language
stringclasses
6 values
original_string
stringlengths
25
887k
text
stringlengths
25
887k
Python
def generic_mo_from_xml(xml_str): """ create GenericMo object from xml string """ root_elem = ET.fromstring(xml_str) class_id = root_elem.tag gmo = GenericMo(class_id) gmo.from_xml(root_elem) return gmo
def generic_mo_from_xml(xml_str): """ create GenericMo object from xml string """ root_elem = ET.fromstring(xml_str) class_id = root_elem.tag gmo = GenericMo(class_id) gmo.from_xml(root_elem) return gmo
Python
def generic_mo_from_xml_elem(elem): """ create GenericMo object from xml element """ from . import ucscxmlcodec as xc xml_str = xc.to_xml_str(elem) gmo = generic_mo_from_xml(xml_str) return gmo
def generic_mo_from_xml_elem(elem): """ create GenericMo object from xml element """ from . import ucscxmlcodec as xc xml_str = xc.to_xml_str(elem) gmo = generic_mo_from_xml(xml_str) return gmo
Python
def to_xml(self, xml_doc=None, option=None): """ This method returns the xml element node for the current object with it's hierarchy. Args: xml_doc: document to which the Mo attributes are added. Can be None. option: not required for Generic Mo class object Example: from ucscsdk.ucscmo import GenericMo\n args = {"a": 1, "b": 2, "c":3}\n obj = GenericMo("testLsA", "org-root", **args)\n obj1 = GenericMo("testLsB", "org-root", **args)\n obj.add_child(obj1)\n elem = obj.write_xml()\n import ucscsdk.ucscxmlcodec as xc\n xc.to_xml_str(elem)\n Output: '<testLsA a="1" b="2" c="3" dn="org-root/" rn="">\n <testLsB a="1" b="2" c="3" dn="org-root/" rn="" />\n </testLsA>' """ if xml_doc is None: xml_obj = Element(ucscgenutils.word_l(self._class_id)) else: xml_obj = SubElement(xml_doc, ucscgenutils.word_l( self._class_id)) for key in self.__dict__: if not key.startswith('_'): xml_obj.set(key, getattr(self, key)) self.child_to_xml(xml_obj) return xml_obj
def to_xml(self, xml_doc=None, option=None): """ This method returns the xml element node for the current object with it's hierarchy. Args: xml_doc: document to which the Mo attributes are added. Can be None. option: not required for Generic Mo class object Example: from ucscsdk.ucscmo import GenericMo\n args = {"a": 1, "b": 2, "c":3}\n obj = GenericMo("testLsA", "org-root", **args)\n obj1 = GenericMo("testLsB", "org-root", **args)\n obj.add_child(obj1)\n elem = obj.write_xml()\n import ucscsdk.ucscxmlcodec as xc\n xc.to_xml_str(elem)\n Output: '<testLsA a="1" b="2" c="3" dn="org-root/" rn="">\n <testLsB a="1" b="2" c="3" dn="org-root/" rn="" />\n </testLsA>' """ if xml_doc is None: xml_obj = Element(ucscgenutils.word_l(self._class_id)) else: xml_obj = SubElement(xml_doc, ucscgenutils.word_l( self._class_id)) for key in self.__dict__: if not key.startswith('_'): xml_obj.set(key, getattr(self, key)) self.child_to_xml(xml_obj) return xml_obj
Python
def from_xml(self, elem, handle=None): """ This method is form objects out of xml element. This is called internally from ucscxmlcode.from_xml_str method. Example: xml = '<testLsA a="1" b="2" c="3" dn="org-root/" rn=""> <testLsB a="1" b="2" c="3" dn="org-root/" rn="" /></testLsA>'\n obj = xc.from_xml_str(xml)\n print type(obj)\n Outputs: <class 'ucscsdk.ucscmo.GenericMo'> """ if elem is None: return None self._handle = handle self._class_id = elem.tag if elem.attrib: for name, value in ucscgenutils.iteritems(elem.attrib): self.__dict__[name] = value self.__properties[name] = str(value) if self.rn and self.dn: pass elif self.rn and not self.dn: if self.__parent_dn is not None and self.__parent_dn != "": self.dn = self.__parent_dn + '/' + self.rn self.__properties['dn'] = self.dn else: self.dn = self.rn self.__properties['dn'] = self.dn elif not self.rn and self.dn: self.rn = os.path.basename(self.dn) self.__properties['rn'] = self.rn # else: # raise ValueError("Both rn and dn does not present.") children = list(elem) if children: for child in children: if not ET.iselement(child): continue class_id = ucscgenutils.word_u(child.tag) pdn = None if 'dn' in dir(self): pdn = self.dn child_obj = GenericMo(class_id, parent_mo_or_dn=pdn) self.child_add(child_obj) child_obj.from_xml(child, handle)
def from_xml(self, elem, handle=None): """ This method is form objects out of xml element. This is called internally from ucscxmlcode.from_xml_str method. Example: xml = '<testLsA a="1" b="2" c="3" dn="org-root/" rn=""> <testLsB a="1" b="2" c="3" dn="org-root/" rn="" /></testLsA>'\n obj = xc.from_xml_str(xml)\n print type(obj)\n Outputs: <class 'ucscsdk.ucscmo.GenericMo'> """ if elem is None: return None self._handle = handle self._class_id = elem.tag if elem.attrib: for name, value in ucscgenutils.iteritems(elem.attrib): self.__dict__[name] = value self.__properties[name] = str(value) if self.rn and self.dn: pass elif self.rn and not self.dn: if self.__parent_dn is not None and self.__parent_dn != "": self.dn = self.__parent_dn + '/' + self.rn self.__properties['dn'] = self.dn else: self.dn = self.rn self.__properties['dn'] = self.dn elif not self.rn and self.dn: self.rn = os.path.basename(self.dn) self.__properties['rn'] = self.rn # else: # raise ValueError("Both rn and dn does not present.") children = list(elem) if children: for child in children: if not ET.iselement(child): continue class_id = ucscgenutils.word_u(child.tag) pdn = None if 'dn' in dir(self): pdn = self.dn child_obj = GenericMo(class_id, parent_mo_or_dn=pdn) self.child_add(child_obj) child_obj.from_xml(child, handle)
Python
def __get_mo_obj(self, class_id): """ Internal methods to create managed object from class_id """ import inspect mo_class = ucsccoreutils.load_class(class_id) mo_class_params = inspect.getargspec(mo_class.__init__)[0][2:] mo_class_param_dict = {} for param in mo_class_params: mo_param = mo_class.prop_meta[param].xml_attribute if mo_param not in self.__properties: if 'rn' in self.__properties: rn_str = self.__properties['rn'] elif 'dn' in self.__properties: rn_str = os.path.basename(self.__properties['dn']) rn_pattern = mo_class.mo_meta.rn np_dict = ucsccoreutils.get_naming_props(rn_str, rn_pattern) if param not in np_dict: mo_class_param_dict[param] = "" else: mo_class_param_dict[param] = np_dict[param] else: mo_class_param_dict[param] = self.__properties[mo_param] p_dn = "" if 'topRoot' in mo_class.mo_meta.parents: mo_obj = mo_class(**mo_class_param_dict) else: mo_obj = mo_class(parent_mo_or_dn=p_dn, **mo_class_param_dict) return mo_obj
def __get_mo_obj(self, class_id): """ Internal methods to create managed object from class_id """ import inspect mo_class = ucsccoreutils.load_class(class_id) mo_class_params = inspect.getargspec(mo_class.__init__)[0][2:] mo_class_param_dict = {} for param in mo_class_params: mo_param = mo_class.prop_meta[param].xml_attribute if mo_param not in self.__properties: if 'rn' in self.__properties: rn_str = self.__properties['rn'] elif 'dn' in self.__properties: rn_str = os.path.basename(self.__properties['dn']) rn_pattern = mo_class.mo_meta.rn np_dict = ucsccoreutils.get_naming_props(rn_str, rn_pattern) if param not in np_dict: mo_class_param_dict[param] = "" else: mo_class_param_dict[param] = np_dict[param] else: mo_class_param_dict[param] = self.__properties[mo_param] p_dn = "" if 'topRoot' in mo_class.mo_meta.parents: mo_obj = mo_class(**mo_class_param_dict) else: mo_obj = mo_class(parent_mo_or_dn=p_dn, **mo_class_param_dict) return mo_obj
Python
def from_xml(self, elem, handle=None): """This method creates the object from the xml representation of the Method object.""" self._handle = handle if elem.attrib: for attr_name, attr_value in ucscgenutils.iteritems(elem.attrib): self.attr_set( ucscgenutils.convert_to_python_var_name(attr_name), str(attr_value)) child_elems = list(elem) if child_elems: for child_elem in child_elems: if not ET.iselement(child_elem): continue cln = ucscgenutils.word_u(child_elem.tag) child = ucsccoreutils.get_ucsc_obj(cln, child_elem) self._child.append(child) child.from_xml(child_elem, handle)
def from_xml(self, elem, handle=None): """This method creates the object from the xml representation of the Method object.""" self._handle = handle if elem.attrib: for attr_name, attr_value in ucscgenutils.iteritems(elem.attrib): self.attr_set( ucscgenutils.convert_to_python_var_name(attr_name), str(attr_value)) child_elems = list(elem) if child_elems: for child_elem in child_elems: if not ET.iselement(child_elem): continue cln = ucscgenutils.word_u(child_elem.tag) child = ucsccoreutils.get_ucsc_obj(cln, child_elem) self._child.append(child) child.from_xml(child_elem, handle)
Python
def download_image_by_asset_path(asset_path, output_folder): """ Downloads an individual image, given its asset path, and saves it to output_folder. Returns a list of the downloaded image or images """ ### Get the download URL from EE image = ee.Image(asset_path) # this approach comes from https://github.com/google/earthengine-api/blob/master/python/examples/py/Image/download.py path = image.getDownloadUrl({ #'scale': 30, #'crs': 'EPSG:3310', #'region': '[[-120, 35], [-119, 35], [-119, 34], [-120, 34]]' }) ### Do some name management things output_name = os.path.split(asset_path)[1] zipfile = output_name + ".zip" download_path = os.path.join(output_folder, zipfile) # comes as a zip file with a .tfw # check that the output path exists - create it if not makedirs(output_folder) c = Curler() success = c.download(url=path, path=download_path) if not success: raise RuntimeError("Unable to retrieve file at {} - please check in your browser and try again (make sure to log into EE first).".format(path)) ### Extract the Zip and delete it if not is_zipfile(download_path): raise RuntimeError("Downloaded file was not a zip file!") with open(download_path, 'r') as zf: z = ZipFile(zf) downloaded_items = [os.path.join(output_folder,item) for item in z.namelist() if not item.endswith("tfw") ] z.extractall(path=output_folder) z.close() del z os.remove(download_path) return downloaded_items
def download_image_by_asset_path(asset_path, output_folder): """ Downloads an individual image, given its asset path, and saves it to output_folder. Returns a list of the downloaded image or images """ ### Get the download URL from EE image = ee.Image(asset_path) # this approach comes from https://github.com/google/earthengine-api/blob/master/python/examples/py/Image/download.py path = image.getDownloadUrl({ #'scale': 30, #'crs': 'EPSG:3310', #'region': '[[-120, 35], [-119, 35], [-119, 34], [-120, 34]]' }) ### Do some name management things output_name = os.path.split(asset_path)[1] zipfile = output_name + ".zip" download_path = os.path.join(output_folder, zipfile) # comes as a zip file with a .tfw # check that the output path exists - create it if not makedirs(output_folder) c = Curler() success = c.download(url=path, path=download_path) if not success: raise RuntimeError("Unable to retrieve file at {} - please check in your browser and try again (make sure to log into EE first).".format(path)) ### Extract the Zip and delete it if not is_zipfile(download_path): raise RuntimeError("Downloaded file was not a zip file!") with open(download_path, 'r') as zf: z = ZipFile(zf) downloaded_items = [os.path.join(output_folder,item) for item in z.namelist() if not item.endswith("tfw") ] z.extractall(path=output_folder) z.close() del z os.remove(download_path) return downloaded_items
Python
def download_images_in_collection(collection_id, output_folder, max_items=max_items): """ Downloads images in ImageCollection specified by collection_id and saves them into the location specified in output folder, up to max_items downloads. Set max_items to a very high number to download all items. Returns a list with the full paths to the downloaded images. """ ### Get all of the items in the collection collection = ee.ImageCollection(collection_id) collection_items = collection.toList(max_items).getInfo() downloaded_items = [] for item in collection_items: downloaded_items += download_image_by_asset_path(item["id"], output_folder) # extend the list with the new list that's produced - don't append return downloaded_items
def download_images_in_collection(collection_id, output_folder, max_items=max_items): """ Downloads images in ImageCollection specified by collection_id and saves them into the location specified in output folder, up to max_items downloads. Set max_items to a very high number to download all items. Returns a list with the full paths to the downloaded images. """ ### Get all of the items in the collection collection = ee.ImageCollection(collection_id) collection_items = collection.toList(max_items).getInfo() downloaded_items = [] for item in collection_items: downloaded_items += download_image_by_asset_path(item["id"], output_folder) # extend the list with the new list that's produced - don't append return downloaded_items
Python
def process_pldmtool_output(process): """ Ensure pldmtool runs without error and if it does fail, detect that and show the pldmtool exit status and it's stderr. A simpler implementation would just wait for the pldmtool exit status prior to attempting to decode it's stdout. Instead, optimize for the no error case and allow the json decoder to consume pldmtool stdout as soon as it is available (in parallel). This results in the following error scenarios: - pldmtool fails and the decoder fails Ignore the decoder fail and throw PLDMToolError. - pldmtool fails and the decoder doesn't fail Throw PLDMToolError. - pldmtool doesn't fail and the decoder does fail This is a pldmtool bug - re-throw the decoder error. Parameters: process: A Process object providing process control functions like wait, and access functions such as reading stdout and stderr. """ status = 0 try: data = json.load(process.stdout) # it's unlikely, but possible, that pldmtool failed but still wrote a # valid json document - so check for that. status = process.wait() if status == 0: return data except json.decoder.JSONDecodeError: # pldmtool wrote an invalid json document. Check to see if it had # non-zero exit status. status = process.wait() if status == 0: # pldmtool didn't have non zero exit status, so it wrote an invalid # json document and the JSONDecodeError is the correct error. raise # pldmtool had a non-zero exit status, so throw an error for that, possibly # discarding a spurious JSONDecodeError exception. raise PLDMToolError(status, "".join(process.stderr))
def process_pldmtool_output(process): """ Ensure pldmtool runs without error and if it does fail, detect that and show the pldmtool exit status and it's stderr. A simpler implementation would just wait for the pldmtool exit status prior to attempting to decode it's stdout. Instead, optimize for the no error case and allow the json decoder to consume pldmtool stdout as soon as it is available (in parallel). This results in the following error scenarios: - pldmtool fails and the decoder fails Ignore the decoder fail and throw PLDMToolError. - pldmtool fails and the decoder doesn't fail Throw PLDMToolError. - pldmtool doesn't fail and the decoder does fail This is a pldmtool bug - re-throw the decoder error. Parameters: process: A Process object providing process control functions like wait, and access functions such as reading stdout and stderr. """ status = 0 try: data = json.load(process.stdout) # it's unlikely, but possible, that pldmtool failed but still wrote a # valid json document - so check for that. status = process.wait() if status == 0: return data except json.decoder.JSONDecodeError: # pldmtool wrote an invalid json document. Check to see if it had # non-zero exit status. status = process.wait() if status == 0: # pldmtool didn't have non zero exit status, so it wrote an invalid # json document and the JSONDecodeError is the correct error. raise # pldmtool had a non-zero exit status, so throw an error for that, possibly # discarding a spurious JSONDecodeError exception. raise PLDMToolError(status, "".join(process.stderr))
Python
def fetch_pdrs_from_bmc(executor): """ This is the core function that would fire the getPDR pldmtool command and it then agreegates the data received from all the calls into the respective dictionaries based on the PDR Type. Parameters: executor: executor object for running pldmtool """ entity_association_pdr = {} state_sensor_pdr = {} state_effecter_pdr = {} state_effecter_pdr = {} numeric_pdr = {} fru_record_set_pdr = {} tl_pdr = {} for handle_number, my_dic in get_pdrs(executor): if sys.stdout.isatty(): sys.stdout.write( "Fetching PDR's from BMC : %8d\r" % (handle_number)) sys.stdout.flush() if my_dic["PDRType"] == "Entity Association PDR": entity_association_pdr[handle_number] = my_dic if my_dic["PDRType"] == "State Sensor PDR": state_sensor_pdr[handle_number] = my_dic if my_dic["PDRType"] == "State Effecter PDR": state_effecter_pdr[handle_number] = my_dic if my_dic["PDRType"] == "FRU Record Set PDR": fru_record_set_pdr[handle_number] = my_dic if my_dic["PDRType"] == "Terminus Locator PDR": tl_pdr[handle_number] = my_dic if my_dic["PDRType"] == "Numeric Effecter PDR": numeric_pdr[handle_number] = my_dic executor.close() total_pdrs = len(entity_association_pdr.keys()) + len(tl_pdr.keys()) + \ len(state_effecter_pdr.keys()) + len(numeric_pdr.keys()) + \ len(state_sensor_pdr.keys()) + len(fru_record_set_pdr.keys()) print("\nSuccessfully fetched " + str(total_pdrs) + " PDR\'s") print("Number of FRU Record PDR's : ", len(fru_record_set_pdr.keys())) print("Number of TerminusLocator PDR's : ", len(tl_pdr.keys())) print("Number of State Sensor PDR's : ", len(state_sensor_pdr.keys())) print("Number of State Effecter PDR's : ", len(state_effecter_pdr.keys())) print("Number of Numeric Effecter PDR's : ", len(numeric_pdr.keys())) print("Number of Entity Association PDR's : ", len(entity_association_pdr.keys())) return (entity_association_pdr, state_sensor_pdr, state_effecter_pdr, len(fru_record_set_pdr.keys()))
def fetch_pdrs_from_bmc(executor): """ This is the core function that would fire the getPDR pldmtool command and it then agreegates the data received from all the calls into the respective dictionaries based on the PDR Type. Parameters: executor: executor object for running pldmtool """ entity_association_pdr = {} state_sensor_pdr = {} state_effecter_pdr = {} state_effecter_pdr = {} numeric_pdr = {} fru_record_set_pdr = {} tl_pdr = {} for handle_number, my_dic in get_pdrs(executor): if sys.stdout.isatty(): sys.stdout.write( "Fetching PDR's from BMC : %8d\r" % (handle_number)) sys.stdout.flush() if my_dic["PDRType"] == "Entity Association PDR": entity_association_pdr[handle_number] = my_dic if my_dic["PDRType"] == "State Sensor PDR": state_sensor_pdr[handle_number] = my_dic if my_dic["PDRType"] == "State Effecter PDR": state_effecter_pdr[handle_number] = my_dic if my_dic["PDRType"] == "FRU Record Set PDR": fru_record_set_pdr[handle_number] = my_dic if my_dic["PDRType"] == "Terminus Locator PDR": tl_pdr[handle_number] = my_dic if my_dic["PDRType"] == "Numeric Effecter PDR": numeric_pdr[handle_number] = my_dic executor.close() total_pdrs = len(entity_association_pdr.keys()) + len(tl_pdr.keys()) + \ len(state_effecter_pdr.keys()) + len(numeric_pdr.keys()) + \ len(state_sensor_pdr.keys()) + len(fru_record_set_pdr.keys()) print("\nSuccessfully fetched " + str(total_pdrs) + " PDR\'s") print("Number of FRU Record PDR's : ", len(fru_record_set_pdr.keys())) print("Number of TerminusLocator PDR's : ", len(tl_pdr.keys())) print("Number of State Sensor PDR's : ", len(state_sensor_pdr.keys())) print("Number of State Effecter PDR's : ", len(state_effecter_pdr.keys())) print("Number of Numeric Effecter PDR's : ", len(numeric_pdr.keys())) print("Number of Entity Association PDR's : ", len(entity_association_pdr.keys())) return (entity_association_pdr, state_sensor_pdr, state_effecter_pdr, len(fru_record_set_pdr.keys()))
Python
def main(): """ Create a summary table capturing the information of all the PDR's from the BMC & also create a diagram that captures the entity association hierarchy.""" parser = argparse.ArgumentParser(prog='pldm_visualise_pdrs.py') parser.add_argument('--bmc', type=str, help="BMC IPAddress/BMC Hostname") parser.add_argument('--user', type=str, help="BMC username") parser.add_argument('--password', type=str, help="BMC Password") parser.add_argument('--port', type=int, help="BMC SSH port", default=22) args = parser.parse_args() extra_cfg = {} if args.bmc: try: with open(os.path.expanduser("~/.ssh/config")) as f: ssh_config = paramiko.SSHConfig() ssh_config.parse(f) host_config = ssh_config.lookup(args.bmc) if host_config: if 'hostname' in host_config: args.bmc = host_config['hostname'] if 'user' in host_config and args.user is None: args.user = host_config['user'] if 'proxycommand' in host_config: extra_cfg['sock'] = paramiko.ProxyCommand( host_config['proxycommand']) except FileNotFoundError: pass executor = ParamikoExecutor( args.bmc, args.user, args.password, args.port, **extra_cfg) elif shutil.which('pldmtool'): executor = SubprocessExecutor() else: sys.exit("Can't find any PDRs: specify remote BMC with --bmc or " "install pldmtool.") association_pdr, state_sensor_pdr, state_effecter_pdr, counter = \ fetch_pdrs_from_bmc(executor) draw_entity_associations(association_pdr, counter) prepare_summary_report(state_sensor_pdr, state_effecter_pdr)
def main(): """ Create a summary table capturing the information of all the PDR's from the BMC & also create a diagram that captures the entity association hierarchy.""" parser = argparse.ArgumentParser(prog='pldm_visualise_pdrs.py') parser.add_argument('--bmc', type=str, help="BMC IPAddress/BMC Hostname") parser.add_argument('--user', type=str, help="BMC username") parser.add_argument('--password', type=str, help="BMC Password") parser.add_argument('--port', type=int, help="BMC SSH port", default=22) args = parser.parse_args() extra_cfg = {} if args.bmc: try: with open(os.path.expanduser("~/.ssh/config")) as f: ssh_config = paramiko.SSHConfig() ssh_config.parse(f) host_config = ssh_config.lookup(args.bmc) if host_config: if 'hostname' in host_config: args.bmc = host_config['hostname'] if 'user' in host_config and args.user is None: args.user = host_config['user'] if 'proxycommand' in host_config: extra_cfg['sock'] = paramiko.ProxyCommand( host_config['proxycommand']) except FileNotFoundError: pass executor = ParamikoExecutor( args.bmc, args.user, args.password, args.port, **extra_cfg) elif shutil.which('pldmtool'): executor = SubprocessExecutor() else: sys.exit("Can't find any PDRs: specify remote BMC with --bmc or " "install pldmtool.") association_pdr, state_sensor_pdr, state_effecter_pdr, counter = \ fetch_pdrs_from_bmc(executor) draw_entity_associations(association_pdr, counter) prepare_summary_report(state_sensor_pdr, state_effecter_pdr)
Python
def image_modification_date_from_exif(imagename): """ Set the modification/creation date of the image to its EXIF data. :param imagename: name of the image to handle """ if os.path.exists(imagename): print("Parsing {0}...".format(imagename)) filestream = open(imagename, 'rb') tags = exifread.process_file(filestream) start_time = tags.get('EXIF DateTimeOriginal') print(start_time) timestamp = datetime.strptime(start_time.values, "%Y:%m:%d %H:%M:%S") mt = int(time.mktime(timestamp.timetuple())) os.utime(imagename, (mt, mt)) return timestamp return None
def image_modification_date_from_exif(imagename): """ Set the modification/creation date of the image to its EXIF data. :param imagename: name of the image to handle """ if os.path.exists(imagename): print("Parsing {0}...".format(imagename)) filestream = open(imagename, 'rb') tags = exifread.process_file(filestream) start_time = tags.get('EXIF DateTimeOriginal') print(start_time) timestamp = datetime.strptime(start_time.values, "%Y:%m:%d %H:%M:%S") mt = int(time.mktime(timestamp.timetuple())) os.utime(imagename, (mt, mt)) return timestamp return None
Python
def _generate_calc_job(folder, entry_point_name, inputs=None): """Fixture to generate a mock ``CalcInfo`` for testing calculation jobs.""" from aiida.engine.utils import instantiate_process from aiida.manage.manager import get_manager from aiida.plugins import CalculationFactory manager = get_manager() runner = manager.get_runner() process_class = CalculationFactory(entry_point_name) process = instantiate_process(runner, process_class, **inputs) calc_info = process.prepare_for_submission(folder) return calc_info
def _generate_calc_job(folder, entry_point_name, inputs=None): """Fixture to generate a mock ``CalcInfo`` for testing calculation jobs.""" from aiida.engine.utils import instantiate_process from aiida.manage.manager import get_manager from aiida.plugins import CalculationFactory manager = get_manager() runner = manager.get_runner() process_class = CalculationFactory(entry_point_name) process = instantiate_process(runner, process_class, **inputs) calc_info = process.prepare_for_submission(folder) return calc_info
Python
def generate_calc_job_node(): """Fixture to generate a mock `CalcJobNode` for testing parsers.""" from aiida import orm import collections # pylint: disable=syntax-error def flatten_inputs(inputs, prefix=''): """This function follows roughly the same logic as `aiida.engine.processes.process::Process._flatten_inputs`.""" flat_inputs = [] for key, value in inputs.items(): if isinstance(value, collections.abc.Mapping): flat_inputs.extend( flatten_inputs(value, prefix=prefix + key + '__')) else: flat_inputs.append((prefix + key, value)) return flat_inputs def _generate_calc_job_node(entry_point_name, computer, test_name=None, inputs=None, attributes=None): """Fixture to generate a mock `CalcJobNode` for testing parsers. :param entry_point_name: entry point name of the calculation class :param computer: a `Computer` instance :param test_name: relative path of directory :param inputs: any optional nodes to add as input links to the corrent CalcJobNode :param attributes: any optional attributes to set on the node :return: `CalcJobNode` instance with an attached `FolderData` as the `retrieved` node """ # pylint: disable=too-many-locals import os from aiida.common import LinkType from aiida.plugins.entry_point import format_entry_point_string entry_point = format_entry_point_string('aiida.calculations', entry_point_name) node = orm.CalcJobNode(computer=computer, process_type=entry_point) node.set_option('resources', { 'num_machines': 1, 'num_mpiprocs_per_machine': 1 }) node.set_option('max_wallclock_seconds', 1800) if attributes: node.set_attribute_many(attributes) if inputs: metadata = inputs.pop('metadata', {}) options = metadata.get('options', {}) for name, option in options.items(): node.set_option(name, option) for link_label, input_node in flatten_inputs(inputs): input_node.store() node.add_incoming(input_node, link_type=LinkType.INPUT_CALC, link_label=link_label) node.store() if test_name is not None: basepath = os.path.dirname(os.path.abspath(__file__)) filepath = os.path.join(basepath, 'parsers', 'fixtures', 'catmap', test_name) retrieved = orm.FolderData() retrieved.put_object_from_tree(filepath) retrieved.add_incoming(node, link_type=LinkType.CREATE, link_label='retrieved') retrieved.store() remote_folder = orm.RemoteData(computer=computer, remote_path='/tmp') remote_folder.add_incoming(node, link_type=LinkType.CREATE, link_label='remote_folder') remote_folder.store() return node return _generate_calc_job_node
def generate_calc_job_node(): """Fixture to generate a mock `CalcJobNode` for testing parsers.""" from aiida import orm import collections # pylint: disable=syntax-error def flatten_inputs(inputs, prefix=''): """This function follows roughly the same logic as `aiida.engine.processes.process::Process._flatten_inputs`.""" flat_inputs = [] for key, value in inputs.items(): if isinstance(value, collections.abc.Mapping): flat_inputs.extend( flatten_inputs(value, prefix=prefix + key + '__')) else: flat_inputs.append((prefix + key, value)) return flat_inputs def _generate_calc_job_node(entry_point_name, computer, test_name=None, inputs=None, attributes=None): """Fixture to generate a mock `CalcJobNode` for testing parsers. :param entry_point_name: entry point name of the calculation class :param computer: a `Computer` instance :param test_name: relative path of directory :param inputs: any optional nodes to add as input links to the corrent CalcJobNode :param attributes: any optional attributes to set on the node :return: `CalcJobNode` instance with an attached `FolderData` as the `retrieved` node """ # pylint: disable=too-many-locals import os from aiida.common import LinkType from aiida.plugins.entry_point import format_entry_point_string entry_point = format_entry_point_string('aiida.calculations', entry_point_name) node = orm.CalcJobNode(computer=computer, process_type=entry_point) node.set_option('resources', { 'num_machines': 1, 'num_mpiprocs_per_machine': 1 }) node.set_option('max_wallclock_seconds', 1800) if attributes: node.set_attribute_many(attributes) if inputs: metadata = inputs.pop('metadata', {}) options = metadata.get('options', {}) for name, option in options.items(): node.set_option(name, option) for link_label, input_node in flatten_inputs(inputs): input_node.store() node.add_incoming(input_node, link_type=LinkType.INPUT_CALC, link_label=link_label) node.store() if test_name is not None: basepath = os.path.dirname(os.path.abspath(__file__)) filepath = os.path.join(basepath, 'parsers', 'fixtures', 'catmap', test_name) retrieved = orm.FolderData() retrieved.put_object_from_tree(filepath) retrieved.add_incoming(node, link_type=LinkType.CREATE, link_label='retrieved') retrieved.store() remote_folder = orm.RemoteData(computer=computer, remote_path='/tmp') remote_folder.add_incoming(node, link_type=LinkType.CREATE, link_label='remote_folder') remote_folder.store() return node return _generate_calc_job_node
Python
def _generate_calc_job_node(entry_point_name, computer, test_name=None, inputs=None, attributes=None): """Fixture to generate a mock `CalcJobNode` for testing parsers. :param entry_point_name: entry point name of the calculation class :param computer: a `Computer` instance :param test_name: relative path of directory :param inputs: any optional nodes to add as input links to the corrent CalcJobNode :param attributes: any optional attributes to set on the node :return: `CalcJobNode` instance with an attached `FolderData` as the `retrieved` node """ # pylint: disable=too-many-locals import os from aiida.common import LinkType from aiida.plugins.entry_point import format_entry_point_string entry_point = format_entry_point_string('aiida.calculations', entry_point_name) node = orm.CalcJobNode(computer=computer, process_type=entry_point) node.set_option('resources', { 'num_machines': 1, 'num_mpiprocs_per_machine': 1 }) node.set_option('max_wallclock_seconds', 1800) if attributes: node.set_attribute_many(attributes) if inputs: metadata = inputs.pop('metadata', {}) options = metadata.get('options', {}) for name, option in options.items(): node.set_option(name, option) for link_label, input_node in flatten_inputs(inputs): input_node.store() node.add_incoming(input_node, link_type=LinkType.INPUT_CALC, link_label=link_label) node.store() if test_name is not None: basepath = os.path.dirname(os.path.abspath(__file__)) filepath = os.path.join(basepath, 'parsers', 'fixtures', 'catmap', test_name) retrieved = orm.FolderData() retrieved.put_object_from_tree(filepath) retrieved.add_incoming(node, link_type=LinkType.CREATE, link_label='retrieved') retrieved.store() remote_folder = orm.RemoteData(computer=computer, remote_path='/tmp') remote_folder.add_incoming(node, link_type=LinkType.CREATE, link_label='remote_folder') remote_folder.store() return node
def _generate_calc_job_node(entry_point_name, computer, test_name=None, inputs=None, attributes=None): """Fixture to generate a mock `CalcJobNode` for testing parsers. :param entry_point_name: entry point name of the calculation class :param computer: a `Computer` instance :param test_name: relative path of directory :param inputs: any optional nodes to add as input links to the corrent CalcJobNode :param attributes: any optional attributes to set on the node :return: `CalcJobNode` instance with an attached `FolderData` as the `retrieved` node """ # pylint: disable=too-many-locals import os from aiida.common import LinkType from aiida.plugins.entry_point import format_entry_point_string entry_point = format_entry_point_string('aiida.calculations', entry_point_name) node = orm.CalcJobNode(computer=computer, process_type=entry_point) node.set_option('resources', { 'num_machines': 1, 'num_mpiprocs_per_machine': 1 }) node.set_option('max_wallclock_seconds', 1800) if attributes: node.set_attribute_many(attributes) if inputs: metadata = inputs.pop('metadata', {}) options = metadata.get('options', {}) for name, option in options.items(): node.set_option(name, option) for link_label, input_node in flatten_inputs(inputs): input_node.store() node.add_incoming(input_node, link_type=LinkType.INPUT_CALC, link_label=link_label) node.store() if test_name is not None: basepath = os.path.dirname(os.path.abspath(__file__)) filepath = os.path.join(basepath, 'parsers', 'fixtures', 'catmap', test_name) retrieved = orm.FolderData() retrieved.put_object_from_tree(filepath) retrieved.add_incoming(node, link_type=LinkType.CREATE, link_label='retrieved') retrieved.store() remote_folder = orm.RemoteData(computer=computer, remote_path='/tmp') remote_folder.add_incoming(node, link_type=LinkType.CREATE, link_label='remote_folder') remote_folder.store() return node
Python
def parse(self, **kwargs): # pylint: disable=too-many-locals, inconsistent-return-statements """ Parse outputs, store results in database. :returns: an exit code, if parsing fails (or nothing if parsing succeeds) """ from aiida.orm import SinglefileData, List output_filename = self.node.get_option('output_filename') pickle_filename = self.node.inputs.data_file.value # Check that folder content is as expected files_retrieved = self.retrieved.list_object_names() files_expected = [output_filename, pickle_filename] # Note: set(A) <= set(B) checks whether A is a subset of B if not set(files_expected) <= set(files_retrieved): self.logger.error( f"Found files '{files_retrieved}', expected to find '{files_expected}'" ) return self.exit_codes.ERROR_MISSING_OUTPUT_FILES # add output file self.logger.info(f"Parsing '{output_filename}'") with self.retrieved.open(output_filename, 'rb') as handle: output_node = SinglefileData(file=handle) self.out('log', output_node) # Parsing the pickle file self.logger.info(f"Parsing '{pickle_filename}'") # pickledata = pickle.load(self.retrieved.open(pickle_filename, 'rb')) with self.retrieved.open(pickle_filename, 'rb') as handle: pickledata = pickle.load(handle) try: coverage_data = [[a[0], list(map(float, a[1]))] for a in pickledata['coverage_map']] except KeyError: return self.exit_codes.ERROR_NO_PICKLE_FILE ## Choose not to change the mpmath format ## the downside is that mpmath must then be present ## wherever this is being parsed rate_data = [[a[0], list(map(float, a[1]))] for a in pickledata['rate_map']] production_data = [[a[0], list(map(float, a[1]))] for a in pickledata['production_rate_map']] coverage_map = List(list=coverage_data) rate_map = List(list=rate_data) production_map = List(list=production_data) ## The three main outputs ## The solution to the kinetic model - coverages ## The rate and the production rate also provided self.out('coverage_map', coverage_map) self.out('rate_map', rate_map) self.out('production_rate_map', production_map)
def parse(self, **kwargs): # pylint: disable=too-many-locals, inconsistent-return-statements """ Parse outputs, store results in database. :returns: an exit code, if parsing fails (or nothing if parsing succeeds) """ from aiida.orm import SinglefileData, List output_filename = self.node.get_option('output_filename') pickle_filename = self.node.inputs.data_file.value # Check that folder content is as expected files_retrieved = self.retrieved.list_object_names() files_expected = [output_filename, pickle_filename] # Note: set(A) <= set(B) checks whether A is a subset of B if not set(files_expected) <= set(files_retrieved): self.logger.error( f"Found files '{files_retrieved}', expected to find '{files_expected}'" ) return self.exit_codes.ERROR_MISSING_OUTPUT_FILES # add output file self.logger.info(f"Parsing '{output_filename}'") with self.retrieved.open(output_filename, 'rb') as handle: output_node = SinglefileData(file=handle) self.out('log', output_node) # Parsing the pickle file self.logger.info(f"Parsing '{pickle_filename}'") # pickledata = pickle.load(self.retrieved.open(pickle_filename, 'rb')) with self.retrieved.open(pickle_filename, 'rb') as handle: pickledata = pickle.load(handle) try: coverage_data = [[a[0], list(map(float, a[1]))] for a in pickledata['coverage_map']] except KeyError: return self.exit_codes.ERROR_NO_PICKLE_FILE ## Choose not to change the mpmath format ## the downside is that mpmath must then be present ## wherever this is being parsed rate_data = [[a[0], list(map(float, a[1]))] for a in pickledata['rate_map']] production_data = [[a[0], list(map(float, a[1]))] for a in pickledata['production_rate_map']] coverage_map = List(list=coverage_data) rate_map = List(list=rate_data) production_map = List(list=production_data) ## The three main outputs ## The solution to the kinetic model - coverages ## The rate and the production rate also provided self.out('coverage_map', coverage_map) self.out('rate_map', rate_map) self.out('production_rate_map', production_map)
Python
def define(cls, spec): """Define inputs and outputs of the calculation.""" # yapf: disable super(CatMAPCalculation, cls).define(spec) # set default values for AiiDA-CatMAP options # Right now the tool allows only serial runs this might change spec.inputs['metadata']['options']['resources'].default = { 'num_machines': 1, 'num_mpiprocs_per_machine': 1, } # new ports ## INPUTS ### Decide if you are doing electrocatalysis or thermal catalysis; not a catmap input spec.input('electrocatal', valid_type=Bool, help='If this is an electrocatalysis run, specify here', default=lambda: Bool(True)) ### Reaction condition keys spec.input('energies', valid_type=SinglefileData, help='energies.txt that stores all the energy inputs') spec.input('scaler', valid_type=Str, help='Scaler to be used in the Kinetic model', default=lambda: Str('GeneralizedLinearScaler')) spec.input('rxn_expressions', valid_type=List, help='Reactions expressions') spec.input('surface_names', valid_type=List, help='Surfaces to calculate with energies in energies.txt') spec.input('descriptor_names', valid_type=List, help='Descriptors') spec.input('descriptor_ranges', valid_type=List, help='List of lists which has the two ranges') spec.input('resolution', valid_type=Int, help='Resolution of calculation') spec.input('temperature', valid_type=Float, help='temperature to run calculation at') spec.input('species_definitions', valid_type=Dict, help='Dict consisting of all species definitions') spec.input('gas_thermo_mode', valid_type=Str, help='Gas thermodynamics mode') spec.input('adsorbate_thermo_mode', valid_type=Str, help='Adsorbate thermodyamics mode') spec.input('scaling_constraint_dict', valid_type=Dict, help='Scaling constraints', required=False) spec.input('numerical_solver', valid_type=Str, help='Numerical solver to be used', required=False, default=lambda: Str('coverages')) spec.input('decimal_precision', valid_type=Int, help='Decimal precision of code') spec.input('tolerance', valid_type=Float, help='Tolerance of calculation') spec.input('max_rootfinding_iterations', valid_type=Int, help='Maximum root finding iterations') spec.input('max_bisections', valid_type=Int, help='Maximum bisections for root finding algorithm') spec.input('mkm_filename', valid_type=Str, required=False, default=lambda: Str(cls._INPUT_FILE_NAME)) spec.input('data_file', valid_type=Str, required=False, default=lambda: Str('aiida.pickle')) spec.input('ideal_gas_params', valid_type=Dict, required=False, help='Ideal gas parameters to inferface with ASE') ### Keys for electrochemistry spec.input('voltage', valid_type=Float, required=False, help='Potential on an SHE scale') spec.input('electrochemical_thermo_mode', valid_type=List, help='Electrochemical thermodyamics mode', required=False) spec.input('pH', valid_type=Float, required=False, help='pH') spec.input('beta', valid_type=Float, required=False, default=lambda: Float(0.5)) spec.input('potential_reference_scale', valid_type=Str, required=False, default=lambda: Str('SHE')) spec.input('extrapolated_potential', valid_type=Float, required=False, default=lambda: Float(0.0)) spec.input('voltage_diff_drop', valid_type=Float, required=False, default=lambda: Float(0.0)) spec.input('sigma_input', valid_type=List, required=False, default=lambda: List(list=['CH', 0])) spec.input('Upzc', valid_type=Float, required=False, default=lambda: Float(0.0)) ## METADATA spec.inputs['metadata']['options']['parser_name'].default = 'catmap' spec.inputs['metadata']['options']['input_filename'].default = 'mkm_job.py' spec.inputs['metadata']['options']['output_filename'].default = 'aiida.out' ## OUTPUTS spec.output('log', valid_type=SinglefileData, help='Log file from CatMAP') spec.output('coverage_map', valid_type=List, help='Coverage Map generated after a completed CatMAP run') spec.output('rate_map', valid_type=List, help='Rate Map generated after a completed CatMAP run') spec.output('production_rate_map', valid_type=List, help='Production Rate Map generated after a completed CatMAP run') spec.exit_code(100, 'ERROR_MISSING_OUTPUT_FILES', message='Calculation did not produce all expected output files.') spec.exit_code(500, 'ERROR_NO_PICKLE_FILE', message='No information stored in the pickle file')
def define(cls, spec): """Define inputs and outputs of the calculation.""" # yapf: disable super(CatMAPCalculation, cls).define(spec) # set default values for AiiDA-CatMAP options # Right now the tool allows only serial runs this might change spec.inputs['metadata']['options']['resources'].default = { 'num_machines': 1, 'num_mpiprocs_per_machine': 1, } # new ports ## INPUTS ### Decide if you are doing electrocatalysis or thermal catalysis; not a catmap input spec.input('electrocatal', valid_type=Bool, help='If this is an electrocatalysis run, specify here', default=lambda: Bool(True)) ### Reaction condition keys spec.input('energies', valid_type=SinglefileData, help='energies.txt that stores all the energy inputs') spec.input('scaler', valid_type=Str, help='Scaler to be used in the Kinetic model', default=lambda: Str('GeneralizedLinearScaler')) spec.input('rxn_expressions', valid_type=List, help='Reactions expressions') spec.input('surface_names', valid_type=List, help='Surfaces to calculate with energies in energies.txt') spec.input('descriptor_names', valid_type=List, help='Descriptors') spec.input('descriptor_ranges', valid_type=List, help='List of lists which has the two ranges') spec.input('resolution', valid_type=Int, help='Resolution of calculation') spec.input('temperature', valid_type=Float, help='temperature to run calculation at') spec.input('species_definitions', valid_type=Dict, help='Dict consisting of all species definitions') spec.input('gas_thermo_mode', valid_type=Str, help='Gas thermodynamics mode') spec.input('adsorbate_thermo_mode', valid_type=Str, help='Adsorbate thermodyamics mode') spec.input('scaling_constraint_dict', valid_type=Dict, help='Scaling constraints', required=False) spec.input('numerical_solver', valid_type=Str, help='Numerical solver to be used', required=False, default=lambda: Str('coverages')) spec.input('decimal_precision', valid_type=Int, help='Decimal precision of code') spec.input('tolerance', valid_type=Float, help='Tolerance of calculation') spec.input('max_rootfinding_iterations', valid_type=Int, help='Maximum root finding iterations') spec.input('max_bisections', valid_type=Int, help='Maximum bisections for root finding algorithm') spec.input('mkm_filename', valid_type=Str, required=False, default=lambda: Str(cls._INPUT_FILE_NAME)) spec.input('data_file', valid_type=Str, required=False, default=lambda: Str('aiida.pickle')) spec.input('ideal_gas_params', valid_type=Dict, required=False, help='Ideal gas parameters to inferface with ASE') ### Keys for electrochemistry spec.input('voltage', valid_type=Float, required=False, help='Potential on an SHE scale') spec.input('electrochemical_thermo_mode', valid_type=List, help='Electrochemical thermodyamics mode', required=False) spec.input('pH', valid_type=Float, required=False, help='pH') spec.input('beta', valid_type=Float, required=False, default=lambda: Float(0.5)) spec.input('potential_reference_scale', valid_type=Str, required=False, default=lambda: Str('SHE')) spec.input('extrapolated_potential', valid_type=Float, required=False, default=lambda: Float(0.0)) spec.input('voltage_diff_drop', valid_type=Float, required=False, default=lambda: Float(0.0)) spec.input('sigma_input', valid_type=List, required=False, default=lambda: List(list=['CH', 0])) spec.input('Upzc', valid_type=Float, required=False, default=lambda: Float(0.0)) ## METADATA spec.inputs['metadata']['options']['parser_name'].default = 'catmap' spec.inputs['metadata']['options']['input_filename'].default = 'mkm_job.py' spec.inputs['metadata']['options']['output_filename'].default = 'aiida.out' ## OUTPUTS spec.output('log', valid_type=SinglefileData, help='Log file from CatMAP') spec.output('coverage_map', valid_type=List, help='Coverage Map generated after a completed CatMAP run') spec.output('rate_map', valid_type=List, help='Rate Map generated after a completed CatMAP run') spec.output('production_rate_map', valid_type=List, help='Production Rate Map generated after a completed CatMAP run') spec.exit_code(100, 'ERROR_MISSING_OUTPUT_FILES', message='Calculation did not produce all expected output files.') spec.exit_code(500, 'ERROR_NO_PICKLE_FILE', message='No information stored in the pickle file')
Python
def pulsing_light(strip, wait_ms=50, iterations=10): """Show a pulsing light with increasing and decreasing circular brightness """ import math position = 0 for i in range(strip.numPixels() * 2): position = position+1 for j in range(strip.numPixels()): strip.setPixelColor(j,Color(round(((math.sin(j+position) * 127 + 128)/255)*255),round(((math.sin(j+position) * 127 + 128) /255)*100), round(((math.sin(j+position) * 127 + 128) /255)*100))) strip.show() time.sleep(wait_ms/1000.0)
def pulsing_light(strip, wait_ms=50, iterations=10): """Show a pulsing light with increasing and decreasing circular brightness """ import math position = 0 for i in range(strip.numPixels() * 2): position = position+1 for j in range(strip.numPixels()): strip.setPixelColor(j,Color(round(((math.sin(j+position) * 127 + 128)/255)*255),round(((math.sin(j+position) * 127 + 128) /255)*100), round(((math.sin(j+position) * 127 + 128) /255)*100))) strip.show() time.sleep(wait_ms/1000.0)
Python
def strobe(strip, wait_ms=400, strobe_count=7, pulse_count=12): from random import randrange """Shows an bright light reflex with different pulse""" for strobe in range(strobe_count): for pulse in range(pulse_count): for i in range(strip.numPixels()): strip.setPixelColorRGB(i, 255,255,255) strip.show() time.sleep(randrange(0,45,1)/1000.0) for i in range(strip.numPixels()): strip.setPixelColorRGB(i, 0,0,0) strip.show() time.sleep(wait_ms/1000.0)
def strobe(strip, wait_ms=400, strobe_count=7, pulse_count=12): from random import randrange """Shows an bright light reflex with different pulse""" for strobe in range(strobe_count): for pulse in range(pulse_count): for i in range(strip.numPixels()): strip.setPixelColorRGB(i, 255,255,255) strip.show() time.sleep(randrange(0,45,1)/1000.0) for i in range(strip.numPixels()): strip.setPixelColorRGB(i, 0,0,0) strip.show() time.sleep(wait_ms/1000.0)
Python
def snow_sparkle(strip,sparkle_delay=20): """Shows different pixel flickering on LED Strip""" from random import randint pixel= randint(0,strip.numPixels()) speed_delay=randint(100,1000) for i in range(strip.numPixels()): strip.setPixelColor(i, Color(0x10,0x10,0x10)) strip.show() time.sleep(speed_delay/1000.0) strip.setPixelColorRGB(pixel, 255,255,255) strip.show() time.sleep(sparkle_delay/1000.0)
def snow_sparkle(strip,sparkle_delay=20): """Shows different pixel flickering on LED Strip""" from random import randint pixel= randint(0,strip.numPixels()) speed_delay=randint(100,1000) for i in range(strip.numPixels()): strip.setPixelColor(i, Color(0x10,0x10,0x10)) strip.show() time.sleep(speed_delay/1000.0) strip.setPixelColorRGB(pixel, 255,255,255) strip.show() time.sleep(sparkle_delay/1000.0)
Python
def bouncing_balls(strip, playtime, ball_count=2, wait_ms=200): """Shows an accelerated pixel with physical behavour like a ball in a flipper game""" import time, math start_time = time.time() ClockTimeSinceLastBounce = [0 for i in range(ball_count)] StartHeight=1 for i in range(ball_count): ClockTimeSinceLastBounce[i] = time.time() Height = [0 for i in range(ball_count)] Position = [0 for i in range(ball_count)] ImpactVelocity = [0 for i in range(ball_count)] ImpactVelocityStart= math.sqrt(-2 * -9.81 * 1) Dampening = [0 for i in range(ball_count)] TimeSinceLastBounce = [0 for i in range(ball_count)] for i in range(0,ball_count,1): last_ClockTimeSinceLastBounce = ClockTimeSinceLastBounce[i] ClockTimeSinceLastBounce[i] = time.time() - last_ClockTimeSinceLastBounce Height[i] = StartHeight Position[i] = 0 ImpactVelocity[i] = math.sqrt(-2 * -9.81 * 1) TimeSinceLastBounce[i] = 0 Dampening[i] = 0.90 - (float(i)/(ball_count**2)) act_time = time.time() while ((act_time+ playtime)> time.time()): for i in range(ball_count): TimeSinceLastBounce[i] = time.time() - ClockTimeSinceLastBounce[i] Height[i] = 0.5 * (-9.81) * (TimeSinceLastBounce[i]**2) + ImpactVelocity[i] * TimeSinceLastBounce[i] if (Height[i] < 0): Height[i] = 0 ImpactVelocity[i] = Dampening[i] * ImpactVelocity[i] ClockTimeSinceLastBounce[i] = time.time() if (ImpactVelocity[i] < 0.01): ImpactVelocity[i] = ImpactVelocityStart Position[i] = round(Height[i] * (strip.numPixels()-1)/StartHeight) #Hier wird die relative Höhe auf die absolute Höhe mit der LED Anzahl umgewandelt. for i in range(ball_count): strip.setPixelColorRGB(Position[i], 0, 0,255) strip.show() for i in range(strip.numPixels()): strip.setPixelColorRGB(i, 0,0,0)
def bouncing_balls(strip, playtime, ball_count=2, wait_ms=200): """Shows an accelerated pixel with physical behavour like a ball in a flipper game""" import time, math start_time = time.time() ClockTimeSinceLastBounce = [0 for i in range(ball_count)] StartHeight=1 for i in range(ball_count): ClockTimeSinceLastBounce[i] = time.time() Height = [0 for i in range(ball_count)] Position = [0 for i in range(ball_count)] ImpactVelocity = [0 for i in range(ball_count)] ImpactVelocityStart= math.sqrt(-2 * -9.81 * 1) Dampening = [0 for i in range(ball_count)] TimeSinceLastBounce = [0 for i in range(ball_count)] for i in range(0,ball_count,1): last_ClockTimeSinceLastBounce = ClockTimeSinceLastBounce[i] ClockTimeSinceLastBounce[i] = time.time() - last_ClockTimeSinceLastBounce Height[i] = StartHeight Position[i] = 0 ImpactVelocity[i] = math.sqrt(-2 * -9.81 * 1) TimeSinceLastBounce[i] = 0 Dampening[i] = 0.90 - (float(i)/(ball_count**2)) act_time = time.time() while ((act_time+ playtime)> time.time()): for i in range(ball_count): TimeSinceLastBounce[i] = time.time() - ClockTimeSinceLastBounce[i] Height[i] = 0.5 * (-9.81) * (TimeSinceLastBounce[i]**2) + ImpactVelocity[i] * TimeSinceLastBounce[i] if (Height[i] < 0): Height[i] = 0 ImpactVelocity[i] = Dampening[i] * ImpactVelocity[i] ClockTimeSinceLastBounce[i] = time.time() if (ImpactVelocity[i] < 0.01): ImpactVelocity[i] = ImpactVelocityStart Position[i] = round(Height[i] * (strip.numPixels()-1)/StartHeight) #Hier wird die relative Höhe auf die absolute Höhe mit der LED Anzahl umgewandelt. for i in range(ball_count): strip.setPixelColorRGB(Position[i], 0, 0,255) strip.show() for i in range(strip.numPixels()): strip.setPixelColorRGB(i, 0,0,0)
Python
def solve_dare(A, B, Q, R): """ solve a discrete time_Algebraic Riccati equation (DARE) """ x = Q x_next = Q max_iter = 150 eps = 0.01 for i in range(max_iter): # x_next = A.T @ x @ A - A.T @ x @ B @ la.inv(R + B.T @ x @ B) @ B.T @ x @ A + Q x_next = np.dot(np.dot(A.T, x), A) - np.dot(np.dot(np.dot(np.dot(np.dot(np.dot(A.T, x), B), la.inv(R + np.dot(np.dot(B.T, x), B))), B.T), x), A) + Q if (abs(x_next - x)).max() < eps: break x = x_next return x_next
def solve_dare(A, B, Q, R): """ solve a discrete time_Algebraic Riccati equation (DARE) """ x = Q x_next = Q max_iter = 150 eps = 0.01 for i in range(max_iter): # x_next = A.T @ x @ A - A.T @ x @ B @ la.inv(R + B.T @ x @ B) @ B.T @ x @ A + Q x_next = np.dot(np.dot(A.T, x), A) - np.dot(np.dot(np.dot(np.dot(np.dot(np.dot(A.T, x), B), la.inv(R + np.dot(np.dot(B.T, x), B))), B.T), x), A) + Q if (abs(x_next - x)).max() < eps: break x = x_next return x_next
Python
def dlqr(A, B, Q, R): """Solve the discrete time lqr controller. x[k+1] = A x[k] + B u[k] cost = sum x[k].T*Q*x[k] + u[k].T*R*u[k] # ref Bertsekas, p.151 """ # first, try to solve the ricatti equation X = solve_dare(A, B, Q, R) # compute the LQR gain # K = la.inv(B.T @ X @ B + R) @ (B.T @ X @ A) K = np.dot(la.inv(np.dot(np.dot(B.T, X), B) + R), np.dot(np.dot(B.T, X), A)) # eig_result = la.eig(A - B @ K) eig_result = la.eig(A - np.dot(B, K)) return K, X, eig_result[0]
def dlqr(A, B, Q, R): """Solve the discrete time lqr controller. x[k+1] = A x[k] + B u[k] cost = sum x[k].T*Q*x[k] + u[k].T*R*u[k] # ref Bertsekas, p.151 """ # first, try to solve the ricatti equation X = solve_dare(A, B, Q, R) # compute the LQR gain # K = la.inv(B.T @ X @ B + R) @ (B.T @ X @ A) K = np.dot(la.inv(np.dot(np.dot(B.T, X), B) + R), np.dot(np.dot(B.T, X), A)) # eig_result = la.eig(A - B @ K) eig_result = la.eig(A - np.dot(B, K)) return K, X, eig_result[0]
Python
def disconnect(self: 'TelegramClient'): """ Disconnects from Telegram. If the event loop is already running, this method returns a coroutine that you should await on your own code; otherwise the loop is ran until said coroutine completes. Example .. code-block:: python # You don't need to use this if you used "with client" await client.disconnect() """ if self._loop.is_running(): return self._disconnect_coro() else: try: self._loop.run_until_complete(self._disconnect_coro()) except RuntimeError: # Python 3.5.x complains when called from # `__aexit__` and there were pending updates with: # "Event loop stopped before Future completed." # # However, it doesn't really make a lot of sense. pass
def disconnect(self: 'TelegramClient'): """ Disconnects from Telegram. If the event loop is already running, this method returns a coroutine that you should await on your own code; otherwise the loop is ran until said coroutine completes. Example .. code-block:: python # You don't need to use this if you used "with client" await client.disconnect() """ if self._loop.is_running(): return self._disconnect_coro() else: try: self._loop.run_until_complete(self._disconnect_coro()) except RuntimeError: # Python 3.5.x complains when called from # `__aexit__` and there were pending updates with: # "Event loop stopped before Future completed." # # However, it doesn't really make a lot of sense. pass
Python
async def _disconnect(self: 'TelegramClient'): """ Disconnect only, without closing the session. Used in reconnections to different data centers, where we don't want to close the session file; user disconnects however should close it since it means that their job with the client is complete and we should clean it up all. """ await self._sender.disconnect() await helpers._cancel(self._log[__name__], updates_handle=self._updates_handle)
async def _disconnect(self: 'TelegramClient'): """ Disconnect only, without closing the session. Used in reconnections to different data centers, where we don't want to close the session file; user disconnects however should close it since it means that their job with the client is complete and we should clean it up all. """ await self._sender.disconnect() await helpers._cancel(self._log[__name__], updates_handle=self._updates_handle)
Python
async def _switch_dc(self: 'TelegramClient', new_dc): """ Permanently switches the current connection to the new data center. """ self._log[__name__].info('Reconnecting to new data center %s', new_dc) dc = await self._get_dc(new_dc) await self.session.set_dc(dc.id, dc.ip_address, dc.port) # auth_key's are associated with a server, which has now changed # so it's not valid anymore. Set to None to force recreating it. self._sender.auth_key.key = None await self.session.set_auth_key(None) await self.session.save() await self._disconnect() return await self.connect()
async def _switch_dc(self: 'TelegramClient', new_dc): """ Permanently switches the current connection to the new data center. """ self._log[__name__].info('Reconnecting to new data center %s', new_dc) dc = await self._get_dc(new_dc) await self.session.set_dc(dc.id, dc.ip_address, dc.port) # auth_key's are associated with a server, which has now changed # so it's not valid anymore. Set to None to force recreating it. self._sender.auth_key.key = None await self.session.set_auth_key(None) await self.session.save() await self._disconnect() return await self.connect()
Python
async def _auth_key_callback(self: 'TelegramClient', auth_key): """ Callback from the sender whenever it needed to generate a new authorization key. This means we are not authorized. """ await self.session.set_auth_key(auth_key) await self.session.save()
async def _auth_key_callback(self: 'TelegramClient', auth_key): """ Callback from the sender whenever it needed to generate a new authorization key. This means we are not authorized. """ await self.session.set_auth_key(auth_key) await self.session.save()
Python
async def _borrow_exported_sender(self: 'TelegramClient', dc_id): """ Borrows a connected `MTProtoSender` for the given `dc_id`. If it's not cached, creates a new one if it doesn't exist yet, and imports a freshly exported authorization key for it to be usable. Once its job is over it should be `_return_exported_sender`. """ async with self._borrow_sender_lock: self._log[__name__].debug('Borrowing sender for dc_id %d', dc_id) state, sender = self._borrowed_senders.get(dc_id, (None, None)) if state is None: state = _ExportState() sender = await self._create_exported_sender(dc_id) sender.dc_id = dc_id self._borrowed_senders[dc_id] = (state, sender) elif state.need_connect(): dc = await self._get_dc(dc_id) await sender.connect(self._connection( dc.ip_address, dc.port, dc.id, loop=self._loop, loggers=self._log, proxy=self._proxy )) state.add_borrow() return sender
async def _borrow_exported_sender(self: 'TelegramClient', dc_id): """ Borrows a connected `MTProtoSender` for the given `dc_id`. If it's not cached, creates a new one if it doesn't exist yet, and imports a freshly exported authorization key for it to be usable. Once its job is over it should be `_return_exported_sender`. """ async with self._borrow_sender_lock: self._log[__name__].debug('Borrowing sender for dc_id %d', dc_id) state, sender = self._borrowed_senders.get(dc_id, (None, None)) if state is None: state = _ExportState() sender = await self._create_exported_sender(dc_id) sender.dc_id = dc_id self._borrowed_senders[dc_id] = (state, sender) elif state.need_connect(): dc = await self._get_dc(dc_id) await sender.connect(self._connection( dc.ip_address, dc.port, dc.id, loop=self._loop, loggers=self._log, proxy=self._proxy )) state.add_borrow() return sender
Python
async def _return_exported_sender(self: 'TelegramClient', sender): """ Returns a borrowed exported sender. If all borrows have been returned, the sender is cleanly disconnected. """ async with self._borrow_sender_lock: self._log[__name__].debug('Returning borrowed sender for dc_id %d', sender.dc_id) state, _ = self._borrowed_senders[sender.dc_id] state.add_return()
async def _return_exported_sender(self: 'TelegramClient', sender): """ Returns a borrowed exported sender. If all borrows have been returned, the sender is cleanly disconnected. """ async with self._borrow_sender_lock: self._log[__name__].debug('Returning borrowed sender for dc_id %d', sender.dc_id) state, _ = self._borrowed_senders[sender.dc_id] state.add_return()
Python
async def _clean_exported_senders(self: 'TelegramClient'): """ Cleans-up all unused exported senders by disconnecting them. """ async with self._borrow_sender_lock: for dc_id, (state, sender) in self._borrowed_senders.items(): if state.should_disconnect(): self._log[__name__].info( 'Disconnecting borrowed sender for DC %d', dc_id) # Disconnect should never raise await sender.disconnect() state.mark_disconnected()
async def _clean_exported_senders(self: 'TelegramClient'): """ Cleans-up all unused exported senders by disconnecting them. """ async with self._borrow_sender_lock: for dc_id, (state, sender) in self._borrowed_senders.items(): if state.should_disconnect(): self._log[__name__].info( 'Disconnecting borrowed sender for DC %d', dc_id) # Disconnect should never raise await sender.disconnect() state.mark_disconnected()
Python
async def dc_id(self): """ Returns the currently-used data center ID. """ raise NotImplementedError
async def dc_id(self): """ Returns the currently-used data center ID. """ raise NotImplementedError
Python
async def server_address(self): """ Returns the server address where the library should connect to. """ raise NotImplementedError
async def server_address(self): """ Returns the server address where the library should connect to. """ raise NotImplementedError
Python
async def port(self): """ Returns the port to which the library should connect to. """ raise NotImplementedError
async def port(self): """ Returns the port to which the library should connect to. """ raise NotImplementedError
Python
async def takeout_id(self): """ Returns an ID of the takeout process initialized for this session, or `None` if there's no were any unfinished takeout requests. """ raise NotImplementedError
async def takeout_id(self): """ Returns an ID of the takeout process initialized for this session, or `None` if there's no were any unfinished takeout requests. """ raise NotImplementedError
Python
async def list_sessions(cls): """ Lists available sessions. Not used by the library itself. """ return []
async def list_sessions(cls): """ Lists available sessions. Not used by the library itself. """ return []
Python
async def cache_file(self, md5_digest, file_size, instance): """ Caches the given file information persistently, so that it doesn't need to be re-uploaded in case the file is used again. The ``instance`` will be either an ``InputPhoto`` or ``InputDocument``, both with an ``.id`` and ``.access_hash`` attributes. """ raise NotImplementedError
async def cache_file(self, md5_digest, file_size, instance): """ Caches the given file information persistently, so that it doesn't need to be re-uploaded in case the file is used again. The ``instance`` will be either an ``InputPhoto`` or ``InputDocument``, both with an ``.id`` and ``.access_hash`` attributes. """ raise NotImplementedError
Python
def with_pool( cls, asyncpg_pool: asyncpg.pool.Pool, session_id_factory: Callable[[], str] = default_session_id_factory, save_entities: bool = True ) -> 'AsyncpgSession': """ Another implementation of initializer but for shared pool :param asyncpg_pool: ready asyncpg Pool :param session_id_factory: ... :param save_entities: ... :return: instance of AsyncpgSession """ self = cls( asyncpg_conf=None, session_id_factory=session_id_factory, save_entities=save_entities ) # type: ignore self._pool = asyncpg_pool return self
def with_pool( cls, asyncpg_pool: asyncpg.pool.Pool, session_id_factory: Callable[[], str] = default_session_id_factory, save_entities: bool = True ) -> 'AsyncpgSession': """ Another implementation of initializer but for shared pool :param asyncpg_pool: ready asyncpg Pool :param session_id_factory: ... :param save_entities: ... :return: instance of AsyncpgSession """ self = cls( asyncpg_conf=None, session_id_factory=session_id_factory, save_entities=save_entities ) # type: ignore self._pool = asyncpg_pool return self
Python
async def process_entities(self, tlo): """Processes all the found entities on the given TLObject, unless .enabled is False. Returns True if new input entities were added. """ if not self.save_entities: return rows = self._entities_to_rows(tlo) if not rows: return query = """ insert into asyncpg_telethon.entities(session_id, id, hash, username, phone, name) values ($1,$2,$3,$4,$5,$6) on conflict(session_id, id) do update set id = $2, hash = $3, username = $4, phone = $5, name = $6 where entities.session_id = $1; """ for n, row in enumerate(rows): row = list(row) row.insert(0, self._session_id) rows[n] = row async with self._pool.acquire() as conn: # type: asyncpg.Connection await conn.executemany(query, rows)
async def process_entities(self, tlo): """Processes all the found entities on the given TLObject, unless .enabled is False. Returns True if new input entities were added. """ if not self.save_entities: return rows = self._entities_to_rows(tlo) if not rows: return query = """ insert into asyncpg_telethon.entities(session_id, id, hash, username, phone, name) values ($1,$2,$3,$4,$5,$6) on conflict(session_id, id) do update set id = $2, hash = $3, username = $4, phone = $5, name = $6 where entities.session_id = $1; """ for n, row in enumerate(rows): row = list(row) row.insert(0, self._session_id) rows[n] = row async with self._pool.acquire() as conn: # type: asyncpg.Connection await conn.executemany(query, rows)
Python
async def _get_entities_by_x(self, coln: str, colval: str) -> List[asyncpg.Record]: """ _get_entities_by_x should never been called from outside. """ if coln not in ALLOWED_ENTITY_IDENTIFIER_NAMES: raise RuntimeWarning(f"{coln!s} is not a valid tablename for entity") query = """ select id, hash from asyncpg_telethon.entities where entities.session_id = $1 and $2 = $3; """ async with self._pool.acquire() as conn: # type: asyncpg.Connection return await conn.fetch(query, self._session_id, coln, colval,)
async def _get_entities_by_x(self, coln: str, colval: str) -> List[asyncpg.Record]: """ _get_entities_by_x should never been called from outside. """ if coln not in ALLOWED_ENTITY_IDENTIFIER_NAMES: raise RuntimeWarning(f"{coln!s} is not a valid tablename for entity") query = """ select id, hash from asyncpg_telethon.entities where entities.session_id = $1 and $2 = $3; """ async with self._pool.acquire() as conn: # type: asyncpg.Connection return await conn.fetch(query, self._session_id, coln, colval,)
Python
def render(root, con, panel, cells): """Renders the world of cells depending on their state.""" for x in range(WORLD_WIDTH): for y in range(WORLD_HEIGHT): if cells[x, y] == 1: con.draw_char(x, y, None, bg=COLOR_ON) else: con.draw_char(x, y, None, bg=COLOR_OFF) panel.draw_rect(0,0,None,None,None,bg=(97,117,197)) panel.draw_str(42,2, 'Generation: ' + str(GENERATION), bg=(97,117,197)) root.blit(panel,0, PANEL_Y, CONSOLE_WIDTH, PANEL_HEIGHT, 0, 0) root.blit(con, 0, 0, WORLD_WIDTH, WORLD_HEIGHT, 0, 0)
def render(root, con, panel, cells): """Renders the world of cells depending on their state.""" for x in range(WORLD_WIDTH): for y in range(WORLD_HEIGHT): if cells[x, y] == 1: con.draw_char(x, y, None, bg=COLOR_ON) else: con.draw_char(x, y, None, bg=COLOR_OFF) panel.draw_rect(0,0,None,None,None,bg=(97,117,197)) panel.draw_str(42,2, 'Generation: ' + str(GENERATION), bg=(97,117,197)) root.blit(panel,0, PANEL_Y, CONSOLE_WIDTH, PANEL_HEIGHT, 0, 0) root.blit(con, 0, 0, WORLD_WIDTH, WORLD_HEIGHT, 0, 0)
Python
def update(cells): """Updates the cell state using conway's rules.""" global GENERATION new_cells = cells.copy() for x in range(WORLD_WIDTH): for y in range(WORLD_HEIGHT): # Sums the total of neighbors that are ON neighbors = int(cells[(x-1)%WORLD_WIDTH, (y-1)%WORLD_WIDTH] + cells[x, (y-1)%WORLD_WIDTH] + cells[(x+1)%WORLD_WIDTH, (y-1)%WORLD_WIDTH] + cells[(x-1)%WORLD_WIDTH, y] + cells[(x+1)%WORLD_WIDTH, y] + cells[(x-1)%WORLD_WIDTH, (y+1)%WORLD_WIDTH] + cells[x, (y+1)%WORLD_WIDTH] + cells[(x+1)%WORLD_WIDTH, (y+1)%WORLD_WIDTH]) if cells[x, y] == ON: if (neighbors < 2) or (neighbors > 3): new_cells[x, y] = OFF else: if neighbors == 3: new_cells[x, y] = ON cells[:] = new_cells[:] GENERATION += 1
def update(cells): """Updates the cell state using conway's rules.""" global GENERATION new_cells = cells.copy() for x in range(WORLD_WIDTH): for y in range(WORLD_HEIGHT): # Sums the total of neighbors that are ON neighbors = int(cells[(x-1)%WORLD_WIDTH, (y-1)%WORLD_WIDTH] + cells[x, (y-1)%WORLD_WIDTH] + cells[(x+1)%WORLD_WIDTH, (y-1)%WORLD_WIDTH] + cells[(x-1)%WORLD_WIDTH, y] + cells[(x+1)%WORLD_WIDTH, y] + cells[(x-1)%WORLD_WIDTH, (y+1)%WORLD_WIDTH] + cells[x, (y+1)%WORLD_WIDTH] + cells[(x+1)%WORLD_WIDTH, (y+1)%WORLD_WIDTH]) if cells[x, y] == ON: if (neighbors < 2) or (neighbors > 3): new_cells[x, y] = OFF else: if neighbors == 3: new_cells[x, y] = ON cells[:] = new_cells[:] GENERATION += 1
Python
def div(self, field, u, scheme): "Calculate the divergence in a cell as the some of fluxes over all faces (Gauss' law)" if scheme == "upwind": fieldFacex, fieldFacez = self.interpolateUpwind(field, u) else: fieldFacex, fieldFacez = self.interpolateLinear(field) uxFacex, uxFacez = self.interpolateLinear(u[:,:,0]) uzFacex, uzFacez = self.interpolateLinear(u[:,:,1]) uFacex = u.copy() uFacex[:,:,0] = uxFacex uFacex[:,:,1] = uzFacex uFacez = u.copy() uFacez[:,:,0] = uxFacez uFacez[:,:,1] = uzFacez fluxx = fieldFacex*dot(uFacex, self.mesh.xSf)/self.mesh.cellVolume if not self.mesh.xPeriodic: fluxx[:,0] *= 0. fluxz = fieldFacez*dot(uFacez, self.mesh.zSf)/self.mesh.cellVolume if not self.mesh.zPeriodic: fluxz[-1,:] *= 0. divergence = self.mesh.volScalarField.copy() divergence += np.roll(fluxx, -1, axis=1) - fluxx divergence += np.roll(fluxz, 1, axis=0) - fluxz return divergence
def div(self, field, u, scheme): "Calculate the divergence in a cell as the some of fluxes over all faces (Gauss' law)" if scheme == "upwind": fieldFacex, fieldFacez = self.interpolateUpwind(field, u) else: fieldFacex, fieldFacez = self.interpolateLinear(field) uxFacex, uxFacez = self.interpolateLinear(u[:,:,0]) uzFacex, uzFacez = self.interpolateLinear(u[:,:,1]) uFacex = u.copy() uFacex[:,:,0] = uxFacex uFacex[:,:,1] = uzFacex uFacez = u.copy() uFacez[:,:,0] = uxFacez uFacez[:,:,1] = uzFacez fluxx = fieldFacex*dot(uFacex, self.mesh.xSf)/self.mesh.cellVolume if not self.mesh.xPeriodic: fluxx[:,0] *= 0. fluxz = fieldFacez*dot(uFacez, self.mesh.zSf)/self.mesh.cellVolume if not self.mesh.zPeriodic: fluxz[-1,:] *= 0. divergence = self.mesh.volScalarField.copy() divergence += np.roll(fluxx, -1, axis=1) - fluxx divergence += np.roll(fluxz, 1, axis=0) - fluxz return divergence
Python
def plotFields(id="default"): ''' Generate plots for the acceleration and radiation profiles for a neutral atom in a Magneto-Optical Trap with one laser pointed down on a horizontal surface where a reflection grating is located. NOTE: plotContour must be run before using plotFields Args id: Data id used for the input data filename and the output files ''' print(f"\nPlotting fields for configuration: {id}") folder = folders( id = id, folderScripts = os.path.dirname(os.path.realpath(__file__)) ) # Save fields for future use data = np.load(os.path.join(folder.outputs, "fieldData.npz")) slices = {} slices["XZ"] = { "xAxis": "x", "yAxis": "z", "xIndex": 0, "yIndex": 2, "location": "y = {:.2f} cm".format(data["axisY"][int(data["resolution"]/2)]), "slice": np.s_[:, int(data["resolution"]/2), :] } slices["YZ"] = { "xAxis": "y", "yAxis": "z", "xIndex": 1, "yIndex": 2, "location": "x = {:.2f} cm".format(data["axisX"][int(data["resolution"]/2)]), "slice": np.s_[:, :, int(data["resolution"]/2)] } slices["XY"] = { "xAxis": "x", "yAxis": "y", "xIndex": 0, "yIndex": 1, "location": "z = {:.2f} cm".format(data["axisZ"][int(data["resolution"]/2)]), "slice": np.s_[int(data["resolution"]/2), :, :] } for slice in slices: print("Plotting data for slice {}".format(slice)) s = slices[slice] plotContour( data["axis"+s["xAxis"].upper()], data["axis"+s["yAxis"].upper()], data["radPressureMag"][s["slice"]], id=id+"_radPressure_"+slice.lower(), folder=folder.outputs, xlabel="{} (cm)".format(s["xAxis"]), ylabel="{} (cm)".format(s["yAxis"]), ylabelCBar="Relative radiation pressure", title="Radiation pressure field, {}".format(s["location"]), u = data["radPressure"][s["slice"]][...,s["xIndex"]], v = data["radPressure"][s["slice"]][...,s["yIndex"]], vectorScale = 10 ) plotContour( data["axis"+s["xAxis"].upper()], data["axis"+s["yAxis"].upper()], data["aMag"][s["slice"]], id=id+"_a_"+slice.lower(), folder=folder.outputs, cmap="jet_r", xlabel="{} (cm)".format(s["xAxis"]), ylabel="{} (cm)".format(s["yAxis"]), ylabelCBar="Relative acceleration", title="Acceleration field, {}".format(s["location"]), u = data["a"][s["slice"]][...,s["xIndex"]], v = data["a"][s["slice"]][...,s["yIndex"]], vectorScale = 2e5 )
def plotFields(id="default"): ''' Generate plots for the acceleration and radiation profiles for a neutral atom in a Magneto-Optical Trap with one laser pointed down on a horizontal surface where a reflection grating is located. NOTE: plotContour must be run before using plotFields Args id: Data id used for the input data filename and the output files ''' print(f"\nPlotting fields for configuration: {id}") folder = folders( id = id, folderScripts = os.path.dirname(os.path.realpath(__file__)) ) # Save fields for future use data = np.load(os.path.join(folder.outputs, "fieldData.npz")) slices = {} slices["XZ"] = { "xAxis": "x", "yAxis": "z", "xIndex": 0, "yIndex": 2, "location": "y = {:.2f} cm".format(data["axisY"][int(data["resolution"]/2)]), "slice": np.s_[:, int(data["resolution"]/2), :] } slices["YZ"] = { "xAxis": "y", "yAxis": "z", "xIndex": 1, "yIndex": 2, "location": "x = {:.2f} cm".format(data["axisX"][int(data["resolution"]/2)]), "slice": np.s_[:, :, int(data["resolution"]/2)] } slices["XY"] = { "xAxis": "x", "yAxis": "y", "xIndex": 0, "yIndex": 1, "location": "z = {:.2f} cm".format(data["axisZ"][int(data["resolution"]/2)]), "slice": np.s_[int(data["resolution"]/2), :, :] } for slice in slices: print("Plotting data for slice {}".format(slice)) s = slices[slice] plotContour( data["axis"+s["xAxis"].upper()], data["axis"+s["yAxis"].upper()], data["radPressureMag"][s["slice"]], id=id+"_radPressure_"+slice.lower(), folder=folder.outputs, xlabel="{} (cm)".format(s["xAxis"]), ylabel="{} (cm)".format(s["yAxis"]), ylabelCBar="Relative radiation pressure", title="Radiation pressure field, {}".format(s["location"]), u = data["radPressure"][s["slice"]][...,s["xIndex"]], v = data["radPressure"][s["slice"]][...,s["yIndex"]], vectorScale = 10 ) plotContour( data["axis"+s["xAxis"].upper()], data["axis"+s["yAxis"].upper()], data["aMag"][s["slice"]], id=id+"_a_"+slice.lower(), folder=folder.outputs, cmap="jet_r", xlabel="{} (cm)".format(s["xAxis"]), ylabel="{} (cm)".format(s["yAxis"]), ylabelCBar="Relative acceleration", title="Acceleration field, {}".format(s["location"]), u = data["a"][s["slice"]][...,s["xIndex"]], v = data["a"][s["slice"]][...,s["yIndex"]], vectorScale = 2e5 )
Python
def simulateAtoms(id="default"): ''' Generate plots for the acceleration and radiation profiles for a neutral atom in a Magneto-Optical Trap with one laser pointed down on a horizontal surface where a reflection grating is located. NOTE: plotContour must be run before using plotFields Args id: Data id used for the input data filename and the output files ''' print(f"\nPlotting fields for configuration: {id}") folder = folders( id = id, folderScripts = os.path.dirname(os.path.realpath(__file__)) ) # Save fields for future use data = np.load(os.path.join(folder.outputs, "fieldData.npz")) x = data["x"] y = data["y"] z = data["z"] a = data["a"] aMag = data["aMag"] axisX = data["axisX"] axisY = data["axisY"] axisZ = data["axisZ"] coords = np.stack((x,y,z), axis=-1) # Generate particles particles = [] nParticles = 50 for i in range(nParticles): particles.append( particle( [ 0.5*random.uniform(data["axisX"][0], data["axisX"][-1]), 0.5*random.uniform(data["axisY"][0], data["axisY"][-1]), random.uniform(data["axisZ"][0], data["axisZ"][-1]) ], [0,0,0], dragCoefficient = 10. ) ) timestep = 5e-4 timesteps = 500 for i in range(nParticles): print("Simulating trajectory of particle {}".format(i+1)) for n in range(timesteps): indexX = np.argmin(np.abs(axisX-particles[i].position[0])) indexY = np.argmin(np.abs(axisY-particles[i].position[1])) indexZ = np.argmin(np.abs(axisZ-particles[i].position[2])) acceleration = a[indexZ][indexY][indexX] particles[i].move(acceleration, timestep) # Generate 3D trajectory plots fig = plt.figure() ax = plt.axes(projection='3d') # Draw grating chip xGrating = [-1.,-1.,1.,1.] yGrating = [-1.,1.,1.,-1.] zGrating = [0.,0.,0.,0.] verts = [list(zip(xGrating,yGrating,zGrating))] poly = Poly3DCollection(verts, facecolors=[[0.5,0.5,0.5,1.]]) poly.set_sort_zpos(50) ax.add_collection3d(poly) # Draw laser radius theta = np.linspace(0, 2 * np.pi, 100) radius = 1.2 xLaser = radius * np.cos(theta) yLaser = radius * np.sin(theta) zLaser = np.zeros_like(xLaser)+0.01 verts = [list(zip(xLaser,yLaser,zLaser))] poly = Poly3DCollection(verts, facecolors=[[1.,0.,0.,0.5]]) poly.set_sort_zpos(100) ax.add_collection3d(poly) # Highlight region with weakest force-field (where particles should converge to) # cutOff = np.min(aMag) + 0.01*(np.mean(aMag)-np.min(aMag)) # condition = aMag < cutOff # ax.plot(x[condition], y[condition], z[condition], ".", color="#888888") # Draw trajectories for i in range(nParticles): pos = np.array(particles[i].positions) zorder = 10000 # Deal with particles that have gone through the ground if np.min(pos[:,2]) < 0.: pos[:,2] = np.maximum(pos[:,2], 0*pos[:,2]) ax.plot(pos[...,0], pos[...,1], pos[...,2], zorder=zorder) ax.plot(pos[...,0][-1], pos[...,1][-1], pos[...,2][-1], "ko", zorder=zorder) ax.set_xlim([axisX[0], axisX[-1]]) ax.set_ylim([axisY[0], axisY[-1]]) ax.set_zlim([axisZ[0], axisZ[-1]]) ax.set_xlabel("x (cm)") ax.set_ylabel("y (cm)") ax.set_zlabel("z (cm)") # Save images from different perspectives for i in np.linspace(0,1,25): elevation = 90*i angle = 90+360*i ax.view_init(elev=elevation, azim=angle) plt.savefig(os.path.join(folder.outputs, "trajectories_{}_{}.png".format(id, int(360*i))), dpi=200) plt.close()
def simulateAtoms(id="default"): ''' Generate plots for the acceleration and radiation profiles for a neutral atom in a Magneto-Optical Trap with one laser pointed down on a horizontal surface where a reflection grating is located. NOTE: plotContour must be run before using plotFields Args id: Data id used for the input data filename and the output files ''' print(f"\nPlotting fields for configuration: {id}") folder = folders( id = id, folderScripts = os.path.dirname(os.path.realpath(__file__)) ) # Save fields for future use data = np.load(os.path.join(folder.outputs, "fieldData.npz")) x = data["x"] y = data["y"] z = data["z"] a = data["a"] aMag = data["aMag"] axisX = data["axisX"] axisY = data["axisY"] axisZ = data["axisZ"] coords = np.stack((x,y,z), axis=-1) # Generate particles particles = [] nParticles = 50 for i in range(nParticles): particles.append( particle( [ 0.5*random.uniform(data["axisX"][0], data["axisX"][-1]), 0.5*random.uniform(data["axisY"][0], data["axisY"][-1]), random.uniform(data["axisZ"][0], data["axisZ"][-1]) ], [0,0,0], dragCoefficient = 10. ) ) timestep = 5e-4 timesteps = 500 for i in range(nParticles): print("Simulating trajectory of particle {}".format(i+1)) for n in range(timesteps): indexX = np.argmin(np.abs(axisX-particles[i].position[0])) indexY = np.argmin(np.abs(axisY-particles[i].position[1])) indexZ = np.argmin(np.abs(axisZ-particles[i].position[2])) acceleration = a[indexZ][indexY][indexX] particles[i].move(acceleration, timestep) # Generate 3D trajectory plots fig = plt.figure() ax = plt.axes(projection='3d') # Draw grating chip xGrating = [-1.,-1.,1.,1.] yGrating = [-1.,1.,1.,-1.] zGrating = [0.,0.,0.,0.] verts = [list(zip(xGrating,yGrating,zGrating))] poly = Poly3DCollection(verts, facecolors=[[0.5,0.5,0.5,1.]]) poly.set_sort_zpos(50) ax.add_collection3d(poly) # Draw laser radius theta = np.linspace(0, 2 * np.pi, 100) radius = 1.2 xLaser = radius * np.cos(theta) yLaser = radius * np.sin(theta) zLaser = np.zeros_like(xLaser)+0.01 verts = [list(zip(xLaser,yLaser,zLaser))] poly = Poly3DCollection(verts, facecolors=[[1.,0.,0.,0.5]]) poly.set_sort_zpos(100) ax.add_collection3d(poly) # Highlight region with weakest force-field (where particles should converge to) # cutOff = np.min(aMag) + 0.01*(np.mean(aMag)-np.min(aMag)) # condition = aMag < cutOff # ax.plot(x[condition], y[condition], z[condition], ".", color="#888888") # Draw trajectories for i in range(nParticles): pos = np.array(particles[i].positions) zorder = 10000 # Deal with particles that have gone through the ground if np.min(pos[:,2]) < 0.: pos[:,2] = np.maximum(pos[:,2], 0*pos[:,2]) ax.plot(pos[...,0], pos[...,1], pos[...,2], zorder=zorder) ax.plot(pos[...,0][-1], pos[...,1][-1], pos[...,2][-1], "ko", zorder=zorder) ax.set_xlim([axisX[0], axisX[-1]]) ax.set_ylim([axisY[0], axisY[-1]]) ax.set_zlim([axisZ[0], axisZ[-1]]) ax.set_xlabel("x (cm)") ax.set_ylabel("y (cm)") ax.set_zlabel("z (cm)") # Save images from different perspectives for i in np.linspace(0,1,25): elevation = 90*i angle = 90+360*i ax.view_init(elev=elevation, azim=angle) plt.savefig(os.path.join(folder.outputs, "trajectories_{}_{}.png".format(id, int(360*i))), dpi=200) plt.close()
Python
def main( id = "default", gratingType = "triangle", beamRadius = 1.2, gaussian = True, imperfection = False, resolution = 100, rangeX = [-0.55, 0.55], rangeY = [-0.55, 0.55], rangeZ = [0., 1.1], precisionCoords = 4, precisionData = 2 ): ''' Generate the acceleration and radiation profiles for a neutral atom in a Magneto-Optical Trap with one laser pointed down on a horizontal surface where a reflection grating is located. Args id: Data id used for the naming of output files gratingType: Shape of grating etches/grooves. Valid parameters are "triangle" and "square" beamRadius: The incident laser beam radius in cm. gaussian: Is the beam profile Gaussian or uniform? Boolean only. imperfection: If True, some of the laser beam will be diffracted to 0th order (reflection) resolution: Resolution of the data in all 3 axes. resolution x 2 = computation x 8. rangeX: Range of x values to be evaluated in cm. rangeY: Range of x values to be evaluated in cm. rangeZ: Range of x values to be evaluated in cm. precisionCoords: Precision of coordinate data when writen to output file. precisionData: Precision of field data when writen to output file. ''' print(f"\nProcessin {id}") # Calculate the acceleration and radiation pressure, save to file in root/outputs/id/ calculateFields( id = id, gratingType = gratingType, beamRadius = beamRadius, gaussian = gaussian, imperfection = imperfection, resolution = resolution, rangeX = rangeX, rangeY = rangeY, rangeZ = rangeZ, precisionCoords = precisionCoords, precisionData = precisionData ) # Plot fields and save to root/outputs/id/ plotFields(id=id)
def main( id = "default", gratingType = "triangle", beamRadius = 1.2, gaussian = True, imperfection = False, resolution = 100, rangeX = [-0.55, 0.55], rangeY = [-0.55, 0.55], rangeZ = [0., 1.1], precisionCoords = 4, precisionData = 2 ): ''' Generate the acceleration and radiation profiles for a neutral atom in a Magneto-Optical Trap with one laser pointed down on a horizontal surface where a reflection grating is located. Args id: Data id used for the naming of output files gratingType: Shape of grating etches/grooves. Valid parameters are "triangle" and "square" beamRadius: The incident laser beam radius in cm. gaussian: Is the beam profile Gaussian or uniform? Boolean only. imperfection: If True, some of the laser beam will be diffracted to 0th order (reflection) resolution: Resolution of the data in all 3 axes. resolution x 2 = computation x 8. rangeX: Range of x values to be evaluated in cm. rangeY: Range of x values to be evaluated in cm. rangeZ: Range of x values to be evaluated in cm. precisionCoords: Precision of coordinate data when writen to output file. precisionData: Precision of field data when writen to output file. ''' print(f"\nProcessin {id}") # Calculate the acceleration and radiation pressure, save to file in root/outputs/id/ calculateFields( id = id, gratingType = gratingType, beamRadius = beamRadius, gaussian = gaussian, imperfection = imperfection, resolution = resolution, rangeX = rangeX, rangeY = rangeY, rangeZ = rangeZ, precisionCoords = precisionCoords, precisionData = precisionData ) # Plot fields and save to root/outputs/id/ plotFields(id=id)
Python
def drag(self): ''' Calculate the drag of the particle with respect to its frame of reference ''' return -self.dragCoefficient * np.sqrt(np.dot(self.velocity,self.velocity)) * self.velocity
def drag(self): ''' Calculate the drag of the particle with respect to its frame of reference ''' return -self.dragCoefficient * np.sqrt(np.dot(self.velocity,self.velocity)) * self.velocity
Python
def move(self, a, dt): ''' Move the particle given an acceleration (a) and a timestep (dt) ''' self.velocity = self.velocity + dt*a + dt*self.drag() self.position = self.position + dt*self.velocity self.addHistory()
def move(self, a, dt): ''' Move the particle given an acceleration (a) and a timestep (dt) ''' self.velocity = self.velocity + dt*a + dt*self.drag() self.position = self.position + dt*self.velocity self.addHistory()
Python
def intersectSurface(self, vectorOrigin, vectorDirection, intensity): ''' Determine whether an incident vector intersects this surface. vectorOrigin and vectorDirection must be of the 2D form: [[a1,a2,a3],[b1,b2,b3],[b1,b2,b3],...,[h1,h2,h3]] ''' if vectorOrigin.ndim == 1: raise ValueError("Input vectors must be 2D") indices = np.arange(len(vectorOrigin)) intersectionPoints, conditionIntersect = self.intersect(vectorOrigin, vectorDirection) indices = indices[conditionIntersect] intersectionPoints = intersectionPoints[conditionIntersect] if len(indices) > 0: #Calculate new direction once reflected translationFactor = self.dot(vectorOrigin[conditionIntersect]-2*intersectionPoints, self.normalVector)/self.mag(self.normalVector) vectorDirectionNew = vectorDirection[conditionIntersect] + 2*self.normalVector[None,:]*np.sign(self.dot(-self.normalVector, vectorDirection[conditionIntersect]))[:,None] vectorOrigin[indices] = intersectionPoints vectorDirection[indices] = vectorDirectionNew intensity[indices] *= self.reflectivity return vectorOrigin, vectorDirection, intensity
def intersectSurface(self, vectorOrigin, vectorDirection, intensity): ''' Determine whether an incident vector intersects this surface. vectorOrigin and vectorDirection must be of the 2D form: [[a1,a2,a3],[b1,b2,b3],[b1,b2,b3],...,[h1,h2,h3]] ''' if vectorOrigin.ndim == 1: raise ValueError("Input vectors must be 2D") indices = np.arange(len(vectorOrigin)) intersectionPoints, conditionIntersect = self.intersect(vectorOrigin, vectorDirection) indices = indices[conditionIntersect] intersectionPoints = intersectionPoints[conditionIntersect] if len(indices) > 0: #Calculate new direction once reflected translationFactor = self.dot(vectorOrigin[conditionIntersect]-2*intersectionPoints, self.normalVector)/self.mag(self.normalVector) vectorDirectionNew = vectorDirection[conditionIntersect] + 2*self.normalVector[None,:]*np.sign(self.dot(-self.normalVector, vectorDirection[conditionIntersect]))[:,None] vectorOrigin[indices] = intersectionPoints vectorDirection[indices] = vectorDirectionNew intensity[indices] *= self.reflectivity return vectorOrigin, vectorDirection, intensity
Python
def intersectionPointOnPlane(self, vectorOrigin, vectorDirection): ''' This surface is defined on a 2D plane. For a given vector, see where the intersection point is with the plane. This can be used to determine whether the intersection point is on the actual surface. ''' # Remove points which are parallel to the plane and won't intrsect conditionParallel = self.dot(vectorDirection, self.normalVector) == 0. vectorOrigin[conditionParallel] *= np.nan vectorDirection[conditionParallel] *= np.nan translationFactor = self.dot(self.vertices[0]-vectorOrigin, self.normalVector)/self.dot(vectorDirection, self.normalVector) return vectorOrigin + translationFactor[...,None]*vectorDirection, np.invert(conditionParallel)
def intersectionPointOnPlane(self, vectorOrigin, vectorDirection): ''' This surface is defined on a 2D plane. For a given vector, see where the intersection point is with the plane. This can be used to determine whether the intersection point is on the actual surface. ''' # Remove points which are parallel to the plane and won't intrsect conditionParallel = self.dot(vectorDirection, self.normalVector) == 0. vectorOrigin[conditionParallel] *= np.nan vectorDirection[conditionParallel] *= np.nan translationFactor = self.dot(self.vertices[0]-vectorOrigin, self.normalVector)/self.dot(vectorDirection, self.normalVector) return vectorOrigin + translationFactor[...,None]*vectorDirection, np.invert(conditionParallel)
Python
def calculateFields( id = "default", gratingType = "triangle", beamRadius = 1.2, gaussian = True, imperfection = False, resolution = 100, rangeX = [-0.55, 0.55], rangeY = [-0.55, 0.55], rangeZ = [0., 1.1], precisionCoords = 4, precisionData = 2 ): ''' Generate the acceleration and radiation profiles for a neutral atom in a Magneto-Optical Trap with one laser pointed down on a horizontal surface where a reflection grating is located. Args id: Data id used for the naming of output files gratingType: Shape of grating etches/grooves. Valid parameters are "triangle" and "square" beamRadius: The incident laser beam radius in cm. gaussian: Is the beam profile Gaussian or uniform? Boolean only. imperfection: If True, some of the laser beam will be diffracted to 0th order (reflection) resolution: Resolution of the data in all 3 axes. resolution x 2 = computation x 8. rangeX: Range of x values to be evaluated in cm. rangeY: Range of x values to be evaluated in cm. rangeZ: Range of x values to be evaluated in cm. precisionCoords: Precision of coordinate data when writen to output file. precisionData: Precision of field data when writen to output file. ''' print(f"\nGenerating fields for configuration: {id}") folder = folders( id = id, folderScripts = os.path.dirname(os.path.realpath(__file__)) ) # Get grating geometry and properties if gratingType == "square": gratings = makeSquareGrating() elif gratingType == "triangle": gratings = makeTriangleGrating() else: gratings = makeSquareGrating() # 3D Coordinate and Acceleration vector fields. axisX = np.linspace(rangeX[0], rangeX[1], resolution) axisY = np.linspace(rangeY[0], rangeY[1], resolution) axisZ = np.linspace(rangeZ[0], rangeZ[1], resolution) z, y, x = np.meshgrid(axisZ, axisY, axisX, indexing='ij') coords = np.stack((x,y,z), axis=-1) # Data arrays a = np.zeros(coords.shape) radPressure = np.zeros(coords.shape) waveVector = np.zeros(coords.shape) print("Generating fields from incident beam") # Compute acceleration or radiation pressure from incident laser beam. intensity = np.ones(x.shape) if gaussian == True: intensity *= np.e**(-(x**2 + y**2)/2.) k = np.array([0., 0., -1.]) waveVector[...] = k a += acceleration(waveVector, coords, I=intensity) radPressure[...] += intensity[...,None]*waveVector # Ignore regions not within the beam radius conditionBeam = x**2 + y**2 <= beamRadius**2 a *= conditionBeam[...,None] radPressure *= conditionBeam[...,None] # Compute acceleration or radiation pressure from 0th order beam. if imperfection == True: print("Generating fields from 0th-order diffracted beam") intensity = 0.01 if gaussian == True: intensity *= np.exp(-(0.5*x)**2) k = np.array([0., 0., 1.]) waveVector[...] = k a += acceleration(waveVector, coords, I=intensity, factor=-1.) radPressure[...] += intensity[...,None]*waveVector switch = True for grating in gratings: print("Generating fields from grating segment") if switch == True: switch = False factor = -1 else: factor = 1 # Compute acceleration or radiation pressure from kth grating 1st order beam. intensity = grating.reflectivity * grating.intensity( coords, factor, beamRadius, gaussian=gaussian ) # Unit vector of diffracted beam waveVector[...] = grating.k radPressure += waveVector * intensity[...,None] a += acceleration(waveVector, coords, I=intensity, factor=-1.) # Compute acceleration or radiation pressure from kth grating 1st order beam in other direction. intensity = grating.reflectivity * grating.intensity( coords, -factor, beamRadius, gaussian=gaussian ) # Unit vector of diffracted beam waveVector[...] = grating.k radPressure += waveVector * intensity[...,None] a += acceleration(waveVector, coords, I=intensity, factor=-1.) # Store the acceleration magnitude and the components of the acceleration. aMag = np.sqrt(np.sum(a*a, axis=(a.ndim-1))) radPressureMag = np.sqrt(np.sum(radPressure*radPressure, axis=(radPressure.ndim-1))) # Save fields for future use np.savez_compressed( os.path.join(folder.outputs, "fieldData.npz"), id = id, gratingType = gratingType, beamRadius = beamRadius, gaussian = gaussian, imperfection = imperfection, resolution = resolution, rangeX = rangeX, rangeY = rangeY, rangeZ = rangeZ, axisX = axisX, axisY = axisY, axisZ = axisZ, x = x.round(decimals=precisionCoords), y = y.round(decimals=precisionCoords), z = z.round(decimals=precisionCoords), a = a.round(decimals=precisionData), aMag = aMag.round(decimals=precisionData), radPressure = radPressure.round(decimals=precisionData), radPressureMag = radPressureMag.round(decimals=precisionData) )
def calculateFields( id = "default", gratingType = "triangle", beamRadius = 1.2, gaussian = True, imperfection = False, resolution = 100, rangeX = [-0.55, 0.55], rangeY = [-0.55, 0.55], rangeZ = [0., 1.1], precisionCoords = 4, precisionData = 2 ): ''' Generate the acceleration and radiation profiles for a neutral atom in a Magneto-Optical Trap with one laser pointed down on a horizontal surface where a reflection grating is located. Args id: Data id used for the naming of output files gratingType: Shape of grating etches/grooves. Valid parameters are "triangle" and "square" beamRadius: The incident laser beam radius in cm. gaussian: Is the beam profile Gaussian or uniform? Boolean only. imperfection: If True, some of the laser beam will be diffracted to 0th order (reflection) resolution: Resolution of the data in all 3 axes. resolution x 2 = computation x 8. rangeX: Range of x values to be evaluated in cm. rangeY: Range of x values to be evaluated in cm. rangeZ: Range of x values to be evaluated in cm. precisionCoords: Precision of coordinate data when writen to output file. precisionData: Precision of field data when writen to output file. ''' print(f"\nGenerating fields for configuration: {id}") folder = folders( id = id, folderScripts = os.path.dirname(os.path.realpath(__file__)) ) # Get grating geometry and properties if gratingType == "square": gratings = makeSquareGrating() elif gratingType == "triangle": gratings = makeTriangleGrating() else: gratings = makeSquareGrating() # 3D Coordinate and Acceleration vector fields. axisX = np.linspace(rangeX[0], rangeX[1], resolution) axisY = np.linspace(rangeY[0], rangeY[1], resolution) axisZ = np.linspace(rangeZ[0], rangeZ[1], resolution) z, y, x = np.meshgrid(axisZ, axisY, axisX, indexing='ij') coords = np.stack((x,y,z), axis=-1) # Data arrays a = np.zeros(coords.shape) radPressure = np.zeros(coords.shape) waveVector = np.zeros(coords.shape) print("Generating fields from incident beam") # Compute acceleration or radiation pressure from incident laser beam. intensity = np.ones(x.shape) if gaussian == True: intensity *= np.e**(-(x**2 + y**2)/2.) k = np.array([0., 0., -1.]) waveVector[...] = k a += acceleration(waveVector, coords, I=intensity) radPressure[...] += intensity[...,None]*waveVector # Ignore regions not within the beam radius conditionBeam = x**2 + y**2 <= beamRadius**2 a *= conditionBeam[...,None] radPressure *= conditionBeam[...,None] # Compute acceleration or radiation pressure from 0th order beam. if imperfection == True: print("Generating fields from 0th-order diffracted beam") intensity = 0.01 if gaussian == True: intensity *= np.exp(-(0.5*x)**2) k = np.array([0., 0., 1.]) waveVector[...] = k a += acceleration(waveVector, coords, I=intensity, factor=-1.) radPressure[...] += intensity[...,None]*waveVector switch = True for grating in gratings: print("Generating fields from grating segment") if switch == True: switch = False factor = -1 else: factor = 1 # Compute acceleration or radiation pressure from kth grating 1st order beam. intensity = grating.reflectivity * grating.intensity( coords, factor, beamRadius, gaussian=gaussian ) # Unit vector of diffracted beam waveVector[...] = grating.k radPressure += waveVector * intensity[...,None] a += acceleration(waveVector, coords, I=intensity, factor=-1.) # Compute acceleration or radiation pressure from kth grating 1st order beam in other direction. intensity = grating.reflectivity * grating.intensity( coords, -factor, beamRadius, gaussian=gaussian ) # Unit vector of diffracted beam waveVector[...] = grating.k radPressure += waveVector * intensity[...,None] a += acceleration(waveVector, coords, I=intensity, factor=-1.) # Store the acceleration magnitude and the components of the acceleration. aMag = np.sqrt(np.sum(a*a, axis=(a.ndim-1))) radPressureMag = np.sqrt(np.sum(radPressure*radPressure, axis=(radPressure.ndim-1))) # Save fields for future use np.savez_compressed( os.path.join(folder.outputs, "fieldData.npz"), id = id, gratingType = gratingType, beamRadius = beamRadius, gaussian = gaussian, imperfection = imperfection, resolution = resolution, rangeX = rangeX, rangeY = rangeY, rangeZ = rangeZ, axisX = axisX, axisY = axisY, axisZ = axisZ, x = x.round(decimals=precisionCoords), y = y.round(decimals=precisionCoords), z = z.round(decimals=precisionCoords), a = a.round(decimals=precisionData), aMag = aMag.round(decimals=precisionData), radPressure = radPressure.round(decimals=precisionData), radPressureMag = radPressureMag.round(decimals=precisionData) )
Python
def calculateSaccadeCurvature(xSacc, ySacc, pixPerDegree, ignoreDist = 0.5, flipY = False): ''' Calculates the saccade curvature.\n Input a list of xSaccade data points as well as a list of ySaccade data points.\n Also ignores any data points within the start and end range (degrees)\n Parameters ---------- xSacc: List of lists [[],[],[],[],[]], Eeach lists contains xSacc data points ySacc: List of lists [[],[],[],[],[]], Each lists contains ySacc data points pixPerDegree: Float The number of pixels per visual degree ignoreDist: Float All data points which are closer than this value (visual degrees) to either the start or end of saccade are ignored Returns ---------- curveData: List of lists Containing the saccade curvature for all points in the saccades saccAngle: List of Floats The angle of the saccade Assumptions ---------- Values: 0 - 180 degrees (clockwise curvature)\n 0 - -180 degrees (counterclockwhise curvature) X values go from left to right\n Y values go from top to bottom\n ''' curveData = deque([]) saccAngles = deque([]) for sacc in range(0,len(xSacc)): saccX = xSacc[sacc] # Check if there are enough samples in the saccade to calculate curvature if len(saccX) < 4: curveData.append(np.nan) saccAngles.append(np.nan) continue if flipY == True: saccY = [i*-1 for i in ySacc[sacc]] else: saccY = ySacc[sacc] startPos = (saccX[0], saccY[0]) endPos = (saccX[-1], saccY[-1]) saccadeAngle = determineAngle(startPos,endPos) *-1 saccAngle360 = pointAngle((xSacc[sacc][0], ySacc[sacc][0]), (xSacc[sacc][-1], ySacc[sacc][-1])) # we calculate point angle for all points except the last point (also exclude first point) pointAngles = np.zeros(len(saccX)-2) for pointNr in range(0,len(saccX)-2): point = (saccX[pointNr+1], saccY[pointNr+1]) startDist = distBetweenPoints(startPos, point) / pixPerDegree endDist = distBetweenPoints(endPos, point) / pixPerDegree # check if the sample is far enough away from start and end position # We have the problem with overshoots, the overshoot is sometimes more than ignoreDist # this causes the cuvature analysis to be done for then stopped, started and stopped again # [0,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,] Where 1 has calculated curvature and 0 is to close if min([startDist, endDist]) < ignoreDist: pointAngles[pointNr] = 9999 else: pointCurv = (determineAngle(startPos,point) *-1) - saccadeAngle if pointCurv > 180: pointCurv -=360 elif pointCurv < -180: pointCurv +=360 pointAngles[pointNr] = pointCurv pointAngles = pointAngles[pointAngles < 9999] curveData.append(pointAngles) # Append saccadeAngles # if saccadeAngle > 180: # saccadeAngle -=360 # elif saccadeAngle < -180: # saccadeAngle +=360 saccAngles.append(saccAngle360) return curveData, saccAngles
def calculateSaccadeCurvature(xSacc, ySacc, pixPerDegree, ignoreDist = 0.5, flipY = False): ''' Calculates the saccade curvature.\n Input a list of xSaccade data points as well as a list of ySaccade data points.\n Also ignores any data points within the start and end range (degrees)\n Parameters ---------- xSacc: List of lists [[],[],[],[],[]], Eeach lists contains xSacc data points ySacc: List of lists [[],[],[],[],[]], Each lists contains ySacc data points pixPerDegree: Float The number of pixels per visual degree ignoreDist: Float All data points which are closer than this value (visual degrees) to either the start or end of saccade are ignored Returns ---------- curveData: List of lists Containing the saccade curvature for all points in the saccades saccAngle: List of Floats The angle of the saccade Assumptions ---------- Values: 0 - 180 degrees (clockwise curvature)\n 0 - -180 degrees (counterclockwhise curvature) X values go from left to right\n Y values go from top to bottom\n ''' curveData = deque([]) saccAngles = deque([]) for sacc in range(0,len(xSacc)): saccX = xSacc[sacc] # Check if there are enough samples in the saccade to calculate curvature if len(saccX) < 4: curveData.append(np.nan) saccAngles.append(np.nan) continue if flipY == True: saccY = [i*-1 for i in ySacc[sacc]] else: saccY = ySacc[sacc] startPos = (saccX[0], saccY[0]) endPos = (saccX[-1], saccY[-1]) saccadeAngle = determineAngle(startPos,endPos) *-1 saccAngle360 = pointAngle((xSacc[sacc][0], ySacc[sacc][0]), (xSacc[sacc][-1], ySacc[sacc][-1])) # we calculate point angle for all points except the last point (also exclude first point) pointAngles = np.zeros(len(saccX)-2) for pointNr in range(0,len(saccX)-2): point = (saccX[pointNr+1], saccY[pointNr+1]) startDist = distBetweenPoints(startPos, point) / pixPerDegree endDist = distBetweenPoints(endPos, point) / pixPerDegree # check if the sample is far enough away from start and end position # We have the problem with overshoots, the overshoot is sometimes more than ignoreDist # this causes the cuvature analysis to be done for then stopped, started and stopped again # [0,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,] Where 1 has calculated curvature and 0 is to close if min([startDist, endDist]) < ignoreDist: pointAngles[pointNr] = 9999 else: pointCurv = (determineAngle(startPos,point) *-1) - saccadeAngle if pointCurv > 180: pointCurv -=360 elif pointCurv < -180: pointCurv +=360 pointAngles[pointNr] = pointCurv pointAngles = pointAngles[pointAngles < 9999] curveData.append(pointAngles) # Append saccadeAngles # if saccadeAngle > 180: # saccadeAngle -=360 # elif saccadeAngle < -180: # saccadeAngle +=360 saccAngles.append(saccAngle360) return curveData, saccAngles
Python
def parseToLongFormat(data, duplicate = 'No', eyetracker='Eyelink'): ''' Turn a parsed datafile into long data file: Deletes the raw data and only keeps events ''' data = data.copy() #============================================================================== # Delete al the keys with raw data #============================================================================== LargeData = ['saccTraceTime', 'saccTraceX', 'saccTraceY', 'saccTracePup', 'euclidDist', 'rawPupSize', 'rawTime', 'rawX', 'rawY', 'fixTraceTime', 'fixTraceX', 'fixTraceY', 'fixTracePup', 'speed'] if eyetracker == 'Tobii': add = [] unfilt = ['rawTime', 'GazePointXLeft', 'GazePointYLeft', 'ValidityLeft', 'GazePointXRight', 'GazePointYRight', 'ValidityRight', 'rawX', 'rawY', 'PupilSizeLeft', 'PupilValidityLeft', 'PupilSizeRight' , 'PupilValidityRight', 'rawPupSize', 'pupValidity', 'gazeValidity'] variousKeys = ['saccBool', 'fixBool'] for item in unfilt: add.append(item+'Unfilt') for item in variousKeys: add.append(item) for item in add: LargeData.append(item) LargeData = ['DK_'+i for i in LargeData] LargeData.append('DV_description') for key in LargeData: if key in data.keys(): del data[key] elif key[3:] in data.keys(): del data[key[3:]] # Delete all headers with spaces for key in data.keys(): if len(key.split()) > 1: del data[key] # Get the largest number of events for each trial trialLengths = np.zeros(len(data)) for trial in xrange(len(data)): for key in data.keys(): try: if isinstance(data[key][trial], basestring): keyLen = 1 else: keyLen = len(data[key][trial]) except: keyLen = 1 pass if keyLen > trialLengths[trial]: trialLengths[trial] = keyLen # Itterate trough each trial and add an index for the events given saccNr = [] fixNr = [] for i in range(len(data)): saccNr.append(np.arange(len(data['DK_ssacc'][i]))+1) fixNr.append(np.arange(len(data['DK_sFix'][i]))+1) data['DK_saccNr'] = saccNr data['DK_fixNr'] = fixNr # Initiate a long format data frame dataL = pd.DataFrame(index = xrange(int(np.sum(trialLengths))), columns = data.keys()) # Itterate through each key and populate the long format data for key in data.keys(): strtIndex = 0 stopIndex = int(trialLengths[0]) keyVector = np.empty(len(dataL[key])) keyVector[:] = np.NAN keyVector = pd.Series(keyVector) for trial in xrange(len(data)): try: dataLen = len(data[key][trial]) if isinstance(data[key][trial], basestring): if duplicate == 'Yes': keyVector[strtIndex:stopIndex] = data[key][trial] else: keyVector[strtIndex] = data[key][trial] else: keyVector[strtIndex:strtIndex+dataLen] = data[key][trial] except: if duplicate == 'Yes': keyVector[strtIndex:stopIndex] = data[key][trial] else: keyVector[strtIndex] = data[key][trial] # Update the index for the next data trial indexl if trial < len(data)-1: strtIndex += int(trialLengths[trial]) stopIndex = int(strtIndex + trialLengths[trial+1]) # Store the new vector in the dataframe dataL[key] = keyVector return dataL
def parseToLongFormat(data, duplicate = 'No', eyetracker='Eyelink'): ''' Turn a parsed datafile into long data file: Deletes the raw data and only keeps events ''' data = data.copy() #============================================================================== # Delete al the keys with raw data #============================================================================== LargeData = ['saccTraceTime', 'saccTraceX', 'saccTraceY', 'saccTracePup', 'euclidDist', 'rawPupSize', 'rawTime', 'rawX', 'rawY', 'fixTraceTime', 'fixTraceX', 'fixTraceY', 'fixTracePup', 'speed'] if eyetracker == 'Tobii': add = [] unfilt = ['rawTime', 'GazePointXLeft', 'GazePointYLeft', 'ValidityLeft', 'GazePointXRight', 'GazePointYRight', 'ValidityRight', 'rawX', 'rawY', 'PupilSizeLeft', 'PupilValidityLeft', 'PupilSizeRight' , 'PupilValidityRight', 'rawPupSize', 'pupValidity', 'gazeValidity'] variousKeys = ['saccBool', 'fixBool'] for item in unfilt: add.append(item+'Unfilt') for item in variousKeys: add.append(item) for item in add: LargeData.append(item) LargeData = ['DK_'+i for i in LargeData] LargeData.append('DV_description') for key in LargeData: if key in data.keys(): del data[key] elif key[3:] in data.keys(): del data[key[3:]] # Delete all headers with spaces for key in data.keys(): if len(key.split()) > 1: del data[key] # Get the largest number of events for each trial trialLengths = np.zeros(len(data)) for trial in xrange(len(data)): for key in data.keys(): try: if isinstance(data[key][trial], basestring): keyLen = 1 else: keyLen = len(data[key][trial]) except: keyLen = 1 pass if keyLen > trialLengths[trial]: trialLengths[trial] = keyLen # Itterate trough each trial and add an index for the events given saccNr = [] fixNr = [] for i in range(len(data)): saccNr.append(np.arange(len(data['DK_ssacc'][i]))+1) fixNr.append(np.arange(len(data['DK_sFix'][i]))+1) data['DK_saccNr'] = saccNr data['DK_fixNr'] = fixNr # Initiate a long format data frame dataL = pd.DataFrame(index = xrange(int(np.sum(trialLengths))), columns = data.keys()) # Itterate through each key and populate the long format data for key in data.keys(): strtIndex = 0 stopIndex = int(trialLengths[0]) keyVector = np.empty(len(dataL[key])) keyVector[:] = np.NAN keyVector = pd.Series(keyVector) for trial in xrange(len(data)): try: dataLen = len(data[key][trial]) if isinstance(data[key][trial], basestring): if duplicate == 'Yes': keyVector[strtIndex:stopIndex] = data[key][trial] else: keyVector[strtIndex] = data[key][trial] else: keyVector[strtIndex:strtIndex+dataLen] = data[key][trial] except: if duplicate == 'Yes': keyVector[strtIndex:stopIndex] = data[key][trial] else: keyVector[strtIndex] = data[key][trial] # Update the index for the next data trial indexl if trial < len(data)-1: strtIndex += int(trialLengths[trial]) stopIndex = int(strtIndex + trialLengths[trial+1]) # Store the new vector in the dataframe dataL[key] = keyVector return dataL
Python
def is_async_mode(): """Tests if we're in the async part of the code or not""" async def f(): """Unasync transforms async functions in sync functions""" return None obj = f() if obj is None: return False else: obj.close() # prevent unawaited coroutine warning return True
def is_async_mode(): """Tests if we're in the async part of the code or not""" async def f(): """Unasync transforms async functions in sync functions""" return None obj = f() if obj is None: return False else: obj.close() # prevent unawaited coroutine warning return True
Python
def uncertain_smooth_l1_loss(pred, target, sigma, alpha=1.0, beta=1.0): """Smooth L1 loss with uncertainty. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning target of the prediction. sigma (torch.Tensor): The sigma for uncertainty. alpha (float, optional): The coefficient of log(sigma). Defaults to 1.0. beta (float, optional): The threshold in the piecewise function. Defaults to 1.0. Returns: torch.Tensor: Calculated loss """ assert beta > 0 assert target.numel() > 0 assert pred.size() == target.size() == sigma.size(), 'The size of pred ' \ f'{pred.size()}, target {target.size()}, and sigma {sigma.size()} ' \ 'are inconsistent.' diff = torch.abs(pred - target) loss = torch.where(diff < beta, 0.5 * diff * diff / beta, diff - 0.5 * beta) loss = torch.exp(-sigma) * loss + alpha * sigma return loss
def uncertain_smooth_l1_loss(pred, target, sigma, alpha=1.0, beta=1.0): """Smooth L1 loss with uncertainty. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning target of the prediction. sigma (torch.Tensor): The sigma for uncertainty. alpha (float, optional): The coefficient of log(sigma). Defaults to 1.0. beta (float, optional): The threshold in the piecewise function. Defaults to 1.0. Returns: torch.Tensor: Calculated loss """ assert beta > 0 assert target.numel() > 0 assert pred.size() == target.size() == sigma.size(), 'The size of pred ' \ f'{pred.size()}, target {target.size()}, and sigma {sigma.size()} ' \ 'are inconsistent.' diff = torch.abs(pred - target) loss = torch.where(diff < beta, 0.5 * diff * diff / beta, diff - 0.5 * beta) loss = torch.exp(-sigma) * loss + alpha * sigma return loss
Python
def make_encoder_layers(self, make_block, norm_cfg, in_channels, block_type='conv_module', conv_cfg=dict(type='SubMConv3d')): """make encoder layers using sparse convs. Args: make_block (method): A bounded function to build blocks. norm_cfg (dict[str]): Config of normalization layer. in_channels (int): The number of encoder input channels. block_type (str): Type of the block to use. Defaults to 'conv_module'. conv_cfg (dict): Config of conv layer. Defaults to dict(type='SubMConv3d'). Returns: int: The number of encoder output channels. """ assert block_type in ['conv_module', 'basicblock'] self.encoder_layers = spconv.SparseSequential() for i, blocks in enumerate(self.encoder_channels): blocks_list = [] for j, out_channels in enumerate(tuple(blocks)): padding = tuple(self.encoder_paddings[i])[j] # each stage started with a spconv layer # except the first stage if i != 0 and j == 0 and block_type == 'conv_module': blocks_list.append( make_block(in_channels, out_channels, 3, norm_cfg=norm_cfg, stride=2, padding=padding, indice_key=f'spconv{i + 1}', conv_type='SparseConv3d')) elif block_type == 'basicblock': if j == len(blocks) - 1 and i != len( self.encoder_channels) - 1: blocks_list.append( make_block(in_channels, out_channels, 3, norm_cfg=norm_cfg, stride=2, padding=padding, indice_key=f'spconv{i + 1}', conv_type='SparseConv3d')) else: blocks_list.append( SparseBasicBlock(out_channels, out_channels, norm_cfg=norm_cfg, conv_cfg=conv_cfg)) else: blocks_list.append( make_block(in_channels, out_channels, 3, norm_cfg=norm_cfg, padding=padding, indice_key=f'subm{i + 1}', conv_type='SubMConv3d')) if (self.fusion_layer is not None) and (i in self.fusion_pos) and ( self.fusion_layer.fusion_method == 'concat' or self.fusion_layer.fusion_method == 'gating_v1') and (j == len(blocks) - 1): out_channels = out_channels * 2 in_channels = out_channels stage_name = f'encoder_layer{i + 1}' stage_layers = spconv.SparseSequential(*blocks_list) self.encoder_layers.add_module(stage_name, stage_layers) return out_channels
def make_encoder_layers(self, make_block, norm_cfg, in_channels, block_type='conv_module', conv_cfg=dict(type='SubMConv3d')): """make encoder layers using sparse convs. Args: make_block (method): A bounded function to build blocks. norm_cfg (dict[str]): Config of normalization layer. in_channels (int): The number of encoder input channels. block_type (str): Type of the block to use. Defaults to 'conv_module'. conv_cfg (dict): Config of conv layer. Defaults to dict(type='SubMConv3d'). Returns: int: The number of encoder output channels. """ assert block_type in ['conv_module', 'basicblock'] self.encoder_layers = spconv.SparseSequential() for i, blocks in enumerate(self.encoder_channels): blocks_list = [] for j, out_channels in enumerate(tuple(blocks)): padding = tuple(self.encoder_paddings[i])[j] # each stage started with a spconv layer # except the first stage if i != 0 and j == 0 and block_type == 'conv_module': blocks_list.append( make_block(in_channels, out_channels, 3, norm_cfg=norm_cfg, stride=2, padding=padding, indice_key=f'spconv{i + 1}', conv_type='SparseConv3d')) elif block_type == 'basicblock': if j == len(blocks) - 1 and i != len( self.encoder_channels) - 1: blocks_list.append( make_block(in_channels, out_channels, 3, norm_cfg=norm_cfg, stride=2, padding=padding, indice_key=f'spconv{i + 1}', conv_type='SparseConv3d')) else: blocks_list.append( SparseBasicBlock(out_channels, out_channels, norm_cfg=norm_cfg, conv_cfg=conv_cfg)) else: blocks_list.append( make_block(in_channels, out_channels, 3, norm_cfg=norm_cfg, padding=padding, indice_key=f'subm{i + 1}', conv_type='SubMConv3d')) if (self.fusion_layer is not None) and (i in self.fusion_pos) and ( self.fusion_layer.fusion_method == 'concat' or self.fusion_layer.fusion_method == 'gating_v1') and (j == len(blocks) - 1): out_channels = out_channels * 2 in_channels = out_channels stage_name = f'encoder_layer{i + 1}' stage_layers = spconv.SparseSequential(*blocks_list) self.encoder_layers.add_module(stage_name, stage_layers) return out_channels
Python
def decode(self, bbox, scale, stride, training, cls_score=None): """Decode regressed results into 3D predictions. Note that offsets are not transformed to the projected 3D centers. Args: bbox (torch.Tensor): Raw bounding box predictions in shape [N, C, H, W]. scale (tuple[`Scale`]): Learnable scale parameters. stride (int): Stride for a specific feature level. training (bool): Whether the decoding is in the training procedure. cls_score (torch.Tensor): Classification score map for deciding which base depth or dim is used. Defaults to None. Returns: torch.Tensor: Decoded boxes. """ # scale the bbox of different level # only apply to offset, depth and size prediction scale_offset, scale_depth, scale_size = scale[0:3] clone_bbox = bbox.clone() bbox[:, :2] = scale_offset(clone_bbox[:, :2]).float() bbox[:, 2] = scale_depth(clone_bbox[:, 2]).float() bbox[:, 3:6] = scale_size(clone_bbox[:, 3:6]).float() if self.base_depths is None: bbox[:, 2] = bbox[:, 2].exp() elif len(self.base_depths) == 1: # only single prior mean = self.base_depths[0][0] std = self.base_depths[0][1] bbox[:, 2] = mean + bbox.clone()[:, 2] * std else: # multi-class priors assert len(self.base_depths) == cls_score.shape[1], \ 'The number of multi-class depth priors should be equal to ' \ 'the number of categories.' indices = cls_score.max(dim=1)[1] depth_priors = cls_score.new_tensor( self.base_depths)[indices, :].permute(0, 3, 1, 2) mean = depth_priors[:, 0] std = depth_priors[:, 1] bbox[:, 2] = mean + bbox.clone()[:, 2] * std bbox[:, 3:6] = bbox[:, 3:6].exp() if self.base_dims is not None: assert len(self.base_dims) == cls_score.shape[1], \ 'The number of anchor sizes should be equal to the number ' \ 'of categories.' indices = cls_score.max(dim=1)[1] size_priors = cls_score.new_tensor( self.base_dims)[indices, :].permute(0, 3, 1, 2) bbox[:, 3:6] = size_priors * bbox.clone()[:, 3:6] assert self.norm_on_bbox is True, 'Setting norm_on_bbox to False '\ 'has not been thoroughly tested for FCOS3D.' if self.norm_on_bbox: if not training: # Note that this line is conducted only when testing bbox[:, :2] *= stride return bbox
def decode(self, bbox, scale, stride, training, cls_score=None): """Decode regressed results into 3D predictions. Note that offsets are not transformed to the projected 3D centers. Args: bbox (torch.Tensor): Raw bounding box predictions in shape [N, C, H, W]. scale (tuple[`Scale`]): Learnable scale parameters. stride (int): Stride for a specific feature level. training (bool): Whether the decoding is in the training procedure. cls_score (torch.Tensor): Classification score map for deciding which base depth or dim is used. Defaults to None. Returns: torch.Tensor: Decoded boxes. """ # scale the bbox of different level # only apply to offset, depth and size prediction scale_offset, scale_depth, scale_size = scale[0:3] clone_bbox = bbox.clone() bbox[:, :2] = scale_offset(clone_bbox[:, :2]).float() bbox[:, 2] = scale_depth(clone_bbox[:, 2]).float() bbox[:, 3:6] = scale_size(clone_bbox[:, 3:6]).float() if self.base_depths is None: bbox[:, 2] = bbox[:, 2].exp() elif len(self.base_depths) == 1: # only single prior mean = self.base_depths[0][0] std = self.base_depths[0][1] bbox[:, 2] = mean + bbox.clone()[:, 2] * std else: # multi-class priors assert len(self.base_depths) == cls_score.shape[1], \ 'The number of multi-class depth priors should be equal to ' \ 'the number of categories.' indices = cls_score.max(dim=1)[1] depth_priors = cls_score.new_tensor( self.base_depths)[indices, :].permute(0, 3, 1, 2) mean = depth_priors[:, 0] std = depth_priors[:, 1] bbox[:, 2] = mean + bbox.clone()[:, 2] * std bbox[:, 3:6] = bbox[:, 3:6].exp() if self.base_dims is not None: assert len(self.base_dims) == cls_score.shape[1], \ 'The number of anchor sizes should be equal to the number ' \ 'of categories.' indices = cls_score.max(dim=1)[1] size_priors = cls_score.new_tensor( self.base_dims)[indices, :].permute(0, 3, 1, 2) bbox[:, 3:6] = size_priors * bbox.clone()[:, 3:6] assert self.norm_on_bbox is True, 'Setting norm_on_bbox to False '\ 'has not been thoroughly tested for FCOS3D.' if self.norm_on_bbox: if not training: # Note that this line is conducted only when testing bbox[:, :2] *= stride return bbox
Python
def decode_yaw(bbox, centers2d, dir_cls, dir_offset, cam2img): """Decode yaw angle and change it from local to global.i. Args: bbox (torch.Tensor): Bounding box predictions in shape [N, C] with yaws to be decoded. centers2d (torch.Tensor): Projected 3D-center on the image planes corresponding to the box predictions. dir_cls (torch.Tensor): Predicted direction classes. dir_offset (float): Direction offset before dividing all the directions into several classes. cam2img (torch.Tensor): Camera intrinsic matrix in shape [4, 4]. Returns: torch.Tensor: Bounding boxes with decoded yaws. """ if bbox.shape[0] > 0: dir_rot = limit_period(bbox[..., 6] - dir_offset, 0, np.pi) bbox[..., 6] = \ dir_rot + dir_offset + np.pi * dir_cls.to(bbox.dtype) bbox[:, 6] = torch.atan2(centers2d[:, 0] - cam2img[0, 2], cam2img[0, 0]) + bbox[:, 6] return bbox
def decode_yaw(bbox, centers2d, dir_cls, dir_offset, cam2img): """Decode yaw angle and change it from local to global.i. Args: bbox (torch.Tensor): Bounding box predictions in shape [N, C] with yaws to be decoded. centers2d (torch.Tensor): Projected 3D-center on the image planes corresponding to the box predictions. dir_cls (torch.Tensor): Predicted direction classes. dir_offset (float): Direction offset before dividing all the directions into several classes. cam2img (torch.Tensor): Camera intrinsic matrix in shape [4, 4]. Returns: torch.Tensor: Bounding boxes with decoded yaws. """ if bbox.shape[0] > 0: dir_rot = limit_period(bbox[..., 6] - dir_offset, 0, np.pi) bbox[..., 6] = \ dir_rot + dir_offset + np.pi * dir_cls.to(bbox.dtype) bbox[:, 6] = torch.atan2(centers2d[:, 0] - cam2img[0, 2], cam2img[0, 0]) + bbox[:, 6] return bbox
Python
def array_converter(to_torch=True, apply_to=tuple(), template_arg_name_=None, recover=True): """Wrapper function for data-type agnostic processing. First converts input arrays to PyTorch tensors or NumPy ndarrays for middle calculation, then convert output to original data-type if `recover=True`. Args: to_torch (Bool, optional): Whether convert to PyTorch tensors for middle calculation. Defaults to True. apply_to (tuple[str], optional): The arguments to which we apply data-type conversion. Defaults to an empty tuple. template_arg_name_ (str, optional): Argument serving as the template ( return arrays should have the same dtype and device as the template). Defaults to None. If None, we will use the first argument in `apply_to` as the template argument. recover (Bool, optional): Whether or not recover the wrapped function outputs to the `template_arg_name_` type. Defaults to True. Raises: ValueError: When template_arg_name_ is not among all args, or when apply_to contains an arg which is not among all args, a ValueError will be raised. When the template argument or an argument to convert is a list or tuple, and cannot be converted to a NumPy array, a ValueError will be raised. TypeError: When the type of the template argument or an argument to convert does not belong to the above range, or the contents of such an list-or-tuple-type argument do not share the same data type, a TypeError is raised. Returns: (function): wrapped function. Example: >>> import torch >>> import numpy as np >>> >>> # Use torch addition for a + b, >>> # and convert return values to the type of a >>> @array_converter(apply_to=('a', 'b')) >>> def simple_add(a, b): >>> return a + b >>> >>> a = np.array([1.1]) >>> b = np.array([2.2]) >>> simple_add(a, b) >>> >>> # Use numpy addition for a + b, >>> # and convert return values to the type of b >>> @array_converter(to_torch=False, apply_to=('a', 'b'), >>> template_arg_name_='b') >>> def simple_add(a, b): >>> return a + b >>> >>> simple_add() >>> >>> # Use torch funcs for floor(a) if flag=True else ceil(a), >>> # and return the torch tensor >>> @array_converter(apply_to=('a',), recover=False) >>> def floor_or_ceil(a, flag=True): >>> return torch.floor(a) if flag else torch.ceil(a) >>> >>> floor_or_ceil(a, flag=False) """ def array_converter_wrapper(func): """Outer wrapper for the function.""" @functools.wraps(func) def new_func(*args, **kwargs): """Inner wrapper for the arguments.""" if len(apply_to) == 0: return func(*args, **kwargs) func_name = func.__name__ arg_spec = getfullargspec(func) arg_names = arg_spec.args arg_num = len(arg_names) default_arg_values = arg_spec.defaults if default_arg_values is None: default_arg_values = [] no_default_arg_num = len(arg_names) - len(default_arg_values) kwonly_arg_names = arg_spec.kwonlyargs kwonly_default_arg_values = arg_spec.kwonlydefaults if kwonly_default_arg_values is None: kwonly_default_arg_values = {} all_arg_names = arg_names + kwonly_arg_names # in case there are args in the form of *args if len(args) > arg_num: named_args = args[:arg_num] nameless_args = args[arg_num:] else: named_args = args nameless_args = [] # template argument data type is used for all array-like arguments if template_arg_name_ is None: template_arg_name = apply_to[0] else: template_arg_name = template_arg_name_ if template_arg_name not in all_arg_names: raise ValueError(f'{template_arg_name} is not among the ' f'argument list of function {func_name}') # inspect apply_to for arg_to_apply in apply_to: if arg_to_apply not in all_arg_names: raise ValueError(f'{arg_to_apply} is not ' f'an argument of {func_name}') new_args = [] new_kwargs = {} converter = ArrayConverter() target_type = torch.Tensor if to_torch else np.ndarray # non-keyword arguments for i, arg_value in enumerate(named_args): if arg_names[i] in apply_to: new_args.append( converter.convert( input_array=arg_value, target_type=target_type)) else: new_args.append(arg_value) if arg_names[i] == template_arg_name: template_arg_value = arg_value kwonly_default_arg_values.update(kwargs) kwargs = kwonly_default_arg_values # keyword arguments and non-keyword arguments using default value for i in range(len(named_args), len(all_arg_names)): arg_name = all_arg_names[i] if arg_name in kwargs: if arg_name in apply_to: new_kwargs[arg_name] = converter.convert( input_array=kwargs[arg_name], target_type=target_type) else: new_kwargs[arg_name] = kwargs[arg_name] else: default_value = default_arg_values[i - no_default_arg_num] if arg_name in apply_to: new_kwargs[arg_name] = converter.convert( input_array=default_value, target_type=target_type) else: new_kwargs[arg_name] = default_value if arg_name == template_arg_name: template_arg_value = kwargs[arg_name] # add nameless args provided by *args (if exists) new_args += nameless_args return_values = func(*new_args, **new_kwargs) converter.set_template(template_arg_value) def recursive_recover(input_data): if isinstance(input_data, (tuple, list)): new_data = [] for item in input_data: new_data.append(recursive_recover(item)) return tuple(new_data) if isinstance(input_data, tuple) else new_data elif isinstance(input_data, dict): new_data = {} for k, v in input_data.items(): new_data[k] = recursive_recover(v) return new_data elif isinstance(input_data, (torch.Tensor, np.ndarray)): return converter.recover(input_data) else: return input_data if recover: return recursive_recover(return_values) else: return return_values return new_func return array_converter_wrapper
def array_converter(to_torch=True, apply_to=tuple(), template_arg_name_=None, recover=True): """Wrapper function for data-type agnostic processing. First converts input arrays to PyTorch tensors or NumPy ndarrays for middle calculation, then convert output to original data-type if `recover=True`. Args: to_torch (Bool, optional): Whether convert to PyTorch tensors for middle calculation. Defaults to True. apply_to (tuple[str], optional): The arguments to which we apply data-type conversion. Defaults to an empty tuple. template_arg_name_ (str, optional): Argument serving as the template ( return arrays should have the same dtype and device as the template). Defaults to None. If None, we will use the first argument in `apply_to` as the template argument. recover (Bool, optional): Whether or not recover the wrapped function outputs to the `template_arg_name_` type. Defaults to True. Raises: ValueError: When template_arg_name_ is not among all args, or when apply_to contains an arg which is not among all args, a ValueError will be raised. When the template argument or an argument to convert is a list or tuple, and cannot be converted to a NumPy array, a ValueError will be raised. TypeError: When the type of the template argument or an argument to convert does not belong to the above range, or the contents of such an list-or-tuple-type argument do not share the same data type, a TypeError is raised. Returns: (function): wrapped function. Example: >>> import torch >>> import numpy as np >>> >>> # Use torch addition for a + b, >>> # and convert return values to the type of a >>> @array_converter(apply_to=('a', 'b')) >>> def simple_add(a, b): >>> return a + b >>> >>> a = np.array([1.1]) >>> b = np.array([2.2]) >>> simple_add(a, b) >>> >>> # Use numpy addition for a + b, >>> # and convert return values to the type of b >>> @array_converter(to_torch=False, apply_to=('a', 'b'), >>> template_arg_name_='b') >>> def simple_add(a, b): >>> return a + b >>> >>> simple_add() >>> >>> # Use torch funcs for floor(a) if flag=True else ceil(a), >>> # and return the torch tensor >>> @array_converter(apply_to=('a',), recover=False) >>> def floor_or_ceil(a, flag=True): >>> return torch.floor(a) if flag else torch.ceil(a) >>> >>> floor_or_ceil(a, flag=False) """ def array_converter_wrapper(func): """Outer wrapper for the function.""" @functools.wraps(func) def new_func(*args, **kwargs): """Inner wrapper for the arguments.""" if len(apply_to) == 0: return func(*args, **kwargs) func_name = func.__name__ arg_spec = getfullargspec(func) arg_names = arg_spec.args arg_num = len(arg_names) default_arg_values = arg_spec.defaults if default_arg_values is None: default_arg_values = [] no_default_arg_num = len(arg_names) - len(default_arg_values) kwonly_arg_names = arg_spec.kwonlyargs kwonly_default_arg_values = arg_spec.kwonlydefaults if kwonly_default_arg_values is None: kwonly_default_arg_values = {} all_arg_names = arg_names + kwonly_arg_names # in case there are args in the form of *args if len(args) > arg_num: named_args = args[:arg_num] nameless_args = args[arg_num:] else: named_args = args nameless_args = [] # template argument data type is used for all array-like arguments if template_arg_name_ is None: template_arg_name = apply_to[0] else: template_arg_name = template_arg_name_ if template_arg_name not in all_arg_names: raise ValueError(f'{template_arg_name} is not among the ' f'argument list of function {func_name}') # inspect apply_to for arg_to_apply in apply_to: if arg_to_apply not in all_arg_names: raise ValueError(f'{arg_to_apply} is not ' f'an argument of {func_name}') new_args = [] new_kwargs = {} converter = ArrayConverter() target_type = torch.Tensor if to_torch else np.ndarray # non-keyword arguments for i, arg_value in enumerate(named_args): if arg_names[i] in apply_to: new_args.append( converter.convert( input_array=arg_value, target_type=target_type)) else: new_args.append(arg_value) if arg_names[i] == template_arg_name: template_arg_value = arg_value kwonly_default_arg_values.update(kwargs) kwargs = kwonly_default_arg_values # keyword arguments and non-keyword arguments using default value for i in range(len(named_args), len(all_arg_names)): arg_name = all_arg_names[i] if arg_name in kwargs: if arg_name in apply_to: new_kwargs[arg_name] = converter.convert( input_array=kwargs[arg_name], target_type=target_type) else: new_kwargs[arg_name] = kwargs[arg_name] else: default_value = default_arg_values[i - no_default_arg_num] if arg_name in apply_to: new_kwargs[arg_name] = converter.convert( input_array=default_value, target_type=target_type) else: new_kwargs[arg_name] = default_value if arg_name == template_arg_name: template_arg_value = kwargs[arg_name] # add nameless args provided by *args (if exists) new_args += nameless_args return_values = func(*new_args, **new_kwargs) converter.set_template(template_arg_value) def recursive_recover(input_data): if isinstance(input_data, (tuple, list)): new_data = [] for item in input_data: new_data.append(recursive_recover(item)) return tuple(new_data) if isinstance(input_data, tuple) else new_data elif isinstance(input_data, dict): new_data = {} for k, v in input_data.items(): new_data[k] = recursive_recover(v) return new_data elif isinstance(input_data, (torch.Tensor, np.ndarray)): return converter.recover(input_data) else: return input_data if recover: return recursive_recover(return_values) else: return return_values return new_func return array_converter_wrapper
Python
def array_converter_wrapper(func): """Outer wrapper for the function.""" @functools.wraps(func) def new_func(*args, **kwargs): """Inner wrapper for the arguments.""" if len(apply_to) == 0: return func(*args, **kwargs) func_name = func.__name__ arg_spec = getfullargspec(func) arg_names = arg_spec.args arg_num = len(arg_names) default_arg_values = arg_spec.defaults if default_arg_values is None: default_arg_values = [] no_default_arg_num = len(arg_names) - len(default_arg_values) kwonly_arg_names = arg_spec.kwonlyargs kwonly_default_arg_values = arg_spec.kwonlydefaults if kwonly_default_arg_values is None: kwonly_default_arg_values = {} all_arg_names = arg_names + kwonly_arg_names # in case there are args in the form of *args if len(args) > arg_num: named_args = args[:arg_num] nameless_args = args[arg_num:] else: named_args = args nameless_args = [] # template argument data type is used for all array-like arguments if template_arg_name_ is None: template_arg_name = apply_to[0] else: template_arg_name = template_arg_name_ if template_arg_name not in all_arg_names: raise ValueError(f'{template_arg_name} is not among the ' f'argument list of function {func_name}') # inspect apply_to for arg_to_apply in apply_to: if arg_to_apply not in all_arg_names: raise ValueError(f'{arg_to_apply} is not ' f'an argument of {func_name}') new_args = [] new_kwargs = {} converter = ArrayConverter() target_type = torch.Tensor if to_torch else np.ndarray # non-keyword arguments for i, arg_value in enumerate(named_args): if arg_names[i] in apply_to: new_args.append( converter.convert( input_array=arg_value, target_type=target_type)) else: new_args.append(arg_value) if arg_names[i] == template_arg_name: template_arg_value = arg_value kwonly_default_arg_values.update(kwargs) kwargs = kwonly_default_arg_values # keyword arguments and non-keyword arguments using default value for i in range(len(named_args), len(all_arg_names)): arg_name = all_arg_names[i] if arg_name in kwargs: if arg_name in apply_to: new_kwargs[arg_name] = converter.convert( input_array=kwargs[arg_name], target_type=target_type) else: new_kwargs[arg_name] = kwargs[arg_name] else: default_value = default_arg_values[i - no_default_arg_num] if arg_name in apply_to: new_kwargs[arg_name] = converter.convert( input_array=default_value, target_type=target_type) else: new_kwargs[arg_name] = default_value if arg_name == template_arg_name: template_arg_value = kwargs[arg_name] # add nameless args provided by *args (if exists) new_args += nameless_args return_values = func(*new_args, **new_kwargs) converter.set_template(template_arg_value) def recursive_recover(input_data): if isinstance(input_data, (tuple, list)): new_data = [] for item in input_data: new_data.append(recursive_recover(item)) return tuple(new_data) if isinstance(input_data, tuple) else new_data elif isinstance(input_data, dict): new_data = {} for k, v in input_data.items(): new_data[k] = recursive_recover(v) return new_data elif isinstance(input_data, (torch.Tensor, np.ndarray)): return converter.recover(input_data) else: return input_data if recover: return recursive_recover(return_values) else: return return_values return new_func
def array_converter_wrapper(func): """Outer wrapper for the function.""" @functools.wraps(func) def new_func(*args, **kwargs): """Inner wrapper for the arguments.""" if len(apply_to) == 0: return func(*args, **kwargs) func_name = func.__name__ arg_spec = getfullargspec(func) arg_names = arg_spec.args arg_num = len(arg_names) default_arg_values = arg_spec.defaults if default_arg_values is None: default_arg_values = [] no_default_arg_num = len(arg_names) - len(default_arg_values) kwonly_arg_names = arg_spec.kwonlyargs kwonly_default_arg_values = arg_spec.kwonlydefaults if kwonly_default_arg_values is None: kwonly_default_arg_values = {} all_arg_names = arg_names + kwonly_arg_names # in case there are args in the form of *args if len(args) > arg_num: named_args = args[:arg_num] nameless_args = args[arg_num:] else: named_args = args nameless_args = [] # template argument data type is used for all array-like arguments if template_arg_name_ is None: template_arg_name = apply_to[0] else: template_arg_name = template_arg_name_ if template_arg_name not in all_arg_names: raise ValueError(f'{template_arg_name} is not among the ' f'argument list of function {func_name}') # inspect apply_to for arg_to_apply in apply_to: if arg_to_apply not in all_arg_names: raise ValueError(f'{arg_to_apply} is not ' f'an argument of {func_name}') new_args = [] new_kwargs = {} converter = ArrayConverter() target_type = torch.Tensor if to_torch else np.ndarray # non-keyword arguments for i, arg_value in enumerate(named_args): if arg_names[i] in apply_to: new_args.append( converter.convert( input_array=arg_value, target_type=target_type)) else: new_args.append(arg_value) if arg_names[i] == template_arg_name: template_arg_value = arg_value kwonly_default_arg_values.update(kwargs) kwargs = kwonly_default_arg_values # keyword arguments and non-keyword arguments using default value for i in range(len(named_args), len(all_arg_names)): arg_name = all_arg_names[i] if arg_name in kwargs: if arg_name in apply_to: new_kwargs[arg_name] = converter.convert( input_array=kwargs[arg_name], target_type=target_type) else: new_kwargs[arg_name] = kwargs[arg_name] else: default_value = default_arg_values[i - no_default_arg_num] if arg_name in apply_to: new_kwargs[arg_name] = converter.convert( input_array=default_value, target_type=target_type) else: new_kwargs[arg_name] = default_value if arg_name == template_arg_name: template_arg_value = kwargs[arg_name] # add nameless args provided by *args (if exists) new_args += nameless_args return_values = func(*new_args, **new_kwargs) converter.set_template(template_arg_value) def recursive_recover(input_data): if isinstance(input_data, (tuple, list)): new_data = [] for item in input_data: new_data.append(recursive_recover(item)) return tuple(new_data) if isinstance(input_data, tuple) else new_data elif isinstance(input_data, dict): new_data = {} for k, v in input_data.items(): new_data[k] = recursive_recover(v) return new_data elif isinstance(input_data, (torch.Tensor, np.ndarray)): return converter.recover(input_data) else: return input_data if recover: return recursive_recover(return_values) else: return return_values return new_func
Python
def new_func(*args, **kwargs): """Inner wrapper for the arguments.""" if len(apply_to) == 0: return func(*args, **kwargs) func_name = func.__name__ arg_spec = getfullargspec(func) arg_names = arg_spec.args arg_num = len(arg_names) default_arg_values = arg_spec.defaults if default_arg_values is None: default_arg_values = [] no_default_arg_num = len(arg_names) - len(default_arg_values) kwonly_arg_names = arg_spec.kwonlyargs kwonly_default_arg_values = arg_spec.kwonlydefaults if kwonly_default_arg_values is None: kwonly_default_arg_values = {} all_arg_names = arg_names + kwonly_arg_names # in case there are args in the form of *args if len(args) > arg_num: named_args = args[:arg_num] nameless_args = args[arg_num:] else: named_args = args nameless_args = [] # template argument data type is used for all array-like arguments if template_arg_name_ is None: template_arg_name = apply_to[0] else: template_arg_name = template_arg_name_ if template_arg_name not in all_arg_names: raise ValueError(f'{template_arg_name} is not among the ' f'argument list of function {func_name}') # inspect apply_to for arg_to_apply in apply_to: if arg_to_apply not in all_arg_names: raise ValueError(f'{arg_to_apply} is not ' f'an argument of {func_name}') new_args = [] new_kwargs = {} converter = ArrayConverter() target_type = torch.Tensor if to_torch else np.ndarray # non-keyword arguments for i, arg_value in enumerate(named_args): if arg_names[i] in apply_to: new_args.append( converter.convert( input_array=arg_value, target_type=target_type)) else: new_args.append(arg_value) if arg_names[i] == template_arg_name: template_arg_value = arg_value kwonly_default_arg_values.update(kwargs) kwargs = kwonly_default_arg_values # keyword arguments and non-keyword arguments using default value for i in range(len(named_args), len(all_arg_names)): arg_name = all_arg_names[i] if arg_name in kwargs: if arg_name in apply_to: new_kwargs[arg_name] = converter.convert( input_array=kwargs[arg_name], target_type=target_type) else: new_kwargs[arg_name] = kwargs[arg_name] else: default_value = default_arg_values[i - no_default_arg_num] if arg_name in apply_to: new_kwargs[arg_name] = converter.convert( input_array=default_value, target_type=target_type) else: new_kwargs[arg_name] = default_value if arg_name == template_arg_name: template_arg_value = kwargs[arg_name] # add nameless args provided by *args (if exists) new_args += nameless_args return_values = func(*new_args, **new_kwargs) converter.set_template(template_arg_value) def recursive_recover(input_data): if isinstance(input_data, (tuple, list)): new_data = [] for item in input_data: new_data.append(recursive_recover(item)) return tuple(new_data) if isinstance(input_data, tuple) else new_data elif isinstance(input_data, dict): new_data = {} for k, v in input_data.items(): new_data[k] = recursive_recover(v) return new_data elif isinstance(input_data, (torch.Tensor, np.ndarray)): return converter.recover(input_data) else: return input_data if recover: return recursive_recover(return_values) else: return return_values
def new_func(*args, **kwargs): """Inner wrapper for the arguments.""" if len(apply_to) == 0: return func(*args, **kwargs) func_name = func.__name__ arg_spec = getfullargspec(func) arg_names = arg_spec.args arg_num = len(arg_names) default_arg_values = arg_spec.defaults if default_arg_values is None: default_arg_values = [] no_default_arg_num = len(arg_names) - len(default_arg_values) kwonly_arg_names = arg_spec.kwonlyargs kwonly_default_arg_values = arg_spec.kwonlydefaults if kwonly_default_arg_values is None: kwonly_default_arg_values = {} all_arg_names = arg_names + kwonly_arg_names # in case there are args in the form of *args if len(args) > arg_num: named_args = args[:arg_num] nameless_args = args[arg_num:] else: named_args = args nameless_args = [] # template argument data type is used for all array-like arguments if template_arg_name_ is None: template_arg_name = apply_to[0] else: template_arg_name = template_arg_name_ if template_arg_name not in all_arg_names: raise ValueError(f'{template_arg_name} is not among the ' f'argument list of function {func_name}') # inspect apply_to for arg_to_apply in apply_to: if arg_to_apply not in all_arg_names: raise ValueError(f'{arg_to_apply} is not ' f'an argument of {func_name}') new_args = [] new_kwargs = {} converter = ArrayConverter() target_type = torch.Tensor if to_torch else np.ndarray # non-keyword arguments for i, arg_value in enumerate(named_args): if arg_names[i] in apply_to: new_args.append( converter.convert( input_array=arg_value, target_type=target_type)) else: new_args.append(arg_value) if arg_names[i] == template_arg_name: template_arg_value = arg_value kwonly_default_arg_values.update(kwargs) kwargs = kwonly_default_arg_values # keyword arguments and non-keyword arguments using default value for i in range(len(named_args), len(all_arg_names)): arg_name = all_arg_names[i] if arg_name in kwargs: if arg_name in apply_to: new_kwargs[arg_name] = converter.convert( input_array=kwargs[arg_name], target_type=target_type) else: new_kwargs[arg_name] = kwargs[arg_name] else: default_value = default_arg_values[i - no_default_arg_num] if arg_name in apply_to: new_kwargs[arg_name] = converter.convert( input_array=default_value, target_type=target_type) else: new_kwargs[arg_name] = default_value if arg_name == template_arg_name: template_arg_value = kwargs[arg_name] # add nameless args provided by *args (if exists) new_args += nameless_args return_values = func(*new_args, **new_kwargs) converter.set_template(template_arg_value) def recursive_recover(input_data): if isinstance(input_data, (tuple, list)): new_data = [] for item in input_data: new_data.append(recursive_recover(item)) return tuple(new_data) if isinstance(input_data, tuple) else new_data elif isinstance(input_data, dict): new_data = {} for k, v in input_data.items(): new_data[k] = recursive_recover(v) return new_data elif isinstance(input_data, (torch.Tensor, np.ndarray)): return converter.recover(input_data) else: return input_data if recover: return recursive_recover(return_values) else: return return_values
Python
def convert(self, input_array, target_type=None, target_array=None): """Convert input array to target data type. Args: input_array (tuple | list | np.ndarray | torch.Tensor | int | float ): Input array. Defaults to None. target_type (<class 'np.ndarray'> | <class 'torch.Tensor'>, optional): Type to which input array is converted. Defaults to None. target_array (np.ndarray | torch.Tensor, optional): Template array to which input array is converted. Defaults to None. Raises: ValueError: If input is list or tuple and cannot be converted to to a NumPy array, a ValueError is raised. TypeError: If input type does not belong to the above range, or the contents of a list or tuple do not share the same data type, a TypeError is raised. """ if isinstance(input_array, (list, tuple)): try: input_array = np.array(input_array) if input_array.dtype not in self.SUPPORTED_NON_ARRAY_TYPES: raise TypeError except (ValueError, TypeError): print(f'The input cannot be converted to' f' a single-type numpy array:\n{input_array}') raise elif isinstance(input_array, self.SUPPORTED_NON_ARRAY_TYPES): input_array = np.array(input_array) array_type = type(input_array) assert target_type is not None or target_array is not None, \ 'must specify a target' if target_type is not None: assert target_type in (np.ndarray, torch.Tensor), \ 'invalid target type' if target_type == array_type: return input_array elif target_type == np.ndarray: # default dtype is float32 converted_array = input_array.cpu().numpy().astype(np.float32) else: # default dtype is float32, device is 'cpu' converted_array = torch.tensor( input_array, dtype=torch.float32) else: assert isinstance(target_array, (np.ndarray, torch.Tensor)), \ 'invalid target array type' if isinstance(target_array, array_type): return input_array elif isinstance(target_array, np.ndarray): converted_array = input_array.cpu().numpy().astype( target_array.dtype) else: converted_array = target_array.new_tensor(input_array) return converted_array
def convert(self, input_array, target_type=None, target_array=None): """Convert input array to target data type. Args: input_array (tuple | list | np.ndarray | torch.Tensor | int | float ): Input array. Defaults to None. target_type (<class 'np.ndarray'> | <class 'torch.Tensor'>, optional): Type to which input array is converted. Defaults to None. target_array (np.ndarray | torch.Tensor, optional): Template array to which input array is converted. Defaults to None. Raises: ValueError: If input is list or tuple and cannot be converted to to a NumPy array, a ValueError is raised. TypeError: If input type does not belong to the above range, or the contents of a list or tuple do not share the same data type, a TypeError is raised. """ if isinstance(input_array, (list, tuple)): try: input_array = np.array(input_array) if input_array.dtype not in self.SUPPORTED_NON_ARRAY_TYPES: raise TypeError except (ValueError, TypeError): print(f'The input cannot be converted to' f' a single-type numpy array:\n{input_array}') raise elif isinstance(input_array, self.SUPPORTED_NON_ARRAY_TYPES): input_array = np.array(input_array) array_type = type(input_array) assert target_type is not None or target_array is not None, \ 'must specify a target' if target_type is not None: assert target_type in (np.ndarray, torch.Tensor), \ 'invalid target type' if target_type == array_type: return input_array elif target_type == np.ndarray: # default dtype is float32 converted_array = input_array.cpu().numpy().astype(np.float32) else: # default dtype is float32, device is 'cpu' converted_array = torch.tensor( input_array, dtype=torch.float32) else: assert isinstance(target_array, (np.ndarray, torch.Tensor)), \ 'invalid target array type' if isinstance(target_array, array_type): return input_array elif isinstance(target_array, np.ndarray): converted_array = input_array.cpu().numpy().astype( target_array.dtype) else: converted_array = target_array.new_tensor(input_array) return converted_array
Python
def voxelize_hv(self, points): """Apply hard voxelization to points.""" voxels, coors, num_points = [], [], [] for res in points: res_voxels, res_coors, res_num_points = self.pts_voxel_layer(res) voxels.append(res_voxels) coors.append(res_coors) num_points.append(res_num_points) voxels = torch.cat(voxels, dim=0) num_points = torch.cat(num_points, dim=0) coors_batch = [] for i, coor in enumerate(coors): coor_pad = F.pad(coor, (1, 0), mode='constant', value=i) coors_batch.append(coor_pad) coors_batch = torch.cat(coors_batch, dim=0) return voxels, num_points, coors_batch
def voxelize_hv(self, points): """Apply hard voxelization to points.""" voxels, coors, num_points = [], [], [] for res in points: res_voxels, res_coors, res_num_points = self.pts_voxel_layer(res) voxels.append(res_voxels) coors.append(res_coors) num_points.append(res_num_points) voxels = torch.cat(voxels, dim=0) num_points = torch.cat(num_points, dim=0) coors_batch = [] for i, coor in enumerate(coors): coor_pad = F.pad(coor, (1, 0), mode='constant', value=i) coors_batch.append(coor_pad) coors_batch = torch.cat(coors_batch, dim=0) return voxels, num_points, coors_batch
Python
def voxelize(self, points): """Apply dynamic voxelization to points. Args: points (list[torch.Tensor]): Points of each sample. Returns: tuple[torch.Tensor]: Concatenated points and coordinates. """ coors = [] # dynamic voxelization only provide a coors mapping for res in points: res_coors = self.pts_voxel_layer(res) coors.append(res_coors) points = torch.cat(points, dim=0) coors_batch = [] for i, coor in enumerate(coors): coor_pad = F.pad(coor, (1, 0), mode='constant', value=i) coors_batch.append(coor_pad) coors_batch = torch.cat(coors_batch, dim=0) return points, coors_batch
def voxelize(self, points): """Apply dynamic voxelization to points. Args: points (list[torch.Tensor]): Points of each sample. Returns: tuple[torch.Tensor]: Concatenated points and coordinates. """ coors = [] # dynamic voxelization only provide a coors mapping for res in points: res_coors = self.pts_voxel_layer(res) coors.append(res_coors) points = torch.cat(points, dim=0) coors_batch = [] for i, coor in enumerate(coors): coor_pad = F.pad(coor, (1, 0), mode='constant', value=i) coors_batch.append(coor_pad) coors_batch = torch.cat(coors_batch, dim=0) return points, coors_batch
Python
def extract_feat(self, points, img, img_metas, train): """Extract features from images and points.""" img_feats = self.extract_img_feat(img, img_metas) pts_feats, pts_aux_feats, img_feats = self.extract_pts_feat( points, img_feats, img_metas, train, self.pts_li_fusion_layer) if train: return img_feats, pts_feats, pts_aux_feats else: return img_feats, pts_feats
def extract_feat(self, points, img, img_metas, train): """Extract features from images and points.""" img_feats = self.extract_img_feat(img, img_metas) pts_feats, pts_aux_feats, img_feats = self.extract_pts_feat( points, img_feats, img_metas, train, self.pts_li_fusion_layer) if train: return img_feats, pts_feats, pts_aux_feats else: return img_feats, pts_feats
Python
def mono3d_load_annotations(self, ann_file): """Load annotation from COCO style annotation file. Args: ann_file (str): Path of annotation file. Returns: list[dict]: Annotation info from COCO api. """ self.coco = COCO(ann_file) # The order of returned `cat_ids` will not # change with the order of the CLASSES self.cat_ids = self.coco.get_cat_ids(cat_names=self.CLASSES) self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)} self.img_ids = self.coco.get_img_ids() data_infos = [] total_ann_ids = [] for i in self.img_ids: info = self.coco.load_imgs([i])[0] info['filename'] = info['file_name'] data_infos.append(info) ann_ids = self.coco.get_ann_ids(img_ids=[i]) total_ann_ids.extend(ann_ids) assert len(set(total_ann_ids)) == len( total_ann_ids), f"Annotation ids in '{ann_file}' are not unique!" return data_infos
def mono3d_load_annotations(self, ann_file): """Load annotation from COCO style annotation file. Args: ann_file (str): Path of annotation file. Returns: list[dict]: Annotation info from COCO api. """ self.coco = COCO(ann_file) # The order of returned `cat_ids` will not # change with the order of the CLASSES self.cat_ids = self.coco.get_cat_ids(cat_names=self.CLASSES) self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)} self.img_ids = self.coco.get_img_ids() data_infos = [] total_ann_ids = [] for i in self.img_ids: info = self.coco.load_imgs([i])[0] info['filename'] = info['file_name'] data_infos.append(info) ann_ids = self.coco.get_ann_ids(img_ids=[i]) total_ann_ids.extend(ann_ids) assert len(set(total_ann_ids)) == len( total_ann_ids), f"Annotation ids in '{ann_file}' are not unique!" return data_infos
Python
def _parse_ann_info(self, img_info, ann_info): """Parse bbox and mask annotation. Args: ann_info (list[dict]): Annotation info of an image. with_mask (bool): Whether to parse mask annotations. Returns: dict: A dict containing the following keys: bboxes, bboxes_ignore,\ labels, masks, seg_map. "masks" are raw annotations and not \ decoded into binary masks. """ gt_bboxes = [] gt_labels = [] gt_bboxes_ignore = [] gt_masks_ann = [] gt_bboxes_cam3d = [] centers2d = [] depths = [] for i, ann in enumerate(ann_info): if ann.get('ignore', False): continue x1, y1, w, h = ann['bbox'] inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0)) inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0)) if inter_w * inter_h == 0: pass # continue if ann['area'] <= 0 or w < 1 or h < 1: continue if ann['category_id'] not in self.cat_ids: continue bbox = [x1, y1, x1 + w, y1 + h] if ann.get('iscrowd', False): gt_bboxes_ignore.append(bbox) else: gt_bboxes.append(bbox) gt_labels.append(self.cat2label[ann['category_id']]) gt_masks_ann.append(ann.get('segmentation', None)) # 3D annotations in camera coordinates bbox_cam3d = np.array(ann['bbox_cam3d']).reshape(-1, ) gt_bboxes_cam3d.append(bbox_cam3d) # 2.5D annotations in camera coordinates center2d = ann['center2d'][:2] depth = ann['center2d'][2] centers2d.append(center2d) depths.append(depth) if gt_bboxes: gt_bboxes = np.array(gt_bboxes, dtype=np.float32) gt_labels = np.array(gt_labels, dtype=np.int64) else: gt_bboxes = np.zeros((0, 4), dtype=np.float32) gt_labels = np.array([], dtype=np.int64) if gt_bboxes_cam3d: gt_bboxes_cam3d = np.array(gt_bboxes_cam3d, dtype=np.float32) centers2d = np.array(centers2d, dtype=np.float32) depths = np.array(depths, dtype=np.float32) else: gt_bboxes_cam3d = np.zeros((0, self.bbox_code_size), dtype=np.float32) centers2d = np.zeros((0, 2), dtype=np.float32) depths = np.zeros((0), dtype=np.float32) gt_bboxes_cam3d = CameraInstance3DBoxes( gt_bboxes_cam3d, box_dim=gt_bboxes_cam3d.shape[-1], origin=(0.5, 0.5, 0.5)) gt_labels_3d = copy.deepcopy(gt_labels) if gt_bboxes_ignore: gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) else: gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) seg_map = img_info['filename'].replace('jpg', 'png') ann = dict( bboxes=gt_bboxes, labels=gt_labels, gt_bboxes_3d=gt_bboxes_cam3d, gt_labels_3d=gt_labels_3d, centers2d=centers2d, depths=depths, bboxes_ignore=gt_bboxes_ignore, masks=gt_masks_ann, seg_map=seg_map) return ann
def _parse_ann_info(self, img_info, ann_info): """Parse bbox and mask annotation. Args: ann_info (list[dict]): Annotation info of an image. with_mask (bool): Whether to parse mask annotations. Returns: dict: A dict containing the following keys: bboxes, bboxes_ignore,\ labels, masks, seg_map. "masks" are raw annotations and not \ decoded into binary masks. """ gt_bboxes = [] gt_labels = [] gt_bboxes_ignore = [] gt_masks_ann = [] gt_bboxes_cam3d = [] centers2d = [] depths = [] for i, ann in enumerate(ann_info): if ann.get('ignore', False): continue x1, y1, w, h = ann['bbox'] inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0)) inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0)) if inter_w * inter_h == 0: pass # continue if ann['area'] <= 0 or w < 1 or h < 1: continue if ann['category_id'] not in self.cat_ids: continue bbox = [x1, y1, x1 + w, y1 + h] if ann.get('iscrowd', False): gt_bboxes_ignore.append(bbox) else: gt_bboxes.append(bbox) gt_labels.append(self.cat2label[ann['category_id']]) gt_masks_ann.append(ann.get('segmentation', None)) # 3D annotations in camera coordinates bbox_cam3d = np.array(ann['bbox_cam3d']).reshape(-1, ) gt_bboxes_cam3d.append(bbox_cam3d) # 2.5D annotations in camera coordinates center2d = ann['center2d'][:2] depth = ann['center2d'][2] centers2d.append(center2d) depths.append(depth) if gt_bboxes: gt_bboxes = np.array(gt_bboxes, dtype=np.float32) gt_labels = np.array(gt_labels, dtype=np.int64) else: gt_bboxes = np.zeros((0, 4), dtype=np.float32) gt_labels = np.array([], dtype=np.int64) if gt_bboxes_cam3d: gt_bboxes_cam3d = np.array(gt_bboxes_cam3d, dtype=np.float32) centers2d = np.array(centers2d, dtype=np.float32) depths = np.array(depths, dtype=np.float32) else: gt_bboxes_cam3d = np.zeros((0, self.bbox_code_size), dtype=np.float32) centers2d = np.zeros((0, 2), dtype=np.float32) depths = np.zeros((0), dtype=np.float32) gt_bboxes_cam3d = CameraInstance3DBoxes( gt_bboxes_cam3d, box_dim=gt_bboxes_cam3d.shape[-1], origin=(0.5, 0.5, 0.5)) gt_labels_3d = copy.deepcopy(gt_labels) if gt_bboxes_ignore: gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) else: gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) seg_map = img_info['filename'].replace('jpg', 'png') ann = dict( bboxes=gt_bboxes, labels=gt_labels, gt_bboxes_3d=gt_bboxes_cam3d, gt_labels_3d=gt_labels_3d, centers2d=centers2d, depths=depths, bboxes_ignore=gt_bboxes_ignore, masks=gt_masks_ann, seg_map=seg_map) return ann
Python
def format_results(self, outputs, pklfile_prefix=None, submission_prefix=None): """Format the results to pkl file. Args: outputs (list[dict]): Testing results of the dataset. pklfile_prefix (str | None): The prefix of pkl files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. submission_prefix (str | None): The prefix of submitted files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. Returns: tuple: (result_files, tmp_dir), result_files is a dict containing \ the json filepaths, tmp_dir is the temporal directory created \ for saving json files when jsonfile_prefix is not specified. """ if pklfile_prefix is None: tmp_dir = tempfile.TemporaryDirectory() pklfile_prefix = osp.join(tmp_dir.name, 'results') else: tmp_dir = None if not isinstance(outputs[0], dict): result_files = self.bbox2result_kitti2d(outputs, self.CLASSES, pklfile_prefix, submission_prefix) elif 'pts_bbox' in outputs[0] or 'img_bbox' in outputs[0] or \ 'img_bbox2d' in outputs[0]: result_files = dict() for name in outputs[0]: results_ = [out[name] for out in outputs] pklfile_prefix_ = pklfile_prefix + name if submission_prefix is not None: submission_prefix_ = submission_prefix + name else: submission_prefix_ = None if '2d' in name: result_files_ = self.bbox2result_kitti2d( results_, self.CLASSES, pklfile_prefix_, submission_prefix_) elif name == 'pts_bbox': result_files_ = self.bbox2result_kitti( results_, self.CLASSES, pklfile_prefix_, submission_prefix_) elif name == 'img_bbox': result_files_ = self.bbox2result_kitti_3dcam( results_, self.CLASSES, pklfile_prefix_, submission_prefix_) result_files[name] = result_files_ else: result_files = self.bbox2result_kitti(outputs, self.CLASSES, pklfile_prefix, submission_prefix) return result_files, tmp_dir
def format_results(self, outputs, pklfile_prefix=None, submission_prefix=None): """Format the results to pkl file. Args: outputs (list[dict]): Testing results of the dataset. pklfile_prefix (str | None): The prefix of pkl files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. submission_prefix (str | None): The prefix of submitted files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. Returns: tuple: (result_files, tmp_dir), result_files is a dict containing \ the json filepaths, tmp_dir is the temporal directory created \ for saving json files when jsonfile_prefix is not specified. """ if pklfile_prefix is None: tmp_dir = tempfile.TemporaryDirectory() pklfile_prefix = osp.join(tmp_dir.name, 'results') else: tmp_dir = None if not isinstance(outputs[0], dict): result_files = self.bbox2result_kitti2d(outputs, self.CLASSES, pklfile_prefix, submission_prefix) elif 'pts_bbox' in outputs[0] or 'img_bbox' in outputs[0] or \ 'img_bbox2d' in outputs[0]: result_files = dict() for name in outputs[0]: results_ = [out[name] for out in outputs] pklfile_prefix_ = pklfile_prefix + name if submission_prefix is not None: submission_prefix_ = submission_prefix + name else: submission_prefix_ = None if '2d' in name: result_files_ = self.bbox2result_kitti2d( results_, self.CLASSES, pklfile_prefix_, submission_prefix_) elif name == 'pts_bbox': result_files_ = self.bbox2result_kitti( results_, self.CLASSES, pklfile_prefix_, submission_prefix_) elif name == 'img_bbox': result_files_ = self.bbox2result_kitti_3dcam( results_, self.CLASSES, pklfile_prefix_, submission_prefix_) result_files[name] = result_files_ else: result_files = self.bbox2result_kitti(outputs, self.CLASSES, pklfile_prefix, submission_prefix) return result_files, tmp_dir
Python
def bbox2result_kitti_3dcam(self, net_outputs, class_names, pklfile_prefix=None, submission_prefix=None): """Convert 3D detection results to kitti format for evaluation and test submission. Args: net_outputs (list[np.ndarray]): List of array storing the \ inferenced bounding boxes and scores. class_names (list[String]): A list of class names. pklfile_prefix (str | None): The prefix of pkl file. submission_prefix (str | None): The prefix of submission file. Returns: list[dict]: A list of dictionaries with the kitti format. """ assert len(net_outputs) == len(self.data_infos) if submission_prefix is not None: mmcv.mkdir_or_exist(submission_prefix) det_annos = [] print('\nConverting prediction to KITTI format') for idx, pred_dicts in enumerate( mmcv.track_iter_progress(net_outputs)): annos = [] info = self.data_infos[idx] sample_idx = info['image']['image_idx'] image_shape = info['image']['image_shape'][:2] box_dict = self.convert_valid_bboxes_3dcam(pred_dicts, info) anno = { 'name': [], 'truncated': [], 'occluded': [], 'alpha': [], 'bbox': [], 'dimensions': [], 'location': [], 'rotation_y': [], 'score': [] } if len(box_dict['bbox']) > 0: box_2d_preds = box_dict['bbox'] box_preds = box_dict['box3d_camera'] scores = box_dict['scores'] box_preds_lidar = box_dict['box3d_lidar'] label_preds = box_dict['label_preds'] for box, box_lidar, bbox, score, label in zip( box_preds, box_preds_lidar, box_2d_preds, scores, label_preds): bbox[2:] = np.minimum(bbox[2:], image_shape[::-1]) bbox[:2] = np.maximum(bbox[:2], [0, 0]) anno['name'].append(class_names[int(label)]) anno['truncated'].append(0.0) anno['occluded'].append(0) anno['alpha'].append(-np.arctan2(box[0], box[2]) + box[6]) anno['bbox'].append(bbox) anno['dimensions'].append(box[3:6]) anno['location'].append(box[:3]) anno['rotation_y'].append(box[6]) anno['score'].append(score) anno = {k: np.stack(v) for k, v in anno.items()} annos.append(anno) else: anno = { 'name': np.array([]), 'truncated': np.array([]), 'occluded': np.array([]), 'alpha': np.array([]), 'bbox': np.zeros([0, 4]), 'dimensions': np.zeros([0, 3]), 'location': np.zeros([0, 3]), 'rotation_y': np.array([]), 'score': np.array([]), } annos.append(anno) if submission_prefix is not None: curr_file = f'{submission_prefix}/{sample_idx:06d}.txt' with open(curr_file, 'w') as f: bbox = anno['bbox'] loc = anno['location'] dims = anno['dimensions'] # lhw -> hwl for idx in range(len(bbox)): print( '{} -1 -1 {:.4f} {:.4f} {:.4f} {:.4f} ' '{:.4f} {:.4f} {:.4f} ' '{:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'.format( anno['name'][idx], anno['alpha'][idx], bbox[idx][0], bbox[idx][1], bbox[idx][2], bbox[idx][3], dims[idx][1], dims[idx][2], dims[idx][0], loc[idx][0], loc[idx][1], loc[idx][2], anno['rotation_y'][idx], anno['score'][idx]), file=f) annos[-1]['sample_idx'] = np.array( [sample_idx] * len(annos[-1]['score']), dtype=np.int64) det_annos += annos if pklfile_prefix is not None: if not pklfile_prefix.endswith(('.pkl', '.pickle')): out = f'{pklfile_prefix}.pkl' mmcv.dump(det_annos, out) print('Result is saved to %s' % out) return det_annos
def bbox2result_kitti_3dcam(self, net_outputs, class_names, pklfile_prefix=None, submission_prefix=None): """Convert 3D detection results to kitti format for evaluation and test submission. Args: net_outputs (list[np.ndarray]): List of array storing the \ inferenced bounding boxes and scores. class_names (list[String]): A list of class names. pklfile_prefix (str | None): The prefix of pkl file. submission_prefix (str | None): The prefix of submission file. Returns: list[dict]: A list of dictionaries with the kitti format. """ assert len(net_outputs) == len(self.data_infos) if submission_prefix is not None: mmcv.mkdir_or_exist(submission_prefix) det_annos = [] print('\nConverting prediction to KITTI format') for idx, pred_dicts in enumerate( mmcv.track_iter_progress(net_outputs)): annos = [] info = self.data_infos[idx] sample_idx = info['image']['image_idx'] image_shape = info['image']['image_shape'][:2] box_dict = self.convert_valid_bboxes_3dcam(pred_dicts, info) anno = { 'name': [], 'truncated': [], 'occluded': [], 'alpha': [], 'bbox': [], 'dimensions': [], 'location': [], 'rotation_y': [], 'score': [] } if len(box_dict['bbox']) > 0: box_2d_preds = box_dict['bbox'] box_preds = box_dict['box3d_camera'] scores = box_dict['scores'] box_preds_lidar = box_dict['box3d_lidar'] label_preds = box_dict['label_preds'] for box, box_lidar, bbox, score, label in zip( box_preds, box_preds_lidar, box_2d_preds, scores, label_preds): bbox[2:] = np.minimum(bbox[2:], image_shape[::-1]) bbox[:2] = np.maximum(bbox[:2], [0, 0]) anno['name'].append(class_names[int(label)]) anno['truncated'].append(0.0) anno['occluded'].append(0) anno['alpha'].append(-np.arctan2(box[0], box[2]) + box[6]) anno['bbox'].append(bbox) anno['dimensions'].append(box[3:6]) anno['location'].append(box[:3]) anno['rotation_y'].append(box[6]) anno['score'].append(score) anno = {k: np.stack(v) for k, v in anno.items()} annos.append(anno) else: anno = { 'name': np.array([]), 'truncated': np.array([]), 'occluded': np.array([]), 'alpha': np.array([]), 'bbox': np.zeros([0, 4]), 'dimensions': np.zeros([0, 3]), 'location': np.zeros([0, 3]), 'rotation_y': np.array([]), 'score': np.array([]), } annos.append(anno) if submission_prefix is not None: curr_file = f'{submission_prefix}/{sample_idx:06d}.txt' with open(curr_file, 'w') as f: bbox = anno['bbox'] loc = anno['location'] dims = anno['dimensions'] # lhw -> hwl for idx in range(len(bbox)): print( '{} -1 -1 {:.4f} {:.4f} {:.4f} {:.4f} ' '{:.4f} {:.4f} {:.4f} ' '{:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'.format( anno['name'][idx], anno['alpha'][idx], bbox[idx][0], bbox[idx][1], bbox[idx][2], bbox[idx][3], dims[idx][1], dims[idx][2], dims[idx][0], loc[idx][0], loc[idx][1], loc[idx][2], anno['rotation_y'][idx], anno['score'][idx]), file=f) annos[-1]['sample_idx'] = np.array( [sample_idx] * len(annos[-1]['score']), dtype=np.int64) det_annos += annos if pklfile_prefix is not None: if not pklfile_prefix.endswith(('.pkl', '.pickle')): out = f'{pklfile_prefix}.pkl' mmcv.dump(det_annos, out) print('Result is saved to %s' % out) return det_annos
Python
def convert_valid_bboxes_3dcam(self, box_dict, info): """Convert the predicted boxes into valid ones. Args: box_dict (dict): Box dictionaries to be converted. - boxes_3d (:obj:`CameraInstance3DBoxes`): 3D bounding boxes. - scores_3d (torch.Tensor): Scores of boxes. - labels_3d (torch.Tensor): Class labels of boxes. info (dict): Data info. Returns: dict: Valid predicted boxes. - bbox (np.ndarray): 2D bounding boxes. - box3d_camera (np.ndarray): 3D bounding boxes in \ camera coordinate. - scores (np.ndarray): Scores of boxes. - label_preds (np.ndarray): Class label predictions. - sample_idx (int): Sample index. """ box_preds = box_dict['boxes_3d'] scores = box_dict['scores_3d'] labels = box_dict['labels_3d'] sample_idx = info['image']['image_idx'] if len(box_preds) == 0: return dict( bbox=np.zeros([0, 4]), box3d_camera=np.zeros([0, 7]), scores=np.zeros([0]), label_preds=np.zeros([0, 4]), sample_idx=sample_idx) rect = info['calib']['R0_rect'].astype(np.float32) Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32) P2 = info['calib']['P2'].astype(np.float32) img_shape = info['image']['image_shape'] P2 = box_preds.tensor.new_tensor(P2) box_preds_camera = box_preds box_preds_lidar = box_preds.convert_to(Box3DMode.LIDAR, np.linalg.inv(rect @ Trv2c)) box_corners = box_preds_camera.corners box_corners_in_image = points_cam2img(box_corners, P2) # box_corners_in_image: [N, 8, 2] minxy = torch.min(box_corners_in_image, dim=1)[0] maxxy = torch.max(box_corners_in_image, dim=1)[0] box_2d_preds = torch.cat([minxy, maxxy], dim=1) # Post-processing # check box_preds_camera image_shape = box_preds.tensor.new_tensor(img_shape) valid_cam_inds = ((box_2d_preds[:, 0] < image_shape[1]) & (box_2d_preds[:, 1] < image_shape[0]) & (box_2d_preds[:, 2] > 0) & (box_2d_preds[:, 3] > 0)) # check box_preds valid_inds = valid_cam_inds if valid_inds.sum() > 0: return dict( bbox=box_2d_preds[valid_inds, :].numpy(), box3d_camera=box_preds_camera[valid_inds].tensor.numpy(), box3d_lidar=box_preds_lidar[valid_inds].tensor.numpy(), scores=scores[valid_inds].numpy(), label_preds=labels[valid_inds].numpy(), sample_idx=sample_idx) else: return dict( bbox=np.zeros([0, 4]), box3d_camera=np.zeros([0, 7]), box3d_lidar=np.zeros([0, 7]), scores=np.zeros([0]), label_preds=np.zeros([0, 4]), sample_idx=sample_idx)
def convert_valid_bboxes_3dcam(self, box_dict, info): """Convert the predicted boxes into valid ones. Args: box_dict (dict): Box dictionaries to be converted. - boxes_3d (:obj:`CameraInstance3DBoxes`): 3D bounding boxes. - scores_3d (torch.Tensor): Scores of boxes. - labels_3d (torch.Tensor): Class labels of boxes. info (dict): Data info. Returns: dict: Valid predicted boxes. - bbox (np.ndarray): 2D bounding boxes. - box3d_camera (np.ndarray): 3D bounding boxes in \ camera coordinate. - scores (np.ndarray): Scores of boxes. - label_preds (np.ndarray): Class label predictions. - sample_idx (int): Sample index. """ box_preds = box_dict['boxes_3d'] scores = box_dict['scores_3d'] labels = box_dict['labels_3d'] sample_idx = info['image']['image_idx'] if len(box_preds) == 0: return dict( bbox=np.zeros([0, 4]), box3d_camera=np.zeros([0, 7]), scores=np.zeros([0]), label_preds=np.zeros([0, 4]), sample_idx=sample_idx) rect = info['calib']['R0_rect'].astype(np.float32) Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32) P2 = info['calib']['P2'].astype(np.float32) img_shape = info['image']['image_shape'] P2 = box_preds.tensor.new_tensor(P2) box_preds_camera = box_preds box_preds_lidar = box_preds.convert_to(Box3DMode.LIDAR, np.linalg.inv(rect @ Trv2c)) box_corners = box_preds_camera.corners box_corners_in_image = points_cam2img(box_corners, P2) # box_corners_in_image: [N, 8, 2] minxy = torch.min(box_corners_in_image, dim=1)[0] maxxy = torch.max(box_corners_in_image, dim=1)[0] box_2d_preds = torch.cat([minxy, maxxy], dim=1) # Post-processing # check box_preds_camera image_shape = box_preds.tensor.new_tensor(img_shape) valid_cam_inds = ((box_2d_preds[:, 0] < image_shape[1]) & (box_2d_preds[:, 1] < image_shape[0]) & (box_2d_preds[:, 2] > 0) & (box_2d_preds[:, 3] > 0)) # check box_preds valid_inds = valid_cam_inds if valid_inds.sum() > 0: return dict( bbox=box_2d_preds[valid_inds, :].numpy(), box3d_camera=box_preds_camera[valid_inds].tensor.numpy(), box3d_lidar=box_preds_lidar[valid_inds].tensor.numpy(), scores=scores[valid_inds].numpy(), label_preds=labels[valid_inds].numpy(), sample_idx=sample_idx) else: return dict( bbox=np.zeros([0, 4]), box3d_camera=np.zeros([0, 7]), box3d_lidar=np.zeros([0, 7]), scores=np.zeros([0]), label_preds=np.zeros([0, 4]), sample_idx=sample_idx)
Python
def _sample_wimg(self, num, sample_idx): """Sample with img which has same calibration matrix with current sample's calibration matrix """ ret = [] while len(ret) < num: if self._idx == self._example_num: self._reset() sampled_dict = self._sampled_list[self._indices[self._idx]] if 'img_path' not in sampled_dict: self._idx += 1 continue # if self._scene_list[ # sampled_dict['image_idx']] != self._scene_list[sample_idx]: # self._idx += 1 # continue ret.append(self._indices[self._idx]) self._idx += 1 if self._idx == self._example_num: self._reset() return ret
def _sample_wimg(self, num, sample_idx): """Sample with img which has same calibration matrix with current sample's calibration matrix """ ret = [] while len(ret) < num: if self._idx == self._example_num: self._reset() sampled_dict = self._sampled_list[self._indices[self._idx]] if 'img_path' not in sampled_dict: self._idx += 1 continue # if self._scene_list[ # sampled_dict['image_idx']] != self._scene_list[sample_idx]: # self._idx += 1 # continue ret.append(self._indices[self._idx]) self._idx += 1 if self._idx == self._example_num: self._reset() return ret
Python
def sample(self, num, with_img=False, sample_idx=None): """Sample specific number of ground truths. Args: num (int): Sampled number. Returns: list[dict]: Sampled ground truths. """ if with_img: indices = self._sample_wimg(num, sample_idx) else: indices = self._sample(num) return [self._sampled_list[i] for i in indices]
def sample(self, num, with_img=False, sample_idx=None): """Sample specific number of ground truths. Args: num (int): Sampled number. Returns: list[dict]: Sampled ground truths. """ if with_img: indices = self._sample_wimg(num, sample_idx) else: indices = self._sample(num) return [self._sampled_list[i] for i in indices]
Python
def sample_class_v2(self, name, num, gt_bboxes, gt_bboxes_2d=None, sample_idx=None): """Sampling specific categories of bounding boxes. Args: name (str): Class of objects to be sampled. num (int): Number of sampled bboxes. gt_bboxes (np.ndarray): Ground truth boxes. Returns: list[dict]: Valid samples after collision test. """ sampled = self.sampler_dict[name].sample(num, self.with_img, sample_idx) sampled = copy.deepcopy(sampled) num_gt = gt_bboxes.shape[0] num_sampled = len(sampled) gt_bboxes_bv = box_np_ops.center_to_corner_box2d( gt_bboxes[:, 0:2], gt_bboxes[:, 3:5], gt_bboxes[:, 6]) sp_boxes = np.stack([i['box3d_lidar'] for i in sampled], axis=0) boxes = np.concatenate([gt_bboxes, sp_boxes], axis=0).copy() sp_boxes_new = boxes[gt_bboxes.shape[0]:] sp_boxes_bv = box_np_ops.center_to_corner_box2d( sp_boxes_new[:, 0:2], sp_boxes_new[:, 3:5], sp_boxes_new[:, 6]) total_bv = np.concatenate([gt_bboxes_bv, sp_boxes_bv], axis=0) coll_mat = data_augment_utils.box_collision_test(total_bv, total_bv) diag = np.arange(total_bv.shape[0]) coll_mat[diag, diag] = False valid_samples = [] valid_check = [False for _ in range(num_gt + num_sampled)] for i in range(num_gt, num_gt + num_sampled): if coll_mat[i].any(): coll_mat[i] = False coll_mat[:, i] = False valid_check[i] = False else: valid_check[i] = True if self.with_img: cv_boxes = np.stack([i['bbox'] for i in sampled], axis=0) total_cv = np.concatenate([gt_bboxes_2d, cv_boxes], axis=0) overlaps_iou = box_np_ops.overlap_jit(total_cv) # overlaps_iou = box_np_ops.iou_jit(total_cv, total_cv) overlaps_iou[diag, diag] = 0. for i in range(num_gt, num_gt + num_sampled): if (overlaps_iou[i].max() > self.overlap_2d_thres) or ( overlaps_iou[:, i].max() > self.overlap_2d_thres): overlaps_iou[i] = 0. overlaps_iou[:, i] = 0. valid_check[i] = False for i in range(num_gt, num_gt + num_sampled): if valid_check[i]: valid_samples.append(sampled[i - num_gt]) return valid_samples
def sample_class_v2(self, name, num, gt_bboxes, gt_bboxes_2d=None, sample_idx=None): """Sampling specific categories of bounding boxes. Args: name (str): Class of objects to be sampled. num (int): Number of sampled bboxes. gt_bboxes (np.ndarray): Ground truth boxes. Returns: list[dict]: Valid samples after collision test. """ sampled = self.sampler_dict[name].sample(num, self.with_img, sample_idx) sampled = copy.deepcopy(sampled) num_gt = gt_bboxes.shape[0] num_sampled = len(sampled) gt_bboxes_bv = box_np_ops.center_to_corner_box2d( gt_bboxes[:, 0:2], gt_bboxes[:, 3:5], gt_bboxes[:, 6]) sp_boxes = np.stack([i['box3d_lidar'] for i in sampled], axis=0) boxes = np.concatenate([gt_bboxes, sp_boxes], axis=0).copy() sp_boxes_new = boxes[gt_bboxes.shape[0]:] sp_boxes_bv = box_np_ops.center_to_corner_box2d( sp_boxes_new[:, 0:2], sp_boxes_new[:, 3:5], sp_boxes_new[:, 6]) total_bv = np.concatenate([gt_bboxes_bv, sp_boxes_bv], axis=0) coll_mat = data_augment_utils.box_collision_test(total_bv, total_bv) diag = np.arange(total_bv.shape[0]) coll_mat[diag, diag] = False valid_samples = [] valid_check = [False for _ in range(num_gt + num_sampled)] for i in range(num_gt, num_gt + num_sampled): if coll_mat[i].any(): coll_mat[i] = False coll_mat[:, i] = False valid_check[i] = False else: valid_check[i] = True if self.with_img: cv_boxes = np.stack([i['bbox'] for i in sampled], axis=0) total_cv = np.concatenate([gt_bboxes_2d, cv_boxes], axis=0) overlaps_iou = box_np_ops.overlap_jit(total_cv) # overlaps_iou = box_np_ops.iou_jit(total_cv, total_cv) overlaps_iou[diag, diag] = 0. for i in range(num_gt, num_gt + num_sampled): if (overlaps_iou[i].max() > self.overlap_2d_thres) or ( overlaps_iou[:, i].max() > self.overlap_2d_thres): overlaps_iou[i] = 0. overlaps_iou[:, i] = 0. valid_check[i] = False for i in range(num_gt, num_gt + num_sampled): if valid_check[i]: valid_samples.append(sampled[i - num_gt]) return valid_samples
Python
def cog_unload(self): """ Remove the rocode jobs and safely shutdown the scheduler :return: Nothing """ self.rocode_job.remove() self.scheduler.shutdown()
def cog_unload(self): """ Remove the rocode jobs and safely shutdown the scheduler :return: Nothing """ self.rocode_job.remove() self.scheduler.shutdown()
Python
def generate_data(self, count, offset, threads): """ Generates training data in the CRF++ format for the ingredient tagging task """ df = pd.read_csv(self.opts.data_path) df = df.fillna("") start = offset end = offset + count df_slice = df.iloc[start: end] qr = Process(target=self.start_queue_reader) qr.start() worker_pool = Pool(processes=threads or None) worker_pool.map_async(self._generate_data_worker, df_slice.iterrows()) worker_pool.close() worker_pool.join() self.output_queue.put('DONE') qr.join()
def generate_data(self, count, offset, threads): """ Generates training data in the CRF++ format for the ingredient tagging task """ df = pd.read_csv(self.opts.data_path) df = df.fillna("") start = offset end = offset + count df_slice = df.iloc[start: end] qr = Process(target=self.start_queue_reader) qr.start() worker_pool = Pool(processes=threads or None) worker_pool.map_async(self._generate_data_worker, df_slice.iterrows()) worker_pool.close() worker_pool.join() self.output_queue.put('DONE') qr.join()
Python
def _parse_args(self, argv): """ Parse the command-line arguments into a dict. """ parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--count", default=100, type=int, help=' ') parser.add_argument("--offset", default=0, type=int, help=' ') parser.add_argument("--threads", default=0, type=int, help=' ') parser.add_argument("--data-path", default="nyt-ingredients-snapshot-2015.csv", help=' ') return parser.parse_args(argv)
def _parse_args(self, argv): """ Parse the command-line arguments into a dict. """ parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--count", default=100, type=int, help=' ') parser.add_argument("--offset", default=0, type=int, help=' ') parser.add_argument("--threads", default=0, type=int, help=' ') parser.add_argument("--data-path", default="nyt-ingredients-snapshot-2015.csv", help=' ') return parser.parse_args(argv)
Python
def discover(): """ Auto-discover any Gutter configuration present in the django INSTALLED_APPS. """ from django.conf import settings from django.utils.importlib import import_module for app in settings.INSTALLED_APPS: module = '%s.gutter' % app try: import_module(module) logger.info('Successfully autodiscovered %s' % module) except: pass
def discover(): """ Auto-discover any Gutter configuration present in the django INSTALLED_APPS. """ from django.conf import settings from django.utils.importlib import import_module for app in settings.INSTALLED_APPS: module = '%s.gutter' % app try: import_module(module) logger.info('Successfully autodiscovered %s' % module) except: pass
Python
def run_subs(data): ''' Finds the initial position of given motif in DNA sequence ''' dna, motif = data.split('\n') dna = DNA(dna) return ' '.join(str(i + 1) for i in dna.find_motif(motif))
def run_subs(data): ''' Finds the initial position of given motif in DNA sequence ''' dna, motif = data.split('\n') dna = DNA(dna) return ' '.join(str(i + 1) for i in dna.find_motif(motif))
Python
def run_mrna(prot, mod=1000000): ''' Calculates the number of mRNA that encodes a protein mod 1E6 ''' if '*' not in prot: # Add Stop if missing prot += '*' p = 1 for ama in prot: p *= amino_table[ama] p %= mod # Prevent overflow return p
def run_mrna(prot, mod=1000000): ''' Calculates the number of mRNA that encodes a protein mod 1E6 ''' if '*' not in prot: # Add Stop if missing prot += '*' p = 1 for ama in prot: p *= amino_table[ama] p %= mod # Prevent overflow return p
Python
def find_motif(self, motif): ''' Find initial positions of given motif ''' positions = [] for i in range(len(self.sequence) - len(motif)): if self.sequence[i:i + len(motif)] == motif: positions.append(i) return positions
def find_motif(self, motif): ''' Find initial positions of given motif ''' positions = [] for i in range(len(self.sequence) - len(motif)): if self.sequence[i:i + len(motif)] == motif: positions.append(i) return positions
Python
def reverse_complement(self): ''' Returns a string containing the reverse complement ''' return DNA(''.join( DNA.complements[base] for base in reversed(self.sequence)))
def reverse_complement(self): ''' Returns a string containing the reverse complement ''' return DNA(''.join( DNA.complements[base] for base in reversed(self.sequence)))
Python
def to_proteins(self): ''' Returns possible proteins encoded by DNA sequence ''' for prot in self.to_rna().to_proteins(): yield prot for prot in self.reverse_complement().to_rna().to_proteins(): yield prot
def to_proteins(self): ''' Returns possible proteins encoded by DNA sequence ''' for prot in self.to_rna().to_proteins(): yield prot for prot in self.reverse_complement().to_rna().to_proteins(): yield prot
Python
def translate(self, stop=False, start=0): ''' Translates RNA into a sequence of aminoacids ''' protein = [] length = len(self.sequence[start:]) // 3 * 3 for i in range(0, length, 3): aminoacid = codon_table[self.sequence[start + i:start + i + 3]] if stop and aminoacid == '*': break protein.append(aminoacid) return ''.join(protein)
def translate(self, stop=False, start=0): ''' Translates RNA into a sequence of aminoacids ''' protein = [] length = len(self.sequence[start:]) // 3 * 3 for i in range(0, length, 3): aminoacid = codon_table[self.sequence[start + i:start + i + 3]] if stop and aminoacid == '*': break protein.append(aminoacid) return ''.join(protein)
Python
def to_proteins(self): ''' Returns possible proteins encoded by RNA sequence ''' for start in range(3): amino = self.translate(start=start) for match in re.finditer(r'M', amino): start = match.start() size = amino[start:].find('*') if size > 0: seq = amino[start:start + size] yield Protein(seq)
def to_proteins(self): ''' Returns possible proteins encoded by RNA sequence ''' for start in range(3): amino = self.translate(start=start) for match in re.finditer(r'M', amino): start = match.start() size = amino[start:].find('*') if size > 0: seq = amino[start:start + size] yield Protein(seq)
Python
def fetch(url): ''' Fetch protein sequence fasta from UniProt ''' req = request.Request(url, None, headers={ 'User-Agent': 'Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; \ Win64; x64; Trident/5.0'}) fasta = request.urlopen(req).read().decode("utf-8").strip() for prot in read_fasta(fasta, Protein): # Odd way to deal with a generator return prot
def fetch(url): ''' Fetch protein sequence fasta from UniProt ''' req = request.Request(url, None, headers={ 'User-Agent': 'Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; \ Win64; x64; Trident/5.0'}) fasta = request.urlopen(req).read().decode("utf-8").strip() for prot in read_fasta(fasta, Protein): # Odd way to deal with a generator return prot
Python
def run_mprt(uids): ''' Returns IDs and positions of N-glyn for given protein IDs ''' res = '' for uid in uids.split(): prot = fetch(source.format(uid)) pos = prot.find_motif('N{P}[ST]{P}') if pos: res = '{}\n{}\n{}'.format(res, uid, ' '.join(str(p) for p in pos)) return res.strip()
def run_mprt(uids): ''' Returns IDs and positions of N-glyn for given protein IDs ''' res = '' for uid in uids.split(): prot = fetch(source.format(uid)) pos = prot.find_motif('N{P}[ST]{P}') if pos: res = '{}\n{}\n{}'.format(res, uid, ' '.join(str(p) for p in pos)) return res.strip()
Python
def run_gc(fasta): ''' Returns sequence name with max GC content ''' max_content, max_dna = 0, None for dna in read_fasta(fasta): gc = dna.gc_content() if gc > max_content: max_content = gc max_dna = dna return '%s\n%f' % (max_dna.name, max_content)
def run_gc(fasta): ''' Returns sequence name with max GC content ''' max_content, max_dna = 0, None for dna in read_fasta(fasta): gc = dna.gc_content() if gc > max_content: max_content = gc max_dna = dna return '%s\n%f' % (max_dna.name, max_content)
Python
def run_iev(couples): ''' Calculates the expected number of offspring with dominant phenotype ''' couples = [int(c) for c in couples.split()] offspring = 0 for phenotype, ammount in enumerate(couples): if phenotype == 3: # Aa-Aa prob = 0.75 elif phenotype == 4: # Aa-aa prob = 0.5 elif phenotype == 5: # aa-aa continue else: # AA-AA, AA-Aa, AA-aa prob = 1 offspring += ammount * prob * 2 return offspring
def run_iev(couples): ''' Calculates the expected number of offspring with dominant phenotype ''' couples = [int(c) for c in couples.split()] offspring = 0 for phenotype, ammount in enumerate(couples): if phenotype == 3: # Aa-Aa prob = 0.75 elif phenotype == 4: # Aa-aa prob = 0.5 elif phenotype == 5: # aa-aa continue else: # AA-AA, AA-Aa, AA-aa prob = 1 offspring += ammount * prob * 2 return offspring
Python
def run_hamm(data): ''' Calculates the Hamming distance between two strings ''' seq, other = data.split('\n') seq, other = DNA(seq), DNA(other) return seq.hamming_distance(other)
def run_hamm(data): ''' Calculates the Hamming distance between two strings ''' seq, other = data.split('\n') seq, other = DNA(seq), DNA(other) return seq.hamming_distance(other)
Python
def run_iprb(data): ''' Finds the probability of an offspring with dominant allele ''' k, m, n = [int(i) for i in data.split()] r, pop = 0, sum([k, m, n]) # DD + DD r += (k / pop * (k - 1) / (pop - 1)) # DD + Dr r += (k / pop * (m) / (pop - 1)) # DD + rr r += (k / pop * (n) / (pop - 1)) # Dr + DD r += (m / pop * (k) / (pop - 1)) # Dr + Dr r += (m / pop * (m - 1) / (pop - 1)) * 0.75 # Dr + rr r += (m / pop * (n) / (pop - 1)) * 0.5 # rr + DD r += (n / pop * (k) / (pop - 1)) # rr + Dr r += (n / pop * (m) / (pop - 1)) * 0.5 # rr + rr r += (n / pop * (n - 1) / (pop - 1)) * 0 return r
def run_iprb(data): ''' Finds the probability of an offspring with dominant allele ''' k, m, n = [int(i) for i in data.split()] r, pop = 0, sum([k, m, n]) # DD + DD r += (k / pop * (k - 1) / (pop - 1)) # DD + Dr r += (k / pop * (m) / (pop - 1)) # DD + rr r += (k / pop * (n) / (pop - 1)) # Dr + DD r += (m / pop * (k) / (pop - 1)) # Dr + Dr r += (m / pop * (m - 1) / (pop - 1)) * 0.75 # Dr + rr r += (m / pop * (n) / (pop - 1)) * 0.5 # rr + DD r += (n / pop * (k) / (pop - 1)) # rr + Dr r += (n / pop * (m) / (pop - 1)) * 0.5 # rr + rr r += (n / pop * (n - 1) / (pop - 1)) * 0 return r
Python
def post_comments(post): """ Simple tag to retrieve all comments. """ comments = Comment.objects.comments(post=post) return comments
def post_comments(post): """ Simple tag to retrieve all comments. """ comments = Comment.objects.comments(post=post) return comments
Python
def post_comments_count(post): """ Simple tag to display the total count of comments for one post. """ comments_count = Comment.objects.comments_count(post=post) return comments_count
def post_comments_count(post): """ Simple tag to display the total count of comments for one post. """ comments_count = Comment.objects.comments_count(post=post) return comments_count
Python
def has_media(self): """ Check if post has media. """ if self.image: return True return False
def has_media(self): """ Check if post has media. """ if self.image: return True return False
Python
def delete(self, user): """ Method to delete content already posted. Handle image removal from filesystem prior to delete its path from database. """ if user.is_authenticated() and self.author == user: if self._handle_removed_media(): Timeline.objects.remove_from_timeline(instance=self, user=user) super(Post, self).delete() cache_bust([('posts_timeline', user.pk), ('comments', self.pk)]) return True return False
def delete(self, user): """ Method to delete content already posted. Handle image removal from filesystem prior to delete its path from database. """ if user.is_authenticated() and self.author == user: if self._handle_removed_media(): Timeline.objects.remove_from_timeline(instance=self, user=user) super(Post, self).delete() cache_bust([('posts_timeline', user.pk), ('comments', self.pk)]) return True return False
Python
def change_approval(self, status): """ Approve or disapprove a comment. """ if status == 'approve': return self.approve() elif status == 'disapprove': return self.disapprove()
def change_approval(self, status): """ Approve or disapprove a comment. """ if status == 'approve': return self.approve() elif status == 'disapprove': return self.disapprove()
Python
def make_key(key_type, pk): """ Build the cache key for a particular type of cached value. """ key = CACHE_KEYS['user_keys'].get(key_type, None) if key is None: key = CACHE_KEYS['post_keys'].get(key_type) key.format(pk=pk) return key
def make_key(key_type, pk): """ Build the cache key for a particular type of cached value. """ key = CACHE_KEYS['user_keys'].get(key_type, None) if key is None: key = CACHE_KEYS['post_keys'].get(key_type) key.format(pk=pk) return key
Python
def make_key_many(cache_types): """ Build the cache key for several cache values. """ keys = {} for key_type, pk in cache_types: key = make_key(key_type, pk) keys.update({key_type: key}) return keys
def make_key_many(cache_types): """ Build the cache key for several cache values. """ keys = {} for key_type, pk in cache_types: key = make_key(key_type, pk) keys.update({key_type: key}) return keys
Python
def comments_count(self, post): """ Return a count of all post comments. """ count = self.comments(post).count() return count
def comments_count(self, post): """ Return a count of all post comments. """ count = self.comments(post).count() return count
Python
def approved_comments_count(self, post): """ Return a count of all post approved comments. """ count = self.approved_comments(post).count() return count
def approved_comments_count(self, post): """ Return a count of all post approved comments. """ count = self.approved_comments(post).count() return count
Python
def disapproved_comments_count(self, post): """ Return a count of all post disapproved comments. """ count = self.disapproved_comments(post).count() return count
def disapproved_comments_count(self, post): """ Return a count of all post disapproved comments. """ count = self.disapproved_comments(post).count() return count
Python
def delete_disapproved(self, post): """ Remove disapproved comments for a post. """ if user.is_authenticated() and user == post.author: disapproved = self.disapproved_comments(post) if disapproved: disapproved.delete() cache_bust([('disapproved_comments', post.pk)]) return True return False
def delete_disapproved(self, post): """ Remove disapproved comments for a post. """ if user.is_authenticated() and user == post.author: disapproved = self.disapproved_comments(post) if disapproved: disapproved.delete() cache_bust([('disapproved_comments', post.pk)]) return True return False