utm_letter]", [lat, lon, utm_east, utm_north, utm_zone, utm_letter]) coords_utm.append([utm_east, utm_north]) coords_latlon.append([lon, lat]) lstring_latlon = LineString([Point(z) for z in coords_latlon]) lstring_utm = LineString([Point(z) for z in coords_utm]) return lstring_latlon, lstring_utm, utm_zone, utm_letter
def convert_pix_lstring_to_geo(wkt_lstring, im_file, utm_zone=None, utm_letter=None, verbose=False): '''Convert linestring in pixel coords to geo coords If zone or letter changes inthe middle of line, it's all screwed up, so force zone and letter based on first point (latitude, longitude, force_zone_number=None, force_zone_letter=None) Or just force utm zone and letter explicitly ''' shape = wkt_lstring #shapely.wkt.loads(lstring) x_pixs, y_pixs = shape.coords.xy coords_latlon = [] coords_utm = [] for i,(x,y) in enumerate(zip(x_pixs, y_pixs)): targetSR = osr.SpatialReference() targetSR.ImportFromEPSG(4326) lon, lat = pixelToGeoCoord(x, y, im_file, targetSR=targetSR) if utm_zone and utm_letter: [utm_east, utm_north, _, _] = utm.from_latlon(lat, lon, force_zone_number=utm_zone, force_zone_letter=utm_letter) else: [utm_east, utm_north, utm_zone, utm_letter] = utm.from_latlon(lat, lon) if verbose: print("lat lon, utm_east, utm_north, utm_zone, utm_letter]", [lat, lon, utm_east, utm_north, utm_zone, utm_letter]) coords_utm.append([utm_east, utm_north]) coords_latlon.append([lon, lat]) lstring_latlon = LineString([Point(z) for z in coords_latlon]) lstring_utm = LineString([Point(z) for z in coords_utm]) return lstring_latlon, lstring_utm, utm_zone, utm_letter
Python
def create_optimizer(optimizer_config, model, master_params=None): """Creates optimizer and schedule from configuration Parameters ---------- optimizer_config : dict Dictionary containing the configuration options for the optimizer. model : Model The network model. Returns ------- optimizer : Optimizer The optimizer. scheduler : LRScheduler The learning rate scheduler. """ if optimizer_config["classifier_lr"] != -1: # Separate classifier parameters from all others net_params = [] classifier_params = [] for k, v in model.named_parameters(): if not v.requires_grad: continue if k.find("encoder") != -1: net_params.append(v) else: classifier_params.append(v) params = [ {"params": net_params}, {"params": classifier_params, "lr": optimizer_config["classifier_lr"]}, ] else: if master_params: params = master_params else: params = model.parameters() if optimizer_config["type"] == "SGD": optimizer = optim.SGD(params, lr=optimizer_config["learning_rate"], momentum=optimizer_config["momentum"], weight_decay=optimizer_config["weight_decay"], nesterov=optimizer_config["nesterov"]) elif optimizer_config["type"] == "Adam": optimizer = optim.Adam(params, lr=optimizer_config["learning_rate"], weight_decay=optimizer_config["weight_decay"]) elif optimizer_config["type"] == "AdamW": optimizer = optim.Adam(params, lr=optimizer_config["learning_rate"], weight_decay=optimizer_config["weight_decay"]) elif optimizer_config["type"] == "RAdam": optimizer = RAdam(params, lr=optimizer_config["learning_rate"], weight_decay=optimizer_config["weight_decay"]) elif optimizer_config["type"] == "RmsProp": optimizer = optim.Adam(params, lr=optimizer_config["learning_rate"], weight_decay=optimizer_config["weight_decay"]) else: raise KeyError("unrecognized optimizer {}".format(optimizer_config["type"])) if optimizer_config["schedule"]["type"] == "step": scheduler = LRStepScheduler(optimizer, **optimizer_config["schedule"]["params"]) elif optimizer_config["schedule"]["type"] == "multistep": scheduler = MultiStepLR(optimizer, **optimizer_config["schedule"]["params"]) elif optimizer_config["schedule"]["type"] == "exponential": scheduler = ExponentialLRScheduler(optimizer, **optimizer_config["schedule"]["params"]) elif optimizer_config["schedule"]["type"] == "poly": scheduler = PolyLR(optimizer, **optimizer_config["schedule"]["params"]) elif optimizer_config["schedule"]["type"] == "constant": scheduler = lr_scheduler.LambdaLR(optimizer, lambda epoch: 1.0) elif optimizer_config["schedule"]["type"] == "linear": def linear_lr(it): return it * optimizer_config["schedule"]["params"]["alpha"] + optimizer_config["schedule"]["params"]["beta"] scheduler = lr_scheduler.LambdaLR(optimizer, linear_lr) return optimizer, scheduler
def create_optimizer(optimizer_config, model, master_params=None): """Creates optimizer and schedule from configuration Parameters ---------- optimizer_config : dict Dictionary containing the configuration options for the optimizer. model : Model The network model. Returns ------- optimizer : Optimizer The optimizer. scheduler : LRScheduler The learning rate scheduler. """ if optimizer_config["classifier_lr"] != -1: # Separate classifier parameters from all others net_params = [] classifier_params = [] for k, v in model.named_parameters(): if not v.requires_grad: continue if k.find("encoder") != -1: net_params.append(v) else: classifier_params.append(v) params = [ {"params": net_params}, {"params": classifier_params, "lr": optimizer_config["classifier_lr"]}, ] else: if master_params: params = master_params else: params = model.parameters() if optimizer_config["type"] == "SGD": optimizer = optim.SGD(params, lr=optimizer_config["learning_rate"], momentum=optimizer_config["momentum"], weight_decay=optimizer_config["weight_decay"], nesterov=optimizer_config["nesterov"]) elif optimizer_config["type"] == "Adam": optimizer = optim.Adam(params, lr=optimizer_config["learning_rate"], weight_decay=optimizer_config["weight_decay"]) elif optimizer_config["type"] == "AdamW": optimizer = optim.Adam(params, lr=optimizer_config["learning_rate"], weight_decay=optimizer_config["weight_decay"]) elif optimizer_config["type"] == "RAdam": optimizer = RAdam(params, lr=optimizer_config["learning_rate"], weight_decay=optimizer_config["weight_decay"]) elif optimizer_config["type"] == "RmsProp": optimizer = optim.Adam(params, lr=optimizer_config["learning_rate"], weight_decay=optimizer_config["weight_decay"]) else: raise KeyError("unrecognized optimizer {}".format(optimizer_config["type"])) if optimizer_config["schedule"]["type"] == "step": scheduler = LRStepScheduler(optimizer, **optimizer_config["schedule"]["params"]) elif optimizer_config["schedule"]["type"] == "multistep": scheduler = MultiStepLR(optimizer, **optimizer_config["schedule"]["params"]) elif optimizer_config["schedule"]["type"] == "exponential": scheduler = ExponentialLRScheduler(optimizer, **optimizer_config["schedule"]["params"]) elif optimizer_config["schedule"]["type"] == "poly": scheduler = PolyLR(optimizer, **optimizer_config["schedule"]["params"]) elif optimizer_config["schedule"]["type"] == "constant": scheduler = lr_scheduler.LambdaLR(optimizer, lambda epoch: 1.0) elif optimizer_config["schedule"]["type"] == "linear": def linear_lr(it): return it * optimizer_config["schedule"]["params"]["alpha"] + optimizer_config["schedule"]["params"]["beta"] scheduler = lr_scheduler.LambdaLR(optimizer, linear_lr) return optimizer, scheduler
Python
def iou_binary(preds, labels, EMPTY=1.0, ignore=None, per_image=True): """ IoU for foreground class binary: 1 foreground, 0 background """ if not per_image: preds, labels = (preds,), (labels,) ious = [] for pred, label in zip(preds, labels): intersection = ((label == 1) & (pred == 1)).sum() union = ((label == 1) | ((pred == 1) & (label != ignore))).sum() if not union: iou = EMPTY else: iou = float(intersection) / union ious.append(iou) iou = mean(ious) # mean accross images if per_image return 100 * iou
def iou_binary(preds, labels, EMPTY=1.0, ignore=None, per_image=True): """ IoU for foreground class binary: 1 foreground, 0 background """ if not per_image: preds, labels = (preds,), (labels,) ious = [] for pred, label in zip(preds, labels): intersection = ((label == 1) & (pred == 1)).sum() union = ((label == 1) | ((pred == 1) & (label != ignore))).sum() if not union: iou = EMPTY else: iou = float(intersection) / union ious.append(iou) iou = mean(ious) # mean accross images if per_image return 100 * iou
Python
def iou(preds, labels, C, EMPTY=1.0, ignore=None, per_image=False): """ Array of IoU for each (non ignored) class """ if not per_image: preds, labels = (preds,), (labels,) ious = [] for pred, label in zip(preds, labels): iou = [] for i in range(C): if (i != ignore): # The ignored label is sometimes among predicted classes (ENet - CityScapes) intersection = ((label == i) & (pred == i)).sum() union = ((label == i) | ((pred == i) & (label != ignore))).sum() if not union: iou.append(EMPTY) else: iou.append(float(intersection) / union) ious.append(iou) ious = map(mean, zip(*ious)) # mean accross images if per_image return 100 * np.array(ious)
def iou(preds, labels, C, EMPTY=1.0, ignore=None, per_image=False): """ Array of IoU for each (non ignored) class """ if not per_image: preds, labels = (preds,), (labels,) ious = [] for pred, label in zip(preds, labels): iou = [] for i in range(C): if (i != ignore): # The ignored label is sometimes among predicted classes (ENet - CityScapes) intersection = ((label == i) & (pred == i)).sum() union = ((label == i) | ((pred == i) & (label != ignore))).sum() if not union: iou.append(EMPTY) else: iou.append(float(intersection) / union) ious.append(iou) ious = map(mean, zip(*ious)) # mean accross images if per_image return 100 * np.array(ious)
Python
def convert_array_to_multichannel(in_arr, n_channels=7, burnValue=255, append_total_band=False, verbose=False): '''Take input array with multiple values, and make each value a unique channel. Assume a zero value is background, while value of 1 is the first channel, 2 the second channel, etc.''' h, w = in_arr.shape[:2] # scikit image wants it in this format by default out_arr = np.zeros((n_channels, h, w), dtype=np.uint8) # out_arr = np.zeros((h,w,n_channels), dtype=np.uint8) for band in range(n_channels): val = band + 1 band_out = np.zeros((h, w), dtype=np.uint8) if verbose: print("band:", band) band_arr_bool = np.where(in_arr == val) band_out[band_arr_bool] = burnValue out_arr[band, :, :] = band_out # out_arr[:,:,band] = band_out if append_total_band: tot_band = np.zeros((h, w), dtype=np.uint8) band_arr_bool = np.where(in_arr > 0) tot_band[band_arr_bool] = burnValue tot_band = tot_band.reshape(1, h, w) out_arr = np.concatenate((out_arr, tot_band), axis=0).astype(np.uint8) if verbose: print("out_arr.shape:", out_arr.shape) return out_arr
def convert_array_to_multichannel(in_arr, n_channels=7, burnValue=255, append_total_band=False, verbose=False): '''Take input array with multiple values, and make each value a unique channel. Assume a zero value is background, while value of 1 is the first channel, 2 the second channel, etc.''' h, w = in_arr.shape[:2] # scikit image wants it in this format by default out_arr = np.zeros((n_channels, h, w), dtype=np.uint8) # out_arr = np.zeros((h,w,n_channels), dtype=np.uint8) for band in range(n_channels): val = band + 1 band_out = np.zeros((h, w), dtype=np.uint8) if verbose: print("band:", band) band_arr_bool = np.where(in_arr == val) band_out[band_arr_bool] = burnValue out_arr[band, :, :] = band_out # out_arr[:,:,band] = band_out if append_total_band: tot_band = np.zeros((h, w), dtype=np.uint8) band_arr_bool = np.where(in_arr > 0) tot_band[band_arr_bool] = burnValue tot_band = tot_band.reshape(1, h, w) out_arr = np.concatenate((out_arr, tot_band), axis=0).astype(np.uint8) if verbose: print("out_arr.shape:", out_arr.shape) return out_arr
Python
def speed_mask_dir(geojson_dir, image_dir, output_dir, speed_to_burn_func, mask_burn_val_key='burnValue', buffer_distance_meters=2, buffer_roundness=1, dissolve_by='speed_m/s', bin_conversion_key='speed_mph', verbose=True, # below here is all variables for binned speed output_dir_multidim='', channel_value_mult=1, n_channels=8, channel_burnValue=255, append_total_band=True, ): """Create continuous speed masks for entire dir""" images = sorted([z for z in os.listdir(image_dir) if z.endswith('.tif')]) for j, image_name in enumerate(images): image_root = image_name.split('.')[0] # image_root = image_name.split('RGB-PanSharpen_')[-1].split('.')[0] image_path = os.path.join(image_dir, image_name) mask_path_out = os.path.join(output_dir, image_name) # Get geojson path # SpaceNet chips geojson_path = os.path.join( geojson_dir, image_root.replace('PS-RGB', 'geojson_roads_speed').replace('PS-MS', 'geojson_roads_speed') # geojson_dir, image_root.replace('PS-RGB', 'geojson_roads_speed') + '.geojson') # # Contiguous files # geojson_path = os.path.join(geojson_dir, image_root + '.geojson') # if (j % 100) == 0: if (j % 1) == 0: print(j + 1, "/", len(images), "image:", image_name, "geojson:", geojson_path) if j > 0: verbose = False gdf_buffer = road_speed.create_speed_gdf( image_path, geojson_path, mask_path_out, speed_to_burn_func, mask_burn_val_key=mask_burn_val_key, buffer_distance_meters=buffer_distance_meters, buffer_roundness=buffer_roundness, dissolve_by=dissolve_by, bin_conversion_key=bin_conversion_key, verbose=verbose) # If Binning... if output_dir_multidim: mask_path_out_md = os.path.join(output_dir_multidim, image_name) # Convert array to a multi-channel image mask_bins = skimage.io.imread(mask_path_out) mask_bins = (mask_bins / channel_value_mult).astype(int) if verbose: print("mask_bins.shape:", mask_bins.shape) print("np unique mask_bins:", np.unique(mask_bins)) # print ("mask_bins:", mask_bins) # define mask_channels if np.max(mask_bins) == 0: h, w = skimage.io.imread(mask_path_out).shape[:2] # h, w = cv2.imread(mask_path_out, 0).shape[:2] if append_total_band: mask_channels = np.zeros((n_channels + 1, h, w)).astype(np.uint8) else: mask_channels = np.zeros((n_channels, h, w)).astype(np.uint8) else: mask_channels = convert_array_to_multichannel( mask_bins, n_channels=n_channels, burnValue=channel_burnValue, append_total_band=append_total_band, verbose=verbose) if verbose: print("mask_channels.shape:", mask_channels.shape) print("mask_channels.dtype:", mask_channels.dtype) # write to file # skimage version... # skimage.io.imsave(mask_path_out_md, mask_channels, compress=1) # , plugin='tifffile') # gdal version CreateMultiBandGeoTiff(mask_path_out_md, mask_channels)
def speed_mask_dir(geojson_dir, image_dir, output_dir, speed_to_burn_func, mask_burn_val_key='burnValue', buffer_distance_meters=2, buffer_roundness=1, dissolve_by='speed_m/s', bin_conversion_key='speed_mph', verbose=True, # below here is all variables for binned speed output_dir_multidim='', channel_value_mult=1, n_channels=8, channel_burnValue=255, append_total_band=True, ): """Create continuous speed masks for entire dir""" images = sorted([z for z in os.listdir(image_dir) if z.endswith('.tif')]) for j, image_name in enumerate(images): image_root = image_name.split('.')[0] # image_root = image_name.split('RGB-PanSharpen_')[-1].split('.')[0] image_path = os.path.join(image_dir, image_name) mask_path_out = os.path.join(output_dir, image_name) # Get geojson path # SpaceNet chips geojson_path = os.path.join( geojson_dir, image_root.replace('PS-RGB', 'geojson_roads_speed').replace('PS-MS', 'geojson_roads_speed') # geojson_dir, image_root.replace('PS-RGB', 'geojson_roads_speed') + '.geojson') # # Contiguous files # geojson_path = os.path.join(geojson_dir, image_root + '.geojson') # if (j % 100) == 0: if (j % 1) == 0: print(j + 1, "/", len(images), "image:", image_name, "geojson:", geojson_path) if j > 0: verbose = False gdf_buffer = road_speed.create_speed_gdf( image_path, geojson_path, mask_path_out, speed_to_burn_func, mask_burn_val_key=mask_burn_val_key, buffer_distance_meters=buffer_distance_meters, buffer_roundness=buffer_roundness, dissolve_by=dissolve_by, bin_conversion_key=bin_conversion_key, verbose=verbose) # If Binning... if output_dir_multidim: mask_path_out_md = os.path.join(output_dir_multidim, image_name) # Convert array to a multi-channel image mask_bins = skimage.io.imread(mask_path_out) mask_bins = (mask_bins / channel_value_mult).astype(int) if verbose: print("mask_bins.shape:", mask_bins.shape) print("np unique mask_bins:", np.unique(mask_bins)) # print ("mask_bins:", mask_bins) # define mask_channels if np.max(mask_bins) == 0: h, w = skimage.io.imread(mask_path_out).shape[:2] # h, w = cv2.imread(mask_path_out, 0).shape[:2] if append_total_band: mask_channels = np.zeros((n_channels + 1, h, w)).astype(np.uint8) else: mask_channels = np.zeros((n_channels, h, w)).astype(np.uint8) else: mask_channels = convert_array_to_multichannel( mask_bins, n_channels=n_channels, burnValue=channel_burnValue, append_total_band=append_total_band, verbose=verbose) if verbose: print("mask_channels.shape:", mask_channels.shape) print("mask_channels.dtype:", mask_channels.dtype) # write to file # skimage version... # skimage.io.imsave(mask_path_out_md, mask_channels, compress=1) # , plugin='tifffile') # gdal version CreateMultiBandGeoTiff(mask_path_out_md, mask_channels)
Python
def speed_to_burn_func(speed): '''Convert speed estimate to mask burn value between 0 and mask_max''' bw = mask_max - min_road_burn_val burn_val = min( min_road_burn_val + bw * ((speed - min_speed_contin) / (max_speed_contin - min_speed_contin)), mask_max) return max(burn_val, min_road_burn_val)
def speed_to_burn_func(speed): '''Convert speed estimate to mask burn value between 0 and mask_max''' bw = mask_max - min_road_burn_val burn_val = min( min_road_burn_val + bw * ((speed - min_speed_contin) / (max_speed_contin - min_speed_contin)), mask_max) return max(burn_val, min_road_burn_val)
Python
def speed_to_burn_func(speed_mph): '''bin every 10 mph or so Convert speed estimate to appropriate channel bin = 0 if speed = 0''' bins = [10, 15, 18.75, 20, 25, 30, 35, 45, 55, 65] return (1 + bisect_left(bins, speed_mph)) * channel_value_mult # determine num_channels
def speed_to_burn_func(speed_mph): '''bin every 10 mph or so Convert speed estimate to appropriate channel bin = 0 if speed = 0''' bins = [10, 15, 18.75, 20, 25, 30, 35, 45, 55, 65] return (1 + bisect_left(bins, speed_mph)) * channel_value_mult # determine num_channels
Python
def pkl_dir_to_wkt(pkl_dir, output_csv_path='', weight_keys=['length', 'travel_time_s'], verbose=False): """ Create submission wkt from directory full of graph pickles """ wkt_list = [] pkl_list = sorted([z for z in os.listdir(pkl_dir) if z.endswith('.gpickle')]) for i, pkl_name in enumerate(pkl_list): G = nx.read_gpickle(os.path.join(pkl_dir, pkl_name)) # ensure an undirected graph print(i, "/", len(pkl_list), "num G.nodes:", len(G.nodes())) name_root = pkl_name.replace('PS-RGB_', '').replace('PS-MS_', '').split('.')[0] # AOI_root = 'AOI' + pkl_name.split('AOI')[-1] # name_root = AOI_root.split('.')[0].replace('PS-RGB_', '') print("name_root:", name_root) # if empty, still add to submission if len(G.nodes()) == 0: wkt_item_root = [name_root, 'LINESTRING EMPTY'] if len(weight_keys) > 0: weights = [0 for w in weight_keys] wkt_list.append(wkt_item_root + weights) else: wkt_list.append(wkt_item_root) # extract geometry pix wkt, save to list seen_edges = set([]) for i, (u, v, attr_dict) in enumerate(G.edges(data=True)): # make sure we haven't already seen this edge if (u, v) in seen_edges or (v, u) in seen_edges: print(u, v, "already catalogued!") continue else: seen_edges.add((u, v)) seen_edges.add((v, u)) geom_pix_wkt = attr_dict['geometry_pix'].wkt # check edge lnegth if attr_dict['length'] > 5000: print("Edge too long!, u,v,data:", u,v,attr_dict) return if verbose: print(i, "/", len(G.edges()), "u, v:", u, v) print(" attr_dict:", attr_dict) print(" geom_pix_wkt:", geom_pix_wkt) wkt_item_root = [name_root, geom_pix_wkt] if len(weight_keys) > 0: weights = [attr_dict[w] for w in weight_keys] if verbose: print(" weights:", weights) wkt_list.append(wkt_item_root + weights) else: wkt_list.append(wkt_item_root) if verbose: print("wkt_list:", wkt_list) # create dataframe if len(weight_keys) > 0: cols = ['ImageId', 'WKT_Pix'] + weight_keys else: cols = ['ImageId', 'WKT_Pix'] # use 'length_m' and 'travel_time_s' instead? cols_new = [] for z in cols: if z == 'length': cols_new.append('length_m') elif z == 'travel_time': cols_new.append('travel_time_s') else: cols_new.append(z) cols = cols_new # cols = [z.replace('length', 'length_m') for z in cols] # cols = [z.replace('travel_time', 'travel_time_s') for z in cols] print("cols:", cols) df = pd.DataFrame(wkt_list, columns=cols) print("df:", df) # save if len(output_csv_path) > 0: df.to_csv(output_csv_path, index=False) return df
def pkl_dir_to_wkt(pkl_dir, output_csv_path='', weight_keys=['length', 'travel_time_s'], verbose=False): """ Create submission wkt from directory full of graph pickles """ wkt_list = [] pkl_list = sorted([z for z in os.listdir(pkl_dir) if z.endswith('.gpickle')]) for i, pkl_name in enumerate(pkl_list): G = nx.read_gpickle(os.path.join(pkl_dir, pkl_name)) # ensure an undirected graph print(i, "/", len(pkl_list), "num G.nodes:", len(G.nodes())) name_root = pkl_name.replace('PS-RGB_', '').replace('PS-MS_', '').split('.')[0] # AOI_root = 'AOI' + pkl_name.split('AOI')[-1] # name_root = AOI_root.split('.')[0].replace('PS-RGB_', '') print("name_root:", name_root) # if empty, still add to submission if len(G.nodes()) == 0: wkt_item_root = [name_root, 'LINESTRING EMPTY'] if len(weight_keys) > 0: weights = [0 for w in weight_keys] wkt_list.append(wkt_item_root + weights) else: wkt_list.append(wkt_item_root) # extract geometry pix wkt, save to list seen_edges = set([]) for i, (u, v, attr_dict) in enumerate(G.edges(data=True)): # make sure we haven't already seen this edge if (u, v) in seen_edges or (v, u) in seen_edges: print(u, v, "already catalogued!") continue else: seen_edges.add((u, v)) seen_edges.add((v, u)) geom_pix_wkt = attr_dict['geometry_pix'].wkt # check edge lnegth if attr_dict['length'] > 5000: print("Edge too long!, u,v,data:", u,v,attr_dict) return if verbose: print(i, "/", len(G.edges()), "u, v:", u, v) print(" attr_dict:", attr_dict) print(" geom_pix_wkt:", geom_pix_wkt) wkt_item_root = [name_root, geom_pix_wkt] if len(weight_keys) > 0: weights = [attr_dict[w] for w in weight_keys] if verbose: print(" weights:", weights) wkt_list.append(wkt_item_root + weights) else: wkt_list.append(wkt_item_root) if verbose: print("wkt_list:", wkt_list) # create dataframe if len(weight_keys) > 0: cols = ['ImageId', 'WKT_Pix'] + weight_keys else: cols = ['ImageId', 'WKT_Pix'] # use 'length_m' and 'travel_time_s' instead? cols_new = [] for z in cols: if z == 'length': cols_new.append('length_m') elif z == 'travel_time': cols_new.append('travel_time_s') else: cols_new.append(z) cols = cols_new # cols = [z.replace('length', 'length_m') for z in cols] # cols = [z.replace('travel_time', 'travel_time_s') for z in cols] print("cols:", cols) df = pd.DataFrame(wkt_list, columns=cols) print("df:", df) # save if len(output_csv_path) > 0: df.to_csv(output_csv_path, index=False) return df
Python
def clean_sub_graphs(G_, min_length=150, max_nodes_to_skip=30, weight='length_pix', verbose=False, super_verbose=False): '''Remove subgraphs with a max path length less than min_length, if the subgraph has more than max_noxes_to_skip, don't check length (this step great improves processing time)''' if len(list(G_.nodes())) == 0: return G_ print("Running clean_sub_graphs...") sub_graphs = list(nx.connected_component_subgraphs(G_)) bad_nodes = [] if verbose: print(" len(G_.nodes()):", len(list(G_.nodes()))) print(" len(G_.edges()):", len(list(G_.edges()))) if super_verbose: print("G_.nodes:", G_.nodes()) edge_tmp = G_.edges()[np.random.randint(len(G_.edges()))] print(edge_tmp, "G.edge props:", G_.edge[edge_tmp[0]][edge_tmp[1]]) for G_sub in sub_graphs: # don't check length if too many nodes in subgraph if len(G_sub.nodes()) > max_nodes_to_skip: continue else: all_lengths = dict(nx.all_pairs_dijkstra_path_length(G_sub, weight=weight)) if super_verbose: print(" \nGs.nodes:", G_sub.nodes()) print(" all_lengths:", all_lengths) # get all lenghts lens = [] # for u,v in all_lengths.iteritems(): for u in all_lengths.keys(): v = all_lengths[u] # for uprime, vprime in v.iteritems(): for uprime in v.keys(): vprime = v[uprime] lens.append(vprime) if super_verbose: print(" u, v", u, v) print(" uprime, vprime:", uprime, vprime) max_len = np.max(lens) if super_verbose: print(" Max length of path:", max_len) if max_len < min_length: bad_nodes.extend(G_sub.nodes()) if super_verbose: print(" appending to bad_nodes:", G_sub.nodes()) # remove bad_nodes G_.remove_nodes_from(bad_nodes) if verbose: print(" num bad_nodes:", len(bad_nodes)) # print ("bad_nodes:", bad_nodes) print(" len(G'.nodes()):", len(G_.nodes())) print(" len(G'.edges()):", len(G_.edges())) if super_verbose: print(" G_.nodes:", G_.nodes()) return G_
def clean_sub_graphs(G_, min_length=150, max_nodes_to_skip=30, weight='length_pix', verbose=False, super_verbose=False): '''Remove subgraphs with a max path length less than min_length, if the subgraph has more than max_noxes_to_skip, don't check length (this step great improves processing time)''' if len(list(G_.nodes())) == 0: return G_ print("Running clean_sub_graphs...") sub_graphs = list(nx.connected_component_subgraphs(G_)) bad_nodes = [] if verbose: print(" len(G_.nodes()):", len(list(G_.nodes()))) print(" len(G_.edges()):", len(list(G_.edges()))) if super_verbose: print("G_.nodes:", G_.nodes()) edge_tmp = G_.edges()[np.random.randint(len(G_.edges()))] print(edge_tmp, "G.edge props:", G_.edge[edge_tmp[0]][edge_tmp[1]]) for G_sub in sub_graphs: # don't check length if too many nodes in subgraph if len(G_sub.nodes()) > max_nodes_to_skip: continue else: all_lengths = dict(nx.all_pairs_dijkstra_path_length(G_sub, weight=weight)) if super_verbose: print(" \nGs.nodes:", G_sub.nodes()) print(" all_lengths:", all_lengths) # get all lenghts lens = [] # for u,v in all_lengths.iteritems(): for u in all_lengths.keys(): v = all_lengths[u] # for uprime, vprime in v.iteritems(): for uprime in v.keys(): vprime = v[uprime] lens.append(vprime) if super_verbose: print(" u, v", u, v) print(" uprime, vprime:", uprime, vprime) max_len = np.max(lens) if super_verbose: print(" Max length of path:", max_len) if max_len < min_length: bad_nodes.extend(G_sub.nodes()) if super_verbose: print(" appending to bad_nodes:", G_sub.nodes()) # remove bad_nodes G_.remove_nodes_from(bad_nodes) if verbose: print(" num bad_nodes:", len(bad_nodes)) # print ("bad_nodes:", bad_nodes) print(" len(G'.nodes()):", len(G_.nodes())) print(" len(G'.edges()):", len(G_.edges())) if super_verbose: print(" G_.nodes:", G_.nodes()) return G_
Python
def wkt_list_to_nodes_edges(wkt_list): '''Convert wkt list to nodes and edges Make an edge between each node in linestring. Since one linestring may contain multiple edges, this is the safest approach''' node_loc_set = set() # set of edge locations node_loc_dic = {} # key = node idx, val = location node_loc_dic_rev = {} # key = location, val = node idx edge_loc_set = set() # set of edge locations edge_dic = {} # edge properties node_iter = 0 edge_iter = 0 for i, lstring in enumerate(wkt_list): # get lstring properties shape = shapely.wkt.loads(lstring) xs, ys = shape.coords.xy length_orig = shape.length # iterate through coords in line to create edges between every point for j, (x, y) in enumerate(zip(xs, ys)): loc = (x, y) # for first item just make node, not edge if j == 0: # if not yet seen, create new node if loc not in node_loc_set: node_loc_set.add(loc) node_loc_dic[node_iter] = loc node_loc_dic_rev[loc] = node_iter node = node_iter node_iter += 1 # if not first node in edge, retrieve previous node and build edge else: prev_loc = (xs[j - 1], ys[j - 1]) # print ("prev_loc:", prev_loc) prev_node = node_loc_dic_rev[prev_loc] # if new, create new node if loc not in node_loc_set: node_loc_set.add(loc) node_loc_dic[node_iter] = loc node_loc_dic_rev[loc] = node_iter node = node_iter node_iter += 1 # if seen before, retrieve node properties else: node = node_loc_dic_rev[loc] # add edge, which is start_node to end_node edge_loc = (loc, prev_loc) edge_loc_rev = (prev_loc, loc) # shouldn't be duplicate edges, so break if we see one if (edge_loc in edge_loc_set) or (edge_loc_rev in edge_loc_set): print("Oops, edge already seen, returning:", edge_loc) continue # get distance to prev_loc and current loc proj_prev = shape.project(Point(prev_loc)) proj = shape.project(Point(loc)) # edge length is the diffence of the two projected lengths # along the linestring edge_length = abs(proj - proj_prev) # make linestring line_out = LineString([prev_loc, loc]) line_out_wkt = line_out.wkt edge_props = {'start': prev_node, 'start_loc_pix': prev_loc, 'end': node, 'end_loc_pix': loc, 'length_pix': edge_length, 'wkt_pix': line_out_wkt, 'geometry_pix': line_out, 'osmid': i} # print ("edge_props", edge_props) edge_loc_set.add(edge_loc) edge_dic[edge_iter] = edge_props edge_iter += 1 return node_loc_dic, edge_dic
def wkt_list_to_nodes_edges(wkt_list): '''Convert wkt list to nodes and edges Make an edge between each node in linestring. Since one linestring may contain multiple edges, this is the safest approach''' node_loc_set = set() # set of edge locations node_loc_dic = {} # key = node idx, val = location node_loc_dic_rev = {} # key = location, val = node idx edge_loc_set = set() # set of edge locations edge_dic = {} # edge properties node_iter = 0 edge_iter = 0 for i, lstring in enumerate(wkt_list): # get lstring properties shape = shapely.wkt.loads(lstring) xs, ys = shape.coords.xy length_orig = shape.length # iterate through coords in line to create edges between every point for j, (x, y) in enumerate(zip(xs, ys)): loc = (x, y) # for first item just make node, not edge if j == 0: # if not yet seen, create new node if loc not in node_loc_set: node_loc_set.add(loc) node_loc_dic[node_iter] = loc node_loc_dic_rev[loc] = node_iter node = node_iter node_iter += 1 # if not first node in edge, retrieve previous node and build edge else: prev_loc = (xs[j - 1], ys[j - 1]) # print ("prev_loc:", prev_loc) prev_node = node_loc_dic_rev[prev_loc] # if new, create new node if loc not in node_loc_set: node_loc_set.add(loc) node_loc_dic[node_iter] = loc node_loc_dic_rev[loc] = node_iter node = node_iter node_iter += 1 # if seen before, retrieve node properties else: node = node_loc_dic_rev[loc] # add edge, which is start_node to end_node edge_loc = (loc, prev_loc) edge_loc_rev = (prev_loc, loc) # shouldn't be duplicate edges, so break if we see one if (edge_loc in edge_loc_set) or (edge_loc_rev in edge_loc_set): print("Oops, edge already seen, returning:", edge_loc) continue # get distance to prev_loc and current loc proj_prev = shape.project(Point(prev_loc)) proj = shape.project(Point(loc)) # edge length is the diffence of the two projected lengths # along the linestring edge_length = abs(proj - proj_prev) # make linestring line_out = LineString([prev_loc, loc]) line_out_wkt = line_out.wkt edge_props = {'start': prev_node, 'start_loc_pix': prev_loc, 'end': node, 'end_loc_pix': loc, 'length_pix': edge_length, 'wkt_pix': line_out_wkt, 'geometry_pix': line_out, 'osmid': i} # print ("edge_props", edge_props) edge_loc_set.add(edge_loc) edge_dic[edge_iter] = edge_props edge_iter += 1 return node_loc_dic, edge_dic
Python
def clean_sub_graphs(G_, min_length=150, max_nodes_to_skip=30, weight='length_pix', verbose=True, super_verbose=False): '''Remove subgraphs with a max path length less than min_length, if the subgraph has more than max_noxes_to_skip, don't check length (this step great improves processing time)''' if len(list(G_.nodes())) == 0: return G_ if verbose: print ("Running clean_sub_graphs...") sub_graphs = list(nx.connected_component_subgraphs(G_)) bad_nodes = [] if verbose: print (" len(G_.nodes()):", len(list(G_.nodes())) ) print (" len(G_.edges()):", len(list(G_.edges())) ) if super_verbose: print ("G_.nodes:", G_.nodes()) edge_tmp = G_.edges()[np.random.randint(len(G_.edges()))] print (edge_tmp, "G.edge props:", G_.edge[edge_tmp[0]][edge_tmp[1]]) for G_sub in sub_graphs: # don't check length if too many nodes in subgraph if len(G_sub.nodes()) > max_nodes_to_skip: continue else: all_lengths = dict(nx.all_pairs_dijkstra_path_length(G_sub, weight=weight)) if super_verbose: print (" \nGs.nodes:", G_sub.nodes() ) print (" all_lengths:", all_lengths ) # get all lenghts lens = [] #for u,v in all_lengths.iteritems(): for u in all_lengths.keys(): v = all_lengths[u] #for uprime, vprime in v.iteritems(): for uprime in v.keys(): vprime = v[uprime] lens.append(vprime) if super_verbose: print (" u, v", u,v ) print (" uprime, vprime:", uprime, vprime ) max_len = np.max(lens) if super_verbose: print (" Max length of path:", max_len) if max_len < min_length: bad_nodes.extend(G_sub.nodes()) if super_verbose: print (" appending to bad_nodes:", G_sub.nodes()) # remove bad_nodes G_.remove_nodes_from(bad_nodes) if verbose: print (" num bad_nodes:", len(bad_nodes)) #print ("bad_nodes:", bad_nodes) print (" len(G'.nodes()):", len(G_.nodes())) print (" len(G'.edges()):", len(G_.edges())) if super_verbose: print (" G_.nodes:", G_.nodes()) return G_
def clean_sub_graphs(G_, min_length=150, max_nodes_to_skip=30, weight='length_pix', verbose=True, super_verbose=False): '''Remove subgraphs with a max path length less than min_length, if the subgraph has more than max_noxes_to_skip, don't check length (this step great improves processing time)''' if len(list(G_.nodes())) == 0: return G_ if verbose: print ("Running clean_sub_graphs...") sub_graphs = list(nx.connected_component_subgraphs(G_)) bad_nodes = [] if verbose: print (" len(G_.nodes()):", len(list(G_.nodes())) ) print (" len(G_.edges()):", len(list(G_.edges())) ) if super_verbose: print ("G_.nodes:", G_.nodes()) edge_tmp = G_.edges()[np.random.randint(len(G_.edges()))] print (edge_tmp, "G.edge props:", G_.edge[edge_tmp[0]][edge_tmp[1]]) for G_sub in sub_graphs: # don't check length if too many nodes in subgraph if len(G_sub.nodes()) > max_nodes_to_skip: continue else: all_lengths = dict(nx.all_pairs_dijkstra_path_length(G_sub, weight=weight)) if super_verbose: print (" \nGs.nodes:", G_sub.nodes() ) print (" all_lengths:", all_lengths ) # get all lenghts lens = [] #for u,v in all_lengths.iteritems(): for u in all_lengths.keys(): v = all_lengths[u] #for uprime, vprime in v.iteritems(): for uprime in v.keys(): vprime = v[uprime] lens.append(vprime) if super_verbose: print (" u, v", u,v ) print (" uprime, vprime:", uprime, vprime ) max_len = np.max(lens) if super_verbose: print (" Max length of path:", max_len) if max_len < min_length: bad_nodes.extend(G_sub.nodes()) if super_verbose: print (" appending to bad_nodes:", G_sub.nodes()) # remove bad_nodes G_.remove_nodes_from(bad_nodes) if verbose: print (" num bad_nodes:", len(bad_nodes)) #print ("bad_nodes:", bad_nodes) print (" len(G'.nodes()):", len(G_.nodes())) print (" len(G'.edges()):", len(G_.edges())) if super_verbose: print (" G_.nodes:", G_.nodes()) return G_
Python
def convert_pix_lstring_to_geo(wkt_lstring, im_file): '''Convert linestring in pixel coords to geo coords''' shape = wkt_lstring #shapely.wkt.loads(lstring) x_pixs, y_pixs = shape.coords.xy coords_latlon = [] coords_utm = [] for (x,y) in zip (x_pixs, y_pixs): lon, lat = pixelToGeoCoord(x, y, im_file) [utm_east, utm_north, utm_zone, utm_letter] = utm.from_latlon(lat, lon) coords_utm.append([utm_east, utm_north]) coords_latlon.append([lon, lat]) lstring_latlon = LineString([Point(z) for z in coords_latlon]) lstring_utm = LineString([Point(z) for z in coords_utm]) return lstring_latlon, lstring_utm, utm_zone, utm_letter
def convert_pix_lstring_to_geo(wkt_lstring, im_file): '''Convert linestring in pixel coords to geo coords''' shape = wkt_lstring #shapely.wkt.loads(lstring) x_pixs, y_pixs = shape.coords.xy coords_latlon = [] coords_utm = [] for (x,y) in zip (x_pixs, y_pixs): lon, lat = pixelToGeoCoord(x, y, im_file) [utm_east, utm_north, utm_zone, utm_letter] = utm.from_latlon(lat, lon) coords_utm.append([utm_east, utm_north]) coords_latlon.append([lon, lat]) lstring_latlon = LineString([Point(z) for z in coords_latlon]) lstring_utm = LineString([Point(z) for z in coords_utm]) return lstring_latlon, lstring_utm, utm_zone, utm_letter
Python
def convert_to_8Bit(inputRaster, outputRaster, outputPixType='Byte', outputFormat='GTiff', rescale_type='rescale', percentiles=[2, 98]): ''' Convert 16bit image to 8bit rescale_type = [clip, rescale] if clip, scaling is done strictly between 0 65535 if rescale, each band is rescaled to a min and max set by percentiles ''' srcRaster = gdal.Open(inputRaster) cmd = ['gdal_translate', '-ot', outputPixType, '-of', outputFormat] # iterate through bands for bandId in range(srcRaster.RasterCount): bandId = bandId + 1 band = srcRaster.GetRasterBand(bandId) if rescale_type == 'rescale': bmin = band.GetMinimum() bmax = band.GetMaximum() # if not exist minimum and maximum values if bmin is None or bmax is None: (bmin, bmax) = band.ComputeRasterMinMax(1) # else, rescale band_arr_tmp = band.ReadAsArray() bmin = np.percentile(band_arr_tmp.flatten(), percentiles[0]) bmax = np.percentile(band_arr_tmp.flatten(), percentiles[1]) else: bmin, bmax = 0, 65535 cmd.append('-scale_{}'.format(bandId)) cmd.append('{}'.format(bmin)) cmd.append('{}'.format(bmax)) cmd.append('{}'.format(0)) cmd.append('{}'.format(255)) cmd.append(inputRaster) cmd.append(outputRaster) # print("Conversin command:", cmd) subprocess.call(cmd) return
def convert_to_8Bit(inputRaster, outputRaster, outputPixType='Byte', outputFormat='GTiff', rescale_type='rescale', percentiles=[2, 98]): ''' Convert 16bit image to 8bit rescale_type = [clip, rescale] if clip, scaling is done strictly between 0 65535 if rescale, each band is rescaled to a min and max set by percentiles ''' srcRaster = gdal.Open(inputRaster) cmd = ['gdal_translate', '-ot', outputPixType, '-of', outputFormat] # iterate through bands for bandId in range(srcRaster.RasterCount): bandId = bandId + 1 band = srcRaster.GetRasterBand(bandId) if rescale_type == 'rescale': bmin = band.GetMinimum() bmax = band.GetMaximum() # if not exist minimum and maximum values if bmin is None or bmax is None: (bmin, bmax) = band.ComputeRasterMinMax(1) # else, rescale band_arr_tmp = band.ReadAsArray() bmin = np.percentile(band_arr_tmp.flatten(), percentiles[0]) bmax = np.percentile(band_arr_tmp.flatten(), percentiles[1]) else: bmin, bmax = 0, 65535 cmd.append('-scale_{}'.format(bandId)) cmd.append('{}'.format(bmin)) cmd.append('{}'.format(bmax)) cmd.append('{}'.format(0)) cmd.append('{}'.format(255)) cmd.append(inputRaster) cmd.append(outputRaster) # print("Conversin command:", cmd) subprocess.call(cmd) return
Python
def graph_to_gdfs_pix(G, nodes=True, edges=True, node_geometry=True, fill_edge_geometry=True): """ Convert a graph into node and/or edge GeoDataFrames Parameters ---------- G : networkx multidigraph nodes : bool if True, convert graph nodes to a GeoDataFrame and return it edges : bool if True, convert graph edges to a GeoDataFrame and return it node_geometry : bool if True, create a geometry column from node x and y data fill_edge_geometry : bool if True, fill in missing edge geometry fields using origin and destination nodes Returns ------- GeoDataFrame or tuple gdf_nodes or gdf_edges or both as a tuple """ if not (nodes or edges): raise ValueError('You must request nodes or edges, or both.') to_return = [] if nodes: start_time = time.time() nodes = {node: data for node, data in G.nodes(data=True)} gdf_nodes = gpd.GeoDataFrame(nodes).T if node_geometry: # gdf_nodes['geometry'] = gdf_nodes.apply(lambda row: Point(row['x'], row['y']), axis=1) gdf_nodes['geometry_pix'] = gdf_nodes.apply(lambda row: Point(row['x_pix'], row['y_pix']), axis=1) gdf_nodes.crs = G.graph['crs'] gdf_nodes.gdf_name = '{}_nodes'.format(G.graph['name']) gdf_nodes['osmid'] = gdf_nodes['osmid'].astype(np.int64).map(make_str) to_return.append(gdf_nodes) log('Created GeoDataFrame "{}" from graph in {:,.2f} seconds'.format(gdf_nodes.gdf_name, time.time() - start_time)) if edges: start_time = time.time() # create a list to hold our edges, then loop through each edge in the # graph edges = [] for u, v, key, data in G.edges(keys=True, data=True): # for each edge, add key and all attributes in data dict to the # edge_details edge_details = {'u': u, 'v': v, 'key': key} for attr_key in data: edge_details[attr_key] = data[attr_key] # if edge doesn't already have a geometry attribute, create one now # if fill_edge_geometry==True if 'geometry_pix' not in data: if fill_edge_geometry: point_u = Point((G.nodes[u]['x_pix'], G.nodes[u]['y_pix'])) point_v = Point((G.nodes[v]['x_pix'], G.nodes[v]['y_pix'])) edge_details['geometry_pix'] = LineString([point_u, point_v]) else: edge_details['geometry_pix'] = np.nan edges.append(edge_details) # create a GeoDataFrame from the list of edges and set the CRS gdf_edges = gpd.GeoDataFrame(edges) gdf_edges.crs = G.graph['crs'] gdf_edges.gdf_name = '{}_edges'.format(G.graph['name']) to_return.append(gdf_edges) log('Created GeoDataFrame "{}" from graph in {:,.2f} seconds'.format(gdf_edges.gdf_name, time.time() - start_time)) if len(to_return) > 1: return tuple(to_return) else: return to_return[0]
def graph_to_gdfs_pix(G, nodes=True, edges=True, node_geometry=True, fill_edge_geometry=True): """ Convert a graph into node and/or edge GeoDataFrames Parameters ---------- G : networkx multidigraph nodes : bool if True, convert graph nodes to a GeoDataFrame and return it edges : bool if True, convert graph edges to a GeoDataFrame and return it node_geometry : bool if True, create a geometry column from node x and y data fill_edge_geometry : bool if True, fill in missing edge geometry fields using origin and destination nodes Returns ------- GeoDataFrame or tuple gdf_nodes or gdf_edges or both as a tuple """ if not (nodes or edges): raise ValueError('You must request nodes or edges, or both.') to_return = [] if nodes: start_time = time.time() nodes = {node: data for node, data in G.nodes(data=True)} gdf_nodes = gpd.GeoDataFrame(nodes).T if node_geometry: # gdf_nodes['geometry'] = gdf_nodes.apply(lambda row: Point(row['x'], row['y']), axis=1) gdf_nodes['geometry_pix'] = gdf_nodes.apply(lambda row: Point(row['x_pix'], row['y_pix']), axis=1) gdf_nodes.crs = G.graph['crs'] gdf_nodes.gdf_name = '{}_nodes'.format(G.graph['name']) gdf_nodes['osmid'] = gdf_nodes['osmid'].astype(np.int64).map(make_str) to_return.append(gdf_nodes) log('Created GeoDataFrame "{}" from graph in {:,.2f} seconds'.format(gdf_nodes.gdf_name, time.time() - start_time)) if edges: start_time = time.time() # create a list to hold our edges, then loop through each edge in the # graph edges = [] for u, v, key, data in G.edges(keys=True, data=True): # for each edge, add key and all attributes in data dict to the # edge_details edge_details = {'u': u, 'v': v, 'key': key} for attr_key in data: edge_details[attr_key] = data[attr_key] # if edge doesn't already have a geometry attribute, create one now # if fill_edge_geometry==True if 'geometry_pix' not in data: if fill_edge_geometry: point_u = Point((G.nodes[u]['x_pix'], G.nodes[u]['y_pix'])) point_v = Point((G.nodes[v]['x_pix'], G.nodes[v]['y_pix'])) edge_details['geometry_pix'] = LineString([point_u, point_v]) else: edge_details['geometry_pix'] = np.nan edges.append(edge_details) # create a GeoDataFrame from the list of edges and set the CRS gdf_edges = gpd.GeoDataFrame(edges) gdf_edges.crs = G.graph['crs'] gdf_edges.gdf_name = '{}_edges'.format(G.graph['name']) to_return.append(gdf_edges) log('Created GeoDataFrame "{}" from graph in {:,.2f} seconds'.format(gdf_edges.gdf_name, time.time() - start_time)) if len(to_return) > 1: return tuple(to_return) else: return to_return[0]
Python
def plot_graph_pix(G, im=None, bbox=None, fig_height=6, fig_width=None, margin=0.02, axis_off=True, equal_aspect=False, bgcolor='w', show=True, save=False, close=True, file_format='png', filename='temp', default_dpi=300, annotate=False, node_color='#66ccff', node_size=15, node_alpha=1, node_edgecolor='none', node_zorder=1, edge_color='#999999', edge_linewidth=1, edge_alpha=1, edge_width_key='speed_mph', edge_width_mult=1. / 25, use_geom=True): """ Plot a networkx spatial graph. Parameters ---------- G : networkx multidigraph bbox : tuple bounding box as north,south,east,west - if None will calculate from spatial extents of data. if passing a bbox, you probably also want to pass margin=0 to constrain it. fig_height : int matplotlib figure height in inches fig_width : int matplotlib figure width in inches margin : float relative margin around the figure axis_off : bool if True turn off the matplotlib axis equal_aspect : bool if True set the axis aspect ratio equal bgcolor : string the background color of the figure and axis show : bool if True, show the figure save : bool if True, save the figure as an image file to disk close : bool close the figure (only if show equals False) to prevent display file_format : string the format of the file to save (e.g., 'jpg', 'png', 'svg') filename : string the name of the file if saving default_dpi : int the resolution of the image file if saving (may get altered for large images) annotate : bool if True, annotate the nodes in the figure node_color : string the color of the nodes node_size : int the size of the nodes node_alpha : float the opacity of the nodes node_edgecolor : string the color of the node's marker's border node_zorder : int zorder to plot nodes, edges are always 2, so make node_zorder 1 to plot nodes beneath them or 3 to plot nodes atop them edge_color : string the color of the edges' lines edge_linewidth : float the width of the edges' lines edge_alpha : float the opacity of the edges' lines edge_width_key : str optional: key in edge propwerties to determine edge width, supercedes edge_linewidth, default to "speed_mph" edge_width_mult : float factor to rescale width for plotting, default to 1./25, which gives a line width of 1 for 25 mph speed limit. use_geom : bool if True, use the spatial geometry attribute of the edges to draw geographically accurate edges, rather than just lines straight from node to node Returns ------- fig, ax : tuple """ log('Begin plotting the graph...') node_Xs = [float(x) for _, x in G.nodes(data='x_pix')] node_Ys = [float(y) for _, y in G.nodes(data='y_pix')] # node_Xs = [float(x) for _, x in G.nodes(data='x')] # node_Ys = [float(y) for _, y in G.nodes(data='y')] # get north, south, east, west values either from bbox parameter or from the # spatial extent of the edges' geometries if bbox is None: edges = graph_to_gdfs_pix(G, nodes=False, fill_edge_geometry=True) # print ("plot_graph_pix():, edges:", edges) print("plot_graph_pix():, edges.columns:", edges.columns) # print ("plot_graph_pix(): edges['geometry_pix']:", edges['geometry_pix']) # print ("plot_graph_pix(): edges['geometry']:", edges['geometry']) print("type edges['geometry_pix'].:", type(edges['geometry_pix'])) print("type gpd.GeoSeries(edges['geometry_pix']):", type(gpd.GeoSeries(edges['geometry_pix']))) print("type gpd.GeoSeries(edges['geometry_pix'][0]):", type(gpd.GeoSeries(edges['geometry_pix']).iloc[0])) west, south, east, north = gpd.GeoSeries(edges['geometry_pix']).total_bounds # west, south, east, north = edges.total_bounds else: north, south, east, west = bbox # if caller did not pass in a fig_width, calculate it proportionately from # the fig_height and bounding box aspect ratio bbox_aspect_ratio = (north - south) / (east - west) if fig_width is None: fig_width = fig_height / bbox_aspect_ratio # create the figure and axis print("Creating figure and axis...") if im is not None: fig, ax = plt.subplots(figsize=(fig_width, fig_height)) ax.imshow(im) print("im.shape:", im.shape) # fig, ax = save_and_show(fig, ax, save, show, close, filename, file_format, dpi, axis_off) # return else: fig, ax = plt.subplots(figsize=(fig_width, fig_height), facecolor=bgcolor) ax.set_facecolor(bgcolor) ## create the figure and axis # fig, ax = plt.subplots(figsize=(fig_width, fig_height), facecolor=bgcolor) # ax.set_facecolor(bgcolor) # draw the edges as lines from node to node start_time = time.time() lines = [] widths = [] for u, v, data in G.edges(keys=False, data=True): if 'geometry_pix' in data and use_geom: # if it has a geometry attribute (a list of line segments), add them # to the list of lines to plot xs, ys = data['geometry_pix'].xy lines.append(list(zip(xs, ys))) else: # if it doesn't have a geometry attribute, the edge is a straight # line from node to node x1 = G.nodes[u]['x_pix'] y1 = G.nodes[u]['y_pix'] x2 = G.nodes[v]['x_pix'] y2 = G.nodes[v]['y_pix'] line = [(x1, y1), (x2, y2)] lines.append(line) # get widths if edge_width_key in data: width = int(np.rint(data[edge_width_key] * edge_width_mult)) else: width = edge_linewidth widths.append(width) # add the lines to the axis as a linecollection lc = LineCollection(lines, colors=edge_color, linewidths=widths, alpha=edge_alpha, zorder=2) ax.add_collection(lc) log('Drew the graph edges in {:,.2f} seconds'.format(time.time() - start_time)) # scatter plot the nodes ax.scatter(node_Xs, node_Ys, s=node_size, c=node_color, alpha=node_alpha, edgecolor=node_edgecolor, zorder=node_zorder) # set the extent of the figure margin_ns = (north - south) * margin margin_ew = (east - west) * margin ax.set_ylim((south - margin_ns, north + margin_ns)) ax.set_xlim((west - margin_ew, east + margin_ew)) # configure axis appearance xaxis = ax.get_xaxis() yaxis = ax.get_yaxis() xaxis.get_major_formatter().set_useOffset(False) yaxis.get_major_formatter().set_useOffset(False) # if axis_off, turn off the axis display set the margins to zero and point # the ticks in so there's no space around the plot if axis_off: ax.axis('off') ax.margins(0) ax.tick_params(which='both', direction='in') xaxis.set_visible(False) yaxis.set_visible(False) fig.canvas.draw() if equal_aspect: # make everything square ax.set_aspect('equal') fig.canvas.draw() else: # if the graph is not projected, conform the aspect ratio to not stretch the plot if G.graph['crs'] == ox_settings.default_crs: coslat = np.cos((min(node_Ys) + max(node_Ys)) / 2. / 180. * np.pi) ax.set_aspect(1. / coslat) fig.canvas.draw() # annotate the axis with node IDs if annotate=True if annotate: for node, data in G.nodes(data=True): ax.annotate(node, xy=(data['x_pix'], data['y_pix'])) # update dpi, if image if im is not None: # mpl can handle a max of 2^29 pixels, or 23170 on a side # recompute max_dpi max_dpi = int(23000 / max(fig_height, fig_width)) h, w = im.shape[:2] # try to set dpi to native resolution of imagery desired_dpi = max(default_dpi, 1.0 * h / fig_height) # desired_dpi = max(default_dpi, int( np.max(im.shape) / max(fig_height, fig_width) ) ) dpi = int(np.min([max_dpi, desired_dpi])) # save and show the figure as specified fig, ax = save_and_show(fig, ax, save, show, close, filename, file_format, dpi, axis_off) return fig, ax
def plot_graph_pix(G, im=None, bbox=None, fig_height=6, fig_width=None, margin=0.02, axis_off=True, equal_aspect=False, bgcolor='w', show=True, save=False, close=True, file_format='png', filename='temp', default_dpi=300, annotate=False, node_color='#66ccff', node_size=15, node_alpha=1, node_edgecolor='none', node_zorder=1, edge_color='#999999', edge_linewidth=1, edge_alpha=1, edge_width_key='speed_mph', edge_width_mult=1. / 25, use_geom=True): """ Plot a networkx spatial graph. Parameters ---------- G : networkx multidigraph bbox : tuple bounding box as north,south,east,west - if None will calculate from spatial extents of data. if passing a bbox, you probably also want to pass margin=0 to constrain it. fig_height : int matplotlib figure height in inches fig_width : int matplotlib figure width in inches margin : float relative margin around the figure axis_off : bool if True turn off the matplotlib axis equal_aspect : bool if True set the axis aspect ratio equal bgcolor : string the background color of the figure and axis show : bool if True, show the figure save : bool if True, save the figure as an image file to disk close : bool close the figure (only if show equals False) to prevent display file_format : string the format of the file to save (e.g., 'jpg', 'png', 'svg') filename : string the name of the file if saving default_dpi : int the resolution of the image file if saving (may get altered for large images) annotate : bool if True, annotate the nodes in the figure node_color : string the color of the nodes node_size : int the size of the nodes node_alpha : float the opacity of the nodes node_edgecolor : string the color of the node's marker's border node_zorder : int zorder to plot nodes, edges are always 2, so make node_zorder 1 to plot nodes beneath them or 3 to plot nodes atop them edge_color : string the color of the edges' lines edge_linewidth : float the width of the edges' lines edge_alpha : float the opacity of the edges' lines edge_width_key : str optional: key in edge propwerties to determine edge width, supercedes edge_linewidth, default to "speed_mph" edge_width_mult : float factor to rescale width for plotting, default to 1./25, which gives a line width of 1 for 25 mph speed limit. use_geom : bool if True, use the spatial geometry attribute of the edges to draw geographically accurate edges, rather than just lines straight from node to node Returns ------- fig, ax : tuple """ log('Begin plotting the graph...') node_Xs = [float(x) for _, x in G.nodes(data='x_pix')] node_Ys = [float(y) for _, y in G.nodes(data='y_pix')] # node_Xs = [float(x) for _, x in G.nodes(data='x')] # node_Ys = [float(y) for _, y in G.nodes(data='y')] # get north, south, east, west values either from bbox parameter or from the # spatial extent of the edges' geometries if bbox is None: edges = graph_to_gdfs_pix(G, nodes=False, fill_edge_geometry=True) # print ("plot_graph_pix():, edges:", edges) print("plot_graph_pix():, edges.columns:", edges.columns) # print ("plot_graph_pix(): edges['geometry_pix']:", edges['geometry_pix']) # print ("plot_graph_pix(): edges['geometry']:", edges['geometry']) print("type edges['geometry_pix'].:", type(edges['geometry_pix'])) print("type gpd.GeoSeries(edges['geometry_pix']):", type(gpd.GeoSeries(edges['geometry_pix']))) print("type gpd.GeoSeries(edges['geometry_pix'][0]):", type(gpd.GeoSeries(edges['geometry_pix']).iloc[0])) west, south, east, north = gpd.GeoSeries(edges['geometry_pix']).total_bounds # west, south, east, north = edges.total_bounds else: north, south, east, west = bbox # if caller did not pass in a fig_width, calculate it proportionately from # the fig_height and bounding box aspect ratio bbox_aspect_ratio = (north - south) / (east - west) if fig_width is None: fig_width = fig_height / bbox_aspect_ratio # create the figure and axis print("Creating figure and axis...") if im is not None: fig, ax = plt.subplots(figsize=(fig_width, fig_height)) ax.imshow(im) print("im.shape:", im.shape) # fig, ax = save_and_show(fig, ax, save, show, close, filename, file_format, dpi, axis_off) # return else: fig, ax = plt.subplots(figsize=(fig_width, fig_height), facecolor=bgcolor) ax.set_facecolor(bgcolor) ## create the figure and axis # fig, ax = plt.subplots(figsize=(fig_width, fig_height), facecolor=bgcolor) # ax.set_facecolor(bgcolor) # draw the edges as lines from node to node start_time = time.time() lines = [] widths = [] for u, v, data in G.edges(keys=False, data=True): if 'geometry_pix' in data and use_geom: # if it has a geometry attribute (a list of line segments), add them # to the list of lines to plot xs, ys = data['geometry_pix'].xy lines.append(list(zip(xs, ys))) else: # if it doesn't have a geometry attribute, the edge is a straight # line from node to node x1 = G.nodes[u]['x_pix'] y1 = G.nodes[u]['y_pix'] x2 = G.nodes[v]['x_pix'] y2 = G.nodes[v]['y_pix'] line = [(x1, y1), (x2, y2)] lines.append(line) # get widths if edge_width_key in data: width = int(np.rint(data[edge_width_key] * edge_width_mult)) else: width = edge_linewidth widths.append(width) # add the lines to the axis as a linecollection lc = LineCollection(lines, colors=edge_color, linewidths=widths, alpha=edge_alpha, zorder=2) ax.add_collection(lc) log('Drew the graph edges in {:,.2f} seconds'.format(time.time() - start_time)) # scatter plot the nodes ax.scatter(node_Xs, node_Ys, s=node_size, c=node_color, alpha=node_alpha, edgecolor=node_edgecolor, zorder=node_zorder) # set the extent of the figure margin_ns = (north - south) * margin margin_ew = (east - west) * margin ax.set_ylim((south - margin_ns, north + margin_ns)) ax.set_xlim((west - margin_ew, east + margin_ew)) # configure axis appearance xaxis = ax.get_xaxis() yaxis = ax.get_yaxis() xaxis.get_major_formatter().set_useOffset(False) yaxis.get_major_formatter().set_useOffset(False) # if axis_off, turn off the axis display set the margins to zero and point # the ticks in so there's no space around the plot if axis_off: ax.axis('off') ax.margins(0) ax.tick_params(which='both', direction='in') xaxis.set_visible(False) yaxis.set_visible(False) fig.canvas.draw() if equal_aspect: # make everything square ax.set_aspect('equal') fig.canvas.draw() else: # if the graph is not projected, conform the aspect ratio to not stretch the plot if G.graph['crs'] == ox_settings.default_crs: coslat = np.cos((min(node_Ys) + max(node_Ys)) / 2. / 180. * np.pi) ax.set_aspect(1. / coslat) fig.canvas.draw() # annotate the axis with node IDs if annotate=True if annotate: for node, data in G.nodes(data=True): ax.annotate(node, xy=(data['x_pix'], data['y_pix'])) # update dpi, if image if im is not None: # mpl can handle a max of 2^29 pixels, or 23170 on a side # recompute max_dpi max_dpi = int(23000 / max(fig_height, fig_width)) h, w = im.shape[:2] # try to set dpi to native resolution of imagery desired_dpi = max(default_dpi, 1.0 * h / fig_height) # desired_dpi = max(default_dpi, int( np.max(im.shape) / max(fig_height, fig_width) ) ) dpi = int(np.min([max_dpi, desired_dpi])) # save and show the figure as specified fig, ax = save_and_show(fig, ax, save, show, close, filename, file_format, dpi, axis_off) return fig, ax