language
stringclasses
6 values
original_string
stringlengths
25
887k
text
stringlengths
25
887k
Python
def loss_gradient(self, H, g_os, g, h, hp, w): """Computes the gradient of the hint loss location w. Args: H: d x n np array - prediction from self.n hinters g_os: d x 1 np.array - ground truth cumulative loss g (np.array) - d x 1 vector of gradient at time t h (np.array) - d x 1 vector of hint at time t hp (np.array) - d x 1 vector of hint at time t-1 w: n x 1 np.array - omega weight play of hinter """ d = H.shape[0] # Number of gradient values n = H.shape[1] # Number of experts # Add default values err = H @ w - g_os err_norm = np.linalg.norm(err, ord=2) g_norm = np.linalg.norm(g + hp - h, ord=2) if np.isclose(err_norm, 0.0): return np.zeros((n,)) return ((g_norm / err_norm) * (H.T @ err)).reshape(-1,)
def loss_gradient(self, H, g_os, g, h, hp, w): """Computes the gradient of the hint loss location w. Args: H: d x n np array - prediction from self.n hinters g_os: d x 1 np.array - ground truth cumulative loss g (np.array) - d x 1 vector of gradient at time t h (np.array) - d x 1 vector of hint at time t hp (np.array) - d x 1 vector of hint at time t-1 w: n x 1 np.array - omega weight play of hinter """ d = H.shape[0] # Number of gradient values n = H.shape[1] # Number of experts # Add default values err = H @ w - g_os err_norm = np.linalg.norm(err, ord=2) g_norm = np.linalg.norm(g + hp - h, ord=2) if np.isclose(err_norm, 0.0): return np.zeros((n,)) return ((g_norm / err_norm) * (H.T @ err)).reshape(-1,)
Python
def save_forecasts(preds, model="spatiotemporal_mean", submodel="spatiotemporal_mean-1981_2010", gt_id="contest_tmp2m", horizon="34w", target_date_str="20191029"): """Saves predictions produced by a given model and submodel for a given target date and task Args: preds: pandas DataFrame with columns ['lat','lon','start_date','pred'] containing predictions for the given target date model: string model name submodel: string submodel name or None; if None, returns forecast directory associated with selected submodel or None if no submodel selected gt_id: contest_tmp2m or contest_precip horizon: "12w", "34w", or "56w" target_date_str: first date of target two week period; string in YYYYMMDD format """ outfile = get_forecast_filename(model=model, submodel=submodel, gt_id=gt_id, horizon=horizon, target_date_str=target_date_str) pandas2hdf(preds, outfile)
def save_forecasts(preds, model="spatiotemporal_mean", submodel="spatiotemporal_mean-1981_2010", gt_id="contest_tmp2m", horizon="34w", target_date_str="20191029"): """Saves predictions produced by a given model and submodel for a given target date and task Args: preds: pandas DataFrame with columns ['lat','lon','start_date','pred'] containing predictions for the given target date model: string model name submodel: string submodel name or None; if None, returns forecast directory associated with selected submodel or None if no submodel selected gt_id: contest_tmp2m or contest_precip horizon: "12w", "34w", or "56w" target_date_str: first date of target two week period; string in YYYYMMDD format """ outfile = get_forecast_filename(model=model, submodel=submodel, gt_id=gt_id, horizon=horizon, target_date_str=target_date_str) pandas2hdf(preds, outfile)
Python
def start_logger(model="spatiotemporal_mean", submodel=None, gt_id="contest_tmp2m", horizon="34w", target_dates="std_val"): """Initializes and returns Logger object pointing to log file for the given model, submodel, task, and target_dates Args: model: string model name submodel: string submodel name or None; if None, selected submodel of model is used gt_id: contest_tmp2m or contest_precip horizon: "12w", "34w", or "56w" target_dates: string representing set of target dates """ log_file = get_log_filename(model=model,submodel=submodel,gt_id=gt_id, horizon=horizon,target_dates=target_dates) make_parent_directories(log_file) # 'w' overwrites previous log return Logger(log_file, 'w')
def start_logger(model="spatiotemporal_mean", submodel=None, gt_id="contest_tmp2m", horizon="34w", target_dates="std_val"): """Initializes and returns Logger object pointing to log file for the given model, submodel, task, and target_dates Args: model: string model name submodel: string submodel name or None; if None, selected submodel of model is used gt_id: contest_tmp2m or contest_precip horizon: "12w", "34w", or "56w" target_dates: string representing set of target dates """ log_file = get_log_filename(model=model,submodel=submodel,gt_id=gt_id, horizon=horizon,target_dates=target_dates) make_parent_directories(log_file) # 'w' overwrites previous log return Logger(log_file, 'w')
Python
def log_params(params_names, params_values): """Log arguments using names in params_names and values in params_values. Args ---------- params_names : list List with names of parameters to be logged params_values : list List with values of parameters to be logged """ printf("Parameter values:") assert len(params_names)==len(params_values) for name, value in zip(params_names, params_values): printf(f" {name}: {value}")
def log_params(params_names, params_values): """Log arguments using names in params_names and values in params_values. Args ---------- params_names : list List with names of parameters to be logged params_values : list List with values of parameters to be logged """ printf("Parameter values:") assert len(params_names)==len(params_values) for name, value in zip(params_names, params_values): printf(f" {name}: {value}")
Python
def calc_slope(self) -> float: """ Calculate slope of best line using ordinary least squares """ # result = (nΣxi*yi – Σxi*Σyi) / (nΣxi^2 – (Σxi)^2) sum_xy = 0 sum_x_2 = 0 for point in self.points: sum_xy += point.coor_x * point.coor_y # Σxi*yi sum_x_2 += point.coor_x ** 2 # Σxi^2 # nΣxi*yi – Σxi*Σyi dividend = self.points_count * sum_xy dividend -= self.sum_x * self.sum_y # nΣxi^2 – (Σxi)^2 divisor = self.points_count * sum_x_2 divisor -= self.sum_x**2 return dividend / divisor
def calc_slope(self) -> float: """ Calculate slope of best line using ordinary least squares """ # result = (nΣxi*yi – Σxi*Σyi) / (nΣxi^2 – (Σxi)^2) sum_xy = 0 sum_x_2 = 0 for point in self.points: sum_xy += point.coor_x * point.coor_y # Σxi*yi sum_x_2 += point.coor_x ** 2 # Σxi^2 # nΣxi*yi – Σxi*Σyi dividend = self.points_count * sum_xy dividend -= self.sum_x * self.sum_y # nΣxi^2 – (Σxi)^2 divisor = self.points_count * sum_x_2 divisor -= self.sum_x**2 return dividend / divisor
Python
def calc_y_interception(self) -> float: """ Calculate y interception of best line using ordinary least squares """ # result = (Σyi – aΣxi) / n dividend = self.sum_y dividend -= self.get_slope() * self.sum_x return dividend / self.points_count
def calc_y_interception(self) -> float: """ Calculate y interception of best line using ordinary least squares """ # result = (Σyi – aΣxi) / n dividend = self.sum_y dividend -= self.get_slope() * self.sum_x return dividend / self.points_count
Python
def calc(self, x_value:int) -> float: """ Get result of f(x) using the line obtained using ordinary least squares """ return self.slope * x_value + self.y_interception
def calc(self, x_value:int) -> float: """ Get result of f(x) using the line obtained using ordinary least squares """ return self.slope * x_value + self.y_interception
Python
def graph(self): """ Print graph of points and best line using ordinary least squares """ # Set coordinates to draw line linear_x = [self.get_domain()[0], self.get_domain()[-1]] linear_y = [] for value in linear_x: linear_y.append(self.calc(value)) # Set coordinates to draw points for point in self.points: plt.scatter(point.coor_x, point.coor_y) plt.plot(linear_x, linear_y, '-r', label=self.get_function()) plt.grid() plt.show()
def graph(self): """ Print graph of points and best line using ordinary least squares """ # Set coordinates to draw line linear_x = [self.get_domain()[0], self.get_domain()[-1]] linear_y = [] for value in linear_x: linear_y.append(self.calc(value)) # Set coordinates to draw points for point in self.points: plt.scatter(point.coor_x, point.coor_y) plt.plot(linear_x, linear_y, '-r', label=self.get_function()) plt.grid() plt.show()
Python
def calc_bolsano_steps(self, interval, error, splits): """Calculate number of steps to approximate the interval to an root using the Bolsano theorem""" result = math.log( abs(interval[-1] - interval[0]) / error, splits) result = int(math.ceil(result)) return result
def calc_bolsano_steps(self, interval, error, splits): """Calculate number of steps to approximate the interval to an root using the Bolsano theorem""" result = math.log( abs(interval[-1] - interval[0]) / error, splits) result = int(math.ceil(result)) return result
Python
def nsection(self, interval, error, splits=2, max_steps=0): """Get root of function using Bolsano theorem, this function is very flexible, SPLITS could be an integer or an array, you can specify number of MAX_STEPS to terminate the loop""" # Check interval assert len(interval) >= 2, 'interval must containt at least 2 values.' assert self.bolsano_signs_condition(interval), f'no roots in {interval} according to Bolsano theorem.' a_value, b_value = interval[0], interval[-1] # Check error assert error > 0, 'error must be higher than 0 (zero)' # Check splits assert (isinstance(splits, list) or (isinstance(splits, int) and splits > 0)),'wrong splits' max_splits = max(splits) if isinstance(splits, list) else splits # Check max steps assert isinstance(max_steps, int), 'max_steps must be an int.' assert max_steps >= 0, 'max number of steps must be higher or equal to 0 (zero)' root = None step = segments = 0 verbose_text = '' current_error = 0.0 while True: # Get number of splits n_splits = get_correlative(splits, step) if isinstance(splits, list) else splits # Calculate segment segment_len = (b_value - a_value) / n_splits a_temp = a_value + segment_len * segments b_temp = a_value + segment_len * (segments + 1) # Verbose ## TODO: remove inaccurated decimals. current_error = round(err.absolute_error([a_temp, b_temp]), len(str(error))) if segments == 0: verbose_text = f'step={step}\t{self._function_string(a_temp, current_error)}' verbose_text += f'\t{self._function_string(b_temp, current_error)}' # Root conditions if self.calc(b_temp) == 0: root = b_temp if self._verbose: print('root founded.') break if self.bolsano_signs_condition([a_temp, b_temp]): a_value = a_temp b_value = b_temp if self._verbose: ## TODO: remove inaccurated decimals. verbose_text += ('\t' + '-' * 3).ljust(25, " ") * (max_splits - segments - 1) verbose_text += f'\troot={str(err.remove_inaccuracy((a_value + b_value)/2, current_error)).ljust(25, " ")}' verbose_text += f'\terror={round(current_error, len(str(error)))}' print(verbose_text) step += 1 segments = 0 else: segments += 1 # Stop conditions if b_value - a_value < error: if self._verbose: print('reached acceptable error.') break if step > self.calc_bolsano_steps(interval, error, max_splits): if self._verbose: print('reached expected number of steps.') break if 0 < max_steps <= step: if self._verbose: print('reached specified number of steps.') break # If the exact root is not founded, get the middle value root = root if root else (a_value + b_value) / 2 # Remove inaccurated decimals root = err.remove_inaccuracy(root, current_error) return root, current_error
def nsection(self, interval, error, splits=2, max_steps=0): """Get root of function using Bolsano theorem, this function is very flexible, SPLITS could be an integer or an array, you can specify number of MAX_STEPS to terminate the loop""" # Check interval assert len(interval) >= 2, 'interval must containt at least 2 values.' assert self.bolsano_signs_condition(interval), f'no roots in {interval} according to Bolsano theorem.' a_value, b_value = interval[0], interval[-1] # Check error assert error > 0, 'error must be higher than 0 (zero)' # Check splits assert (isinstance(splits, list) or (isinstance(splits, int) and splits > 0)),'wrong splits' max_splits = max(splits) if isinstance(splits, list) else splits # Check max steps assert isinstance(max_steps, int), 'max_steps must be an int.' assert max_steps >= 0, 'max number of steps must be higher or equal to 0 (zero)' root = None step = segments = 0 verbose_text = '' current_error = 0.0 while True: # Get number of splits n_splits = get_correlative(splits, step) if isinstance(splits, list) else splits # Calculate segment segment_len = (b_value - a_value) / n_splits a_temp = a_value + segment_len * segments b_temp = a_value + segment_len * (segments + 1) # Verbose ## TODO: remove inaccurated decimals. current_error = round(err.absolute_error([a_temp, b_temp]), len(str(error))) if segments == 0: verbose_text = f'step={step}\t{self._function_string(a_temp, current_error)}' verbose_text += f'\t{self._function_string(b_temp, current_error)}' # Root conditions if self.calc(b_temp) == 0: root = b_temp if self._verbose: print('root founded.') break if self.bolsano_signs_condition([a_temp, b_temp]): a_value = a_temp b_value = b_temp if self._verbose: ## TODO: remove inaccurated decimals. verbose_text += ('\t' + '-' * 3).ljust(25, " ") * (max_splits - segments - 1) verbose_text += f'\troot={str(err.remove_inaccuracy((a_value + b_value)/2, current_error)).ljust(25, " ")}' verbose_text += f'\terror={round(current_error, len(str(error)))}' print(verbose_text) step += 1 segments = 0 else: segments += 1 # Stop conditions if b_value - a_value < error: if self._verbose: print('reached acceptable error.') break if step > self.calc_bolsano_steps(interval, error, max_splits): if self._verbose: print('reached expected number of steps.') break if 0 < max_steps <= step: if self._verbose: print('reached specified number of steps.') break # If the exact root is not founded, get the middle value root = root if root else (a_value + b_value) / 2 # Remove inaccurated decimals root = err.remove_inaccuracy(root, current_error) return root, current_error
Python
def remove_files(self, dry_run=True): """ Loops through Windows and Linux lists and deletes all folder except latest for each product Args: dry_run: (bool) if True just prints output without actual deletion Returns: None """ for dist in ["linx64", "winx64"]: items = super().get_list_items(dist) items_to_keep = {} for item in items: title = item.properties["Title"] if title not in items_to_keep: # ensure at least one item to be kept items_to_keep[title] = item continue if item.properties["build_date"] > items_to_keep[title].properties["build_date"]: item_to_delete = items_to_keep.pop(title) items_to_keep[title] = item else: item_to_delete = item if dry_run: print(f"Will delete {title}: {item_to_delete.properties['build_date']} ({dist})") else: folder_url = item_to_delete.properties["relative_url"].rsplit("/", maxsplit=1)[0] remote_folder = self.ctx.web.get_folder_by_server_relative_url( f"/sites/BetaDownloader/{folder_url}" ) self.ctx.execute_query() remote_folder.delete_object() item_to_delete.delete_object() if dry_run: print("#" * 30) for key, val in items_to_keep.items(): print(f"Will keep {key}: {val.properties['build_date']} ({dist})") print("#" * 30, "\n\n\n") self.ctx.execute_query()
def remove_files(self, dry_run=True): """ Loops through Windows and Linux lists and deletes all folder except latest for each product Args: dry_run: (bool) if True just prints output without actual deletion Returns: None """ for dist in ["linx64", "winx64"]: items = super().get_list_items(dist) items_to_keep = {} for item in items: title = item.properties["Title"] if title not in items_to_keep: # ensure at least one item to be kept items_to_keep[title] = item continue if item.properties["build_date"] > items_to_keep[title].properties["build_date"]: item_to_delete = items_to_keep.pop(title) items_to_keep[title] = item else: item_to_delete = item if dry_run: print(f"Will delete {title}: {item_to_delete.properties['build_date']} ({dist})") else: folder_url = item_to_delete.properties["relative_url"].rsplit("/", maxsplit=1)[0] remote_folder = self.ctx.web.get_folder_by_server_relative_url( f"/sites/BetaDownloader/{folder_url}" ) self.ctx.execute_query() remote_folder.delete_object() item_to_delete.delete_object() if dry_run: print("#" * 30) for key, val in items_to_keep.items(): print(f"Will keep {key}: {val.properties['build_date']} ({dist})") print("#" * 30, "\n\n\n") self.ctx.execute_query()
Python
def retry(exceptions, tries=4, delay=3, backoff=1, logger=None, proc_lock=False): """ Retry calling the decorated function using an exponential backoff. Args: exceptions (Exception or tuple): the exception to check. may be a tuple of exceptions to check tries (int): number of times to try (not retry) before giving up delay (int): initial delay between retries in seconds backoff (int): backoff multiplier e.g. value of 2 will double the delay each retry logger (logging): logger to use. If None, print proc_lock (bool): if retry is applied to proc lock function Returns: decorator """ def deco_retry(func): @wraps(func) def f_retry(self, *args, **kwargs): mtries, mdelay = tries, delay while mtries > 0: try: return func(self, *args, **kwargs) except exceptions as e: msg = f"{e}. Error occurred, attempt: {tries - mtries + 1}/{tries}" if proc_lock: # only applied for process lock err = "Stop all processes running from installation folder. " err += f"Attempt: {tries - mtries + 1}/{tries}" if mtries > 1: err += " Autoretry in 60sec." Downloader.toaster_notification("Failed", err) else: raise DownloaderError(msg) if logger: logger.warning(msg) else: print(msg) time.sleep(mdelay) mtries -= 1 mdelay *= backoff else: error = ( "Please verify that your connection is stable, avoid switching state of VPN during download. " "For artifactory you have to be on VPN. " f"Number of attempts: {tries}/{tries}" ) if logger: raise DownloaderError(error) else: print(error) return f_retry # true decorator return deco_retry
def retry(exceptions, tries=4, delay=3, backoff=1, logger=None, proc_lock=False): """ Retry calling the decorated function using an exponential backoff. Args: exceptions (Exception or tuple): the exception to check. may be a tuple of exceptions to check tries (int): number of times to try (not retry) before giving up delay (int): initial delay between retries in seconds backoff (int): backoff multiplier e.g. value of 2 will double the delay each retry logger (logging): logger to use. If None, print proc_lock (bool): if retry is applied to proc lock function Returns: decorator """ def deco_retry(func): @wraps(func) def f_retry(self, *args, **kwargs): mtries, mdelay = tries, delay while mtries > 0: try: return func(self, *args, **kwargs) except exceptions as e: msg = f"{e}. Error occurred, attempt: {tries - mtries + 1}/{tries}" if proc_lock: # only applied for process lock err = "Stop all processes running from installation folder. " err += f"Attempt: {tries - mtries + 1}/{tries}" if mtries > 1: err += " Autoretry in 60sec." Downloader.toaster_notification("Failed", err) else: raise DownloaderError(msg) if logger: logger.warning(msg) else: print(msg) time.sleep(mdelay) mtries -= 1 mdelay *= backoff else: error = ( "Please verify that your connection is stable, avoid switching state of VPN during download. " "For artifactory you have to be on VPN. " f"Number of attempts: {tries}/{tries}" ) if logger: raise DownloaderError(error) else: print(error) return f_retry # true decorator return deco_retry
Python
def authorize_sharepoint(self): """ Function that uses PnP to authorize user in SharePoint using Windows account and to get actual client_id and client_secret Returns: ctx: authorization context for Office365 library """ self.update_installation_history(status="In-Progress", details="Authorizing in SharePoint") command = "powershell.exe " command += "Connect-PnPOnline -Url https://ansys.sharepoint.com/sites/BetaDownloader -UseWebLogin;" command += '(Get-PnPListItem -List secret_list -Fields "Title","client_id","client_secret").FieldValues' out_str = self.subprocess_call(command, shell=True, popen=True) secret_list = [] try: for line in out_str.splitlines(): if "Title" in line: secret_dict = {"Title": line.split()[1]} elif "client_id" in line: secret_dict["client_id"] = line.split()[1] elif "client_secret" in line: secret_dict["client_secret"] = line.split()[1] secret_list.append(secret_dict) except NameError: raise DownloaderError("Cannot retrieve authentication tokens for SharePoint") secret_list.sort(key=lambda elem: elem["Title"], reverse=True) context_auth = AuthenticationContext(url=SHAREPOINT_SITE_URL) context_auth.acquire_token_for_app( client_id=secret_list[0]["client_id"], client_secret=secret_list[0]["client_secret"] ) ctx = ClientContext(SHAREPOINT_SITE_URL, context_auth) return ctx
def authorize_sharepoint(self): """ Function that uses PnP to authorize user in SharePoint using Windows account and to get actual client_id and client_secret Returns: ctx: authorization context for Office365 library """ self.update_installation_history(status="In-Progress", details="Authorizing in SharePoint") command = "powershell.exe " command += "Connect-PnPOnline -Url https://ansys.sharepoint.com/sites/BetaDownloader -UseWebLogin;" command += '(Get-PnPListItem -List secret_list -Fields "Title","client_id","client_secret").FieldValues' out_str = self.subprocess_call(command, shell=True, popen=True) secret_list = [] try: for line in out_str.splitlines(): if "Title" in line: secret_dict = {"Title": line.split()[1]} elif "client_id" in line: secret_dict["client_id"] = line.split()[1] elif "client_secret" in line: secret_dict["client_secret"] = line.split()[1] secret_list.append(secret_dict) except NameError: raise DownloaderError("Cannot retrieve authentication tokens for SharePoint") secret_list.sort(key=lambda elem: elem["Title"], reverse=True) context_auth = AuthenticationContext(url=SHAREPOINT_SITE_URL) context_auth.acquire_token_for_app( client_id=secret_list[0]["client_id"], client_secret=secret_list[0]["client_secret"] ) ctx = ClientContext(SHAREPOINT_SITE_URL, context_auth) return ctx
Python
def run(self): """ Function that executes the download-installation process :return: None """ try: set_logger(self.logging_file) logging.info(f"Settings path is set to {self.settings_path}") if self.settings.artifactory == "SharePoint": self.ctx = self.authorize_sharepoint() self.update_installation_history(status="In-Progress", details="Verifying configuration") self.check_and_make_directories(self.settings.install_path, self.settings.download_path) if "ElectronicsDesktop" in self.settings.version or "Workbench" in self.settings.version: space_required = 15 # License Manager can be updated even if running self.check_process_lock() else: if not self.settings.license_file: raise DownloaderError("No license file defined. Please select it in Advanced Settings") if not os.path.isfile(self.settings.license_file): raise DownloaderError(f"No license file was detected under {self.settings.license_file}") space_required = 1 self.check_free_space(self.settings.download_path, space_required) self.check_free_space(self.settings.install_path, space_required) self.get_build_link() if self.settings.force_install or self.newer_version_exists: self.download_file() if "ElectronicsDesktop" in self.settings.version or "Workbench" in self.settings.version: self.check_process_lock() # download can take time, better to recheck again self.install() try: self.send_statistics() except Exception: self.warnings_list.append("Connection to product improvement server failed") self.update_installation_history(status="Success", details="Normal completion") else: raise DownloaderError("Versions are up to date. If issue occurred please use force install flag") return except DownloaderError as e: # all caught errors are here logging.error(e) self.update_installation_history(status="Failed", details=str(e)) except Exception: logging.error(traceback.format_exc()) self.update_installation_history(status="Failed", details="Unexpected error, see logs") self.send_statistics(error=traceback.format_exc()) self.clean_temp()
def run(self): """ Function that executes the download-installation process :return: None """ try: set_logger(self.logging_file) logging.info(f"Settings path is set to {self.settings_path}") if self.settings.artifactory == "SharePoint": self.ctx = self.authorize_sharepoint() self.update_installation_history(status="In-Progress", details="Verifying configuration") self.check_and_make_directories(self.settings.install_path, self.settings.download_path) if "ElectronicsDesktop" in self.settings.version or "Workbench" in self.settings.version: space_required = 15 # License Manager can be updated even if running self.check_process_lock() else: if not self.settings.license_file: raise DownloaderError("No license file defined. Please select it in Advanced Settings") if not os.path.isfile(self.settings.license_file): raise DownloaderError(f"No license file was detected under {self.settings.license_file}") space_required = 1 self.check_free_space(self.settings.download_path, space_required) self.check_free_space(self.settings.install_path, space_required) self.get_build_link() if self.settings.force_install or self.newer_version_exists: self.download_file() if "ElectronicsDesktop" in self.settings.version or "Workbench" in self.settings.version: self.check_process_lock() # download can take time, better to recheck again self.install() try: self.send_statistics() except Exception: self.warnings_list.append("Connection to product improvement server failed") self.update_installation_history(status="Success", details="Normal completion") else: raise DownloaderError("Versions are up to date. If issue occurred please use force install flag") return except DownloaderError as e: # all caught errors are here logging.error(e) self.update_installation_history(status="Failed", details=str(e)) except Exception: logging.error(traceback.format_exc()) self.update_installation_history(status="Failed", details="Unexpected error, see logs") self.send_statistics(error=traceback.format_exc()) self.clean_temp()
Python
def check_and_make_directories(*paths): """ Verify that installation and download path exists. If not tries to create a requested path :parameter: paths: list of paths that we need to check and create """ for path in paths: if not os.path.isdir(path): try: os.makedirs(path) except PermissionError: raise DownloaderError(f"{path} could not be created due to insufficient permissions") except OSError as err: if "BitLocker" in str(err): raise DownloaderError("Your drive is locked by BitLocker. Please unlock!") else: raise DownloaderError(err)
def check_and_make_directories(*paths): """ Verify that installation and download path exists. If not tries to create a requested path :parameter: paths: list of paths that we need to check and create """ for path in paths: if not os.path.isdir(path): try: os.makedirs(path) except PermissionError: raise DownloaderError(f"{path} could not be created due to insufficient permissions") except OSError as err: if "BitLocker" in str(err): raise DownloaderError("Your drive is locked by BitLocker. Please unlock!") else: raise DownloaderError(err)
Python
def check_free_space(path, required): """ Verifies that enough disk space is available. Raises error if not enough space :param path: path where to check :param required: value in GB that should be available on drive to pass the check :return: """ free_space = shutil.disk_usage(path).free // (2**30) if free_space < required: err = f"Disk space in {path} is less than {required}GB. This would not be enough to proceed" raise DownloaderError(err)
def check_free_space(path, required): """ Verifies that enough disk space is available. Raises error if not enough space :param path: path where to check :param required: value in GB that should be available on drive to pass the check :return: """ free_space = shutil.disk_usage(path).free // (2**30) if free_space < required: err = f"Disk space in {path} is less than {required}GB. This would not be enough to proceed" raise DownloaderError(err)
Python
def check_process_lock(self): """ Verify if some executable is running from installation folder Abort installation if any process is running from installation folder :return: None """ process_list = [] for process in psutil.process_iter(): try: if self.product_root_path in process.exe(): process_list.append(process.name()) except psutil.AccessDenied: pass if process_list: process_list.sort(key=len) # to fit into UI raise DownloaderError( "Following processes are running from installation directory: " + f"{', '.join(set(process_list))}. Please stop all processes." )
def check_process_lock(self): """ Verify if some executable is running from installation folder Abort installation if any process is running from installation folder :return: None """ process_list = [] for process in psutil.process_iter(): try: if self.product_root_path in process.exe(): process_list.append(process.name()) except psutil.AccessDenied: pass if process_list: process_list.sort(key=len) # to fit into UI raise DownloaderError( "Following processes are running from installation directory: " + f"{', '.join(set(process_list))}. Please stop all processes." )
Python
def newer_version_exists(self): """ verify if version on the server is newer compared to installed Returns: (bool) True if remote is newer or no version is installed, False if remote is the same or older """ if "Workbench" in self.settings.version: product_installed = os.path.join(self.product_root_path, "package.id") elif "LicenseManager" in self.settings.version: # always update LM return True else: product_installed = self.installed_product_info if os.path.isfile(product_installed): if "Workbench" in self.settings.version: with open(product_installed) as file: installed_product_version = next(file).rstrip().split()[-1] # get first line try: installed_product_version = int(installed_product_version.split("P")[0]) except ValueError: installed_product_version = 0 else: installed_product_version = self.get_edt_build_date(product_installed) logging.info(f"Installed version of {self.settings.version} is {installed_product_version}") new_product_version = self.get_new_build_date() if not all([new_product_version, installed_product_version]): # some of the versions could not be parsed, need installation return True if new_product_version <= installed_product_version: return False return True
def newer_version_exists(self): """ verify if version on the server is newer compared to installed Returns: (bool) True if remote is newer or no version is installed, False if remote is the same or older """ if "Workbench" in self.settings.version: product_installed = os.path.join(self.product_root_path, "package.id") elif "LicenseManager" in self.settings.version: # always update LM return True else: product_installed = self.installed_product_info if os.path.isfile(product_installed): if "Workbench" in self.settings.version: with open(product_installed) as file: installed_product_version = next(file).rstrip().split()[-1] # get first line try: installed_product_version = int(installed_product_version.split("P")[0]) except ValueError: installed_product_version = 0 else: installed_product_version = self.get_edt_build_date(product_installed) logging.info(f"Installed version of {self.settings.version} is {installed_product_version}") new_product_version = self.get_new_build_date() if not all([new_product_version, installed_product_version]): # some of the versions could not be parsed, need installation return True if new_product_version <= installed_product_version: return False return True
Python
def download_file(self): """ Downloads file in chunks and saves to the temp.zip file Uses url to the zip archive or special JFrog API to download Workbench folder :modify: (str) zip_file: link to the zip file """ if self.settings.artifactory == "SharePoint" or "win" in self.build_artifactory_path.name: archive_type = "zip" else: archive_type = "tgz" self.zip_file = os.path.join(self.settings.download_path, f"{self.settings.version}.{archive_type}") chunk_size = 50 * 1024 * 1024 if self.settings.artifactory == "SharePoint": self.download_from_sharepoint(chunk_size=chunk_size) else: self.download_from_artifactory(archive_type, chunk_size=chunk_size) logging.info(f"File is downloaded to {self.zip_file}")
def download_file(self): """ Downloads file in chunks and saves to the temp.zip file Uses url to the zip archive or special JFrog API to download Workbench folder :modify: (str) zip_file: link to the zip file """ if self.settings.artifactory == "SharePoint" or "win" in self.build_artifactory_path.name: archive_type = "zip" else: archive_type = "tgz" self.zip_file = os.path.join(self.settings.download_path, f"{self.settings.version}.{archive_type}") chunk_size = 50 * 1024 * 1024 if self.settings.artifactory == "SharePoint": self.download_from_sharepoint(chunk_size=chunk_size) else: self.download_from_artifactory(archive_type, chunk_size=chunk_size) logging.info(f"File is downloaded to {self.zip_file}")
Python
def install(self, local_lang=False): """ Unpack downloaded zip and proceed to installation. Different executions for Electronics Desktop and Workbench :param local_lang: if not specified then use English as default installation language :return: None """ self.unpack_archive() if "ElectronicsDesktop" in self.settings.version: self.install_edt() elif "Workbench" in self.settings.version: self.install_wb(local_lang) else: self.install_license_manager() self.update_installation_history(status="In-Progress", details="Clean temp directory") self.clean_temp()
def install(self, local_lang=False): """ Unpack downloaded zip and proceed to installation. Different executions for Electronics Desktop and Workbench :param local_lang: if not specified then use English as default installation language :return: None """ self.unpack_archive() if "ElectronicsDesktop" in self.settings.version: self.install_edt() elif "Workbench" in self.settings.version: self.install_wb(local_lang) else: self.install_license_manager() self.update_installation_history(status="In-Progress", details="Clean temp directory") self.clean_temp()
Python
def install_edt(self): """ Install Electronics Desktop. Make verification that the same version is not yet installed and makes silent installation Get Workbench installation path from environment variable and enables integration if exists. :return: None """ setup_exe, product_id, installshield_version = self.parse_iss_template(self.target_unpack_dir) self.uninstall_edt(setup_exe, product_id, installshield_version) install_iss_file, install_log_file = self.create_install_iss_file(installshield_version, product_id) command = [f'"{setup_exe}"', "-s", rf'-f1"{install_iss_file}"', rf'-f2"{install_log_file}"'] command = " ".join(command) self.update_installation_history(status="In-Progress", details="Start installation") logging.info("Execute installation") self.subprocess_call(command) self.check_result_code(install_log_file) self.update_edt_registry() self.remove_aedt_shortcuts()
def install_edt(self): """ Install Electronics Desktop. Make verification that the same version is not yet installed and makes silent installation Get Workbench installation path from environment variable and enables integration if exists. :return: None """ setup_exe, product_id, installshield_version = self.parse_iss_template(self.target_unpack_dir) self.uninstall_edt(setup_exe, product_id, installshield_version) install_iss_file, install_log_file = self.create_install_iss_file(installshield_version, product_id) command = [f'"{setup_exe}"', "-s", rf'-f1"{install_iss_file}"', rf'-f2"{install_log_file}"'] command = " ".join(command) self.update_installation_history(status="In-Progress", details="Start installation") logging.info("Execute installation") self.subprocess_call(command) self.check_result_code(install_log_file) self.update_edt_registry() self.remove_aedt_shortcuts()
Python
def uninstall_edt(self, setup_exe, product_id, installshield_version): """ Silently uninstall build of the same version :return: None """ if os.path.isfile(self.installed_product_info): uninstall_iss_file = os.path.join(self.target_unpack_dir, "uninstall.iss") uninstall_log_file = os.path.join(self.target_unpack_dir, "uninstall.log") with open(uninstall_iss_file, "w") as file: file.write(iss_templates.uninstall_iss.format(product_id, installshield_version)) command = [ f'"{setup_exe}"', "-uninst", "-s", rf'-f1"{uninstall_iss_file}"', rf'-f2"{uninstall_log_file}"', ] command = " ".join(command) logging.info("Execute uninstallation") self.update_installation_history(status="In-Progress", details="Uninstall previous build") self.subprocess_call(command) self.check_result_code(uninstall_log_file, False) em_main_dir = os.path.dirname(self.product_root_path) self.remove_path(em_main_dir) if os.path.isdir(em_main_dir): raise DownloaderError(f"Failed to remove {em_main_dir}. Probably directory is locked.") else: logging.info("Version is not installed, skip uninstallation")
def uninstall_edt(self, setup_exe, product_id, installshield_version): """ Silently uninstall build of the same version :return: None """ if os.path.isfile(self.installed_product_info): uninstall_iss_file = os.path.join(self.target_unpack_dir, "uninstall.iss") uninstall_log_file = os.path.join(self.target_unpack_dir, "uninstall.log") with open(uninstall_iss_file, "w") as file: file.write(iss_templates.uninstall_iss.format(product_id, installshield_version)) command = [ f'"{setup_exe}"', "-uninst", "-s", rf'-f1"{uninstall_iss_file}"', rf'-f2"{uninstall_log_file}"', ] command = " ".join(command) logging.info("Execute uninstallation") self.update_installation_history(status="In-Progress", details="Uninstall previous build") self.subprocess_call(command) self.check_result_code(uninstall_log_file, False) em_main_dir = os.path.dirname(self.product_root_path) self.remove_path(em_main_dir) if os.path.isdir(em_main_dir): raise DownloaderError(f"Failed to remove {em_main_dir}. Probably directory is locked.") else: logging.info("Version is not installed, skip uninstallation")
Python
def check_result_code(self, log_file, installation=True): """ Verify result code of the InstallShield log file :param log_file: installation log file :param installation: True if verify log after installation elif after uninstallation False :return: None """ success = "New build was successfully installed" if installation else "Previous build was uninstalled" fail = "Installation went wrong" if installation else "Uninstallation went wrong" if not os.path.isfile(log_file): raise DownloaderError(f"{fail}. Check that UAC disabled or confirm UAC question manually") msg = fail regex = "ResultCode=(.*)" with open(log_file) as file: for line in file: code = re.findall(regex, line) if code and code[0] == "0": logging.info(success) break else: if not installation: msg = "Official uninstaller failed, make hard remove" logging.error(msg) self.warnings_list.append(msg) else: raise DownloaderError(msg)
def check_result_code(self, log_file, installation=True): """ Verify result code of the InstallShield log file :param log_file: installation log file :param installation: True if verify log after installation elif after uninstallation False :return: None """ success = "New build was successfully installed" if installation else "Previous build was uninstalled" fail = "Installation went wrong" if installation else "Uninstallation went wrong" if not os.path.isfile(log_file): raise DownloaderError(f"{fail}. Check that UAC disabled or confirm UAC question manually") msg = fail regex = "ResultCode=(.*)" with open(log_file) as file: for line in file: code = re.findall(regex, line) if code and code[0] == "0": logging.info(success) break else: if not installation: msg = "Official uninstaller failed, make hard remove" logging.error(msg) self.warnings_list.append(msg) else: raise DownloaderError(msg)
Python
def parse_iss_template(unpacked_dir): """ Open directory with unpacked build of Electronics Desktop and search for SilentInstallationTemplate.iss to extract product ID which is GUID hash Args: unpacked_dir: directory where AEDT package was unpacked Returns: product_id: product GUID extracted from iss template setup_exe: set path to setup.exe if exists installshield_version: set version from file """ default_iss_file = "" setup_exe = "" product_id_match = [] for dir_path, dir_names, file_names in os.walk(unpacked_dir): for filename in file_names: if "AnsysEM" in dir_path and filename.endswith(".iss"): default_iss_file = os.path.join(dir_path, filename) setup_exe = os.path.join(dir_path, "setup.exe") break if not default_iss_file: raise DownloaderError("SilentInstallationTemplate.iss does not exist") if not os.path.isfile(setup_exe): raise DownloaderError("setup.exe does not exist") with open(default_iss_file, "r") as iss_file: for line in iss_file: if "DlgOrder" in line: guid_regex = "[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}" product_id_match = re.findall(guid_regex, line) if "InstallShield Silent" in line: installshield_version = next(iss_file).split("=")[1] if product_id_match: product_id = product_id_match[0] logging.info(f"Product ID is {product_id}") else: raise DownloaderError("Unable to extract product ID") return setup_exe, product_id, installshield_version
def parse_iss_template(unpacked_dir): """ Open directory with unpacked build of Electronics Desktop and search for SilentInstallationTemplate.iss to extract product ID which is GUID hash Args: unpacked_dir: directory where AEDT package was unpacked Returns: product_id: product GUID extracted from iss template setup_exe: set path to setup.exe if exists installshield_version: set version from file """ default_iss_file = "" setup_exe = "" product_id_match = [] for dir_path, dir_names, file_names in os.walk(unpacked_dir): for filename in file_names: if "AnsysEM" in dir_path and filename.endswith(".iss"): default_iss_file = os.path.join(dir_path, filename) setup_exe = os.path.join(dir_path, "setup.exe") break if not default_iss_file: raise DownloaderError("SilentInstallationTemplate.iss does not exist") if not os.path.isfile(setup_exe): raise DownloaderError("setup.exe does not exist") with open(default_iss_file, "r") as iss_file: for line in iss_file: if "DlgOrder" in line: guid_regex = "[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}" product_id_match = re.findall(guid_regex, line) if "InstallShield Silent" in line: installshield_version = next(iss_file).split("=")[1] if product_id_match: product_id = product_id_match[0] logging.info(f"Product ID is {product_id}") else: raise DownloaderError("Unable to extract product ID") return setup_exe, product_id, installshield_version
Python
def install_license_manager(self): """ Install license manager and feed it with license file """ self.setup_exe = os.path.join(self.target_unpack_dir, "setup.exe") if os.path.isfile(self.setup_exe): install_path = os.path.join(self.settings.install_path, "ANSYS Inc") if not os.path.isfile(self.settings.license_file): raise DownloaderError(f"No license file was detected under {self.settings.license_file}") command = [ self.setup_exe, "-silent", "-LM", "-install_dir", install_path, "-lang", "en", "-licfilepath", self.settings.license_file, ] self.update_installation_history(status="In-Progress", details="Start installation") logging.info("Execute installation") self.subprocess_call(command) package_build = self.parse_lm_installer_builddate() installed_build = self.get_license_manager_build_date() if all([package_build, installed_build]) and package_build == installed_build: self.update_installation_history(status="Success", details="Normal completion") else: raise DownloaderError("License Manager was not installed") else: raise DownloaderError("No LicenseManager setup.exe file detected")
def install_license_manager(self): """ Install license manager and feed it with license file """ self.setup_exe = os.path.join(self.target_unpack_dir, "setup.exe") if os.path.isfile(self.setup_exe): install_path = os.path.join(self.settings.install_path, "ANSYS Inc") if not os.path.isfile(self.settings.license_file): raise DownloaderError(f"No license file was detected under {self.settings.license_file}") command = [ self.setup_exe, "-silent", "-LM", "-install_dir", install_path, "-lang", "en", "-licfilepath", self.settings.license_file, ] self.update_installation_history(status="In-Progress", details="Start installation") logging.info("Execute installation") self.subprocess_call(command) package_build = self.parse_lm_installer_builddate() installed_build = self.get_license_manager_build_date() if all([package_build, installed_build]) and package_build == installed_build: self.update_installation_history(status="Success", details="Normal completion") else: raise DownloaderError("License Manager was not installed") else: raise DownloaderError("No LicenseManager setup.exe file detected")
Python
def parse_lm_installer_builddate(self): """ Check build date of installation package of License Manager """ build_file = os.path.join(self.target_unpack_dir, "builddate.txt") lm_center_archive = os.path.join(self.target_unpack_dir, "lmcenter", "WINX64.7z") if not os.path.isfile(build_file) and os.path.isfile(lm_center_archive): with py7zr.SevenZipFile(lm_center_archive, "r") as archive: archive.extractall(path=os.path.join(self.target_unpack_dir, "lmcenter")) build_file = os.path.join( self.target_unpack_dir, "lmcenter", "Shared Files", "licensing", "tools", "lmcenter", "lmcenter_blddate.txt", ) if not os.path.isfile(build_file): # check again if file was unpacked logging.warning("builddate.txt was not found in installation package") return with open(build_file) as file: for line in file: if "license management center" in line.lower(): lm_build_date = line.split()[-1] try: logging.info(f"Build date of License Manager in installation package {lm_build_date}") lm_build_date = int(lm_build_date) return lm_build_date except TypeError: raise DownloaderError("Cannot extract build date of installation package")
def parse_lm_installer_builddate(self): """ Check build date of installation package of License Manager """ build_file = os.path.join(self.target_unpack_dir, "builddate.txt") lm_center_archive = os.path.join(self.target_unpack_dir, "lmcenter", "WINX64.7z") if not os.path.isfile(build_file) and os.path.isfile(lm_center_archive): with py7zr.SevenZipFile(lm_center_archive, "r") as archive: archive.extractall(path=os.path.join(self.target_unpack_dir, "lmcenter")) build_file = os.path.join( self.target_unpack_dir, "lmcenter", "Shared Files", "licensing", "tools", "lmcenter", "lmcenter_blddate.txt", ) if not os.path.isfile(build_file): # check again if file was unpacked logging.warning("builddate.txt was not found in installation package") return with open(build_file) as file: for line in file: if "license management center" in line.lower(): lm_build_date = line.split()[-1] try: logging.info(f"Build date of License Manager in installation package {lm_build_date}") lm_build_date = int(lm_build_date) return lm_build_date except TypeError: raise DownloaderError("Cannot extract build date of installation package")
Python
def install_wb(self, local_lang=False): """ Install Workbench to the target installation directory :param local_lang: if not specified then use English as default installation language """ self.setup_exe = os.path.join(self.target_unpack_dir, "setup.exe") if os.path.isfile(self.setup_exe): uninstall_exe = self.uninstall_wb() install_path = os.path.join(self.settings.install_path, "ANSYS Inc") command = [self.setup_exe, "-silent", "-install_dir", install_path] if not local_lang: command += ["-lang", "en"] command += self.settings.wb_flags.split() # the "shared files" is created at the same level as the "ANSYS Inc" so if installing to unique folders, # the Shared Files folder will be unique as well. Thus we can check install folder for license if ( os.path.isfile(os.path.join(install_path, "Shared Files", "Licensing", "ansyslmd.ini")) or "ANSYSLMD_LICENSE_FILE" in os.environ ): logging.info("Install using existing license configuration") else: command += ["-licserverinfo", "2325:1055:127.0.0.1,OTTLICENSE5,PITRH6LICSRV1"] logging.info("Install using 127.0.0.1, Otterfing and HQ license servers") # convert command to string to easy append custom flags command = subprocess.list2cmdline(command) command += " " + self.settings.custom_flags self.update_installation_history(status="In-Progress", details="Start installation") logging.info("Execute installation") self.subprocess_call(command) if os.path.isfile(uninstall_exe): logging.info("New build was installed") else: raise DownloaderError( "Workbench installation failed. " + f"If you see this error message by mistake please report to {__email__}" ) if self.settings.wb_assoc: wb_assoc_exe = os.path.join(self.settings.wb_assoc, "commonfiles", "tools", "winx64", "fileassoc.exe") if not os.path.isfile(wb_assoc_exe): self.warnings_list.append(f"Cannot find {wb_assoc_exe}") else: logging.info("Run WB file association") self.subprocess_call(wb_assoc_exe) else: raise DownloaderError("No Workbench setup.exe file detected")
def install_wb(self, local_lang=False): """ Install Workbench to the target installation directory :param local_lang: if not specified then use English as default installation language """ self.setup_exe = os.path.join(self.target_unpack_dir, "setup.exe") if os.path.isfile(self.setup_exe): uninstall_exe = self.uninstall_wb() install_path = os.path.join(self.settings.install_path, "ANSYS Inc") command = [self.setup_exe, "-silent", "-install_dir", install_path] if not local_lang: command += ["-lang", "en"] command += self.settings.wb_flags.split() # the "shared files" is created at the same level as the "ANSYS Inc" so if installing to unique folders, # the Shared Files folder will be unique as well. Thus we can check install folder for license if ( os.path.isfile(os.path.join(install_path, "Shared Files", "Licensing", "ansyslmd.ini")) or "ANSYSLMD_LICENSE_FILE" in os.environ ): logging.info("Install using existing license configuration") else: command += ["-licserverinfo", "2325:1055:127.0.0.1,OTTLICENSE5,PITRH6LICSRV1"] logging.info("Install using 127.0.0.1, Otterfing and HQ license servers") # convert command to string to easy append custom flags command = subprocess.list2cmdline(command) command += " " + self.settings.custom_flags self.update_installation_history(status="In-Progress", details="Start installation") logging.info("Execute installation") self.subprocess_call(command) if os.path.isfile(uninstall_exe): logging.info("New build was installed") else: raise DownloaderError( "Workbench installation failed. " + f"If you see this error message by mistake please report to {__email__}" ) if self.settings.wb_assoc: wb_assoc_exe = os.path.join(self.settings.wb_assoc, "commonfiles", "tools", "winx64", "fileassoc.exe") if not os.path.isfile(wb_assoc_exe): self.warnings_list.append(f"Cannot find {wb_assoc_exe}") else: logging.info("Run WB file association") self.subprocess_call(wb_assoc_exe) else: raise DownloaderError("No Workbench setup.exe file detected")
Python
def uninstall_wb(self): """ Uninstall Workbench if such exists in the target installation directory :return: uninstall_exe: name of the executable of uninstaller""" uninstall_exe = os.path.join(self.product_root_path, "Uninstall.exe") if os.path.isfile(uninstall_exe): command = [uninstall_exe, "-silent"] self.update_installation_history(status="In-Progress", details="Uninstall previous build") logging.info("Execute uninstallation") self.subprocess_call(command) logging.info("Previous build was uninstalled using uninstaller") else: logging.info("No Workbench Uninstall.exe file detected") self.remove_path(self.product_root_path) return uninstall_exe
def uninstall_wb(self): """ Uninstall Workbench if such exists in the target installation directory :return: uninstall_exe: name of the executable of uninstaller""" uninstall_exe = os.path.join(self.product_root_path, "Uninstall.exe") if os.path.isfile(uninstall_exe): command = [uninstall_exe, "-silent"] self.update_installation_history(status="In-Progress", details="Uninstall previous build") logging.info("Execute uninstallation") self.subprocess_call(command) logging.info("Previous build was uninstalled using uninstaller") else: logging.info("No Workbench Uninstall.exe file detected") self.remove_path(self.product_root_path) return uninstall_exe
Python
def remove_path(self, path): """ Function to safely remove path if rmtree fails :param path: :return: """ def hard_remove(): try: # try this dirty method to force remove all files in directory all_files = os.path.join(path, "*.*") command = ["DEL", "/F", "/Q", "/S", all_files, ">", "NUL"] self.subprocess_call(command, shell=True) command = ["rmdir", "/Q", "/S", path] self.subprocess_call(command, shell=True) except Exception as err: logging.error(str(err)) logging.error("Failed to remove directory via hard_remove") self.warnings_list.append("Failed to remove directory") logging.info(f"Removing {path}") if os.path.isdir(path): try: shutil.rmtree(path) except PermissionError: logging.warning("Permission error. Switch to CMD force mode") hard_remove() self.warnings_list.append("Clean remove failed due to Permissions Error") except (FileNotFoundError, OSError, Exception): logging.warning("FileNotFoundError or other error. Switch to CMD force mode") hard_remove() self.warnings_list.append("Clean remove failed due to Not Found or OS Error") elif os.path.isfile(path): os.remove(path)
def remove_path(self, path): """ Function to safely remove path if rmtree fails :param path: :return: """ def hard_remove(): try: # try this dirty method to force remove all files in directory all_files = os.path.join(path, "*.*") command = ["DEL", "/F", "/Q", "/S", all_files, ">", "NUL"] self.subprocess_call(command, shell=True) command = ["rmdir", "/Q", "/S", path] self.subprocess_call(command, shell=True) except Exception as err: logging.error(str(err)) logging.error("Failed to remove directory via hard_remove") self.warnings_list.append("Failed to remove directory") logging.info(f"Removing {path}") if os.path.isdir(path): try: shutil.rmtree(path) except PermissionError: logging.warning("Permission error. Switch to CMD force mode") hard_remove() self.warnings_list.append("Clean remove failed due to Permissions Error") except (FileNotFoundError, OSError, Exception): logging.warning("FileNotFoundError or other error. Switch to CMD force mode") hard_remove() self.warnings_list.append("Clean remove failed due to Not Found or OS Error") elif os.path.isfile(path): os.remove(path)
Python
def clean_temp(self): """ Cleans downloaded zip and unpacked folder with content :return: None """ try: if os.path.isfile(self.zip_file) and self.settings.delete_zip: self.remove_path(self.zip_file) logging.info("ZIP deleted") if os.path.isdir(self.target_unpack_dir): self.remove_path(self.target_unpack_dir) logging.info("Unpacked directory removed") except PermissionError: logging.error("Temp files could not be removed due to permission error")
def clean_temp(self): """ Cleans downloaded zip and unpacked folder with content :return: None """ try: if os.path.isfile(self.zip_file) and self.settings.delete_zip: self.remove_path(self.zip_file) logging.info("ZIP deleted") if os.path.isdir(self.target_unpack_dir): self.remove_path(self.target_unpack_dir) logging.info("Unpacked directory removed") except PermissionError: logging.error("Temp files could not be removed due to permission error")
Python
def remove_aedt_shortcuts(self): """ Function to remove newly created AEDT shortcuts and replace them with new one """ if not self.settings.replace_shortcut: return # include Public, user folder and user folder when OneDrive sync is enabled for user in ["Public", os.getenv("username"), os.path.join(os.getenv("username"), "OneDrive - ANSYS, Inc")]: desktop = os.path.join("C:\\", "Users", user, "Desktop") for shortcut in [ "ANSYS Savant", "ANSYS EMIT", "ANSYS SIwave", "ANSYS Twin Builder", "Ansys Nuhertz FilterSolutions", ]: self.remove_path(os.path.join(desktop, shortcut + ".lnk")) new_name = os.path.join( desktop, f"20{self.product_version[:2]}R{self.product_version[2:]} Electronics Desktop.lnk" ) aedt_shortcut = os.path.join(desktop, "ANSYS Electronics Desktop.lnk") if not os.path.isfile(new_name): try: os.rename(aedt_shortcut, new_name) except FileNotFoundError: pass else: self.remove_path(aedt_shortcut)
def remove_aedt_shortcuts(self): """ Function to remove newly created AEDT shortcuts and replace them with new one """ if not self.settings.replace_shortcut: return # include Public, user folder and user folder when OneDrive sync is enabled for user in ["Public", os.getenv("username"), os.path.join(os.getenv("username"), "OneDrive - ANSYS, Inc")]: desktop = os.path.join("C:\\", "Users", user, "Desktop") for shortcut in [ "ANSYS Savant", "ANSYS EMIT", "ANSYS SIwave", "ANSYS Twin Builder", "Ansys Nuhertz FilterSolutions", ]: self.remove_path(os.path.join(desktop, shortcut + ".lnk")) new_name = os.path.join( desktop, f"20{self.product_version[:2]}R{self.product_version[2:]} Electronics Desktop.lnk" ) aedt_shortcut = os.path.join(desktop, "ANSYS Electronics Desktop.lnk") if not os.path.isfile(new_name): try: os.rename(aedt_shortcut, new_name) except FileNotFoundError: pass else: self.remove_path(aedt_shortcut)
Python
def update_edt_registry(self): """ Update Electronics Desktop registry based on the files in the HPC_Options folder that are added from UI :return: None """ hpc_folder = os.path.join(self.settings_folder, "HPC_Options") update_registry_exe = os.path.join(self.product_root_path, "UpdateRegistry.exe") productlist_file = os.path.join(self.product_root_path, "config", "ProductList.txt") if not os.path.isfile(productlist_file): raise DownloaderError("Cannot update registry. Probably Electronics Desktop installation failed") with open(productlist_file) as file: product_version = next(file).rstrip() # get first line self.update_installation_history(status="In-Progress", details="Update registry") if os.path.isdir(hpc_folder): for file in os.listdir(hpc_folder): if ".acf" in file: options_file = os.path.join(hpc_folder, file) command = [update_registry_exe, "-ProductName", product_version, "-FromFile", options_file] logging.info("Update registry") self.subprocess_call(command)
def update_edt_registry(self): """ Update Electronics Desktop registry based on the files in the HPC_Options folder that are added from UI :return: None """ hpc_folder = os.path.join(self.settings_folder, "HPC_Options") update_registry_exe = os.path.join(self.product_root_path, "UpdateRegistry.exe") productlist_file = os.path.join(self.product_root_path, "config", "ProductList.txt") if not os.path.isfile(productlist_file): raise DownloaderError("Cannot update registry. Probably Electronics Desktop installation failed") with open(productlist_file) as file: product_version = next(file).rstrip() # get first line self.update_installation_history(status="In-Progress", details="Update registry") if os.path.isdir(hpc_folder): for file in os.listdir(hpc_folder): if ".acf" in file: options_file = os.path.join(hpc_folder, file) command = [update_registry_exe, "-ProductName", product_version, "-FromFile", options_file] logging.info("Update registry") self.subprocess_call(command)
Python
def update_installation_history(self, status, details): """ Update ordered dictionary with new data and write it to the file :param status: Failed | Success | In-Progress (important, used in JS) :param details: Message for details field :return: """ if status == "Failed" or status == "Success": try: self.toaster_notification(status, details) except Exception: msg = "Toaster notification did not work" logging.error(msg) self.warnings_list.append(msg) self.get_installation_history() # in case if file was deleted during run of installation time_now = datetime.datetime.now().strftime("%d-%m-%Y %H:%M") shorten_path = self.settings_path.replace(os.getenv("APPDATA", "@@@"), "%APPDATA%") if status == "Failed" or status == "Success": if self.warnings_list: details += "\nSome warnings occurred during process:\n" + "\n".join(self.warnings_list) self.history[self.hash] = [status, self.settings.version, time_now, shorten_path, details, self.pid] with open(self.history_file, "w") as file: json.dump(self.history, file, indent=4)
def update_installation_history(self, status, details): """ Update ordered dictionary with new data and write it to the file :param status: Failed | Success | In-Progress (important, used in JS) :param details: Message for details field :return: """ if status == "Failed" or status == "Success": try: self.toaster_notification(status, details) except Exception: msg = "Toaster notification did not work" logging.error(msg) self.warnings_list.append(msg) self.get_installation_history() # in case if file was deleted during run of installation time_now = datetime.datetime.now().strftime("%d-%m-%Y %H:%M") shorten_path = self.settings_path.replace(os.getenv("APPDATA", "@@@"), "%APPDATA%") if status == "Failed" or status == "Success": if self.warnings_list: details += "\nSome warnings occurred during process:\n" + "\n".join(self.warnings_list) self.history[self.hash] = [status, self.settings.version, time_now, shorten_path, details, self.pid] with open(self.history_file, "w") as file: json.dump(self.history, file, indent=4)
Python
def send_statistics(self, error=None): """ Send usage statistics to the database. Collect username, time, version and software installed in case of crash send also crash data :parameter: error: error message of what went wrong :return: None """ version, tool = self.settings.version.split("_") time_now = datetime.datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%SZ") self.settings.username = os.getenv("username", self.settings.username) if self.settings.artifactory == "SharePoint": self.send_statistics_to_sharepoint(tool, version, time_now, error) else: self.send_statistics_to_influx(tool, version, time_now, error)
def send_statistics(self, error=None): """ Send usage statistics to the database. Collect username, time, version and software installed in case of crash send also crash data :parameter: error: error message of what went wrong :return: None """ version, tool = self.settings.version.split("_") time_now = datetime.datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%SZ") self.settings.username = os.getenv("username", self.settings.username) if self.settings.artifactory == "SharePoint": self.send_statistics_to_sharepoint(tool, version, time_now, error) else: self.send_statistics_to_influx(tool, version, time_now, error)
Python
def subprocess_call(command, shell=False, popen=False): """ Wrapper for subprocess call to handle non admin run or UAC issue Args: command: (str/list) command to run shell: call with shell mode or not popen: in case if you need output we need to use Popen. Pyinstaller compiles in -noconsole, need to explicitly define stdout, in, err Returns: output (str), output of the command run """ output = "" try: if isinstance(command, list): command_str = subprocess.list2cmdline(command) else: command_str = command logging.info(command_str) if popen: p = subprocess.Popen( command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=shell ) byte_output = p.stdout.read() output = byte_output.decode("utf-8").rstrip() p.communicate() else: subprocess.call(command, shell=shell) return output except OSError: raise DownloaderError("Please run as administrator and disable Windows UAC")
def subprocess_call(command, shell=False, popen=False): """ Wrapper for subprocess call to handle non admin run or UAC issue Args: command: (str/list) command to run shell: call with shell mode or not popen: in case if you need output we need to use Popen. Pyinstaller compiles in -noconsole, need to explicitly define stdout, in, err Returns: output (str), output of the command run """ output = "" try: if isinstance(command, list): command_str = subprocess.list2cmdline(command) else: command_str = command logging.info(command_str) if popen: p = subprocess.Popen( command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=shell ) byte_output = p.stdout.read() output = byte_output.decode("utf-8").rstrip() p.communicate() else: subprocess.call(command, shell=shell) return output except OSError: raise DownloaderError("Please run as administrator and disable Windows UAC")
Python
def parse_args(version): """ Function to parse arguments provided to the script. Search for -p key to get settings path :return: settings_path: path to the configuration file """ parser = argparse.ArgumentParser() # Add long and short argument parser.add_argument("--path", "-p", help="set path to the settings file generated by UI") parser.add_argument("--version", "-V", action="version", version=f"%(prog)s version: {version}") args = parser.parse_args() if args.path: settings_path = args.path if not os.path.isfile(settings_path): raise DownloaderError("Settings file does not exist") return settings_path else: raise DownloaderError("Please provide --path argument")
def parse_args(version): """ Function to parse arguments provided to the script. Search for -p key to get settings path :return: settings_path: path to the configuration file """ parser = argparse.ArgumentParser() # Add long and short argument parser.add_argument("--path", "-p", help="set path to the settings file generated by UI") parser.add_argument("--version", "-V", action="version", version=f"%(prog)s version: {version}") args = parser.parse_args() if args.path: settings_path = args.path if not os.path.isfile(settings_path): raise DownloaderError("Settings file does not exist") return settings_path else: raise DownloaderError("Please provide --path argument")
Python
def generate_hash_str(): """ generate random hash. Letter A at the end is important to preserver Order in JS :return: hash code (str) """ return f"{random.getrandbits(32):x}A".strip()
def generate_hash_str(): """ generate random hash. Letter A at the end is important to preserver Order in JS :return: hash code (str) """ return f"{random.getrandbits(32):x}A".strip()
Python
def main(): """ Main function that runs only if process is not locked (cannot run in parallel) parses folder with all settings files and starts a process for each of them Returns: """ settings_folder = r"/settings" downloader_backend.set_logger(os.path.join(settings_folder, "uploader.log")) with PidFile(): for file in os.listdir(settings_folder): settings_file = os.path.join(settings_folder, file) _, file_extension = os.path.splitext(settings_file) if file_extension == ".json" and "installation_history.json" not in settings_file: for dist in ["winx64", "linx64"]: try: upload_to_sharepoint(settings_file, distribution=dist) except Exception: continue
def main(): """ Main function that runs only if process is not locked (cannot run in parallel) parses folder with all settings files and starts a process for each of them Returns: """ settings_folder = r"/settings" downloader_backend.set_logger(os.path.join(settings_folder, "uploader.log")) with PidFile(): for file in os.listdir(settings_folder): settings_file = os.path.join(settings_folder, file) _, file_extension = os.path.splitext(settings_file) if file_extension == ".json" and "installation_history.json" not in settings_file: for dist in ["winx64", "linx64"]: try: upload_to_sharepoint(settings_file, distribution=dist) except Exception: continue
Python
def upload_to_sharepoint(settings_file, distribution): """ Check that latest build is not yet on Sharepoint. Download from Artifactory and upload to Sharepoint. Add new build date to list of product on SP Args: settings_file: path to file with download settings distribution: linux or windows distribution selection Returns: """ sp = SharepointUpload(settings_file) sp.get_build_link(distribution=distribution) # validate that we do not have such build already if "LicenseManager" in sp.settings.version: # todo once with have builddate.txt on Artifactory we need to change it build_date = int(datetime.datetime.now().strftime("%Y%m%d")) else: build_date = sp.get_new_build_date(distribution=distribution) all_items = sp.get_list_items(distribution=distribution) for item in all_items: if item.properties["Title"] == sp.settings.version and item.properties["build_date"] == build_date: logging.info(f"Build is up to date {item.properties['build_date']} == {build_date}") return sp.download_file() archive_file = Path(sp.zip_file) version, product = sp.settings.version.split("_") time_now = datetime.datetime.now().strftime("%Y%m%d_%H%M") folder_url = sp.prepare_upload(archive_file, distribution, product, version, time_now) if not folder_url: raise UploaderError("folder_url is None") sp.add_list_item(f"{folder_url}/{archive_file.name}", int(build_date), folder_url, distribution=distribution) archive_file.unlink()
def upload_to_sharepoint(settings_file, distribution): """ Check that latest build is not yet on Sharepoint. Download from Artifactory and upload to Sharepoint. Add new build date to list of product on SP Args: settings_file: path to file with download settings distribution: linux or windows distribution selection Returns: """ sp = SharepointUpload(settings_file) sp.get_build_link(distribution=distribution) # validate that we do not have such build already if "LicenseManager" in sp.settings.version: # todo once with have builddate.txt on Artifactory we need to change it build_date = int(datetime.datetime.now().strftime("%Y%m%d")) else: build_date = sp.get_new_build_date(distribution=distribution) all_items = sp.get_list_items(distribution=distribution) for item in all_items: if item.properties["Title"] == sp.settings.version and item.properties["build_date"] == build_date: logging.info(f"Build is up to date {item.properties['build_date']} == {build_date}") return sp.download_file() archive_file = Path(sp.zip_file) version, product = sp.settings.version.split("_") time_now = datetime.datetime.now().strftime("%Y%m%d_%H%M") folder_url = sp.prepare_upload(archive_file, distribution, product, version, time_now) if not folder_url: raise UploaderError("folder_url is None") sp.add_list_item(f"{folder_url}/{archive_file.name}", int(build_date), folder_url, distribution=distribution) archive_file.unlink()
Python
def prepare_upload(self, file_path, *remote_path): """ Create remote folder and call upload a file Args: file_path: local file path *remote_path: list with subfolders for remote path Returns: (str) URL with remote path to the folder """ folder_url = "/".join(["Shared Documents"] + list(remote_path)) target_folder = self.ctx.web.ensure_folder_path(folder_url) self.ctx.execute_query() # execute, otherwise upload stuck size_chunk_mb = 100 size_chunk = size_chunk_mb * 1024 * 1024 logging.info(f"Start uploading {file_path} to {folder_url}") try: self.upload_file(file_path, size_chunk, target_folder) except UploaderError: target_folder.recycle() return folder_url
def prepare_upload(self, file_path, *remote_path): """ Create remote folder and call upload a file Args: file_path: local file path *remote_path: list with subfolders for remote path Returns: (str) URL with remote path to the folder """ folder_url = "/".join(["Shared Documents"] + list(remote_path)) target_folder = self.ctx.web.ensure_folder_path(folder_url) self.ctx.execute_query() # execute, otherwise upload stuck size_chunk_mb = 100 size_chunk = size_chunk_mb * 1024 * 1024 logging.info(f"Start uploading {file_path} to {folder_url}") try: self.upload_file(file_path, size_chunk, target_folder) except UploaderError: target_folder.recycle() return folder_url
Python
def upload_file(self, file_path, size_chunk, target_folder): """ Upload a file to Sharepoint and validate its size Args: file_path: local file path size_chunk: size of chunks to upload, in bytes target_folder: office365 folder object Returns: None """ file_size = file_path.stat().st_size result_file = target_folder.files.create_upload_session( str(file_path), size_chunk, self.print_upload_progress, file_size ) self.ctx.execute_query_retry( max_retry=100, exceptions=(Exception,), failure_callback=lambda attempt, err: self.log_fail(attempt, err, total=100), ) remote_size = result_file.length if remote_size is None or abs(file_size - remote_size) > 0.03 * file_size: logging.warning(f"Remote size is {remote_size}. Local is {file_size}. File isn't fully uploaded, recycle") result_file.recycle() self.ctx.execute_query() raise UploaderError("File size difference is more than 3%") logging.info("File {0} has been uploaded successfully".format(result_file.serverRelativeUrl))
def upload_file(self, file_path, size_chunk, target_folder): """ Upload a file to Sharepoint and validate its size Args: file_path: local file path size_chunk: size of chunks to upload, in bytes target_folder: office365 folder object Returns: None """ file_size = file_path.stat().st_size result_file = target_folder.files.create_upload_session( str(file_path), size_chunk, self.print_upload_progress, file_size ) self.ctx.execute_query_retry( max_retry=100, exceptions=(Exception,), failure_callback=lambda attempt, err: self.log_fail(attempt, err, total=100), ) remote_size = result_file.length if remote_size is None or abs(file_size - remote_size) > 0.03 * file_size: logging.warning(f"Remote size is {remote_size}. Local is {file_size}. File isn't fully uploaded, recycle") result_file.recycle() self.ctx.execute_query() raise UploaderError("File size difference is more than 3%") logging.info("File {0} has been uploaded successfully".format(result_file.serverRelativeUrl))
Python
def add_list_item(self, file_url, build_date, folder_url, distribution): """ Add information about uploaded file to Sharepoint list Args: file_url: direct download URL of the build file build_date: parsed build date of the file folder_url: URL of the folder where archive is locate distribution: lin or win Returns: None """ title = "product_list" if distribution == "winx64" else "linux_product_list" product_list = self.ctx.web.lists.get_by_title(title) product_list.add_item( { "Title": self.settings.version, "build_date": build_date, "relative_url": file_url, "shareable_folder": f"{SHAREPOINT_SITE_URL}/{folder_url}", } ) self.ctx.execute_query()
def add_list_item(self, file_url, build_date, folder_url, distribution): """ Add information about uploaded file to Sharepoint list Args: file_url: direct download URL of the build file build_date: parsed build date of the file folder_url: URL of the folder where archive is locate distribution: lin or win Returns: None """ title = "product_list" if distribution == "winx64" else "linux_product_list" product_list = self.ctx.web.lists.get_by_title(title) product_list.add_item( { "Title": self.settings.version, "build_date": build_date, "relative_url": file_url, "shareable_folder": f"{SHAREPOINT_SITE_URL}/{folder_url}", } ) self.ctx.execute_query()
Python
def transfer_items(self, items): """ Transfers items from SharePoint list items to InfluxDB Args: items: SharePoint list of items Returns: None """ for item in items: self.settings.artifactory = "SharePoint" self.settings.username = item.properties["Title"] error = item.properties.get("error", None) if not item.properties["in_influx"]: item.set_property("in_influx", True) item.update() self.ctx.execute_query() self.send_statistics_to_influx( tool=item.properties["tool"], version=item.properties["version"], time_now=item.properties["Date"], error=error, downloader_ver=item.properties.get("downloader_ver", "2.0.0"), )
def transfer_items(self, items): """ Transfers items from SharePoint list items to InfluxDB Args: items: SharePoint list of items Returns: None """ for item in items: self.settings.artifactory = "SharePoint" self.settings.username = item.properties["Title"] error = item.properties.get("error", None) if not item.properties["in_influx"]: item.set_property("in_influx", True) item.update() self.ctx.execute_query() self.send_statistics_to_influx( tool=item.properties["tool"], version=item.properties["version"], time_now=item.properties["Date"], error=error, downloader_ver=item.properties.get("downloader_ver", "2.0.0"), )
Python
def _dataFiles_sourceFile(self): #set the datafile path when the combobox changes #get value on combo box parName = self.comboBox_DF_par.currentText() candName = self.comboBox_DF_candName.currentText() for v in [parName, candName]: if v=='': return #retrieve filepath pars_d = self.tableWidget_P.get_values(candName, axis=0) assert parName in pars_d, 'failed to get \'%s\' for \'%s\''%(parName, candName) data_fp = pars_d[parName] #empty check if pd.isnull(data_fp): self.logger.push('got null filepath for \'%s\''%data_fp) return assert isinstance(data_fp, str), 'got bad filepath for %s'%parName assert os.path.exists(data_fp), 'requested file path for \'%s\' does not exist'%parName #set on the source lineedit self.lineEdit_DF_fp.setText(data_fp) """setting the sink filepath once the user clicks Load"""
def _dataFiles_sourceFile(self): #set the datafile path when the combobox changes #get value on combo box parName = self.comboBox_DF_par.currentText() candName = self.comboBox_DF_candName.currentText() for v in [parName, candName]: if v=='': return #retrieve filepath pars_d = self.tableWidget_P.get_values(candName, axis=0) assert parName in pars_d, 'failed to get \'%s\' for \'%s\''%(parName, candName) data_fp = pars_d[parName] #empty check if pd.isnull(data_fp): self.logger.push('got null filepath for \'%s\''%data_fp) return assert isinstance(data_fp, str), 'got bad filepath for %s'%parName assert os.path.exists(data_fp), 'requested file path for \'%s\' does not exist'%parName #set on the source lineedit self.lineEdit_DF_fp.setText(data_fp) """setting the sink filepath once the user clicks Load"""
Python
def results_joinGeo(self, fp_attn = 'r_passet', style_fn =None, #for loading specific styles ): log = self.logger.getChild('results_joinGeo') #======================================================================= # collect inputs #======================================================================= self._set_setup() #only need the common geo_vlay = self.comboBox_JGfinv.currentLayer() self.feedback.setProgress(5) #======================================================================= # check inputs #======================================================================= assert isinstance(geo_vlay, QgsVectorLayer), \ 'need to specify a geometry layer on the \'Setup\' tab to join results to' #======================================================================= # execute #======================================================================= #setup kwargs = {attn:getattr(self, attn) for attn in ['logger', 'tag', 'cf_fp', 'out_dir', 'feedback', 'init_q_d']} wrkr = results.djoin.Djoiner(**kwargs).setup() self.feedback.setProgress(25) #======================================================================= # #execute #======================================================================= """running with all defaults more customization is done on teh Resultd dialog""" res_vlay = wrkr.run(geo_vlay, keep_fnl='all') self.feedback.setProgress(80) #======================================================================= # load #======================================================================= self._load_toCanvas(res_vlay, logger=log, style_fn=style_fn) self.feedback.setProgress(99) #======================================================================= # wrap #======================================================================= log.push('run_joinGeo finished') self.feedback.upd_prog(None)
def results_joinGeo(self, fp_attn = 'r_passet', style_fn =None, #for loading specific styles ): log = self.logger.getChild('results_joinGeo') #======================================================================= # collect inputs #======================================================================= self._set_setup() #only need the common geo_vlay = self.comboBox_JGfinv.currentLayer() self.feedback.setProgress(5) #======================================================================= # check inputs #======================================================================= assert isinstance(geo_vlay, QgsVectorLayer), \ 'need to specify a geometry layer on the \'Setup\' tab to join results to' #======================================================================= # execute #======================================================================= #setup kwargs = {attn:getattr(self, attn) for attn in ['logger', 'tag', 'cf_fp', 'out_dir', 'feedback', 'init_q_d']} wrkr = results.djoin.Djoiner(**kwargs).setup() self.feedback.setProgress(25) #======================================================================= # #execute #======================================================================= """running with all defaults more customization is done on teh Resultd dialog""" res_vlay = wrkr.run(geo_vlay, keep_fnl='all') self.feedback.setProgress(80) #======================================================================= # load #======================================================================= self._load_toCanvas(res_vlay, logger=log, style_fn=style_fn) self.feedback.setProgress(99) #======================================================================= # wrap #======================================================================= log.push('run_joinGeo finished') self.feedback.upd_prog(None)
Python
def run(self, #run a set of WorkFlows wFlow_l, #set of workflows to run **kwargs ): """ lets the user define their own methods for batching together workflows """ log=self.logger.getChild('r') log.info('running %i flows: \n %s'%(len(wFlow_l), wFlow_l)) rlib = dict() for fWrkr in wFlow_l: runr = self._run_wflow(fWrkr, **kwargs) rlib[runr.name] = runr.res_d.copy() runr.__exit__() log.info('finished on %i: \n %s'%(len(rlib), list(rlib.keys()))) return rlib
def run(self, #run a set of WorkFlows wFlow_l, #set of workflows to run **kwargs ): """ lets the user define their own methods for batching together workflows """ log=self.logger.getChild('r') log.info('running %i flows: \n %s'%(len(wFlow_l), wFlow_l)) rlib = dict() for fWrkr in wFlow_l: runr = self._run_wflow(fWrkr, **kwargs) rlib[runr.name] = runr.res_d.copy() runr.__exit__() log.info('finished on %i: \n %s'%(len(rlib), list(rlib.keys()))) return rlib
Python
def prep_cf(self, pars_d, #Preparor.copy_cf_template and set_cf_pars logger=None): """ this ones a bit weird because the main mechanism is a file write... """ if logger is None: logger=self.logger log = logger.getChild('prep_cf') wrkr = self._get_wrkr(Preparor) #copy the template wrkr.tag = '%s_%s'%(self.name, self.tag) cf_fp = wrkr.copy_cf_template() #just copy the default template #======================================================================= # #set some basics #======================================================================= #fix filepaths #loop and pull new_pars_d =dict() for sect, keys in { 'parameters':['impact_units', 'rtail', 'event_rels', 'felv', 'prec', 'ltail'], 'dmg_fps':['curves'], 'plotting':['impactfmt_str', 'color'], #'risk_fps':['evals'], }.items(): d = {k:str(pars_d[k]) for k in keys if k in pars_d} #get these keys where present if sect == 'parameters': d['name']=self.name if len(d)>0: new_pars_d[sect] = tuple([d, '#set by testAll.py on %s'%wrkr.today_str]) wrkr.set_cf_pars(new_pars_d) #======================================================================= # wrap #======================================================================= #update the session """subsequent workers will inherit the control file for this workflow""" self.cf_fp = cf_fp self.com_hndls.append('cf_fp') log.info('control file created: %s'%cf_fp) return cf_fp
def prep_cf(self, pars_d, #Preparor.copy_cf_template and set_cf_pars logger=None): """ this ones a bit weird because the main mechanism is a file write... """ if logger is None: logger=self.logger log = logger.getChild('prep_cf') wrkr = self._get_wrkr(Preparor) #copy the template wrkr.tag = '%s_%s'%(self.name, self.tag) cf_fp = wrkr.copy_cf_template() #just copy the default template #======================================================================= # #set some basics #======================================================================= #fix filepaths #loop and pull new_pars_d =dict() for sect, keys in { 'parameters':['impact_units', 'rtail', 'event_rels', 'felv', 'prec', 'ltail'], 'dmg_fps':['curves'], 'plotting':['impactfmt_str', 'color'], #'risk_fps':['evals'], }.items(): d = {k:str(pars_d[k]) for k in keys if k in pars_d} #get these keys where present if sect == 'parameters': d['name']=self.name if len(d)>0: new_pars_d[sect] = tuple([d, '#set by testAll.py on %s'%wrkr.today_str]) wrkr.set_cf_pars(new_pars_d) #======================================================================= # wrap #======================================================================= #update the session """subsequent workers will inherit the control file for this workflow""" self.cf_fp = cf_fp self.com_hndls.append('cf_fp') log.info('control file created: %s'%cf_fp) return cf_fp
Python
def rsamp_dtm(self, pars_d, #hazar draster sampler logger=None, rkwargs=None, ): """ kwargs not setup to be different from the rsamp """ if logger is None: logger=self.logger log = logger.getChild('rsamp_dtm') wrkr = self._get_wrkr(Rsamp) #======================================================================= # load the data #======================================================================= fp = os.path.join(self.base_dir, pars_d['dtm_fp']) dtm_rlay = self._retrieve('dtm_rlay', f = lambda logger=None: wrkr.load_rlay(fp, logger=logger)) #pull previously loaded finv_vlay = self.data_d['finv_vlay'] #======================================================================= # execute #======================================================================= if rkwargs is None: rkwargs = self._get_kwargs(wrkr.__class__.__name__) res_vlay = wrkr.run([dtm_rlay], finv_vlay, fname='gels', **rkwargs) #======================================================================= # #post #======================================================================= wrkr.dtm_check(res_vlay) df = wrkr.write_res(res_vlay, write=self.write) if not self.write: wrkr.out_fp = 'none' #placeholder wrkr.upd_cf_dtm(cf_fp = self.cf_fp) return df
def rsamp_dtm(self, pars_d, #hazar draster sampler logger=None, rkwargs=None, ): """ kwargs not setup to be different from the rsamp """ if logger is None: logger=self.logger log = logger.getChild('rsamp_dtm') wrkr = self._get_wrkr(Rsamp) #======================================================================= # load the data #======================================================================= fp = os.path.join(self.base_dir, pars_d['dtm_fp']) dtm_rlay = self._retrieve('dtm_rlay', f = lambda logger=None: wrkr.load_rlay(fp, logger=logger)) #pull previously loaded finv_vlay = self.data_d['finv_vlay'] #======================================================================= # execute #======================================================================= if rkwargs is None: rkwargs = self._get_kwargs(wrkr.__class__.__name__) res_vlay = wrkr.run([dtm_rlay], finv_vlay, fname='gels', **rkwargs) #======================================================================= # #post #======================================================================= wrkr.dtm_check(res_vlay) df = wrkr.write_res(res_vlay, write=self.write) if not self.write: wrkr.out_fp = 'none' #placeholder wrkr.upd_cf_dtm(cf_fp = self.cf_fp) return df
Python
def validate(self, pars_d, #validation logger=None, ): """because we're not using the control file for testing... no point in running the validator""" #======================================================================= # defaults #======================================================================= if logger is None: logger=self.logger log = logger.getChild('validate') wrkr = self._get_wrkr(Vali) #======================================================================= # precheck #======================================================================= assert 'validate' in pars_d vtag = pars_d.pop('validate') #======================================================================= # setup #======================================================================= wrkr.config_cf() #======================================================================= # validate by vtag #======================================================================= for k, modObj in { 'risk1':Risk1, 'dmg2':Dmg2, }.items(): if not k == vtag: continue #do the check errors = wrkr.cf_check(modObj) if not len(errors)==0: raise Error('\'%s\' got some errors \n %s'%(vtag, errors)) wrkr.cf_mark() #update the controlf ile log.debug('finished')
def validate(self, pars_d, #validation logger=None, ): """because we're not using the control file for testing... no point in running the validator""" #======================================================================= # defaults #======================================================================= if logger is None: logger=self.logger log = logger.getChild('validate') wrkr = self._get_wrkr(Vali) #======================================================================= # precheck #======================================================================= assert 'validate' in pars_d vtag = pars_d.pop('validate') #======================================================================= # setup #======================================================================= wrkr.config_cf() #======================================================================= # validate by vtag #======================================================================= for k, modObj in { 'risk1':Risk1, 'dmg2':Dmg2, }.items(): if not k == vtag: continue #do the check errors = wrkr.cf_check(modObj) if not len(errors)==0: raise Error('\'%s\' got some errors \n %s'%(vtag, errors)) wrkr.cf_mark() #update the controlf ile log.debug('finished')
Python
def plot_risk_ttl(self, #single risk plot of total results pars_d=None, logger=None, ylabs = ['AEP', 'impacts'], #types of plots to generate rkwargs=None, ): #======================================================================= # defaults #======================================================================= if logger is None: logger=self.logger log = logger.getChild('plot_risk_ttl') if pars_d is None: pars_d = self.pars_d """just let it pass... if the function is called the user wants to plot""" #assert self.plot #======================================================================= # setup worker #======================================================================= wrkr = self._get_wrkr(RiskPlotr) wrkr.setup_fromData(self.data_d) #setup w/ the pre-loaded data #======================================================================= # get plots #======================================================================= if rkwargs is None: rkwargs = self._get_kwargs(wrkr.__class__.__name__) for ylab in ylabs: fig = wrkr.plot_riskCurve(y1lab=ylab, **rkwargs) self.output_fig(fig)
def plot_risk_ttl(self, #single risk plot of total results pars_d=None, logger=None, ylabs = ['AEP', 'impacts'], #types of plots to generate rkwargs=None, ): #======================================================================= # defaults #======================================================================= if logger is None: logger=self.logger log = logger.getChild('plot_risk_ttl') if pars_d is None: pars_d = self.pars_d """just let it pass... if the function is called the user wants to plot""" #assert self.plot #======================================================================= # setup worker #======================================================================= wrkr = self._get_wrkr(RiskPlotr) wrkr.setup_fromData(self.data_d) #setup w/ the pre-loaded data #======================================================================= # get plots #======================================================================= if rkwargs is None: rkwargs = self._get_kwargs(wrkr.__class__.__name__) for ylab in ylabs: fig = wrkr.plot_riskCurve(y1lab=ylab, **rkwargs) self.output_fig(fig)
Python
def run_expo(self): #execute dike exposure routeines log = self.logger.getChild('run_expo') log.debug('start') self.set_setup() #attach all the commons self.inherit_fieldNames.add('init_q_d') self.feedback.setProgress(5) from misc.dikes.expo import Dexpo #======================================================================= # collect inputs #======================================================================= rlays_d = self.listView_expo_rlays.get_selected_layers() #tside if self.radioButton_v_tside_left.isChecked(): tside = 'Left' else: tside = 'Right' #======================================================================= # init #======================================================================= kwargs = {attn:getattr(self, attn) for attn in self.inherit_fieldNames} wrkr = Dexpo(**kwargs) self.feedback.setProgress(10) #======================================================================= # execute------ #======================================================================= dike_vlay = wrkr.prep_dike(self.dike_vlay) kwargs = {attn:getattr(self, attn) for attn in []} dxcol, vlay_d = wrkr.get_dike_expo(rlays_d, dtm_rlay = self.mMapLayerComboBox_dtm.currentLayer(), dike_vlay = dike_vlay, #transect pars tside=tside, write_tr=False, #loaded below dist_dike=float(self.doubleSpinBox_dist_dike.value()), dist_trans=float(self.doubleSpinBox_dist_trans.value()), **kwargs) self.feedback.setProgress(60) expo_df = wrkr.get_fb_smry() self.feedback.setProgress(80) #======================================================================= # write/load to cannvas---------- #======================================================================= """dont write any layers.. just load them and let the user write""" #wrkr.output_expo_dxcol() dexpo_fp = wrkr.output_expo_df() #======================================================================= # dike layer #======================================================================= if self.checkBox_expo_wDikes.isChecked(): dike_vlay = wrkr.get_dikes_vlay() #get the dikes layer for writintg (fixed index) self._load_toCanvas(dike_vlay, logger=log.getChild('dike_vlay')) #======================================================================= # breach points #======================================================================= if self.checkBox_expo_breach_pts.isChecked(): breach_vlay_d = wrkr.get_breach_vlays() self._load_toCanvas(list(breach_vlay_d.values()), logger=log.getChild('breachPts')) #======================================================================= # transects #======================================================================= if self.checkBox_expo_write_tr.isChecked(): self._load_toCanvas(wrkr.tr_vlay, logger=log.getChild('tr_vlay')) log.info('loaded transect layer \'%s\' to canvas'%wrkr.tr_vlay.name()) #======================================================================= # exposure crest points #======================================================================= if self.checkBox_expo_crestPts.isChecked(): self._load_toCanvas(list(wrkr.expo_vlay_d.values()), logger=log.getChild('expo_crestPts')) #======================================================================= # plots #======================================================================= if self.checkBox_expo_plot.isChecked(): wrkr._init_plt() #check for exessive plot windows if len(wrkr.sid_vals)>5: plt_window = False log.warning('got %i plots... setting plt_window=False'%len(wrkr.sid_vals)) elif len(wrkr.sid_vals)>100: raise Error('too many plots!') else: plt_window = self.plt_window for sidVal in wrkr.sid_vals: fig = wrkr.plot_seg_prof(sidVal) self.output_fig(fig, plt_window=plt_window) self.feedback.setProgress(95) #======================================================================= # update gui #======================================================================= self.lineEdit_v_dexpo_fp.setText(dexpo_fp) #fill joinareaas filepath #populate the Join Areas widget self.scrollAreaWidgetContents_ja.clear_all() #clear for repeat runs self.scrollAreaWidgetContents_ja.set_selections('event', list(rlays_d.values())) log.info('finished Dike Expo w/ %s'%str(expo_df.shape)) self.feedback.upd_prog(None)
def run_expo(self): #execute dike exposure routeines log = self.logger.getChild('run_expo') log.debug('start') self.set_setup() #attach all the commons self.inherit_fieldNames.add('init_q_d') self.feedback.setProgress(5) from misc.dikes.expo import Dexpo #======================================================================= # collect inputs #======================================================================= rlays_d = self.listView_expo_rlays.get_selected_layers() #tside if self.radioButton_v_tside_left.isChecked(): tside = 'Left' else: tside = 'Right' #======================================================================= # init #======================================================================= kwargs = {attn:getattr(self, attn) for attn in self.inherit_fieldNames} wrkr = Dexpo(**kwargs) self.feedback.setProgress(10) #======================================================================= # execute------ #======================================================================= dike_vlay = wrkr.prep_dike(self.dike_vlay) kwargs = {attn:getattr(self, attn) for attn in []} dxcol, vlay_d = wrkr.get_dike_expo(rlays_d, dtm_rlay = self.mMapLayerComboBox_dtm.currentLayer(), dike_vlay = dike_vlay, #transect pars tside=tside, write_tr=False, #loaded below dist_dike=float(self.doubleSpinBox_dist_dike.value()), dist_trans=float(self.doubleSpinBox_dist_trans.value()), **kwargs) self.feedback.setProgress(60) expo_df = wrkr.get_fb_smry() self.feedback.setProgress(80) #======================================================================= # write/load to cannvas---------- #======================================================================= """dont write any layers.. just load them and let the user write""" #wrkr.output_expo_dxcol() dexpo_fp = wrkr.output_expo_df() #======================================================================= # dike layer #======================================================================= if self.checkBox_expo_wDikes.isChecked(): dike_vlay = wrkr.get_dikes_vlay() #get the dikes layer for writintg (fixed index) self._load_toCanvas(dike_vlay, logger=log.getChild('dike_vlay')) #======================================================================= # breach points #======================================================================= if self.checkBox_expo_breach_pts.isChecked(): breach_vlay_d = wrkr.get_breach_vlays() self._load_toCanvas(list(breach_vlay_d.values()), logger=log.getChild('breachPts')) #======================================================================= # transects #======================================================================= if self.checkBox_expo_write_tr.isChecked(): self._load_toCanvas(wrkr.tr_vlay, logger=log.getChild('tr_vlay')) log.info('loaded transect layer \'%s\' to canvas'%wrkr.tr_vlay.name()) #======================================================================= # exposure crest points #======================================================================= if self.checkBox_expo_crestPts.isChecked(): self._load_toCanvas(list(wrkr.expo_vlay_d.values()), logger=log.getChild('expo_crestPts')) #======================================================================= # plots #======================================================================= if self.checkBox_expo_plot.isChecked(): wrkr._init_plt() #check for exessive plot windows if len(wrkr.sid_vals)>5: plt_window = False log.warning('got %i plots... setting plt_window=False'%len(wrkr.sid_vals)) elif len(wrkr.sid_vals)>100: raise Error('too many plots!') else: plt_window = self.plt_window for sidVal in wrkr.sid_vals: fig = wrkr.plot_seg_prof(sidVal) self.output_fig(fig, plt_window=plt_window) self.feedback.setProgress(95) #======================================================================= # update gui #======================================================================= self.lineEdit_v_dexpo_fp.setText(dexpo_fp) #fill joinareaas filepath #populate the Join Areas widget self.scrollAreaWidgetContents_ja.clear_all() #clear for repeat runs self.scrollAreaWidgetContents_ja.set_selections('event', list(rlays_d.values())) log.info('finished Dike Expo w/ %s'%str(expo_df.shape)) self.feedback.upd_prog(None)
Python
def run_rjoin(self): #join failure probabilities onto influence polygons #======================================================================= # setup #======================================================================= log = self.logger.getChild('run_rjoin') log.debug('start') self.set_setup() #attach all the commons self.inherit_fieldNames.add('init_q_d') self.feedback.setProgress(5) from misc.dikes.rjoin import DikeJoiner """no reason to build the layers if they won't be loaded""" assert self.loadRes, 'ensure \'Load Results to Canvas..\' is selected' #======================================================================= # init #======================================================================= kwargs = {attn:getattr(self, attn) for attn in self.inherit_fieldNames} wrkr = DikeJoiner(**kwargs) self.feedback.setProgress(10) #========================================================================== # load the data #========================================================================== wrkr.load_pfail_df(fp=self.lineEdit_ja_pfail_fp.text()) #get influence polygons {rasterLayerName:polygonLayer} eifz_d = self.scrollAreaWidgetContents_ja.get_linked_layers(keyByFirst=True) self.feedback.setProgress(40) #========================================================================== # execute #========================================================================== vlay_d = wrkr.join_pfails(eifz_d=eifz_d) self.feedback.setProgress(80) #======================================================================= # outputs #======================================================================= self._load_toCanvas(list(vlay_d.values()), logger=log, style_fn = 'failPoly_graduated_reds.qml') self.feedback.setProgress(95) #======================================================================= # wrapo #======================================================================= log.info('finisehd Join Areas w/ %i'%len(vlay_d)) self.feedback.upd_prog(None)
def run_rjoin(self): #join failure probabilities onto influence polygons #======================================================================= # setup #======================================================================= log = self.logger.getChild('run_rjoin') log.debug('start') self.set_setup() #attach all the commons self.inherit_fieldNames.add('init_q_d') self.feedback.setProgress(5) from misc.dikes.rjoin import DikeJoiner """no reason to build the layers if they won't be loaded""" assert self.loadRes, 'ensure \'Load Results to Canvas..\' is selected' #======================================================================= # init #======================================================================= kwargs = {attn:getattr(self, attn) for attn in self.inherit_fieldNames} wrkr = DikeJoiner(**kwargs) self.feedback.setProgress(10) #========================================================================== # load the data #========================================================================== wrkr.load_pfail_df(fp=self.lineEdit_ja_pfail_fp.text()) #get influence polygons {rasterLayerName:polygonLayer} eifz_d = self.scrollAreaWidgetContents_ja.get_linked_layers(keyByFirst=True) self.feedback.setProgress(40) #========================================================================== # execute #========================================================================== vlay_d = wrkr.join_pfails(eifz_d=eifz_d) self.feedback.setProgress(80) #======================================================================= # outputs #======================================================================= self._load_toCanvas(list(vlay_d.values()), logger=log, style_fn = 'failPoly_graduated_reds.qml') self.feedback.setProgress(95) #======================================================================= # wrapo #======================================================================= log.info('finisehd Join Areas w/ %i'%len(vlay_d)) self.feedback.upd_prog(None)
Python
def _init_plt(self, #initilize matplotlib #**kwargs ): """ calling this here so we get clean parameters each time the class is instanced """ self.logger.debug('_init_plt') #======================================================================= # imports #======================================================================= import matplotlib matplotlib.use('Qt5Agg') #sets the backend (case sensitive) matplotlib.set_loglevel("info") #reduce logging level import matplotlib.pyplot as plt #set teh styles plt.style.use('default') #default QGIS windows font matplotlib.rc('font', **{ 'family' : 'sans-serif', #'sans-serif':'Tahoma', 'weight' : 'normal', 'size' : 8}) matplotlib.rcParams['font.family'] = 'sans-serif' matplotlib.rcParams['font.sans-serif'] = ['Tahoma'] matplotlib.rcParams['axes.titlesize'] = 10 #set the figure title size #spacing parameters matplotlib.rcParams['figure.autolayout'] = False #use tight layout #legends matplotlib.rcParams['legend.title_fontsize'] = 'large' self.plt, self.matplotlib = plt, matplotlib return {'plt':plt, 'matplotlib':matplotlib}
def _init_plt(self, #initilize matplotlib #**kwargs ): """ calling this here so we get clean parameters each time the class is instanced """ self.logger.debug('_init_plt') #======================================================================= # imports #======================================================================= import matplotlib matplotlib.use('Qt5Agg') #sets the backend (case sensitive) matplotlib.set_loglevel("info") #reduce logging level import matplotlib.pyplot as plt #set teh styles plt.style.use('default') #default QGIS windows font matplotlib.rc('font', **{ 'family' : 'sans-serif', #'sans-serif':'Tahoma', 'weight' : 'normal', 'size' : 8}) matplotlib.rcParams['font.family'] = 'sans-serif' matplotlib.rcParams['font.sans-serif'] = ['Tahoma'] matplotlib.rcParams['axes.titlesize'] = 10 #set the figure title size #spacing parameters matplotlib.rcParams['figure.autolayout'] = False #use tight layout #legends matplotlib.rcParams['legend.title_fontsize'] = 'large' self.plt, self.matplotlib = plt, matplotlib return {'plt':plt, 'matplotlib':matplotlib}
Python
def _init_fmtFunc(self, #setup impact formatting from two options impactFmtFunc=None, #raw function impactfmt_str=None, #ALTERNATIVE: python formatting string for building function ): """ called during init with a callable generally overwritten by init_model() (with impactfmt_str) """ #======================================================================= # defaults #======================================================================= """whatever was passed during construction.. usually None""" #get from string if impactFmtFunc is None: if impactfmt_str is None: impactfmt_str=self.impactfmt_str assert isinstance(impactfmt_str, str) impactFmtFunc = lambda x, fmt=impactfmt_str:'{:>{fmt}}'.format(x, fmt=fmt) self.impactFmtFunc=impactFmtFunc #check it assert callable(self.impactFmtFunc) try: impactFmtFunc(1.2) except Exception as e: self.logger.warning('bad formatter: %s w/ \n %s'%(impactfmt_str, e)) return
def _init_fmtFunc(self, #setup impact formatting from two options impactFmtFunc=None, #raw function impactfmt_str=None, #ALTERNATIVE: python formatting string for building function ): """ called during init with a callable generally overwritten by init_model() (with impactfmt_str) """ #======================================================================= # defaults #======================================================================= """whatever was passed during construction.. usually None""" #get from string if impactFmtFunc is None: if impactfmt_str is None: impactfmt_str=self.impactfmt_str assert isinstance(impactfmt_str, str) impactFmtFunc = lambda x, fmt=impactfmt_str:'{:>{fmt}}'.format(x, fmt=fmt) self.impactFmtFunc=impactFmtFunc #check it assert callable(self.impactFmtFunc) try: impactFmtFunc(1.2) except Exception as e: self.logger.warning('bad formatter: %s w/ \n %s'%(impactfmt_str, e)) return
Python
def upd_impStyle(self): #update the plotting pars based on your attributes """ taking instance variables (rather than parser's section) because these are already typset usually called twice 1) before loading the control file, to build a default Plotr.__init__() 2) after, to update values Model.init_model() default class values are used, unless matching parameters are passed in teh control file there are no checks on these ploting parameters TODO: find a better way to not have to run this so many times """ #assert not self.cfPars_d is None, 'load the control file first!' d = dict() #loop through the default values for k, v in self.impStyle_d.items(): if hasattr(self, k): d[k] = getattr(self, k) else: #just use default d[k] = v #re-insert hashtags if 'color' in d: d['color'] = d['color'].replace('?','#') self.impStyle_d = d
def upd_impStyle(self): #update the plotting pars based on your attributes """ taking instance variables (rather than parser's section) because these are already typset usually called twice 1) before loading the control file, to build a default Plotr.__init__() 2) after, to update values Model.init_model() default class values are used, unless matching parameters are passed in teh control file there are no checks on these ploting parameters TODO: find a better way to not have to run this so many times """ #assert not self.cfPars_d is None, 'load the control file first!' d = dict() #loop through the default values for k, v in self.impStyle_d.items(): if hasattr(self, k): d[k] = getattr(self, k) else: #just use default d[k] = v #re-insert hashtags if 'color' in d: d['color'] = d['color'].replace('?','#') self.impStyle_d = d
Python
def plot_impact_boxes(self, #box plots for each event df, #frame with columns to turn into box plots #labelling title = None, xlab=None, ylab=None, val_str=None, impactFmtFunc=None, #tick label format function for impact values smry_method = 'sum', #series method for summary providedin labels #figure parametrs figsize=None, grid=False, ylims_t = None, #tuple of yaxis limits logger=None, pkwargs = {}, ): """ todo: migrate these generic plotters to a more logical module """ #====================================================================== # defaults #====================================================================== if logger is None: logger=self.logger log = logger.getChild('plot_impact_boxes') plt, matplotlib = self.plt, self.matplotlib if figsize is None: figsize = self.figsize if impactFmtFunc is None: impactFmtFunc=self.impactFmtFunc if title is None: title = 'Boxplots on %i events'%len(df.columns) log.debug('on %s'%str(df.shape)) #======================================================================= # check #======================================================================= assert callable(impactFmtFunc) #======================================================================= # manipulate data #======================================================================= #get a collectio nof arrays from a dataframe's columns data = [ser.dropna().values for _, ser in df.items()] log.debug('on %i'%len(data)) #====================================================================== # figure setup #====================================================================== plt.close() fig = plt.figure(figsize=figsize, constrained_layout = True) #check for max if len(data) > self.set_cnt_max: log.warning('data set count exceeds max: %i... skipping'%len(data)) return fig #axis setup ax1 = fig.add_subplot(111) #aep units if not ylims_t is None: ax1.set_ylim(ylims_t[0], ylims_t[1]) # axis label setup fig.suptitle(title) ax1.set_xlabel(xlab) ax1.set_ylabel(ylab) #======================================================================= # plot thie histogram #======================================================================= boxRes_d = ax1.boxplot(data, whis=1.5, **pkwargs) #======================================================================= # format axis labels #======================================================= ================ #build new lables f = lambda idx: getattr(df.iloc[:, idx-1], smry_method)() xfmtFunc = lambda idx:'%s (%i): %s=%s'%( df.columns[idx-1], len(df.iloc[:, idx-1].dropna()), smry_method, impactFmtFunc(f(idx))) l = [xfmtFunc(value) for value in ax1.get_xticks()] #adjust locations og_locs = ax1.get_xticks() ax1.set_xticks(og_locs-0.3) #apply new lables Text_l = ax1.set_xticklabels(l, rotation=90, va='center', y=.5, color='red',) self._tickSet(ax1, yfmtFunc=impactFmtFunc) #======================================================================= # post #======================================================================= self._postFmt(ax1, grid=grid, val_str=val_str, xLocScale=.2, yLocScale=.8, legendLoc=None, #boxplots do nt have legends ) return fig
def plot_impact_boxes(self, #box plots for each event df, #frame with columns to turn into box plots #labelling title = None, xlab=None, ylab=None, val_str=None, impactFmtFunc=None, #tick label format function for impact values smry_method = 'sum', #series method for summary providedin labels #figure parametrs figsize=None, grid=False, ylims_t = None, #tuple of yaxis limits logger=None, pkwargs = {}, ): """ todo: migrate these generic plotters to a more logical module """ #====================================================================== # defaults #====================================================================== if logger is None: logger=self.logger log = logger.getChild('plot_impact_boxes') plt, matplotlib = self.plt, self.matplotlib if figsize is None: figsize = self.figsize if impactFmtFunc is None: impactFmtFunc=self.impactFmtFunc if title is None: title = 'Boxplots on %i events'%len(df.columns) log.debug('on %s'%str(df.shape)) #======================================================================= # check #======================================================================= assert callable(impactFmtFunc) #======================================================================= # manipulate data #======================================================================= #get a collectio nof arrays from a dataframe's columns data = [ser.dropna().values for _, ser in df.items()] log.debug('on %i'%len(data)) #====================================================================== # figure setup #====================================================================== plt.close() fig = plt.figure(figsize=figsize, constrained_layout = True) #check for max if len(data) > self.set_cnt_max: log.warning('data set count exceeds max: %i... skipping'%len(data)) return fig #axis setup ax1 = fig.add_subplot(111) #aep units if not ylims_t is None: ax1.set_ylim(ylims_t[0], ylims_t[1]) # axis label setup fig.suptitle(title) ax1.set_xlabel(xlab) ax1.set_ylabel(ylab) #======================================================================= # plot thie histogram #======================================================================= boxRes_d = ax1.boxplot(data, whis=1.5, **pkwargs) #======================================================================= # format axis labels #======================================================= ================ #build new lables f = lambda idx: getattr(df.iloc[:, idx-1], smry_method)() xfmtFunc = lambda idx:'%s (%i): %s=%s'%( df.columns[idx-1], len(df.iloc[:, idx-1].dropna()), smry_method, impactFmtFunc(f(idx))) l = [xfmtFunc(value) for value in ax1.get_xticks()] #adjust locations og_locs = ax1.get_xticks() ax1.set_xticks(og_locs-0.3) #apply new lables Text_l = ax1.set_xticklabels(l, rotation=90, va='center', y=.5, color='red',) self._tickSet(ax1, yfmtFunc=impactFmtFunc) #======================================================================= # post #======================================================================= self._postFmt(ax1, grid=grid, val_str=val_str, xLocScale=.2, yLocScale=.8, legendLoc=None, #boxplots do nt have legends ) return fig
Python
def plot_impact_hist(self, #stacked histograms for each column series df, #labelling title = None, xlab=None, ylab='asset count', val_str=None, impactFmtFunc=None, #tick label format function for impact values #figure parametrs figsize=None, grid=True, xlims_t = None, #tuple of yaxis limits logger=None, pkwargs = {}, ): """ todo: migrate these generic plotters to a more logical module """ #====================================================================== # defaults #====================================================================== if logger is None: logger=self.logger log = logger.getChild('plot_impact_boxes') plt, matplotlib = self.plt, self.matplotlib if figsize is None: figsize = self.figsize if impactFmtFunc is None: impactFmtFunc=self.impactFmtFunc if title is None: title = 'Histogram on %i Events'%len(df.columns) log.debug('on %s'%str(df.shape)) #======================================================================= # manipulate data #======================================================================= #get a collectio nof arrays from a dataframe's columns data = [ser.dropna().values for _, ser in df.items()] #====================================================================== # figure setup #====================================================================== plt.close() fig = plt.figure(figsize=figsize, constrained_layout = True) #check for max if len(data) > self.set_cnt_max: log.warning('data set count exceeds max: %i... skipping'%len(data)) return fig #axis setup ax1 = fig.add_subplot(111) #aep units if not xlims_t is None: ax1.set_xlim(xlims_t[0], xlims_t[1]) # axis label setup fig.suptitle(title) ax1.set_xlabel(xlab) ax1.set_ylabel(ylab) #======================================================================= # plot thie histogram #======================================================================= histVals_ar, bins_ar, patches = ax1.hist( data, bins='auto', stacked=False, label=df.columns.to_list(), alpha=0.9, **pkwargs) #======================================================================= # post #======================================================================= self._tickSet(ax1, xfmtFunc=impactFmtFunc) self._postFmt(ax1, grid=grid, val_str=val_str, xLocScale=.3, yLocScale=.8, ) return fig
def plot_impact_hist(self, #stacked histograms for each column series df, #labelling title = None, xlab=None, ylab='asset count', val_str=None, impactFmtFunc=None, #tick label format function for impact values #figure parametrs figsize=None, grid=True, xlims_t = None, #tuple of yaxis limits logger=None, pkwargs = {}, ): """ todo: migrate these generic plotters to a more logical module """ #====================================================================== # defaults #====================================================================== if logger is None: logger=self.logger log = logger.getChild('plot_impact_boxes') plt, matplotlib = self.plt, self.matplotlib if figsize is None: figsize = self.figsize if impactFmtFunc is None: impactFmtFunc=self.impactFmtFunc if title is None: title = 'Histogram on %i Events'%len(df.columns) log.debug('on %s'%str(df.shape)) #======================================================================= # manipulate data #======================================================================= #get a collectio nof arrays from a dataframe's columns data = [ser.dropna().values for _, ser in df.items()] #====================================================================== # figure setup #====================================================================== plt.close() fig = plt.figure(figsize=figsize, constrained_layout = True) #check for max if len(data) > self.set_cnt_max: log.warning('data set count exceeds max: %i... skipping'%len(data)) return fig #axis setup ax1 = fig.add_subplot(111) #aep units if not xlims_t is None: ax1.set_xlim(xlims_t[0], xlims_t[1]) # axis label setup fig.suptitle(title) ax1.set_xlabel(xlab) ax1.set_ylabel(ylab) #======================================================================= # plot thie histogram #======================================================================= histVals_ar, bins_ar, patches = ax1.hist( data, bins='auto', stacked=False, label=df.columns.to_list(), alpha=0.9, **pkwargs) #======================================================================= # post #======================================================================= self._tickSet(ax1, xfmtFunc=impactFmtFunc) self._postFmt(ax1, grid=grid, val_str=val_str, xLocScale=.3, yLocScale=.8, ) return fig
Python
def _get_val_str(self, #helper to get value string for writing text on the plot val_str, #cant be a kwarg.. allowing None impactFmtFunc=None, ): """ generally just returns the val_str but also provides some special handles self.matplotlib.__version__ """ #======================================================================= # defaults #======================================================================= if impactFmtFunc is None: impactFmtFunc=self.impactFmtFunc if val_str is None: val_str = self.val_str #======================================================================= # special keys #======================================================================= if isinstance(val_str, str): if val_str=='*default': assert isinstance(self.ead_tot, float) val_str='total annualized impacts = ' + impactFmtFunc(self.ead_tot) elif val_str=='*no': val_str=None elif val_str.startswith('*'): raise Error('unrecognized val_str: %s'%val_str) return val_str
def _get_val_str(self, #helper to get value string for writing text on the plot val_str, #cant be a kwarg.. allowing None impactFmtFunc=None, ): """ generally just returns the val_str but also provides some special handles self.matplotlib.__version__ """ #======================================================================= # defaults #======================================================================= if impactFmtFunc is None: impactFmtFunc=self.impactFmtFunc if val_str is None: val_str = self.val_str #======================================================================= # special keys #======================================================================= if isinstance(val_str, str): if val_str=='*default': assert isinstance(self.ead_tot, float) val_str='total annualized impacts = ' + impactFmtFunc(self.ead_tot) elif val_str=='*no': val_str=None elif val_str.startswith('*'): raise Error('unrecognized val_str: %s'%val_str) return val_str
Python
def write(self,#store this scenario to file #filepaths out_dir = None, logger=None, ): #======================================================================= # defaults #======================================================================= if logger is None: logger=self.logger log = logger.getChild('write') if out_dir is None: out_dir = os.path.join(self.parent.out_dir, self.name) if not os.path.exists(out_dir):os.makedirs(out_dir) self.out_dir=out_dir #set this self.resname = self.name #normally set by risk models log.info('set out_dir to: %s'%out_dir) #======================================================================= #set the new control file #======================================================================= #======================================================================= # #duplicate # cf_fp = os.path.join(out_dir, 'cf_controlFile_%s.txt'%self.name) # shutil.copy2(self.cf_fp,cf_fp) #======================================================================= #open the copy cpars_raw = configparser.ConfigParser(inline_comment_prefixes='#') log.info('reading parameters from \n %s'%cpars_raw.read(self.cf_fp)) #cleaqr filepath sections for sectName in cpars_raw.sections(): if sectName.endswith('_fps'): log.info('clearing section \"%s\''%sectName) assert cpars_raw.remove_section(sectName) #remove it cpars_raw.add_section(sectName) #add it back empty #write the config file cf_fp = os.path.join(out_dir, 'cf_controlFile_%s.txt'%self.name) with open(cf_fp, 'w') as configfile: cpars_raw.write(configfile) self.cf_fp = cf_fp #======================================================================= # #add new data #======================================================================= """each of these makes a new call to set_cf_pars""" self.set_cf_pars({ 'parameters':({'name':self.name}, '#copy') }) #update """each of these should write using intelligent name/path/index and update the control file""" meta_d = dict() for dtag, data in self.data_d.items(): assert dtag in self.out_funcs_d, 'missing function key on %s'%dtag #retrieve the outputter function assert hasattr(self, self.out_funcs_d[dtag]), self.out_funcs_d[dtag] f = getattr(self, self.out_funcs_d[dtag]) #output the data using the function meta_d[dtag] = f(df=data, upd_cf=True, logger=log) log.info('finished on %i \n %s'%(len(meta_d), meta_d)) return meta_d
def write(self,#store this scenario to file #filepaths out_dir = None, logger=None, ): #======================================================================= # defaults #======================================================================= if logger is None: logger=self.logger log = logger.getChild('write') if out_dir is None: out_dir = os.path.join(self.parent.out_dir, self.name) if not os.path.exists(out_dir):os.makedirs(out_dir) self.out_dir=out_dir #set this self.resname = self.name #normally set by risk models log.info('set out_dir to: %s'%out_dir) #======================================================================= #set the new control file #======================================================================= #======================================================================= # #duplicate # cf_fp = os.path.join(out_dir, 'cf_controlFile_%s.txt'%self.name) # shutil.copy2(self.cf_fp,cf_fp) #======================================================================= #open the copy cpars_raw = configparser.ConfigParser(inline_comment_prefixes='#') log.info('reading parameters from \n %s'%cpars_raw.read(self.cf_fp)) #cleaqr filepath sections for sectName in cpars_raw.sections(): if sectName.endswith('_fps'): log.info('clearing section \"%s\''%sectName) assert cpars_raw.remove_section(sectName) #remove it cpars_raw.add_section(sectName) #add it back empty #write the config file cf_fp = os.path.join(out_dir, 'cf_controlFile_%s.txt'%self.name) with open(cf_fp, 'w') as configfile: cpars_raw.write(configfile) self.cf_fp = cf_fp #======================================================================= # #add new data #======================================================================= """each of these makes a new call to set_cf_pars""" self.set_cf_pars({ 'parameters':({'name':self.name}, '#copy') }) #update """each of these should write using intelligent name/path/index and update the control file""" meta_d = dict() for dtag, data in self.data_d.items(): assert dtag in self.out_funcs_d, 'missing function key on %s'%dtag #retrieve the outputter function assert hasattr(self, self.out_funcs_d[dtag]), self.out_funcs_d[dtag] f = getattr(self, self.out_funcs_d[dtag]) #output the data using the function meta_d[dtag] = f(df=data, upd_cf=True, logger=log) log.info('finished on %i \n %s'%(len(meta_d), meta_d)) return meta_d
Python
def merge_expectations(self, #merge expectation containers modLevel ): """ because we're merging Risk and Impact model classes, need to combine the expectation pars """ assert modLevel in self.modelTypes_d #loop through each of your sibilings for ModObj in self.modelTypes_d[modLevel]: #print('collecting from %s'%ModObj.__name__) #=================================================================== # loop each expectation container #=================================================================== for attn in self.collect_attns: #get from the sibling sib_att_d = copy.deepcopy(getattr(ModObj, attn)) if not hasattr(self, attn): new_att_d = sib_att_d #======================================================================= # merge #======================================================================= else: #start with a copy of th eold new_att_d = copy.deepcopy(getattr(self, attn)) for k, sub_d in sib_att_d.items(): if k in new_att_d: new_att_d[k] = {**new_att_d[k], **sub_d} else: new_att_d[k] = sub_d #set it setattr(self, attn, new_att_d) #=================================================================== # special fixes #=================================================================== """need to remove the dmgs from the mandatory expectations""" if 'dmgs' in self.exp_pars_md['risk_fps']: del self.exp_pars_md['risk_fps']['dmgs'] else: assert modLevel=='L1'
def merge_expectations(self, #merge expectation containers modLevel ): """ because we're merging Risk and Impact model classes, need to combine the expectation pars """ assert modLevel in self.modelTypes_d #loop through each of your sibilings for ModObj in self.modelTypes_d[modLevel]: #print('collecting from %s'%ModObj.__name__) #=================================================================== # loop each expectation container #=================================================================== for attn in self.collect_attns: #get from the sibling sib_att_d = copy.deepcopy(getattr(ModObj, attn)) if not hasattr(self, attn): new_att_d = sib_att_d #======================================================================= # merge #======================================================================= else: #start with a copy of th eold new_att_d = copy.deepcopy(getattr(self, attn)) for k, sub_d in sib_att_d.items(): if k in new_att_d: new_att_d[k] = {**new_att_d[k], **sub_d} else: new_att_d[k] = sub_d #set it setattr(self, attn, new_att_d) #=================================================================== # special fixes #=================================================================== """need to remove the dmgs from the mandatory expectations""" if 'dmgs' in self.exp_pars_md['risk_fps']: del self.exp_pars_md['risk_fps']['dmgs'] else: assert modLevel=='L1'
Python
def rpDia(): #helper to connect slots and """only executing setup once called to simplify initial loading""" _ = self.RPrepDialog._setup() self.RPrepDialog.pushButton_HS_prep.clicked.connect(self.run_rPrep) self.RPrepDialog.show()
def rpDia(): #helper to connect slots and """only executing setup once called to simplify initial loading""" _ = self.RPrepDialog._setup() self.RPrepDialog.pushButton_HS_prep.clicked.connect(self.run_rPrep) self.RPrepDialog.show()
Python
def build_scenario(self): # Generate a CanFlood project from scratch """ This tab facilitates the creation of a Control File from user specified parameters and inventory, as well as providing general file control variables for the other tools in the toolset. """ log = self.logger.getChild('build_scenario') log.info('build_scenario started') #tag = self.linEdit_ScenTag.text() #set the secnario tag from user provided name #wdir = self.lineEdit_wdir.text() #pull the wd filepath from the user provided in 'Browse' #======================================================================= # collect inputs #======================================================================= self.set_setup(set_cf_fp=False, set_finv=False) prec = str(int(self.spinBox_s_prec.value())) #need a string for setting #======================================================================= # prechecks #======================================================================= if self.radioButton_SS_fpRel.isChecked(): raise Error('Relative filepaths not implemented') self.feedback.upd_prog(10) #======================================================================= # run the control file builder---- #======================================================================= #initilize kwargs = {attn:getattr(self, attn) for attn in self.inherit_fieldNames} wrkr = Preparor(**kwargs) self.feedback.upd_prog(20) #======================================================================= # #copy the template #======================================================================= cf_path = wrkr.copy_cf_template() self.feedback.upd_prog(75) #======================================================================= # #set some basics #======================================================================= wrkr.upd_cf_first(scenarioName=self.linEdit_ScenTag.text(), **{'prec':prec}) log.info("default CanFlood model config file created :\n %s"%cf_path) """NO. should only populate this automatically from ModelControlFile.Browse self.lineEdit_curve.setText(os.path.normpath(os.path.join(wdir, 'CanFlood - curve set 01.xls')))""" """TODO: write aoi filepath to scratch file """ self.feedback.upd_prog(95) #======================================================================= # ui updates #======================================================================= #display the control file in the dialog self.lineEdit_cf_fp.setText(cf_path) #====================================================================== # wrap #====================================================================== log.push('control file created for "\'%s\''%self.tag) self.feedback.upd_prog(None)
def build_scenario(self): # Generate a CanFlood project from scratch """ This tab facilitates the creation of a Control File from user specified parameters and inventory, as well as providing general file control variables for the other tools in the toolset. """ log = self.logger.getChild('build_scenario') log.info('build_scenario started') #tag = self.linEdit_ScenTag.text() #set the secnario tag from user provided name #wdir = self.lineEdit_wdir.text() #pull the wd filepath from the user provided in 'Browse' #======================================================================= # collect inputs #======================================================================= self.set_setup(set_cf_fp=False, set_finv=False) prec = str(int(self.spinBox_s_prec.value())) #need a string for setting #======================================================================= # prechecks #======================================================================= if self.radioButton_SS_fpRel.isChecked(): raise Error('Relative filepaths not implemented') self.feedback.upd_prog(10) #======================================================================= # run the control file builder---- #======================================================================= #initilize kwargs = {attn:getattr(self, attn) for attn in self.inherit_fieldNames} wrkr = Preparor(**kwargs) self.feedback.upd_prog(20) #======================================================================= # #copy the template #======================================================================= cf_path = wrkr.copy_cf_template() self.feedback.upd_prog(75) #======================================================================= # #set some basics #======================================================================= wrkr.upd_cf_first(scenarioName=self.linEdit_ScenTag.text(), **{'prec':prec}) log.info("default CanFlood model config file created :\n %s"%cf_path) """NO. should only populate this automatically from ModelControlFile.Browse self.lineEdit_curve.setText(os.path.normpath(os.path.join(wdir, 'CanFlood - curve set 01.xls')))""" """TODO: write aoi filepath to scratch file """ self.feedback.upd_prog(95) #======================================================================= # ui updates #======================================================================= #display the control file in the dialog self.lineEdit_cf_fp.setText(cf_path) #====================================================================== # wrap #====================================================================== log.push('control file created for "\'%s\''%self.tag) self.feedback.upd_prog(None)
Python
def run_rPrep(self): log = self.logger.getChild('run_rPrep') start = datetime.datetime.now() log.info('start \'run_rPrep\' at %s'%start) """the buttons have been moved onto the sub-dialog but we're keeping all the functions here for better integration treats the popout as more of an extension""" subDia = self.RPrepDialog #======================================================================= # assemble/prepare inputs #======================================================================= self.set_setup(set_finv=False) rlayRaw_l = list(self.listView_expo_rlays.get_selected_layers().values()) aoi_vlay = self.aoi_vlay #raster prep parameters clip_rlays = subDia.checkBox_HS_clip.isChecked() allow_download = subDia.checkBox_HS_dpConv.isChecked() allow_rproj = subDia.checkBox_HS_rproj.isChecked() scaleFactor = subDia.doubleSpinBox_HS_sf.value() #======================================================================= # precheck #======================================================================= #check rastsers for rlay in rlayRaw_l: if not isinstance(rlay, QgsRasterLayer): raise Error('unexpected type on raster layer') #raster prep checks assert isinstance(clip_rlays, bool) assert isinstance(allow_download, bool) assert isinstance(allow_rproj, bool) assert isinstance(scaleFactor, float) if clip_rlays: assert isinstance(aoi_vlay, QgsVectorLayer), 'for clip_rlays=True, must provide AOI' self.feedback.setProgress(10) #======================================================================= # execute #======================================================================= kwargs = {attn:getattr(self, attn) for attn in self.inherit_fieldNames} wrkr = Rsamp(**kwargs) #execute the tool rlay_l = wrkr.runPrep(rlayRaw_l, aoi_vlay = aoi_vlay, clip_rlays = clip_rlays, allow_download = allow_download, allow_rproj = allow_rproj, scaleFactor = scaleFactor, ) #======================================================================= # load results onto list widget #======================================================================= self.listView_expo_rlays.clear_checks() if self.checkBox_loadres.isChecked(): log.debug('loading %i result layers onto widget'%len(rlay_l)) for rlay in rlay_l: self._load_toCanvas(rlay, logger=log) #update the widget self.listView_expo_rlays.populate_layers() #referesh all self.listView_expo_rlays.check_byName([l.name() for l in rlay_l]) else: log.warning('prepped rasters not loaded to canvas!') #======================================================================= # wrap #======================================================================= self.feedback.upd_prog(None) #set the progress bar back down to zero log.push('run_rPrep finished in %s'%(datetime.datetime.now() - start)) return
def run_rPrep(self): log = self.logger.getChild('run_rPrep') start = datetime.datetime.now() log.info('start \'run_rPrep\' at %s'%start) """the buttons have been moved onto the sub-dialog but we're keeping all the functions here for better integration treats the popout as more of an extension""" subDia = self.RPrepDialog #======================================================================= # assemble/prepare inputs #======================================================================= self.set_setup(set_finv=False) rlayRaw_l = list(self.listView_expo_rlays.get_selected_layers().values()) aoi_vlay = self.aoi_vlay #raster prep parameters clip_rlays = subDia.checkBox_HS_clip.isChecked() allow_download = subDia.checkBox_HS_dpConv.isChecked() allow_rproj = subDia.checkBox_HS_rproj.isChecked() scaleFactor = subDia.doubleSpinBox_HS_sf.value() #======================================================================= # precheck #======================================================================= #check rastsers for rlay in rlayRaw_l: if not isinstance(rlay, QgsRasterLayer): raise Error('unexpected type on raster layer') #raster prep checks assert isinstance(clip_rlays, bool) assert isinstance(allow_download, bool) assert isinstance(allow_rproj, bool) assert isinstance(scaleFactor, float) if clip_rlays: assert isinstance(aoi_vlay, QgsVectorLayer), 'for clip_rlays=True, must provide AOI' self.feedback.setProgress(10) #======================================================================= # execute #======================================================================= kwargs = {attn:getattr(self, attn) for attn in self.inherit_fieldNames} wrkr = Rsamp(**kwargs) #execute the tool rlay_l = wrkr.runPrep(rlayRaw_l, aoi_vlay = aoi_vlay, clip_rlays = clip_rlays, allow_download = allow_download, allow_rproj = allow_rproj, scaleFactor = scaleFactor, ) #======================================================================= # load results onto list widget #======================================================================= self.listView_expo_rlays.clear_checks() if self.checkBox_loadres.isChecked(): log.debug('loading %i result layers onto widget'%len(rlay_l)) for rlay in rlay_l: self._load_toCanvas(rlay, logger=log) #update the widget self.listView_expo_rlays.populate_layers() #referesh all self.listView_expo_rlays.check_byName([l.name() for l in rlay_l]) else: log.warning('prepped rasters not loaded to canvas!') #======================================================================= # wrap #======================================================================= self.feedback.upd_prog(None) #set the progress bar back down to zero log.push('run_rPrep finished in %s'%(datetime.datetime.now() - start)) return
Python
def run_rsamp(self): #execute raster sampler log = self.logger.getChild('run_rsamp') start = datetime.datetime.now() log.info('start \'run_rsamp\' at %s'%start) self.feedback.setProgress(1) self.set_setup(set_finv=True) #common setup routines and attachments #======================================================================= # assemble/prepare inputs----- #======================================================================= rlay_l = list(self.listView_expo_rlays.get_selected_layers().values()) finv = self.finv_vlay #set by set_setup() #======================================================================= # #exposure configuration #======================================================================= #pull parameters from dialog psmp_stat, psmp_fieldName, as_inun, dtm_rlay, dthresh = self._get_rsamp_pars() self.feedback.setProgress(5) #======================================================================= # checks #======================================================================= for rlay in rlay_l: if not isinstance(rlay, QgsRasterLayer): raise Error('unexpected type on raster layer') assert rlay.crs()==self.qproj.crs(), 'raster layer CRS does not match project' self.feedback.setProgress(10) #====================================================================== # execute---- #====================================================================== #build the sample kwargs = {attn:getattr(self, attn) for attn in self.inherit_fieldNames} wrkr = Rsamp(**kwargs) #execute the tool res_vlay = wrkr.run(rlay_l, finv, psmp_stat=psmp_stat, psmp_fieldName=psmp_fieldName, as_inun=as_inun, dtm_rlay=dtm_rlay, dthresh=dthresh, ) self.feedback.setProgress(90) #check it wrkr.check() #save csv results to file wrkr.write_res(res_vlay, ) #update ocntrol file wrkr.update_cf(self.cf_fp) #======================================================================= # plots #======================================================================= if self.checkBox_ras_pBox.isChecked(): fig = wrkr.plot_boxes() self.output_fig(fig) if self.checkBox_ras_pHist.isChecked(): fig = wrkr.plot_hist() self.output_fig(fig) #====================================================================== # post--------- #====================================================================== """ the hazard sampler sets up a lot of the other tools """ #====================================================================== # add to map #====================================================================== if self.checkBox_loadres.isChecked(): self._load_toCanvas(res_vlay, logger=log) #====================================================================== # update event names #====================================================================== self.event_name_set = [lay.name() for lay in rlay_l] log.info('set %i event names: \n %s'%(len(self.event_name_set), self.event_name_set)) #====================================================================== # populate Event Likelihoods table #====================================================================== l = self.event_name_set for tbl in [self.fieldsTable_EL]: tbl.setRowCount(len(l)) #add this many rows for rindx, ename in enumerate(l): tbl.setItem(rindx, 0, QTableWidgetItem(ename)) log.info('populated tables with event names') self.feedback.setProgress(95) #====================================================================== # populate Conditional P #====================================================================== """todo: some more intelligent populating""" #get the mlcb try: self._CP_clear() #clear everything #loop through each of the raster layers and collcet those with 'fail' in the name rFail_l = [] for rlay in rlay_l: if 'fail' in rlay.name(): rFail_l.append(rlay) #loop through and re-key rFail_d = dict() for indxr, rlay in enumerate(rFail_l): rFail_d[list(self.ls_cb_d.keys())[indxr]] = rlay #loop through each combobox pair and assign a raster to it res_d = dict() for lsKey, (mlcb_h, mlcb_v) in self.ls_cb_d.items(): if lsKey in rFail_d: mlcb_h.setLayer(rFail_d[lsKey]) res_d[lsKey] = rFail_d[lsKey].name() #wrap log.info('populated %i Conditional P diaglogs'%len(res_d)) except Exception as e: log.error('failed to populate lisamp fields w/\n %s'%e) #====================================================================== # wrap #====================================================================== self.feedback.upd_prog(None) #set the progress bar back down to zero log.push('run_rsamp finished in %s'%(datetime.datetime.now() - start)) return
def run_rsamp(self): #execute raster sampler log = self.logger.getChild('run_rsamp') start = datetime.datetime.now() log.info('start \'run_rsamp\' at %s'%start) self.feedback.setProgress(1) self.set_setup(set_finv=True) #common setup routines and attachments #======================================================================= # assemble/prepare inputs----- #======================================================================= rlay_l = list(self.listView_expo_rlays.get_selected_layers().values()) finv = self.finv_vlay #set by set_setup() #======================================================================= # #exposure configuration #======================================================================= #pull parameters from dialog psmp_stat, psmp_fieldName, as_inun, dtm_rlay, dthresh = self._get_rsamp_pars() self.feedback.setProgress(5) #======================================================================= # checks #======================================================================= for rlay in rlay_l: if not isinstance(rlay, QgsRasterLayer): raise Error('unexpected type on raster layer') assert rlay.crs()==self.qproj.crs(), 'raster layer CRS does not match project' self.feedback.setProgress(10) #====================================================================== # execute---- #====================================================================== #build the sample kwargs = {attn:getattr(self, attn) for attn in self.inherit_fieldNames} wrkr = Rsamp(**kwargs) #execute the tool res_vlay = wrkr.run(rlay_l, finv, psmp_stat=psmp_stat, psmp_fieldName=psmp_fieldName, as_inun=as_inun, dtm_rlay=dtm_rlay, dthresh=dthresh, ) self.feedback.setProgress(90) #check it wrkr.check() #save csv results to file wrkr.write_res(res_vlay, ) #update ocntrol file wrkr.update_cf(self.cf_fp) #======================================================================= # plots #======================================================================= if self.checkBox_ras_pBox.isChecked(): fig = wrkr.plot_boxes() self.output_fig(fig) if self.checkBox_ras_pHist.isChecked(): fig = wrkr.plot_hist() self.output_fig(fig) #====================================================================== # post--------- #====================================================================== """ the hazard sampler sets up a lot of the other tools """ #====================================================================== # add to map #====================================================================== if self.checkBox_loadres.isChecked(): self._load_toCanvas(res_vlay, logger=log) #====================================================================== # update event names #====================================================================== self.event_name_set = [lay.name() for lay in rlay_l] log.info('set %i event names: \n %s'%(len(self.event_name_set), self.event_name_set)) #====================================================================== # populate Event Likelihoods table #====================================================================== l = self.event_name_set for tbl in [self.fieldsTable_EL]: tbl.setRowCount(len(l)) #add this many rows for rindx, ename in enumerate(l): tbl.setItem(rindx, 0, QTableWidgetItem(ename)) log.info('populated tables with event names') self.feedback.setProgress(95) #====================================================================== # populate Conditional P #====================================================================== """todo: some more intelligent populating""" #get the mlcb try: self._CP_clear() #clear everything #loop through each of the raster layers and collcet those with 'fail' in the name rFail_l = [] for rlay in rlay_l: if 'fail' in rlay.name(): rFail_l.append(rlay) #loop through and re-key rFail_d = dict() for indxr, rlay in enumerate(rFail_l): rFail_d[list(self.ls_cb_d.keys())[indxr]] = rlay #loop through each combobox pair and assign a raster to it res_d = dict() for lsKey, (mlcb_h, mlcb_v) in self.ls_cb_d.items(): if lsKey in rFail_d: mlcb_h.setLayer(rFail_d[lsKey]) res_d[lsKey] = rFail_d[lsKey].name() #wrap log.info('populated %i Conditional P diaglogs'%len(res_d)) except Exception as e: log.error('failed to populate lisamp fields w/\n %s'%e) #====================================================================== # wrap #====================================================================== self.feedback.upd_prog(None) #set the progress bar back down to zero log.push('run_rsamp finished in %s'%(datetime.datetime.now() - start)) return
Python
def run_validate(self): """only validating the text in the control file for now (not the data objects) """ log = self.logger.getChild('run_validate') log.info('user pressed \'pushButton_Validate\'') #====================================================================== # collect form ui #====================================================================== self._set_setup() #=================================================================== # setup validation worker #=================================================================== kwargs = {attn:getattr(self, attn) for attn in self.inherit_fieldNames} wrkr = Vali(**kwargs) #====================================================================== # assemble the validation parameters #====================================================================== #import the class objects from model.dmg2 import Dmg2 from model.risk2 import Risk2 from model.risk1 import Risk1 #populate all possible test parameters vpars_all_d = { 'risk1':(self.checkBox_Vr1, Risk1), 'dmg2':(self.checkBox_Vi2, Dmg2), 'risk2':(self.checkBox_Vr2, Risk2), #'risk3':(self.checkBox_Vr3, None), } #loop and collect based on check boxes vpars_d = dict() for vtag, (checkBox, modObj) in vpars_all_d.items(): if not checkBox.isChecked(): continue #skip this one vpars_d[vtag] = modObj self.feedback.upd_prog(10) #====================================================================== # loop through each possibility and validate #====================================================================== res_d = dict() for vtag, modObj in vpars_d.items(): log.debug('checking \"%s\''%vtag) #=================================================================== # parameter value/type check #=================================================================== errors = wrkr.cf_check(modObj) # #report on all the errors for indxr, msg in enumerate(errors): log.warning('%s error %i: \n%s'%(vtag, indxr+1, msg)) #=================================================================== # update control file #=================================================================== wrkr.cf_mark() self.feedback.upd_prog(80/len(vpars_d), method='append') #store if len(errors) == 0: res_d[vtag] = True else: res_d[vtag] = False #======================================================================= # wrap #======================================================================= self.feedback.upd_prog(100) log.push('passed %i (of %i) validations. see log for errors'%( np.array(list(res_d.values())).sum(), len(vpars_d) )) self.feedback.upd_prog(None) return
def run_validate(self): """only validating the text in the control file for now (not the data objects) """ log = self.logger.getChild('run_validate') log.info('user pressed \'pushButton_Validate\'') #====================================================================== # collect form ui #====================================================================== self._set_setup() #=================================================================== # setup validation worker #=================================================================== kwargs = {attn:getattr(self, attn) for attn in self.inherit_fieldNames} wrkr = Vali(**kwargs) #====================================================================== # assemble the validation parameters #====================================================================== #import the class objects from model.dmg2 import Dmg2 from model.risk2 import Risk2 from model.risk1 import Risk1 #populate all possible test parameters vpars_all_d = { 'risk1':(self.checkBox_Vr1, Risk1), 'dmg2':(self.checkBox_Vi2, Dmg2), 'risk2':(self.checkBox_Vr2, Risk2), #'risk3':(self.checkBox_Vr3, None), } #loop and collect based on check boxes vpars_d = dict() for vtag, (checkBox, modObj) in vpars_all_d.items(): if not checkBox.isChecked(): continue #skip this one vpars_d[vtag] = modObj self.feedback.upd_prog(10) #====================================================================== # loop through each possibility and validate #====================================================================== res_d = dict() for vtag, modObj in vpars_d.items(): log.debug('checking \"%s\''%vtag) #=================================================================== # parameter value/type check #=================================================================== errors = wrkr.cf_check(modObj) # #report on all the errors for indxr, msg in enumerate(errors): log.warning('%s error %i: \n%s'%(vtag, indxr+1, msg)) #=================================================================== # update control file #=================================================================== wrkr.cf_mark() self.feedback.upd_prog(80/len(vpars_d), method='append') #store if len(errors) == 0: res_d[vtag] = True else: res_d[vtag] = False #======================================================================= # wrap #======================================================================= self.feedback.upd_prog(100) log.push('passed %i (of %i) validations. see log for errors'%( np.array(list(res_d.values())).sum(), len(vpars_d) )) self.feedback.upd_prog(None) return
Python
def run_pStack(self): #single risk plot of total results """ similar to plotRisk for now... may choose to expand later """ log = self.logger.getChild('run_pStack') log.info('user pushed \'run_pStack\'') #======================================================================= # collect inputs #======================================================================= self._set_setup(set_cf_fp=True) self.feedback.setProgress(5) #======================================================================= # setup and load #======================================================================= kwargs = {attn:getattr(self, attn) for attn in self.inherit_fieldNames} wrkr = results.attribution.Attr(**kwargs).setup() self.feedback.setProgress(10) stack_dxind, sEAD_ser = wrkr.get_stack() self.feedback.setProgress(20) #======================================================================= # #execute #======================================================================= if self.checkBox_RP_aep.isChecked(): fig = wrkr.plot_stackdRCurves(stack_dxind, sEAD_ser, y1lab='AEP') self.output_fig(fig) self.feedback.upd_prog(30, method='append') if self.checkBox_RP_ari.isChecked(): fig = wrkr.plot_stackdRCurves(stack_dxind, sEAD_ser, y1lab='impacts') self.output_fig(fig) self.feedback.upd_prog(30, method='append') #======================================================================= # wrap #======================================================================= self.feedback.upd_prog(None) #set the progress bar back down to zero log.push('pStack finished')
def run_pStack(self): #single risk plot of total results """ similar to plotRisk for now... may choose to expand later """ log = self.logger.getChild('run_pStack') log.info('user pushed \'run_pStack\'') #======================================================================= # collect inputs #======================================================================= self._set_setup(set_cf_fp=True) self.feedback.setProgress(5) #======================================================================= # setup and load #======================================================================= kwargs = {attn:getattr(self, attn) for attn in self.inherit_fieldNames} wrkr = results.attribution.Attr(**kwargs).setup() self.feedback.setProgress(10) stack_dxind, sEAD_ser = wrkr.get_stack() self.feedback.setProgress(20) #======================================================================= # #execute #======================================================================= if self.checkBox_RP_aep.isChecked(): fig = wrkr.plot_stackdRCurves(stack_dxind, sEAD_ser, y1lab='AEP') self.output_fig(fig) self.feedback.upd_prog(30, method='append') if self.checkBox_RP_ari.isChecked(): fig = wrkr.plot_stackdRCurves(stack_dxind, sEAD_ser, y1lab='impacts') self.output_fig(fig) self.feedback.upd_prog(30, method='append') #======================================================================= # wrap #======================================================================= self.feedback.upd_prog(None) #set the progress bar back down to zero log.push('pStack finished')
Python
def init_model(self, #load and attach control file parameters check_pars=True, ): """ should be called by the model's own 'setup()' func during standalones and Dialog runs """ log = self.logger.getChild('init_model') #======================================================================= # #parameter setup----- #======================================================================= #======================================================================= # load the control file #======================================================================= cf_fp = self.cf_fp if cf_fp == '': raise Error('passed an empty cf_fp!') assert os.path.exists(cf_fp), 'provided parameter file path does not exist \n %s'%cf_fp self.pars = configparser.ConfigParser(inline_comment_prefixes='#') log.info('reading parameters from \n %s'%self.pars.read(cf_fp)) #======================================================================= # filepaths #======================================================================= if not self.absolute_fp: log.info('converting relative filepaths') self.pars = self._cf_relative(self.pars) #======================================================================= # check against expectations #======================================================================= if check_pars: errors = self._get_cf_miss(self.pars) #report on all the errors for indxr, msg in enumerate(errors): log.error('error %i: \n%s'%(indxr+1, msg)) #final trip """lets us loop through all the checks before failing""" if not len(errors)==0: raise Error('failed to validate ControlFile w/ %i error(s)... see log'%len(errors)) #======================================================================= # attach control file parameter values #======================================================================= self.cfPars_d = self.cf_attach_pars(self.pars) #======================================================================= # #check our validity tag #======================================================================= if check_pars: if not self.valid_par is None: if not getattr(self, self.valid_par): raise Error('control file not validated for \'%s\'. please run InputValidator'%self.valid_par) #======================================================================= # update plotting handles #======================================================================= if hasattr(self, 'upd_impStyle'): self.upd_impStyle() self._init_fmtFunc() self.resname = '%s_%s_%s'%(self.valid_par, self.name, self.tag) """TODO: consolidate this with ComWrkr.resname""" #======================================================================= # #wrap #======================================================================= self.logger.debug('finished init_modelon Model')
def init_model(self, #load and attach control file parameters check_pars=True, ): """ should be called by the model's own 'setup()' func during standalones and Dialog runs """ log = self.logger.getChild('init_model') #======================================================================= # #parameter setup----- #======================================================================= #======================================================================= # load the control file #======================================================================= cf_fp = self.cf_fp if cf_fp == '': raise Error('passed an empty cf_fp!') assert os.path.exists(cf_fp), 'provided parameter file path does not exist \n %s'%cf_fp self.pars = configparser.ConfigParser(inline_comment_prefixes='#') log.info('reading parameters from \n %s'%self.pars.read(cf_fp)) #======================================================================= # filepaths #======================================================================= if not self.absolute_fp: log.info('converting relative filepaths') self.pars = self._cf_relative(self.pars) #======================================================================= # check against expectations #======================================================================= if check_pars: errors = self._get_cf_miss(self.pars) #report on all the errors for indxr, msg in enumerate(errors): log.error('error %i: \n%s'%(indxr+1, msg)) #final trip """lets us loop through all the checks before failing""" if not len(errors)==0: raise Error('failed to validate ControlFile w/ %i error(s)... see log'%len(errors)) #======================================================================= # attach control file parameter values #======================================================================= self.cfPars_d = self.cf_attach_pars(self.pars) #======================================================================= # #check our validity tag #======================================================================= if check_pars: if not self.valid_par is None: if not getattr(self, self.valid_par): raise Error('control file not validated for \'%s\'. please run InputValidator'%self.valid_par) #======================================================================= # update plotting handles #======================================================================= if hasattr(self, 'upd_impStyle'): self.upd_impStyle() self._init_fmtFunc() self.resname = '%s_%s_%s'%(self.valid_par, self.name, self.tag) """TODO: consolidate this with ComWrkr.resname""" #======================================================================= # #wrap #======================================================================= self.logger.debug('finished init_modelon Model')
Python
def cf_attach_pars(self, #load parmaeteres from file cpars, setAttr=True, #whether to save each attribute ): """ cf_chk_pars() should be run first to make sure parameter membership and type matches expectations here we just update every parameter value found: on the class AND in the ControlFile """ #======================================================================= # defaults #======================================================================= log = self.logger.getChild('cf_attach_pars') #======================================================================= # precheck #======================================================================= assert isinstance(cpars, configparser.ConfigParser) #======================================================================= # loop and retrieve #======================================================================= cpars_d = dict() #set values no_d = dict() #not set values noCnt = 0 for sectName in cpars.sections(): cpars_d[sectName], no_d[sectName] = dict(), dict() #add the page log.debug('loading %i parameters from section \'%s\''%(len(cpars[sectName]), sectName)) #loop through each variable name/value in this section for varName, valRaw in cpars[sectName].items(): #check we care about this if not hasattr(self, varName): log.debug('passed variable \'%s\' not found on class... skipping'%varName) no_d[sectName][varName] = valRaw noCnt+=1 continue #retrieve typset value pval = self._get_from_cpar(cpars, sectName, varName, logger=log) #get the typeset variable #store it cpars_d[sectName][varName] = pval #====================================================================== # attach all the paramers #====================================================================== cnt = 0 if setAttr: for sectName, spars_d in cpars_d.items(): for varnm, val in spars_d.items(): setattr(self, varnm, val) log.debug('set %s=%s'%(varnm, val)) cnt +=1 #check types self._chk_attributes() #======================================================================= # wrap #======================================================================= log.info('attached %i parmaeters to self (skipped %i)'%(cnt, noCnt)) return cpars_d
def cf_attach_pars(self, #load parmaeteres from file cpars, setAttr=True, #whether to save each attribute ): """ cf_chk_pars() should be run first to make sure parameter membership and type matches expectations here we just update every parameter value found: on the class AND in the ControlFile """ #======================================================================= # defaults #======================================================================= log = self.logger.getChild('cf_attach_pars') #======================================================================= # precheck #======================================================================= assert isinstance(cpars, configparser.ConfigParser) #======================================================================= # loop and retrieve #======================================================================= cpars_d = dict() #set values no_d = dict() #not set values noCnt = 0 for sectName in cpars.sections(): cpars_d[sectName], no_d[sectName] = dict(), dict() #add the page log.debug('loading %i parameters from section \'%s\''%(len(cpars[sectName]), sectName)) #loop through each variable name/value in this section for varName, valRaw in cpars[sectName].items(): #check we care about this if not hasattr(self, varName): log.debug('passed variable \'%s\' not found on class... skipping'%varName) no_d[sectName][varName] = valRaw noCnt+=1 continue #retrieve typset value pval = self._get_from_cpar(cpars, sectName, varName, logger=log) #get the typeset variable #store it cpars_d[sectName][varName] = pval #====================================================================== # attach all the paramers #====================================================================== cnt = 0 if setAttr: for sectName, spars_d in cpars_d.items(): for varnm, val in spars_d.items(): setattr(self, varnm, val) log.debug('set %s=%s'%(varnm, val)) cnt +=1 #check types self._chk_attributes() #======================================================================= # wrap #======================================================================= log.info('attached %i parmaeters to self (skipped %i)'%(cnt, noCnt)) return cpars_d
Python
def _cfFile_relative(self, #adding basedir to the control file cf_fp=None, #control file sections=['dmg_fps', 'risk_fps'], #parameter sections to manipulate logger=None, **kwargs): """wraper to work with the control file (rather than the configparser""" #======================================================================= # defaults #======================================================================= if logger is None: logger=self.logger log=logger.getChild('_cfFile_relative') if cf_fp is None: cf_fp=self.cf_fp assert not self.absolute_fp #======================================================================= # load the control file #======================================================================= pars = configparser.ConfigParser(inline_comment_prefixes='#') _ = pars.read(cf_fp) pars = self._cf_relative(pars, sections=sections, warn=False, logger=log, **kwargs) #======================================================================= # write the config file #======================================================================= with open(cf_fp, 'w') as configfile: pars.write(configfile) #======================================================================= # wrap #======================================================================= log.info('set ControlFile to absolute: %s'%(cf_fp)) return cf_fp
def _cfFile_relative(self, #adding basedir to the control file cf_fp=None, #control file sections=['dmg_fps', 'risk_fps'], #parameter sections to manipulate logger=None, **kwargs): """wraper to work with the control file (rather than the configparser""" #======================================================================= # defaults #======================================================================= if logger is None: logger=self.logger log=logger.getChild('_cfFile_relative') if cf_fp is None: cf_fp=self.cf_fp assert not self.absolute_fp #======================================================================= # load the control file #======================================================================= pars = configparser.ConfigParser(inline_comment_prefixes='#') _ = pars.read(cf_fp) pars = self._cf_relative(pars, sections=sections, warn=False, logger=log, **kwargs) #======================================================================= # write the config file #======================================================================= with open(cf_fp, 'w') as configfile: pars.write(configfile) #======================================================================= # wrap #======================================================================= log.info('set ControlFile to absolute: %s'%(cf_fp)) return cf_fp
Python
def _get_finv_cnest(self, #resolve column group relations df, #finv data ): """ this would have been easier with a dxcol""" #====================================================================== # get prefix values (using elv columns) #====================================================================== #pull all the elv columns tag_coln_l = df.columns[df.columns.str.endswith('_elv')].tolist() assert len(tag_coln_l) > 0, 'no \'elv\' columns found in inventory' assert tag_coln_l[0] == 'f0_elv', 'expected first tag column to be \'f0_elv\'' #get nested prefix values prefix_l = [coln[:2] for coln in tag_coln_l] #check for e in prefix_l: assert e.startswith('f'), 'bad prefix: \'%s\'.. check field names' #======================================================================= # add each nest column name #======================================================================= cdf = pd.DataFrame(columns=df.columns, index=['ctype', 'nestID', 'bname']) #upgrade to a series """ view(cdf) """ for pfx in prefix_l: l = [e for e in df.columns if e.startswith('%s_'%pfx)] for e in l: cdf.loc['nestID', e] = pfx cdf.loc['ctype', e] = 'nest' cdf.loc['bname', e] = e.replace('%s_'%pfx, '') #set flag for mitigation columns cdf.loc['ctype', cdf.columns.str.startswith('mi_')] = 'miti' return cdf, prefix_l
def _get_finv_cnest(self, #resolve column group relations df, #finv data ): """ this would have been easier with a dxcol""" #====================================================================== # get prefix values (using elv columns) #====================================================================== #pull all the elv columns tag_coln_l = df.columns[df.columns.str.endswith('_elv')].tolist() assert len(tag_coln_l) > 0, 'no \'elv\' columns found in inventory' assert tag_coln_l[0] == 'f0_elv', 'expected first tag column to be \'f0_elv\'' #get nested prefix values prefix_l = [coln[:2] for coln in tag_coln_l] #check for e in prefix_l: assert e.startswith('f'), 'bad prefix: \'%s\'.. check field names' #======================================================================= # add each nest column name #======================================================================= cdf = pd.DataFrame(columns=df.columns, index=['ctype', 'nestID', 'bname']) #upgrade to a series """ view(cdf) """ for pfx in prefix_l: l = [e for e in df.columns if e.startswith('%s_'%pfx)] for e in l: cdf.loc['nestID', e] = pfx cdf.loc['ctype', e] = 'nest' cdf.loc['bname', e] = e.replace('%s_'%pfx, '') #set flag for mitigation columns cdf.loc['ctype', cdf.columns.str.startswith('mi_')] = 'miti' return cdf, prefix_l
Python
def build_exp_finv(self, #assemble the expanded finv group_cnt = None, #number of groups to epxect per prefix ): """ initial loading of the finv is done in load_finv() here we pivot out to 1nest on bids """ #====================================================================== # defaults #====================================================================== log = self.logger.getChild('build_exp_finv') fdf = self.data_d['finv'] finv_cdf = self.finv_cdf.copy() #metadata for finv columns. see load_finv() cid, bid = self.cid, self.bid if group_cnt is None: group_cnt = self.group_cnt bcolns = ['gels'] #columns to map back onto/copy over to each row of the expanded finv #====================================================================== # group_cnt defaults #====================================================================== assert isinstance(group_cnt, int) exp_fcolns = [cid, 'fscale', 'felv'] if group_cnt == 2: #Risk1 pass elif group_cnt == 4: #Dmg2 and Risk2 """fcap is optional""" exp_fcolns = exp_fcolns + ['ftag'] else: raise Error('bad group_cnt %i'%group_cnt) #====================================================================== # precheck #====================================================================== assert fdf.index.name == cid, 'bad index on fdf' #====================================================================== # expand: nested entries--------------- #====================================================================== bdf = None for prefix, fcolsi_df in finv_cdf.drop('ctype', axis=0).dropna(axis=1).T.groupby('nestID', axis=0): #get slice and clean df = fdf.loc[:, fcolsi_df.index].dropna(axis=0, how='all').sort_index(axis=1) #get clean column names df.columns = df.columns.str.replace('%s_'%prefix, 'f') df = df.reset_index() df['nestID'] = prefix #add to main if bdf is None: bdf = df else: bdf = bdf.append(df, ignore_index=True, sort=False) log.info('for \"%s\' got %s'%(prefix, str(df.shape))) #================================================================== # #add back in other needed columns #================================================================== boolcol = fdf.columns.isin(bcolns) #additional columns to pivot out if boolcol.any(): #if we are only linking in gels, these may not exist bdf = bdf.merge(fdf.loc[:, boolcol], on=cid, how='left',validate='m:1') log.debug('joined back in %i columns: %s'%( boolcol.sum(), fdf.loc[:, boolcol].columns.tolist())) #wrap log.info('expanded inventory from %i nest sets %s to finv %s'%( len(finv_cdf.loc['nestID', :].dropna(axis=0).unique()), str(fdf.shape), str(bdf.shape))) #set indexers bdf[bid] = bdf.index bdf.index.name=bid #====================================================================== # check #====================================================================== miss_l = set(exp_fcolns).difference(bdf.columns) assert len(miss_l) == 0, miss_l #====================================================================== # adjust fscale-------------- #====================================================================== """ view(bdf) """ boolidx = bdf['fscale'].isna() if boolidx.any(): log.info('setting %i null fscale values to 1'%boolidx.sum()) bdf.loc[:, 'fscale'] = bdf['fscale'].fillna(1.0) #====================================================================== # convert heights ---------- #====================================================================== s = bdf.loc[:, 'felv'] log.info('\'%s\' felv: \n min=%.2f, mean=%.2f, max=%.2f'%( self.felv, s.min(), s.mean(), s.max())) if self.felv == 'ground': assert not self.as_inun assert 'gels' in bdf.columns, 'missing gels column' assert bdf['gels'].notna().all() bdf.loc[:, 'felv'] = bdf['felv'] + bdf['gels'] #log.info('converted asset ground heights to datum elevations') s = bdf.loc[:, 'felv'] log.info('converted felv from \'ground\' to \'datum\' \n min=%.2f, mean=%.2f, max=%.2f'%( s.min(), s.mean(), s.max())) elif self.felv=='datum': log.debug('felv = \'%s\' no conversion'%self.felv) else: raise Error('unrecognized felv=%s'%self.felv) #======================================================================= # add mitigation data--- #======================================================================= if self.apply_miti: #get data bdf = bdf.join(fdf.loc[:, finv_cdf.columns[finv_cdf.loc['ctype', :]=='miti']], on=cid) #======================================================================= # checks #======================================================================= """check_finv does this now for coln in ['ftag']: bx = bdf[coln].isna() if bx.any(): log.debug('\n%s'%bdf.loc[bx, :]) raise Error('got %i \'%s\' nulls...see logger'%(bx.sum(), coln))""" #====================================================================== # wrap #====================================================================== log.info('finished with %s'%str(bdf.shape)) self.bdf = bdf
def build_exp_finv(self, #assemble the expanded finv group_cnt = None, #number of groups to epxect per prefix ): """ initial loading of the finv is done in load_finv() here we pivot out to 1nest on bids """ #====================================================================== # defaults #====================================================================== log = self.logger.getChild('build_exp_finv') fdf = self.data_d['finv'] finv_cdf = self.finv_cdf.copy() #metadata for finv columns. see load_finv() cid, bid = self.cid, self.bid if group_cnt is None: group_cnt = self.group_cnt bcolns = ['gels'] #columns to map back onto/copy over to each row of the expanded finv #====================================================================== # group_cnt defaults #====================================================================== assert isinstance(group_cnt, int) exp_fcolns = [cid, 'fscale', 'felv'] if group_cnt == 2: #Risk1 pass elif group_cnt == 4: #Dmg2 and Risk2 """fcap is optional""" exp_fcolns = exp_fcolns + ['ftag'] else: raise Error('bad group_cnt %i'%group_cnt) #====================================================================== # precheck #====================================================================== assert fdf.index.name == cid, 'bad index on fdf' #====================================================================== # expand: nested entries--------------- #====================================================================== bdf = None for prefix, fcolsi_df in finv_cdf.drop('ctype', axis=0).dropna(axis=1).T.groupby('nestID', axis=0): #get slice and clean df = fdf.loc[:, fcolsi_df.index].dropna(axis=0, how='all').sort_index(axis=1) #get clean column names df.columns = df.columns.str.replace('%s_'%prefix, 'f') df = df.reset_index() df['nestID'] = prefix #add to main if bdf is None: bdf = df else: bdf = bdf.append(df, ignore_index=True, sort=False) log.info('for \"%s\' got %s'%(prefix, str(df.shape))) #================================================================== # #add back in other needed columns #================================================================== boolcol = fdf.columns.isin(bcolns) #additional columns to pivot out if boolcol.any(): #if we are only linking in gels, these may not exist bdf = bdf.merge(fdf.loc[:, boolcol], on=cid, how='left',validate='m:1') log.debug('joined back in %i columns: %s'%( boolcol.sum(), fdf.loc[:, boolcol].columns.tolist())) #wrap log.info('expanded inventory from %i nest sets %s to finv %s'%( len(finv_cdf.loc['nestID', :].dropna(axis=0).unique()), str(fdf.shape), str(bdf.shape))) #set indexers bdf[bid] = bdf.index bdf.index.name=bid #====================================================================== # check #====================================================================== miss_l = set(exp_fcolns).difference(bdf.columns) assert len(miss_l) == 0, miss_l #====================================================================== # adjust fscale-------------- #====================================================================== """ view(bdf) """ boolidx = bdf['fscale'].isna() if boolidx.any(): log.info('setting %i null fscale values to 1'%boolidx.sum()) bdf.loc[:, 'fscale'] = bdf['fscale'].fillna(1.0) #====================================================================== # convert heights ---------- #====================================================================== s = bdf.loc[:, 'felv'] log.info('\'%s\' felv: \n min=%.2f, mean=%.2f, max=%.2f'%( self.felv, s.min(), s.mean(), s.max())) if self.felv == 'ground': assert not self.as_inun assert 'gels' in bdf.columns, 'missing gels column' assert bdf['gels'].notna().all() bdf.loc[:, 'felv'] = bdf['felv'] + bdf['gels'] #log.info('converted asset ground heights to datum elevations') s = bdf.loc[:, 'felv'] log.info('converted felv from \'ground\' to \'datum\' \n min=%.2f, mean=%.2f, max=%.2f'%( s.min(), s.mean(), s.max())) elif self.felv=='datum': log.debug('felv = \'%s\' no conversion'%self.felv) else: raise Error('unrecognized felv=%s'%self.felv) #======================================================================= # add mitigation data--- #======================================================================= if self.apply_miti: #get data bdf = bdf.join(fdf.loc[:, finv_cdf.columns[finv_cdf.loc['ctype', :]=='miti']], on=cid) #======================================================================= # checks #======================================================================= """check_finv does this now for coln in ['ftag']: bx = bdf[coln].isna() if bx.any(): log.debug('\n%s'%bdf.loc[bx, :]) raise Error('got %i \'%s\' nulls...see logger'%(bx.sum(), coln))""" #====================================================================== # wrap #====================================================================== log.info('finished with %s'%str(bdf.shape)) self.bdf = bdf
Python
def build_depths(self): #build the expanded depths data from the wsl data #====================================================================== # defaults #====================================================================== log = self.logger.getChild('build_depths') bdf = self.bdf.copy() #expanded finv cid, bid = self.cid, self.bid wdf = self.data_d['expos'] #wsl #====================================================================== # expand #====================================================================== #add indexer columns expand w/ wsl data """would have been easier with a multindex""" ddf = self.bdf.loc[:, [bid, cid]].join(wdf.round(self.prec), on=cid ).set_index(bid, drop=False) #======================================================================= # precheck #======================================================================= if self.as_inun: boolidx = bdf['felv'] !=0 if not boolidx.sum().sum() == 0: raise Error('with as_inun=True got %i (of %i) elv values with non-zero depths'%( boolidx.sum().sum(), boolidx.size)) #====================================================================== # calc depths #====================================================================== #loop and subtract to get depths boolcol = ~ddf.columns.isin([cid, bid]) #columns w/ depth values for coln in ddf.columns[boolcol]: ddf.loc[:, coln] = (ddf[coln] - bdf['felv']).round(self.prec) """ maintains nulls view(ddf) """ log.debug('converted wsl to depth %s'%str(ddf.shape)) #====================================================================== # fill nulls #====================================================================== """no! dont want to mix these up w/ negatives. filtering nulls in risk1.run() and dmg2.bdmg() booldf = ddf.drop([bid, cid], axis=1).isna() if booldf.any().any(): log.warning('setting %i (of %i) null depth values to zero'%( booldf.sum().sum(), booldf.size)) ddf = ddf.fillna(0.0)""" #====================================================================== # negative depths #====================================================================== booldf = ddf.loc[:,boolcol] < 0 #True=wsl below ground if booldf.any().any(): assert not self.as_inun """ note these are expanded (un-nesetd) assets, so counts will be larger than expected """ #user wants to ignore ground_water, set all negatives to zero if not self.ground_water: log.warning('setting %i (of %i) negative depths to zero'%( booldf.sum().sum(), booldf.size)) """NO! filtering negatives during dmg2.bdmg() ddf.loc[:, boolcol] = ddf.loc[:,boolcol].where(~booldf, other=0)""" #user wants to keep negative depths.. leave as is else: log.info('gorund_water=True. preserving %i (of %i) negative depths'%( booldf.sum().sum(), booldf.size)) #====================================================================== # post checks #====================================================================== assert np.array_equal(ddf.index, bdf.index) assert bid in ddf.columns assert ddf.index.name == bid assert np.array_equal(ddf.index.values, ddf[bid].values) #max depth boolidx = ddf.loc[:,boolcol].max(axis=1)>self.max_depth if boolidx.any(): log.debug('\n%s'%ddf[boolidx]) raise Error('%i (of %i) nested assets exceed max depth: %.2f. see logger'%( boolidx.sum(), len(boolidx), self.max_depth)) #====================================================================== # wrap #====================================================================== log.info('assembled depth_df w/ \nmax:\n%s\nmean: \n%s'%( ddf.loc[:,boolcol].max(), ddf.loc[:,boolcol].mean() )) self.ddf = ddf
def build_depths(self): #build the expanded depths data from the wsl data #====================================================================== # defaults #====================================================================== log = self.logger.getChild('build_depths') bdf = self.bdf.copy() #expanded finv cid, bid = self.cid, self.bid wdf = self.data_d['expos'] #wsl #====================================================================== # expand #====================================================================== #add indexer columns expand w/ wsl data """would have been easier with a multindex""" ddf = self.bdf.loc[:, [bid, cid]].join(wdf.round(self.prec), on=cid ).set_index(bid, drop=False) #======================================================================= # precheck #======================================================================= if self.as_inun: boolidx = bdf['felv'] !=0 if not boolidx.sum().sum() == 0: raise Error('with as_inun=True got %i (of %i) elv values with non-zero depths'%( boolidx.sum().sum(), boolidx.size)) #====================================================================== # calc depths #====================================================================== #loop and subtract to get depths boolcol = ~ddf.columns.isin([cid, bid]) #columns w/ depth values for coln in ddf.columns[boolcol]: ddf.loc[:, coln] = (ddf[coln] - bdf['felv']).round(self.prec) """ maintains nulls view(ddf) """ log.debug('converted wsl to depth %s'%str(ddf.shape)) #====================================================================== # fill nulls #====================================================================== """no! dont want to mix these up w/ negatives. filtering nulls in risk1.run() and dmg2.bdmg() booldf = ddf.drop([bid, cid], axis=1).isna() if booldf.any().any(): log.warning('setting %i (of %i) null depth values to zero'%( booldf.sum().sum(), booldf.size)) ddf = ddf.fillna(0.0)""" #====================================================================== # negative depths #====================================================================== booldf = ddf.loc[:,boolcol] < 0 #True=wsl below ground if booldf.any().any(): assert not self.as_inun """ note these are expanded (un-nesetd) assets, so counts will be larger than expected """ #user wants to ignore ground_water, set all negatives to zero if not self.ground_water: log.warning('setting %i (of %i) negative depths to zero'%( booldf.sum().sum(), booldf.size)) """NO! filtering negatives during dmg2.bdmg() ddf.loc[:, boolcol] = ddf.loc[:,boolcol].where(~booldf, other=0)""" #user wants to keep negative depths.. leave as is else: log.info('gorund_water=True. preserving %i (of %i) negative depths'%( booldf.sum().sum(), booldf.size)) #====================================================================== # post checks #====================================================================== assert np.array_equal(ddf.index, bdf.index) assert bid in ddf.columns assert ddf.index.name == bid assert np.array_equal(ddf.index.values, ddf[bid].values) #max depth boolidx = ddf.loc[:,boolcol].max(axis=1)>self.max_depth if boolidx.any(): log.debug('\n%s'%ddf[boolidx]) raise Error('%i (of %i) nested assets exceed max depth: %.2f. see logger'%( boolidx.sum(), len(boolidx), self.max_depth)) #====================================================================== # wrap #====================================================================== log.info('assembled depth_df w/ \nmax:\n%s\nmean: \n%s'%( ddf.loc[:,boolcol].max(), ddf.loc[:,boolcol].mean() )) self.ddf = ddf
Python
def check_attrimat(self, #check the logic of the attrimat atr_dxcol=None, logger=None, ): """ attrimat rows should always sum to 1.0 on lvl0 """ #======================================================================= # defaults #======================================================================= if atr_dxcol is None: atr_dxcol=self.att_df #mdex = atr_dxcol.columns #======================================================================= # #determine what level to perofrm sum check on # sumLvl = atr_dxcol.columns.nlevels -2 #should always be the last rank/level #======================================================================= #sum each of the grpColns nested under the rEventName bool_df = atr_dxcol.sum(axis=1, level=0, skipna=False).round(self.prec)==1.0 #======================================================================= # #drop all but the top level. identify null locations # nbool_df = atr_dxcol.droplevel( # level=list(range(1, mdex.nlevels)), axis=1 # ).notna() # # #check the failures line up with the nulls # bool2_df = psumBool_df==nbool_df.loc[:, ~nbool_df.columns.duplicated(keep='first')] #======================================================================= """ view(atr_dxcol.sum(axis=1, level=0, skipna=False)) view(bool_df) view(atr_dxcol) """ if not bool_df.all().all(): raise Error('%i (of %i) attribute matrix entries failed sum=1 test'%( np.invert(bool_df).sum().sum(), bool_df.size)) return True
def check_attrimat(self, #check the logic of the attrimat atr_dxcol=None, logger=None, ): """ attrimat rows should always sum to 1.0 on lvl0 """ #======================================================================= # defaults #======================================================================= if atr_dxcol is None: atr_dxcol=self.att_df #mdex = atr_dxcol.columns #======================================================================= # #determine what level to perofrm sum check on # sumLvl = atr_dxcol.columns.nlevels -2 #should always be the last rank/level #======================================================================= #sum each of the grpColns nested under the rEventName bool_df = atr_dxcol.sum(axis=1, level=0, skipna=False).round(self.prec)==1.0 #======================================================================= # #drop all but the top level. identify null locations # nbool_df = atr_dxcol.droplevel( # level=list(range(1, mdex.nlevels)), axis=1 # ).notna() # # #check the failures line up with the nulls # bool2_df = psumBool_df==nbool_df.loc[:, ~nbool_df.columns.duplicated(keep='first')] #======================================================================= """ view(atr_dxcol.sum(axis=1, level=0, skipna=False)) view(bool_df) view(atr_dxcol) """ if not bool_df.all().all(): raise Error('%i (of %i) attribute matrix entries failed sum=1 test'%( np.invert(bool_df).sum().sum(), bool_df.size)) return True
Python
def _get_from_cpar(self, #special parameter extraction recognizing object's t ype cpars, sectName, varName, logger = None): """each parameter should exist on teh class instance. we use this to set the type""" if logger is None: logger=self.logger log = logger.getChild('_get_from_cpar') #======================================================================= # get native type on class #======================================================================= assert hasattr(self, varName), '\'%s\' does not exist on %s'%(varName, self) #get class instance's native type ntype = type(getattr(self, varName)) #============================================================== # retrive and typeset (using native t ype) #============================================================== assert isinstance(cpars, configparser.ConfigParser) csect = cpars[sectName] pval_raw = csect[varName] #raw value (always a string) #boolean if ntype == bool: pval = csect.getboolean(varName) #no check or type conversion elif getattr(self, varName) is None: pval = pval_raw #other types else: try: pval = ntype(pval_raw) except Exception as e: raise Error('failed to set %s.%s with input \'%s\' (%s) to %s \n %s'%( sectName, varName, pval_raw, type(pval_raw), ntype, e)) #======================================================================= # blank set #======================================================================= """seems like we're setup for ''.... not sure the value in switching everything over if pval == '': pval = np.nan""" log.debug('retrieved \'%s.%s\'=\'%s\' w/ type: \'%s\''%(sectName, varName, pval, type(pval))) return pval
def _get_from_cpar(self, #special parameter extraction recognizing object's t ype cpars, sectName, varName, logger = None): """each parameter should exist on teh class instance. we use this to set the type""" if logger is None: logger=self.logger log = logger.getChild('_get_from_cpar') #======================================================================= # get native type on class #======================================================================= assert hasattr(self, varName), '\'%s\' does not exist on %s'%(varName, self) #get class instance's native type ntype = type(getattr(self, varName)) #============================================================== # retrive and typeset (using native t ype) #============================================================== assert isinstance(cpars, configparser.ConfigParser) csect = cpars[sectName] pval_raw = csect[varName] #raw value (always a string) #boolean if ntype == bool: pval = csect.getboolean(varName) #no check or type conversion elif getattr(self, varName) is None: pval = pval_raw #other types else: try: pval = ntype(pval_raw) except Exception as e: raise Error('failed to set %s.%s with input \'%s\' (%s) to %s \n %s'%( sectName, varName, pval_raw, type(pval_raw), ntype, e)) #======================================================================= # blank set #======================================================================= """seems like we're setup for ''.... not sure the value in switching everything over if pval == '': pval = np.nan""" log.debug('retrieved \'%s.%s\'=\'%s\' w/ type: \'%s\''%(sectName, varName, pval, type(pval))) return pval
Python
def is_null(obj): #check if the object is none if obj is None: return True """might not work for non string multi element objects""" if np.any(pd.isnull(obj)): return True #excel checks if obj in ('', 0, '0', '0.0'): return True return False
def is_null(obj): #check if the object is none if obj is None: return True """might not work for non string multi element objects""" if np.any(pd.isnull(obj)): return True #excel checks if obj in ('', 0, '0', '0.0'): return True return False
Python
def load_ifz_fps(self, #load filepaths in an ifz map and replace with layer referneces eifz_d, #ifz map w/ filepaths aoi_vlay=None, base_dir=None, ): """ plugin runs dont need this. just pass eifz_d with vlays (no fps) what about copies?? #======================================================================= # data structure: #======================================================================= each event (eTag) should have its own ifz polygon layer (here we allow for the re-use of layers... but a single layer is still expected) each ifz poly feature corresponds to a dike (sid) segment (for that event) (1 ifzID: many sid) these ifz polys can be overlapping often users may duplicate layers/maps between events but our structure allows for unique vals #======================================================================= # TODO: #======================================================================= setup to assign map based on name matching (between ifz and raster) """ log = self.logger.getChild('load_ifz') #======================================================================= # prechecks #======================================================================= miss_l = set(eifz_d.keys()).difference(self.etag_l) assert len(miss_l)==0, 'eTag mismatch on eifz_d and pfail_df: %s'%miss_l fp_vlay_d = dict() #container for repeat layers #======================================================================= # loop and load #======================================================================= log.info('loading on %i events'%len(eifz_d)) for eTag, fp_raw in eifz_d.copy().items(): #=================================================================== # relative filepaths #=================================================================== if not base_dir is None: fp = os.path.join(base_dir, fp_raw) else: fp = fp_raw #=================================================================== # get the layer #=================================================================== #check if its already loaded if fp in fp_vlay_d: vlay = self.fixgeometries(fp_vlay_d[fp], logger=log, layname=fp_vlay_d[fp].name()) else: vlay = self.load_vlay(fp, aoi_vlay=aoi_vlay, logger=log) fp_vlay_d[fp] = vlay #add it for next time #=================================================================== # check it #=================================================================== assert self._check_ifz(vlay) #=================================================================== # #check sid_ifz_d #=================================================================== """ could force a symmetric_difference... but not a great reason to break when the user passes a map thats too big because some pfails may get filtered out... we may not want to throw this error """ #=================================================================== # miss_l = set(self.sid_l).difference(e_d['sid_ifz_d']) # assert len(miss_l)==0, '%s sid_ifz_d missing some %s keys: %s'%(eTag, self.sid, miss_l) #=================================================================== #=================================================================== # update the container #=================================================================== dp = vlay.dataProvider() log.info('%s got vlay \'%s\' w/ %i features'%(eTag, vlay.name(), dp.featureCount())) eifz_d[eTag] = vlay #======================================================================= # wrap #======================================================================= log.info('finished loading %i layers for %i events'%(len(fp_vlay_d), len(eifz_d))) self.eifz_d = eifz_d return self.eifz_d
def load_ifz_fps(self, #load filepaths in an ifz map and replace with layer referneces eifz_d, #ifz map w/ filepaths aoi_vlay=None, base_dir=None, ): """ plugin runs dont need this. just pass eifz_d with vlays (no fps) what about copies?? #======================================================================= # data structure: #======================================================================= each event (eTag) should have its own ifz polygon layer (here we allow for the re-use of layers... but a single layer is still expected) each ifz poly feature corresponds to a dike (sid) segment (for that event) (1 ifzID: many sid) these ifz polys can be overlapping often users may duplicate layers/maps between events but our structure allows for unique vals #======================================================================= # TODO: #======================================================================= setup to assign map based on name matching (between ifz and raster) """ log = self.logger.getChild('load_ifz') #======================================================================= # prechecks #======================================================================= miss_l = set(eifz_d.keys()).difference(self.etag_l) assert len(miss_l)==0, 'eTag mismatch on eifz_d and pfail_df: %s'%miss_l fp_vlay_d = dict() #container for repeat layers #======================================================================= # loop and load #======================================================================= log.info('loading on %i events'%len(eifz_d)) for eTag, fp_raw in eifz_d.copy().items(): #=================================================================== # relative filepaths #=================================================================== if not base_dir is None: fp = os.path.join(base_dir, fp_raw) else: fp = fp_raw #=================================================================== # get the layer #=================================================================== #check if its already loaded if fp in fp_vlay_d: vlay = self.fixgeometries(fp_vlay_d[fp], logger=log, layname=fp_vlay_d[fp].name()) else: vlay = self.load_vlay(fp, aoi_vlay=aoi_vlay, logger=log) fp_vlay_d[fp] = vlay #add it for next time #=================================================================== # check it #=================================================================== assert self._check_ifz(vlay) #=================================================================== # #check sid_ifz_d #=================================================================== """ could force a symmetric_difference... but not a great reason to break when the user passes a map thats too big because some pfails may get filtered out... we may not want to throw this error """ #=================================================================== # miss_l = set(self.sid_l).difference(e_d['sid_ifz_d']) # assert len(miss_l)==0, '%s sid_ifz_d missing some %s keys: %s'%(eTag, self.sid, miss_l) #=================================================================== #=================================================================== # update the container #=================================================================== dp = vlay.dataProvider() log.info('%s got vlay \'%s\' w/ %i features'%(eTag, vlay.name(), dp.featureCount())) eifz_d[eTag] = vlay #======================================================================= # wrap #======================================================================= log.info('finished loading %i layers for %i events'%(len(fp_vlay_d), len(eifz_d))) self.eifz_d = eifz_d return self.eifz_d
Python
def load_lpols(self, #helper for loading vector polygons in standalone runs lpol_files_d, #{event name:polygon filepath} basedir = None, #optional directory to append to lpol_files_d providerLib='ogr', logger=None, **kwargs ): """ can't load from a directory dump because we need to link to events """ #======================================================================= # defaults #======================================================================= if logger is None: logger=self.logger log=logger.getChild('load_lpols') if not basedir is None: assert os.path.exists(basedir), 'bad fpoly basedir: %s'%basedir log.info('on %i layers'%len(lpol_files_d)) #======================================================================= # loop and load #======================================================================= lpol_d = dict() for ename, file_str in lpol_files_d.items(): #get filepath if isinstance(basedir, str): fp = os.path.join(basedir, file_str) else: fp = file_str #load it lpol_d[ename] = self.load_vlay(fp, logger=log, providerLib=providerLib, **kwargs) log.info('finished w/ %i'%len(lpol_d)) return lpol_d
def load_lpols(self, #helper for loading vector polygons in standalone runs lpol_files_d, #{event name:polygon filepath} basedir = None, #optional directory to append to lpol_files_d providerLib='ogr', logger=None, **kwargs ): """ can't load from a directory dump because we need to link to events """ #======================================================================= # defaults #======================================================================= if logger is None: logger=self.logger log=logger.getChild('load_lpols') if not basedir is None: assert os.path.exists(basedir), 'bad fpoly basedir: %s'%basedir log.info('on %i layers'%len(lpol_files_d)) #======================================================================= # loop and load #======================================================================= lpol_d = dict() for ename, file_str in lpol_files_d.items(): #get filepath if isinstance(basedir, str): fp = os.path.join(basedir, file_str) else: fp = file_str #load it lpol_d[ename] = self.load_vlay(fp, logger=log, providerLib=providerLib, **kwargs) log.info('finished w/ %i'%len(lpol_d)) return lpol_d
Python
def union_probabilities(self, probs, logger = None, ): """ calculating the union probability of multiple independent events using the exclusion principle probability that ANY of the passed independent events will occur https://en.wikipedia.org/wiki/Inclusion%E2%80%93exclusion_principle#In_probability from Walter Parameters ---------- probs_list : Python 1d list A list of probabilities between 0 and 1 with len() less than 23 After 23, the memory consumption gets huge. 23 items uses ~1.2gb of ram. Returns ------- total_prob : float64 Total probability """ if logger is None: logger=self.logger #log = self.logger.getChild('union_probabilities') #====================================================================== # prechecks #====================================================================== assert isinstance(probs, list), 'unexpected type: %s'%type(probs) assert len(probs) >0, 'got empty container' #====================================================================== # prefilter #====================================================================== #guranteed if max(probs) == 1.0: #log.debug('passed a probability with 1.0... returning this') return 1.0 #clean out zeros if 0.0 in probs: probs = [x for x in probs if not x==0] #=========================================================================== # do some checks #=========================================================================== assert (len(probs) < 20), "list too long" assert (all(map(lambda x: x < 1 and x > 0, probs))), 'probabilities out of range' #=========================================================================== # loop and add (or subtract) joint probabliities #=========================================================================== #log.debug('calc total_prob for %i probs: %s'%(len(probs), probs)) total_prob = 0 for r in range(1, len(probs) + 1): #enumerate through each entry in the probs list combs = itertools.combinations(probs, r) #assemble all the possible combinations """ list(combs) """ #multiply all the probability combinations together and add for this layer total_prob += ((-1) ** (r + 1)) * sum([np.prod(items) for items in combs]) assert total_prob <1 and total_prob > 0, 'bad result' return total_prob
def union_probabilities(self, probs, logger = None, ): """ calculating the union probability of multiple independent events using the exclusion principle probability that ANY of the passed independent events will occur https://en.wikipedia.org/wiki/Inclusion%E2%80%93exclusion_principle#In_probability from Walter Parameters ---------- probs_list : Python 1d list A list of probabilities between 0 and 1 with len() less than 23 After 23, the memory consumption gets huge. 23 items uses ~1.2gb of ram. Returns ------- total_prob : float64 Total probability """ if logger is None: logger=self.logger #log = self.logger.getChild('union_probabilities') #====================================================================== # prechecks #====================================================================== assert isinstance(probs, list), 'unexpected type: %s'%type(probs) assert len(probs) >0, 'got empty container' #====================================================================== # prefilter #====================================================================== #guranteed if max(probs) == 1.0: #log.debug('passed a probability with 1.0... returning this') return 1.0 #clean out zeros if 0.0 in probs: probs = [x for x in probs if not x==0] #=========================================================================== # do some checks #=========================================================================== assert (len(probs) < 20), "list too long" assert (all(map(lambda x: x < 1 and x > 0, probs))), 'probabilities out of range' #=========================================================================== # loop and add (or subtract) joint probabliities #=========================================================================== #log.debug('calc total_prob for %i probs: %s'%(len(probs), probs)) total_prob = 0 for r in range(1, len(probs) + 1): #enumerate through each entry in the probs list combs = itertools.combinations(probs, r) #assemble all the possible combinations """ list(combs) """ #multiply all the probability combinations together and add for this layer total_prob += ((-1) ** (r + 1)) * sum([np.prod(items) for items in combs]) assert total_prob <1 and total_prob > 0, 'bad result' return total_prob
Python
def _get_data(self, keys): """ keys passed NOT found in teh CALC set will be ignored """ #======================================================================= # get the data #======================================================================= calc_d = {k:v for k,v in self.runr.res_d.items() if k in keys} #requested keys from calc set test_d = self.runr.pick_d #test library """ self.runr.res_d['si_ttl'] """ #======================================================================= # key check #======================================================================= #check we have everything found in teh calc set in the test set miss_l = set(calc_d.keys()).difference(test_d.keys()) assert len(miss_l)==0, 'missing keys: %s'%miss_l return {k:(v, test_d[k]) for k,v in calc_d.items()}
def _get_data(self, keys): """ keys passed NOT found in teh CALC set will be ignored """ #======================================================================= # get the data #======================================================================= calc_d = {k:v for k,v in self.runr.res_d.items() if k in keys} #requested keys from calc set test_d = self.runr.pick_d #test library """ self.runr.res_d['si_ttl'] """ #======================================================================= # key check #======================================================================= #check we have everything found in teh calc set in the test set miss_l = set(calc_d.keys()).difference(test_d.keys()) assert len(miss_l)==0, 'missing keys: %s'%miss_l return {k:(v, test_d[k]) for k,v in calc_d.items()}
Python
def build_pickels(self, #build the input and output pickels wFLow_l, **kwargs): """ should have a pickle for inputs and one for the outputs (that we'll test against) """ log = self.logger.getChild('build_pickels') #======================================================================= # loop and load, execute, and save each test #======================================================================= d = dict() for fWrkr in wFLow_l: runr = self._run_wflow(fWrkr, **kwargs) d[fWrkr.name] = runr.write_pick() runr.__exit__() log.info('finished on %i \n %s'%(len(d), list(d.keys()))) return d
def build_pickels(self, #build the input and output pickels wFLow_l, **kwargs): """ should have a pickle for inputs and one for the outputs (that we'll test against) """ log = self.logger.getChild('build_pickels') #======================================================================= # loop and load, execute, and save each test #======================================================================= d = dict() for fWrkr in wFLow_l: runr = self._run_wflow(fWrkr, **kwargs) d[fWrkr.name] = runr.write_pick() runr.__exit__() log.info('finished on %i \n %s'%(len(d), list(d.keys()))) return d
Python
def promote_attrim(self, dtag=None): #add new index level if dtag is None: dtag = self.attrdtag_in """ risk1 doesnt use dmg1... so the attrim will be differnet """ aep_ser = self.data_d['evals'].copy() atr_dxcol = self.data_d[dtag].copy() """ view(atr_dxcol) """ #get the new mindex we want to join in mindex2 = pd.MultiIndex.from_frame( aep_ser.to_frame().reset_index().rename(columns={'index':'rEventName'})) #join this in and move it up some levels atr_dxcol.columns = atr_dxcol.columns.join(mindex2).swaplevel(i=2, j=1).swaplevel(i=1, j=0) #check the values all match """nulls are not matching for somereaseon""" booldf = atr_dxcol.droplevel(level=0, axis=1).fillna(999) == self.data_d[dtag].fillna(999) assert booldf.all().all(), 'bad conversion' del self.data_d[dtag] self.att_df = atr_dxcol.sort_index(axis=1, level=0, sort_remaining=True, inplace=False, ascending=True) assert self.attriMode return
def promote_attrim(self, dtag=None): #add new index level if dtag is None: dtag = self.attrdtag_in """ risk1 doesnt use dmg1... so the attrim will be differnet """ aep_ser = self.data_d['evals'].copy() atr_dxcol = self.data_d[dtag].copy() """ view(atr_dxcol) """ #get the new mindex we want to join in mindex2 = pd.MultiIndex.from_frame( aep_ser.to_frame().reset_index().rename(columns={'index':'rEventName'})) #join this in and move it up some levels atr_dxcol.columns = atr_dxcol.columns.join(mindex2).swaplevel(i=2, j=1).swaplevel(i=1, j=0) #check the values all match """nulls are not matching for somereaseon""" booldf = atr_dxcol.droplevel(level=0, axis=1).fillna(999) == self.data_d[dtag].fillna(999) assert booldf.all().all(), 'bad conversion' del self.data_d[dtag] self.att_df = atr_dxcol.sort_index(axis=1, level=0, sort_remaining=True, inplace=False, ascending=True) assert self.attriMode return
Python
def launch(self): #placeholder for launching the dialog """allows children to customize what happens when called""" log = self.logger.getChild('launch') #======================================================================= # launch setup #======================================================================= if self.first_launch: self.connect_slots() #======================================================================= # #customs #======================================================================= """ lets each dialog attach custom functions when they are launched useful for automatically setting some dialog boxes prioritizinmg inheritanve over customs """ for fName, f in self.launch_actions.items(): log.debug('%s: %s'%(fName, f)) try: f() except Exception as e: log.warning('failed to execute \'%s\' w/ \n %s'%(fName, e)) #======================================================================= # inherit from other tools #======================================================================= """for dialogs with control files""" #my control file path if hasattr(self, 'lineEdit_cf_fp'): #try and set the control file path from the session if there if os.path.exists(self.session.cf_fp): #set the control file path self.lineEdit_cf_fp.setText(self.session.cf_fp) #woking directory if hasattr(self, 'lineEdit_wdir'): #from session control file if os.path.exists(self.session.cf_fp): newdir = os.path.join(os.path.dirname(self.session.cf_fp)) assert os.path.exists(newdir), 'this should exist...%s'%newdir self.lineEdit_wdir.setText(newdir) #default catch for working directory if self.lineEdit_wdir.text() == '': newdir = os.path.join(os.getcwd(), 'CanFlood') if not os.path.exists(newdir): os.makedirs(newdir) self.lineEdit_wdir.setText(newdir) #inventory vector layer if isinstance(self.session.finv_vlay, QgsVectorLayer): if hasattr(self, 'comboBox_JGfinv'): #should just skip the Build self.comboBox_JGfinv.setLayer(self.session.finv_vlay) self.first_launch=False self.show()
def launch(self): #placeholder for launching the dialog """allows children to customize what happens when called""" log = self.logger.getChild('launch') #======================================================================= # launch setup #======================================================================= if self.first_launch: self.connect_slots() #======================================================================= # #customs #======================================================================= """ lets each dialog attach custom functions when they are launched useful for automatically setting some dialog boxes prioritizinmg inheritanve over customs """ for fName, f in self.launch_actions.items(): log.debug('%s: %s'%(fName, f)) try: f() except Exception as e: log.warning('failed to execute \'%s\' w/ \n %s'%(fName, e)) #======================================================================= # inherit from other tools #======================================================================= """for dialogs with control files""" #my control file path if hasattr(self, 'lineEdit_cf_fp'): #try and set the control file path from the session if there if os.path.exists(self.session.cf_fp): #set the control file path self.lineEdit_cf_fp.setText(self.session.cf_fp) #woking directory if hasattr(self, 'lineEdit_wdir'): #from session control file if os.path.exists(self.session.cf_fp): newdir = os.path.join(os.path.dirname(self.session.cf_fp)) assert os.path.exists(newdir), 'this should exist...%s'%newdir self.lineEdit_wdir.setText(newdir) #default catch for working directory if self.lineEdit_wdir.text() == '': newdir = os.path.join(os.getcwd(), 'CanFlood') if not os.path.exists(newdir): os.makedirs(newdir) self.lineEdit_wdir.setText(newdir) #inventory vector layer if isinstance(self.session.finv_vlay, QgsVectorLayer): if hasattr(self, 'comboBox_JGfinv'): #should just skip the Build self.comboBox_JGfinv.setLayer(self.session.finv_vlay) self.first_launch=False self.show()
Python
def newFileSelect_button(self, lineEdit, #text bar where selected file should be displayed caption = 'Specify new file name', #title of box path = None, filters = "All Files (*)", qfd = QFileDialog.getSaveFileName, #dialog to launch ): #======================================================================= # defaults #======================================================================= if path is None: path = os.getcwd() if not os.path.exists(path): path = os.getcwd() #ask the user for the path """ using the Dialog instance as the QWidge parent """ fp = qfd(self, caption, path, filters) #just take the first if len(fp) == 2: fp = fp[0] #see if they picked something if fp == '': self.logger.warning('user failed to make a selection. skipping') return #update the bar lineEdit.setText(fp) self.logger.info('user selected: \n %s'%fp)
def newFileSelect_button(self, lineEdit, #text bar where selected file should be displayed caption = 'Specify new file name', #title of box path = None, filters = "All Files (*)", qfd = QFileDialog.getSaveFileName, #dialog to launch ): #======================================================================= # defaults #======================================================================= if path is None: path = os.getcwd() if not os.path.exists(path): path = os.getcwd() #ask the user for the path """ using the Dialog instance as the QWidge parent """ fp = qfd(self, caption, path, filters) #just take the first if len(fp) == 2: fp = fp[0] #see if they picked something if fp == '': self.logger.warning('user failed to make a selection. skipping') return #update the bar lineEdit.setText(fp) self.logger.info('user selected: \n %s'%fp)
Python
def _loghlp(self, #helper function for generalized logging msg_raw, qlevel, push=False, #treat as a push message on Qgis' bar status=False, #whether to send to the status widget ): """ QgsMessageLog writes to the message panel optionally, users can enable file logging this file logger """ #======================================================================= # send message based on qlevel #======================================================================= msgDebug = '%s %s: %s'%(datetime.datetime.now().strftime('%d-%H.%M.%S'), self.log_nm, msg_raw) if qlevel < 0: #file logger only QgsLogger.debug('D_%s'%msgDebug) push, status = False, False #should never trip else:#console logger msg = '%s: %s'%(self.log_nm, msg_raw) QgsMessageLog.logMessage(msg, self.log_tabnm, level=qlevel) QgsLogger.debug('%i_%s'%(qlevel, msgDebug)) #also send to file #Qgis bar if push: try: self.iface.messageBar().pushMessage(self.log_tabnm, msg_raw, level=qlevel) except: QgsLogger.debug('failed to push to interface') #used for standalone tests #Optional widget if status or push: if not self.statusQlab is None: self.statusQlab.setText(msg_raw)
def _loghlp(self, #helper function for generalized logging msg_raw, qlevel, push=False, #treat as a push message on Qgis' bar status=False, #whether to send to the status widget ): """ QgsMessageLog writes to the message panel optionally, users can enable file logging this file logger """ #======================================================================= # send message based on qlevel #======================================================================= msgDebug = '%s %s: %s'%(datetime.datetime.now().strftime('%d-%H.%M.%S'), self.log_nm, msg_raw) if qlevel < 0: #file logger only QgsLogger.debug('D_%s'%msgDebug) push, status = False, False #should never trip else:#console logger msg = '%s: %s'%(self.log_nm, msg_raw) QgsMessageLog.logMessage(msg, self.log_tabnm, level=qlevel) QgsLogger.debug('%i_%s'%(qlevel, msgDebug)) #also send to file #Qgis bar if push: try: self.iface.messageBar().pushMessage(self.log_tabnm, msg_raw, level=qlevel) except: QgsLogger.debug('failed to push to interface') #used for standalone tests #Optional widget if status or push: if not self.statusQlab is None: self.statusQlab.setText(msg_raw)
Python
def basic_logger(root_lvl = logging.DEBUG, new_wdir = None, ): #attaches to a log file in the users directory per the parameter file """ the control file generates a 'DEBUG' and a 'WARNING' filehandler """ #=========================================================================== # get filepaths #=========================================================================== base_dir = os.path.dirname(os.path.dirname(__file__)) #canflood logcfg_file = os.path.join(base_dir, '_pars', 'logger.conf') if not os.path.exists(logcfg_file): raise Error('logger config file does not exist:\n %s'%logcfg_file) #=========================================================================== # #change path to users directory #=========================================================================== if new_wdir is None: new_wdir = os.path.join(os.path.expanduser('~'), 'CanFlood') if not os.path.exists(new_wdir): os.makedirs(new_wdir) print('default working directory didnt exist. made it:\n %s'%new_wdir) os.chdir(new_wdir) print('changed current directory to: \n %s'%os.getcwd()) #=========================================================================== # build logger from file #=========================================================================== logger = logging.getLogger() #get the root logger logging.config.fileConfig(logcfg_file) #load the configuration file logger.info('root logger initiated and configured from file: %s'%(logcfg_file)) #override default level in the config file logger.setLevel(root_lvl) return logger
def basic_logger(root_lvl = logging.DEBUG, new_wdir = None, ): #attaches to a log file in the users directory per the parameter file """ the control file generates a 'DEBUG' and a 'WARNING' filehandler """ #=========================================================================== # get filepaths #=========================================================================== base_dir = os.path.dirname(os.path.dirname(__file__)) #canflood logcfg_file = os.path.join(base_dir, '_pars', 'logger.conf') if not os.path.exists(logcfg_file): raise Error('logger config file does not exist:\n %s'%logcfg_file) #=========================================================================== # #change path to users directory #=========================================================================== if new_wdir is None: new_wdir = os.path.join(os.path.expanduser('~'), 'CanFlood') if not os.path.exists(new_wdir): os.makedirs(new_wdir) print('default working directory didnt exist. made it:\n %s'%new_wdir) os.chdir(new_wdir) print('changed current directory to: \n %s'%os.getcwd()) #=========================================================================== # build logger from file #=========================================================================== logger = logging.getLogger() #get the root logger logging.config.fileConfig(logcfg_file) #load the configuration file logger.info('root logger initiated and configured from file: %s'%(logcfg_file)) #override default level in the config file logger.setLevel(root_lvl) return logger
Python
def _get_inher_atts(self, #return a container with the attribute values from your inher_d inher_d=None, logger=None, ): """used by parents to retrieve kwargs to pass to children""" #======================================================================= # defaults #======================================================================= if logger is None: logger=self.logger log=logger.getChild('get_inher_atts') if inher_d is None: inher_d = self.inher_d #======================================================================= # retrieve #======================================================================= att_d = dict() for className, attn_l in inher_d.items(): d = dict() for attn in attn_l: attv = getattr(self, attn) #assert not attv is None, attn #allowing Nones to pass att_d[attn] = attv d[attn] = attv log.debug('got %i atts from \'%s\'\n %s'%( len(d), className, d)) return att_d
def _get_inher_atts(self, #return a container with the attribute values from your inher_d inher_d=None, logger=None, ): """used by parents to retrieve kwargs to pass to children""" #======================================================================= # defaults #======================================================================= if logger is None: logger=self.logger log=logger.getChild('get_inher_atts') if inher_d is None: inher_d = self.inher_d #======================================================================= # retrieve #======================================================================= att_d = dict() for className, attn_l in inher_d.items(): d = dict() for attn in attn_l: attv = getattr(self, attn) #assert not attv is None, attn #allowing Nones to pass att_d[attn] = attv d[attn] = attv log.debug('got %i atts from \'%s\'\n %s'%( len(d), className, d)) return att_d
Python
def bdmg_raw(self, #get damages on expanded finv bdf = None, #expanded finv. see modcom.build_exp_finv(). each row has 1 ftag ddf = None, #expanded exposure set. depth at each bid. see build_depths() or get_mitid() ): #====================================================================== # defaults #====================================================================== log = self.logger.getChild('bdmg') #defaults if ddf is None: ddf = self.ddf if bdf is None: bdf = self.bdf """ddf is appending _1 to column names""" cid, bid = self.cid, self.bid #======================================================================= # prechecks #======================================================================= assert len(self.dfuncs_d)>0 assert bid in ddf.columns assert ddf.index.name == bid assert np.array_equal(ddf.index.values, ddf[bid].values) #identifier for depth columns dboolcol = ~ddf.columns.isin([cid, bid]) log.debug('running on %i assets and %i events'%(len(bdf), len(ddf.columns)-2)) #====================================================================== # adjust depths by exposure grade #====================================================================== """ see get_mitid() """ #====================================================================== # setup----- #====================================================================== edf = ddf.loc[:, dboolcol] #just the exposure values #======================================================================= # build the events matrix #======================================================================= """makes it easier to keep track of all the results by event view(events_df) """ #get events name set events_df = pd.DataFrame(index = ddf.columns[dboolcol]) for sufix in ['raw', 'scaled', 'capped', 'dmg']: events_df[sufix] = events_df.index + '_%s'%sufix self.events_df = events_df #set for later #======================================================================= # id valid bids #======================================================================= if self.ground_water: mdval = min(self.df_minD_d.values()) else: mdval = 0 """this marks nulls as False""" dep_booldf = edf >= mdval #True= depth is valid #report those faling the check if not dep_booldf.all().all(): log.debug('marked %i (of %i) entries w/ excluded depths (<= %.2f or NULL)'%( np.invert(dep_booldf).sum().sum(), dep_booldf.size, mdval)) #check if EVERYTHING failed if not dep_booldf.any().any(): log.warning('ZERO (of %i) exposures exceed the minimum threshold (%.2f)! returning all zeros'%( dep_booldf.size, mdval)) self.res_df = pd.DataFrame(0, index=edf.index, columns= ['%s_raw'%e for e in edf.columns]) return self.res_df #====================================================================== # RAW: loop and calc raw damage by ftag------------- #====================================================================== res_df = None for indxr, (ftag, dfunc) in enumerate(self.dfuncs_d.items()): log = self.logger.getChild('bdmg.%s'%ftag) #entries matching this tag tag_booldf = pd.DataFrame(np.tile(bdf['ftag']==ftag, (len(dep_booldf.columns),1)).T, index=dep_booldf.index, columns=dep_booldf.columns) booldf = np.logical_and( dep_booldf, #entries w/ valid depths tag_booldf #entries matching this tag ) log.info('(%i/%i) calculating \'%s\' w/ %i un-nested assets (of %i)'%( indxr+1, len(self.dfuncs_d), ftag, booldf.any(axis=1).sum(), len(booldf))) if not booldf.any().any(): log.debug(' no valid entries!') continue #================================================================== # calc damage by tag.depth #================================================================== """ to improve performance, we only calculate each depth once, then join back to the results todo: add check for max depth to improve performance """ #get just the unique depths that need calculating deps_ar = pd.Series(np.unique(np.ravel(edf[booldf].values)) ).dropna().values log.debug('calc for %i (of %i) unique depths'%( len(deps_ar), edf.size)) """multi-threading would nice for this loop""" #loop each depth through the damage function to get the result e_impacts_d = {dep:dfunc.get_dmg(dep) for dep in deps_ar} #=================================================================== # link #=================================================================== ri_df = edf[booldf].replace(e_impacts_d) # update master= if res_df is None: res_df = ri_df else: res_df.update(ri_df, overwrite=False, errors='raise') #======================================================================= # wrap------- #======================================================================= log = self.logger.getChild('bdmg') assert not res_df is None, 'failed to get any valid entries' res_df.columns = ['%s_raw'%e for e in res_df.columns] #add the suffix #attach self.res_df = res_df log.info('got raw impacts for %i dfuncs and %i events: \n %s'%( len(self.dfuncs_d),dboolcol.sum(), self._rdf_smry('_raw'))) return res_df
def bdmg_raw(self, #get damages on expanded finv bdf = None, #expanded finv. see modcom.build_exp_finv(). each row has 1 ftag ddf = None, #expanded exposure set. depth at each bid. see build_depths() or get_mitid() ): #====================================================================== # defaults #====================================================================== log = self.logger.getChild('bdmg') #defaults if ddf is None: ddf = self.ddf if bdf is None: bdf = self.bdf """ddf is appending _1 to column names""" cid, bid = self.cid, self.bid #======================================================================= # prechecks #======================================================================= assert len(self.dfuncs_d)>0 assert bid in ddf.columns assert ddf.index.name == bid assert np.array_equal(ddf.index.values, ddf[bid].values) #identifier for depth columns dboolcol = ~ddf.columns.isin([cid, bid]) log.debug('running on %i assets and %i events'%(len(bdf), len(ddf.columns)-2)) #====================================================================== # adjust depths by exposure grade #====================================================================== """ see get_mitid() """ #====================================================================== # setup----- #====================================================================== edf = ddf.loc[:, dboolcol] #just the exposure values #======================================================================= # build the events matrix #======================================================================= """makes it easier to keep track of all the results by event view(events_df) """ #get events name set events_df = pd.DataFrame(index = ddf.columns[dboolcol]) for sufix in ['raw', 'scaled', 'capped', 'dmg']: events_df[sufix] = events_df.index + '_%s'%sufix self.events_df = events_df #set for later #======================================================================= # id valid bids #======================================================================= if self.ground_water: mdval = min(self.df_minD_d.values()) else: mdval = 0 """this marks nulls as False""" dep_booldf = edf >= mdval #True= depth is valid #report those faling the check if not dep_booldf.all().all(): log.debug('marked %i (of %i) entries w/ excluded depths (<= %.2f or NULL)'%( np.invert(dep_booldf).sum().sum(), dep_booldf.size, mdval)) #check if EVERYTHING failed if not dep_booldf.any().any(): log.warning('ZERO (of %i) exposures exceed the minimum threshold (%.2f)! returning all zeros'%( dep_booldf.size, mdval)) self.res_df = pd.DataFrame(0, index=edf.index, columns= ['%s_raw'%e for e in edf.columns]) return self.res_df #====================================================================== # RAW: loop and calc raw damage by ftag------------- #====================================================================== res_df = None for indxr, (ftag, dfunc) in enumerate(self.dfuncs_d.items()): log = self.logger.getChild('bdmg.%s'%ftag) #entries matching this tag tag_booldf = pd.DataFrame(np.tile(bdf['ftag']==ftag, (len(dep_booldf.columns),1)).T, index=dep_booldf.index, columns=dep_booldf.columns) booldf = np.logical_and( dep_booldf, #entries w/ valid depths tag_booldf #entries matching this tag ) log.info('(%i/%i) calculating \'%s\' w/ %i un-nested assets (of %i)'%( indxr+1, len(self.dfuncs_d), ftag, booldf.any(axis=1).sum(), len(booldf))) if not booldf.any().any(): log.debug(' no valid entries!') continue #================================================================== # calc damage by tag.depth #================================================================== """ to improve performance, we only calculate each depth once, then join back to the results todo: add check for max depth to improve performance """ #get just the unique depths that need calculating deps_ar = pd.Series(np.unique(np.ravel(edf[booldf].values)) ).dropna().values log.debug('calc for %i (of %i) unique depths'%( len(deps_ar), edf.size)) """multi-threading would nice for this loop""" #loop each depth through the damage function to get the result e_impacts_d = {dep:dfunc.get_dmg(dep) for dep in deps_ar} #=================================================================== # link #=================================================================== ri_df = edf[booldf].replace(e_impacts_d) # update master= if res_df is None: res_df = ri_df else: res_df.update(ri_df, overwrite=False, errors='raise') #======================================================================= # wrap------- #======================================================================= log = self.logger.getChild('bdmg') assert not res_df is None, 'failed to get any valid entries' res_df.columns = ['%s_raw'%e for e in res_df.columns] #add the suffix #attach self.res_df = res_df log.info('got raw impacts for %i dfuncs and %i events: \n %s'%( len(self.dfuncs_d),dboolcol.sum(), self._rdf_smry('_raw'))) return res_df
Python
def bdmg_capped(self, #apply the optional 'fcap' values to the scaled damages res_df = None, ): """ bdf can ber passed w/o fcap shouldn't be passed w/ all nulls... but this would still wortk I thihnk """ log = self.logger.getChild('bdmg_capped') #======================================================================= # get data #======================================================================= if res_df is None: res_df = self.res_df events_df = self.events_df bdf = self.bdf cid, bid = self.cid, self.bid #======================================================================= # start meta #======================================================================= meta_d = dict() cmeta_df =bdf.loc[:,bdf.columns.isin([cid, bid, 'ftag', 'fcap', 'fscale', 'nestID'])] #======================================================================= # #loop and add scaled damages #======================================================================= for event, e_ser in events_df.iterrows(): #join scaled values and cap values for easy comparison if 'fcap' in bdf.columns: sc_df = res_df[e_ser['scaled']].to_frame().join(bdf['fcap']) else: sc_df = res_df[e_ser['scaled']].to_frame() #identify nulls boolidx = res_df[e_ser['scaled']].notna() #calc and set the scalecd values """this will ignore any null fcap values when determining theminimum""" res_df.loc[boolidx, e_ser['capped']] = sc_df[boolidx].min(axis=1, skipna=True) #=================================================================== # #meta #=================================================================== #where the scaled values were capped if 'fcap' in bdf.columns: mser = res_df.loc[boolidx, e_ser['scaled']] >bdf.loc[boolidx, 'fcap'] else: #all FALSE mser = pd.Series(index=cmeta_df.index, dtype=bool) cmeta_df= cmeta_df.join(mser.rename(event), how='left') #totals meta_d[event] = mser.sum() #======================================================================= # wrap #======================================================================= """written by bdmg_smry""" """ view(cmeta_df) """ self.cmeta_df = cmeta_df self.res_colg = 'capped' #needed by mitigation funcs self.res_df = res_df log.info('cappd %i events w/ bid cnts maxing out (of %i) \n %s\n %s'%( len(meta_d), len(res_df), meta_d, self._rdf_smry('_capped'))) return res_df
def bdmg_capped(self, #apply the optional 'fcap' values to the scaled damages res_df = None, ): """ bdf can ber passed w/o fcap shouldn't be passed w/ all nulls... but this would still wortk I thihnk """ log = self.logger.getChild('bdmg_capped') #======================================================================= # get data #======================================================================= if res_df is None: res_df = self.res_df events_df = self.events_df bdf = self.bdf cid, bid = self.cid, self.bid #======================================================================= # start meta #======================================================================= meta_d = dict() cmeta_df =bdf.loc[:,bdf.columns.isin([cid, bid, 'ftag', 'fcap', 'fscale', 'nestID'])] #======================================================================= # #loop and add scaled damages #======================================================================= for event, e_ser in events_df.iterrows(): #join scaled values and cap values for easy comparison if 'fcap' in bdf.columns: sc_df = res_df[e_ser['scaled']].to_frame().join(bdf['fcap']) else: sc_df = res_df[e_ser['scaled']].to_frame() #identify nulls boolidx = res_df[e_ser['scaled']].notna() #calc and set the scalecd values """this will ignore any null fcap values when determining theminimum""" res_df.loc[boolidx, e_ser['capped']] = sc_df[boolidx].min(axis=1, skipna=True) #=================================================================== # #meta #=================================================================== #where the scaled values were capped if 'fcap' in bdf.columns: mser = res_df.loc[boolidx, e_ser['scaled']] >bdf.loc[boolidx, 'fcap'] else: #all FALSE mser = pd.Series(index=cmeta_df.index, dtype=bool) cmeta_df= cmeta_df.join(mser.rename(event), how='left') #totals meta_d[event] = mser.sum() #======================================================================= # wrap #======================================================================= """written by bdmg_smry""" """ view(cmeta_df) """ self.cmeta_df = cmeta_df self.res_colg = 'capped' #needed by mitigation funcs self.res_df = res_df log.info('cappd %i events w/ bid cnts maxing out (of %i) \n %s\n %s'%( len(meta_d), len(res_df), meta_d, self._rdf_smry('_capped'))) return res_df
Python
def prep_model(self): log = self.logger.getChild('prep_model') self.set_ttl() #load and prep the total results self.set_passet() self.set_etypes() self.set_attrimat() #======================================================================= # attrim---- #======================================================================= """ROUNDING forcing the project precision aon all hte aep values... not the greatest.. but only decent way to ensure they are treated as members """ #reformat aep values atr_dxcol = self.data_d.pop(self.attrdtag_in) mdex = atr_dxcol.columns atr_dxcol.columns = mdex.set_levels( np.around(mdex.levels[0].astype(float), decimals=self.prec), level=0) #sort them """this flips the usual atr_dxcol order.. but matches the EAD calc expectation""" atr_dxcol = atr_dxcol.sort_index(axis=1, level=0, ascending=False) #======================================================================= # check #======================================================================= mdex = atr_dxcol.columns #check aep values miss_l = set(mdex.levels[0]).symmetric_difference( self.aep_df.loc[~self.aep_df['extrap'], 'aep']) assert len(miss_l)==0, 'aep mismatch: %s'%miss_l #check rEventNames miss_l = set(mdex.levels[1]).symmetric_difference( self.data_d['eventypes']['rEventName']) assert len(miss_l)==0, 'rEventName mismatch: %s'%miss_l #store self.data_d[self.attrdtag_in] = atr_dxcol #======================================================================= # get TOTAL multiplied values--- #======================================================================= self.mula_dxcol = self.get_mult(atr_dxcol.copy(), logger=log) #======================================================================= # wrap #======================================================================= log.debug('finished') return
def prep_model(self): log = self.logger.getChild('prep_model') self.set_ttl() #load and prep the total results self.set_passet() self.set_etypes() self.set_attrimat() #======================================================================= # attrim---- #======================================================================= """ROUNDING forcing the project precision aon all hte aep values... not the greatest.. but only decent way to ensure they are treated as members """ #reformat aep values atr_dxcol = self.data_d.pop(self.attrdtag_in) mdex = atr_dxcol.columns atr_dxcol.columns = mdex.set_levels( np.around(mdex.levels[0].astype(float), decimals=self.prec), level=0) #sort them """this flips the usual atr_dxcol order.. but matches the EAD calc expectation""" atr_dxcol = atr_dxcol.sort_index(axis=1, level=0, ascending=False) #======================================================================= # check #======================================================================= mdex = atr_dxcol.columns #check aep values miss_l = set(mdex.levels[0]).symmetric_difference( self.aep_df.loc[~self.aep_df['extrap'], 'aep']) assert len(miss_l)==0, 'aep mismatch: %s'%miss_l #check rEventNames miss_l = set(mdex.levels[1]).symmetric_difference( self.data_d['eventypes']['rEventName']) assert len(miss_l)==0, 'rEventName mismatch: %s'%miss_l #store self.data_d[self.attrdtag_in] = atr_dxcol #======================================================================= # get TOTAL multiplied values--- #======================================================================= self.mula_dxcol = self.get_mult(atr_dxcol.copy(), logger=log) #======================================================================= # wrap #======================================================================= log.debug('finished') return
Python
def run(self, rlayRaw_l, #set of rasters to sample finv_raw, #inventory layer cid = None, #index field name on finv #exposure value controls psmp_stat=None, #for complex geo finvs, statistic to sample psmp_fieldName = None, #for complex geo finvs, field name with sampling statistic #inundation sampling controls as_inun=False, #whether to sample for inundation (rather than wsl values) dtm_rlay=None, #dtm raster (for as_inun=True) dthresh = 0, #fordepth threshold clip_dtm=False, fname = None, #prefix for layer name ): """ Generate the exposure dataset ('expos') from a set of hazard event rasters """ #====================================================================== # defaults #====================================================================== log = self.logger.getChild('run') if cid is None: cid = self.cid if fname is None: fname=self.fname self.as_inun = as_inun self.finv_name = finv_raw.name() #for plotters self.gtype = QgsWkbTypes().displayString(finv_raw.wkbType()) log.info('executing on %i rasters'%(len(rlayRaw_l))) #====================================================================== # precheck #====================================================================== assert len(rlayRaw_l)>0, 'no rasters passed!' #check the finv_raw assert isinstance(finv_raw, QgsVectorLayer), 'bad type on finv_raw' assert finv_raw.crs() == self.qproj.crs(), 'finv_raw crs %s doesnt match projects \'%s\'' \ %(finv_raw.crs().authid(), self.qproj.crs().authid()) assert cid in [field.name() for field in finv_raw.fields()], \ 'requested cid field \'%s\' not found on the finv_raw'%cid #check the rasters rname_l = [] for rlay in rlayRaw_l: assert isinstance(rlay, QgsRasterLayer) assert rlay.crs() == self.qproj.crs(), 'rlay %s crs doesnt match project'%(rlay.name()) rname_l.append(rlay.name()) self.rname_l = rname_l #check sampling parameter logic """see samp_vals()""" #====================================================================== # prep the finv for sampling #====================================================================== self.finv_name = finv_raw.name() #drop all data fields if not psmp_fieldName is None: keep_fnl = [cid, psmp_fieldName] else: keep_fnl = [cid] finv = self.deletecolumn(finv_raw, keep_fnl, invert=True) #fix the geometry finv = self.fixgeometries(finv, logger=log) #check field lengths self.finv_fcnt = len(finv.fields()) assert self.finv_fcnt==len(keep_fnl), 'failed to drop all the fields' if self.gtype.endswith('Z'): log.warning('passed finv has Z values... these are not supported') self.names_d = dict() #setting an empty as some paths dont fill this anymore self.feedback.setProgress(20) #get the results name res_name = '%s_%s_%i_%i'%(fname, self.tag, len(rlayRaw_l),finv.dataProvider().featureCount()) #======================================================================= # simple geometries (Points)----- #======================================================================= if 'Point' in self.gtype: res_vlay = self.samp_vals_pts(finv, rlayRaw_l) assert not as_inun #======================================================================= # complex geos-------- #======================================================================= else: #======================================================================= #threshold area (inundation)-------- #======================================================================= if as_inun: #=================================================================== # #prep DTM #=================================================================== if clip_dtm: """makes the raster clipping a bitcleaner 2020-05-06 ran 2 tests, and this INCREASED run times by ~20% set default to clip_dtm=False """ log.info('trimming dtm \'%s\' by finv extents'%(dtm_rlay.name())) finv_buf = self.polygonfromlayerextent(finv, round_to=dtm_rlay.rasterUnitsPerPixelX()*3,#buffer by 3x the pixel size logger=log ) #clip to just the polygons dtm_rlay1 = self.cliprasterwithpolygon(dtm_rlay,finv_buf, logger=log) else: dtm_rlay1 = dtm_rlay #=================================================================== # sample by goetype #=================================================================== if 'Polygon' in self.gtype: res_vlay = self.samp_inun(finv,rlayRaw_l, dtm_rlay1, dthresh) elif 'Line' in self.gtype: res_vlay = self.samp_inun_line(finv, rlayRaw_l, dtm_rlay1, dthresh) else: raise Error('\'%s\' got unexpected gtype: %s'%(finv.name(), self.gtype)) res_name = res_name + 'd%.2f'%(dthresh) #======================================================================= # value sampler------ #======================================================================= else: #=============================================================== # Global staitsitc #=============================================================== if not psmp_stat is None: assert psmp_fieldName is None res_vlay = self.samp_vals_cplx(finv,rlayRaw_l, psmp_stat=psmp_stat) res_name = res_name + '_%s'%psmp_stat.lower() #=============================================================== # per-asset stat #=============================================================== else: res_vlay = self.samp_passet(finv,rlayRaw_l, psmp_fieldName=psmp_fieldName) res_name = res_name + '_passet' res_vlay.setName(res_name) #======================================================================= # check field names #======================================================================= if not as_inun: """still handling renaming at the end for inundation runs""" miss_l = set(self.rname_l).difference([f.name() for f in res_vlay.fields()]) assert len(miss_l)==0, 'field name mismatch: %s'%miss_l #======================================================================= # wrap #======================================================================= """TODO: harmonize output types for build modules""" #get dataframe like results try: """renaming with the algo on each loop now""" df = vlay_get_fdf(res_vlay, logger=log).set_index(cid, drop=True) #get sorted index by values sum_ser = pd.Series({k:cser.dropna().sum() for k, cser in df.items()}).sort_values() #set this new index self.res_df = df.loc[:, sum_ser.index].sort_index() except Exception as e: log.warning('failed to convert vlay to dataframe w/ \n %s'%e) #max out the progress bar self.feedback.setProgress(90) log.info('sampling finished') self.psmp_stat=psmp_stat #set for val_str return res_vlay
def run(self, rlayRaw_l, #set of rasters to sample finv_raw, #inventory layer cid = None, #index field name on finv #exposure value controls psmp_stat=None, #for complex geo finvs, statistic to sample psmp_fieldName = None, #for complex geo finvs, field name with sampling statistic #inundation sampling controls as_inun=False, #whether to sample for inundation (rather than wsl values) dtm_rlay=None, #dtm raster (for as_inun=True) dthresh = 0, #fordepth threshold clip_dtm=False, fname = None, #prefix for layer name ): """ Generate the exposure dataset ('expos') from a set of hazard event rasters """ #====================================================================== # defaults #====================================================================== log = self.logger.getChild('run') if cid is None: cid = self.cid if fname is None: fname=self.fname self.as_inun = as_inun self.finv_name = finv_raw.name() #for plotters self.gtype = QgsWkbTypes().displayString(finv_raw.wkbType()) log.info('executing on %i rasters'%(len(rlayRaw_l))) #====================================================================== # precheck #====================================================================== assert len(rlayRaw_l)>0, 'no rasters passed!' #check the finv_raw assert isinstance(finv_raw, QgsVectorLayer), 'bad type on finv_raw' assert finv_raw.crs() == self.qproj.crs(), 'finv_raw crs %s doesnt match projects \'%s\'' \ %(finv_raw.crs().authid(), self.qproj.crs().authid()) assert cid in [field.name() for field in finv_raw.fields()], \ 'requested cid field \'%s\' not found on the finv_raw'%cid #check the rasters rname_l = [] for rlay in rlayRaw_l: assert isinstance(rlay, QgsRasterLayer) assert rlay.crs() == self.qproj.crs(), 'rlay %s crs doesnt match project'%(rlay.name()) rname_l.append(rlay.name()) self.rname_l = rname_l #check sampling parameter logic """see samp_vals()""" #====================================================================== # prep the finv for sampling #====================================================================== self.finv_name = finv_raw.name() #drop all data fields if not psmp_fieldName is None: keep_fnl = [cid, psmp_fieldName] else: keep_fnl = [cid] finv = self.deletecolumn(finv_raw, keep_fnl, invert=True) #fix the geometry finv = self.fixgeometries(finv, logger=log) #check field lengths self.finv_fcnt = len(finv.fields()) assert self.finv_fcnt==len(keep_fnl), 'failed to drop all the fields' if self.gtype.endswith('Z'): log.warning('passed finv has Z values... these are not supported') self.names_d = dict() #setting an empty as some paths dont fill this anymore self.feedback.setProgress(20) #get the results name res_name = '%s_%s_%i_%i'%(fname, self.tag, len(rlayRaw_l),finv.dataProvider().featureCount()) #======================================================================= # simple geometries (Points)----- #======================================================================= if 'Point' in self.gtype: res_vlay = self.samp_vals_pts(finv, rlayRaw_l) assert not as_inun #======================================================================= # complex geos-------- #======================================================================= else: #======================================================================= #threshold area (inundation)-------- #======================================================================= if as_inun: #=================================================================== # #prep DTM #=================================================================== if clip_dtm: """makes the raster clipping a bitcleaner 2020-05-06 ran 2 tests, and this INCREASED run times by ~20% set default to clip_dtm=False """ log.info('trimming dtm \'%s\' by finv extents'%(dtm_rlay.name())) finv_buf = self.polygonfromlayerextent(finv, round_to=dtm_rlay.rasterUnitsPerPixelX()*3,#buffer by 3x the pixel size logger=log ) #clip to just the polygons dtm_rlay1 = self.cliprasterwithpolygon(dtm_rlay,finv_buf, logger=log) else: dtm_rlay1 = dtm_rlay #=================================================================== # sample by goetype #=================================================================== if 'Polygon' in self.gtype: res_vlay = self.samp_inun(finv,rlayRaw_l, dtm_rlay1, dthresh) elif 'Line' in self.gtype: res_vlay = self.samp_inun_line(finv, rlayRaw_l, dtm_rlay1, dthresh) else: raise Error('\'%s\' got unexpected gtype: %s'%(finv.name(), self.gtype)) res_name = res_name + 'd%.2f'%(dthresh) #======================================================================= # value sampler------ #======================================================================= else: #=============================================================== # Global staitsitc #=============================================================== if not psmp_stat is None: assert psmp_fieldName is None res_vlay = self.samp_vals_cplx(finv,rlayRaw_l, psmp_stat=psmp_stat) res_name = res_name + '_%s'%psmp_stat.lower() #=============================================================== # per-asset stat #=============================================================== else: res_vlay = self.samp_passet(finv,rlayRaw_l, psmp_fieldName=psmp_fieldName) res_name = res_name + '_passet' res_vlay.setName(res_name) #======================================================================= # check field names #======================================================================= if not as_inun: """still handling renaming at the end for inundation runs""" miss_l = set(self.rname_l).difference([f.name() for f in res_vlay.fields()]) assert len(miss_l)==0, 'field name mismatch: %s'%miss_l #======================================================================= # wrap #======================================================================= """TODO: harmonize output types for build modules""" #get dataframe like results try: """renaming with the algo on each loop now""" df = vlay_get_fdf(res_vlay, logger=log).set_index(cid, drop=True) #get sorted index by values sum_ser = pd.Series({k:cser.dropna().sum() for k, cser in df.items()}).sort_values() #set this new index self.res_df = df.loc[:, sum_ser.index].sort_index() except Exception as e: log.warning('failed to convert vlay to dataframe w/ \n %s'%e) #max out the progress bar self.feedback.setProgress(90) log.info('sampling finished') self.psmp_stat=psmp_stat #set for val_str return res_vlay
Python
def samp_vals_pts(self, #sample a set of rasters with a points vectorlayer finv, raster_l, ): """" 2021-10-18:split out function from polygons/line sammpler """ #======================================================================= # defaults #======================================================================= log = self.logger.getChild('samp_vals_pts') algo_nm = 'qgis:rastersampling' #======================================================================= # sample loop #======================================================================= self.names_d = dict() log.info('sampling %i raster layers w/ algo \'%s\' and gtype: %s'%( len(raster_l), algo_nm, self.gtype)) for indxr, rlay in enumerate(raster_l): log.info('%i/%i sampling \'%s\' on \'%s\''%( indxr+1, len(raster_l), finv.name(), rlay.name())) ofnl = [field.name() for field in finv.fields()] self.mstore.addMapLayer(finv) #not sure when/where we clear this finv = processing.run(algo_nm, { 'COLUMN_PREFIX' : rlay.name(),'INPUT' : finv, 'OUTPUT' : 'TEMPORARY_OUTPUT','RASTERCOPY' : rlay}, feedback=self.feedback)['OUTPUT'] #report and handle names finv = self._smp_loop_wrap(finv, ofnl, rlay, indxr, log) log.info('finished %i w/ %s'%(indxr, [f.name() for f in finv.fields()])) #======================================================================= # check #======================================================================= log.debug('finished w/ \n%s'%self.names_d) return finv
def samp_vals_pts(self, #sample a set of rasters with a points vectorlayer finv, raster_l, ): """" 2021-10-18:split out function from polygons/line sammpler """ #======================================================================= # defaults #======================================================================= log = self.logger.getChild('samp_vals_pts') algo_nm = 'qgis:rastersampling' #======================================================================= # sample loop #======================================================================= self.names_d = dict() log.info('sampling %i raster layers w/ algo \'%s\' and gtype: %s'%( len(raster_l), algo_nm, self.gtype)) for indxr, rlay in enumerate(raster_l): log.info('%i/%i sampling \'%s\' on \'%s\''%( indxr+1, len(raster_l), finv.name(), rlay.name())) ofnl = [field.name() for field in finv.fields()] self.mstore.addMapLayer(finv) #not sure when/where we clear this finv = processing.run(algo_nm, { 'COLUMN_PREFIX' : rlay.name(),'INPUT' : finv, 'OUTPUT' : 'TEMPORARY_OUTPUT','RASTERCOPY' : rlay}, feedback=self.feedback)['OUTPUT'] #report and handle names finv = self._smp_loop_wrap(finv, ofnl, rlay, indxr, log) log.info('finished %i w/ %s'%(indxr, [f.name() for f in finv.fields()])) #======================================================================= # check #======================================================================= log.debug('finished w/ \n%s'%self.names_d) return finv
Python
def samp_vals_cplx(self, #sample a set of rasters with a complex vectorlayer (global stat) finv, raster_l, psmp_stat='Max', #global statistic to use for samplingn algo selected=False, #perform sample on selected features only logger=None, ): """ sampling raster values (not inundation)_ COLUMN NAMES: the script has some approximat prefixing. but all the fields are re-named in the end 2021-10-18: split out points """ #======================================================================= # defaults #======================================================================= if logger is None: logger=self.logger log = logger.getChild('samp_vals_cplx') gtype=self.gtype #======================================================================= # check parameter logic #======================================================================= assert psmp_stat in self.psmp_codes, 'unrecognized psmp_stat' #======================================================================= # sample loop #======================================================================= #self.names_d = dict() log.info('sampling %i raster layers w/ gtype: %s'%(len(raster_l), gtype)) first= True for indxr, rlay in enumerate(raster_l): #setup log.info('%i/%i sampling \'%s\' on \'%s\''%( indxr+1, len(raster_l), finv.name(), rlay.name())) ofnl = [field.name() for field in finv.fields()] self.mstore.addMapLayer(finv) #add the sample values as a new field finv = self.get_raster_sample(finv, rlay, psmp_stat, indxr=indxr, selected=(first and selected), #only need to clip the first time log=log) #report and handle names finv = self._smp_loop_wrap(finv, ofnl, rlay, indxr, log) #wrap first=False log.debug('finished w/ \n%s'%self.names_d) return finv
def samp_vals_cplx(self, #sample a set of rasters with a complex vectorlayer (global stat) finv, raster_l, psmp_stat='Max', #global statistic to use for samplingn algo selected=False, #perform sample on selected features only logger=None, ): """ sampling raster values (not inundation)_ COLUMN NAMES: the script has some approximat prefixing. but all the fields are re-named in the end 2021-10-18: split out points """ #======================================================================= # defaults #======================================================================= if logger is None: logger=self.logger log = logger.getChild('samp_vals_cplx') gtype=self.gtype #======================================================================= # check parameter logic #======================================================================= assert psmp_stat in self.psmp_codes, 'unrecognized psmp_stat' #======================================================================= # sample loop #======================================================================= #self.names_d = dict() log.info('sampling %i raster layers w/ gtype: %s'%(len(raster_l), gtype)) first= True for indxr, rlay in enumerate(raster_l): #setup log.info('%i/%i sampling \'%s\' on \'%s\''%( indxr+1, len(raster_l), finv.name(), rlay.name())) ofnl = [field.name() for field in finv.fields()] self.mstore.addMapLayer(finv) #add the sample values as a new field finv = self.get_raster_sample(finv, rlay, psmp_stat, indxr=indxr, selected=(first and selected), #only need to clip the first time log=log) #report and handle names finv = self._smp_loop_wrap(finv, ofnl, rlay, indxr, log) #wrap first=False log.debug('finished w/ \n%s'%self.names_d) return finv
Python
def samp_passet(self, #sample complex asset values using per-asset stats finv_raw, raster_l, psmp_fieldName='sample_stat', #field name containing sampling statistic ): """ basically a wrapper around samp_vals_cplx() iterating with selections by sample_stat """ #======================================================================= # defaults #======================================================================= log = self.logger.getChild('samp_passet') gtype=self.gtype #======================================================================= # checks---- #======================================================================= assert ('Polygon' in gtype) or ('Line' in gtype) #======================================================================= # #data checks on sampling field name #======================================================================= assert psmp_fieldName in [f.name() for f in finv_raw.fields()], \ 'missing psmp_fieldName \'%s\' on finv_raw'%psmp_fieldName pser = vlay_get_fdata(finv_raw, fieldn=psmp_fieldName, logger=log, fmt='ser') assert not pser.isna().any(), 'got %i nulls in sampling field \'%s\''%( pser.isna().sum(), psmp_fieldName) smp_stats_l = list(pser.unique()) #set of statistics we'll sample on miss_l = set(smp_stats_l).difference(self.psmp_codes.keys()) assert len(miss_l)==0, 'got %i unrecognized sampling statistc keys on \'%s\': \n %s'%( len(miss_l), psmp_fieldName, miss_l) #======================================================================= # helpers #======================================================================= def get_meta(vlay, #build meta entry ): return {'sfcnt':vlay.selectedFeatureCount(), 'fcnt':vlay.dataProvider().featureCount(), 'name':vlay.name(), 'fn_l':[f.name() for f in vlay.fields()]} #======================================================================= # sample loop----- #======================================================================= self.names_d = dict() log.info('sampling %i raster layers w/ \'%s\' and %i stats: %s'%( len(raster_l), gtype, len(smp_stats_l), smp_stats_l)) meta_d = {'raw':get_meta(finv_raw)} #=================================================================== # #loop through each statistic #=================================================================== """ looping through each stat first (rather than rlay) so we can collect features rather than attributes and re-use the other function """ lays_d = dict() #container for results per psmp for psmp_stat in smp_stats_l: log = self.logger.getChild('samp_passet.%s'%psmp_stat) finv_raw.removeSelection() #=================================================================== # #select those matching this stat #=================================================================== processing.run('qgis:selectbyattribute', {'FIELD' : psmp_fieldName, 'INPUT' : finv_raw, 'METHOD' : 0, #select new 'OPERATOR' : 0, #equals 'VALUE' : psmp_stat},feedback=self.feedback) assert finv_raw.selectedFeatureCount() >0, 'failed to get any \'%s\''%psmp_stat log.debug('with \'%s\' got %i/%i'%( psmp_stat, finv_raw.selectedFeatureCount(), finv_raw.dataProvider().featureCount())) #=================================================================== # #sample these #=================================================================== finv_stat = self.samp_vals_cplx(finv_raw, raster_l, psmp_stat=psmp_stat, selected=True, logger=log) assert finv_raw.selectedFeatureCount() == finv_stat.dataProvider().featureCount() finv_stat.setName('finv_%s_%i'%(psmp_stat, finv_stat.dataProvider().featureCount())) #=================================================================== # wrap #=================================================================== lays_d[psmp_stat] = finv_stat meta_d[psmp_stat] = get_meta(finv_stat) log.debug(meta_d[psmp_stat]) #======================================================================= # merge each section #======================================================================= log = self.logger.getChild('samp_passet') log.debug('merging %i: %s'%(len(lays_d), list(lays_d.keys()))) finv_res = processing.run('native:mergevectorlayers', { 'CRS' : self.qproj.crs(), 'LAYERS' :list(lays_d.values()), 'OUTPUT' : 'TEMPORARY_OUTPUT'},feedback=self.feedback)['OUTPUT'] #drop the meta fields finv_res = processing.run('qgis:deletecolumn', { 'COLUMN' : ['layer', 'path', psmp_fieldName], 'INPUT' : finv_res,'OUTPUT' : 'TEMPORARY_OUTPUT' }, feedback=self.feedback)['OUTPUT'] assert finv_res.dataProvider().featureCount()==finv_raw.dataProvider().featureCount() #check field alignment miss_l = set([f.name() for f in finv_res.fields()]).symmetric_difference( [f.name() for f in finv_stat.fields()]) """only the psmp_fieldName should be missing""" assert len(miss_l)==1,'fieldName mismatch on merge \n %s'%miss_l #======================================================================= # warp #======================================================================= meta_d['result'] = get_meta(finv_res) log.info('finished on %i'%len(meta_d)) self.names_d return finv_res """ view(pd.DataFrame.from_dict(meta_d, orient='index')) view(finv_res) """
def samp_passet(self, #sample complex asset values using per-asset stats finv_raw, raster_l, psmp_fieldName='sample_stat', #field name containing sampling statistic ): """ basically a wrapper around samp_vals_cplx() iterating with selections by sample_stat """ #======================================================================= # defaults #======================================================================= log = self.logger.getChild('samp_passet') gtype=self.gtype #======================================================================= # checks---- #======================================================================= assert ('Polygon' in gtype) or ('Line' in gtype) #======================================================================= # #data checks on sampling field name #======================================================================= assert psmp_fieldName in [f.name() for f in finv_raw.fields()], \ 'missing psmp_fieldName \'%s\' on finv_raw'%psmp_fieldName pser = vlay_get_fdata(finv_raw, fieldn=psmp_fieldName, logger=log, fmt='ser') assert not pser.isna().any(), 'got %i nulls in sampling field \'%s\''%( pser.isna().sum(), psmp_fieldName) smp_stats_l = list(pser.unique()) #set of statistics we'll sample on miss_l = set(smp_stats_l).difference(self.psmp_codes.keys()) assert len(miss_l)==0, 'got %i unrecognized sampling statistc keys on \'%s\': \n %s'%( len(miss_l), psmp_fieldName, miss_l) #======================================================================= # helpers #======================================================================= def get_meta(vlay, #build meta entry ): return {'sfcnt':vlay.selectedFeatureCount(), 'fcnt':vlay.dataProvider().featureCount(), 'name':vlay.name(), 'fn_l':[f.name() for f in vlay.fields()]} #======================================================================= # sample loop----- #======================================================================= self.names_d = dict() log.info('sampling %i raster layers w/ \'%s\' and %i stats: %s'%( len(raster_l), gtype, len(smp_stats_l), smp_stats_l)) meta_d = {'raw':get_meta(finv_raw)} #=================================================================== # #loop through each statistic #=================================================================== """ looping through each stat first (rather than rlay) so we can collect features rather than attributes and re-use the other function """ lays_d = dict() #container for results per psmp for psmp_stat in smp_stats_l: log = self.logger.getChild('samp_passet.%s'%psmp_stat) finv_raw.removeSelection() #=================================================================== # #select those matching this stat #=================================================================== processing.run('qgis:selectbyattribute', {'FIELD' : psmp_fieldName, 'INPUT' : finv_raw, 'METHOD' : 0, #select new 'OPERATOR' : 0, #equals 'VALUE' : psmp_stat},feedback=self.feedback) assert finv_raw.selectedFeatureCount() >0, 'failed to get any \'%s\''%psmp_stat log.debug('with \'%s\' got %i/%i'%( psmp_stat, finv_raw.selectedFeatureCount(), finv_raw.dataProvider().featureCount())) #=================================================================== # #sample these #=================================================================== finv_stat = self.samp_vals_cplx(finv_raw, raster_l, psmp_stat=psmp_stat, selected=True, logger=log) assert finv_raw.selectedFeatureCount() == finv_stat.dataProvider().featureCount() finv_stat.setName('finv_%s_%i'%(psmp_stat, finv_stat.dataProvider().featureCount())) #=================================================================== # wrap #=================================================================== lays_d[psmp_stat] = finv_stat meta_d[psmp_stat] = get_meta(finv_stat) log.debug(meta_d[psmp_stat]) #======================================================================= # merge each section #======================================================================= log = self.logger.getChild('samp_passet') log.debug('merging %i: %s'%(len(lays_d), list(lays_d.keys()))) finv_res = processing.run('native:mergevectorlayers', { 'CRS' : self.qproj.crs(), 'LAYERS' :list(lays_d.values()), 'OUTPUT' : 'TEMPORARY_OUTPUT'},feedback=self.feedback)['OUTPUT'] #drop the meta fields finv_res = processing.run('qgis:deletecolumn', { 'COLUMN' : ['layer', 'path', psmp_fieldName], 'INPUT' : finv_res,'OUTPUT' : 'TEMPORARY_OUTPUT' }, feedback=self.feedback)['OUTPUT'] assert finv_res.dataProvider().featureCount()==finv_raw.dataProvider().featureCount() #check field alignment miss_l = set([f.name() for f in finv_res.fields()]).symmetric_difference( [f.name() for f in finv_stat.fields()]) """only the psmp_fieldName should be missing""" assert len(miss_l)==1,'fieldName mismatch on merge \n %s'%miss_l #======================================================================= # warp #======================================================================= meta_d['result'] = get_meta(finv_res) log.info('finished on %i'%len(meta_d)) self.names_d return finv_res """ view(pd.DataFrame.from_dict(meta_d, orient='index')) view(finv_res) """
Python
def samp_inun_line(self, #inundation percent for Line finv, raster_l, dtm_rlay, dthresh, ): """" couldn't find a great pre-made algo option 1: SAGA profile from lines (does not retain line attributes) join attributes by nearest (to retrieve XID) option 2: Generate points (pixel centroids) along line (does not retain line attributes) generates points on null pixel values sample points join by nearest option 3: add geometry attributes Points along geometry (retains attribute) sample raster count those above threshold divide by total for each line get % above threshold for each line get km inundated for each line """ #======================================================================= # defaults #======================================================================= log = self.logger.getChild('samp_inun_line') gtype=self.gtype #setup temp dir import tempfile #todo: move this up top temp_dir = tempfile.mkdtemp() #======================================================================= # precheck #======================================================================= dp = finv.dataProvider() assert isinstance(dtm_rlay, QgsRasterLayer) assert isinstance(dthresh, float), 'expected float for dthresh. got %s'%type(dthresh) assert 'Memory' in dp.storageType() #zonal stats makes direct edits assert 'Line' in gtype #======================================================================= # sample loop--------- #======================================================================= """ too memory intensive to handle writing of all these. an advanced user could retrive from the working folder if desiered """ names_d = dict() for indxr, rlay in enumerate(raster_l): log = self.logger.getChild('samp_inunL.%s'%rlay.name()) ofnl = [field.name() for field in finv.fields()] #=================================================================== # #get depth raster #=================================================================== dep_rlay = self._get_depr(dtm_rlay, log, temp_dir, rlay) #=============================================================== # #convert to points #=============================================================== params_d = { 'DISTANCE' : dep_rlay.rasterUnitsPerPixelX(), 'END_OFFSET' : 0, 'INPUT' : finv, 'OUTPUT' : 'TEMPORARY_OUTPUT', 'START_OFFSET' : 0 } res_d = processing.run('native:pointsalonglines', params_d, feedback=self.feedback) fpts_vlay = res_d['OUTPUT'] #=============================================================== # #sample the raster #=============================================================== ofnl2 = [field.name() for field in fpts_vlay.fields()] params_d = { 'COLUMN_PREFIX' : rlay.name(), 'INPUT' : fpts_vlay, 'OUTPUT' : 'TEMPORARY_OUTPUT', 'RASTERCOPY' : dep_rlay} res_d = processing.run('qgis:rastersampling', params_d, feedback=self.feedback) fpts_vlay = res_d['OUTPUT'] #get new field name new_fn = set([field.name() for field in fpts_vlay.fields()]).difference(ofnl2) #new field names not in the old assert len(new_fn)==1 new_fn = list(new_fn)[0] #=================================================================== # clean/pull data #=================================================================== #drop all the other fields fpts_vlay = self.deletecolumn(fpts_vlay,[new_fn, self.cid], invert=True, logger=log ) #pull data """ the builtin statistics algo doesn't do a good job handling nulls """ pts_df = vlay_get_fdf(fpts_vlay, logger=log) #=================================================================== # calc stats #=================================================================== #set those below threshold to null boolidx = pts_df[new_fn]<=dthresh pts_df.loc[boolidx, new_fn] = np.nan log.debug('set %i (of %i) \'%s\' vals <= %.2f to null'%( boolidx.sum(), len(boolidx), new_fn, dthresh)) """ view(pts_df) (pts_df[self.cid]==4).sum() """ #get count of REAL values in each xid group pts_df['all']=1 #add dummy column for the demoninator sdf = pts_df.groupby(self.cid).count().reset_index(drop=False).rename( columns={new_fn:'real'}) #get ratio (non-NAN count / all count) new_fn = rlay.name() sdf[new_fn] = sdf['real'].divide(sdf['all']).round(self.prec) assert sdf[new_fn].max() <=1 #=================================================================== # link in result #=================================================================== #convert df back to a mlay pstat_vlay = self.vlay_new_df2(sdf.drop(['all', 'real'], axis=1), layname='%s_stats'%(finv.name()), logger=log) #join w/ algo params_d = { 'DISCARD_NONMATCHING' : False, 'FIELD' : self.cid, 'FIELDS_TO_COPY' : [new_fn], 'FIELD_2' : self.cid, 'INPUT' : finv, 'INPUT_2' : pstat_vlay, 'METHOD' : 1, #Take attributes of the first matching feature only (one-to-one) 'OUTPUT' : 'TEMPORARY_OUTPUT', 'PREFIX' : ''} res_d = processing.run('native:joinattributestable', params_d, feedback=self.feedback) finv = res_d['OUTPUT'] #=================================================================== # check/correct field names #=================================================================== """ algos don't assign good field names. collecting a conversion dictionary then adjusting below """ #get/updarte the field names nfnl = [field.name() for field in finv.fields()] new_fn = set(nfnl).difference(ofnl) #new field names not in the old if len(new_fn) > 1: raise Error('unexpected algo behavior... bad new field count: %s'%new_fn) elif len(new_fn) == 1: names_d[list(new_fn)[0]] = rlay.name() log.debug('updated names_d w/ %s'%rlay.name()) else: raise Error('bad fn match') #======================================================================= # wrap------------- #======================================================================= self.names_d = dict() #names should be fine log.debug('finished') """ view(finv) """ return finv
def samp_inun_line(self, #inundation percent for Line finv, raster_l, dtm_rlay, dthresh, ): """" couldn't find a great pre-made algo option 1: SAGA profile from lines (does not retain line attributes) join attributes by nearest (to retrieve XID) option 2: Generate points (pixel centroids) along line (does not retain line attributes) generates points on null pixel values sample points join by nearest option 3: add geometry attributes Points along geometry (retains attribute) sample raster count those above threshold divide by total for each line get % above threshold for each line get km inundated for each line """ #======================================================================= # defaults #======================================================================= log = self.logger.getChild('samp_inun_line') gtype=self.gtype #setup temp dir import tempfile #todo: move this up top temp_dir = tempfile.mkdtemp() #======================================================================= # precheck #======================================================================= dp = finv.dataProvider() assert isinstance(dtm_rlay, QgsRasterLayer) assert isinstance(dthresh, float), 'expected float for dthresh. got %s'%type(dthresh) assert 'Memory' in dp.storageType() #zonal stats makes direct edits assert 'Line' in gtype #======================================================================= # sample loop--------- #======================================================================= """ too memory intensive to handle writing of all these. an advanced user could retrive from the working folder if desiered """ names_d = dict() for indxr, rlay in enumerate(raster_l): log = self.logger.getChild('samp_inunL.%s'%rlay.name()) ofnl = [field.name() for field in finv.fields()] #=================================================================== # #get depth raster #=================================================================== dep_rlay = self._get_depr(dtm_rlay, log, temp_dir, rlay) #=============================================================== # #convert to points #=============================================================== params_d = { 'DISTANCE' : dep_rlay.rasterUnitsPerPixelX(), 'END_OFFSET' : 0, 'INPUT' : finv, 'OUTPUT' : 'TEMPORARY_OUTPUT', 'START_OFFSET' : 0 } res_d = processing.run('native:pointsalonglines', params_d, feedback=self.feedback) fpts_vlay = res_d['OUTPUT'] #=============================================================== # #sample the raster #=============================================================== ofnl2 = [field.name() for field in fpts_vlay.fields()] params_d = { 'COLUMN_PREFIX' : rlay.name(), 'INPUT' : fpts_vlay, 'OUTPUT' : 'TEMPORARY_OUTPUT', 'RASTERCOPY' : dep_rlay} res_d = processing.run('qgis:rastersampling', params_d, feedback=self.feedback) fpts_vlay = res_d['OUTPUT'] #get new field name new_fn = set([field.name() for field in fpts_vlay.fields()]).difference(ofnl2) #new field names not in the old assert len(new_fn)==1 new_fn = list(new_fn)[0] #=================================================================== # clean/pull data #=================================================================== #drop all the other fields fpts_vlay = self.deletecolumn(fpts_vlay,[new_fn, self.cid], invert=True, logger=log ) #pull data """ the builtin statistics algo doesn't do a good job handling nulls """ pts_df = vlay_get_fdf(fpts_vlay, logger=log) #=================================================================== # calc stats #=================================================================== #set those below threshold to null boolidx = pts_df[new_fn]<=dthresh pts_df.loc[boolidx, new_fn] = np.nan log.debug('set %i (of %i) \'%s\' vals <= %.2f to null'%( boolidx.sum(), len(boolidx), new_fn, dthresh)) """ view(pts_df) (pts_df[self.cid]==4).sum() """ #get count of REAL values in each xid group pts_df['all']=1 #add dummy column for the demoninator sdf = pts_df.groupby(self.cid).count().reset_index(drop=False).rename( columns={new_fn:'real'}) #get ratio (non-NAN count / all count) new_fn = rlay.name() sdf[new_fn] = sdf['real'].divide(sdf['all']).round(self.prec) assert sdf[new_fn].max() <=1 #=================================================================== # link in result #=================================================================== #convert df back to a mlay pstat_vlay = self.vlay_new_df2(sdf.drop(['all', 'real'], axis=1), layname='%s_stats'%(finv.name()), logger=log) #join w/ algo params_d = { 'DISCARD_NONMATCHING' : False, 'FIELD' : self.cid, 'FIELDS_TO_COPY' : [new_fn], 'FIELD_2' : self.cid, 'INPUT' : finv, 'INPUT_2' : pstat_vlay, 'METHOD' : 1, #Take attributes of the first matching feature only (one-to-one) 'OUTPUT' : 'TEMPORARY_OUTPUT', 'PREFIX' : ''} res_d = processing.run('native:joinattributestable', params_d, feedback=self.feedback) finv = res_d['OUTPUT'] #=================================================================== # check/correct field names #=================================================================== """ algos don't assign good field names. collecting a conversion dictionary then adjusting below """ #get/updarte the field names nfnl = [field.name() for field in finv.fields()] new_fn = set(nfnl).difference(ofnl) #new field names not in the old if len(new_fn) > 1: raise Error('unexpected algo behavior... bad new field count: %s'%new_fn) elif len(new_fn) == 1: names_d[list(new_fn)[0]] = rlay.name() log.debug('updated names_d w/ %s'%rlay.name()) else: raise Error('bad fn match') #======================================================================= # wrap------------- #======================================================================= self.names_d = dict() #names should be fine log.debug('finished') """ view(finv) """ return finv
Python
def line_sample_stats(self, #get raster stats using a line input_obj, #line vectorylayer with geometry to sample from rlay, #raster to sample sample_stats, #list of stats to sample indxr=0, #used as a prefix for new string logger=None, ): """ sampliung a raster layer with a line and a statistic TODO: check if using the following is faster: Densify by Interval Drape Extract Z """ if logger is None: logger=self.logger log=logger.getChild('line_sample_stats') log.debug('on %s'%(input_obj)) #drop everythin gto lower case sample_stats = [e.lower() for e in sample_stats] #=============================================================== # #convert to points #=============================================================== params_d = { 'DISTANCE' : rlay.rasterUnitsPerPixelX(), 'END_OFFSET' : 0, 'INPUT' : input_obj, 'OUTPUT' : 'TEMPORARY_OUTPUT', 'START_OFFSET' : 0 } res_d = processing.run('native:pointsalonglines', params_d, feedback=self.feedback) fpts_vlay = res_d['OUTPUT'] #=============================================================== # #sample the raster #=============================================================== ofnl2 = [field.name() for field in fpts_vlay.fields()] params_d = { 'COLUMN_PREFIX' : rlay.name(), 'INPUT' : fpts_vlay, 'OUTPUT' : 'TEMPORARY_OUTPUT', 'RASTERCOPY' : rlay} res_d = processing.run('qgis:rastersampling', params_d, feedback=self.feedback) fpts_vlay = res_d['OUTPUT'] """ view(fpts_vlay) """ #get new field name new_fn = set([field.name() for field in fpts_vlay.fields()] ).difference(ofnl2) #new field names not in the old assert len(new_fn)==1 new_fn = list(new_fn)[0] #=============================================================== # get stats #=============================================================== """note this does not return xid values where everything sampled as null""" params_d = { 'CATEGORIES_FIELD_NAME' : [self.cid], 'INPUT' : fpts_vlay, 'OUTPUT' : 'TEMPORARY_OUTPUT', 'VALUES_FIELD_NAME' :new_fn} res_d = processing.run('qgis:statisticsbycategories', params_d, feedback=self.feedback) stat_tbl = res_d['OUTPUT'] #=============================================================== # join stats back to line_vlay #=============================================================== #check that the sample stat is in there s = set(sample_stats).difference([field.name() for field in stat_tbl.fields()]) assert len(s)==0, 'requested sample statistics \"%s\' failed to generate'%s #run algo params_d = { 'DISCARD_NONMATCHING' : False, 'FIELD' : self.cid, 'FIELDS_TO_COPY' : sample_stats, 'FIELD_2' : self.cid, 'INPUT' : input_obj, 'INPUT_2' : stat_tbl, 'METHOD' : 1, #Take attributes of the first matching feature only (one-to-one) 'OUTPUT' : 'TEMPORARY_OUTPUT', 'PREFIX' : '%i_'%indxr, #prefix string for new field } res_d = processing.run('native:joinattributestable', params_d, feedback=self.feedback) line_vlay = res_d['OUTPUT'] """ view(line_vlay) """ log.debug('finished on %s w/ %i'%(line_vlay.name(), len(line_vlay))) return line_vlay
def line_sample_stats(self, #get raster stats using a line input_obj, #line vectorylayer with geometry to sample from rlay, #raster to sample sample_stats, #list of stats to sample indxr=0, #used as a prefix for new string logger=None, ): """ sampliung a raster layer with a line and a statistic TODO: check if using the following is faster: Densify by Interval Drape Extract Z """ if logger is None: logger=self.logger log=logger.getChild('line_sample_stats') log.debug('on %s'%(input_obj)) #drop everythin gto lower case sample_stats = [e.lower() for e in sample_stats] #=============================================================== # #convert to points #=============================================================== params_d = { 'DISTANCE' : rlay.rasterUnitsPerPixelX(), 'END_OFFSET' : 0, 'INPUT' : input_obj, 'OUTPUT' : 'TEMPORARY_OUTPUT', 'START_OFFSET' : 0 } res_d = processing.run('native:pointsalonglines', params_d, feedback=self.feedback) fpts_vlay = res_d['OUTPUT'] #=============================================================== # #sample the raster #=============================================================== ofnl2 = [field.name() for field in fpts_vlay.fields()] params_d = { 'COLUMN_PREFIX' : rlay.name(), 'INPUT' : fpts_vlay, 'OUTPUT' : 'TEMPORARY_OUTPUT', 'RASTERCOPY' : rlay} res_d = processing.run('qgis:rastersampling', params_d, feedback=self.feedback) fpts_vlay = res_d['OUTPUT'] """ view(fpts_vlay) """ #get new field name new_fn = set([field.name() for field in fpts_vlay.fields()] ).difference(ofnl2) #new field names not in the old assert len(new_fn)==1 new_fn = list(new_fn)[0] #=============================================================== # get stats #=============================================================== """note this does not return xid values where everything sampled as null""" params_d = { 'CATEGORIES_FIELD_NAME' : [self.cid], 'INPUT' : fpts_vlay, 'OUTPUT' : 'TEMPORARY_OUTPUT', 'VALUES_FIELD_NAME' :new_fn} res_d = processing.run('qgis:statisticsbycategories', params_d, feedback=self.feedback) stat_tbl = res_d['OUTPUT'] #=============================================================== # join stats back to line_vlay #=============================================================== #check that the sample stat is in there s = set(sample_stats).difference([field.name() for field in stat_tbl.fields()]) assert len(s)==0, 'requested sample statistics \"%s\' failed to generate'%s #run algo params_d = { 'DISCARD_NONMATCHING' : False, 'FIELD' : self.cid, 'FIELDS_TO_COPY' : sample_stats, 'FIELD_2' : self.cid, 'INPUT' : input_obj, 'INPUT_2' : stat_tbl, 'METHOD' : 1, #Take attributes of the first matching feature only (one-to-one) 'OUTPUT' : 'TEMPORARY_OUTPUT', 'PREFIX' : '%i_'%indxr, #prefix string for new field } res_d = processing.run('native:joinattributestable', params_d, feedback=self.feedback) line_vlay = res_d['OUTPUT'] """ view(line_vlay) """ log.debug('finished on %s w/ %i'%(line_vlay.name(), len(line_vlay))) return line_vlay
Python
def update_cf(self, cf_fp): #configured control file updater """make sure you write the file first""" return self.set_cf_pars( { 'dmg_fps':( {'expos':self.out_fp}, '#\'expos\' file path set from rsamp.py at %s'%(datetime.datetime.now().strftime('%Y-%m-%d %H.%M.%S')), ), 'parameters':( {'as_inun':str(self.as_inun)}, ) }, cf_fp = cf_fp )
def update_cf(self, cf_fp): #configured control file updater """make sure you write the file first""" return self.set_cf_pars( { 'dmg_fps':( {'expos':self.out_fp}, '#\'expos\' file path set from rsamp.py at %s'%(datetime.datetime.now().strftime('%Y-%m-%d %H.%M.%S')), ), 'parameters':( {'as_inun':str(self.as_inun)}, ) }, cf_fp = cf_fp )
Python
def calc_ead(self, #get EAD from a set of impacts per event df_raw, #xid: aep ltail = None, rtail = None, drop_tails = None, #whether to remove the dummy tail values from results dx = None, #damage step for integration (default:None) logger = None ): """ #====================================================================== # inputs #====================================================================== ltail: left tail treatment code (low prob high damage) flat: extend the max damage to the zero probability event extrapolate: extend the fucntion to the zero aep value (interp1d) float: extend the function to this damage value (must be greater than max) none: don't extend the tail (not recommended) rtail: right trail treatment (high prob low damage) extrapolate: extend the function to the zero damage value float: extend the function to this aep none: don't extend (not recommended) """ #====================================================================== # setups and defaults #====================================================================== if logger is None: logger = self.logger log = logger.getChild('calc_ead') if ltail is None: ltail = self.ltail if rtail is None: rtail = self.rtail if drop_tails is None: drop_tails=self.drop_tails assert isinstance(drop_tails, bool) #format tail values assert not ltail is None assert not rtail is None if not ltail in ['flat', 'extrapolate', 'none']: try: ltail = float(ltail) except Exception as e: raise Error('failed to convert \'ltail\'=\'%s\' to numeric \n %s'%(ltail, e)) if rtail == 'flat': raise Error('rtail=flat. not implemented') if not rtail in ['extrapolate', 'none']: rtail = float(rtail) log.info('getting ead on %s w/ ltail=\'%s\' and rtail=\'%s\''%( str(df_raw.shape), ltail, rtail)) #======================================================================= # data prep----- #======================================================================= """ view(df_raw) """ df = df_raw.copy().sort_index(axis=1, ascending=False) #======================================================================= # no value---- #======================================================================= """ this can happen for small inventories w/ no failure probs """ #identify columns to calc ead for bx = (df > 0).any(axis=1) #only want those with some real damages if not bx.any(): log.warning('%s got no positive damages %s'%(self.tag, str(df.shape))) #apply dummy tails as 'flat' if not ltail is None: df.loc[:,0] = df.iloc[:,0] if not rtail is None: aep_val = max(df.columns.tolist())*(1+10**-(self.prec+2)) df[aep_val] = 0 #re-arrange columns so x is ascending df = df.sort_index(ascending=False, axis=1) #apply dummy ead df['ead'] = 0 #======================================================================= # some values--------- #======================================================================= else: #======================================================================= # get tail values----- #======================================================================= self.check_eDmg(df, dropna=True, logger=log) #====================================================================== # left tail #====================================================================== #flat projection if ltail == 'flat': """ view(df) """ df.loc[:,0] = df.iloc[:,-1] if len(df)==1: self.extrap_vals_d[0] = df.loc[:,0].mean().round(self.prec) #store for later elif ltail == 'extrapolate': #DEFAULT df.loc[bx,0] = df.loc[bx, :].apply(self._extrap_rCurve, axis=1, left=True) #extrap vqalue will be different for each entry if len(df)==1: self.extrap_vals_d[0] = df.loc[:,0].mean().round(self.prec) #store for later elif isinstance(ltail, float): """this cant be a good idea....""" df.loc[bx,0] = ltail self.extrap_vals_d[0] = ltail #store for later elif ltail == 'none': pass else: raise Error('unexected ltail key'%ltail) #====================================================================== # right tail #====================================================================== if rtail == 'extrapolate': """just using the average for now... could extraploate for each asset but need an alternate method""" aep_ser = df.loc[bx, :].apply( self._extrap_rCurve, axis=1, left=False) aep_val = round(aep_ser.mean(), 5) assert aep_val > df.columns.max() df.loc[bx, aep_val] = 0 log.info('using right intersection of aep= %.2e from average extraploation'%( aep_val)) self.extrap_vals_d[aep_val] = 0 #store for later elif isinstance(rtail, float): #DEFAULT aep_val = round(rtail, 5) assert aep_val > df.columns.max(), 'passed rtail value (%.2f) not > max aep (%.2f)'%( aep_val, df.columns.max()) df.loc[bx, aep_val] = 0 log.debug('setting ZeroDamage event from user passed \'rtail\' aep=%.7f'%( aep_val)) self.extrap_vals_d[aep_val] = 0 #store for later elif rtail == 'flat': #set the zero damage year as the lowest year in the model (with a small buffer) aep_val = max(df.columns.tolist())*(1+10**-(self.prec+2)) df.loc[bx, aep_val] = 0 log.info('rtail=\'flat\' setting ZeroDamage event as aep=%.7f'%aep_val) elif rtail == 'none': log.warning('no rtail extrapolation specified! leads to invalid integration bounds!') else: raise Error('unexpected rtail %s'%rtail) #re-arrange columns so x is ascending df = df.sort_index(ascending=False, axis=1) #====================================================================== # check again #====================================================================== self.check_eDmg(df, dropna=True, logger=log) #====================================================================== # calc EAD----------- #====================================================================== #get reasonable dx (integration step along damage axis) """todo: allow the user to set t his""" if dx is None: dx = df.max().max()/100 assert isinstance(dx, float) #apply the ead func df.loc[bx, 'ead'] = df.loc[bx, :].apply( self._get_ev, axis=1, dx=dx) df.loc[:, 'ead'] = df['ead'].fillna(0) #fill remander w/ zeros #====================================================================== # check it #====================================================================== boolidx = df['ead'] < 0 if boolidx.any(): log.warning('got %i (of %i) negative eads'%( boolidx.sum(), len(boolidx))) """ df.columns.dtype """ #====================================================================== # clean results #====================================================================== if drop_tails: #just add the results values onto the raw res_df = df_raw.sort_index(axis=1, ascending=False).join(df['ead']).round(self.prec) else: #take everything res_df = df.round(self.prec) #final check """nasty conversion because we use aep as a column name...""" cdf = res_df.drop('ead', axis=1) cdf.columns = cdf.columns.astype(float) self.check_eDmg(cdf, dropna=True, logger=log) return res_df
def calc_ead(self, #get EAD from a set of impacts per event df_raw, #xid: aep ltail = None, rtail = None, drop_tails = None, #whether to remove the dummy tail values from results dx = None, #damage step for integration (default:None) logger = None ): """ #====================================================================== # inputs #====================================================================== ltail: left tail treatment code (low prob high damage) flat: extend the max damage to the zero probability event extrapolate: extend the fucntion to the zero aep value (interp1d) float: extend the function to this damage value (must be greater than max) none: don't extend the tail (not recommended) rtail: right trail treatment (high prob low damage) extrapolate: extend the function to the zero damage value float: extend the function to this aep none: don't extend (not recommended) """ #====================================================================== # setups and defaults #====================================================================== if logger is None: logger = self.logger log = logger.getChild('calc_ead') if ltail is None: ltail = self.ltail if rtail is None: rtail = self.rtail if drop_tails is None: drop_tails=self.drop_tails assert isinstance(drop_tails, bool) #format tail values assert not ltail is None assert not rtail is None if not ltail in ['flat', 'extrapolate', 'none']: try: ltail = float(ltail) except Exception as e: raise Error('failed to convert \'ltail\'=\'%s\' to numeric \n %s'%(ltail, e)) if rtail == 'flat': raise Error('rtail=flat. not implemented') if not rtail in ['extrapolate', 'none']: rtail = float(rtail) log.info('getting ead on %s w/ ltail=\'%s\' and rtail=\'%s\''%( str(df_raw.shape), ltail, rtail)) #======================================================================= # data prep----- #======================================================================= """ view(df_raw) """ df = df_raw.copy().sort_index(axis=1, ascending=False) #======================================================================= # no value---- #======================================================================= """ this can happen for small inventories w/ no failure probs """ #identify columns to calc ead for bx = (df > 0).any(axis=1) #only want those with some real damages if not bx.any(): log.warning('%s got no positive damages %s'%(self.tag, str(df.shape))) #apply dummy tails as 'flat' if not ltail is None: df.loc[:,0] = df.iloc[:,0] if not rtail is None: aep_val = max(df.columns.tolist())*(1+10**-(self.prec+2)) df[aep_val] = 0 #re-arrange columns so x is ascending df = df.sort_index(ascending=False, axis=1) #apply dummy ead df['ead'] = 0 #======================================================================= # some values--------- #======================================================================= else: #======================================================================= # get tail values----- #======================================================================= self.check_eDmg(df, dropna=True, logger=log) #====================================================================== # left tail #====================================================================== #flat projection if ltail == 'flat': """ view(df) """ df.loc[:,0] = df.iloc[:,-1] if len(df)==1: self.extrap_vals_d[0] = df.loc[:,0].mean().round(self.prec) #store for later elif ltail == 'extrapolate': #DEFAULT df.loc[bx,0] = df.loc[bx, :].apply(self._extrap_rCurve, axis=1, left=True) #extrap vqalue will be different for each entry if len(df)==1: self.extrap_vals_d[0] = df.loc[:,0].mean().round(self.prec) #store for later elif isinstance(ltail, float): """this cant be a good idea....""" df.loc[bx,0] = ltail self.extrap_vals_d[0] = ltail #store for later elif ltail == 'none': pass else: raise Error('unexected ltail key'%ltail) #====================================================================== # right tail #====================================================================== if rtail == 'extrapolate': """just using the average for now... could extraploate for each asset but need an alternate method""" aep_ser = df.loc[bx, :].apply( self._extrap_rCurve, axis=1, left=False) aep_val = round(aep_ser.mean(), 5) assert aep_val > df.columns.max() df.loc[bx, aep_val] = 0 log.info('using right intersection of aep= %.2e from average extraploation'%( aep_val)) self.extrap_vals_d[aep_val] = 0 #store for later elif isinstance(rtail, float): #DEFAULT aep_val = round(rtail, 5) assert aep_val > df.columns.max(), 'passed rtail value (%.2f) not > max aep (%.2f)'%( aep_val, df.columns.max()) df.loc[bx, aep_val] = 0 log.debug('setting ZeroDamage event from user passed \'rtail\' aep=%.7f'%( aep_val)) self.extrap_vals_d[aep_val] = 0 #store for later elif rtail == 'flat': #set the zero damage year as the lowest year in the model (with a small buffer) aep_val = max(df.columns.tolist())*(1+10**-(self.prec+2)) df.loc[bx, aep_val] = 0 log.info('rtail=\'flat\' setting ZeroDamage event as aep=%.7f'%aep_val) elif rtail == 'none': log.warning('no rtail extrapolation specified! leads to invalid integration bounds!') else: raise Error('unexpected rtail %s'%rtail) #re-arrange columns so x is ascending df = df.sort_index(ascending=False, axis=1) #====================================================================== # check again #====================================================================== self.check_eDmg(df, dropna=True, logger=log) #====================================================================== # calc EAD----------- #====================================================================== #get reasonable dx (integration step along damage axis) """todo: allow the user to set t his""" if dx is None: dx = df.max().max()/100 assert isinstance(dx, float) #apply the ead func df.loc[bx, 'ead'] = df.loc[bx, :].apply( self._get_ev, axis=1, dx=dx) df.loc[:, 'ead'] = df['ead'].fillna(0) #fill remander w/ zeros #====================================================================== # check it #====================================================================== boolidx = df['ead'] < 0 if boolidx.any(): log.warning('got %i (of %i) negative eads'%( boolidx.sum(), len(boolidx))) """ df.columns.dtype """ #====================================================================== # clean results #====================================================================== if drop_tails: #just add the results values onto the raw res_df = df_raw.sort_index(axis=1, ascending=False).join(df['ead']).round(self.prec) else: #take everything res_df = df.round(self.prec) #final check """nasty conversion because we use aep as a column name...""" cdf = res_df.drop('ead', axis=1) cdf.columns = cdf.columns.astype(float) self.check_eDmg(cdf, dropna=True, logger=log) return res_df
Python
def _get_indeEV(self, inde_df #prob, consq, mutual exclusivity flag for each exposure event ): """ get the expected value at an asset with n>1 indepednet failure events (w/ probabilities) and 1 noFail event """ #======================================================================= # prechecks #======================================================================= #check the columns miss_l = set(['prob', 'consq', 'mutEx']).symmetric_difference(inde_df.columns) assert len(miss_l)==0 #======================================================================= # failures--------- #======================================================================= bxf = ~inde_df['mutEx'] #======================================================================= # assemble complete scenario matrix #======================================================================= n = len(inde_df[bxf]) #build it if not n in self.scen_ar_d: scenFail_ar = np.array([i for i in itertools.product(['yes','no'], repeat=n)]) self.scen_ar_d[n] = copy.copy(scenFail_ar) #retrieve pre-built else: scenFail_ar = copy.copy(self.scen_ar_d[n]) #======================================================================= # probs #======================================================================= sFailP_df = pd.DataFrame(scenFail_ar, columns=inde_df[bxf].index) #expand probabilities to mathc size prob_ar = np.tile(inde_df.loc[bxf, 'prob'].to_frame().T.values, (len(sFailP_df), 1)) #swap in positives sFailP_df = sFailP_df.where( np.invert(sFailP_df=='yes'), prob_ar, inplace=False) #swap in negatives sFailP_df = sFailP_df.where( np.invert(sFailP_df=='no'), 1-prob_ar, inplace=False).astype(float) #combine sFailP_df['pTotal'] = sFailP_df.prod(axis=1) assert round(sFailP_df['pTotal'].sum(), self.prec)==1, inde_df #======================================================================= # consequences #======================================================================= sFailC_df = pd.DataFrame(scenFail_ar, columns=inde_df[bxf].index).replace( {'yes':1.0, 'no':0.0}).astype(float) #add in consequences sFailC_df = sFailC_df.multiply(inde_df.loc[bxf, 'consq']) #get maximums sFailC_df['cTotal'] = sFailC_df.max(axis=1) #======================================================================= # expected values #======================================================================= evFail_ser = sFailP_df['pTotal']*sFailC_df['cTotal'] #======================================================================= # total------- #======================================================================= noFail_ar = inde_df.loc[~bxf, ['prob', 'consq']].iloc[0, :].values return evFail_ser.sum() + noFail_ar[0]*noFail_ar[1]
def _get_indeEV(self, inde_df #prob, consq, mutual exclusivity flag for each exposure event ): """ get the expected value at an asset with n>1 indepednet failure events (w/ probabilities) and 1 noFail event """ #======================================================================= # prechecks #======================================================================= #check the columns miss_l = set(['prob', 'consq', 'mutEx']).symmetric_difference(inde_df.columns) assert len(miss_l)==0 #======================================================================= # failures--------- #======================================================================= bxf = ~inde_df['mutEx'] #======================================================================= # assemble complete scenario matrix #======================================================================= n = len(inde_df[bxf]) #build it if not n in self.scen_ar_d: scenFail_ar = np.array([i for i in itertools.product(['yes','no'], repeat=n)]) self.scen_ar_d[n] = copy.copy(scenFail_ar) #retrieve pre-built else: scenFail_ar = copy.copy(self.scen_ar_d[n]) #======================================================================= # probs #======================================================================= sFailP_df = pd.DataFrame(scenFail_ar, columns=inde_df[bxf].index) #expand probabilities to mathc size prob_ar = np.tile(inde_df.loc[bxf, 'prob'].to_frame().T.values, (len(sFailP_df), 1)) #swap in positives sFailP_df = sFailP_df.where( np.invert(sFailP_df=='yes'), prob_ar, inplace=False) #swap in negatives sFailP_df = sFailP_df.where( np.invert(sFailP_df=='no'), 1-prob_ar, inplace=False).astype(float) #combine sFailP_df['pTotal'] = sFailP_df.prod(axis=1) assert round(sFailP_df['pTotal'].sum(), self.prec)==1, inde_df #======================================================================= # consequences #======================================================================= sFailC_df = pd.DataFrame(scenFail_ar, columns=inde_df[bxf].index).replace( {'yes':1.0, 'no':0.0}).astype(float) #add in consequences sFailC_df = sFailC_df.multiply(inde_df.loc[bxf, 'consq']) #get maximums sFailC_df['cTotal'] = sFailC_df.max(axis=1) #======================================================================= # expected values #======================================================================= evFail_ser = sFailP_df['pTotal']*sFailC_df['cTotal'] #======================================================================= # total------- #======================================================================= noFail_ar = inde_df.loc[~bxf, ['prob', 'consq']].iloc[0, :].values return evFail_ser.sum() + noFail_ar[0]*noFail_ar[1]
Python
def _get_ev(self, #integration caller ser, #row from damage results dx = 0.1, ): """ should integrate along the damage axis (0 - infinity) """ #print('%i.%s %s'%(self.cnt, ser.name, ser.to_dict())) x = ser.tolist() #impacts y = ser.index.values.round(self.prec+2).tolist() #AEPs """ from matplotlib import pyplot as plt #build plot lines = plt.plot(x, y) #lines = plt.semilogx(x, y) #format ax = plt.gca() ax.grid() ax.set_xlim(1, max(x)) #aep limits ax.set_ylabel('AEP') ax.set_xlabel('impacts') plt.show() self.rtail """ #====================================================================== # ser_inv = ser.sort_index(ascending=False) # # x = ser_inv.tolist() # y = ser_inv.index.tolist() # #====================================================================== if self.integrate == 'trapz': ead_tot = integrate.trapz( y, #yaxis - aeps x=x, #xaxis = damages dx = dx) elif self.integrate == 'simps': self.logger.warning('integration method not tested') ead_tot = integrate.simps( y, #yaxis - aeps x=x, #xaxis = damages dx = dx) else: raise Error('integration method \'%s\' not recognized'%self.integrate) return round(ead_tot, self.prec)
def _get_ev(self, #integration caller ser, #row from damage results dx = 0.1, ): """ should integrate along the damage axis (0 - infinity) """ #print('%i.%s %s'%(self.cnt, ser.name, ser.to_dict())) x = ser.tolist() #impacts y = ser.index.values.round(self.prec+2).tolist() #AEPs """ from matplotlib import pyplot as plt #build plot lines = plt.plot(x, y) #lines = plt.semilogx(x, y) #format ax = plt.gca() ax.grid() ax.set_xlim(1, max(x)) #aep limits ax.set_ylabel('AEP') ax.set_xlabel('impacts') plt.show() self.rtail """ #====================================================================== # ser_inv = ser.sort_index(ascending=False) # # x = ser_inv.tolist() # y = ser_inv.index.tolist() # #====================================================================== if self.integrate == 'trapz': ead_tot = integrate.trapz( y, #yaxis - aeps x=x, #xaxis = damages dx = dx) elif self.integrate == 'simps': self.logger.warning('integration method not tested') ead_tot = integrate.simps( y, #yaxis - aeps x=x, #xaxis = damages dx = dx) else: raise Error('integration method \'%s\' not recognized'%self.integrate) return round(ead_tot, self.prec)
Python
def plot_riskCurve(self, #risk plot res_ttl=None, #dataframe(columns=['aep','ari','impacts'] y1lab='AEP', #yaxis label and plot type c ontrol #'impacts': impacts vs. ARI (use self.impact_name) #'AEP': AEP vs. impacts impactFmtFunc=None, #tick label format function for impact values #lambda x:'{:,.0f}'.format(x) #thousands comma val_str=None, #text to write on plot. see _get_val_str() figsize=None, logger=None, plotTag=None, ): """ summary risk results plotter see self._lineToAx() for formatting """ #====================================================================== # defaults #====================================================================== if logger is None: logger=self.logger log = logger.getChild('plot_riskCurve') plt, matplotlib = self.plt, self.matplotlib if figsize is None: figsize = self.figsize if y1lab =='impacts': y1lab = self.impact_name if impactFmtFunc is None: impactFmtFunc=self.impactFmtFunc if res_ttl is None: res_ttl = self.data_d['r_ttl'] if plotTag is None: plotTag=self.tag log.debug('on %s'%res_ttl) #======================================================================= # prechecks #======================================================================= assert isinstance(res_ttl, pd.DataFrame) miss_l = set(['aep', 'ari', 'impacts']).difference(res_ttl.columns) assert len(miss_l)==0, miss_l #====================================================================== # labels #====================================================================== val_str = self._get_val_str(val_str, impactFmtFunc) if y1lab == 'AEP': title = '%s %s AEP-Impacts plot for %i events'%(self.name, plotTag, len(res_ttl)) xlab=self.impact_name elif y1lab == self.impact_name: title = '%s %s Impacts-ARI plot for %i events'%(self.name, plotTag, len(res_ttl)) xlab='ARI' else: raise Error('bad y1lab: %s'%y1lab) #======================================================================= # figure setup #======================================================================= """ plt.show() """ plt.close() fig = plt.figure(figsize=figsize, constrained_layout = True) #axis setup ax1 = fig.add_subplot(111) #ax2 = ax1.twinx() # axis label setup fig.suptitle(title) ax1.set_ylabel(y1lab) ax1.set_xlabel(xlab) #======================================================================= # add the line #======================================================================= self._lineToAx(res_ttl, y1lab, ax1, lineLabel=self.name) #set limits if y1lab == 'AEP': ax1.set_xlim(0, max(res_ttl['impacts'])) #aep limits ax1.set_ylim(0, max(res_ttl['aep'])*1.1) xLocScale, yLocScale = 0.3,0.6 elif y1lab == self.impact_name: ax1.set_xlim(max(res_ttl['ari']), 1) #aep limits xLocScale, yLocScale = 0.2,0.1 else: log.warning('unrecognized y1lab: %s'%y1lab) xLocScale, yLocScale = 0.1,0.1 #======================================================================= # post format #======================================================================= self._postFmt(ax1, val_str=val_str, xLocScale=xLocScale, yLocScale=yLocScale) #assign tick formatter functions if y1lab == 'AEP': xfmtFunc = impactFmtFunc yfmtFunc=lambda x:'%.4f'%x elif y1lab==self.impact_name: xfmtFunc = lambda x:'{:,.0f}'.format(x) #thousands separatro yfmtFunc=impactFmtFunc self._tickSet(ax1, xfmtFunc=xfmtFunc, yfmtFunc=yfmtFunc) return fig
def plot_riskCurve(self, #risk plot res_ttl=None, #dataframe(columns=['aep','ari','impacts'] y1lab='AEP', #yaxis label and plot type c ontrol #'impacts': impacts vs. ARI (use self.impact_name) #'AEP': AEP vs. impacts impactFmtFunc=None, #tick label format function for impact values #lambda x:'{:,.0f}'.format(x) #thousands comma val_str=None, #text to write on plot. see _get_val_str() figsize=None, logger=None, plotTag=None, ): """ summary risk results plotter see self._lineToAx() for formatting """ #====================================================================== # defaults #====================================================================== if logger is None: logger=self.logger log = logger.getChild('plot_riskCurve') plt, matplotlib = self.plt, self.matplotlib if figsize is None: figsize = self.figsize if y1lab =='impacts': y1lab = self.impact_name if impactFmtFunc is None: impactFmtFunc=self.impactFmtFunc if res_ttl is None: res_ttl = self.data_d['r_ttl'] if plotTag is None: plotTag=self.tag log.debug('on %s'%res_ttl) #======================================================================= # prechecks #======================================================================= assert isinstance(res_ttl, pd.DataFrame) miss_l = set(['aep', 'ari', 'impacts']).difference(res_ttl.columns) assert len(miss_l)==0, miss_l #====================================================================== # labels #====================================================================== val_str = self._get_val_str(val_str, impactFmtFunc) if y1lab == 'AEP': title = '%s %s AEP-Impacts plot for %i events'%(self.name, plotTag, len(res_ttl)) xlab=self.impact_name elif y1lab == self.impact_name: title = '%s %s Impacts-ARI plot for %i events'%(self.name, plotTag, len(res_ttl)) xlab='ARI' else: raise Error('bad y1lab: %s'%y1lab) #======================================================================= # figure setup #======================================================================= """ plt.show() """ plt.close() fig = plt.figure(figsize=figsize, constrained_layout = True) #axis setup ax1 = fig.add_subplot(111) #ax2 = ax1.twinx() # axis label setup fig.suptitle(title) ax1.set_ylabel(y1lab) ax1.set_xlabel(xlab) #======================================================================= # add the line #======================================================================= self._lineToAx(res_ttl, y1lab, ax1, lineLabel=self.name) #set limits if y1lab == 'AEP': ax1.set_xlim(0, max(res_ttl['impacts'])) #aep limits ax1.set_ylim(0, max(res_ttl['aep'])*1.1) xLocScale, yLocScale = 0.3,0.6 elif y1lab == self.impact_name: ax1.set_xlim(max(res_ttl['ari']), 1) #aep limits xLocScale, yLocScale = 0.2,0.1 else: log.warning('unrecognized y1lab: %s'%y1lab) xLocScale, yLocScale = 0.1,0.1 #======================================================================= # post format #======================================================================= self._postFmt(ax1, val_str=val_str, xLocScale=xLocScale, yLocScale=yLocScale) #assign tick formatter functions if y1lab == 'AEP': xfmtFunc = impactFmtFunc yfmtFunc=lambda x:'%.4f'%x elif y1lab==self.impact_name: xfmtFunc = lambda x:'{:,.0f}'.format(x) #thousands separatro yfmtFunc=impactFmtFunc self._tickSet(ax1, xfmtFunc=xfmtFunc, yfmtFunc=yfmtFunc) return fig