language
stringclasses 6
values | original_string
stringlengths 25
887k
| text
stringlengths 25
887k
|
---|---|---|
Python | def add_targets_stripped(time_agg, df):
"target = achieved if improvement > 1% without intermediate loss of more than 0.2%"
def close_delta_ratio(tix1, tix2, cix):
assert tix1 <= tix2
last_close = df.iat[tix1, cix]
this_close = df.iat[tix2, cix]
delta = (this_close - last_close) / last_close
return delta
# print(f"{datetime.now()}: add_targets {time_agg}")
df["target"] = TARGETS[HOLD]
lix = df.columns.get_loc("target")
cix = df.columns.get_loc("close")
win = dict()
loss = dict()
lossix = dict()
winix = dict()
for slot in range(0, time_agg):
win[slot] = loss[slot] = 0.
winix[slot] = lossix[slot] = slot
for tix in range(time_agg, len(df), 1): # tix = time index
slot = (tix % time_agg)
delta = close_delta_ratio(tix - time_agg, tix, cix)
if delta < 0:
if loss[slot] < 0: # loss monitoring is running
loss[slot] = close_delta_ratio(lossix[slot], tix, cix)
else: # first time bar of decrease period
lossix[slot] = tix
loss[slot] = delta
if win[slot] > 0: # win monitoring is running
win[slot] = close_delta_ratio(winix[slot], tix, cix)
if win[slot] < 0: # reset win monitor because it is below start price
win[slot] = 0.
while loss[slot] < SELL_THRESHOLD:
# while loop for multiple small decreases and then a big decrease step
# -> multiple SELL signals required
win[slot] = 0. # reset win monitor -> dip exceeded threshold
df.iat[lossix[slot], lix] = TARGETS[SELL]
if (lossix[slot] + time_agg) > tix:
break
lossix[slot] += time_agg
loss[slot] = close_delta_ratio(lossix[slot], tix, cix)
elif delta > 0:
if win[slot] > 0: # win monitoring is running
win[slot] = close_delta_ratio(winix[slot], tix, cix)
else: # first time bar of increase period
winix[slot] = tix
win[slot] = delta
if loss[slot] < 0: # loss monitoring is running
loss[slot] = close_delta_ratio(lossix[slot], tix, cix)
if loss[slot] > 0:
loss[slot] = 0. # reset loss monitor -> recovered before sell threshold
while win[slot] > BUY_THRESHOLD:
loss[slot] = 0. # reset win monitor -> dip exceeded threshold
df.iat[winix[slot], lix] = TARGETS[BUY]
if (winix[slot] + time_agg) > tix:
break
winix[slot] += time_agg
win[slot] = close_delta_ratio(winix[slot], tix, cix)
# report_setsize("complete set", df) | def add_targets_stripped(time_agg, df):
"target = achieved if improvement > 1% without intermediate loss of more than 0.2%"
def close_delta_ratio(tix1, tix2, cix):
assert tix1 <= tix2
last_close = df.iat[tix1, cix]
this_close = df.iat[tix2, cix]
delta = (this_close - last_close) / last_close
return delta
# print(f"{datetime.now()}: add_targets {time_agg}")
df["target"] = TARGETS[HOLD]
lix = df.columns.get_loc("target")
cix = df.columns.get_loc("close")
win = dict()
loss = dict()
lossix = dict()
winix = dict()
for slot in range(0, time_agg):
win[slot] = loss[slot] = 0.
winix[slot] = lossix[slot] = slot
for tix in range(time_agg, len(df), 1): # tix = time index
slot = (tix % time_agg)
delta = close_delta_ratio(tix - time_agg, tix, cix)
if delta < 0:
if loss[slot] < 0: # loss monitoring is running
loss[slot] = close_delta_ratio(lossix[slot], tix, cix)
else: # first time bar of decrease period
lossix[slot] = tix
loss[slot] = delta
if win[slot] > 0: # win monitoring is running
win[slot] = close_delta_ratio(winix[slot], tix, cix)
if win[slot] < 0: # reset win monitor because it is below start price
win[slot] = 0.
while loss[slot] < SELL_THRESHOLD:
# while loop for multiple small decreases and then a big decrease step
# -> multiple SELL signals required
win[slot] = 0. # reset win monitor -> dip exceeded threshold
df.iat[lossix[slot], lix] = TARGETS[SELL]
if (lossix[slot] + time_agg) > tix:
break
lossix[slot] += time_agg
loss[slot] = close_delta_ratio(lossix[slot], tix, cix)
elif delta > 0:
if win[slot] > 0: # win monitoring is running
win[slot] = close_delta_ratio(winix[slot], tix, cix)
else: # first time bar of increase period
winix[slot] = tix
win[slot] = delta
if loss[slot] < 0: # loss monitoring is running
loss[slot] = close_delta_ratio(lossix[slot], tix, cix)
if loss[slot] > 0:
loss[slot] = 0. # reset loss monitor -> recovered before sell threshold
while win[slot] > BUY_THRESHOLD:
loss[slot] = 0. # reset win monitor -> dip exceeded threshold
df.iat[winix[slot], lix] = TARGETS[BUY]
if (winix[slot] + time_agg) > tix:
break
winix[slot] += time_agg
win[slot] = close_delta_ratio(winix[slot], tix, cix)
# report_setsize("complete set", df) |
Python | def target_performance(self):
"""calculates the time aggregation specific performance of target_key
"""
# print(f"{datetime.now()}: calculate target_performance")
target_df = self.minute_data
perf = 0.
ta_holding = False
col_ix = target_df.columns.get_loc("target")
assert col_ix > 0, f"did not find column {col_ix} of {self.target_key}"
close_ix = target_df.columns.get_loc("close")
assert target_df.index.is_unique, "unexpected not unique index"
last = target_df.iat[0, close_ix]
for tix in range(len(target_df)): # tix = time index
this = target_df.iat[tix, close_ix]
tix_perf = ((this - last) / last) # no longer in per mille * 1000)
last = this
signal = target_df.iat[tix, col_ix]
if ta_holding:
perf += tix_perf
if (signal == TARGETS[BUY]) and (not ta_holding):
perf -= FEE
ta_holding = True
if (signal == TARGETS[SELL]) and ta_holding:
perf -= FEE
ta_holding = False
return perf | def target_performance(self):
"""calculates the time aggregation specific performance of target_key
"""
# print(f"{datetime.now()}: calculate target_performance")
target_df = self.minute_data
perf = 0.
ta_holding = False
col_ix = target_df.columns.get_loc("target")
assert col_ix > 0, f"did not find column {col_ix} of {self.target_key}"
close_ix = target_df.columns.get_loc("close")
assert target_df.index.is_unique, "unexpected not unique index"
last = target_df.iat[0, close_ix]
for tix in range(len(target_df)): # tix = time index
this = target_df.iat[tix, close_ix]
tix_perf = ((this - last) / last) # no longer in per mille * 1000)
last = this
signal = target_df.iat[tix, col_ix]
if ta_holding:
perf += tix_perf
if (signal == TARGETS[BUY]) and (not ta_holding):
perf -= FEE
ta_holding = True
if (signal == TARGETS[SELL]) and ta_holding:
perf -= FEE
ta_holding = False
return perf |
Python | def use_settype_total():
"""Uses the set_type of "total" and apllies it to all sets with such timeblock.
"""
cdf = self.analysis.set_index("end")
cdf["set_type"] = cdf.loc[cdf.sym == "total"]["set_type"]
# cdf["end"] = cdf.index # is already doen by reset_index
self.analysis = cdf.reset_index() | def use_settype_total():
"""Uses the set_type of "total" and apllies it to all sets with such timeblock.
"""
cdf = self.analysis.set_index("end")
cdf["set_type"] = cdf.loc[cdf.sym == "total"]["set_type"]
# cdf["end"] = cdf.index # is already doen by reset_index
self.analysis = cdf.reset_index() |
Python | def prepare_training(self):
"""Prepares training, validation and test sets with targets and admin info
(see class description). These determine the samples per set_type and whether
they are used in a step.
It is assumed that load_sets_config was called and self.analysis contains the
proper config fiel content.
"""
def samples_concat(target, to_be_added):
if target.empty:
target = to_be_added
# print("target empty --> target = to_be_added", target.head(), target.tail())
return to_be_added
if False:
# debugging output
elen = len(target)
xdf = target.tail()
if ("step" in xdf.columns):
xdf = xdf[["target", "timestamp", "step"]]
else:
xdf = xdf[["target", "timestamp"]]
print(f"target len: {elen}", xdf)
ydf = to_be_added.head()
if ("step" in ydf.columns):
ydf = ydf[["target", "timestamp", "step"]]
else:
ydf = ydf[["target", "timestamp"]]
print(f"time agg timeblock len: {len(to_be_added)}", ydf)
target = pd.concat([target, to_be_added], sort=False)
if False:
# debugging output
zdf = target.iloc[range(elen-5, elen+5)]
elen = len(target)
if ("step" in zdf.columns):
zdf = zdf[["target", "timestamp", "step"]]
else:
zdf = zdf[["target", "timestamp"]]
print(f"concat with new len {elen} result at interface: ", zdf)
return target
def extract_set_type_targets(base, tf, set_type):
sym = base + "_" + QUOTE
try:
# print(f"extracting {set_type} for {sym}")
dfcfg = self.analysis.loc[(self.analysis.set_type == set_type) &
(self.analysis.sym == sym)]
except KeyError:
print(f"no {set_type} set for {sym}")
return None
dft = tf.minute_data
extract = None
for block in dfcfg.index:
df = dft.loc[(dft.index >= dfcfg.at[block, "start"]) &
(dft.index <= dfcfg.at[block, "end"]), ["target", "close"]]
df["timestamp"] = df.index
df["sym"] = sym
df["use"] = True
df["buy_prob"] = float(0)
df["sell_prop"] = float(0)
df["hold_prop"] = float(0)
if set_type == TRAIN:
df["tcount"] = int(0)
df["step"] = int(0)
if extract is None:
extract = df
else:
extract = samples_concat(extract, df)
return extract
# here comes the core of prepare_training()
for base in self.bases:
tf = TargetsFeatures(base, QUOTE)
try:
tf.load_classifier_features()
except MissingHistoryData:
continue
self.bases[base] = tf
tfv = tf.vec
tdf = extract_set_type_targets(base, tf, TRAIN)
tdf = tdf[tdf.index.isin(tfv.index)]
self.ctrl[TRAIN] = samples_concat(self.ctrl[TRAIN], tdf)
vdf = extract_set_type_targets(base, tf, VAL)
vdf = vdf[vdf.index.isin(tfv.index)]
self.ctrl[VAL] = samples_concat(self.ctrl[VAL], vdf)
tstdf = extract_set_type_targets(base, tf, TEST)
tstdf = tstdf[tstdf.index.isin(tfv.index)]
self.ctrl[TEST] = samples_concat(self.ctrl[TEST], tstdf) | def prepare_training(self):
"""Prepares training, validation and test sets with targets and admin info
(see class description). These determine the samples per set_type and whether
they are used in a step.
It is assumed that load_sets_config was called and self.analysis contains the
proper config fiel content.
"""
def samples_concat(target, to_be_added):
if target.empty:
target = to_be_added
# print("target empty --> target = to_be_added", target.head(), target.tail())
return to_be_added
if False:
# debugging output
elen = len(target)
xdf = target.tail()
if ("step" in xdf.columns):
xdf = xdf[["target", "timestamp", "step"]]
else:
xdf = xdf[["target", "timestamp"]]
print(f"target len: {elen}", xdf)
ydf = to_be_added.head()
if ("step" in ydf.columns):
ydf = ydf[["target", "timestamp", "step"]]
else:
ydf = ydf[["target", "timestamp"]]
print(f"time agg timeblock len: {len(to_be_added)}", ydf)
target = pd.concat([target, to_be_added], sort=False)
if False:
# debugging output
zdf = target.iloc[range(elen-5, elen+5)]
elen = len(target)
if ("step" in zdf.columns):
zdf = zdf[["target", "timestamp", "step"]]
else:
zdf = zdf[["target", "timestamp"]]
print(f"concat with new len {elen} result at interface: ", zdf)
return target
def extract_set_type_targets(base, tf, set_type):
sym = base + "_" + QUOTE
try:
# print(f"extracting {set_type} for {sym}")
dfcfg = self.analysis.loc[(self.analysis.set_type == set_type) &
(self.analysis.sym == sym)]
except KeyError:
print(f"no {set_type} set for {sym}")
return None
dft = tf.minute_data
extract = None
for block in dfcfg.index:
df = dft.loc[(dft.index >= dfcfg.at[block, "start"]) &
(dft.index <= dfcfg.at[block, "end"]), ["target", "close"]]
df["timestamp"] = df.index
df["sym"] = sym
df["use"] = True
df["buy_prob"] = float(0)
df["sell_prop"] = float(0)
df["hold_prop"] = float(0)
if set_type == TRAIN:
df["tcount"] = int(0)
df["step"] = int(0)
if extract is None:
extract = df
else:
extract = samples_concat(extract, df)
return extract
# here comes the core of prepare_training()
for base in self.bases:
tf = TargetsFeatures(base, QUOTE)
try:
tf.load_classifier_features()
except MissingHistoryData:
continue
self.bases[base] = tf
tfv = tf.vec
tdf = extract_set_type_targets(base, tf, TRAIN)
tdf = tdf[tdf.index.isin(tfv.index)]
self.ctrl[TRAIN] = samples_concat(self.ctrl[TRAIN], tdf)
vdf = extract_set_type_targets(base, tf, VAL)
vdf = vdf[vdf.index.isin(tfv.index)]
self.ctrl[VAL] = samples_concat(self.ctrl[VAL], vdf)
tstdf = extract_set_type_targets(base, tf, TEST)
tstdf = tstdf[tstdf.index.isin(tfv.index)]
self.ctrl[TEST] = samples_concat(self.ctrl[TEST], tstdf) |
Python | def label_steps(self):
"""Each sample is assigned to a step. The smallest class has
MANDATORY_STEPS, i.e. each sample is labeled
with a step between 0 and MANDATORY_STEPS - 1.
The larger classes have more step labels according to
their ratio with the smallest class. This is determined per sym,
timeblock and target class.
This sample distribution over steps shall balance the training of classes
not bias the classifier too much in an early learning cycle.
"""
self.max_steps["total"] = 0
for base in self.bases:
sym = base + "_" + QUOTE
tdf = self.ctrl[TRAIN]
tdf = tdf[tdf.sym == sym]
self.max_steps[base] = {HOLD: 0, BUY: 0, SELL: 0}
holds = len(tdf[(tdf.target == TARGETS[HOLD]) & (tdf.use is True)])
sells = len(tdf[(tdf.target == TARGETS[SELL]) & (tdf.use is True)])
buys = len(tdf[(tdf.target == TARGETS[BUY]) & (tdf.use is True)])
all_use = len(tdf[(tdf.use is True)])
all_sym = len(tdf)
samples = holds + sells + buys
# print(f"{sym} buys:{buys} sells:{sells} holds:{holds} total:{samples} on {TRAIN}")
if all_use != samples:
print(f"samples {samples} != all use {all_use} as subset from all {sym} {all_sym}")
min_step = min([buys, sells, holds])
if min_step == 0:
continue
b_step = round(buys / min_step * MANDATORY_STEPS)
s_step = round(sells / min_step * MANDATORY_STEPS)
h_step = round(holds / min_step * MANDATORY_STEPS)
bi = si = hi = 0
tix = tdf.columns.get_loc("target")
iix = tdf.columns.get_loc("step")
for ix in range(len(tdf.index)):
target = tdf.iat[ix, tix]
if target == TARGETS[BUY]:
tdf.iat[ix, iix] = bi
bi = (bi + 1) % b_step
elif target == TARGETS[SELL]:
tdf.iat[ix, iix] = si
si = (si + 1) % s_step
elif target == TARGETS[HOLD]:
tdf.iat[ix, iix] = hi
hi = (hi + 1) % h_step
else: # hold
print(f"error: unexpected target {target}")
self.ctrl[TRAIN].loc[(self.ctrl[TRAIN].sym == sym), "step"] = tdf.step
self.max_steps[base][BUY] = b_step
self.max_steps[base][SELL] = s_step
self.max_steps[base][HOLD] = h_step
self.max_steps[base]["max"] = max([h_step, b_step, s_step])
self.max_steps["total"] += self.max_steps[base]["max"]
return self.max_steps["total"] | def label_steps(self):
"""Each sample is assigned to a step. The smallest class has
MANDATORY_STEPS, i.e. each sample is labeled
with a step between 0 and MANDATORY_STEPS - 1.
The larger classes have more step labels according to
their ratio with the smallest class. This is determined per sym,
timeblock and target class.
This sample distribution over steps shall balance the training of classes
not bias the classifier too much in an early learning cycle.
"""
self.max_steps["total"] = 0
for base in self.bases:
sym = base + "_" + QUOTE
tdf = self.ctrl[TRAIN]
tdf = tdf[tdf.sym == sym]
self.max_steps[base] = {HOLD: 0, BUY: 0, SELL: 0}
holds = len(tdf[(tdf.target == TARGETS[HOLD]) & (tdf.use is True)])
sells = len(tdf[(tdf.target == TARGETS[SELL]) & (tdf.use is True)])
buys = len(tdf[(tdf.target == TARGETS[BUY]) & (tdf.use is True)])
all_use = len(tdf[(tdf.use is True)])
all_sym = len(tdf)
samples = holds + sells + buys
# print(f"{sym} buys:{buys} sells:{sells} holds:{holds} total:{samples} on {TRAIN}")
if all_use != samples:
print(f"samples {samples} != all use {all_use} as subset from all {sym} {all_sym}")
min_step = min([buys, sells, holds])
if min_step == 0:
continue
b_step = round(buys / min_step * MANDATORY_STEPS)
s_step = round(sells / min_step * MANDATORY_STEPS)
h_step = round(holds / min_step * MANDATORY_STEPS)
bi = si = hi = 0
tix = tdf.columns.get_loc("target")
iix = tdf.columns.get_loc("step")
for ix in range(len(tdf.index)):
target = tdf.iat[ix, tix]
if target == TARGETS[BUY]:
tdf.iat[ix, iix] = bi
bi = (bi + 1) % b_step
elif target == TARGETS[SELL]:
tdf.iat[ix, iix] = si
si = (si + 1) % s_step
elif target == TARGETS[HOLD]:
tdf.iat[ix, iix] = hi
hi = (hi + 1) % h_step
else: # hold
print(f"error: unexpected target {target}")
self.ctrl[TRAIN].loc[(self.ctrl[TRAIN].sym == sym), "step"] = tdf.step
self.max_steps[base][BUY] = b_step
self.max_steps[base][SELL] = s_step
self.max_steps[base][HOLD] = h_step
self.max_steps[base]["max"] = max([h_step, b_step, s_step])
self.max_steps["total"] += self.max_steps[base]["max"]
return self.max_steps["total"] |
Python | def analyze_bases(self):
"""Analyses the baselist and creates a config file of sets split into equal timeblock
length. Additionally an artificial "total" set is created with the sum of all bases for
each timeblock.
"""
def first_week_ts(tf):
df = tf.vec
assert df is not None
first_tic = df.index[0].to_pydatetime()
last_tic = df.index[len(df.index)-1].to_pydatetime()
if self.fixtic is None:
self.fixtic = last_tic
fullweeks = math.ceil((self.fixtic - first_tic) / timedelta(minutes=self.timeblock))
assert fullweeks > 0, \
f"{tf.cur_pair} {len(df)} {len(df.index)} {first_tic} {last_tic} {fullweeks}"
wsts = self.fixtic - timedelta(minutes=fullweeks*self.timeblock-1)
wets = wsts + timedelta(minutes=self.timeblock-1)
return (wsts, wets)
def next_week_ts(tf, wets):
wsts = wets + timedelta(minutes=1)
wets = wsts + timedelta(minutes=self.timeblock-1)
df = tf.vec
assert df is not None
last_tic = df.index[len(df.index)-1].to_pydatetime()
if last_tic < wsts:
return (None, None)
else:
return (wsts, wets) # first and last tic of a block
def analyze_timeblock(tf, wsts, wets, sym):
dfm = tf.minute_data
assert dfm is not None
dfm = dfm.loc[(dfm.index >= wsts) & (dfm.index <= wets), ["target", "volume"]]
buys = len(dfm.loc[dfm.target == TARGETS[BUY]])
sells = len(dfm.loc[dfm.target == TARGETS[SELL]])
vcount = len(dfm)
avgvol = int(dfm["volume"].mean())
novol = len(dfm.loc[dfm.volume <= 0])
lastix = len(self.analysis)
self.analysis.loc[lastix] = [sym, NA, wsts, wets, vcount, buys, sells, avgvol, novol]
blocks = set()
for base in self.bases:
sym = base + "_usdt"
tf = TargetsFeatures(base, QUOTE)
tf.load_classifier_features()
(wsts, wets) = first_week_ts(tf)
while wets is not None:
blocks.add(wets)
analyze_timeblock(tf, wsts, wets, sym)
(wsts, wets) = next_week_ts(tf, wets)
blocklist = list(blocks)
blocklist.sort()
for wets in blocklist:
df = self.analysis.loc[self.analysis.end == wets]
buys = int(df["buys"].sum())
sells = int(df["sells"].sum())
avgvol = int(df["avg_vol"].mean())
novol = int(df["novol_count"].sum())
vcount = int(df["tics"].sum())
wsts = wets - timedelta(minutes=self.timeblock)
lastix = len(self.analysis)
sym = "total"
self.analysis.loc[lastix] = [sym, NA, wsts, wets, vcount, buys, sells, avgvol, novol]
cfname = sets_config_fname()
self.analysis.to_csv(cfname, sep="\t", index=False) | def analyze_bases(self):
"""Analyses the baselist and creates a config file of sets split into equal timeblock
length. Additionally an artificial "total" set is created with the sum of all bases for
each timeblock.
"""
def first_week_ts(tf):
df = tf.vec
assert df is not None
first_tic = df.index[0].to_pydatetime()
last_tic = df.index[len(df.index)-1].to_pydatetime()
if self.fixtic is None:
self.fixtic = last_tic
fullweeks = math.ceil((self.fixtic - first_tic) / timedelta(minutes=self.timeblock))
assert fullweeks > 0, \
f"{tf.cur_pair} {len(df)} {len(df.index)} {first_tic} {last_tic} {fullweeks}"
wsts = self.fixtic - timedelta(minutes=fullweeks*self.timeblock-1)
wets = wsts + timedelta(minutes=self.timeblock-1)
return (wsts, wets)
def next_week_ts(tf, wets):
wsts = wets + timedelta(minutes=1)
wets = wsts + timedelta(minutes=self.timeblock-1)
df = tf.vec
assert df is not None
last_tic = df.index[len(df.index)-1].to_pydatetime()
if last_tic < wsts:
return (None, None)
else:
return (wsts, wets) # first and last tic of a block
def analyze_timeblock(tf, wsts, wets, sym):
dfm = tf.minute_data
assert dfm is not None
dfm = dfm.loc[(dfm.index >= wsts) & (dfm.index <= wets), ["target", "volume"]]
buys = len(dfm.loc[dfm.target == TARGETS[BUY]])
sells = len(dfm.loc[dfm.target == TARGETS[SELL]])
vcount = len(dfm)
avgvol = int(dfm["volume"].mean())
novol = len(dfm.loc[dfm.volume <= 0])
lastix = len(self.analysis)
self.analysis.loc[lastix] = [sym, NA, wsts, wets, vcount, buys, sells, avgvol, novol]
blocks = set()
for base in self.bases:
sym = base + "_usdt"
tf = TargetsFeatures(base, QUOTE)
tf.load_classifier_features()
(wsts, wets) = first_week_ts(tf)
while wets is not None:
blocks.add(wets)
analyze_timeblock(tf, wsts, wets, sym)
(wsts, wets) = next_week_ts(tf, wets)
blocklist = list(blocks)
blocklist.sort()
for wets in blocklist:
df = self.analysis.loc[self.analysis.end == wets]
buys = int(df["buys"].sum())
sells = int(df["sells"].sum())
avgvol = int(df["avg_vol"].mean())
novol = int(df["novol_count"].sum())
vcount = int(df["tics"].sum())
wsts = wets - timedelta(minutes=self.timeblock)
lastix = len(self.analysis)
sym = "total"
self.analysis.loc[lastix] = [sym, NA, wsts, wets, vcount, buys, sells, avgvol, novol]
cfname = sets_config_fname()
self.analysis.to_csv(cfname, sep="\t", index=False) |
Python | def tdelta(first: str, last: str) -> int:
"returns date/time difference in minutes"
my_min = pd.Timedelta(pd.Timestamp(last) - pd.to_datetime(first))
min_res = my_min.days*24*60 + int(my_min.seconds/60)
return min_res | def tdelta(first: str, last: str) -> int:
"returns date/time difference in minutes"
my_min = pd.Timedelta(pd.Timestamp(last) - pd.to_datetime(first))
min_res = my_min.days*24*60 + int(my_min.seconds/60)
return min_res |
Python | def check_diff(cur_btc_usdt, cur_usdt):
""" cur_usdt should be a subset of cur_btc_usdt. This function checks the average deviation.
"""
print("c-u first: {} last: {}".format(
cur_usdt.index[0].strftime(t_f.DT_FORMAT),
cur_usdt.index[len(cur_usdt)-1].strftime(t_f.DT_FORMAT)))
print("c-b-u first: {} last: {}".format(
cur_btc_usdt.index[0].strftime(t_f.DT_FORMAT),
cur_btc_usdt.index[len(cur_btc_usdt)-1].strftime(t_f.DT_FORMAT)))
diff = cur_btc_usdt[cur_btc_usdt.index.isin(cur_usdt.index)]
for key in DATA_KEYS:
if key != 'volume':
diff[key] = (cur_btc_usdt[key] - cur_usdt[key]) / cur_usdt[key]
else:
diff[key] = cur_btc_usdt[key] - cur_usdt[key]
diff_average = diff[key].sum() / len(cur_usdt)
if key != 'volume':
print(f"check_diff {key}: {diff_average:%}")
else:
print(f"check_diff {key}: {diff_average}") | def check_diff(cur_btc_usdt, cur_usdt):
""" cur_usdt should be a subset of cur_btc_usdt. This function checks the average deviation.
"""
print("c-u first: {} last: {}".format(
cur_usdt.index[0].strftime(t_f.DT_FORMAT),
cur_usdt.index[len(cur_usdt)-1].strftime(t_f.DT_FORMAT)))
print("c-b-u first: {} last: {}".format(
cur_btc_usdt.index[0].strftime(t_f.DT_FORMAT),
cur_btc_usdt.index[len(cur_btc_usdt)-1].strftime(t_f.DT_FORMAT)))
diff = cur_btc_usdt[cur_btc_usdt.index.isin(cur_usdt.index)]
for key in DATA_KEYS:
if key != 'volume':
diff[key] = (cur_btc_usdt[key] - cur_usdt[key]) / cur_usdt[key]
else:
diff[key] = cur_btc_usdt[key] - cur_usdt[key]
diff_average = diff[key].sum() / len(cur_usdt)
if key != 'volume':
print(f"check_diff {key}: {diff_average:%}")
else:
print(f"check_diff {key}: {diff_average}") |
Python | def visualize_results(self, epoch):
tot_num_samples = min(self.sample_num, self.batch_size)
image_frame_dim = int(np.floor(np.sqrt(tot_num_samples)))
z_sample = np.random.uniform(-1, 1, size=(self.batch_size, self.z_dim))
""" random noise, random discrete code, fixed continuous code """
y = np.random.choice(self.len_discrete_code, self.batch_size)
y_one_hot = np.zeros((self.batch_size, self.y_dim))
y_one_hot[np.arange(self.batch_size), y] = 1
samples = self.sess.run(self.fake_images, feed_dict={self.z: z_sample, self.y: y_one_hot})
save_images(samples[:image_frame_dim*image_frame_dim,:,:,:], [image_frame_dim, image_frame_dim],
check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d' % epoch + '_test_all_classes.png')
""" specified condition, random noise """
n_styles = 10 # must be less than or equal to self.batch_size
np.random.seed()
si = np.random.choice(self.batch_size, n_styles)
for l in range(self.len_discrete_code):
y = np.zeros(self.batch_size, dtype=np.int64) + l
y_one_hot = np.zeros((self.batch_size, self.y_dim))
y_one_hot[np.arange(self.batch_size), y] = 1
samples = self.sess.run(self.fake_images, feed_dict={self.z: z_sample, self.y: y_one_hot})
save_images(samples[:image_frame_dim*image_frame_dim,:,:,:], [image_frame_dim, image_frame_dim],
check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d' % epoch + '_test_class_%d.png' % l)
samples = samples[si, :, :, :]
if l == 0:
all_samples = samples
else:
all_samples = np.concatenate((all_samples, samples), axis=0)
""" save merged images to check style-consistency """
canvas = np.zeros_like(all_samples)
for s in range(n_styles):
for c in range(self.len_discrete_code):
canvas[s * self.len_discrete_code + c, :, :, :] = all_samples[c * n_styles + s, :, :, :]
save_images(canvas, [n_styles, self.len_discrete_code],
check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d' % epoch + '_test_all_classes_style_by_style.png') | def visualize_results(self, epoch):
tot_num_samples = min(self.sample_num, self.batch_size)
image_frame_dim = int(np.floor(np.sqrt(tot_num_samples)))
z_sample = np.random.uniform(-1, 1, size=(self.batch_size, self.z_dim))
""" random noise, random discrete code, fixed continuous code """
y = np.random.choice(self.len_discrete_code, self.batch_size)
y_one_hot = np.zeros((self.batch_size, self.y_dim))
y_one_hot[np.arange(self.batch_size), y] = 1
samples = self.sess.run(self.fake_images, feed_dict={self.z: z_sample, self.y: y_one_hot})
save_images(samples[:image_frame_dim*image_frame_dim,:,:,:], [image_frame_dim, image_frame_dim],
check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d' % epoch + '_test_all_classes.png')
""" specified condition, random noise """
n_styles = 10 # must be less than or equal to self.batch_size
np.random.seed()
si = np.random.choice(self.batch_size, n_styles)
for l in range(self.len_discrete_code):
y = np.zeros(self.batch_size, dtype=np.int64) + l
y_one_hot = np.zeros((self.batch_size, self.y_dim))
y_one_hot[np.arange(self.batch_size), y] = 1
samples = self.sess.run(self.fake_images, feed_dict={self.z: z_sample, self.y: y_one_hot})
save_images(samples[:image_frame_dim*image_frame_dim,:,:,:], [image_frame_dim, image_frame_dim],
check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d' % epoch + '_test_class_%d.png' % l)
samples = samples[si, :, :, :]
if l == 0:
all_samples = samples
else:
all_samples = np.concatenate((all_samples, samples), axis=0)
""" save merged images to check style-consistency """
canvas = np.zeros_like(all_samples)
for s in range(n_styles):
for c in range(self.len_discrete_code):
canvas[s * self.len_discrete_code + c, :, :, :] = all_samples[c * n_styles + s, :, :, :]
save_images(canvas, [n_styles, self.len_discrete_code],
check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d' % epoch + '_test_all_classes_style_by_style.png') |
Python | def visualize_results(self, epoch):
tot_num_samples = min(self.sample_num, self.batch_size)
image_frame_dim = int(np.floor(np.sqrt(tot_num_samples)))
""" random noise, random discrete code, fixed continuous code """
y = np.random.choice(self.len_discrete_code, self.batch_size)
y_one_hot = np.zeros((self.batch_size, self.y_dim))
y_one_hot[np.arange(self.batch_size), y] = 1
z_sample = np.random.uniform(-1, 1, size=(self.batch_size, self.z_dim))
samples = self.sess.run(self.fake_images, feed_dict={self.z: z_sample, self.y: y_one_hot})
save_images(samples[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim],
check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d' % epoch + '_test_all_classes.png')
""" specified condition, random noise """
n_styles = 10 # must be less than or equal to self.batch_size
np.random.seed()
si = np.random.choice(self.batch_size, n_styles)
for l in range(self.len_discrete_code):
y = np.zeros(self.batch_size, dtype=np.int64) + l
y_one_hot = np.zeros((self.batch_size, self.y_dim))
y_one_hot[np.arange(self.batch_size), y] = 1
samples = self.sess.run(self.fake_images, feed_dict={self.z: z_sample, self.y: y_one_hot})
# save_images(samples[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim],
# check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d' % epoch + '_test_class_%d.png' % l)
samples = samples[si, :, :, :]
if l == 0:
all_samples = samples
else:
all_samples = np.concatenate((all_samples, samples), axis=0)
""" save merged images to check style-consistency """
canvas = np.zeros_like(all_samples)
for s in range(n_styles):
for c in range(self.len_discrete_code):
canvas[s * self.len_discrete_code + c, :, :, :] = all_samples[c * n_styles + s, :, :, :]
save_images(canvas, [n_styles, self.len_discrete_code],
check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d' % epoch + '_test_all_classes_style_by_style.png')
""" fixed noise """
assert self.len_continuous_code == 2
c1 = np.linspace(-1, 1, image_frame_dim)
c2 = np.linspace(-1, 1, image_frame_dim)
xv, yv = np.meshgrid(c1, c2)
xv = xv[:image_frame_dim,:image_frame_dim]
yv = yv[:image_frame_dim, :image_frame_dim]
c1 = xv.flatten()
c2 = yv.flatten()
z_fixed = np.zeros([self.batch_size, self.z_dim])
for l in range(self.len_discrete_code):
y = np.zeros(self.batch_size, dtype=np.int64) + l
y_one_hot = np.zeros((self.batch_size, self.y_dim))
y_one_hot[np.arange(self.batch_size), y] = 1
y_one_hot[np.arange(image_frame_dim*image_frame_dim), self.len_discrete_code] = c1
y_one_hot[np.arange(image_frame_dim*image_frame_dim), self.len_discrete_code+1] = c2
samples = self.sess.run(self.fake_images,
feed_dict={ self.z: z_fixed, self.y: y_one_hot})
save_images(samples[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim],
check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d' % epoch + '_test_class_c1c2_%d.png' % l) | def visualize_results(self, epoch):
tot_num_samples = min(self.sample_num, self.batch_size)
image_frame_dim = int(np.floor(np.sqrt(tot_num_samples)))
""" random noise, random discrete code, fixed continuous code """
y = np.random.choice(self.len_discrete_code, self.batch_size)
y_one_hot = np.zeros((self.batch_size, self.y_dim))
y_one_hot[np.arange(self.batch_size), y] = 1
z_sample = np.random.uniform(-1, 1, size=(self.batch_size, self.z_dim))
samples = self.sess.run(self.fake_images, feed_dict={self.z: z_sample, self.y: y_one_hot})
save_images(samples[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim],
check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d' % epoch + '_test_all_classes.png')
""" specified condition, random noise """
n_styles = 10 # must be less than or equal to self.batch_size
np.random.seed()
si = np.random.choice(self.batch_size, n_styles)
for l in range(self.len_discrete_code):
y = np.zeros(self.batch_size, dtype=np.int64) + l
y_one_hot = np.zeros((self.batch_size, self.y_dim))
y_one_hot[np.arange(self.batch_size), y] = 1
samples = self.sess.run(self.fake_images, feed_dict={self.z: z_sample, self.y: y_one_hot})
# save_images(samples[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim],
# check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d' % epoch + '_test_class_%d.png' % l)
samples = samples[si, :, :, :]
if l == 0:
all_samples = samples
else:
all_samples = np.concatenate((all_samples, samples), axis=0)
""" save merged images to check style-consistency """
canvas = np.zeros_like(all_samples)
for s in range(n_styles):
for c in range(self.len_discrete_code):
canvas[s * self.len_discrete_code + c, :, :, :] = all_samples[c * n_styles + s, :, :, :]
save_images(canvas, [n_styles, self.len_discrete_code],
check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d' % epoch + '_test_all_classes_style_by_style.png')
""" fixed noise """
assert self.len_continuous_code == 2
c1 = np.linspace(-1, 1, image_frame_dim)
c2 = np.linspace(-1, 1, image_frame_dim)
xv, yv = np.meshgrid(c1, c2)
xv = xv[:image_frame_dim,:image_frame_dim]
yv = yv[:image_frame_dim, :image_frame_dim]
c1 = xv.flatten()
c2 = yv.flatten()
z_fixed = np.zeros([self.batch_size, self.z_dim])
for l in range(self.len_discrete_code):
y = np.zeros(self.batch_size, dtype=np.int64) + l
y_one_hot = np.zeros((self.batch_size, self.y_dim))
y_one_hot[np.arange(self.batch_size), y] = 1
y_one_hot[np.arange(image_frame_dim*image_frame_dim), self.len_discrete_code] = c1
y_one_hot[np.arange(image_frame_dim*image_frame_dim), self.len_discrete_code+1] = c2
samples = self.sess.run(self.fake_images,
feed_dict={ self.z: z_fixed, self.y: y_one_hot})
save_images(samples[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim],
check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d' % epoch + '_test_class_c1c2_%d.png' % l) |
Python | def solve(self):
"""
Returns TRUE if SAT, False if UNSAT
:return: whether there is a solution
"""
self.preprocess()
while not self.are_all_variables_assigned():
conf_cls = self.unit_propagate()
if conf_cls is not None:
# there is conflict in unit propagation
logger.fine('implication nodes: \n%s', self.nodes)
lvl, learnt = self.conflict_analyze(conf_cls)
logger.info('level reset to %s', lvl)
logger.debug('learnt: %s', learnt)
if lvl < 0:
return False
self.learnts.add(learnt)
self.backtrack(lvl)
self.level = lvl
elif self.are_all_variables_assigned():
break
else:
# branching
self.level += 1
self.branching_count += 1
bt_var, bt_val = self.pick_branching_variable()
logger.info('--------decision level: %s ---------', self.level)
self.assigns[bt_var] = bt_val
self.branching_vars.add(bt_var)
self.branching_history[self.level] = bt_var
self.propagate_history[self.level] = deque()
self.update_graph(bt_var)
logger.info('picking %s to be %s', bt_var, 'TRUE' if bt_val == TRUE else 'FALSE')
logger.debug('branching variables: %s', self.branching_history)
logger.debug('propagate variables: %s', self.propagate_history)
logger.debug('learnts: \n%s', self.learnts)
return True | def solve(self):
"""
Returns TRUE if SAT, False if UNSAT
:return: whether there is a solution
"""
self.preprocess()
while not self.are_all_variables_assigned():
conf_cls = self.unit_propagate()
if conf_cls is not None:
# there is conflict in unit propagation
logger.fine('implication nodes: \n%s', self.nodes)
lvl, learnt = self.conflict_analyze(conf_cls)
logger.info('level reset to %s', lvl)
logger.debug('learnt: %s', learnt)
if lvl < 0:
return False
self.learnts.add(learnt)
self.backtrack(lvl)
self.level = lvl
elif self.are_all_variables_assigned():
break
else:
# branching
self.level += 1
self.branching_count += 1
bt_var, bt_val = self.pick_branching_variable()
logger.info('--------decision level: %s ---------', self.level)
self.assigns[bt_var] = bt_val
self.branching_vars.add(bt_var)
self.branching_history[self.level] = bt_var
self.propagate_history[self.level] = deque()
self.update_graph(bt_var)
logger.info('picking %s to be %s', bt_var, 'TRUE' if bt_val == TRUE else 'FALSE')
logger.debug('branching variables: %s', self.branching_history)
logger.debug('propagate variables: %s', self.propagate_history)
logger.debug('learnts: \n%s', self.learnts)
return True |
Python | def read_file(filename):
"""
Reads a DIMACS CNF format file, returns clauses (set of frozenset) and
literals (set of int).
:param filename: the file name
:raises FileFormatError: when file format is wrong
:returns: (clauses, literals)
"""
with open(filename) as f:
lines = [
line.strip().split() for line in f.readlines()
if (not (line.startswith('c') or
line.startswith('%') or
line.startswith('0'))
and line != '\n')
]
if lines[0][:2] == ['p', 'cnf']:
count_literals, count_clauses = map(int, lines[0][-2:])
else:
raise FileFormatError('Number of literals and clauses are not declared properly.')
literals = set()
clauses = set()
for line in lines[1:]:
if line[-1] != '0':
raise FileFormatError('Each line of clauses must end with 0.')
clause = frozenset(map(int, line[:-1]))
literals.update(map(abs, clause))
clauses.add(clause)
if len(literals) != count_literals or len(lines) - 1 != count_clauses:
raise FileFormatError(
'Unmatched literal count or clause count.'
' Literals expected: {}, actual: {}.'
' Clauses expected: {}, actual: {}.'
.format(count_literals, len(literals), count_clauses, len(clauses)))
logger.fine('clauses: %s', clauses)
logger.fine('literals: %s', literals)
return clauses, literals | def read_file(filename):
"""
Reads a DIMACS CNF format file, returns clauses (set of frozenset) and
literals (set of int).
:param filename: the file name
:raises FileFormatError: when file format is wrong
:returns: (clauses, literals)
"""
with open(filename) as f:
lines = [
line.strip().split() for line in f.readlines()
if (not (line.startswith('c') or
line.startswith('%') or
line.startswith('0'))
and line != '\n')
]
if lines[0][:2] == ['p', 'cnf']:
count_literals, count_clauses = map(int, lines[0][-2:])
else:
raise FileFormatError('Number of literals and clauses are not declared properly.')
literals = set()
clauses = set()
for line in lines[1:]:
if line[-1] != '0':
raise FileFormatError('Each line of clauses must end with 0.')
clause = frozenset(map(int, line[:-1]))
literals.update(map(abs, clause))
clauses.add(clause)
if len(literals) != count_literals or len(lines) - 1 != count_clauses:
raise FileFormatError(
'Unmatched literal count or clause count.'
' Literals expected: {}, actual: {}.'
' Clauses expected: {}, actual: {}.'
.format(count_literals, len(literals), count_clauses, len(clauses)))
logger.fine('clauses: %s', clauses)
logger.fine('literals: %s', literals)
return clauses, literals |
Python | def add(self, items: list):
""" Add items to the list
Args:
items - list of DeliveryItems
"""
if items is None:
raise Exception("items is None")
items_list = list(map(
lambda item: item.to_dict(),
items
))
items_list = items_list
self.items += items_list | def add(self, items: list):
""" Add items to the list
Args:
items - list of DeliveryItems
"""
if items is None:
raise Exception("items is None")
items_list = list(map(
lambda item: item.to_dict(),
items
))
items_list = items_list
self.items += items_list |
Python | def is_valid(response_data, raise_exception=True):
""" checks if the response is valid or has an error
Args:
response_data - data from the request
raise_exception - boolean value whether to raise exception or not
"""
response_status = response_data.get('status')
if not response_status and raise_exception:
raise SendyAPIError(response_data.get('description', response_data.get('data')))
return bool(response_status) | def is_valid(response_data, raise_exception=True):
""" checks if the response is valid or has an error
Args:
response_data - data from the request
raise_exception - boolean value whether to raise exception or not
"""
response_status = response_data.get('status')
if not response_status and raise_exception:
raise SendyAPIError(response_data.get('description', response_data.get('data')))
return bool(response_status) |
Python | def make_delivery(self, recipient, sender, to_location, from_location, delivery_details=None, vendor_type=1,
order=False):
""" Make a new delivery to requested location """
return self._request_delivery(
recipient=recipient,
sender=sender,
to_location=to_location,
from_location=from_location,
vendor_type=vendor_type,
order=order,
delivery_details=delivery_details,
request_type='delivery',
) | def make_delivery(self, recipient, sender, to_location, from_location, delivery_details=None, vendor_type=1,
order=False):
""" Make a new delivery to requested location """
return self._request_delivery(
recipient=recipient,
sender=sender,
to_location=to_location,
from_location=from_location,
vendor_type=vendor_type,
order=order,
delivery_details=delivery_details,
request_type='delivery',
) |
Python | def _delivery_operations(self, operation, order_no):
"""Bundles all order_no specific operations together"""
url_path = '{}#{}'.format(self.api_url, operation)
pay_load = {
'command': operation,
'data': {
**self.auth,
'order_no': order_no
}
}
headers = {'content-type': 'application/json'}
response = requests.post(
url_path,
data=json.dumps(pay_load),
headers=headers
)
response.raise_for_status()
response_data = response.json()
# check if response was successful else raise and error
is_valid(response_data, raise_exception=True)
return response_data | def _delivery_operations(self, operation, order_no):
"""Bundles all order_no specific operations together"""
url_path = '{}#{}'.format(self.api_url, operation)
pay_load = {
'command': operation,
'data': {
**self.auth,
'order_no': order_no
}
}
headers = {'content-type': 'application/json'}
response = requests.post(
url_path,
data=json.dumps(pay_load),
headers=headers
)
response.raise_for_status()
response_data = response.json()
# check if response was successful else raise and error
is_valid(response_data, raise_exception=True)
return response_data |
Python | def annuity(n,r):
"""Calculate the annuity factor for an asset with lifetime n years and
discount rate of r, e.g. annuity(20,0.05)*20 = 1.6"""
if r > 0:
return r/(1. - 1./(1.+r)**n)
else:
return 1/n | def annuity(n,r):
"""Calculate the annuity factor for an asset with lifetime n years and
discount rate of r, e.g. annuity(20,0.05)*20 = 1.6"""
if r > 0:
return r/(1. - 1./(1.+r)**n)
else:
return 1/n |
Python | def ugettext(message, context=None):
"""Always return a stripped string, localized if possible"""
stripped = strip_whitespace(message)
message = add_context(context, stripped) if context else stripped
ret = django_ugettext(message)
# If the context isn't found, we need to return the string without it
return stripped if ret == message else ret | def ugettext(message, context=None):
"""Always return a stripped string, localized if possible"""
stripped = strip_whitespace(message)
message = add_context(context, stripped) if context else stripped
ret = django_ugettext(message)
# If the context isn't found, we need to return the string without it
return stripped if ret == message else ret |
Python | def ungettext(singular, plural, number, context=None):
"""Always return a stripped string, localized if possible"""
singular_stripped = strip_whitespace(singular)
plural_stripped = strip_whitespace(plural)
if context:
singular = add_context(context, singular_stripped)
plural = add_context(context, plural_stripped)
else:
singular = singular_stripped
plural = plural_stripped
ret = django_nugettext(singular, plural, number)
# If the context isn't found, the string is returned as it came
if ret == singular:
return singular_stripped
elif ret == plural:
return plural_stripped
return ret | def ungettext(singular, plural, number, context=None):
"""Always return a stripped string, localized if possible"""
singular_stripped = strip_whitespace(singular)
plural_stripped = strip_whitespace(plural)
if context:
singular = add_context(context, singular_stripped)
plural = add_context(context, plural_stripped)
else:
singular = singular_stripped
plural = plural_stripped
ret = django_nugettext(singular, plural, number)
# If the context isn't found, the string is returned as it came
if ret == singular:
return singular_stripped
elif ret == plural:
return plural_stripped
return ret |
Python | def install_jinja_translations():
"""
Install our gettext and ngettext functions into Jinja2's environment.
"""
class Translation(object):
"""
We pass this object to jinja so it can find our gettext implementation.
If we pass the GNUTranslation object directly, it won't have our
context and whitespace stripping action.
"""
ugettext = staticmethod(ugettext)
ungettext = staticmethod(ungettext)
import jingo
jingo.env.install_gettext_translations(Translation) | def install_jinja_translations():
"""
Install our gettext and ngettext functions into Jinja2's environment.
"""
class Translation(object):
"""
We pass this object to jinja so it can find our gettext implementation.
If we pass the GNUTranslation object directly, it won't have our
context and whitespace stripping action.
"""
ugettext = staticmethod(ugettext)
ungettext = staticmethod(ungettext)
import jingo
jingo.env.install_gettext_translations(Translation) |
Python | async def shutdown(loop, process_signal=None):
"""Cleanup tasks tied to the service's shutdown."""
if process_signal:
logger.info(f"Received exit signal {process_signal.name}...")
tasks = [t for t in asyncio.all_tasks() if t is not asyncio.current_task()]
logger.info(f"Cancelling {len(tasks)} outstanding tasks")
for task in tasks:
task.cancel()
await asyncio.gather(*tasks, return_exceptions=True)
# https://github.com/zeromq/pyzmq/issues/1167
logger.debug("Destroying ZMQ context.")
MessagingSocket.ctx.destroy(linger=0)
loop.stop() | async def shutdown(loop, process_signal=None):
"""Cleanup tasks tied to the service's shutdown."""
if process_signal:
logger.info(f"Received exit signal {process_signal.name}...")
tasks = [t for t in asyncio.all_tasks() if t is not asyncio.current_task()]
logger.info(f"Cancelling {len(tasks)} outstanding tasks")
for task in tasks:
task.cancel()
await asyncio.gather(*tasks, return_exceptions=True)
# https://github.com/zeromq/pyzmq/issues/1167
logger.debug("Destroying ZMQ context.")
MessagingSocket.ctx.destroy(linger=0)
loop.stop() |
Python | def validate_process_names(process_names: List[str]):
"""
Compare a list of names against the list of registered processes. If there are names given that
do not exist in the list of registered processes a click exception will be raised.
:param process_names: A list of names that will be validated against the registered processes.
:raise: `ClickException`
"""
invalid_process_names = [
name for name in process_names if name not in AVAILABLE_PROCESSES
]
if invalid_process_names:
raise ClickException(
f"Following process names are invalid: {', '.join(invalid_process_names)}"
) | def validate_process_names(process_names: List[str]):
"""
Compare a list of names against the list of registered processes. If there are names given that
do not exist in the list of registered processes a click exception will be raised.
:param process_names: A list of names that will be validated against the registered processes.
:raise: `ClickException`
"""
invalid_process_names = [
name for name in process_names if name not in AVAILABLE_PROCESSES
]
if invalid_process_names:
raise ClickException(
f"Following process names are invalid: {', '.join(invalid_process_names)}"
) |
Python | def start_multiple_processes(process_names: List[str]):
"""
Start one or multiple processes using Python's multiprocessing module. While it is technically
possible to start only one process with this method, it is rather pointless to do so.
:param process_names: A list of process names that were registered with `register_process`.
"""
validate_process_names(process_names)
processes = []
for name in process_names:
entry_point = AVAILABLE_PROCESSES[name]
processes.append(
multiprocessing.Process(
name=name,
target=run_process,
args=(entry_point,),
daemon=False,
)
)
for process_name in processes:
time.sleep(0.1)
process_name.start()
for process_name in processes:
process_name.join() | def start_multiple_processes(process_names: List[str]):
"""
Start one or multiple processes using Python's multiprocessing module. While it is technically
possible to start only one process with this method, it is rather pointless to do so.
:param process_names: A list of process names that were registered with `register_process`.
"""
validate_process_names(process_names)
processes = []
for name in process_names:
entry_point = AVAILABLE_PROCESSES[name]
processes.append(
multiprocessing.Process(
name=name,
target=run_process,
args=(entry_point,),
daemon=False,
)
)
for process_name in processes:
time.sleep(0.1)
process_name.start()
for process_name in processes:
process_name.join() |
Python | def register_process(name: str, path: str):
"""
Register a new process with the CLI and meru in general.
:param name: The name of the process to be used for the CLI
:param path: The entry point of the method.
"""
process_cli.command(name=name)(lambda: run_process(AVAILABLE_PROCESSES[name]))
AVAILABLE_PROCESSES[name] = path | def register_process(name: str, path: str):
"""
Register a new process with the CLI and meru in general.
:param name: The name of the process to be used for the CLI
:param path: The entry point of the method.
"""
process_cli.command(name=name)(lambda: run_process(AVAILABLE_PROCESSES[name]))
AVAILABLE_PROCESSES[name] = path |
Python | def inspect_action_handler_args(func: callable):
"""
Inspects and action handler's calling arguments. An action handler can only have one
action and state nodes as calling arguments. Calling args need to be annotated in order
to be recognized. Having any other type or no type at all will raise an exception.
This will be fine:
async def do_something(action: SomeActionClass, some_state: SomeStateClass):
pass
This will not be fine, action is not annotated, some_param has an invalid type:
async def do_something(action, some_param: int):
pass
:param func:
:return:
"""
found_action = None
required_states = set()
signature = inspect.signature(func)
for param in signature.parameters.values():
if issubclass(param.annotation, Action):
if found_action is not None:
raise HandlerException("An action handler can have only one action.")
found_action = param.annotation
elif issubclass(param.annotation, StateNode):
if param.annotation in required_states:
raise HandlerException(
f"Type '{param.annotation.__name__}' has been added twice to handler '{func.__name__}'. "
f"This is not possible."
)
required_states.add(param.annotation)
else:
raise HandlerException(
f"Error registering {func.__name__}. "
f"An action handler can only have Actions and StateNodes as calling args. "
f"'{param}' is invalid."
)
if found_action is None:
raise HandlerException("An action handler needs one action.")
return found_action, required_states | def inspect_action_handler_args(func: callable):
"""
Inspects and action handler's calling arguments. An action handler can only have one
action and state nodes as calling arguments. Calling args need to be annotated in order
to be recognized. Having any other type or no type at all will raise an exception.
This will be fine:
async def do_something(action: SomeActionClass, some_state: SomeStateClass):
pass
This will not be fine, action is not annotated, some_param has an invalid type:
async def do_something(action, some_param: int):
pass
:param func:
:return:
"""
found_action = None
required_states = set()
signature = inspect.signature(func)
for param in signature.parameters.values():
if issubclass(param.annotation, Action):
if found_action is not None:
raise HandlerException("An action handler can have only one action.")
found_action = param.annotation
elif issubclass(param.annotation, StateNode):
if param.annotation in required_states:
raise HandlerException(
f"Type '{param.annotation.__name__}' has been added twice to handler '{func.__name__}'. "
f"This is not possible."
)
required_states.add(param.annotation)
else:
raise HandlerException(
f"Error registering {func.__name__}. "
f"An action handler can only have Actions and StateNodes as calling args. "
f"'{param}' is invalid."
)
if found_action is None:
raise HandlerException("An action handler needs one action.")
return found_action, required_states |
Python | async def request_states():
"""
Request states from the state manager. In order for this do have any effect
all required states have to be registered::
register_state(SomeState)
:return: All loaded states
"""
state_consumer = StateConsumerSocket()
states_to_request = list(STATES.keys())
action = RequireState(states_to_request)
await state_consumer.send(action)
state = await state_consumer.receive()
for node in state.nodes:
STATES[node.__class__] = node
logging.info(f"Loaded state from broker: {node.__class__.__name__}")
return STATES | async def request_states():
"""
Request states from the state manager. In order for this do have any effect
all required states have to be registered::
register_state(SomeState)
:return: All loaded states
"""
state_consumer = StateConsumerSocket()
states_to_request = list(STATES.keys())
action = RequireState(states_to_request)
await state_consumer.send(action)
state = await state_consumer.receive()
for node in state.nodes:
STATES[node.__class__] = node
logging.info(f"Loaded state from broker: {node.__class__.__name__}")
return STATES |
Python | def creg_com_settings(self):
"""
The CREG_COM_SETTINGS register is used to set the boards serial port baud rate and to enable (disable) the
automatic transmission of sensor data and estimated states (telemetry).
Payload structure:
[31:28] : BAUD_RATE -- Sets the baud rate of the boards main serial port:
:return: BAUD_RATE as bitField;
"""
addr = 0x00
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_COM_SETTINGS')
reg.raw_value, = struct.unpack('>I', payload[0:4])
# find value for BAUD_RATE bit field
baud_rate_val = (reg.raw_value >> 28) & 0x000F
baud_rate_enum = reg.find_field_by(name='BAUD_RATE').find_enum_entry_by(value=baud_rate_val)
return reg, baud_rate_enum | def creg_com_settings(self):
"""
The CREG_COM_SETTINGS register is used to set the boards serial port baud rate and to enable (disable) the
automatic transmission of sensor data and estimated states (telemetry).
Payload structure:
[31:28] : BAUD_RATE -- Sets the baud rate of the boards main serial port:
:return: BAUD_RATE as bitField;
"""
addr = 0x00
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_COM_SETTINGS')
reg.raw_value, = struct.unpack('>I', payload[0:4])
# find value for BAUD_RATE bit field
baud_rate_val = (reg.raw_value >> 28) & 0x000F
baud_rate_enum = reg.find_field_by(name='BAUD_RATE').find_enum_entry_by(value=baud_rate_val)
return reg, baud_rate_enum |
Python | def creg_com_rates1(self):
"""
The CREG_COM_RATES1 register sets desired telemetry transmission rates in Hz for raw accelerometer 1, gyro 1,
gyro 2 and magnetometer 1 data. If the specified rate is 0, then no data is transmitted.
Payload structure:
[31:24] : RAW_ACCEL_1_RATE -- Specifies the desired raw accelerometer 1 data broadcast rate in Hz. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
[23:16] : RAW_GYRO_1_RATE -- Specifies the desired raw gyro 1 data broadcast rate in Hz. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz
[15:8] : RAW_GYRO_2_RATE -- Specifies the desired raw gyro 2 data broadcast rate in Hz. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
[7:0] : RAW_MAG_1_RATE -- Specifies the desired raw magnetometer 1 data broadcast rate in Hz. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
:return: RAW_ACCEL_1_RATE as uint8_t; RAW_GYRO_1_RATE as uint8_t; RAW_GYRO_2_RATE as uint8_t; RAW_MAG_1_RATE as uint8_t;
"""
addr = 0x01
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_COM_RATES1')
reg.raw_value, = struct.unpack('>I', payload[0:4])
raw_accel_1_rate, raw_gyro_1_rate, raw_gyro_2_rate, raw_mag_1_rate = struct.unpack('>BBBB', payload[0:4])
return reg, raw_accel_1_rate, raw_gyro_1_rate, raw_gyro_2_rate, raw_mag_1_rate | def creg_com_rates1(self):
"""
The CREG_COM_RATES1 register sets desired telemetry transmission rates in Hz for raw accelerometer 1, gyro 1,
gyro 2 and magnetometer 1 data. If the specified rate is 0, then no data is transmitted.
Payload structure:
[31:24] : RAW_ACCEL_1_RATE -- Specifies the desired raw accelerometer 1 data broadcast rate in Hz. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
[23:16] : RAW_GYRO_1_RATE -- Specifies the desired raw gyro 1 data broadcast rate in Hz. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz
[15:8] : RAW_GYRO_2_RATE -- Specifies the desired raw gyro 2 data broadcast rate in Hz. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
[7:0] : RAW_MAG_1_RATE -- Specifies the desired raw magnetometer 1 data broadcast rate in Hz. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
:return: RAW_ACCEL_1_RATE as uint8_t; RAW_GYRO_1_RATE as uint8_t; RAW_GYRO_2_RATE as uint8_t; RAW_MAG_1_RATE as uint8_t;
"""
addr = 0x01
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_COM_RATES1')
reg.raw_value, = struct.unpack('>I', payload[0:4])
raw_accel_1_rate, raw_gyro_1_rate, raw_gyro_2_rate, raw_mag_1_rate = struct.unpack('>BBBB', payload[0:4])
return reg, raw_accel_1_rate, raw_gyro_1_rate, raw_gyro_2_rate, raw_mag_1_rate |
Python | def creg_com_rates2(self):
"""
The CREG_COM_RATES2 register sets desired telemetry transmission rates for the magnetometer 2, all raw data,
and temperature data rate. The ALL_RAW_RATE setting has higher priority over the individual raw sensor data
settings, i.e. whenever this bitfield is set, then the individual raw sensor settings are ignored and not
used. If the specified rate is 0, then no data is transmitted.
Payload structure:
[31:24] : TEMP_RATE -- Specifies the desired broadcast rate for temperature data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
[23:16] : RAW_MAG_2_RATE -- Specifies the desired raw magnetometer 2 data broadcast rate in Hz. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
[7:0] : ALL_RAW_RATE -- Specifies the desired broadcast rate for all raw sensor data. If set, this overrides the broadcast rate setting for individual raw data broadcast rates. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
:return: TEMP_RATE as uint8_t; RAW_MAG_2_RATE as uint8_t; ALL_RAW_RATE as uint8_t;
"""
addr = 0x02
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_COM_RATES2')
reg.raw_value, = struct.unpack('>I', payload[0:4])
temp_rate, raw_mag_2_rate, all_raw_rate = struct.unpack('>BBxB', payload[0:4])
return reg, temp_rate, raw_mag_2_rate, all_raw_rate | def creg_com_rates2(self):
"""
The CREG_COM_RATES2 register sets desired telemetry transmission rates for the magnetometer 2, all raw data,
and temperature data rate. The ALL_RAW_RATE setting has higher priority over the individual raw sensor data
settings, i.e. whenever this bitfield is set, then the individual raw sensor settings are ignored and not
used. If the specified rate is 0, then no data is transmitted.
Payload structure:
[31:24] : TEMP_RATE -- Specifies the desired broadcast rate for temperature data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
[23:16] : RAW_MAG_2_RATE -- Specifies the desired raw magnetometer 2 data broadcast rate in Hz. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
[7:0] : ALL_RAW_RATE -- Specifies the desired broadcast rate for all raw sensor data. If set, this overrides the broadcast rate setting for individual raw data broadcast rates. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
:return: TEMP_RATE as uint8_t; RAW_MAG_2_RATE as uint8_t; ALL_RAW_RATE as uint8_t;
"""
addr = 0x02
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_COM_RATES2')
reg.raw_value, = struct.unpack('>I', payload[0:4])
temp_rate, raw_mag_2_rate, all_raw_rate = struct.unpack('>BBxB', payload[0:4])
return reg, temp_rate, raw_mag_2_rate, all_raw_rate |
Python | def creg_com_rates3(self):
"""
The CREG_COM_RATES3 register sets desired telemetry transmission rates for processed sensor data for the
sensors: the accelerometer 1, gyro 1, gyro 2, and magnetometer 1. If the specified rate is 0, then no data is
transmitted.
Payload structure:
[31:24] : PROC_ACCEL_1_RATE -- Specifies the desired broadcast rate for processed accelerometer 1 data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
[23:16] : PROC_GYRO_1_RATE -- Specifies the desired broadcast rate for processed rate gyro 1 data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
[15:8] : PROC_GYRO_2_RATE -- Specifies the desired broadcast rate for processed processed rate gyro 2 data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
[7:0] : PROC_MAG_1_RATE -- Specifies the desired broadcast rate for processed magnetometer 1 data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
:return: PROC_ACCEL_1_RATE as uint8_t; PROC_GYRO_1_RATE as uint8_t; PROC_GYRO_2_RATE as uint8_t; PROC_MAG_1_RATE as uint8_t;
"""
addr = 0x03
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_COM_RATES3')
reg.raw_value, = struct.unpack('>I', payload[0:4])
proc_accel_1_rate, proc_gyro_1_rate, proc_gyro_2_rate, proc_mag_1_rate = struct.unpack('>BBBB', payload[0:4])
return reg, proc_accel_1_rate, proc_gyro_1_rate, proc_gyro_2_rate, proc_mag_1_rate | def creg_com_rates3(self):
"""
The CREG_COM_RATES3 register sets desired telemetry transmission rates for processed sensor data for the
sensors: the accelerometer 1, gyro 1, gyro 2, and magnetometer 1. If the specified rate is 0, then no data is
transmitted.
Payload structure:
[31:24] : PROC_ACCEL_1_RATE -- Specifies the desired broadcast rate for processed accelerometer 1 data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
[23:16] : PROC_GYRO_1_RATE -- Specifies the desired broadcast rate for processed rate gyro 1 data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
[15:8] : PROC_GYRO_2_RATE -- Specifies the desired broadcast rate for processed processed rate gyro 2 data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
[7:0] : PROC_MAG_1_RATE -- Specifies the desired broadcast rate for processed magnetometer 1 data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
:return: PROC_ACCEL_1_RATE as uint8_t; PROC_GYRO_1_RATE as uint8_t; PROC_GYRO_2_RATE as uint8_t; PROC_MAG_1_RATE as uint8_t;
"""
addr = 0x03
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_COM_RATES3')
reg.raw_value, = struct.unpack('>I', payload[0:4])
proc_accel_1_rate, proc_gyro_1_rate, proc_gyro_2_rate, proc_mag_1_rate = struct.unpack('>BBBB', payload[0:4])
return reg, proc_accel_1_rate, proc_gyro_1_rate, proc_gyro_2_rate, proc_mag_1_rate |
Python | def creg_com_rates4(self):
"""
The CREG_COM_RATES4 register defines the desired telemetry transmission rates for the processed data for the
magnetometer 2, and for all processed data. The ALL_PROC_RATE setting has higher priority over the individual
processed sensor data settings, i.e. whenever this bitfield is set, then the individual processed sensor
transmission rate settings are ignored and not used. If the specified rate is 0, then no data is transmitted.
Payload structure:
[31:24] : PROC_MAG_2_RATE -- Specifies the desired broadcast rate for processed magnetometer 2 data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
[7:0] : ALL_PROC_RATE -- Specifies the desired broadcast rate for raw all processed sensor data. If set, this overrides the broadcast rate setting for individual processed data broadcast rates. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
:return: PROC_MAG_2_RATE as uint8_t; ALL_PROC_RATE as uint8_t;
"""
addr = 0x04
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_COM_RATES4')
reg.raw_value, = struct.unpack('>I', payload[0:4])
proc_mag_2_rate, all_proc_rate = struct.unpack('>BxxB', payload[0:4])
return reg, proc_mag_2_rate, all_proc_rate | def creg_com_rates4(self):
"""
The CREG_COM_RATES4 register defines the desired telemetry transmission rates for the processed data for the
magnetometer 2, and for all processed data. The ALL_PROC_RATE setting has higher priority over the individual
processed sensor data settings, i.e. whenever this bitfield is set, then the individual processed sensor
transmission rate settings are ignored and not used. If the specified rate is 0, then no data is transmitted.
Payload structure:
[31:24] : PROC_MAG_2_RATE -- Specifies the desired broadcast rate for processed magnetometer 2 data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
[7:0] : ALL_PROC_RATE -- Specifies the desired broadcast rate for raw all processed sensor data. If set, this overrides the broadcast rate setting for individual processed data broadcast rates. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
:return: PROC_MAG_2_RATE as uint8_t; ALL_PROC_RATE as uint8_t;
"""
addr = 0x04
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_COM_RATES4')
reg.raw_value, = struct.unpack('>I', payload[0:4])
proc_mag_2_rate, all_proc_rate = struct.unpack('>BxxB', payload[0:4])
return reg, proc_mag_2_rate, all_proc_rate |
Python | def creg_com_rates5(self):
"""
The CREG_COM_RATES5 register sets desired telemetry transmission rates for quaternions, Euler Angles,
position, and velocity estimates. If the specified rate is 0, then no data is transmitted.
Payload structure:
[31:24] : QUAT_RATE -- Specifies the desired broadcast rate for quaternion data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
[23:16] : EULER_RATE -- Specifies the desired broadcast rate for Euler Angle data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
[15:8] : POSITION_RATE -- Specifies the desired broadcast rate position. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
[7:0] : VELOCITY_RATE -- Specifies the desired broadcast rate for velocity. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
:return: QUAT_RATE as uint8_t; EULER_RATE as uint8_t; POSITION_RATE as uint8_t; VELOCITY_RATE as uint8_t;
"""
addr = 0x05
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_COM_RATES5')
reg.raw_value, = struct.unpack('>I', payload[0:4])
quat_rate, euler_rate, position_rate, velocity_rate = struct.unpack('>BBBB', payload[0:4])
return reg, quat_rate, euler_rate, position_rate, velocity_rate | def creg_com_rates5(self):
"""
The CREG_COM_RATES5 register sets desired telemetry transmission rates for quaternions, Euler Angles,
position, and velocity estimates. If the specified rate is 0, then no data is transmitted.
Payload structure:
[31:24] : QUAT_RATE -- Specifies the desired broadcast rate for quaternion data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
[23:16] : EULER_RATE -- Specifies the desired broadcast rate for Euler Angle data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
[15:8] : POSITION_RATE -- Specifies the desired broadcast rate position. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
[7:0] : VELOCITY_RATE -- Specifies the desired broadcast rate for velocity. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
:return: QUAT_RATE as uint8_t; EULER_RATE as uint8_t; POSITION_RATE as uint8_t; VELOCITY_RATE as uint8_t;
"""
addr = 0x05
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_COM_RATES5')
reg.raw_value, = struct.unpack('>I', payload[0:4])
quat_rate, euler_rate, position_rate, velocity_rate = struct.unpack('>BBBB', payload[0:4])
return reg, quat_rate, euler_rate, position_rate, velocity_rate |
Python | def creg_com_rates6(self):
"""
The CREG_COM_RATES6 register sets desired telemetry transmission rates for pose (Euler/position packet),
health, and gyro bias estimates for the gyro 1 and gyro 2. If the specified rate is 0, then no data is
transmitted.
Payload structure:
[31:24] : POSE_RATE -- Specifies the desired broadcast rate for pose (Euler Angle and position) data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
[19:16] : HEALTH_RATE -- Specifies the desired broadcast rate for the sensor health packet.
[15:8] : GYRO_BIAS_1_RATE -- Specifies the desired broadcast rate for gyro 1 bias estimates. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
[7:0] : GYRO_BIAS_2_RATE -- Specifies the desired broadcast rate for gyro 2 bias estimates. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
:return: POSE_RATE as uint8_t; HEALTH_RATE as bitField; GYRO_BIAS_1_RATE as uint8_t; GYRO_BIAS_2_RATE as uint8_t;
"""
addr = 0x06
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_COM_RATES6')
reg.raw_value, = struct.unpack('>I', payload[0:4])
pose_rate, gyro_bias_1_rate, gyro_bias_2_rate = struct.unpack('>BxBB', payload[0:4])
reg.raw_value, = struct.unpack('>I', payload[0:4])
# find value for HEALTH_RATE bit field
health_rate_val = (reg.raw_value >> 16) & 0x000F
health_rate_enum = reg.find_field_by(name='HEALTH_RATE').find_enum_entry_by(value=health_rate_val)
return reg, pose_rate, gyro_bias_1_rate, gyro_bias_2_rate, reg, health_rate_enum | def creg_com_rates6(self):
"""
The CREG_COM_RATES6 register sets desired telemetry transmission rates for pose (Euler/position packet),
health, and gyro bias estimates for the gyro 1 and gyro 2. If the specified rate is 0, then no data is
transmitted.
Payload structure:
[31:24] : POSE_RATE -- Specifies the desired broadcast rate for pose (Euler Angle and position) data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
[19:16] : HEALTH_RATE -- Specifies the desired broadcast rate for the sensor health packet.
[15:8] : GYRO_BIAS_1_RATE -- Specifies the desired broadcast rate for gyro 1 bias estimates. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
[7:0] : GYRO_BIAS_2_RATE -- Specifies the desired broadcast rate for gyro 2 bias estimates. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.
:return: POSE_RATE as uint8_t; HEALTH_RATE as bitField; GYRO_BIAS_1_RATE as uint8_t; GYRO_BIAS_2_RATE as uint8_t;
"""
addr = 0x06
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_COM_RATES6')
reg.raw_value, = struct.unpack('>I', payload[0:4])
pose_rate, gyro_bias_1_rate, gyro_bias_2_rate = struct.unpack('>BxBB', payload[0:4])
reg.raw_value, = struct.unpack('>I', payload[0:4])
# find value for HEALTH_RATE bit field
health_rate_val = (reg.raw_value >> 16) & 0x000F
health_rate_enum = reg.find_field_by(name='HEALTH_RATE').find_enum_entry_by(value=health_rate_val)
return reg, pose_rate, gyro_bias_1_rate, gyro_bias_2_rate, reg, health_rate_enum |
Python | def creg_misc_settings(self):
"""
This register contains miscellaneous filter and sensor control options.
Payload structure:
[8] : PPS -- If set, this bit causes the TX2 pin on the IO Expansion header to be used as the PPS input from an external GPS module. PPS pulses will then be used to synchronize the system clock to UTC time of day.
[3] : ZG -- If set, this bit causes the devicee to attempt to measure the rate gyro bias on startup. The sensor must be stationary on startup for this feature to work properly.
[2] : Q -- If this bit is set, the sensor will run in quaternion mode instead of Euler Angle mode.
[1] : MAG1 -- If set, the magnetometer 1 will be used in state updates.
[0] : MAG2 -- If set, the magnetometer 2 will be used in state updates.
:return: PPS as bitField; ZG as bitField; Q as bitField; MAG1 as bitField; MAG2 as bitField;
"""
addr = 0x08
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_MISC_SETTINGS')
reg.raw_value, = struct.unpack('>I', payload[0:4])
# find value for PPS bit field
pps_val = (reg.raw_value >> 8) & 0x0001
pps_enum = reg.find_field_by(name='PPS').find_enum_entry_by(value=pps_val)
# find value for ZG bit field
zg_val = (reg.raw_value >> 3) & 0x0001
zg_enum = reg.find_field_by(name='ZG').find_enum_entry_by(value=zg_val)
# find value for Q bit field
q_val = (reg.raw_value >> 2) & 0x0001
q_enum = reg.find_field_by(name='Q').find_enum_entry_by(value=q_val)
# find value for MAG1 bit field
mag1_val = (reg.raw_value >> 1) & 0x0001
mag1_enum = reg.find_field_by(name='MAG1').find_enum_entry_by(value=mag1_val)
# find value for MAG2 bit field
mag2_val = (reg.raw_value >> 0) & 0x0001
mag2_enum = reg.find_field_by(name='MAG2').find_enum_entry_by(value=mag2_val)
return reg, pps_enum, zg_enum, q_enum, mag1_enum, mag2_enum | def creg_misc_settings(self):
"""
This register contains miscellaneous filter and sensor control options.
Payload structure:
[8] : PPS -- If set, this bit causes the TX2 pin on the IO Expansion header to be used as the PPS input from an external GPS module. PPS pulses will then be used to synchronize the system clock to UTC time of day.
[3] : ZG -- If set, this bit causes the devicee to attempt to measure the rate gyro bias on startup. The sensor must be stationary on startup for this feature to work properly.
[2] : Q -- If this bit is set, the sensor will run in quaternion mode instead of Euler Angle mode.
[1] : MAG1 -- If set, the magnetometer 1 will be used in state updates.
[0] : MAG2 -- If set, the magnetometer 2 will be used in state updates.
:return: PPS as bitField; ZG as bitField; Q as bitField; MAG1 as bitField; MAG2 as bitField;
"""
addr = 0x08
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_MISC_SETTINGS')
reg.raw_value, = struct.unpack('>I', payload[0:4])
# find value for PPS bit field
pps_val = (reg.raw_value >> 8) & 0x0001
pps_enum = reg.find_field_by(name='PPS').find_enum_entry_by(value=pps_val)
# find value for ZG bit field
zg_val = (reg.raw_value >> 3) & 0x0001
zg_enum = reg.find_field_by(name='ZG').find_enum_entry_by(value=zg_val)
# find value for Q bit field
q_val = (reg.raw_value >> 2) & 0x0001
q_enum = reg.find_field_by(name='Q').find_enum_entry_by(value=q_val)
# find value for MAG1 bit field
mag1_val = (reg.raw_value >> 1) & 0x0001
mag1_enum = reg.find_field_by(name='MAG1').find_enum_entry_by(value=mag1_val)
# find value for MAG2 bit field
mag2_val = (reg.raw_value >> 0) & 0x0001
mag2_enum = reg.find_field_by(name='MAG2').find_enum_entry_by(value=mag2_val)
return reg, pps_enum, zg_enum, q_enum, mag1_enum, mag2_enum |
Python | def creg_gyro_1_meas_range(self):
"""
The CREG_GYRO_1_MEAS_RANGE register sets the desired measurement range for the gyro 1 sensor. If the rate is
not set, then the default value of 2000 deg/s will be used as a measurement range.
Payload structure:
[1:0] : MEAS_GYRO1 -- Specifies the desired measurement range for the gyro 1 measurements.
:return: MEAS_GYRO1 as bitField;
"""
addr = 0x09
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_GYRO_1_MEAS_RANGE')
reg.raw_value, = struct.unpack('>I', payload[0:4])
# find value for MEAS_GYRO1 bit field
meas_gyro1_val = (reg.raw_value >> 0) & 0x0003
meas_gyro1_enum = reg.find_field_by(name='MEAS_GYRO1').find_enum_entry_by(value=meas_gyro1_val)
return reg, meas_gyro1_enum | def creg_gyro_1_meas_range(self):
"""
The CREG_GYRO_1_MEAS_RANGE register sets the desired measurement range for the gyro 1 sensor. If the rate is
not set, then the default value of 2000 deg/s will be used as a measurement range.
Payload structure:
[1:0] : MEAS_GYRO1 -- Specifies the desired measurement range for the gyro 1 measurements.
:return: MEAS_GYRO1 as bitField;
"""
addr = 0x09
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_GYRO_1_MEAS_RANGE')
reg.raw_value, = struct.unpack('>I', payload[0:4])
# find value for MEAS_GYRO1 bit field
meas_gyro1_val = (reg.raw_value >> 0) & 0x0003
meas_gyro1_enum = reg.find_field_by(name='MEAS_GYRO1').find_enum_entry_by(value=meas_gyro1_val)
return reg, meas_gyro1_enum |
Python | def creg_gyro_1_trim_x(self):
"""
This register sets the x-axis rate gyro 1 trim, which is used to add additional bias compensation for the rate
gyros during calls to the ZERO_GYRO_BIAS command.
Payload structure:
[31:0] : GYRO_1_TRIM_X -- 32-bit IEEE Floating Point Value
:return: GYRO_1_TRIM_X as float;
"""
addr = 0x0A
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_GYRO_1_TRIM_X')
reg.raw_value, = struct.unpack('>f', payload[0:4])
gyro_1_trim_x, = struct.unpack('>f', payload[0:4])
return reg, gyro_1_trim_x, | def creg_gyro_1_trim_x(self):
"""
This register sets the x-axis rate gyro 1 trim, which is used to add additional bias compensation for the rate
gyros during calls to the ZERO_GYRO_BIAS command.
Payload structure:
[31:0] : GYRO_1_TRIM_X -- 32-bit IEEE Floating Point Value
:return: GYRO_1_TRIM_X as float;
"""
addr = 0x0A
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_GYRO_1_TRIM_X')
reg.raw_value, = struct.unpack('>f', payload[0:4])
gyro_1_trim_x, = struct.unpack('>f', payload[0:4])
return reg, gyro_1_trim_x, |
Python | def creg_gyro_1_trim_y(self):
"""
This register sets the y-axis rate gyro 1 trim, which is used to add additional bias compensation for the rate
gyros during calls to the ZERO_GYRO_BIAS command.
Payload structure:
[31:0] : GYRO_1_TRIM_Y -- 32-bit IEEE Floating Point Value
:return: GYRO_1_TRIM_Y as float;
"""
addr = 0x0B
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_GYRO_1_TRIM_Y')
reg.raw_value, = struct.unpack('>f', payload[0:4])
gyro_1_trim_y, = struct.unpack('>f', payload[0:4])
return reg, gyro_1_trim_y, | def creg_gyro_1_trim_y(self):
"""
This register sets the y-axis rate gyro 1 trim, which is used to add additional bias compensation for the rate
gyros during calls to the ZERO_GYRO_BIAS command.
Payload structure:
[31:0] : GYRO_1_TRIM_Y -- 32-bit IEEE Floating Point Value
:return: GYRO_1_TRIM_Y as float;
"""
addr = 0x0B
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_GYRO_1_TRIM_Y')
reg.raw_value, = struct.unpack('>f', payload[0:4])
gyro_1_trim_y, = struct.unpack('>f', payload[0:4])
return reg, gyro_1_trim_y, |
Python | def creg_gyro_1_trim_z(self):
"""
This register sets the z-axis rate gyro 1 trim, which is used to add additional bias compensation for the rate
gyros during calls to the ZERO_GYRO_BIAS command.
Payload structure:
[31:0] : GYRO_1_TRIM_Z -- 32-bit IEEE Floating Point Value
:return: GYRO_1_TRIM_Z as float;
"""
addr = 0x0C
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_GYRO_1_TRIM_Z')
reg.raw_value, = struct.unpack('>f', payload[0:4])
gyro_1_trim_z, = struct.unpack('>f', payload[0:4])
return reg, gyro_1_trim_z, | def creg_gyro_1_trim_z(self):
"""
This register sets the z-axis rate gyro 1 trim, which is used to add additional bias compensation for the rate
gyros during calls to the ZERO_GYRO_BIAS command.
Payload structure:
[31:0] : GYRO_1_TRIM_Z -- 32-bit IEEE Floating Point Value
:return: GYRO_1_TRIM_Z as float;
"""
addr = 0x0C
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_GYRO_1_TRIM_Z')
reg.raw_value, = struct.unpack('>f', payload[0:4])
gyro_1_trim_z, = struct.unpack('>f', payload[0:4])
return reg, gyro_1_trim_z, |
Python | def creg_gyro_2_meas_range(self):
"""
The CREG_GYRO_2_MEAS_RANGE register sets the desired measurement range for the gyro 2 sensor. If the rate is
not set, then the default value of 2000 deg/s will be used as a measurement range.
Payload structure:
[1:0] : MEAS_GYRO2 -- Specifies the desired measurement range for the gyro 2 measurements.
:return: MEAS_GYRO2 as bitField;
"""
addr = 0x0D
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_GYRO_2_MEAS_RANGE')
reg.raw_value, = struct.unpack('>I', payload[0:4])
# find value for MEAS_GYRO2 bit field
meas_gyro2_val = (reg.raw_value >> 0) & 0x0003
meas_gyro2_enum = reg.find_field_by(name='MEAS_GYRO2').find_enum_entry_by(value=meas_gyro2_val)
return reg, meas_gyro2_enum | def creg_gyro_2_meas_range(self):
"""
The CREG_GYRO_2_MEAS_RANGE register sets the desired measurement range for the gyro 2 sensor. If the rate is
not set, then the default value of 2000 deg/s will be used as a measurement range.
Payload structure:
[1:0] : MEAS_GYRO2 -- Specifies the desired measurement range for the gyro 2 measurements.
:return: MEAS_GYRO2 as bitField;
"""
addr = 0x0D
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_GYRO_2_MEAS_RANGE')
reg.raw_value, = struct.unpack('>I', payload[0:4])
# find value for MEAS_GYRO2 bit field
meas_gyro2_val = (reg.raw_value >> 0) & 0x0003
meas_gyro2_enum = reg.find_field_by(name='MEAS_GYRO2').find_enum_entry_by(value=meas_gyro2_val)
return reg, meas_gyro2_enum |
Python | def creg_gyro_2_trim_x(self):
"""
This register sets the x-axis rate gyro 2 trim, which is used to add additional bias compensation for the rate
gyros during calls to the ZERO_GYRO_BIAS command.
Payload structure:
[31:0] : GYRO_2_TRIM_X -- 32-bit IEEE Floating Point Value
:return: GYRO_2_TRIM_X as float;
"""
addr = 0x0E
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_GYRO_2_TRIM_X')
reg.raw_value, = struct.unpack('>f', payload[0:4])
gyro_2_trim_x, = struct.unpack('>f', payload[0:4])
return reg, gyro_2_trim_x, | def creg_gyro_2_trim_x(self):
"""
This register sets the x-axis rate gyro 2 trim, which is used to add additional bias compensation for the rate
gyros during calls to the ZERO_GYRO_BIAS command.
Payload structure:
[31:0] : GYRO_2_TRIM_X -- 32-bit IEEE Floating Point Value
:return: GYRO_2_TRIM_X as float;
"""
addr = 0x0E
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_GYRO_2_TRIM_X')
reg.raw_value, = struct.unpack('>f', payload[0:4])
gyro_2_trim_x, = struct.unpack('>f', payload[0:4])
return reg, gyro_2_trim_x, |
Python | def creg_gyro_2_trim_y(self):
"""
This register sets the y-axis rate gyro 2 trim, which is used to add additional bias compensation for the rate
gyros during calls to the ZERO_GYRO_BIAS command.
Payload structure:
[31:0] : GYRO_2_TRIM_Y -- 32-bit IEEE Floating Point Value
:return: GYRO_2_TRIM_Y as float;
"""
addr = 0x0F
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_GYRO_2_TRIM_Y')
reg.raw_value, = struct.unpack('>f', payload[0:4])
gyro_2_trim_y, = struct.unpack('>f', payload[0:4])
return reg, gyro_2_trim_y, | def creg_gyro_2_trim_y(self):
"""
This register sets the y-axis rate gyro 2 trim, which is used to add additional bias compensation for the rate
gyros during calls to the ZERO_GYRO_BIAS command.
Payload structure:
[31:0] : GYRO_2_TRIM_Y -- 32-bit IEEE Floating Point Value
:return: GYRO_2_TRIM_Y as float;
"""
addr = 0x0F
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_GYRO_2_TRIM_Y')
reg.raw_value, = struct.unpack('>f', payload[0:4])
gyro_2_trim_y, = struct.unpack('>f', payload[0:4])
return reg, gyro_2_trim_y, |
Python | def creg_gyro_2_trim_z(self):
"""
This register sets the z-axis rate gyro 2 trim, which is used to add additional bias compensation for the rate
gyros during calls to the ZERO_GYRO_BIAS command.
Payload structure:
[31:0] : GYRO_2_TRIM_Z -- 32-bit IEEE Floating Point Value
:return: GYRO_2_TRIM_Z as float;
"""
addr = 0x10
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_GYRO_2_TRIM_Z')
reg.raw_value, = struct.unpack('>f', payload[0:4])
gyro_2_trim_z, = struct.unpack('>f', payload[0:4])
return reg, gyro_2_trim_z, | def creg_gyro_2_trim_z(self):
"""
This register sets the z-axis rate gyro 2 trim, which is used to add additional bias compensation for the rate
gyros during calls to the ZERO_GYRO_BIAS command.
Payload structure:
[31:0] : GYRO_2_TRIM_Z -- 32-bit IEEE Floating Point Value
:return: GYRO_2_TRIM_Z as float;
"""
addr = 0x10
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_GYRO_2_TRIM_Z')
reg.raw_value, = struct.unpack('>f', payload[0:4])
gyro_2_trim_z, = struct.unpack('>f', payload[0:4])
return reg, gyro_2_trim_z, |
Python | def creg_mag_1_bias_x(self):
"""
This register stores a bias term for the magnetometer 1 x-axis for hard-iron calibration. This term can be
computed by performing magnetometer calibration with the Redshift labs Serial Interface.
Payload structure:
[31:0] : MAG_1_BIAS_X -- 32-bit IEEE Floating Point Value
:return: MAG_1_BIAS_X as float;
"""
addr = 0x1A
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_MAG_1_BIAS_X')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_1_bias_x, = struct.unpack('>f', payload[0:4])
return reg, mag_1_bias_x, | def creg_mag_1_bias_x(self):
"""
This register stores a bias term for the magnetometer 1 x-axis for hard-iron calibration. This term can be
computed by performing magnetometer calibration with the Redshift labs Serial Interface.
Payload structure:
[31:0] : MAG_1_BIAS_X -- 32-bit IEEE Floating Point Value
:return: MAG_1_BIAS_X as float;
"""
addr = 0x1A
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_MAG_1_BIAS_X')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_1_bias_x, = struct.unpack('>f', payload[0:4])
return reg, mag_1_bias_x, |
Python | def creg_mag_1_bias_y(self):
"""
This register stores a bias term for the magnetometer 1 y-axis for hard-iron calibration. This term can be
computed by performing magnetometer calibration with the Redshift labs Serial Interface.
Payload structure:
[31:0] : MAG_1_BIAS_Y -- 32-bit IEEE Floating Point Value
:return: MAG_1_BIAS_Y as float;
"""
addr = 0x1B
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_MAG_1_BIAS_Y')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_1_bias_y, = struct.unpack('>f', payload[0:4])
return reg, mag_1_bias_y, | def creg_mag_1_bias_y(self):
"""
This register stores a bias term for the magnetometer 1 y-axis for hard-iron calibration. This term can be
computed by performing magnetometer calibration with the Redshift labs Serial Interface.
Payload structure:
[31:0] : MAG_1_BIAS_Y -- 32-bit IEEE Floating Point Value
:return: MAG_1_BIAS_Y as float;
"""
addr = 0x1B
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_MAG_1_BIAS_Y')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_1_bias_y, = struct.unpack('>f', payload[0:4])
return reg, mag_1_bias_y, |
Python | def creg_mag_1_bias_z(self):
"""
This register stores a bias term for the magnetometer 1 z-axis for hard-iron calibration. This term can be
computed by performing magnetometer calibration with the Redshift labs Serial Interface.
Payload structure:
[31:0] : MAG_1_BIAS_Z -- 32-bit IEEE Floating Point Value
:return: MAG_1_BIAS_Z as float;
"""
addr = 0x1C
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_MAG_1_BIAS_Z')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_1_bias_z, = struct.unpack('>f', payload[0:4])
return reg, mag_1_bias_z, | def creg_mag_1_bias_z(self):
"""
This register stores a bias term for the magnetometer 1 z-axis for hard-iron calibration. This term can be
computed by performing magnetometer calibration with the Redshift labs Serial Interface.
Payload structure:
[31:0] : MAG_1_BIAS_Z -- 32-bit IEEE Floating Point Value
:return: MAG_1_BIAS_Z as float;
"""
addr = 0x1C
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_MAG_1_BIAS_Z')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_1_bias_z, = struct.unpack('>f', payload[0:4])
return reg, mag_1_bias_z, |
Python | def creg_mag_2_bias_x(self):
"""
This register stores a bias term for the magnetometer 2 x-axis for hard-iron calibration. This term can be
computed by performing magnetometer calibration with the Redshift labs Serial Interface.
Payload structure:
[31:0] : MAG_2_BIAS_X -- 32-bit IEEE Floating Point Value
:return: MAG_2_BIAS_X as float;
"""
addr = 0x26
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_MAG_2_BIAS_X')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_2_bias_x, = struct.unpack('>f', payload[0:4])
return reg, mag_2_bias_x, | def creg_mag_2_bias_x(self):
"""
This register stores a bias term for the magnetometer 2 x-axis for hard-iron calibration. This term can be
computed by performing magnetometer calibration with the Redshift labs Serial Interface.
Payload structure:
[31:0] : MAG_2_BIAS_X -- 32-bit IEEE Floating Point Value
:return: MAG_2_BIAS_X as float;
"""
addr = 0x26
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_MAG_2_BIAS_X')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_2_bias_x, = struct.unpack('>f', payload[0:4])
return reg, mag_2_bias_x, |
Python | def creg_mag_2_bias_y(self):
"""
This register stores a bias term for the magnetometer 2 y-axis for hard-iron calibration. This term can be
computed by performing magnetometer calibration with the Redshift labs Serial Interface.
Payload structure:
[31:0] : MAG_2_BIAS_Y -- 32-bit IEEE Floating Point Value
:return: MAG_2_BIAS_Y as float;
"""
addr = 0x27
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_MAG_2_BIAS_Y')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_2_bias_y, = struct.unpack('>f', payload[0:4])
return reg, mag_2_bias_y, | def creg_mag_2_bias_y(self):
"""
This register stores a bias term for the magnetometer 2 y-axis for hard-iron calibration. This term can be
computed by performing magnetometer calibration with the Redshift labs Serial Interface.
Payload structure:
[31:0] : MAG_2_BIAS_Y -- 32-bit IEEE Floating Point Value
:return: MAG_2_BIAS_Y as float;
"""
addr = 0x27
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_MAG_2_BIAS_Y')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_2_bias_y, = struct.unpack('>f', payload[0:4])
return reg, mag_2_bias_y, |
Python | def creg_mag_2_bias_z(self):
"""
This register stores a bias term for the magnetometer 2 z-axis for hard-iron calibration. This term can be
computed by performing magnetometer calibration with the Redshift labs Serial Interface.
Payload structure:
[31:0] : MAG_2_BIAS_Z -- 32-bit IEEE Floating Point Value
:return: MAG_2_BIAS_Z as float;
"""
addr = 0x28
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_MAG_2_BIAS_Z')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_2_bias_z, = struct.unpack('>f', payload[0:4])
return reg, mag_2_bias_z, | def creg_mag_2_bias_z(self):
"""
This register stores a bias term for the magnetometer 2 z-axis for hard-iron calibration. This term can be
computed by performing magnetometer calibration with the Redshift labs Serial Interface.
Payload structure:
[31:0] : MAG_2_BIAS_Z -- 32-bit IEEE Floating Point Value
:return: MAG_2_BIAS_Z as float;
"""
addr = 0x28
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_MAG_2_BIAS_Z')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_2_bias_z, = struct.unpack('>f', payload[0:4])
return reg, mag_2_bias_z, |
Python | def creg_accel_1_meas_range(self):
"""
The CREG_ACCEL_1_MEAS_RANGE register sets the desired measurement range for the accelerometer 1. If the rate
is not set, then the default value of the +-2 g will be used as a measurement range.
Payload structure:
[1:0] : MEAS_ACC1 -- Specifies the desired measurement range for the accelerometer 1 measurements.
:return: MEAS_ACC1 as bitField;
"""
addr = 0x29
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_ACCEL_1_MEAS_RANGE')
reg.raw_value, = struct.unpack('>I', payload[0:4])
# find value for MEAS_ACC1 bit field
meas_acc1_val = (reg.raw_value >> 0) & 0x0003
meas_acc1_enum = reg.find_field_by(name='MEAS_ACC1').find_enum_entry_by(value=meas_acc1_val)
return reg, meas_acc1_enum | def creg_accel_1_meas_range(self):
"""
The CREG_ACCEL_1_MEAS_RANGE register sets the desired measurement range for the accelerometer 1. If the rate
is not set, then the default value of the +-2 g will be used as a measurement range.
Payload structure:
[1:0] : MEAS_ACC1 -- Specifies the desired measurement range for the accelerometer 1 measurements.
:return: MEAS_ACC1 as bitField;
"""
addr = 0x29
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_ACCEL_1_MEAS_RANGE')
reg.raw_value, = struct.unpack('>I', payload[0:4])
# find value for MEAS_ACC1 bit field
meas_acc1_val = (reg.raw_value >> 0) & 0x0003
meas_acc1_enum = reg.find_field_by(name='MEAS_ACC1').find_enum_entry_by(value=meas_acc1_val)
return reg, meas_acc1_enum |
Python | def creg_accel_1_bias_x(self):
"""
This register stores a bias term for the accelerometer 1 x-axis for bias calibration. This term can be
computed by performing calibrate accelerometers command within the Redshift labs Serial Interface.
Payload structure:
[31:0] : ACCEL_1_BIAS_X -- 32-bit IEEE Floating Point Value
:return: ACCEL_1_BIAS_X as float;
"""
addr = 0x33
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_ACCEL_1_BIAS_X')
reg.raw_value, = struct.unpack('>f', payload[0:4])
accel_1_bias_x, = struct.unpack('>f', payload[0:4])
return reg, accel_1_bias_x, | def creg_accel_1_bias_x(self):
"""
This register stores a bias term for the accelerometer 1 x-axis for bias calibration. This term can be
computed by performing calibrate accelerometers command within the Redshift labs Serial Interface.
Payload structure:
[31:0] : ACCEL_1_BIAS_X -- 32-bit IEEE Floating Point Value
:return: ACCEL_1_BIAS_X as float;
"""
addr = 0x33
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_ACCEL_1_BIAS_X')
reg.raw_value, = struct.unpack('>f', payload[0:4])
accel_1_bias_x, = struct.unpack('>f', payload[0:4])
return reg, accel_1_bias_x, |
Python | def creg_accel_1_bias_y(self):
"""
This register stores a bias term for the accelerometer 1 y-axis for bias calibration. This term can be
computed by performing calibrate accelerometers command within the Redshift labs Serial Interface.
Payload structure:
[31:0] : ACCEL_1_BIAS_Y -- 32-bit IEEE Floating Point Value
:return: ACCEL_1_BIAS_Y as float;
"""
addr = 0x34
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_ACCEL_1_BIAS_Y')
reg.raw_value, = struct.unpack('>f', payload[0:4])
accel_1_bias_y, = struct.unpack('>f', payload[0:4])
return reg, accel_1_bias_y, | def creg_accel_1_bias_y(self):
"""
This register stores a bias term for the accelerometer 1 y-axis for bias calibration. This term can be
computed by performing calibrate accelerometers command within the Redshift labs Serial Interface.
Payload structure:
[31:0] : ACCEL_1_BIAS_Y -- 32-bit IEEE Floating Point Value
:return: ACCEL_1_BIAS_Y as float;
"""
addr = 0x34
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_ACCEL_1_BIAS_Y')
reg.raw_value, = struct.unpack('>f', payload[0:4])
accel_1_bias_y, = struct.unpack('>f', payload[0:4])
return reg, accel_1_bias_y, |
Python | def creg_accel_1_bias_z(self):
"""
This register stores a bias term for the accelerometer 1 z-axis for bias calibration. This term can be
computed by performing calibrate accelerometers command within the Redshift labs Serial Interface.
Payload structure:
[31:0] : ACCEL_1_BIAS_Z -- 32-bit IEEE Floating Point Value
:return: ACCEL_1_BIAS_Z as float;
"""
addr = 0x35
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_ACCEL_1_BIAS_Z')
reg.raw_value, = struct.unpack('>f', payload[0:4])
accel_1_bias_z, = struct.unpack('>f', payload[0:4])
return reg, accel_1_bias_z, | def creg_accel_1_bias_z(self):
"""
This register stores a bias term for the accelerometer 1 z-axis for bias calibration. This term can be
computed by performing calibrate accelerometers command within the Redshift labs Serial Interface.
Payload structure:
[31:0] : ACCEL_1_BIAS_Z -- 32-bit IEEE Floating Point Value
:return: ACCEL_1_BIAS_Z as float;
"""
addr = 0x35
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='CREG_ACCEL_1_BIAS_Z')
reg.raw_value, = struct.unpack('>f', payload[0:4])
accel_1_bias_z, = struct.unpack('>f', payload[0:4])
return reg, accel_1_bias_z, |
Python | def dreg_health(self):
"""
The health register reports the current status of the sensors on the board. Monitoring the health register is
the easiest way to watch for other problems that could affect the behavior of the board, status of the
sensors. The analogous to the health register, the status of the GPS signal can be monitored in the
DREG_GPS_HEALTH
Payload structure:
[8] : OVF -- Overflow bit. This bit is set if the board is attempting to transmit data over the serial port faster than is allowed given the baud-rate. If this bit is set, reduce broadcast rates in the COM_RATES registers.
[7] : ACC1_N -- This bit is set if the sensor detects that the norm of the accelerometer measurement is too far away from 1G to be used (i.e. during aggressive acceleration or high vibration).
[6] : MAG1_N -- This bit is set if the sensor detects that the norm of the magnetometer measurement for the magnetometer 1 is too far away from 1.0 to be trusted. Usually indicates bad calibration, local field distortions, or both.
[5] : MAG2_N -- This bit is set if the sensor detects that the norm of the magnetometer measurement for the magnetometer 2 is too far away from 1.0 to be trusted. Usually indicates bad calibration, local field distortions, or both.
[4] : ACCEL1 -- This bit will be set if the accelerometer 1 fails to initialize on startup.
[3] : GYRO1 -- This bit will be set if the rate gyro 1 fails to initialize on startup.
[2] : GYRO2 -- This bit will be set if the rate gyro 2 fails to initialize on startup.
[1] : MAG1 -- This bit will be set if the magnetometer 1 fails to initialize on startup.
[0] : MAG2 -- This bit will be set if the magnetometer 2 fails to initialize on startup.
:return: OVF as bitField; ACC1_N as bitField; MAG1_N as bitField; MAG2_N as bitField; ACCEL1 as bitField; GYRO1 as bitField; GYRO2 as bitField; MAG1 as bitField; MAG2 as bitField;
"""
addr = 0x55
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_HEALTH')
reg.raw_value, = struct.unpack('>I', payload[0:4])
# find value for OVF bit field
ovf_val = (reg.raw_value >> 8) & 0x0001
ovf_enum = reg.find_field_by(name='OVF').find_enum_entry_by(value=ovf_val)
# find value for ACC1_N bit field
acc1_n_val = (reg.raw_value >> 7) & 0x0001
acc1_n_enum = reg.find_field_by(name='ACC1_N').find_enum_entry_by(value=acc1_n_val)
# find value for MAG1_N bit field
mag1_n_val = (reg.raw_value >> 6) & 0x0001
mag1_n_enum = reg.find_field_by(name='MAG1_N').find_enum_entry_by(value=mag1_n_val)
# find value for MAG2_N bit field
mag2_n_val = (reg.raw_value >> 5) & 0x0001
mag2_n_enum = reg.find_field_by(name='MAG2_N').find_enum_entry_by(value=mag2_n_val)
# find value for ACCEL1 bit field
accel1_val = (reg.raw_value >> 4) & 0x0001
accel1_enum = reg.find_field_by(name='ACCEL1').find_enum_entry_by(value=accel1_val)
# find value for GYRO1 bit field
gyro1_val = (reg.raw_value >> 3) & 0x0001
gyro1_enum = reg.find_field_by(name='GYRO1').find_enum_entry_by(value=gyro1_val)
# find value for GYRO2 bit field
gyro2_val = (reg.raw_value >> 2) & 0x0001
gyro2_enum = reg.find_field_by(name='GYRO2').find_enum_entry_by(value=gyro2_val)
# find value for MAG1 bit field
mag1_val = (reg.raw_value >> 1) & 0x0001
mag1_enum = reg.find_field_by(name='MAG1').find_enum_entry_by(value=mag1_val)
# find value for MAG2 bit field
mag2_val = (reg.raw_value >> 0) & 0x0001
mag2_enum = reg.find_field_by(name='MAG2').find_enum_entry_by(value=mag2_val)
return reg, ovf_enum, acc1_n_enum, mag1_n_enum, mag2_n_enum, accel1_enum, gyro1_enum, gyro2_enum, mag1_enum, mag2_enum | def dreg_health(self):
"""
The health register reports the current status of the sensors on the board. Monitoring the health register is
the easiest way to watch for other problems that could affect the behavior of the board, status of the
sensors. The analogous to the health register, the status of the GPS signal can be monitored in the
DREG_GPS_HEALTH
Payload structure:
[8] : OVF -- Overflow bit. This bit is set if the board is attempting to transmit data over the serial port faster than is allowed given the baud-rate. If this bit is set, reduce broadcast rates in the COM_RATES registers.
[7] : ACC1_N -- This bit is set if the sensor detects that the norm of the accelerometer measurement is too far away from 1G to be used (i.e. during aggressive acceleration or high vibration).
[6] : MAG1_N -- This bit is set if the sensor detects that the norm of the magnetometer measurement for the magnetometer 1 is too far away from 1.0 to be trusted. Usually indicates bad calibration, local field distortions, or both.
[5] : MAG2_N -- This bit is set if the sensor detects that the norm of the magnetometer measurement for the magnetometer 2 is too far away from 1.0 to be trusted. Usually indicates bad calibration, local field distortions, or both.
[4] : ACCEL1 -- This bit will be set if the accelerometer 1 fails to initialize on startup.
[3] : GYRO1 -- This bit will be set if the rate gyro 1 fails to initialize on startup.
[2] : GYRO2 -- This bit will be set if the rate gyro 2 fails to initialize on startup.
[1] : MAG1 -- This bit will be set if the magnetometer 1 fails to initialize on startup.
[0] : MAG2 -- This bit will be set if the magnetometer 2 fails to initialize on startup.
:return: OVF as bitField; ACC1_N as bitField; MAG1_N as bitField; MAG2_N as bitField; ACCEL1 as bitField; GYRO1 as bitField; GYRO2 as bitField; MAG1 as bitField; MAG2 as bitField;
"""
addr = 0x55
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_HEALTH')
reg.raw_value, = struct.unpack('>I', payload[0:4])
# find value for OVF bit field
ovf_val = (reg.raw_value >> 8) & 0x0001
ovf_enum = reg.find_field_by(name='OVF').find_enum_entry_by(value=ovf_val)
# find value for ACC1_N bit field
acc1_n_val = (reg.raw_value >> 7) & 0x0001
acc1_n_enum = reg.find_field_by(name='ACC1_N').find_enum_entry_by(value=acc1_n_val)
# find value for MAG1_N bit field
mag1_n_val = (reg.raw_value >> 6) & 0x0001
mag1_n_enum = reg.find_field_by(name='MAG1_N').find_enum_entry_by(value=mag1_n_val)
# find value for MAG2_N bit field
mag2_n_val = (reg.raw_value >> 5) & 0x0001
mag2_n_enum = reg.find_field_by(name='MAG2_N').find_enum_entry_by(value=mag2_n_val)
# find value for ACCEL1 bit field
accel1_val = (reg.raw_value >> 4) & 0x0001
accel1_enum = reg.find_field_by(name='ACCEL1').find_enum_entry_by(value=accel1_val)
# find value for GYRO1 bit field
gyro1_val = (reg.raw_value >> 3) & 0x0001
gyro1_enum = reg.find_field_by(name='GYRO1').find_enum_entry_by(value=gyro1_val)
# find value for GYRO2 bit field
gyro2_val = (reg.raw_value >> 2) & 0x0001
gyro2_enum = reg.find_field_by(name='GYRO2').find_enum_entry_by(value=gyro2_val)
# find value for MAG1 bit field
mag1_val = (reg.raw_value >> 1) & 0x0001
mag1_enum = reg.find_field_by(name='MAG1').find_enum_entry_by(value=mag1_val)
# find value for MAG2 bit field
mag2_val = (reg.raw_value >> 0) & 0x0001
mag2_enum = reg.find_field_by(name='MAG2').find_enum_entry_by(value=mag2_val)
return reg, ovf_enum, acc1_n_enum, mag1_n_enum, mag2_n_enum, accel1_enum, gyro1_enum, gyro2_enum, mag1_enum, mag2_enum |
Python | def dreg_gyro_1_raw_xy(self):
"""
Contains raw X and Y axis rate gyro 1 data.
Payload structure:
[31:16] : GYRO_1_RAW_X -- Gyro X (2s complement 16-bit integer)
[15:0] : GYRO_1_RAW_Y -- Gyro Y (2s complement 16-bit integer)
:return: GYRO_1_RAW_X as int16_t; GYRO_1_RAW_Y as int16_t;
"""
addr = 0x56
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_GYRO_1_RAW_XY')
reg.raw_value, = struct.unpack('>I', payload[0:4])
gyro_1_raw_x, gyro_1_raw_y = struct.unpack('>hh', payload[0:4])
return reg, gyro_1_raw_x, gyro_1_raw_y | def dreg_gyro_1_raw_xy(self):
"""
Contains raw X and Y axis rate gyro 1 data.
Payload structure:
[31:16] : GYRO_1_RAW_X -- Gyro X (2s complement 16-bit integer)
[15:0] : GYRO_1_RAW_Y -- Gyro Y (2s complement 16-bit integer)
:return: GYRO_1_RAW_X as int16_t; GYRO_1_RAW_Y as int16_t;
"""
addr = 0x56
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_GYRO_1_RAW_XY')
reg.raw_value, = struct.unpack('>I', payload[0:4])
gyro_1_raw_x, gyro_1_raw_y = struct.unpack('>hh', payload[0:4])
return reg, gyro_1_raw_x, gyro_1_raw_y |
Python | def dreg_gyro_2_raw_xy(self):
"""
Contains raw X and Y axis rate gyro 2 data.
Payload structure:
[31:16] : GYRO_2_RAW_X -- Gyro X (2s complement 16-bit integer)
[15:0] : GYRO_2_RAW_Y -- Gyro Y (2s complement 16-bit integer)
:return: GYRO_2_RAW_X as int16_t; GYRO_2_RAW_Y as int16_t;
"""
addr = 0x59
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_GYRO_2_RAW_XY')
reg.raw_value, = struct.unpack('>I', payload[0:4])
gyro_2_raw_x, gyro_2_raw_y = struct.unpack('>hh', payload[0:4])
return reg, gyro_2_raw_x, gyro_2_raw_y | def dreg_gyro_2_raw_xy(self):
"""
Contains raw X and Y axis rate gyro 2 data.
Payload structure:
[31:16] : GYRO_2_RAW_X -- Gyro X (2s complement 16-bit integer)
[15:0] : GYRO_2_RAW_Y -- Gyro Y (2s complement 16-bit integer)
:return: GYRO_2_RAW_X as int16_t; GYRO_2_RAW_Y as int16_t;
"""
addr = 0x59
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_GYRO_2_RAW_XY')
reg.raw_value, = struct.unpack('>I', payload[0:4])
gyro_2_raw_x, gyro_2_raw_y = struct.unpack('>hh', payload[0:4])
return reg, gyro_2_raw_x, gyro_2_raw_y |
Python | def dreg_accel_1_raw_xy(self):
"""
Contains raw X and Y axis accelerometer 1 data.
Payload structure:
[31:16] : ACCEL_1_RAW_X -- Accel X (2s complement 16-bit integer)
[15:0] : ACCEL_1_RAW_Y -- Accel Y (2s complement 16-bit integer)
:return: ACCEL_1_RAW_X as int16_t; ACCEL_1_RAW_Y as int16_t;
"""
addr = 0x5C
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_ACCEL_1_RAW_XY')
reg.raw_value, = struct.unpack('>I', payload[0:4])
accel_1_raw_x, accel_1_raw_y = struct.unpack('>hh', payload[0:4])
return reg, accel_1_raw_x, accel_1_raw_y | def dreg_accel_1_raw_xy(self):
"""
Contains raw X and Y axis accelerometer 1 data.
Payload structure:
[31:16] : ACCEL_1_RAW_X -- Accel X (2s complement 16-bit integer)
[15:0] : ACCEL_1_RAW_Y -- Accel Y (2s complement 16-bit integer)
:return: ACCEL_1_RAW_X as int16_t; ACCEL_1_RAW_Y as int16_t;
"""
addr = 0x5C
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_ACCEL_1_RAW_XY')
reg.raw_value, = struct.unpack('>I', payload[0:4])
accel_1_raw_x, accel_1_raw_y = struct.unpack('>hh', payload[0:4])
return reg, accel_1_raw_x, accel_1_raw_y |
Python | def dreg_accel_1_raw_time(self):
"""
Contains time at which the last raw data sample for the accelerometer 1 was acquired.
Payload structure:
[31:0] : ACCEL_1_RAW_TIME -- 32-bit IEEE Floating Point Value
:return: ACCEL_1_RAW_TIME as float;
"""
addr = 0x5E
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_ACCEL_1_RAW_TIME')
reg.raw_value, = struct.unpack('>f', payload[0:4])
accel_1_raw_time, = struct.unpack('>f', payload[0:4])
return reg, accel_1_raw_time, | def dreg_accel_1_raw_time(self):
"""
Contains time at which the last raw data sample for the accelerometer 1 was acquired.
Payload structure:
[31:0] : ACCEL_1_RAW_TIME -- 32-bit IEEE Floating Point Value
:return: ACCEL_1_RAW_TIME as float;
"""
addr = 0x5E
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_ACCEL_1_RAW_TIME')
reg.raw_value, = struct.unpack('>f', payload[0:4])
accel_1_raw_time, = struct.unpack('>f', payload[0:4])
return reg, accel_1_raw_time, |
Python | def dreg_mag_1_raw_time(self):
"""
Contains time at which the last magnetometer data from the magnetometer 1 was acquired.
Payload structure:
[31:0] : MAG_1_RAW_TIME -- 32-bit IEEE Floating Point Value
:return: MAG_1_RAW_TIME as float;
"""
addr = 0x62
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_MAG_1_RAW_TIME')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_1_raw_time, = struct.unpack('>f', payload[0:4])
return reg, mag_1_raw_time, | def dreg_mag_1_raw_time(self):
"""
Contains time at which the last magnetometer data from the magnetometer 1 was acquired.
Payload structure:
[31:0] : MAG_1_RAW_TIME -- 32-bit IEEE Floating Point Value
:return: MAG_1_RAW_TIME as float;
"""
addr = 0x62
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_MAG_1_RAW_TIME')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_1_raw_time, = struct.unpack('>f', payload[0:4])
return reg, mag_1_raw_time, |
Python | def dreg_mag_2_raw_xy(self):
"""
Contains raw X and Y axis magnetometer 2 data.
Payload structure:
[31:16] : MAG_2_RAW_X -- Magnetometer X (2s complement 16-bit integer)
[15:0] : MAG_2_RAW_Y -- Magnetometer Y (2s complement 16-bit integer)
:return: MAG_2_RAW_X as int16_t; MAG_2_RAW_Y as int16_t;
"""
addr = 0x63
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_MAG_2_RAW_XY')
reg.raw_value, = struct.unpack('>I', payload[0:4])
mag_2_raw_x, mag_2_raw_y = struct.unpack('>hh', payload[0:4])
return reg, mag_2_raw_x, mag_2_raw_y | def dreg_mag_2_raw_xy(self):
"""
Contains raw X and Y axis magnetometer 2 data.
Payload structure:
[31:16] : MAG_2_RAW_X -- Magnetometer X (2s complement 16-bit integer)
[15:0] : MAG_2_RAW_Y -- Magnetometer Y (2s complement 16-bit integer)
:return: MAG_2_RAW_X as int16_t; MAG_2_RAW_Y as int16_t;
"""
addr = 0x63
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_MAG_2_RAW_XY')
reg.raw_value, = struct.unpack('>I', payload[0:4])
mag_2_raw_x, mag_2_raw_y = struct.unpack('>hh', payload[0:4])
return reg, mag_2_raw_x, mag_2_raw_y |
Python | def dreg_mag_2_raw_time(self):
"""
Contains time at which the last magnetometer data from the magnetometer 2 was acquired.
Payload structure:
[31:0] : MAG_2_RAW_TIME -- 32-bit IEEE Floating Point Value
:return: MAG_2_RAW_TIME as float;
"""
addr = 0x65
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_MAG_2_RAW_TIME')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_2_raw_time, = struct.unpack('>f', payload[0:4])
return reg, mag_2_raw_time, | def dreg_mag_2_raw_time(self):
"""
Contains time at which the last magnetometer data from the magnetometer 2 was acquired.
Payload structure:
[31:0] : MAG_2_RAW_TIME -- 32-bit IEEE Floating Point Value
:return: MAG_2_RAW_TIME as float;
"""
addr = 0x65
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_MAG_2_RAW_TIME')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_2_raw_time, = struct.unpack('>f', payload[0:4])
return reg, mag_2_raw_time, |
Python | def dreg_temperature(self):
"""
Contains the temperature output of the onboard temperature sensor.
Payload structure:
[31:0] : TEMPERATURE -- Temperature in degrees Celcius (32-bit IEEE Floating Point)
:return: TEMPERATURE as float;
"""
addr = 0x66
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_TEMPERATURE')
reg.raw_value, = struct.unpack('>f', payload[0:4])
temperature, = struct.unpack('>f', payload[0:4])
return reg, temperature, | def dreg_temperature(self):
"""
Contains the temperature output of the onboard temperature sensor.
Payload structure:
[31:0] : TEMPERATURE -- Temperature in degrees Celcius (32-bit IEEE Floating Point)
:return: TEMPERATURE as float;
"""
addr = 0x66
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_TEMPERATURE')
reg.raw_value, = struct.unpack('>f', payload[0:4])
temperature, = struct.unpack('>f', payload[0:4])
return reg, temperature, |
Python | def dreg_temperature_time(self):
"""
Contains time at which the last temperature was acquired.
Payload structure:
[31:0] : TEMPERATURE_TIME -- 32-bit IEEE Floating Point Value
:return: TEMPERATURE_TIME as float;
"""
addr = 0x67
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_TEMPERATURE_TIME')
reg.raw_value, = struct.unpack('>f', payload[0:4])
temperature_time, = struct.unpack('>f', payload[0:4])
return reg, temperature_time, | def dreg_temperature_time(self):
"""
Contains time at which the last temperature was acquired.
Payload structure:
[31:0] : TEMPERATURE_TIME -- 32-bit IEEE Floating Point Value
:return: TEMPERATURE_TIME as float;
"""
addr = 0x67
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_TEMPERATURE_TIME')
reg.raw_value, = struct.unpack('>f', payload[0:4])
temperature_time, = struct.unpack('>f', payload[0:4])
return reg, temperature_time, |
Python | def dreg_gyro_1_proc_x(self):
"""
Contains the actual measured angular rate from the gyro 1 for the x axis in degrees/sec after calibration has
been applied.
Payload structure:
[31:0] : GYRO_1_PROC_X -- Gyro X in degrees / sec (32-bit IEEE Floating Point Value)
:return: GYRO_1_PROC_X as float;
"""
addr = 0x68
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_GYRO_1_PROC_X')
reg.raw_value, = struct.unpack('>f', payload[0:4])
gyro_1_proc_x, = struct.unpack('>f', payload[0:4])
return reg, gyro_1_proc_x, | def dreg_gyro_1_proc_x(self):
"""
Contains the actual measured angular rate from the gyro 1 for the x axis in degrees/sec after calibration has
been applied.
Payload structure:
[31:0] : GYRO_1_PROC_X -- Gyro X in degrees / sec (32-bit IEEE Floating Point Value)
:return: GYRO_1_PROC_X as float;
"""
addr = 0x68
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_GYRO_1_PROC_X')
reg.raw_value, = struct.unpack('>f', payload[0:4])
gyro_1_proc_x, = struct.unpack('>f', payload[0:4])
return reg, gyro_1_proc_x, |
Python | def dreg_gyro_1_proc_y(self):
"""
Contains the actual measured angular rate from the gyro 1 for the y axis in degrees/sec after calibration has
been applied.
Payload structure:
[31:0] : GYRO_1_PROC_Y -- Gyro Y in degrees / sec (32-bit IEEE Floating Point Value)
:return: GYRO_1_PROC_Y as float;
"""
addr = 0x69
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_GYRO_1_PROC_Y')
reg.raw_value, = struct.unpack('>f', payload[0:4])
gyro_1_proc_y, = struct.unpack('>f', payload[0:4])
return reg, gyro_1_proc_y, | def dreg_gyro_1_proc_y(self):
"""
Contains the actual measured angular rate from the gyro 1 for the y axis in degrees/sec after calibration has
been applied.
Payload structure:
[31:0] : GYRO_1_PROC_Y -- Gyro Y in degrees / sec (32-bit IEEE Floating Point Value)
:return: GYRO_1_PROC_Y as float;
"""
addr = 0x69
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_GYRO_1_PROC_Y')
reg.raw_value, = struct.unpack('>f', payload[0:4])
gyro_1_proc_y, = struct.unpack('>f', payload[0:4])
return reg, gyro_1_proc_y, |
Python | def dreg_gyro_1_proc_z(self):
"""
Contains the actual measured angular rate from the gyro 1 for the z axis in degrees/sec after calibration has
been applied.
Payload structure:
[31:0] : GYRO_1_PROC_Z -- Gyro Z in degrees / sec (32-bit IEEE Floating Point Value)
:return: GYRO_1_PROC_Z as float;
"""
addr = 0x6A
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_GYRO_1_PROC_Z')
reg.raw_value, = struct.unpack('>f', payload[0:4])
gyro_1_proc_z, = struct.unpack('>f', payload[0:4])
return reg, gyro_1_proc_z, | def dreg_gyro_1_proc_z(self):
"""
Contains the actual measured angular rate from the gyro 1 for the z axis in degrees/sec after calibration has
been applied.
Payload structure:
[31:0] : GYRO_1_PROC_Z -- Gyro Z in degrees / sec (32-bit IEEE Floating Point Value)
:return: GYRO_1_PROC_Z as float;
"""
addr = 0x6A
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_GYRO_1_PROC_Z')
reg.raw_value, = struct.unpack('>f', payload[0:4])
gyro_1_proc_z, = struct.unpack('>f', payload[0:4])
return reg, gyro_1_proc_z, |
Python | def dreg_gyro_2_proc_x(self):
"""
Contains the actual measured angular rate from the gyro 2 for the x axis in degrees/sec after calibration has
been applied.
Payload structure:
[31:0] : GYRO_2_PROC_X -- Gyro X in degrees / sec (32-bit IEEE Floating Point Value)
:return: GYRO_2_PROC_X as float;
"""
addr = 0x6C
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_GYRO_2_PROC_X')
reg.raw_value, = struct.unpack('>f', payload[0:4])
gyro_2_proc_x, = struct.unpack('>f', payload[0:4])
return reg, gyro_2_proc_x, | def dreg_gyro_2_proc_x(self):
"""
Contains the actual measured angular rate from the gyro 2 for the x axis in degrees/sec after calibration has
been applied.
Payload structure:
[31:0] : GYRO_2_PROC_X -- Gyro X in degrees / sec (32-bit IEEE Floating Point Value)
:return: GYRO_2_PROC_X as float;
"""
addr = 0x6C
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_GYRO_2_PROC_X')
reg.raw_value, = struct.unpack('>f', payload[0:4])
gyro_2_proc_x, = struct.unpack('>f', payload[0:4])
return reg, gyro_2_proc_x, |
Python | def dreg_gyro_2_proc_y(self):
"""
Contains the actual measured angular rate from the gyro 2 for the y axis in degrees/sec after calibration has
been applied.
Payload structure:
[31:0] : GYRO_2_PROC_Y -- Gyro Y in degrees / sec (32-bit IEEE Floating Point Value)
:return: GYRO_2_PROC_Y as float;
"""
addr = 0x6D
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_GYRO_2_PROC_Y')
reg.raw_value, = struct.unpack('>f', payload[0:4])
gyro_2_proc_y, = struct.unpack('>f', payload[0:4])
return reg, gyro_2_proc_y, | def dreg_gyro_2_proc_y(self):
"""
Contains the actual measured angular rate from the gyro 2 for the y axis in degrees/sec after calibration has
been applied.
Payload structure:
[31:0] : GYRO_2_PROC_Y -- Gyro Y in degrees / sec (32-bit IEEE Floating Point Value)
:return: GYRO_2_PROC_Y as float;
"""
addr = 0x6D
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_GYRO_2_PROC_Y')
reg.raw_value, = struct.unpack('>f', payload[0:4])
gyro_2_proc_y, = struct.unpack('>f', payload[0:4])
return reg, gyro_2_proc_y, |
Python | def dreg_gyro_2_proc_z(self):
"""
Contains the actual measured angular rate from the gyro 2 for the z axis in degrees/sec after calibration has
been applied.
Payload structure:
[31:0] : GYRO_2_PROC_Z -- Gyro Z in degrees / sec (32-bit IEEE Floating Point Value)
:return: GYRO_2_PROC_Z as float;
"""
addr = 0x6E
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_GYRO_2_PROC_Z')
reg.raw_value, = struct.unpack('>f', payload[0:4])
gyro_2_proc_z, = struct.unpack('>f', payload[0:4])
return reg, gyro_2_proc_z, | def dreg_gyro_2_proc_z(self):
"""
Contains the actual measured angular rate from the gyro 2 for the z axis in degrees/sec after calibration has
been applied.
Payload structure:
[31:0] : GYRO_2_PROC_Z -- Gyro Z in degrees / sec (32-bit IEEE Floating Point Value)
:return: GYRO_2_PROC_Z as float;
"""
addr = 0x6E
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_GYRO_2_PROC_Z')
reg.raw_value, = struct.unpack('>f', payload[0:4])
gyro_2_proc_z, = struct.unpack('>f', payload[0:4])
return reg, gyro_2_proc_z, |
Python | def dreg_accel_1_proc_x(self):
"""
Contains the actual measured acceleration from the accelerometer 1 for the x axis in m/s2 after calibration
has been applied.
Payload structure:
[31:0] : ACCEL_1_PROC_X -- Acceleration X in m/s2 (32-bit IEEE Floating Point Value)
:return: ACCEL_1_PROC_X as float;
"""
addr = 0x70
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_ACCEL_1_PROC_X')
reg.raw_value, = struct.unpack('>f', payload[0:4])
accel_1_proc_x, = struct.unpack('>f', payload[0:4])
return reg, accel_1_proc_x, | def dreg_accel_1_proc_x(self):
"""
Contains the actual measured acceleration from the accelerometer 1 for the x axis in m/s2 after calibration
has been applied.
Payload structure:
[31:0] : ACCEL_1_PROC_X -- Acceleration X in m/s2 (32-bit IEEE Floating Point Value)
:return: ACCEL_1_PROC_X as float;
"""
addr = 0x70
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_ACCEL_1_PROC_X')
reg.raw_value, = struct.unpack('>f', payload[0:4])
accel_1_proc_x, = struct.unpack('>f', payload[0:4])
return reg, accel_1_proc_x, |
Python | def dreg_accel_1_proc_y(self):
"""
Contains the actual measured acceleration from the accelerometer 1 for the y axis in m/s2 after calibration
has been applied.
Payload structure:
[31:0] : ACCEL_1_PROC_Y -- Acceleration Y in m/s2 (32-bit IEEE Floating Point Value)
:return: ACCEL_1_PROC_Y as float;
"""
addr = 0x71
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_ACCEL_1_PROC_Y')
reg.raw_value, = struct.unpack('>f', payload[0:4])
accel_1_proc_y, = struct.unpack('>f', payload[0:4])
return reg, accel_1_proc_y, | def dreg_accel_1_proc_y(self):
"""
Contains the actual measured acceleration from the accelerometer 1 for the y axis in m/s2 after calibration
has been applied.
Payload structure:
[31:0] : ACCEL_1_PROC_Y -- Acceleration Y in m/s2 (32-bit IEEE Floating Point Value)
:return: ACCEL_1_PROC_Y as float;
"""
addr = 0x71
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_ACCEL_1_PROC_Y')
reg.raw_value, = struct.unpack('>f', payload[0:4])
accel_1_proc_y, = struct.unpack('>f', payload[0:4])
return reg, accel_1_proc_y, |
Python | def dreg_accel_1_proc_z(self):
"""
Contains the actual measured acceleration from the accelerometer 1 for the z axis in m/s2 after calibration
has been applied.
Payload structure:
[31:0] : ACCEL_1_PROC_Z -- Acceleration Z in m/s2 (32-bit IEEE Floating Point Value)
:return: ACCEL_1_PROC_Z as float;
"""
addr = 0x72
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_ACCEL_1_PROC_Z')
reg.raw_value, = struct.unpack('>f', payload[0:4])
accel_1_proc_z, = struct.unpack('>f', payload[0:4])
return reg, accel_1_proc_z, | def dreg_accel_1_proc_z(self):
"""
Contains the actual measured acceleration from the accelerometer 1 for the z axis in m/s2 after calibration
has been applied.
Payload structure:
[31:0] : ACCEL_1_PROC_Z -- Acceleration Z in m/s2 (32-bit IEEE Floating Point Value)
:return: ACCEL_1_PROC_Z as float;
"""
addr = 0x72
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_ACCEL_1_PROC_Z')
reg.raw_value, = struct.unpack('>f', payload[0:4])
accel_1_proc_z, = struct.unpack('>f', payload[0:4])
return reg, accel_1_proc_z, |
Python | def dreg_accel_1_proc_time(self):
"""
Contains the time at which the last acceleration data from the accelerometer 1 was measured.
Payload structure:
[31:0] : ACCEL_1_PROC_TIME -- Accelerometer 1 time stamp (32-bit IEEE Floating Point Value)
:return: ACCEL_1_PROC_TIME as float;
"""
addr = 0x73
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_ACCEL_1_PROC_TIME')
reg.raw_value, = struct.unpack('>f', payload[0:4])
accel_1_proc_time, = struct.unpack('>f', payload[0:4])
return reg, accel_1_proc_time, | def dreg_accel_1_proc_time(self):
"""
Contains the time at which the last acceleration data from the accelerometer 1 was measured.
Payload structure:
[31:0] : ACCEL_1_PROC_TIME -- Accelerometer 1 time stamp (32-bit IEEE Floating Point Value)
:return: ACCEL_1_PROC_TIME as float;
"""
addr = 0x73
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_ACCEL_1_PROC_TIME')
reg.raw_value, = struct.unpack('>f', payload[0:4])
accel_1_proc_time, = struct.unpack('>f', payload[0:4])
return reg, accel_1_proc_time, |
Python | def dreg_mag_1_proc_x(self):
"""
Contains the actual measured magnetic field from the magnetometer 1 for the x axis in mT after calibration has
been applied.
Payload structure:
[31:0] : MAG_1_PROC_X -- Magnetometer X in mT (32-bit IEEE Floating Point Value)
:return: MAG_1_PROC_X as float;
"""
addr = 0x74
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_MAG_1_PROC_X')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_1_proc_x, = struct.unpack('>f', payload[0:4])
return reg, mag_1_proc_x, | def dreg_mag_1_proc_x(self):
"""
Contains the actual measured magnetic field from the magnetometer 1 for the x axis in mT after calibration has
been applied.
Payload structure:
[31:0] : MAG_1_PROC_X -- Magnetometer X in mT (32-bit IEEE Floating Point Value)
:return: MAG_1_PROC_X as float;
"""
addr = 0x74
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_MAG_1_PROC_X')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_1_proc_x, = struct.unpack('>f', payload[0:4])
return reg, mag_1_proc_x, |
Python | def dreg_mag_1_proc_y(self):
"""
Contains the actual measured magnetic field from the magnetometer 1 for the y axis in mT after calibration has
been applied.
Payload structure:
[31:0] : MAG_1_PROC_Y -- Magnetometer Y in mT (32-bit IEEE Floating Point Value)
:return: MAG_1_PROC_Y as float;
"""
addr = 0x75
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_MAG_1_PROC_Y')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_1_proc_y, = struct.unpack('>f', payload[0:4])
return reg, mag_1_proc_y, | def dreg_mag_1_proc_y(self):
"""
Contains the actual measured magnetic field from the magnetometer 1 for the y axis in mT after calibration has
been applied.
Payload structure:
[31:0] : MAG_1_PROC_Y -- Magnetometer Y in mT (32-bit IEEE Floating Point Value)
:return: MAG_1_PROC_Y as float;
"""
addr = 0x75
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_MAG_1_PROC_Y')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_1_proc_y, = struct.unpack('>f', payload[0:4])
return reg, mag_1_proc_y, |
Python | def dreg_mag_1_proc_z(self):
"""
Contains the actual measured magnetic field from the magnetometer 1 for the z axis in mT after calibration has
been applied.
Payload structure:
[31:0] : MAG_1_PROC_Z -- Magnetometer Z in mT (32-bit IEEE Floating Point Value)
:return: MAG_1_PROC_Z as float;
"""
addr = 0x76
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_MAG_1_PROC_Z')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_1_proc_z, = struct.unpack('>f', payload[0:4])
return reg, mag_1_proc_z, | def dreg_mag_1_proc_z(self):
"""
Contains the actual measured magnetic field from the magnetometer 1 for the z axis in mT after calibration has
been applied.
Payload structure:
[31:0] : MAG_1_PROC_Z -- Magnetometer Z in mT (32-bit IEEE Floating Point Value)
:return: MAG_1_PROC_Z as float;
"""
addr = 0x76
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_MAG_1_PROC_Z')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_1_proc_z, = struct.unpack('>f', payload[0:4])
return reg, mag_1_proc_z, |
Python | def dreg_mag_1_norm(self):
"""
Contains the L2-norm (magnetic norm) for the measured magnetic field from the magnetometer 1 computed over the
calibrated values.
Payload structure:
[31:0] : MAG_1_NORM -- Magnetic norm (32-bit IEEE Floating Point Value)
:return: MAG_1_NORM as float;
"""
addr = 0x77
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_MAG_1_NORM')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_1_norm, = struct.unpack('>f', payload[0:4])
return reg, mag_1_norm, | def dreg_mag_1_norm(self):
"""
Contains the L2-norm (magnetic norm) for the measured magnetic field from the magnetometer 1 computed over the
calibrated values.
Payload structure:
[31:0] : MAG_1_NORM -- Magnetic norm (32-bit IEEE Floating Point Value)
:return: MAG_1_NORM as float;
"""
addr = 0x77
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_MAG_1_NORM')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_1_norm, = struct.unpack('>f', payload[0:4])
return reg, mag_1_norm, |
Python | def dreg_mag_1_proc_time(self):
"""
Contains the time stamp at which the calibrated magnetometer 1 data was acquired.
Payload structure:
[31:0] : MAG_1_PROC_TIME -- Magnetometer 1 time stamp (32-bit IEEE Floating Point Value)
:return: MAG_1_PROC_TIME as float;
"""
addr = 0x78
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_MAG_1_PROC_TIME')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_1_proc_time, = struct.unpack('>f', payload[0:4])
return reg, mag_1_proc_time, | def dreg_mag_1_proc_time(self):
"""
Contains the time stamp at which the calibrated magnetometer 1 data was acquired.
Payload structure:
[31:0] : MAG_1_PROC_TIME -- Magnetometer 1 time stamp (32-bit IEEE Floating Point Value)
:return: MAG_1_PROC_TIME as float;
"""
addr = 0x78
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_MAG_1_PROC_TIME')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_1_proc_time, = struct.unpack('>f', payload[0:4])
return reg, mag_1_proc_time, |
Python | def dreg_mag_2_proc_x(self):
"""
Contains the actual measured magnetic field from the magnetometer 2 for the x axis in mT after calibration has
been applied.
Payload structure:
[31:0] : MAG_2_PROC_X -- Magnetometer X in mT (32-bit IEEE Floating Point Value)
:return: MAG_2_PROC_X as float;
"""
addr = 0x79
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_MAG_2_PROC_X')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_2_proc_x, = struct.unpack('>f', payload[0:4])
return reg, mag_2_proc_x, | def dreg_mag_2_proc_x(self):
"""
Contains the actual measured magnetic field from the magnetometer 2 for the x axis in mT after calibration has
been applied.
Payload structure:
[31:0] : MAG_2_PROC_X -- Magnetometer X in mT (32-bit IEEE Floating Point Value)
:return: MAG_2_PROC_X as float;
"""
addr = 0x79
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_MAG_2_PROC_X')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_2_proc_x, = struct.unpack('>f', payload[0:4])
return reg, mag_2_proc_x, |
Python | def dreg_mag_2_proc_y(self):
"""
Contains the actual measured magnetic field from the magnetometer 2 for the y axis in mT after calibration has
been applied.
Payload structure:
[31:0] : MAG_2_PROC_Y -- Magnetometer Y in mT (32-bit IEEE Floating Point Value)
:return: MAG_2_PROC_Y as float;
"""
addr = 0x7A
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_MAG_2_PROC_Y')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_2_proc_y, = struct.unpack('>f', payload[0:4])
return reg, mag_2_proc_y, | def dreg_mag_2_proc_y(self):
"""
Contains the actual measured magnetic field from the magnetometer 2 for the y axis in mT after calibration has
been applied.
Payload structure:
[31:0] : MAG_2_PROC_Y -- Magnetometer Y in mT (32-bit IEEE Floating Point Value)
:return: MAG_2_PROC_Y as float;
"""
addr = 0x7A
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_MAG_2_PROC_Y')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_2_proc_y, = struct.unpack('>f', payload[0:4])
return reg, mag_2_proc_y, |
Python | def dreg_mag_2_proc_z(self):
"""
Contains the actual measured magnetic field from the magnetometer 2 for the z axis in mT after calibration has
been applied.
Payload structure:
[31:0] : MAG_2_PROC_Z -- Magnetometer Z in mT (32-bit IEEE Floating Point Value)
:return: MAG_2_PROC_Z as float;
"""
addr = 0x7B
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_MAG_2_PROC_Z')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_2_proc_z, = struct.unpack('>f', payload[0:4])
return reg, mag_2_proc_z, | def dreg_mag_2_proc_z(self):
"""
Contains the actual measured magnetic field from the magnetometer 2 for the z axis in mT after calibration has
been applied.
Payload structure:
[31:0] : MAG_2_PROC_Z -- Magnetometer Z in mT (32-bit IEEE Floating Point Value)
:return: MAG_2_PROC_Z as float;
"""
addr = 0x7B
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_MAG_2_PROC_Z')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_2_proc_z, = struct.unpack('>f', payload[0:4])
return reg, mag_2_proc_z, |
Python | def dreg_mag_2_norm(self):
"""
Contains the L2-norm (magnetic norm) for the measured magnetic field from the magnetometer 2 computed over the
calibrated values.
Payload structure:
[31:0] : MAG_2_NORM -- Magnetic norm (32-bit IEEE Floating Point Value)
:return: MAG_2_NORM as float;
"""
addr = 0x7C
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_MAG_2_NORM')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_2_norm, = struct.unpack('>f', payload[0:4])
return reg, mag_2_norm, | def dreg_mag_2_norm(self):
"""
Contains the L2-norm (magnetic norm) for the measured magnetic field from the magnetometer 2 computed over the
calibrated values.
Payload structure:
[31:0] : MAG_2_NORM -- Magnetic norm (32-bit IEEE Floating Point Value)
:return: MAG_2_NORM as float;
"""
addr = 0x7C
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_MAG_2_NORM')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_2_norm, = struct.unpack('>f', payload[0:4])
return reg, mag_2_norm, |
Python | def dreg_mag_2_proc_time(self):
"""
Contains the time stamp at which the calibrated magnetometer 2 data was acquired.
Payload structure:
[31:0] : MAG_2_PROC_TIME -- Magnetometer 2 time stamp (32-bit IEEE Floating Point Value)
:return: MAG_2_PROC_TIME as float;
"""
addr = 0x7D
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_MAG_2_PROC_TIME')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_2_proc_time, = struct.unpack('>f', payload[0:4])
return reg, mag_2_proc_time, | def dreg_mag_2_proc_time(self):
"""
Contains the time stamp at which the calibrated magnetometer 2 data was acquired.
Payload structure:
[31:0] : MAG_2_PROC_TIME -- Magnetometer 2 time stamp (32-bit IEEE Floating Point Value)
:return: MAG_2_PROC_TIME as float;
"""
addr = 0x7D
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_MAG_2_PROC_TIME')
reg.raw_value, = struct.unpack('>f', payload[0:4])
mag_2_proc_time, = struct.unpack('>f', payload[0:4])
return reg, mag_2_proc_time, |
Python | def dreg_position_north(self):
"""
Contains the measured north position in meters from the latitude specified in CREG_HOME_NORTH.
Payload structure:
[31:0] : POSITION_NORTH -- North Position (32-bit IEEE Floating Point Value)
:return: POSITION_NORTH as float;
"""
addr = 0x86
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_POSITION_NORTH')
reg.raw_value, = struct.unpack('>f', payload[0:4])
position_north, = struct.unpack('>f', payload[0:4])
return reg, position_north, | def dreg_position_north(self):
"""
Contains the measured north position in meters from the latitude specified in CREG_HOME_NORTH.
Payload structure:
[31:0] : POSITION_NORTH -- North Position (32-bit IEEE Floating Point Value)
:return: POSITION_NORTH as float;
"""
addr = 0x86
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_POSITION_NORTH')
reg.raw_value, = struct.unpack('>f', payload[0:4])
position_north, = struct.unpack('>f', payload[0:4])
return reg, position_north, |
Python | def dreg_position_east(self):
"""
Contains the measured east position in meters from the longitude specified in CREG_HOME_EAST.
Payload structure:
[31:0] : POSITION_EAST -- East Position (32-bit IEEE Floating Point Value)
:return: POSITION_EAST as float;
"""
addr = 0x87
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_POSITION_EAST')
reg.raw_value, = struct.unpack('>f', payload[0:4])
position_east, = struct.unpack('>f', payload[0:4])
return reg, position_east, | def dreg_position_east(self):
"""
Contains the measured east position in meters from the longitude specified in CREG_HOME_EAST.
Payload structure:
[31:0] : POSITION_EAST -- East Position (32-bit IEEE Floating Point Value)
:return: POSITION_EAST as float;
"""
addr = 0x87
ok, payload = self.read_register(addr)
if ok:
reg = self.svd_parser.find_register_by(name='DREG_POSITION_EAST')
reg.raw_value, = struct.unpack('>f', payload[0:4])
position_east, = struct.unpack('>f', payload[0:4])
return reg, position_east, |
Python | def serve_autodetect_script(target_dir='./'):
"""
Copies RSL autodetect script in target directory
:param target_dir: directory to copy autodetect script to
:return: 0 -- execution successful
"""
autodetect_script = 'rsl_autodetect.py'
src_path = Path(__file__).parent
target_dir = Path(target_dir)
autodetect_script_abspath = src_path / autodetect_script
copy(autodetect_script_abspath, target_dir)
# make copied file executable
copied_file = target_dir / autodetect_script
st = os.stat(copied_file)
os.chmod(copied_file, st.st_mode | stat.S_IEXEC) | def serve_autodetect_script(target_dir='./'):
"""
Copies RSL autodetect script in target directory
:param target_dir: directory to copy autodetect script to
:return: 0 -- execution successful
"""
autodetect_script = 'rsl_autodetect.py'
src_path = Path(__file__).parent
target_dir = Path(target_dir)
autodetect_script_abspath = src_path / autodetect_script
copy(autodetect_script_abspath, target_dir)
# make copied file executable
copied_file = target_dir / autodetect_script
st = os.stat(copied_file)
os.chmod(copied_file, st.st_mode | stat.S_IEXEC) |
Python | def open_gui_plot(self, list_sel, dropdown_sel):
"""
Function to open TopLevel GUI Plot with parameters
:param list_sel: List of selected keywords
:param dropdown_sel: Selected dropdown Item "timeframe"
"""
form_plot = gui_plot.GUIPlot(
self,
interest(
list_sel,
dropdown_sel
),
list_sel
)
form_plot.grab_set() | def open_gui_plot(self, list_sel, dropdown_sel):
"""
Function to open TopLevel GUI Plot with parameters
:param list_sel: List of selected keywords
:param dropdown_sel: Selected dropdown Item "timeframe"
"""
form_plot = gui_plot.GUIPlot(
self,
interest(
list_sel,
dropdown_sel
),
list_sel
)
form_plot.grab_set() |
Python | def read(text):
"""
Processes the text and separates the sentences from each other. Also detect language of the text.
:param text: Inserted Text from Textbox
:return sentences: List of separated sentences
:return language: Return language in ISO 639 short format for usage of stopwords
"""
language = detectlanguage(text, True)
sentences_split = text.split(". ")
sentences = []
for sentence in sentences_split:
sentences.append(sentence.replace("[^a-zA-Z]", " ").split(" "))
sentences.pop()
return sentences, language | def read(text):
"""
Processes the text and separates the sentences from each other. Also detect language of the text.
:param text: Inserted Text from Textbox
:return sentences: List of separated sentences
:return language: Return language in ISO 639 short format for usage of stopwords
"""
language = detectlanguage(text, True)
sentences_split = text.split(". ")
sentences = []
for sentence in sentences_split:
sentences.append(sentence.replace("[^a-zA-Z]", " ").split(" "))
sentences.pop()
return sentences, language |
Python | def sentence_similarity(sentence1, sentence2, stop_words=None):
"""
Calculate the similarity of two sentences
:param sentence1: Sentence 1 which is compared with sentence 2
:param sentence2: Sentence 2 which is compared with sentence 1
:param stop_words: List of words which are very common but don't provide useful information for text analysis
:return cosine_distance: Return calculated cosine similarity of two vectors (sentences)
"""
if stop_words is None:
stop_words = []
sentence1 = [w.lower() for w in sentence1] # Each word of sentence is parsed. To generalized use lower cases
sentence2 = [w.lower() for w in sentence2]
all_words = list(set(sentence1+sentence2))
vector1 = [0] * len(all_words) # Create vectors for sentence 1 and 2
vector2 = [0] * len(all_words)
for w in sentence1:
if w in stop_words:
continue
vector1[all_words.index(w)] += 1
for w in sentence2:
if w in stop_words:
continue
vector2[all_words.index(w)] += 1
return 1-cosine_distance(vector1, vector2) | def sentence_similarity(sentence1, sentence2, stop_words=None):
"""
Calculate the similarity of two sentences
:param sentence1: Sentence 1 which is compared with sentence 2
:param sentence2: Sentence 2 which is compared with sentence 1
:param stop_words: List of words which are very common but don't provide useful information for text analysis
:return cosine_distance: Return calculated cosine similarity of two vectors (sentences)
"""
if stop_words is None:
stop_words = []
sentence1 = [w.lower() for w in sentence1] # Each word of sentence is parsed. To generalized use lower cases
sentence2 = [w.lower() for w in sentence2]
all_words = list(set(sentence1+sentence2))
vector1 = [0] * len(all_words) # Create vectors for sentence 1 and 2
vector2 = [0] * len(all_words)
for w in sentence1:
if w in stop_words:
continue
vector1[all_words.index(w)] += 1
for w in sentence2:
if w in stop_words:
continue
vector2[all_words.index(w)] += 1
return 1-cosine_distance(vector1, vector2) |
Python | def generate_sim_matrix(sentences, stop_words=None):
"""
Generate the similarity matrix of a text
:param sentences: Get list of sentences of read-function
:param stop_words: List of words which are very common but don't provide useful information for text analysis
:return similarity_matrix: Return
"""
similarity_matrix = np.zeros((len(sentences), len(sentences))) # Create two-dimensional empty matrix
for vector1 in range(len(sentences)):
for vector2 in range(len(sentences)):
if vector1 == vector2:
continue
similarity_matrix[vector1][vector2] = sentence_similarity(
sentences[vector1],
sentences[vector2],
stop_words
)
return similarity_matrix | def generate_sim_matrix(sentences, stop_words=None):
"""
Generate the similarity matrix of a text
:param sentences: Get list of sentences of read-function
:param stop_words: List of words which are very common but don't provide useful information for text analysis
:return similarity_matrix: Return
"""
similarity_matrix = np.zeros((len(sentences), len(sentences))) # Create two-dimensional empty matrix
for vector1 in range(len(sentences)):
for vector2 in range(len(sentences)):
if vector1 == vector2:
continue
similarity_matrix[vector1][vector2] = sentence_similarity(
sentences[vector1],
sentences[vector2],
stop_words
)
return similarity_matrix |
Python | def build_summary(text, top_n=5):
"""
Build summary with built functions to generate a similarity matrix and with networkx sentences are ranked.
With ranked sentences are then used to create the summary with a sort algorithm.
:param text: Inserted Text from textbox
:param top_n: maximum length with standard value of 5
:return: summarized text as a list
"""
install_stopwords()
summarized_text = []
sentences, language = read(text)
stop_words = stopwords.words(language)
similarity_matrix = generate_sim_matrix(sentences, stop_words)
similarity_graph = nx.from_numpy_array(similarity_matrix) # Create graph from 2D Matrix
ranks = nx.pagerank(similarity_graph) # Create ranking of the nodes in the graph
ranked_sentence = sorted( # Sorting to get top sentences
(
(ranks[i], sentences_id) for i, sentences_id in enumerate(sentences)
),
reverse=True) # to get the top sentences
for i in range(top_n):
summarized_text.append(" ".join(ranked_sentence[i][1])) # Build summary of ranked sentences list
return summarized_text | def build_summary(text, top_n=5):
"""
Build summary with built functions to generate a similarity matrix and with networkx sentences are ranked.
With ranked sentences are then used to create the summary with a sort algorithm.
:param text: Inserted Text from textbox
:param top_n: maximum length with standard value of 5
:return: summarized text as a list
"""
install_stopwords()
summarized_text = []
sentences, language = read(text)
stop_words = stopwords.words(language)
similarity_matrix = generate_sim_matrix(sentences, stop_words)
similarity_graph = nx.from_numpy_array(similarity_matrix) # Create graph from 2D Matrix
ranks = nx.pagerank(similarity_graph) # Create ranking of the nodes in the graph
ranked_sentence = sorted( # Sorting to get top sentences
(
(ranks[i], sentences_id) for i, sentences_id in enumerate(sentences)
),
reverse=True) # to get the top sentences
for i in range(top_n):
summarized_text.append(" ".join(ranked_sentence[i][1])) # Build summary of ranked sentences list
return summarized_text |
Python | def scrape(query, language):
"""
Web Scraping Function with BeautifulSoup as a Package
:param query: Search Query -> Keyword which is searched on Google Scholar
:param language: in which language?
:return data: List of Dictionaries with search results
"""
# Header for POST-Call
header = {
"User-agent":
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) " +
"Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582"
}
# Search parameter for POST-Call
params = {
"q": query,
"hl": language,
}
html = requests.get("https://scholar.google.com/scholar", headers=header, params=params).text # HTML Post Query
soup = BeautifulSoup(html, "lxml") # BeautifulSoup for web scraping
# empty list
data = []
# Container in which all the important information
for result in soup.select('.gs_ri'):
title = result.select_one('.gs_rt').text
title_link = result.select_one('.gs_rt a')['href']
publication_info = result.select_one('.gs_a').text
snippet = result.select_one('.gs_rs').text
data.append({
'title': title,
'publication_info': publication_info,
'snippet': snippet,
'title_link': title_link,
})
return data | def scrape(query, language):
"""
Web Scraping Function with BeautifulSoup as a Package
:param query: Search Query -> Keyword which is searched on Google Scholar
:param language: in which language?
:return data: List of Dictionaries with search results
"""
# Header for POST-Call
header = {
"User-agent":
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) " +
"Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582"
}
# Search parameter for POST-Call
params = {
"q": query,
"hl": language,
}
html = requests.get("https://scholar.google.com/scholar", headers=header, params=params).text # HTML Post Query
soup = BeautifulSoup(html, "lxml") # BeautifulSoup for web scraping
# empty list
data = []
# Container in which all the important information
for result in soup.select('.gs_ri'):
title = result.select_one('.gs_rt').text
title_link = result.select_one('.gs_rt a')['href']
publication_info = result.select_one('.gs_a').text
snippet = result.select_one('.gs_rs').text
data.append({
'title': title,
'publication_info': publication_info,
'snippet': snippet,
'title_link': title_link,
})
return data |
Python | def install_stopwords():
"""
Nltk Downloader is broken. There is a workaround to download the required "stopwords" package.
This code disable the SSL Certificate Verification.
Found solution on: https://github.com/gunthercox/ChatterBot/issues/930#issuecomment-322111087
"""
try:
_create_unverified_https_context = ssl._create_unverified_context
except AttributeError:
# Legacy Python that doesn't verify HTTPS certificates by default
pass
else:
# Handle target environment that doesn't support HTTPS verification
ssl._create_default_https_context = _create_unverified_https_context
download("stopwords") # Adapted to download only the required package from nltk | def install_stopwords():
"""
Nltk Downloader is broken. There is a workaround to download the required "stopwords" package.
This code disable the SSL Certificate Verification.
Found solution on: https://github.com/gunthercox/ChatterBot/issues/930#issuecomment-322111087
"""
try:
_create_unverified_https_context = ssl._create_unverified_context
except AttributeError:
# Legacy Python that doesn't verify HTTPS certificates by default
pass
else:
# Handle target environment that doesn't support HTTPS verification
ssl._create_default_https_context = _create_unverified_https_context
download("stopwords") # Adapted to download only the required package from nltk |
Python | def detectlanguage(text, short: bool):
""" Automatic detection of the language + conversion from "de" to "German" using the packages Langdetect and ISO639.
:param text: Inserted text from Textbox
:param short: Should the recognised language be converted to ISO 639 format?
:type short: Boolean: Yes or No
:return: Returns language
"""
if short: # de to German
language = iso639.to_name(detect(text))
else:
language = detect(text) # de
return language | def detectlanguage(text, short: bool):
""" Automatic detection of the language + conversion from "de" to "German" using the packages Langdetect and ISO639.
:param text: Inserted text from Textbox
:param short: Should the recognised language be converted to ISO 639 format?
:type short: Boolean: Yes or No
:return: Returns language
"""
if short: # de to German
language = iso639.to_name(detect(text))
else:
language = detect(text) # de
return language |
Python | def extract_keywords(text, wordcount, duplication, max_keywords):
"""
Extract keywords from a given text and given parameter with
:param text: inserted text from textbox
:param wordcount: limit the word count of the extracted keyword, i.e. <= 3
:param duplication: limit the duplication of words in different keywords. 0.9 allows repetition of words in keywords
:param max_keywords: determine the count of keywords which are extracted, i.e. <= 20
:return: list of tuples keywords with scores
"""
language = helpers.detectlanguage(text, False)
extractor = yake.KeywordExtractor(
lan=language,
n=wordcount,
dedupLim=duplication,
top=max_keywords,
features=None
)
keywords = extractor.extract_keywords(text)
keywords.sort(key=lambda a: a[1]) # Lower Score = the more relevant. For this: Sorting list of tuples of Item 1
return keywords | def extract_keywords(text, wordcount, duplication, max_keywords):
"""
Extract keywords from a given text and given parameter with
:param text: inserted text from textbox
:param wordcount: limit the word count of the extracted keyword, i.e. <= 3
:param duplication: limit the duplication of words in different keywords. 0.9 allows repetition of words in keywords
:param max_keywords: determine the count of keywords which are extracted, i.e. <= 20
:return: list of tuples keywords with scores
"""
language = helpers.detectlanguage(text, False)
extractor = yake.KeywordExtractor(
lan=language,
n=wordcount,
dedupLim=duplication,
top=max_keywords,
features=None
)
keywords = extractor.extract_keywords(text)
keywords.sort(key=lambda a: a[1]) # Lower Score = the more relevant. For this: Sorting list of tuples of Item 1
return keywords |
Python | def related_keywords(keyword):
"""
Find related keywords with given keyword via Google Trend API
:param keyword: Selected Keyword from listbox
:return list_top_kw: List of top keywords from Google API Call
"""
trend = TrendReq()
keyword = [f"{keyword}"] # Necessary API String Format
trend.build_payload(kw_list=keyword) # Google Trend API Call with given parameter
related_kw = trend.related_topics()
related_kw.values()
data_top_kw = list(related_kw.values())[0]["top"]
list_top_kw = []
for i in range(len(data_top_kw.values)):
list_top_kw.append(data_top_kw.values[i][5])
return list_top_kw | def related_keywords(keyword):
"""
Find related keywords with given keyword via Google Trend API
:param keyword: Selected Keyword from listbox
:return list_top_kw: List of top keywords from Google API Call
"""
trend = TrendReq()
keyword = [f"{keyword}"] # Necessary API String Format
trend.build_payload(kw_list=keyword) # Google Trend API Call with given parameter
related_kw = trend.related_topics()
related_kw.values()
data_top_kw = list(related_kw.values())[0]["top"]
list_top_kw = []
for i in range(len(data_top_kw.values)):
list_top_kw.append(data_top_kw.values[i][5])
return list_top_kw |
Python | def interest_of_time(keyword_list, timeframe):
"""
Get dataset of relative interest of selected keywords
:param keyword_list: Selected keywords (up to 5) from second listbox
:param timeframe: dropdown menu Item with given timeframe for get time specific data
:return data: Dataframe with y = Date; x = Keyword relative interest to top keyword
"""
trend = TrendReq()
keywords = keyword_list
trend.build_payload(kw_list=keywords, cat=None, timeframe=timeframe, geo="")
data = trend.interest_over_time()
return data | def interest_of_time(keyword_list, timeframe):
"""
Get dataset of relative interest of selected keywords
:param keyword_list: Selected keywords (up to 5) from second listbox
:param timeframe: dropdown menu Item with given timeframe for get time specific data
:return data: Dataframe with y = Date; x = Keyword relative interest to top keyword
"""
trend = TrendReq()
keywords = keyword_list
trend.build_payload(kw_list=keywords, cat=None, timeframe=timeframe, geo="")
data = trend.interest_over_time()
return data |
Python | def open_gui_summarize(self):
"""
Function to open TopLevel GUI Summarize
"""
form_summarize = gui_summarize.GUISummarize(self)
form_summarize.grab_set() | def open_gui_summarize(self):
"""
Function to open TopLevel GUI Summarize
"""
form_summarize = gui_summarize.GUISummarize(self)
form_summarize.grab_set() |
Python | def open_gui_analyze(self):
"""
Function to open TopLevel GUI Analyze
"""
form_analyze = gui_analyze.GUIAnalyze(self)
form_analyze.grab_set() | def open_gui_analyze(self):
"""
Function to open TopLevel GUI Analyze
"""
form_analyze = gui_analyze.GUIAnalyze(self)
form_analyze.grab_set() |
Python | def open_gui_research(self):
"""
Function to open TopLevel GUI Research
"""
form_research = gui_research.GUIResearch(self)
form_research.grab_set() | def open_gui_research(self):
"""
Function to open TopLevel GUI Research
"""
form_research = gui_research.GUIResearch(self)
form_research.grab_set() |
Python | def plot(self, data, keywords):
"""
Function to plot data: y: Date, x: keywords with relative occurrence to top related keyword.
:param data: DataFrame from :function: `~researchtool.keywordanalytics.interest_of_time`
:param keywords: list of selected related keywords
"""
figure = Figure()
plt = figure.add_subplot(1, 1, 1)
for keyword in keywords:
plt.plot(data.index, data[keyword], label=keyword)
plt.legend()
canvas = FigureCanvasTkAgg(figure, master=self)
canvas.draw()
canvas.get_tk_widget().grid(row=0, column=0) | def plot(self, data, keywords):
"""
Function to plot data: y: Date, x: keywords with relative occurrence to top related keyword.
:param data: DataFrame from :function: `~researchtool.keywordanalytics.interest_of_time`
:param keywords: list of selected related keywords
"""
figure = Figure()
plt = figure.add_subplot(1, 1, 1)
for keyword in keywords:
plt.plot(data.index, data[keyword], label=keyword)
plt.legend()
canvas = FigureCanvasTkAgg(figure, master=self)
canvas.draw()
canvas.get_tk_widget().grid(row=0, column=0) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.