language
stringclasses
6 values
original_string
stringlengths
25
887k
text
stringlengths
25
887k
Python
def calc_K(self, r): r""" Calculate kernel as a function of distance This method implements the kernel function as a function of distance. Given an array of distances, this function evaluates the kernel function of those values, returning an array of the same shape. Note that this is not implemented for the base class, as this must be defined for a specific kernel. :param r: Array holding distances between all points. All values in this array must be non-negative. :type r: array-like :returns: Array holding kernel evaluations, with the same shape as the input ``r`` :rtype: ndarray """ raise NotImplementedError("base Kernel class does not implement a kernel function")
def calc_K(self, r): r""" Calculate kernel as a function of distance This method implements the kernel function as a function of distance. Given an array of distances, this function evaluates the kernel function of those values, returning an array of the same shape. Note that this is not implemented for the base class, as this must be defined for a specific kernel. :param r: Array holding distances between all points. All values in this array must be non-negative. :type r: array-like :returns: Array holding kernel evaluations, with the same shape as the input ``r`` :rtype: ndarray """ raise NotImplementedError("base Kernel class does not implement a kernel function")
Python
def calc_dKdr(self, r): r""" Calculate first derivative of kernel as a function of distance This method implements the first derivative of the kernel function as a function of distance. Given an array of distances, this function evaluates the derivative function of those values, returning an array of the same shape. Note that this is not implemented for the base class, as this must be defined for a specific kernel. :param r: Array holding distances between all points. All values in this array must be non-negative. :type r: array-like :returns: Array holding kernel derivatives, with the same shape as the input ``r`` :rtype: ndarray """ raise NotImplementedError("base Kernel class does not implement a kernel derivative function")
def calc_dKdr(self, r): r""" Calculate first derivative of kernel as a function of distance This method implements the first derivative of the kernel function as a function of distance. Given an array of distances, this function evaluates the derivative function of those values, returning an array of the same shape. Note that this is not implemented for the base class, as this must be defined for a specific kernel. :param r: Array holding distances between all points. All values in this array must be non-negative. :type r: array-like :returns: Array holding kernel derivatives, with the same shape as the input ``r`` :rtype: ndarray """ raise NotImplementedError("base Kernel class does not implement a kernel derivative function")
Python
def calc_d2Kdr2(self, r): r""" Calculate second derivative of kernel as a function of distance This method implements the second derivative of the kernel function as a function of distance. Given an array of distances, this function evaluates the second derivative function of those values, returning an array of the same shape. Note that this is not implemented for the base class, as this must be defined for a specific kernel. :param r: Array holding distances between all points. All values in this array must be non-negative. :type r: array-like :returns: Array holding kernel second derivatives, with the same shape as the input ``r`` :rtype: ndarray """ raise NotImplementedError("base Kernel class does not implement kernel derivatives")
def calc_d2Kdr2(self, r): r""" Calculate second derivative of kernel as a function of distance This method implements the second derivative of the kernel function as a function of distance. Given an array of distances, this function evaluates the second derivative function of those values, returning an array of the same shape. Note that this is not implemented for the base class, as this must be defined for a specific kernel. :param r: Array holding distances between all points. All values in this array must be non-negative. :type r: array-like :returns: Array holding kernel second derivatives, with the same shape as the input ``r`` :rtype: ndarray """ raise NotImplementedError("base Kernel class does not implement kernel derivatives")
Python
def calc_K(self, r): r""" Compute K(r) for the squared exponential kernel This method implements the squared exponential kernel function as a function of distance. Given an array of distances, this function evaluates the kernel function of those values, returning an array of the same shape. :param r: Array holding distances between all points. All values in this array must be non-negative. :type r: array-like :returns: Array holding kernel evaluations, with the same shape as the input ``r`` :rtype: ndarray """ assert np.all(r >= 0.), "kernel distances must be positive" r = np.array(r) return np.exp(-0.5*r**2)
def calc_K(self, r): r""" Compute K(r) for the squared exponential kernel This method implements the squared exponential kernel function as a function of distance. Given an array of distances, this function evaluates the kernel function of those values, returning an array of the same shape. :param r: Array holding distances between all points. All values in this array must be non-negative. :type r: array-like :returns: Array holding kernel evaluations, with the same shape as the input ``r`` :rtype: ndarray """ assert np.all(r >= 0.), "kernel distances must be positive" r = np.array(r) return np.exp(-0.5*r**2)
Python
def calc_dKdr(self, r): r""" Calculate first derivative of the squared exponential kernel as a function of distance This method implements the first derivative of the squared exponential kernel function as a function of distance. Given an array of distances, this function evaluates the derivative function of those values, returning an array of the same shape. :param r: Array holding distances between all points. All values in this array must be non-negative. :type r: array-like :returns: Array holding kernel derivatives, with the same shape as the input ``r`` :rtype: ndarray """ assert np.all(r >= 0.), "kernel distances must be positive" r = np.array(r) return -r*np.exp(-0.5*r**2)
def calc_dKdr(self, r): r""" Calculate first derivative of the squared exponential kernel as a function of distance This method implements the first derivative of the squared exponential kernel function as a function of distance. Given an array of distances, this function evaluates the derivative function of those values, returning an array of the same shape. :param r: Array holding distances between all points. All values in this array must be non-negative. :type r: array-like :returns: Array holding kernel derivatives, with the same shape as the input ``r`` :rtype: ndarray """ assert np.all(r >= 0.), "kernel distances must be positive" r = np.array(r) return -r*np.exp(-0.5*r**2)
Python
def calc_d2Kdr2(self, r): r""" Calculate second derivative of the squared exponential kernel as a function of distance This method implements the second derivative of the squared exponential kernel function as a function of distance. Given an array of distances, this function evaluates the second derivative function of those values, returning an array of the same shape. :param r: Array holding distances between all points. All values in this array must be non-negative. :type r: array-like :returns: Array holding kernel second derivatives, with the same shape as the input ``r`` :rtype: ndarray """ assert np.all(r >= 0.), "kernel distances must be positive" r = np.array(r) return (r**2 - 1.)*np.exp(-0.5*r**2)
def calc_d2Kdr2(self, r): r""" Calculate second derivative of the squared exponential kernel as a function of distance This method implements the second derivative of the squared exponential kernel function as a function of distance. Given an array of distances, this function evaluates the second derivative function of those values, returning an array of the same shape. :param r: Array holding distances between all points. All values in this array must be non-negative. :type r: array-like :returns: Array holding kernel second derivatives, with the same shape as the input ``r`` :rtype: ndarray """ assert np.all(r >= 0.), "kernel distances must be positive" r = np.array(r) return (r**2 - 1.)*np.exp(-0.5*r**2)
Python
def calc_K(self, r): r""" Compute K(r) for the Matern 5/2 kernel This method implements the Matern 5/2 kernel function as a function of distance. Given an array of distances, this function evaluates the kernel function of those values, returning an array of the same shape. :param r: Array holding distances between all points. All values in this array must be non-negative. :type r: array-like :returns: Array holding kernel evaluations, with the same shape as the input ``r`` :rtype: ndarray """ assert np.all(r >= 0.), "kernel distances must be positive" r = np.array(r) return (1.+np.sqrt(5.)*r+5./3.*r**2)*np.exp(-np.sqrt(5.)*r)
def calc_K(self, r): r""" Compute K(r) for the Matern 5/2 kernel This method implements the Matern 5/2 kernel function as a function of distance. Given an array of distances, this function evaluates the kernel function of those values, returning an array of the same shape. :param r: Array holding distances between all points. All values in this array must be non-negative. :type r: array-like :returns: Array holding kernel evaluations, with the same shape as the input ``r`` :rtype: ndarray """ assert np.all(r >= 0.), "kernel distances must be positive" r = np.array(r) return (1.+np.sqrt(5.)*r+5./3.*r**2)*np.exp(-np.sqrt(5.)*r)
Python
def calc_dKdr(self, r): r""" Calculate first derivative of the Matern 5/2 kernel as a function of distance This method implements the first derivative of the Matern 5/2 kernel function as a function of distance. Given an array of distances, this function evaluates the derivative function of those values, returning an array of the same shape. :param r: Array holding distances between all points. All values in this array must be non-negative. :type r: array-like :returns: Array holding kernel derivatives, with the same shape as the input ``r`` :rtype: ndarray """ assert np.all(r >= 0.), "kernel distances must be positive" r = np.array(r) return -5./3.*r*(1.+np.sqrt(5.)*r)*np.exp(-np.sqrt(5.)*r)
def calc_dKdr(self, r): r""" Calculate first derivative of the Matern 5/2 kernel as a function of distance This method implements the first derivative of the Matern 5/2 kernel function as a function of distance. Given an array of distances, this function evaluates the derivative function of those values, returning an array of the same shape. :param r: Array holding distances between all points. All values in this array must be non-negative. :type r: array-like :returns: Array holding kernel derivatives, with the same shape as the input ``r`` :rtype: ndarray """ assert np.all(r >= 0.), "kernel distances must be positive" r = np.array(r) return -5./3.*r*(1.+np.sqrt(5.)*r)*np.exp(-np.sqrt(5.)*r)
Python
def calc_d2Kdr2(self, r): r""" Calculate second derivative of the squared exponential kernel as a function of distance This method implements the second derivative of the squared exponential kernel function as a function of distance. Given an array of distances, this function evaluates the second derivative function of those values, returning an array of the same shape. :param r: Array holding distances between all points. All values in this array must be non-negative. :type r: array-like :returns: Array holding kernel second derivatives, with the same shape as the input ``r`` :rtype: ndarray """ assert np.all(r >= 0.), "kernel distances must be positive" r = np.array(r) return 5./3.*(5.*r**2-np.sqrt(5.)*r-1.)*np.exp(-np.sqrt(5.)*r)
def calc_d2Kdr2(self, r): r""" Calculate second derivative of the squared exponential kernel as a function of distance This method implements the second derivative of the squared exponential kernel function as a function of distance. Given an array of distances, this function evaluates the second derivative function of those values, returning an array of the same shape. :param r: Array holding distances between all points. All values in this array must be non-negative. :type r: array-like :returns: Array holding kernel second derivatives, with the same shape as the input ``r`` :rtype: ndarray """ assert np.all(r >= 0.), "kernel distances must be positive" r = np.array(r) return 5./3.*(5.*r**2-np.sqrt(5.)*r-1.)*np.exp(-np.sqrt(5.)*r)
Python
def n(self): """ Returns number of training examples for the emulator :returns: Number of training examples for the emulator object :rtype: int """ return self.inputs.shape[0]
def n(self): """ Returns number of training examples for the emulator :returns: Number of training examples for the emulator object :rtype: int """ return self.inputs.shape[0]
Python
def D(self): """ Returns number of inputs for the emulator :returns: Number of inputs for the emulator object :rtype: int """ return self.inputs.shape[1]
def D(self): """ Returns number of inputs for the emulator :returns: Number of inputs for the emulator object :rtype: int """ return self.inputs.shape[1]
Python
def n_params(self): """Returns number of hyperparameters Returns the number of hyperparameters for the emulator. The number depends on the choice of mean function, covariance function, and nugget strategy, and possibly the number of inputs for certain choices of the mean function. :returns: Number of hyperparameters :rtype: int """ return self.mean.get_n_params(self.inputs) + self.D + 2
def n_params(self): """Returns number of hyperparameters Returns the number of hyperparameters for the emulator. The number depends on the choice of mean function, covariance function, and nugget strategy, and possibly the number of inputs for certain choices of the mean function. :returns: Number of hyperparameters :rtype: int """ return self.mean.get_n_params(self.inputs) + self.D + 2
Python
def nugget(self): """Returns emulator nugget parameter Returns current value of the nugget parameter. If the nugget is to be selected adaptively, by pivoting, or by fitting the emulator and the nugget has not been fit, returns ``None``. :returns: Current nugget value, either a float or ``None`` :rtype: float or None The ``nugget`` parameter controls how noise is added to the covariance matrix in order to stabilize the inversion or smooth the emulator predictions. If ``nugget`` is a non-negative float, then that particular value is used for the nugget. Note that setting this parameter to be zero enforces that the emulator strictly interpolates between points. Alternatively, a string can be provided. A value of ``"fit"`` means that the nugget is treated as a hyperparameter, and is the last entry in the ``theta`` array. Alternatively, if ``nugget`` is set to be ``"adaptive"``, the fitting routine will adaptively make the noise parameter as large as is needed to ensure that the emulator can be fit. Finally, pivoting can be selected by setting to ``"pivot"``, which will ignore any collinear rows in the covariance matrix. Internally, this modifies both the way the nugget is chosen (which can be determined via the ``nugget_type`` property) and the value itself (the ``nugget`` property) :param nugget: Noise to be added to the diagonal, specified as a string or a float. A non-negative float specifies the noise level explicitly, while a string indicates that the nugget will be found via fitting, either as ``"adaptive"``, ``"pivot"``, or ``"fit"`` (see above for a description). :type nugget: float or str :returns: None :rtype: None """ return self._nugget
def nugget(self): """Returns emulator nugget parameter Returns current value of the nugget parameter. If the nugget is to be selected adaptively, by pivoting, or by fitting the emulator and the nugget has not been fit, returns ``None``. :returns: Current nugget value, either a float or ``None`` :rtype: float or None The ``nugget`` parameter controls how noise is added to the covariance matrix in order to stabilize the inversion or smooth the emulator predictions. If ``nugget`` is a non-negative float, then that particular value is used for the nugget. Note that setting this parameter to be zero enforces that the emulator strictly interpolates between points. Alternatively, a string can be provided. A value of ``"fit"`` means that the nugget is treated as a hyperparameter, and is the last entry in the ``theta`` array. Alternatively, if ``nugget`` is set to be ``"adaptive"``, the fitting routine will adaptively make the noise parameter as large as is needed to ensure that the emulator can be fit. Finally, pivoting can be selected by setting to ``"pivot"``, which will ignore any collinear rows in the covariance matrix. Internally, this modifies both the way the nugget is chosen (which can be determined via the ``nugget_type`` property) and the value itself (the ``nugget`` property) :param nugget: Noise to be added to the diagonal, specified as a string or a float. A non-negative float specifies the noise level explicitly, while a string indicates that the nugget will be found via fitting, either as ``"adaptive"``, ``"pivot"``, or ``"fit"`` (see above for a description). :type nugget: float or str :returns: None :rtype: None """ return self._nugget
Python
def nugget(self, nugget): """Set the nugget parameter for the emulator Method for changing the ``nugget`` parameter for the emulator. When a new emulator is initilized, this is set to None. The ``nugget`` parameter controls how noise is added to the covariance matrix in order to stabilize the inversion or smooth the emulator predictions. If ``nugget`` is a non-negative float, then that particular value is used for the nugget. Note that setting this parameter to be zero enforces that the emulator strictly interpolates between points. Alternatively, a string can be provided. A value of ``"fit"`` means that the nugget is treated as a hyperparameter, and is the last entry in the ``theta`` array. Alternatively, if ``nugget`` is set to be ``"adaptive"``, the fitting routine will adaptively make the noise parameter as large as is needed to ensure that the emulator can be fit. Finally, pivoting can be selected by setting to ``"pivot"``, which will ignore any collinear rows in the covariance matrix. Internally, this modifies both the way the nugget is chosen (which can be determined via the ``nugget_type`` property) and the value itself (the ``nugget`` property) :param nugget: Noise to be added to the diagonal, specified as a string or a float. A non-negative float specifies the noise level explicitly, while a string indicates that the nugget will be found via fitting, either as ``"adaptive"``, ``"pivot"``, or ``"fit"`` (see above for a description). :type nugget: float or str :returns: None :rtype: None """ if not isinstance(nugget, (str, float)): try: nugget = float(nugget) except TypeError: raise TypeError("nugget parameter must be a string or a non-negative float") if isinstance(nugget, str): if nugget == "adaptive": self._nugget_type = "adaptive" elif nugget == "fit": self._nugget_type = "fit" elif nugget == "pivot": self._nugget_type = "pivot" else: raise ValueError("bad value of nugget, must be a float or 'adaptive', 'pivot', or 'fit'") self._nugget = None else: if nugget < 0.: raise ValueError("nugget parameter must be non-negative") self._nugget_type = "fixed" self._nugget = float(nugget)
def nugget(self, nugget): """Set the nugget parameter for the emulator Method for changing the ``nugget`` parameter for the emulator. When a new emulator is initilized, this is set to None. The ``nugget`` parameter controls how noise is added to the covariance matrix in order to stabilize the inversion or smooth the emulator predictions. If ``nugget`` is a non-negative float, then that particular value is used for the nugget. Note that setting this parameter to be zero enforces that the emulator strictly interpolates between points. Alternatively, a string can be provided. A value of ``"fit"`` means that the nugget is treated as a hyperparameter, and is the last entry in the ``theta`` array. Alternatively, if ``nugget`` is set to be ``"adaptive"``, the fitting routine will adaptively make the noise parameter as large as is needed to ensure that the emulator can be fit. Finally, pivoting can be selected by setting to ``"pivot"``, which will ignore any collinear rows in the covariance matrix. Internally, this modifies both the way the nugget is chosen (which can be determined via the ``nugget_type`` property) and the value itself (the ``nugget`` property) :param nugget: Noise to be added to the diagonal, specified as a string or a float. A non-negative float specifies the noise level explicitly, while a string indicates that the nugget will be found via fitting, either as ``"adaptive"``, ``"pivot"``, or ``"fit"`` (see above for a description). :type nugget: float or str :returns: None :rtype: None """ if not isinstance(nugget, (str, float)): try: nugget = float(nugget) except TypeError: raise TypeError("nugget parameter must be a string or a non-negative float") if isinstance(nugget, str): if nugget == "adaptive": self._nugget_type = "adaptive" elif nugget == "fit": self._nugget_type = "fit" elif nugget == "pivot": self._nugget_type = "pivot" else: raise ValueError("bad value of nugget, must be a float or 'adaptive', 'pivot', or 'fit'") self._nugget = None else: if nugget < 0.: raise ValueError("nugget parameter must be non-negative") self._nugget_type = "fixed" self._nugget = float(nugget)
Python
def theta(self, theta): """Fits the emulator and sets the parameters (property-based setter alias for ``fit``) Pre-calculates the matrices needed to compute the log-likelihood and its derivatives and make subsequent predictions. This is called any time the hyperparameter values are changed in order to ensure that all the information is needed to evaluate the log-likelihood and its derivatives, which are needed when fitting the optimal hyperparameters. The method computes the mean function and covariance matrix and inverts the covariance matrix using the method specified by the value of ``nugget``. The factorized matrix and the product of the inverse with the difference between the targets and the mean are cached for later use, and the negative marginal log-likelihood is also cached. This method has no return value, but it does modify the state of the object. :param theta: Values of the hyperparameters to use in fitting. Must be a numpy array with length ``n_params`` :type theta: ndarray :returns: None """ if theta is None: self._theta = None self.current_logpost = None else: self.fit(theta)
def theta(self, theta): """Fits the emulator and sets the parameters (property-based setter alias for ``fit``) Pre-calculates the matrices needed to compute the log-likelihood and its derivatives and make subsequent predictions. This is called any time the hyperparameter values are changed in order to ensure that all the information is needed to evaluate the log-likelihood and its derivatives, which are needed when fitting the optimal hyperparameters. The method computes the mean function and covariance matrix and inverts the covariance matrix using the method specified by the value of ``nugget``. The factorized matrix and the product of the inverse with the difference between the targets and the mean are cached for later use, and the negative marginal log-likelihood is also cached. This method has no return value, but it does modify the state of the object. :param theta: Values of the hyperparameters to use in fitting. Must be a numpy array with length ``n_params`` :type theta: ndarray :returns: None """ if theta is None: self._theta = None self.current_logpost = None else: self.fit(theta)
Python
def priors(self): """The current list priors used in computing the log posterior To set the priors, must be a list or ``None``. Entries can be ``None`` or a subclass of ``Prior``. ``None`` indicates weak prior information. An empty list or ``None`` means all uninformative priors. Otherwise list should have the same length as the number of hyperparameters, or alternatively can be one shorter than the number of hyperparameters if ``nugget_type`` is ``"adaptive"``, ``"pivot"`` or ``"fixed"`` meaning that the nugget hyperparameter is not fit but is instead fixed or found adaptively. If the nugget hyperparameter is not fit, the prior for the nugget will automatically be set to ``None`` even if a distribution is provided. """ return self._priors
def priors(self): """The current list priors used in computing the log posterior To set the priors, must be a list or ``None``. Entries can be ``None`` or a subclass of ``Prior``. ``None`` indicates weak prior information. An empty list or ``None`` means all uninformative priors. Otherwise list should have the same length as the number of hyperparameters, or alternatively can be one shorter than the number of hyperparameters if ``nugget_type`` is ``"adaptive"``, ``"pivot"`` or ``"fixed"`` meaning that the nugget hyperparameter is not fit but is instead fixed or found adaptively. If the nugget hyperparameter is not fit, the prior for the nugget will automatically be set to ``None`` even if a distribution is provided. """ return self._priors
Python
def fit(self, theta): """Fits the emulator and sets the parameters Pre-calculates the matrices needed to compute the log-likelihood and its derivatives and make subsequent predictions. This is called any time the hyperparameter values are changed in order to ensure that all the information is needed to evaluate the log-likelihood and its derivatives, which are needed when fitting the optimal hyperparameters. The method computes the mean function and covariance matrix and inverts the covariance matrix using the method specified by the value of ``nugget_type``. The factorized matrix and the product of the inverse with the difference between the targets and the mean are cached for later use, and the negative marginal log-likelihood is also cached. This method has no return value, but it does modify the state of the object. :param theta: Values of the hyperparameters to use in fitting. Must be a numpy array with length ``n_params`` :type theta: ndarray :returns: None """ theta = np.array(theta) assert theta.shape == (self.n_params,), "bad shape for hyperparameters" self._theta = theta switch = self.mean.get_n_params(self.inputs) m = self.mean.mean_f(self.inputs, self.theta[:switch]) Q = self.kernel.kernel_f(self.inputs, self.inputs, self.theta[switch:-1]) if self.nugget_type == "adaptive": self.L, self._nugget = jit_cholesky(Q) self.P = np.arange(0, self.n) elif self.nugget_type == "pivot": self.L, self.P = pivot_cholesky(Q) self._nugget = 0. else: if self.nugget_type == "fit": self._nugget = np.exp(self.theta[-1]) Q += self._nugget*np.eye(self.n) self.L = linalg.cholesky(Q, lower=True) self.P = np.arange(0, self.n) self.invQt = pivot_cho_solve(self.L, self.P, self.targets - m) self.current_logpost = 0.5*(2.0*np.sum(np.log(np.diag(self.L))) + np.dot(self.targets - m, self.invQt) + self.n*np.log(2. * np.pi)) for i in range(self.n_params): if not self._priors[i] is None: self.current_logpost -= self._priors[i].logp(self.theta[i])
def fit(self, theta): """Fits the emulator and sets the parameters Pre-calculates the matrices needed to compute the log-likelihood and its derivatives and make subsequent predictions. This is called any time the hyperparameter values are changed in order to ensure that all the information is needed to evaluate the log-likelihood and its derivatives, which are needed when fitting the optimal hyperparameters. The method computes the mean function and covariance matrix and inverts the covariance matrix using the method specified by the value of ``nugget_type``. The factorized matrix and the product of the inverse with the difference between the targets and the mean are cached for later use, and the negative marginal log-likelihood is also cached. This method has no return value, but it does modify the state of the object. :param theta: Values of the hyperparameters to use in fitting. Must be a numpy array with length ``n_params`` :type theta: ndarray :returns: None """ theta = np.array(theta) assert theta.shape == (self.n_params,), "bad shape for hyperparameters" self._theta = theta switch = self.mean.get_n_params(self.inputs) m = self.mean.mean_f(self.inputs, self.theta[:switch]) Q = self.kernel.kernel_f(self.inputs, self.inputs, self.theta[switch:-1]) if self.nugget_type == "adaptive": self.L, self._nugget = jit_cholesky(Q) self.P = np.arange(0, self.n) elif self.nugget_type == "pivot": self.L, self.P = pivot_cholesky(Q) self._nugget = 0. else: if self.nugget_type == "fit": self._nugget = np.exp(self.theta[-1]) Q += self._nugget*np.eye(self.n) self.L = linalg.cholesky(Q, lower=True) self.P = np.arange(0, self.n) self.invQt = pivot_cho_solve(self.L, self.P, self.targets - m) self.current_logpost = 0.5*(2.0*np.sum(np.log(np.diag(self.L))) + np.dot(self.targets - m, self.invQt) + self.n*np.log(2. * np.pi)) for i in range(self.n_params): if not self._priors[i] is None: self.current_logpost -= self._priors[i].logp(self.theta[i])
Python
def logposterior(self, theta): """Calculate the negative log-posterior at a particular value of the hyperparameters Calculate the negative log-posterior for the given set of parameters. Calling this method sets the parameter values and computes the needed inverse matrices in order to evaluate the log-posterior and its derivatives. In addition to returning the log-posterior value, it stores the current value of the hyperparameters and log-posterior in attributes of the object. :param theta: Value of the hyperparameters. Must be array-like with shape ``(n_params,)`` :type theta: ndarray :returns: negative log-posterior :rtype: float """ if self.theta is None or not np.allclose(theta, self.theta, rtol=1.e-10, atol=1.e-15): self.fit(theta) return self.current_logpost
def logposterior(self, theta): """Calculate the negative log-posterior at a particular value of the hyperparameters Calculate the negative log-posterior for the given set of parameters. Calling this method sets the parameter values and computes the needed inverse matrices in order to evaluate the log-posterior and its derivatives. In addition to returning the log-posterior value, it stores the current value of the hyperparameters and log-posterior in attributes of the object. :param theta: Value of the hyperparameters. Must be array-like with shape ``(n_params,)`` :type theta: ndarray :returns: negative log-posterior :rtype: float """ if self.theta is None or not np.allclose(theta, self.theta, rtol=1.e-10, atol=1.e-15): self.fit(theta) return self.current_logpost
Python
def logpost_deriv(self, theta): """Calculate the partial derivatives of the negative log-posterior Calculate the partial derivatives of the negative log-posterior with respect to the hyperparameters. Note that this function is normally used only when fitting the hyperparameters, and it is not needed to make predictions. During normal use, the ``logpost_deriv`` method is called after evaluating the ``logposterior`` method. The implementation takes advantage of this by reusing cached results, as the factorized covariance matrix is expensive to compute and is used by the ``logposterior``, ``logpost_deriv``, and ``logpost_hessian`` methods. If the function is evaluated with a different set of parameters than was previously used to set the log-posterior, the method calls ``fit`` (and subsequently resets the cached information). :param theta: Value of the hyperparameters. Must be array-like with shape ``(n_params,)`` :type theta: ndarray :returns: partial derivatives of the negative log-posterior with respect to the hyperparameters (array with shape ``(n_params,)``) :rtype: ndarray """ theta = np.array(theta) assert theta.shape == (self.n_params,), "bad shape for new parameters" if self.theta is None or not np.allclose(theta, self.theta, rtol=1.e-10, atol=1.e-15): self.fit(theta) partials = np.zeros(self.n_params) switch = self.mean.get_n_params(self.inputs) dmdtheta = self.mean.mean_deriv(self.inputs, self.theta[:switch]) dKdtheta = self.kernel.kernel_deriv(self.inputs, self.inputs, self.theta[switch:-1]) partials[:switch] = -np.dot(dmdtheta, self.invQt) for d in range(self.D + 1): invQ_dot_dKdtheta_trace = np.trace(pivot_cho_solve(self.L, self.P, dKdtheta[d])) partials[switch + d] = -0.5*(np.dot(self.invQt, np.dot(dKdtheta[d], self.invQt)) - invQ_dot_dKdtheta_trace) if self.nugget_type == "fit": nugget = np.exp(self.theta[-1]) partials[-1] = 0.5*nugget*(np.trace(pivot_cho_solve(self.L, self.P, np.eye(self.n))) - np.dot(self.invQt, self.invQt)) for i in range(self.n_params): if not self._priors[i] is None: partials[i] -= self._priors[i].dlogpdtheta(self.theta[i]) return partials
def logpost_deriv(self, theta): """Calculate the partial derivatives of the negative log-posterior Calculate the partial derivatives of the negative log-posterior with respect to the hyperparameters. Note that this function is normally used only when fitting the hyperparameters, and it is not needed to make predictions. During normal use, the ``logpost_deriv`` method is called after evaluating the ``logposterior`` method. The implementation takes advantage of this by reusing cached results, as the factorized covariance matrix is expensive to compute and is used by the ``logposterior``, ``logpost_deriv``, and ``logpost_hessian`` methods. If the function is evaluated with a different set of parameters than was previously used to set the log-posterior, the method calls ``fit`` (and subsequently resets the cached information). :param theta: Value of the hyperparameters. Must be array-like with shape ``(n_params,)`` :type theta: ndarray :returns: partial derivatives of the negative log-posterior with respect to the hyperparameters (array with shape ``(n_params,)``) :rtype: ndarray """ theta = np.array(theta) assert theta.shape == (self.n_params,), "bad shape for new parameters" if self.theta is None or not np.allclose(theta, self.theta, rtol=1.e-10, atol=1.e-15): self.fit(theta) partials = np.zeros(self.n_params) switch = self.mean.get_n_params(self.inputs) dmdtheta = self.mean.mean_deriv(self.inputs, self.theta[:switch]) dKdtheta = self.kernel.kernel_deriv(self.inputs, self.inputs, self.theta[switch:-1]) partials[:switch] = -np.dot(dmdtheta, self.invQt) for d in range(self.D + 1): invQ_dot_dKdtheta_trace = np.trace(pivot_cho_solve(self.L, self.P, dKdtheta[d])) partials[switch + d] = -0.5*(np.dot(self.invQt, np.dot(dKdtheta[d], self.invQt)) - invQ_dot_dKdtheta_trace) if self.nugget_type == "fit": nugget = np.exp(self.theta[-1]) partials[-1] = 0.5*nugget*(np.trace(pivot_cho_solve(self.L, self.P, np.eye(self.n))) - np.dot(self.invQt, self.invQt)) for i in range(self.n_params): if not self._priors[i] is None: partials[i] -= self._priors[i].dlogpdtheta(self.theta[i]) return partials
Python
def logpost_hessian(self, theta): """Calculate the Hessian of the negative log-posterior Calculate the Hessian of the negative log-posterior with respect to the hyperparameters. Note that this function is normally used only when fitting the hyperparameters, and it is not needed to make predictions. It is also used to estimate an appropriate step size when fitting hyperparameters using the lognormal approximation or MCMC sampling. When used in an optimization routine, the ``logpost_hessian`` method is called after evaluating the ``logposterior`` method. The implementation takes advantage of this by storing the inverse of the covariance matrix, which is expensive to compute and is used by the ``logposterior`` and ``logpost_deriv`` methods as well. If the function is evaluated with a different set of parameters than was previously used to set the log-posterior, the method calls ``fit`` to compute the needed information and changes the cached values. :param theta: Value of the hyperparameters. Must be array-like with shape ``(n_params,)`` :type theta: ndarray :returns: Hessian of the negative log-posterior (array with shape ``(n_params, n_params)``) :rtype: ndarray """ assert theta.shape == (self.n_params,), "Parameter vector must have length number of inputs + 1" if self.theta is None or not np.allclose(theta, self.theta, rtol=1.e-10, atol=1.e-15): self.fit(theta) hessian = np.zeros((self.n_params, self.n_params)) switch = self.mean.get_n_params(self.inputs) dmdtheta = self.mean.mean_deriv(self.inputs, self.theta[:switch]) d2mdtheta2 = self.mean.mean_hessian(self.inputs, self.theta[:switch]) dKdtheta = self.kernel.kernel_deriv(self.inputs, self.inputs, self.theta[switch:-1]) d2Kdtheta2 = self.kernel.kernel_hessian(self.inputs, self.inputs, self.theta[switch:-1]) hessian[:switch, :switch] = -(np.dot(d2mdtheta2, self.invQt) - np.dot(dmdtheta, pivot_cho_solve(self.L, self.P, np.transpose(dmdtheta)))) hessian[:switch, switch:-1] = np.dot(dmdtheta, pivot_cho_solve(self.L, self.P, np.transpose(np.dot(dKdtheta, self.invQt)))) hessian[switch:-1, :switch] = np.transpose(hessian[:switch, switch:-1]) for d1 in range(self.D + 1): invQ_dot_d1 = pivot_cho_solve(self.L, self.P, dKdtheta[d1]) for d2 in range(self.D + 1): invQ_dot_d2 = pivot_cho_solve(self.L, self.P, dKdtheta[d2]) invQ_dot_d1d2 = pivot_cho_solve(self.L, self.P, d2Kdtheta2[d1, d2]) term_1 = np.linalg.multi_dot([self.invQt, 2.*np.dot(dKdtheta[d1], invQ_dot_d2) - d2Kdtheta2[d1, d2], self.invQt]) term_2 = np.trace(np.dot(invQ_dot_d1, invQ_dot_d2) - invQ_dot_d1d2) hessian[switch + d1, switch + d2] = 0.5*(term_1 - term_2) if self.nugget_type == "fit": nugget = np.exp(self.theta[-1]) invQinvQt = pivot_cho_solve(self.L, self.P, self.invQt) hessian[:switch, -1] = nugget*np.dot(dmdtheta, invQinvQt) for d in range(self.D + 1): hessian[switch + d, -1] = nugget*(np.linalg.multi_dot([self.invQt, dKdtheta[d], invQinvQt]) - 0.5*np.trace(pivot_cho_solve(self.L, self.P, np.dot(dKdtheta[d], pivot_cho_solve(self.L, self.P, np.eye(self.n)))))) hessian[-1, -1] = 0.5*nugget*(np.trace(pivot_cho_solve(self.L, self.P, np.eye(self.n))) - np.dot(self.invQt, self.invQt)) hessian[-1, -1] += nugget**2*(np.dot(self.invQt, invQinvQt) - 0.5*np.trace(pivot_cho_solve(self.L, self.P, pivot_cho_solve(self.L, self.P, np.eye(self.n))))) hessian[-1, :-1] = np.transpose(hessian[:-1, -1]) for i in range(self.n_params): if not self._priors[i] is None: hessian[i, i] -= self._priors[i].d2logpdtheta2(self.theta[i]) return hessian
def logpost_hessian(self, theta): """Calculate the Hessian of the negative log-posterior Calculate the Hessian of the negative log-posterior with respect to the hyperparameters. Note that this function is normally used only when fitting the hyperparameters, and it is not needed to make predictions. It is also used to estimate an appropriate step size when fitting hyperparameters using the lognormal approximation or MCMC sampling. When used in an optimization routine, the ``logpost_hessian`` method is called after evaluating the ``logposterior`` method. The implementation takes advantage of this by storing the inverse of the covariance matrix, which is expensive to compute and is used by the ``logposterior`` and ``logpost_deriv`` methods as well. If the function is evaluated with a different set of parameters than was previously used to set the log-posterior, the method calls ``fit`` to compute the needed information and changes the cached values. :param theta: Value of the hyperparameters. Must be array-like with shape ``(n_params,)`` :type theta: ndarray :returns: Hessian of the negative log-posterior (array with shape ``(n_params, n_params)``) :rtype: ndarray """ assert theta.shape == (self.n_params,), "Parameter vector must have length number of inputs + 1" if self.theta is None or not np.allclose(theta, self.theta, rtol=1.e-10, atol=1.e-15): self.fit(theta) hessian = np.zeros((self.n_params, self.n_params)) switch = self.mean.get_n_params(self.inputs) dmdtheta = self.mean.mean_deriv(self.inputs, self.theta[:switch]) d2mdtheta2 = self.mean.mean_hessian(self.inputs, self.theta[:switch]) dKdtheta = self.kernel.kernel_deriv(self.inputs, self.inputs, self.theta[switch:-1]) d2Kdtheta2 = self.kernel.kernel_hessian(self.inputs, self.inputs, self.theta[switch:-1]) hessian[:switch, :switch] = -(np.dot(d2mdtheta2, self.invQt) - np.dot(dmdtheta, pivot_cho_solve(self.L, self.P, np.transpose(dmdtheta)))) hessian[:switch, switch:-1] = np.dot(dmdtheta, pivot_cho_solve(self.L, self.P, np.transpose(np.dot(dKdtheta, self.invQt)))) hessian[switch:-1, :switch] = np.transpose(hessian[:switch, switch:-1]) for d1 in range(self.D + 1): invQ_dot_d1 = pivot_cho_solve(self.L, self.P, dKdtheta[d1]) for d2 in range(self.D + 1): invQ_dot_d2 = pivot_cho_solve(self.L, self.P, dKdtheta[d2]) invQ_dot_d1d2 = pivot_cho_solve(self.L, self.P, d2Kdtheta2[d1, d2]) term_1 = np.linalg.multi_dot([self.invQt, 2.*np.dot(dKdtheta[d1], invQ_dot_d2) - d2Kdtheta2[d1, d2], self.invQt]) term_2 = np.trace(np.dot(invQ_dot_d1, invQ_dot_d2) - invQ_dot_d1d2) hessian[switch + d1, switch + d2] = 0.5*(term_1 - term_2) if self.nugget_type == "fit": nugget = np.exp(self.theta[-1]) invQinvQt = pivot_cho_solve(self.L, self.P, self.invQt) hessian[:switch, -1] = nugget*np.dot(dmdtheta, invQinvQt) for d in range(self.D + 1): hessian[switch + d, -1] = nugget*(np.linalg.multi_dot([self.invQt, dKdtheta[d], invQinvQt]) - 0.5*np.trace(pivot_cho_solve(self.L, self.P, np.dot(dKdtheta[d], pivot_cho_solve(self.L, self.P, np.eye(self.n)))))) hessian[-1, -1] = 0.5*nugget*(np.trace(pivot_cho_solve(self.L, self.P, np.eye(self.n))) - np.dot(self.invQt, self.invQt)) hessian[-1, -1] += nugget**2*(np.dot(self.invQt, invQinvQt) - 0.5*np.trace(pivot_cho_solve(self.L, self.P, pivot_cho_solve(self.L, self.P, np.eye(self.n))))) hessian[-1, :-1] = np.transpose(hessian[:-1, -1]) for i in range(self.n_params): if not self._priors[i] is None: hessian[i, i] -= self._priors[i].d2logpdtheta2(self.theta[i]) return hessian
Python
def predict(self, testing, unc=True, deriv=True, include_nugget=True): """Make a prediction for a set of input vectors for a single set of hyperparameters Makes predictions for the emulator on a given set of input vectors. The input vectors must be passed as a ``(n_predict, D)``, ``(n_predict,)`` or ``(D,)`` shaped array-like object, where ``n_predict`` is the number of different prediction points under consideration and ``D`` is the number of inputs to the emulator. If the prediction inputs array is 1D and ``D == 1`` for the GP instance, then the 1D array must have shape ``(n_predict,)``. Otherwise, if the array is 1D it must have shape ``(D,)``, and the method assumes ``n_predict == 1``. The prediction is returned as an ``(n_predict, )`` shaped numpy array as the first return value from the method. Optionally, the emulator can also calculate the variances in the predictions and the derivatives with respect to each input parameter. If the uncertainties are computed, they are returned as the second output from the method as an ``(n_predict,)`` shaped numpy array. If the derivatives are computed, they are returned as the third output from the method as an ``(n_predict, D)`` shaped numpy array. The final input to the method determines if the predictive variance should include the nugget or not. For situations where the nugget represents observational error and predictions are estimating the true underlying function, this should be set to ``False``. However, most other cases should probably include the nugget, as the emulator is using it to represent some of the uncertainty in the underlying simulator, so the default value is ``True``. :param testing: Array-like object holding the points where predictions will be made. Must have shape ``(n_predict, D)`` or ``(D,)`` (for a single prediction) :type testing: ndarray :param unc: (optional) Flag indicating if the uncertainties are to be computed. If ``False`` the method returns ``None`` in place of the uncertainty array. Default value is ``True``. :type unc: bool :param deriv: (optional) Flag indicating if the derivatives are to be computed. If ``False`` the method returns ``None`` in place of the derivative array. Default value is ``True``. :type deriv: bool :param include_nugget: (optional) Flag indicating if the nugget should be included in the predictive variance. Only relevant if ``unc = True``. Default is ``True``. :type include_nugget: bool :returns: Tuple of numpy arrays holding the predictions, uncertainties, and derivatives, respectively. Predictions and uncertainties have shape ``(n_predict,)`` while the derivatives have shape ``(n_predict, D)``. If the ``unc`` or ``deriv`` flags are set to ``False``, then those arrays are replaced by ``None``. :rtype: tuple """ if self.theta is None: raise ValueError("hyperparameters have not been fit for this Gaussian Process") testing = np.array(testing) if self.D == 1 and testing.ndim == 1: testing = np.reshape(testing, (-1, 1)) elif testing.ndim == 1: testing = np.reshape(testing, (1, len(testing))) assert testing.ndim == 2, "testing must be a 2D array" n_testing, D = np.shape(testing) assert D == self.D, "second dimension of testing must be the same as the number of input parameters" switch = self.mean.get_n_params(testing) mtest = self.mean.mean_f(testing, self.theta[:switch]) Ktest = self.kernel.kernel_f(self.inputs, testing, self.theta[switch:-1]) mu = mtest + np.dot(Ktest.T, self.invQt) var = None if unc: sigma_2 = np.exp(self.theta[-2]) if include_nugget: sigma_2 += self._nugget var = np.maximum(sigma_2 - np.sum(Ktest*pivot_cho_solve(self.L, self.P, Ktest), axis=0), 0.) inputderiv = None if deriv: inputderiv = np.zeros((n_testing, self.D)) mean_deriv = self.mean.mean_inputderiv(testing, self.theta[:switch]) kern_deriv = self.kernel.kernel_inputderiv(testing, self.inputs, self.theta[switch:-1]) inputderiv = np.transpose(mean_deriv + np.dot(kern_deriv, self.invQt)) return PredictResult(mean=mu, unc=var, deriv=inputderiv)
def predict(self, testing, unc=True, deriv=True, include_nugget=True): """Make a prediction for a set of input vectors for a single set of hyperparameters Makes predictions for the emulator on a given set of input vectors. The input vectors must be passed as a ``(n_predict, D)``, ``(n_predict,)`` or ``(D,)`` shaped array-like object, where ``n_predict`` is the number of different prediction points under consideration and ``D`` is the number of inputs to the emulator. If the prediction inputs array is 1D and ``D == 1`` for the GP instance, then the 1D array must have shape ``(n_predict,)``. Otherwise, if the array is 1D it must have shape ``(D,)``, and the method assumes ``n_predict == 1``. The prediction is returned as an ``(n_predict, )`` shaped numpy array as the first return value from the method. Optionally, the emulator can also calculate the variances in the predictions and the derivatives with respect to each input parameter. If the uncertainties are computed, they are returned as the second output from the method as an ``(n_predict,)`` shaped numpy array. If the derivatives are computed, they are returned as the third output from the method as an ``(n_predict, D)`` shaped numpy array. The final input to the method determines if the predictive variance should include the nugget or not. For situations where the nugget represents observational error and predictions are estimating the true underlying function, this should be set to ``False``. However, most other cases should probably include the nugget, as the emulator is using it to represent some of the uncertainty in the underlying simulator, so the default value is ``True``. :param testing: Array-like object holding the points where predictions will be made. Must have shape ``(n_predict, D)`` or ``(D,)`` (for a single prediction) :type testing: ndarray :param unc: (optional) Flag indicating if the uncertainties are to be computed. If ``False`` the method returns ``None`` in place of the uncertainty array. Default value is ``True``. :type unc: bool :param deriv: (optional) Flag indicating if the derivatives are to be computed. If ``False`` the method returns ``None`` in place of the derivative array. Default value is ``True``. :type deriv: bool :param include_nugget: (optional) Flag indicating if the nugget should be included in the predictive variance. Only relevant if ``unc = True``. Default is ``True``. :type include_nugget: bool :returns: Tuple of numpy arrays holding the predictions, uncertainties, and derivatives, respectively. Predictions and uncertainties have shape ``(n_predict,)`` while the derivatives have shape ``(n_predict, D)``. If the ``unc`` or ``deriv`` flags are set to ``False``, then those arrays are replaced by ``None``. :rtype: tuple """ if self.theta is None: raise ValueError("hyperparameters have not been fit for this Gaussian Process") testing = np.array(testing) if self.D == 1 and testing.ndim == 1: testing = np.reshape(testing, (-1, 1)) elif testing.ndim == 1: testing = np.reshape(testing, (1, len(testing))) assert testing.ndim == 2, "testing must be a 2D array" n_testing, D = np.shape(testing) assert D == self.D, "second dimension of testing must be the same as the number of input parameters" switch = self.mean.get_n_params(testing) mtest = self.mean.mean_f(testing, self.theta[:switch]) Ktest = self.kernel.kernel_f(self.inputs, testing, self.theta[switch:-1]) mu = mtest + np.dot(Ktest.T, self.invQt) var = None if unc: sigma_2 = np.exp(self.theta[-2]) if include_nugget: sigma_2 += self._nugget var = np.maximum(sigma_2 - np.sum(Ktest*pivot_cho_solve(self.L, self.P, Ktest), axis=0), 0.) inputderiv = None if deriv: inputderiv = np.zeros((n_testing, self.D)) mean_deriv = self.mean.mean_inputderiv(testing, self.theta[:switch]) kern_deriv = self.kernel.kernel_inputderiv(testing, self.inputs, self.theta[switch:-1]) inputderiv = np.transpose(mean_deriv + np.dot(kern_deriv, self.invQt)) return PredictResult(mean=mu, unc=var, deriv=inputderiv)
Python
def predict(self, testing, unc=True, deriv=True, include_nugget=True, allow_not_fit=False, processes=None): """Make a prediction for a set of input vectors Makes predictions for each of the emulators on a given set of input vectors. The input vectors must be passed as a ``(n_predict, D)`` or ``(D,)`` shaped array-like object, where ``n_predict`` is the number of different prediction points under consideration and ``D`` is the number of inputs to the emulator. If the prediction inputs array has shape ``(D,)``, then the method assumes ``n_predict == 1``. The prediction points are passed to each emulator and the predictions are collected into an ``(n_emulators, n_predict)`` shaped numpy array as the first return value from the method. Optionally, the emulator can also calculate the uncertainties in the predictions (as a variance) and the derivatives with respect to each input parameter. If the uncertainties are computed, they are returned as the second output from the method as an ``(n_emulators, n_predict)`` shaped numpy array. If the derivatives are computed, they are returned as the third output from the method as an ``(n_emulators, n_predict, D)`` shaped numpy array. Finally, if uncertainties are computed, the ``include_nugget`` flag determines if the uncertainties should include the nugget. By default, this is set to ``True``. The ``allow_not_fit`` flag determines how the object handles any emulators that do not have fit hyperparameter values (because fitting presumably failed). By default, ``allow_not_fit=False`` and the method will raise an error if any emulators are not fit. Passing ``allow_not_fit=True`` will override this and ``NaN`` will be returned from any emulators that have not been fit. As with the fitting, this computation can be done independently for each emulator and thus can be done in parallel. :param testing: Array-like object holding the points where predictions will be made. Must have shape ``(n_predict, D)`` or ``(D,)`` (for a single prediction) :type testing: ndarray :param unc: (optional) Flag indicating if the uncertainties are to be computed. If ``False`` the method returns ``None`` in place of the uncertainty array. Default value is ``True``. :type unc: bool :param deriv: (optional) Flag indicating if the derivatives are to be computed. If ``False`` the method returns ``None`` in place of the derivative array. Default value is ``True``. :type deriv: bool :param include_nugget: (optional) Flag indicating if the nugget should be included in the predictive variance. Only relevant if ``unc = True``. Default is ``True``. :type include_nugget: bool :param allow_not_fit: (optional) Flag that allows predictions to be made even if not all emulators have been fit. Default is ``False`` which will raise an error if any unfitted emulators are present. :type allow_not_fit: bool :param processes: (optional) Number of processes to use when making the predictions. Must be a positive integer or ``None`` to use the number of processors on the computer (default is ``None``) :type processes: int or None :returns: ``PredictResult`` object holding numpy arrays containing the predictions, uncertainties, and derivatives, respectively. Predictions and uncertainties have shape ``(n_emulators, n_predict)`` while the derivatives have shape ``(n_emulators, n_predict, D)``. If the ``do_unc`` or ``do_deriv`` flags are set to ``False``, then those arrays are replaced by ``None``. :rtype: PredictResult """ testing = np.array(testing) if self.D == 1 and testing.ndim == 1: testing = np.reshape(testing, (-1, 1)) elif testing.ndim == 1: testing = np.reshape(testing, (1, len(testing))) assert testing.ndim == 2, "testing must be a 2D array" n_testing, D = np.shape(testing) assert D == self.D, "second dimension of testing must be the same as the number of input parameters" if not processes is None: processes = int(processes) assert processes > 0, "number of processes must be a positive integer" if allow_not_fit: predict_method = _gp_predict_default_NaN else: predict_method = self.GPClass.predict if platform.system() == "Windows" or self.use_gpu: predict_vals = [predict_method(gp, testing, unc, deriv, include_nugget) for gp in self.emulators] else: with Pool(processes) as p: predict_vals = p.starmap(predict_method, [(gp, testing, unc, deriv, include_nugget) for gp in self.emulators]) # repackage predictions into numpy arrays predict_unpacked, unc_unpacked, deriv_unpacked = [np.array(t) for t in zip(*predict_vals)] if not unc: unc_unpacked = None if not deriv: deriv_unpacked = None return PredictResult(mean=predict_unpacked, unc=unc_unpacked, deriv=deriv_unpacked)
def predict(self, testing, unc=True, deriv=True, include_nugget=True, allow_not_fit=False, processes=None): """Make a prediction for a set of input vectors Makes predictions for each of the emulators on a given set of input vectors. The input vectors must be passed as a ``(n_predict, D)`` or ``(D,)`` shaped array-like object, where ``n_predict`` is the number of different prediction points under consideration and ``D`` is the number of inputs to the emulator. If the prediction inputs array has shape ``(D,)``, then the method assumes ``n_predict == 1``. The prediction points are passed to each emulator and the predictions are collected into an ``(n_emulators, n_predict)`` shaped numpy array as the first return value from the method. Optionally, the emulator can also calculate the uncertainties in the predictions (as a variance) and the derivatives with respect to each input parameter. If the uncertainties are computed, they are returned as the second output from the method as an ``(n_emulators, n_predict)`` shaped numpy array. If the derivatives are computed, they are returned as the third output from the method as an ``(n_emulators, n_predict, D)`` shaped numpy array. Finally, if uncertainties are computed, the ``include_nugget`` flag determines if the uncertainties should include the nugget. By default, this is set to ``True``. The ``allow_not_fit`` flag determines how the object handles any emulators that do not have fit hyperparameter values (because fitting presumably failed). By default, ``allow_not_fit=False`` and the method will raise an error if any emulators are not fit. Passing ``allow_not_fit=True`` will override this and ``NaN`` will be returned from any emulators that have not been fit. As with the fitting, this computation can be done independently for each emulator and thus can be done in parallel. :param testing: Array-like object holding the points where predictions will be made. Must have shape ``(n_predict, D)`` or ``(D,)`` (for a single prediction) :type testing: ndarray :param unc: (optional) Flag indicating if the uncertainties are to be computed. If ``False`` the method returns ``None`` in place of the uncertainty array. Default value is ``True``. :type unc: bool :param deriv: (optional) Flag indicating if the derivatives are to be computed. If ``False`` the method returns ``None`` in place of the derivative array. Default value is ``True``. :type deriv: bool :param include_nugget: (optional) Flag indicating if the nugget should be included in the predictive variance. Only relevant if ``unc = True``. Default is ``True``. :type include_nugget: bool :param allow_not_fit: (optional) Flag that allows predictions to be made even if not all emulators have been fit. Default is ``False`` which will raise an error if any unfitted emulators are present. :type allow_not_fit: bool :param processes: (optional) Number of processes to use when making the predictions. Must be a positive integer or ``None`` to use the number of processors on the computer (default is ``None``) :type processes: int or None :returns: ``PredictResult`` object holding numpy arrays containing the predictions, uncertainties, and derivatives, respectively. Predictions and uncertainties have shape ``(n_emulators, n_predict)`` while the derivatives have shape ``(n_emulators, n_predict, D)``. If the ``do_unc`` or ``do_deriv`` flags are set to ``False``, then those arrays are replaced by ``None``. :rtype: PredictResult """ testing = np.array(testing) if self.D == 1 and testing.ndim == 1: testing = np.reshape(testing, (-1, 1)) elif testing.ndim == 1: testing = np.reshape(testing, (1, len(testing))) assert testing.ndim == 2, "testing must be a 2D array" n_testing, D = np.shape(testing) assert D == self.D, "second dimension of testing must be the same as the number of input parameters" if not processes is None: processes = int(processes) assert processes > 0, "number of processes must be a positive integer" if allow_not_fit: predict_method = _gp_predict_default_NaN else: predict_method = self.GPClass.predict if platform.system() == "Windows" or self.use_gpu: predict_vals = [predict_method(gp, testing, unc, deriv, include_nugget) for gp in self.emulators] else: with Pool(processes) as p: predict_vals = p.starmap(predict_method, [(gp, testing, unc, deriv, include_nugget) for gp in self.emulators]) # repackage predictions into numpy arrays predict_unpacked, unc_unpacked, deriv_unpacked = [np.array(t) for t in zip(*predict_vals)] if not unc: unc_unpacked = None if not deriv: deriv_unpacked = None return PredictResult(mean=predict_unpacked, unc=unc_unpacked, deriv=deriv_unpacked)
Python
def _gp_predict_default_NaN(gp, testing, unc, deriv, include_nugget): """Prediction method for GPs that defaults to NaN for unfit GPs Wrapper function for the ``GaussianProcess`` predict method that returns NaN if the GP is not fit. Allows ``MultiOutputGP`` objects that do not have all emulators fit to still return predictions with unfit emulator predictions replaced with NaN. The first argument to this function is the GP that will be used for prediction. All other arguments are the same as the arguments for the ``predict`` method of ``GaussianProcess``. :param gp: The ``GaussianProcess`` object (or related class) for which predictions will be made. :type gp: GaussianProcess :param testing: Array-like object holding the points where predictions will be made. Must have shape ``(n_predict, D)`` or ``(D,)`` (for a single prediction) :type testing: ndarray :param unc: (optional) Flag indicating if the uncertainties are to be computed. If ``False`` the method returns ``None`` in place of the uncertainty array. Default value is ``True``. :type unc: bool :param deriv: (optional) Flag indicating if the derivatives are to be computed. If ``False`` the method returns ``None`` in place of the derivative array. Default value is ``True``. :type deriv: bool :param include_nugget: (optional) Flag indicating if the nugget should be included in the predictive variance. Only relevant if ``unc = True``. Default is ``True``. :type include_nugget: bool :returns: Tuple of numpy arrays holding the predictions, uncertainties, and derivatives, respectively. Predictions and uncertainties have shape ``(n_predict,)`` while the derivatives have shape ``(n_predict, D)``. If the ``unc`` or ``deriv`` flags are set to ``False``, then those arrays are replaced by ``None``. :rtype: tuple """ assert isinstance(gp, GaussianProcessBase) try: return gp.predict(testing, unc, deriv, include_nugget) except ValueError: n_predict = testing.shape[0] if unc: unc_array = np.array([np.nan]*n_predict) else: unc_array = None if deriv: deriv_array = np.reshape(np.array([np.nan]*n_predict*gp.D), (n_predict, gp.D)) else: deriv_array = None return PredictResult(mean =np.array([np.nan]*n_predict), unc=unc_array, deriv=deriv_array)
def _gp_predict_default_NaN(gp, testing, unc, deriv, include_nugget): """Prediction method for GPs that defaults to NaN for unfit GPs Wrapper function for the ``GaussianProcess`` predict method that returns NaN if the GP is not fit. Allows ``MultiOutputGP`` objects that do not have all emulators fit to still return predictions with unfit emulator predictions replaced with NaN. The first argument to this function is the GP that will be used for prediction. All other arguments are the same as the arguments for the ``predict`` method of ``GaussianProcess``. :param gp: The ``GaussianProcess`` object (or related class) for which predictions will be made. :type gp: GaussianProcess :param testing: Array-like object holding the points where predictions will be made. Must have shape ``(n_predict, D)`` or ``(D,)`` (for a single prediction) :type testing: ndarray :param unc: (optional) Flag indicating if the uncertainties are to be computed. If ``False`` the method returns ``None`` in place of the uncertainty array. Default value is ``True``. :type unc: bool :param deriv: (optional) Flag indicating if the derivatives are to be computed. If ``False`` the method returns ``None`` in place of the derivative array. Default value is ``True``. :type deriv: bool :param include_nugget: (optional) Flag indicating if the nugget should be included in the predictive variance. Only relevant if ``unc = True``. Default is ``True``. :type include_nugget: bool :returns: Tuple of numpy arrays holding the predictions, uncertainties, and derivatives, respectively. Predictions and uncertainties have shape ``(n_predict,)`` while the derivatives have shape ``(n_predict, D)``. If the ``unc`` or ``deriv`` flags are set to ``False``, then those arrays are replaced by ``None``. :rtype: tuple """ assert isinstance(gp, GaussianProcessBase) try: return gp.predict(testing, unc, deriv, include_nugget) except ValueError: n_predict = testing.shape[0] if unc: unc_array = np.array([np.nan]*n_predict) else: unc_array = None if deriv: deriv_array = np.reshape(np.array([np.nan]*n_predict*gp.D), (n_predict, gp.D)) else: deriv_array = None return PredictResult(mean =np.array([np.nan]*n_predict), unc=unc_array, deriv=deriv_array)
Python
def ndarray_coerce_type_and_flags(arr): """ Helper function for the GaussianProcessGPU methods that call CUDA/C++ functions (those wrapped by _dense_gpgpu) and that take numpy arrays as arguments. Ensures that an array is of the correct type for this purpose. Takes an array or array-like. Returns an ndarray with the same data, that has: - dtype of float64 - flags.writable - flags.c_contiguous The array returned may reference the original array, be a copy of it, or be newly constructed from the argument. """ arr = np.array(arr, copy=False) # cast into float64, just in case we were given integers and ensure contiguous (C type) arr_contiguous_float64 = np.ascontiguousarray(arr.astype(np.float64, copy=False)) if not arr_contiguous_float64.flags['WRITEABLE']: return np.copy(arr_contiguous_float64) else: return arr_contiguous_float64
def ndarray_coerce_type_and_flags(arr): """ Helper function for the GaussianProcessGPU methods that call CUDA/C++ functions (those wrapped by _dense_gpgpu) and that take numpy arrays as arguments. Ensures that an array is of the correct type for this purpose. Takes an array or array-like. Returns an ndarray with the same data, that has: - dtype of float64 - flags.writable - flags.c_contiguous The array returned may reference the original array, be a copy of it, or be newly constructed from the argument. """ arr = np.array(arr, copy=False) # cast into float64, just in case we were given integers and ensure contiguous (C type) arr_contiguous_float64 = np.ascontiguousarray(arr.astype(np.float64, copy=False)) if not arr_contiguous_float64.flags['WRITEABLE']: return np.copy(arr_contiguous_float64) else: return arr_contiguous_float64
Python
def parse_meanfunc_formula(formula): """ Assuming the formula has already been parsed by the Python MeanFunction interface, we expect it to be in a standard form, with parameters denoted by 'c' and variables denoted by 'x[dim_index]' where dim_index < D. :param formula: string representing the desired mean function formula :type formula: str :returns: Instance of LibGPGPU.ConstMeanFunc or LibGPGPU.PolyMeanFunc implementing formula, or None if the formula could not be parsed, or is not currently implemented in C++ code. :rtype: LibGPGPU.ConstMeanFunc or LibGPGPU.PolyMeanFun or None """ if formula == "c": return LibGPGPU.ConstMeanFunc() else: # see if the formula is a string representation of a number try: m = float(formula) return LibGPGPU.FixedMeanFunc(m) except: pass # if we got here, we hopefully have a parse-able formula terms = formula.split("+") def find_index_and_power(term): variables = re.findall("x\[[\d+]\]",term) if len(variables) == 0: # didn't find a non-const term return None indices = [int(re.search("\[([\d+])\]", v).groups()[0]) for v in variables] if indices.count(indices[0]) != len(indices): raise NotImplementedError("Cross terms, e.g. x[0]*x[1] not implemented in GPU version.") # first guess at the power to which the index is raised is how many times it appears # e.g. if written as x[0]*x[0] power = len(indices) # however, it's also possible to write 'x[0]^2' or even, 'x[0]*x[0]^2' or even 'x[0]^2*x[0]^2' # so look at all the numbers appearing after a '^'. more_powers = re.findall("\^[\d]+",term) more_powers = [int(re.search("\^([\d]+)",p).groups()[0]) for p in more_powers] # now add these on to the original power number # (subtracting one each time, as we already have x^1 implicitly) for p in more_powers: power += p - 1 return [indices[0], power] indices_powers = [] for term in terms: ip = find_index_and_power(term) if ip: indices_powers.append(ip) if len(indices_powers) > 0: return LibGPGPU.PolyMeanFunc(indices_powers) else: return None
def parse_meanfunc_formula(formula): """ Assuming the formula has already been parsed by the Python MeanFunction interface, we expect it to be in a standard form, with parameters denoted by 'c' and variables denoted by 'x[dim_index]' where dim_index < D. :param formula: string representing the desired mean function formula :type formula: str :returns: Instance of LibGPGPU.ConstMeanFunc or LibGPGPU.PolyMeanFunc implementing formula, or None if the formula could not be parsed, or is not currently implemented in C++ code. :rtype: LibGPGPU.ConstMeanFunc or LibGPGPU.PolyMeanFun or None """ if formula == "c": return LibGPGPU.ConstMeanFunc() else: # see if the formula is a string representation of a number try: m = float(formula) return LibGPGPU.FixedMeanFunc(m) except: pass # if we got here, we hopefully have a parse-able formula terms = formula.split("+") def find_index_and_power(term): variables = re.findall("x\[[\d+]\]",term) if len(variables) == 0: # didn't find a non-const term return None indices = [int(re.search("\[([\d+])\]", v).groups()[0]) for v in variables] if indices.count(indices[0]) != len(indices): raise NotImplementedError("Cross terms, e.g. x[0]*x[1] not implemented in GPU version.") # first guess at the power to which the index is raised is how many times it appears # e.g. if written as x[0]*x[0] power = len(indices) # however, it's also possible to write 'x[0]^2' or even, 'x[0]*x[0]^2' or even 'x[0]^2*x[0]^2' # so look at all the numbers appearing after a '^'. more_powers = re.findall("\^[\d]+",term) more_powers = [int(re.search("\^([\d]+)",p).groups()[0]) for p in more_powers] # now add these on to the original power number # (subtracting one each time, as we already have x^1 implicitly) for p in more_powers: power += p - 1 return [indices[0], power] indices_powers = [] for term in terms: ip = find_index_and_power(term) if ip: indices_powers.append(ip) if len(indices_powers) > 0: return LibGPGPU.PolyMeanFunc(indices_powers) else: return None
Python
def inputs(self): """ Returns inputs for the emulator as a numpy array :returns: Emulator inputs, 2D array with shape ``(n, D)`` :rtype: ndarray """ return self._densegp_gpu.inputs()
def inputs(self): """ Returns inputs for the emulator as a numpy array :returns: Emulator inputs, 2D array with shape ``(n, D)`` :rtype: ndarray """ return self._densegp_gpu.inputs()
Python
def targets(self): """ Returns targets for the emulator as a numpy array :returns: Emulator targets, 1D array with shape ``(n,)`` :rtype: ndarray """ return self._densegp_gpu.targets()
def targets(self): """ Returns targets for the emulator as a numpy array :returns: Emulator targets, 1D array with shape ``(n,)`` :rtype: ndarray """ return self._densegp_gpu.targets()
Python
def n(self): """ Returns number of training examples for the emulator :returns: Number of training examples for the emulator object :rtype: int """ return self._densegp_gpu.n()
def n(self): """ Returns number of training examples for the emulator :returns: Number of training examples for the emulator object :rtype: int """ return self._densegp_gpu.n()
Python
def D(self): """ Returns number of inputs (dimensions) for the emulator :returns: Number of inputs for the emulator object :rtype: int """ return self._densegp_gpu.D()
def D(self): """ Returns number of inputs (dimensions) for the emulator :returns: Number of inputs for the emulator object :rtype: int """ return self._densegp_gpu.D()
Python
def n_params(self): """ Returns number of hyperparameters Returns the number of hyperparameters for the emulator. The number depends on the choice of mean function, covariance function, and nugget strategy, and possibly the number of inputs for certain choices of the mean function. :returns: Number of hyperparameters :rtype: int """ return self._densegp_gpu.n_params()+ self.mean.get_n_params(self.inputs)
def n_params(self): """ Returns number of hyperparameters Returns the number of hyperparameters for the emulator. The number depends on the choice of mean function, covariance function, and nugget strategy, and possibly the number of inputs for certain choices of the mean function. :returns: Number of hyperparameters :rtype: int """ return self._densegp_gpu.n_params()+ self.mean.get_n_params(self.inputs)
Python
def L(self): """ Return the lower triangular Cholesky factor. :returns: np.array """ result = np.zeros((self.n, self.n)) self._densegp_gpu.get_cholesky_lower(result) return np.tril(result.transpose())
def L(self): """ Return the lower triangular Cholesky factor. :returns: np.array """ result = np.zeros((self.n, self.n)) self._densegp_gpu.get_cholesky_lower(result) return np.tril(result.transpose())
Python
def fit(self, theta): """ Fits the emulator and sets the parameters. Implements the same interface as :func:`mogp_emulator.GaussianProcess.GaussianProcess.fit` """ theta = ndarray_coerce_type_and_flags(theta) nugget_size = self.nugget if self.nugget_type == "fixed" else 0. self._densegp_gpu.fit(theta, self._nugget_type, nugget_size) if self.nugget_type == "adaptive" or self.nugget_type == "fit": self._nugget = self._densegp_gpu.get_jitter() invQt_result = np.zeros(self.n) self._densegp_gpu.get_invQt(invQt_result) self.invQt = invQt_result self.current_logpost = self.logposterior(theta)
def fit(self, theta): """ Fits the emulator and sets the parameters. Implements the same interface as :func:`mogp_emulator.GaussianProcess.GaussianProcess.fit` """ theta = ndarray_coerce_type_and_flags(theta) nugget_size = self.nugget if self.nugget_type == "fixed" else 0. self._densegp_gpu.fit(theta, self._nugget_type, nugget_size) if self.nugget_type == "adaptive" or self.nugget_type == "fit": self._nugget = self._densegp_gpu.get_jitter() invQt_result = np.zeros(self.n) self._densegp_gpu.get_invQt(invQt_result) self.invQt = invQt_result self.current_logpost = self.logposterior(theta)
Python
def logposterior(self, theta): """ Calculate the negative log-posterior at a particular value of the hyperparameters See :func:`mogp_emulator.GaussianProcess.GaussianProcess.logposterior` :param theta: Value of the hyperparameters. Must be array-like with shape ``(n_params,)`` :type theta: ndarray :returns: negative log-posterior :rtype: float """ if self.theta is None or not np.allclose(theta, self.theta, rtol=1.e-10, atol=1.e-15): self.fit(theta) return self._densegp_gpu.get_logpost()
def logposterior(self, theta): """ Calculate the negative log-posterior at a particular value of the hyperparameters See :func:`mogp_emulator.GaussianProcess.GaussianProcess.logposterior` :param theta: Value of the hyperparameters. Must be array-like with shape ``(n_params,)`` :type theta: ndarray :returns: negative log-posterior :rtype: float """ if self.theta is None or not np.allclose(theta, self.theta, rtol=1.e-10, atol=1.e-15): self.fit(theta) return self._densegp_gpu.get_logpost()
Python
def predict(self, testing, unc=True, deriv=True, include_nugget=True): """ Make a prediction for a set of input vectors for a single set of hyperparameters. This method implements the same interface as :func:`mogp_emulator.GaussianProcess.GaussianProcess.predict` """ if self.theta is None: raise ValueError("hyperparameters have not been fit for this Gaussian Process") testing = ndarray_coerce_type_and_flags(testing) if self.D == 1 and testing.ndim == 1: testing = np.reshape(testing, (-1, 1)) elif testing.ndim == 1: testing = np.reshape(testing, (1, len(testing))) assert testing.ndim == 2 n_testing, D = np.shape(testing) assert D == self.D means = np.zeros(n_testing) if unc: variances = np.zeros(n_testing) for i in range(0, n_testing, self._max_batch_size): self._densegp_gpu.predict_variance_batch( testing[i:i+self._max_batch_size], means[i:i+self._max_batch_size], variances[i:i+self._max_batch_size]) if include_nugget: variances += self._nugget else: for i in range(0, n_testing, self._max_batch_size): self._densegp_gpu.predict_batch( testing[i:i+self._max_batch_size], means[i:i+self._max_batch_size]) variances = None if deriv: deriv_result = np.zeros((n_testing,self.D)) for i in range(0, n_testing, self._max_batch_size): self._densegp_gpu.predict_deriv( testing[i:i+self._max_batch_size], deriv_result[i:i+self._max_batch_size]) else: deriv_result = None return PredictResult(mean=means, unc=variances, deriv=deriv_result)
def predict(self, testing, unc=True, deriv=True, include_nugget=True): """ Make a prediction for a set of input vectors for a single set of hyperparameters. This method implements the same interface as :func:`mogp_emulator.GaussianProcess.GaussianProcess.predict` """ if self.theta is None: raise ValueError("hyperparameters have not been fit for this Gaussian Process") testing = ndarray_coerce_type_and_flags(testing) if self.D == 1 and testing.ndim == 1: testing = np.reshape(testing, (-1, 1)) elif testing.ndim == 1: testing = np.reshape(testing, (1, len(testing))) assert testing.ndim == 2 n_testing, D = np.shape(testing) assert D == self.D means = np.zeros(n_testing) if unc: variances = np.zeros(n_testing) for i in range(0, n_testing, self._max_batch_size): self._densegp_gpu.predict_variance_batch( testing[i:i+self._max_batch_size], means[i:i+self._max_batch_size], variances[i:i+self._max_batch_size]) if include_nugget: variances += self._nugget else: for i in range(0, n_testing, self._max_batch_size): self._densegp_gpu.predict_batch( testing[i:i+self._max_batch_size], means[i:i+self._max_batch_size]) variances = None if deriv: deriv_result = np.zeros((n_testing,self.D)) for i in range(0, n_testing, self._max_batch_size): self._densegp_gpu.predict_deriv( testing[i:i+self._max_batch_size], deriv_result[i:i+self._max_batch_size]) else: deriv_result = None return PredictResult(mean=means, unc=variances, deriv=deriv_result)
Python
def fit_GP_MAP(*args, n_tries=15, theta0=None, method="L-BFGS-B", skip_failures=True, refit=False, **kwargs): """Fit one or more Gaussian Processes by attempting to minimize the negative log-posterior Fits the hyperparameters of one or more Gaussian Processes by attempting to minimize the negative log-posterior multiple times from a given starting location and using a particular minimization method. The best result found among all of the attempts is returned, unless all attempts to fit the parameters result in an error (see below). The arguments to the method can either be an existing ``GaussianProcess`` or ``MultiOutputGP`` instance, or a list of arguments to be passed to the ``__init__`` method of ``GaussianProcess`` or ``MultiOutputGP`` if more than one output is detected. Keyword arguments for creating a new ``GaussianProcess`` or ``MultiOutputGP`` object can either be passed as part of the ``*args`` list or as keywords (if present in ``**kwargs``, they will be extracted and passed separately to the ``__init__`` method). If the method encounters an overflow (this can result because the parameter values stored are the logarithm of the actual hyperparameters to enforce positivity) or a linear algebra error (occurs when the covariance matrix cannot be inverted, even with additional noise added along the diagonal if adaptive noise was selected), the iteration is skipped. If all attempts to find optimal hyperparameters result in an error, then the emulator is skipped and the parameters are reset to ``None``. By default, a warning will be printed to the console if this occurs for ``MultiOutputGP`` fitting, while an error will be raise for ``GaussianProcess`` fitting. This behavior can be changed to raise an error for ``MultiOutputGP`` fitting by passing the kwarg ``skip_failures=False``. This default behavior is chosen because ``MultiOutputGP`` fitting is often done in a situation where human review of all fit emulators is not possible, so the fitting routine skips over failures and then flags those that failed for further review. For ``MultiOutputGP`` fitting, by default the routine assumes that only GPs that currently do not have hyperparameters fit need to be fit. This behavior is controlled by the ``refit`` keyword, which is ``False`` by default. To fit all emulators regardless of their current fitting status, pass ``refit=True``. The ``refit`` argument has no effect on fitting of single ``GaussianProcess`` objects -- standard ``GaussianProcess`` objects will be fit regardless of the current value of the hyperparameters. The ``theta0`` parameter is the point at which the first iteration will start. If more than one attempt is made, subsequent attempts will use random starting points. If you are fitting Multiple Outputs, then this argument can take any of the following forms: (1) None (random start points for all emulators), (2) a list of numpy arrays or ``NoneTypes`` with length ``n_emulators``, (3) a numpy array of shape ``(n_params,)`` or ``(n_emulators, n_params)`` which with either use the same start point for all emulators or the specified start point for all emulators. Note that if you us a numpy array, all emulators must have the same number of parameters, while using a list allows more flexibility. The user can specify the details of the minimization method, using any of the gradient-based optimizers available in ``scipy.optimize.minimize``. Any additional parameters beyond the method specification can be passed as keyword arguments. The function returns a fit ``GaussianProcess`` or ``MultiOutputGP`` instance, either the original one passed to the function, or the new one created from the included arguments. :param ``*args``: Either a single ``GaussianProcess`` or ``MultiOutputGP`` instance, or arguments to be passed to the ``__init__`` method when creating a new ``GaussianProcess`` or ``MultiOutputGP`` instance. :param n_tries: Number of attempts to minimize the negative log-posterior function. Must be a positive integer (optional, default is 15) :type n_tries: int :param theta0: Initial starting point for the first iteration. If present, must be array-like with shape ``(n_params,)`` based on the specific ``GaussianProcess`` being fit. If a ``MultiOutputGP`` is being fit it must be a list of length ``n_emulators`` with each entry as either ``None`` or a numpy array of shape ``(n_params,)``, or a numpy array with shape ``(n_emulators, n_params)`` (note that if the various emulators have different numbers of parameters, the numpy array option will not work). If ``None`` is given, then a random value is chosen. (Default is ``None``) :type theta0: None or ndarray :param method: Minimization method to be used. Can be any gradient-based optimization method available in ``scipy.optimize.minimize``. (Default is ``'L-BFGS-B'``) :type method: str :param skip_failures: Boolean controlling how to handle failures in ``MultiOutputGP`` fitting. If set to ``True``, emulator fits will fail silently without raising an error and provide information on the emulators that failed and the end of fitting. If ``False``, any failed fit will raise a ``RuntimeError``. Has no effect on fitting a single ``GaussianProcess``, which will always raise an error. Optional, default is ``True``. :type skip_failures: bool :param refit: Boolean indicating if previously fit emulators for ``MultiOutputGP`` objects should be fit again. Optional, default is ``False``. Has no effect on ``GaussianProcess`` fitting, which will be fit irrespective of the current hyperparameter values. :type refit: bool :param ``**kwargs``: Additional keyword arguments to be passed to ``GaussianProcess.__init__``, ``MultiOutputGP.__init__``, or the minimization routine. Relevant parameters for the GP classes are automatically split out from those used in the minimization function. See available parameters in the corresponding functions for details. :returns: Fit GP or Multi-Output GP instance :rtype: GaussianProcess or MultiOutputGP """ if len(args) == 1: gp = args[0] if isinstance(gp, MultiOutputGP): gp = _fit_MOGP_MAP(gp, n_tries, theta0, method, refit, **kwargs) elif isinstance(gp, GaussianProcessBase): gp = _fit_single_GP_MAP(gp, n_tries, theta0, method, **kwargs) else: raise TypeError("single arg to fit_GP_MAP must be a GaussianProcess or MultiOutputGP instance") elif len(args) < 2: raise TypeError("missing required inputs/targets arrays to GaussianProcess") else: gp_kwargs = {} for key in ["mean", "kernel", "priors", "nugget", "inputdict", "use_patsy"]: if key in kwargs: gp_kwargs[key] = kwargs[key] del kwargs[key] try: gp = GaussianProcess(*args, **gp_kwargs) gp = _fit_single_GP_MAP(gp, n_tries, theta0, method, **kwargs) except AssertionError: try: gp = MultiOutputGP(*args, **gp_kwargs) gp = _fit_MOGP_MAP(gp, n_tries, theta0, method, **kwargs) except AssertionError: raise ValueError("Bad values for *args in fit_GP_MAP") if isinstance(gp, GaussianProcessBase): if gp.theta is None: raise RuntimeError("GP fitting failed") else: if len(gp.get_indices_not_fit()) > 0: failure_string = "Fitting failed for emulators {}".format( gp.get_indices_not_fit()) if skip_failures: print(failure_string) else: raise RuntimeError(failure_string) return gp
def fit_GP_MAP(*args, n_tries=15, theta0=None, method="L-BFGS-B", skip_failures=True, refit=False, **kwargs): """Fit one or more Gaussian Processes by attempting to minimize the negative log-posterior Fits the hyperparameters of one or more Gaussian Processes by attempting to minimize the negative log-posterior multiple times from a given starting location and using a particular minimization method. The best result found among all of the attempts is returned, unless all attempts to fit the parameters result in an error (see below). The arguments to the method can either be an existing ``GaussianProcess`` or ``MultiOutputGP`` instance, or a list of arguments to be passed to the ``__init__`` method of ``GaussianProcess`` or ``MultiOutputGP`` if more than one output is detected. Keyword arguments for creating a new ``GaussianProcess`` or ``MultiOutputGP`` object can either be passed as part of the ``*args`` list or as keywords (if present in ``**kwargs``, they will be extracted and passed separately to the ``__init__`` method). If the method encounters an overflow (this can result because the parameter values stored are the logarithm of the actual hyperparameters to enforce positivity) or a linear algebra error (occurs when the covariance matrix cannot be inverted, even with additional noise added along the diagonal if adaptive noise was selected), the iteration is skipped. If all attempts to find optimal hyperparameters result in an error, then the emulator is skipped and the parameters are reset to ``None``. By default, a warning will be printed to the console if this occurs for ``MultiOutputGP`` fitting, while an error will be raise for ``GaussianProcess`` fitting. This behavior can be changed to raise an error for ``MultiOutputGP`` fitting by passing the kwarg ``skip_failures=False``. This default behavior is chosen because ``MultiOutputGP`` fitting is often done in a situation where human review of all fit emulators is not possible, so the fitting routine skips over failures and then flags those that failed for further review. For ``MultiOutputGP`` fitting, by default the routine assumes that only GPs that currently do not have hyperparameters fit need to be fit. This behavior is controlled by the ``refit`` keyword, which is ``False`` by default. To fit all emulators regardless of their current fitting status, pass ``refit=True``. The ``refit`` argument has no effect on fitting of single ``GaussianProcess`` objects -- standard ``GaussianProcess`` objects will be fit regardless of the current value of the hyperparameters. The ``theta0`` parameter is the point at which the first iteration will start. If more than one attempt is made, subsequent attempts will use random starting points. If you are fitting Multiple Outputs, then this argument can take any of the following forms: (1) None (random start points for all emulators), (2) a list of numpy arrays or ``NoneTypes`` with length ``n_emulators``, (3) a numpy array of shape ``(n_params,)`` or ``(n_emulators, n_params)`` which with either use the same start point for all emulators or the specified start point for all emulators. Note that if you us a numpy array, all emulators must have the same number of parameters, while using a list allows more flexibility. The user can specify the details of the minimization method, using any of the gradient-based optimizers available in ``scipy.optimize.minimize``. Any additional parameters beyond the method specification can be passed as keyword arguments. The function returns a fit ``GaussianProcess`` or ``MultiOutputGP`` instance, either the original one passed to the function, or the new one created from the included arguments. :param ``*args``: Either a single ``GaussianProcess`` or ``MultiOutputGP`` instance, or arguments to be passed to the ``__init__`` method when creating a new ``GaussianProcess`` or ``MultiOutputGP`` instance. :param n_tries: Number of attempts to minimize the negative log-posterior function. Must be a positive integer (optional, default is 15) :type n_tries: int :param theta0: Initial starting point for the first iteration. If present, must be array-like with shape ``(n_params,)`` based on the specific ``GaussianProcess`` being fit. If a ``MultiOutputGP`` is being fit it must be a list of length ``n_emulators`` with each entry as either ``None`` or a numpy array of shape ``(n_params,)``, or a numpy array with shape ``(n_emulators, n_params)`` (note that if the various emulators have different numbers of parameters, the numpy array option will not work). If ``None`` is given, then a random value is chosen. (Default is ``None``) :type theta0: None or ndarray :param method: Minimization method to be used. Can be any gradient-based optimization method available in ``scipy.optimize.minimize``. (Default is ``'L-BFGS-B'``) :type method: str :param skip_failures: Boolean controlling how to handle failures in ``MultiOutputGP`` fitting. If set to ``True``, emulator fits will fail silently without raising an error and provide information on the emulators that failed and the end of fitting. If ``False``, any failed fit will raise a ``RuntimeError``. Has no effect on fitting a single ``GaussianProcess``, which will always raise an error. Optional, default is ``True``. :type skip_failures: bool :param refit: Boolean indicating if previously fit emulators for ``MultiOutputGP`` objects should be fit again. Optional, default is ``False``. Has no effect on ``GaussianProcess`` fitting, which will be fit irrespective of the current hyperparameter values. :type refit: bool :param ``**kwargs``: Additional keyword arguments to be passed to ``GaussianProcess.__init__``, ``MultiOutputGP.__init__``, or the minimization routine. Relevant parameters for the GP classes are automatically split out from those used in the minimization function. See available parameters in the corresponding functions for details. :returns: Fit GP or Multi-Output GP instance :rtype: GaussianProcess or MultiOutputGP """ if len(args) == 1: gp = args[0] if isinstance(gp, MultiOutputGP): gp = _fit_MOGP_MAP(gp, n_tries, theta0, method, refit, **kwargs) elif isinstance(gp, GaussianProcessBase): gp = _fit_single_GP_MAP(gp, n_tries, theta0, method, **kwargs) else: raise TypeError("single arg to fit_GP_MAP must be a GaussianProcess or MultiOutputGP instance") elif len(args) < 2: raise TypeError("missing required inputs/targets arrays to GaussianProcess") else: gp_kwargs = {} for key in ["mean", "kernel", "priors", "nugget", "inputdict", "use_patsy"]: if key in kwargs: gp_kwargs[key] = kwargs[key] del kwargs[key] try: gp = GaussianProcess(*args, **gp_kwargs) gp = _fit_single_GP_MAP(gp, n_tries, theta0, method, **kwargs) except AssertionError: try: gp = MultiOutputGP(*args, **gp_kwargs) gp = _fit_MOGP_MAP(gp, n_tries, theta0, method, **kwargs) except AssertionError: raise ValueError("Bad values for *args in fit_GP_MAP") if isinstance(gp, GaussianProcessBase): if gp.theta is None: raise RuntimeError("GP fitting failed") else: if len(gp.get_indices_not_fit()) > 0: failure_string = "Fitting failed for emulators {}".format( gp.get_indices_not_fit()) if skip_failures: print(failure_string) else: raise RuntimeError(failure_string) return gp
Python
def _fit_single_GP_MAP(gp, n_tries=15, theta0=None, method='L-BFGS-B', **kwargs): """Fit hyperparameters using MAP for a single GP Returns a single GP object that has its hyperparameters fit to the MAP value. Accepts keyword arguments passed to scipy's minimization routine. """ assert isinstance(gp, GaussianProcessBase) n_tries = int(n_tries) assert n_tries > 0, "number of attempts must be positive" np.seterr(divide = 'raise', over = 'raise', invalid = 'raise') logpost_values = [] theta_values = [] theta_startvals = 5.*(np.random.rand(n_tries, gp.n_params) - 0.5) if not theta0 is None: theta0 = np.array(theta0) assert theta0.shape == (gp.n_params,), "theta0 must be a 1D array with length n_params" theta_startvals[0,:] = theta0 for theta in theta_startvals: try: min_dict = minimize(gp.logposterior, theta, method = method, jac = gp.logpost_deriv, options = kwargs) min_theta = min_dict['x'] min_logpost = min_dict['fun'] logpost_values.append(min_logpost) theta_values.append(min_theta) except LinAlgError: print("Matrix not positive definite, skipping this iteration") except FloatingPointError: print("Floating point error in optimization routine, skipping this iteration") if len(logpost_values) == 0: print("Minimization routine failed to return a value") gp.theta = None else: logpost_values = np.array(logpost_values) idx = np.argmin(logpost_values) gp.fit(theta_values[idx]) return gp
def _fit_single_GP_MAP(gp, n_tries=15, theta0=None, method='L-BFGS-B', **kwargs): """Fit hyperparameters using MAP for a single GP Returns a single GP object that has its hyperparameters fit to the MAP value. Accepts keyword arguments passed to scipy's minimization routine. """ assert isinstance(gp, GaussianProcessBase) n_tries = int(n_tries) assert n_tries > 0, "number of attempts must be positive" np.seterr(divide = 'raise', over = 'raise', invalid = 'raise') logpost_values = [] theta_values = [] theta_startvals = 5.*(np.random.rand(n_tries, gp.n_params) - 0.5) if not theta0 is None: theta0 = np.array(theta0) assert theta0.shape == (gp.n_params,), "theta0 must be a 1D array with length n_params" theta_startvals[0,:] = theta0 for theta in theta_startvals: try: min_dict = minimize(gp.logposterior, theta, method = method, jac = gp.logpost_deriv, options = kwargs) min_theta = min_dict['x'] min_logpost = min_dict['fun'] logpost_values.append(min_logpost) theta_values.append(min_theta) except LinAlgError: print("Matrix not positive definite, skipping this iteration") except FloatingPointError: print("Floating point error in optimization routine, skipping this iteration") if len(logpost_values) == 0: print("Minimization routine failed to return a value") gp.theta = None else: logpost_values = np.array(logpost_values) idx = np.argmin(logpost_values) gp.fit(theta_values[idx]) return gp
Python
def _fit_MOGP_MAP(gp, n_tries=15, theta0=None, method='L-BFGS-B', refit=False, **kwargs): """Fit hyperparameters using MAP for multiple GPs in parallel Uses Python Multiprocessing to fit GPs in parallel by calling the above routine for a single GP for each of the emulators in the MOGP class. Returns a MultiOutputGP object where all emulators have been fit to the MAP value. Routine only fits GPs that have not previously been fit (indicated by the hyperparameters being set to ``None`` by default. This can be overridden by passing ``refit=True``. Accepts a ``processes`` argument (integer or None) as a keyword to control the number of subprocesses used to fit the individual GPs in parallel. Must be positive. Default is ``None``. """ assert isinstance(gp, MultiOutputGP) try: processes = kwargs['processes'] del kwargs['processes'] except KeyError: processes = None assert int(n_tries) > 0, "n_tries must be a positive integer" if theta0 is None: theta0 = [ None ]*gp.n_emulators else: if isinstance(theta0, np.ndarray): if theta0.ndim == 1: theta0 = [theta0]*gp.n_emulators else: assert theta0.ndim == 2, "theta0 must be a 1D or 2D array" assert theta0.shape[0] == gp.n_emulators, "bad shape for fitting starting points" elif isinstance(theta0, list): assert len(theta0) == gp.n_emulators, "theta0 must be a list of length n_emulators" if not processes is None: processes = int(processes) assert processes > 0, "number of processes must be positive" n_tries = int(n_tries) if refit: emulators_to_fit = gp.emulators indices_to_fit = list(range(len(gp.emulators))) thetavals = theta0 else: indices_to_fit = gp.get_indices_not_fit() emulators_to_fit = gp.get_emulators_not_fit() thetavals = [ theta0[idx] for idx in indices_to_fit] if platform.system() == "Windows" or gp.use_gpu: fit_MOGP = [fit_GP_MAP(emulator, n_tries=n_tries, theta0=t0, method=method, **kwargs) for (emulator, t0) in zip(emulators_to_fit, thetavals)] else: with Pool(processes) as p: fit_MOGP = p.starmap(partial(_fit_single_GP_MAP_bound, n_tries=n_tries, method=method, **kwargs), [(emulator, t0) for (emulator, t0) in zip(emulators_to_fit, thetavals)]) for (idx, em) in zip(indices_to_fit, fit_MOGP): gp.emulators[idx] = em return gp
def _fit_MOGP_MAP(gp, n_tries=15, theta0=None, method='L-BFGS-B', refit=False, **kwargs): """Fit hyperparameters using MAP for multiple GPs in parallel Uses Python Multiprocessing to fit GPs in parallel by calling the above routine for a single GP for each of the emulators in the MOGP class. Returns a MultiOutputGP object where all emulators have been fit to the MAP value. Routine only fits GPs that have not previously been fit (indicated by the hyperparameters being set to ``None`` by default. This can be overridden by passing ``refit=True``. Accepts a ``processes`` argument (integer or None) as a keyword to control the number of subprocesses used to fit the individual GPs in parallel. Must be positive. Default is ``None``. """ assert isinstance(gp, MultiOutputGP) try: processes = kwargs['processes'] del kwargs['processes'] except KeyError: processes = None assert int(n_tries) > 0, "n_tries must be a positive integer" if theta0 is None: theta0 = [ None ]*gp.n_emulators else: if isinstance(theta0, np.ndarray): if theta0.ndim == 1: theta0 = [theta0]*gp.n_emulators else: assert theta0.ndim == 2, "theta0 must be a 1D or 2D array" assert theta0.shape[0] == gp.n_emulators, "bad shape for fitting starting points" elif isinstance(theta0, list): assert len(theta0) == gp.n_emulators, "theta0 must be a list of length n_emulators" if not processes is None: processes = int(processes) assert processes > 0, "number of processes must be positive" n_tries = int(n_tries) if refit: emulators_to_fit = gp.emulators indices_to_fit = list(range(len(gp.emulators))) thetavals = theta0 else: indices_to_fit = gp.get_indices_not_fit() emulators_to_fit = gp.get_emulators_not_fit() thetavals = [ theta0[idx] for idx in indices_to_fit] if platform.system() == "Windows" or gp.use_gpu: fit_MOGP = [fit_GP_MAP(emulator, n_tries=n_tries, theta0=t0, method=method, **kwargs) for (emulator, t0) in zip(emulators_to_fit, thetavals)] else: with Pool(processes) as p: fit_MOGP = p.starmap(partial(_fit_single_GP_MAP_bound, n_tries=n_tries, method=method, **kwargs), [(emulator, t0) for (emulator, t0) in zip(emulators_to_fit, thetavals)]) for (idx, em) in zip(indices_to_fit, fit_MOGP): gp.emulators[idx] = em return gp
Python
def _check_cholesky_inputs(A): """ Check inputs to cholesky routines This function is used by both specialized Cholesky routines to check inputs. It verifies that the input is a 2D square matrix and that all diagonal elements are positive (a necessary but not sufficient condition for positive definiteness). If these checks pass, it returns the input as a numpy array. :param A: The matrix to be inverted as an array of shape ``(n,n)``. Must be a symmetric positive definite matrix. :type A: ndarray or similar :returns: The matrix to be inverted as an array of shape ``(n,n)``. Must be a symmetric positive definite matrix. :rtype: ndarray """ A = np.array(A) assert A.ndim == 2, "A must have shape (n,n)" assert A.shape[0] == A.shape[1], "A must have shape (n,n)" np.testing.assert_allclose(A.T, A) diagA = np.diag(A) if np.any(diagA <= 0.): raise linalg.LinAlgError("not pd: non-positive diagonal elements") return A
def _check_cholesky_inputs(A): """ Check inputs to cholesky routines This function is used by both specialized Cholesky routines to check inputs. It verifies that the input is a 2D square matrix and that all diagonal elements are positive (a necessary but not sufficient condition for positive definiteness). If these checks pass, it returns the input as a numpy array. :param A: The matrix to be inverted as an array of shape ``(n,n)``. Must be a symmetric positive definite matrix. :type A: ndarray or similar :returns: The matrix to be inverted as an array of shape ``(n,n)``. Must be a symmetric positive definite matrix. :rtype: ndarray """ A = np.array(A) assert A.ndim == 2, "A must have shape (n,n)" assert A.shape[0] == A.shape[1], "A must have shape (n,n)" np.testing.assert_allclose(A.T, A) diagA = np.diag(A) if np.any(diagA <= 0.): raise linalg.LinAlgError("not pd: non-positive diagonal elements") return A
Python
def jit_cholesky(A, maxtries = 5): """ Performs Jittered Cholesky Decomposition Performs a Jittered Cholesky decomposition, adding noise to the diagonal of the matrix as needed in order to ensure that the matrix can be inverted. Adapted from code in GPy. On occasion, the matrix that needs to be inverted in fitting a GP is nearly singular. This arises when the training samples are very close to one another, and can be averted by adding a noise term to the diagonal of the matrix. This routine performs an exact Cholesky decomposition if it can be done, and if it cannot it successively adds noise to the diagonal (starting with 1.e-6 times the mean of the diagonal and incrementing by a factor of 10 each time) until the matrix can be decomposed or the algorithm reaches ``maxtries`` attempts. The routine returns the lower triangular matrix and the amount of noise necessary to stabilize the decomposition. :param A: The matrix to be inverted as an array of shape ``(n,n)``. Must be a symmetric positive definite matrix. :type A: ndarray :param maxtries: (optional) Maximum allowable number of attempts to stabilize the Cholesky Decomposition. Must be a positive integer (default = 5) :type maxtries: int :returns: Lower-triangular factored matrix (shape ``(n,n)`` and the noise that was added to the diagonal to achieve that result. :rtype: tuple containing an ndarray and a float """ A = _check_cholesky_inputs(A) assert int(maxtries) > 0, "maxtries must be a positive integer" A = np.ascontiguousarray(A) L, info = lapack.dpotrf(A, lower = 1) if info == 0: return L, 0. else: diagA = np.diag(A) jitter = diagA.mean() * 1e-6 num_tries = 1 while num_tries <= maxtries and np.isfinite(jitter): try: L = linalg.cholesky(A + np.eye(A.shape[0]) * jitter, lower=True) return L, jitter except: jitter *= 10 finally: num_tries += 1 raise linalg.LinAlgError("not positive definite, even with jitter.") return L, jitter
def jit_cholesky(A, maxtries = 5): """ Performs Jittered Cholesky Decomposition Performs a Jittered Cholesky decomposition, adding noise to the diagonal of the matrix as needed in order to ensure that the matrix can be inverted. Adapted from code in GPy. On occasion, the matrix that needs to be inverted in fitting a GP is nearly singular. This arises when the training samples are very close to one another, and can be averted by adding a noise term to the diagonal of the matrix. This routine performs an exact Cholesky decomposition if it can be done, and if it cannot it successively adds noise to the diagonal (starting with 1.e-6 times the mean of the diagonal and incrementing by a factor of 10 each time) until the matrix can be decomposed or the algorithm reaches ``maxtries`` attempts. The routine returns the lower triangular matrix and the amount of noise necessary to stabilize the decomposition. :param A: The matrix to be inverted as an array of shape ``(n,n)``. Must be a symmetric positive definite matrix. :type A: ndarray :param maxtries: (optional) Maximum allowable number of attempts to stabilize the Cholesky Decomposition. Must be a positive integer (default = 5) :type maxtries: int :returns: Lower-triangular factored matrix (shape ``(n,n)`` and the noise that was added to the diagonal to achieve that result. :rtype: tuple containing an ndarray and a float """ A = _check_cholesky_inputs(A) assert int(maxtries) > 0, "maxtries must be a positive integer" A = np.ascontiguousarray(A) L, info = lapack.dpotrf(A, lower = 1) if info == 0: return L, 0. else: diagA = np.diag(A) jitter = diagA.mean() * 1e-6 num_tries = 1 while num_tries <= maxtries and np.isfinite(jitter): try: L = linalg.cholesky(A + np.eye(A.shape[0]) * jitter, lower=True) return L, jitter except: jitter *= 10 finally: num_tries += 1 raise linalg.LinAlgError("not positive definite, even with jitter.") return L, jitter
Python
def pivot_cholesky(A): """ Pivoted cholesky decomposition routine Performs a pivoted Cholesky decomposition on a square, potentially singular (i.e. can have collinear rows) covariance matrix. Rows and columns are interchanged such that the diagonal entries of the factorized matrix decrease from the first entry to the last entry. Any collinear rows are skipped, and the diagonal entries for those rows are instead replaced by a decreasing entry. This allows the factorized matrix to still be used to compute the log determinant in the same way, which is required to compute the marginal log likelihood/posterior in the GP fitting. Returns the factorized matrix, and an ordered array of integer indices indicating the pivoting order. Raises an error if the decomposition fails. :param A: The matrix to be inverted as an array of shape ``(n,n)``. Must be a symmetric matrix (though can be singular). :type A: ndarray :returns: Lower-triangular factored matrix (shape ``(n,n)`` an an array of integers indicating the pivoting order needed to produce the factorization. :rtype: tuple containing an ndarray of shape `(n,n)` of floats and a ndarray of shape `(n,)` of integers. """ A = _check_cholesky_inputs(A) A = np.ascontiguousarray(A) L, P, rank, info = lapack.dpstrf(A, lower = 1) L = np.tril(L) if info < 0: raise linalg.LinAlgError("Illegal value in covariance matrix") n = A.shape[0] idx = np.arange(rank, n) divs = np.cumprod(np.arange(rank+1, n+1, dtype=np.float64)) L[idx, idx] = L[rank-1, rank-1]/divs return L, P-1
def pivot_cholesky(A): """ Pivoted cholesky decomposition routine Performs a pivoted Cholesky decomposition on a square, potentially singular (i.e. can have collinear rows) covariance matrix. Rows and columns are interchanged such that the diagonal entries of the factorized matrix decrease from the first entry to the last entry. Any collinear rows are skipped, and the diagonal entries for those rows are instead replaced by a decreasing entry. This allows the factorized matrix to still be used to compute the log determinant in the same way, which is required to compute the marginal log likelihood/posterior in the GP fitting. Returns the factorized matrix, and an ordered array of integer indices indicating the pivoting order. Raises an error if the decomposition fails. :param A: The matrix to be inverted as an array of shape ``(n,n)``. Must be a symmetric matrix (though can be singular). :type A: ndarray :returns: Lower-triangular factored matrix (shape ``(n,n)`` an an array of integers indicating the pivoting order needed to produce the factorization. :rtype: tuple containing an ndarray of shape `(n,n)` of floats and a ndarray of shape `(n,)` of integers. """ A = _check_cholesky_inputs(A) A = np.ascontiguousarray(A) L, P, rank, info = lapack.dpstrf(A, lower = 1) L = np.tril(L) if info < 0: raise linalg.LinAlgError("Illegal value in covariance matrix") n = A.shape[0] idx = np.arange(rank, n) divs = np.cumprod(np.arange(rank+1, n+1, dtype=np.float64)) L[idx, idx] = L[rank-1, rank-1]/divs return L, P-1
Python
def _pivot_transpose(P): """ Invert a pivot matrix by taking its transpose Inverts the pivot matrix by taking its transpose. Since the pivot matrix is represented by an array of integers(to make swapping the rows more simple by using numpy indexing), this is done by creating the equivalent array of integers representing the transpose. Input must be a list of non-negative integers, where each integer up to the length of the array appears exactly once. Otherwise this function will raise an exception. :param P: Input pivot matrix, represented as an array of non-negative integers. :type P: ndarray containing integers :returns: Transpose of the pivot matrix, represented as an array of non-negative integers. :rtype: ndarray containing integers. """ assert np.array(P).ndim == 1, "pivot matrix must be a list of integers" try: return np.array([np.where(P == idx)[0][0] for idx in range(len(P))], dtype=np.int32) except IndexError: raise ValueError("Bad values for pivot matrix input to pivot_transpose")
def _pivot_transpose(P): """ Invert a pivot matrix by taking its transpose Inverts the pivot matrix by taking its transpose. Since the pivot matrix is represented by an array of integers(to make swapping the rows more simple by using numpy indexing), this is done by creating the equivalent array of integers representing the transpose. Input must be a list of non-negative integers, where each integer up to the length of the array appears exactly once. Otherwise this function will raise an exception. :param P: Input pivot matrix, represented as an array of non-negative integers. :type P: ndarray containing integers :returns: Transpose of the pivot matrix, represented as an array of non-negative integers. :rtype: ndarray containing integers. """ assert np.array(P).ndim == 1, "pivot matrix must be a list of integers" try: return np.array([np.where(P == idx)[0][0] for idx in range(len(P))], dtype=np.int32) except IndexError: raise ValueError("Bad values for pivot matrix input to pivot_transpose")
Python
def pivot_cho_solve(L, P, b): """Solve a Linear System factorized using Pivoted Cholesky Decomposition Solve a system :math:`{Ax = b}` where the matrix has been factorized using the `pivot_cholesky` function. Can also solve a system which has been factorized using the regular Cholesky decomposition routine if `P` is the set of integers from 0 to the length of the linear system. The routine rearranges the order of the RHS based on the pivoting order that was used, and then rearranges back to the original ordering of the RHS when returning the array. :param L: Factorized :math:`{A}` square matrix using pivoting. Assumes lower triangular factorization is used. :type L: ndarray :param P: Pivot matrix, expressed as a list or 1D array of integers that is the same length as `L`. Must contain only nonzero integers as entries, with each number up to the length of the array appearing exactly once. :type P: list or ndarray :param b: Right hand side to be solved. Can be any array that satisfies the rules of the scipy `cho_solve` routine. :type b: ndarray :returns: Solution to the appropriate linear system as a ndarray. :rtype: ndarray """ assert len(P) == L.shape[0], "Length of pivot matrix must match linear system" try: return cho_solve((L, True), b[P])[_pivot_transpose(P)] except (IndexError, ValueError): raise ValueError("Bad values for pivot matrix in pivot_cho_solve")
def pivot_cho_solve(L, P, b): """Solve a Linear System factorized using Pivoted Cholesky Decomposition Solve a system :math:`{Ax = b}` where the matrix has been factorized using the `pivot_cholesky` function. Can also solve a system which has been factorized using the regular Cholesky decomposition routine if `P` is the set of integers from 0 to the length of the linear system. The routine rearranges the order of the RHS based on the pivoting order that was used, and then rearranges back to the original ordering of the RHS when returning the array. :param L: Factorized :math:`{A}` square matrix using pivoting. Assumes lower triangular factorization is used. :type L: ndarray :param P: Pivot matrix, expressed as a list or 1D array of integers that is the same length as `L`. Must contain only nonzero integers as entries, with each number up to the length of the array appearing exactly once. :type P: list or ndarray :param b: Right hand side to be solved. Can be any array that satisfies the rules of the scipy `cho_solve` routine. :type b: ndarray :returns: Solution to the appropriate linear system as a ndarray. :rtype: ndarray """ assert len(P) == L.shape[0], "Length of pivot matrix must match linear system" try: return cho_solve((L, True), b[P])[_pivot_transpose(P)] except (IndexError, ValueError): raise ValueError("Bad values for pivot matrix in pivot_cho_solve")
Python
def recursive_var_search(v, variable_list): """ Add all variables to var_list, recursively. v is the json variable that will be searched recursively. each element in variable_list will be a 3-tuple consisting of: * full_name * name * value """ if isinstance(v['value'], list): for v2 in v['value']: # print("val:", json.dumps(val, indent=2)) recursive_var_search(v2, variable_list) # var_names_to_tokens[val['full_name']] = val['value'] else: try: variable_list.append((v['full_name'], v['name'], v['value'])) except BaseException: assert False, "Json parsing error for variable %s" % ( json.dumps(v, indent=2))
def recursive_var_search(v, variable_list): """ Add all variables to var_list, recursively. v is the json variable that will be searched recursively. each element in variable_list will be a 3-tuple consisting of: * full_name * name * value """ if isinstance(v['value'], list): for v2 in v['value']: # print("val:", json.dumps(val, indent=2)) recursive_var_search(v2, variable_list) # var_names_to_tokens[val['full_name']] = val['value'] else: try: variable_list.append((v['full_name'], v['name'], v['value'])) except BaseException: assert False, "Json parsing error for variable %s" % ( json.dumps(v, indent=2))
Python
def convert_dialog_json_to_ner_tagged_examples(d, dialog_id, api_endpoints=[ "find_place", "places_nearby"], param_name="query", do_predict=False): ''' Converts a json to [possibly] multiple ner-tagged examples. Args: d - json representing a single dialog context dialog_id - string identifier for the dialog Example ner-tagged example format: -DOCSTART-log_518.json:::::hawker [INITIAL] 0 [VAR_TYPE] 0 source address 0 [VAR_VALUE] 0 150 North Bridge Road, Singapore 179100 0 [VAR_TYPE] 0 source latitude 0 [VAR_VALUE] 0 1.293076 0 [VAR_TYPE] 0 source longitude 0 [VAR_VALUE] 0 103.85206770000002 0 [USER] 0 Hi 0 , 0 is 0 there 0 a 0 hawker 0 centre 0 nearby 0 ? 0 [USER] 0 Hi 0 , 0 is 0 there 0 a 0 nearby 0 hawker 1 center 0 ? 0 [AGENT] 0 Sure, give me a moment. 0 [API] 0 places nearby 0 [API_PARAM_NAME] 0 query 0 ''' output_examples = list() all_tokens_and_labels = list() var_name_to_token_index = dict() var_names_to_tokens = dict() # Add initial variables initial_variables = d['initial_variables']['variables'] if isinstance( d['initial_variables'], dict) else d['initial_variables'] all_tokens_and_labels.append( [SPECIAL_SEPARATORS['initial_variables'], NOCLICK_LABEL]) for var in initial_variables: var_names_to_tokens[var['full_name']] = str(var['value']) all_tokens_and_labels.append( [SPECIAL_SEPARATORS["var_type"], NOCLICK_LABEL]) all_tokens_and_labels.append( [remove_underscore(var['full_name']), NOCLICK_LABEL]) all_tokens_and_labels.append( [SPECIAL_SEPARATORS["var_value"], NOCLICK_LABEL]) # Make token index to relabel correspond to the [VAR_VALUE] token var_name_to_token_index[var['full_name']] = len( all_tokens_and_labels) - 1 all_tokens_and_labels.append([var['value'], NOCLICK_LABEL]) for e in d["events"]: if e['event_type'] == "user_utterance": all_tokens_and_labels.append( [SPECIAL_SEPARATORS['user_utterance'], NOCLICK_LABEL]) # For user utterances, do not add user variable names (e.g. u1_2) # as tokens. for var in e['variables']: all_tokens_and_labels.append([var['value'], NOCLICK_LABEL]) var_name_to_token_index[var['full_name']] = len( all_tokens_and_labels) - 1 var_names_to_tokens[var['full_name']] = var['value'] elif e['event_type'] == "agent_utterance": all_tokens_and_labels.append( [SPECIAL_SEPARATORS['agent_utterance'], NOCLICK_LABEL]) all_tokens_and_labels.append([e['utterance'], NOCLICK_LABEL]) elif e['event_type'] == "api_call": # First, COPY all tokens and labels, # and output an example if the endpoint and input parameter match. if e['endpoint'] in api_endpoints: found_matching_param = False gold_params = None gold_value = "__DUMMY__" copy_all_tokens_and_labels = deepcopy(all_tokens_and_labels) # Append something like: # [API] 0 # find_place 0 copy_all_tokens_and_labels.extend([ [SPECIAL_SEPARATORS['api_call'], NOCLICK_LABEL], [remove_underscore(e['endpoint']), NOCLICK_LABEL] ]) # Append something like: # [API_PARAM_NAME] 0 # query 0 # OR if not target param # [API_PARAM_NAME] 0 # src latitude 0 # [API_PARAM_VALUE] # -118.71 0 for p in e['params']: copy_all_tokens_and_labels.append( [SPECIAL_SEPARATORS["api_param_name"], NOCLICK_LABEL]) copy_all_tokens_and_labels.append( [remove_underscore(p["param"]), NOCLICK_LABEL]) if p["param"] == param_name: found_matching_param = True if not do_predict: gold_params = p['variable_name'] gold_value = p['value'] break copy_all_tokens_and_labels.append( [SPECIAL_SEPARATORS["api_param_value"], NOCLICK_LABEL]) copy_all_tokens_and_labels.append( [p["value"], NOCLICK_LABEL]) if found_matching_param: if not do_predict: # If we found our target API and parameter, re-label their NER NOCLICK tags with CLICK tags, # and write the example to file. assert gold_params is not None gold_params = split_utterance_var(gold_params) for var in gold_params: index = var_name_to_token_index[var] copy_all_tokens_and_labels[index][1] = CLICK_LABEL new_example = [ "%s%s:::::%s" % (DOCSTART, dialog_id, gold_value)] for token, label in copy_all_tokens_and_labels: new_example.append(str(token) + " " + label) output_examples.append(new_example) # Unrelated to gold-params, add all API stuff # Append something like: # [API] 0 # find_place 0 # [API_PARAM_NAME] 0 # query 0 # [API_PARAM_NAME] 0 # src latitude 0 # [API_PARAM_VALUE] # -118.71 0 # ... all_tokens_and_labels.extend([ [SPECIAL_SEPARATORS['api_call'], NOCLICK_LABEL], [remove_underscore(e['endpoint']), NOCLICK_LABEL] ]) for p in e['params']: all_tokens_and_labels.append( [SPECIAL_SEPARATORS["api_param_name"], NOCLICK_LABEL]) all_tokens_and_labels.append([p["param"], NOCLICK_LABEL]) all_tokens_and_labels.append( [SPECIAL_SEPARATORS["api_param_value"], NOCLICK_LABEL]) all_tokens_and_labels.append([p["value"], NOCLICK_LABEL]) # Append api's returned variables in something like # [VAR_TYPE] address # [VAR_VALUE] 1234 5th street # .... # Also index variable tokens and lines by full name returned_variables = list() for v in e['variables']: recursive_var_search(v, returned_variables) for full_name, name, value in returned_variables: all_tokens_and_labels.append( [SPECIAL_SEPARATORS["var_type"], NOCLICK_LABEL]) all_tokens_and_labels.append([name, NOCLICK_LABEL]) all_tokens_and_labels.append( [SPECIAL_SEPARATORS["var_value"], NOCLICK_LABEL]) # Make token index to relabel correspond to the [VAR_VALUE] # token var_name_to_token_index[full_name] = len( all_tokens_and_labels) - 1 all_tokens_and_labels.append([value, NOCLICK_LABEL]) var_names_to_tokens[full_name] = value return output_examples
def convert_dialog_json_to_ner_tagged_examples(d, dialog_id, api_endpoints=[ "find_place", "places_nearby"], param_name="query", do_predict=False): ''' Converts a json to [possibly] multiple ner-tagged examples. Args: d - json representing a single dialog context dialog_id - string identifier for the dialog Example ner-tagged example format: -DOCSTART-log_518.json:::::hawker [INITIAL] 0 [VAR_TYPE] 0 source address 0 [VAR_VALUE] 0 150 North Bridge Road, Singapore 179100 0 [VAR_TYPE] 0 source latitude 0 [VAR_VALUE] 0 1.293076 0 [VAR_TYPE] 0 source longitude 0 [VAR_VALUE] 0 103.85206770000002 0 [USER] 0 Hi 0 , 0 is 0 there 0 a 0 hawker 0 centre 0 nearby 0 ? 0 [USER] 0 Hi 0 , 0 is 0 there 0 a 0 nearby 0 hawker 1 center 0 ? 0 [AGENT] 0 Sure, give me a moment. 0 [API] 0 places nearby 0 [API_PARAM_NAME] 0 query 0 ''' output_examples = list() all_tokens_and_labels = list() var_name_to_token_index = dict() var_names_to_tokens = dict() # Add initial variables initial_variables = d['initial_variables']['variables'] if isinstance( d['initial_variables'], dict) else d['initial_variables'] all_tokens_and_labels.append( [SPECIAL_SEPARATORS['initial_variables'], NOCLICK_LABEL]) for var in initial_variables: var_names_to_tokens[var['full_name']] = str(var['value']) all_tokens_and_labels.append( [SPECIAL_SEPARATORS["var_type"], NOCLICK_LABEL]) all_tokens_and_labels.append( [remove_underscore(var['full_name']), NOCLICK_LABEL]) all_tokens_and_labels.append( [SPECIAL_SEPARATORS["var_value"], NOCLICK_LABEL]) # Make token index to relabel correspond to the [VAR_VALUE] token var_name_to_token_index[var['full_name']] = len( all_tokens_and_labels) - 1 all_tokens_and_labels.append([var['value'], NOCLICK_LABEL]) for e in d["events"]: if e['event_type'] == "user_utterance": all_tokens_and_labels.append( [SPECIAL_SEPARATORS['user_utterance'], NOCLICK_LABEL]) # For user utterances, do not add user variable names (e.g. u1_2) # as tokens. for var in e['variables']: all_tokens_and_labels.append([var['value'], NOCLICK_LABEL]) var_name_to_token_index[var['full_name']] = len( all_tokens_and_labels) - 1 var_names_to_tokens[var['full_name']] = var['value'] elif e['event_type'] == "agent_utterance": all_tokens_and_labels.append( [SPECIAL_SEPARATORS['agent_utterance'], NOCLICK_LABEL]) all_tokens_and_labels.append([e['utterance'], NOCLICK_LABEL]) elif e['event_type'] == "api_call": # First, COPY all tokens and labels, # and output an example if the endpoint and input parameter match. if e['endpoint'] in api_endpoints: found_matching_param = False gold_params = None gold_value = "__DUMMY__" copy_all_tokens_and_labels = deepcopy(all_tokens_and_labels) # Append something like: # [API] 0 # find_place 0 copy_all_tokens_and_labels.extend([ [SPECIAL_SEPARATORS['api_call'], NOCLICK_LABEL], [remove_underscore(e['endpoint']), NOCLICK_LABEL] ]) # Append something like: # [API_PARAM_NAME] 0 # query 0 # OR if not target param # [API_PARAM_NAME] 0 # src latitude 0 # [API_PARAM_VALUE] # -118.71 0 for p in e['params']: copy_all_tokens_and_labels.append( [SPECIAL_SEPARATORS["api_param_name"], NOCLICK_LABEL]) copy_all_tokens_and_labels.append( [remove_underscore(p["param"]), NOCLICK_LABEL]) if p["param"] == param_name: found_matching_param = True if not do_predict: gold_params = p['variable_name'] gold_value = p['value'] break copy_all_tokens_and_labels.append( [SPECIAL_SEPARATORS["api_param_value"], NOCLICK_LABEL]) copy_all_tokens_and_labels.append( [p["value"], NOCLICK_LABEL]) if found_matching_param: if not do_predict: # If we found our target API and parameter, re-label their NER NOCLICK tags with CLICK tags, # and write the example to file. assert gold_params is not None gold_params = split_utterance_var(gold_params) for var in gold_params: index = var_name_to_token_index[var] copy_all_tokens_and_labels[index][1] = CLICK_LABEL new_example = [ "%s%s:::::%s" % (DOCSTART, dialog_id, gold_value)] for token, label in copy_all_tokens_and_labels: new_example.append(str(token) + " " + label) output_examples.append(new_example) # Unrelated to gold-params, add all API stuff # Append something like: # [API] 0 # find_place 0 # [API_PARAM_NAME] 0 # query 0 # [API_PARAM_NAME] 0 # src latitude 0 # [API_PARAM_VALUE] # -118.71 0 # ... all_tokens_and_labels.extend([ [SPECIAL_SEPARATORS['api_call'], NOCLICK_LABEL], [remove_underscore(e['endpoint']), NOCLICK_LABEL] ]) for p in e['params']: all_tokens_and_labels.append( [SPECIAL_SEPARATORS["api_param_name"], NOCLICK_LABEL]) all_tokens_and_labels.append([p["param"], NOCLICK_LABEL]) all_tokens_and_labels.append( [SPECIAL_SEPARATORS["api_param_value"], NOCLICK_LABEL]) all_tokens_and_labels.append([p["value"], NOCLICK_LABEL]) # Append api's returned variables in something like # [VAR_TYPE] address # [VAR_VALUE] 1234 5th street # .... # Also index variable tokens and lines by full name returned_variables = list() for v in e['variables']: recursive_var_search(v, returned_variables) for full_name, name, value in returned_variables: all_tokens_and_labels.append( [SPECIAL_SEPARATORS["var_type"], NOCLICK_LABEL]) all_tokens_and_labels.append([name, NOCLICK_LABEL]) all_tokens_and_labels.append( [SPECIAL_SEPARATORS["var_value"], NOCLICK_LABEL]) # Make token index to relabel correspond to the [VAR_VALUE] # token var_name_to_token_index[full_name] = len( all_tokens_and_labels) - 1 all_tokens_and_labels.append([value, NOCLICK_LABEL]) var_names_to_tokens[full_name] = value return output_examples
Python
def find_latlon(self, query, latlon): '''Just get the latitude and longitude of a place and some administrative details to make sure it's the right one. (Venice, CA, USA vs Venice, Italy) ''' api_res = self.gmaps.find_place( input=query, input_type='textquery', fields=[ 'formatted_address', 'name', 'geometry', 'place_id'], location_bias="point:" + latlon) if api_res['status'] == 'ZERO_RESULTS': return [] v = [] place = api_res['candidates'][0] add_variable_if_exists(v, place, 'name', ('name',)) add_variable_if_exists(v, place, 'name', ('formatted_address',)) v.append({ 'name': 'latlon', 'value': str(place['geometry']['location']['lat']) + ',' + str(place['geometry']['location']['lng']), }) place_id = place['place_id'] # do a place_details call to get a more concise version of the address api_res = self.gmaps.place( place_id=place_id, fields=['address_component']) place = api_res['result'] for component in place['address_components']: if 'political' in component['types']: v.append({ 'name': ' '.join(component for component in component['types'] if component != 'political'), 'value': component['long_name'], }) return v
def find_latlon(self, query, latlon): '''Just get the latitude and longitude of a place and some administrative details to make sure it's the right one. (Venice, CA, USA vs Venice, Italy) ''' api_res = self.gmaps.find_place( input=query, input_type='textquery', fields=[ 'formatted_address', 'name', 'geometry', 'place_id'], location_bias="point:" + latlon) if api_res['status'] == 'ZERO_RESULTS': return [] v = [] place = api_res['candidates'][0] add_variable_if_exists(v, place, 'name', ('name',)) add_variable_if_exists(v, place, 'name', ('formatted_address',)) v.append({ 'name': 'latlon', 'value': str(place['geometry']['location']['lat']) + ',' + str(place['geometry']['location']['lng']), }) place_id = place['place_id'] # do a place_details call to get a more concise version of the address api_res = self.gmaps.place( place_id=place_id, fields=['address_component']) place = api_res['result'] for component in place['address_components']: if 'political' in component['types']: v.append({ 'name': ' '.join(component for component in component['types'] if component != 'political'), 'value': component['long_name'], }) return v
Python
def _execute_command(self, command): ''' Executes a complete template command and returns the reward and user message ''' message = [] reward = 0 action, params = command[0], command[1:] if action in self.domain.user_templates_list: message = { 'body': action.format(*[p['value'] for p in params]), 'template': action, 'variables': [] } self.room.agent.state.passenger_partial_command = [] else: assert False, "Invalid action: '%s'" % action # self.dones = {'__all__': self.state.is_done()} return reward, message
def _execute_command(self, command): ''' Executes a complete template command and returns the reward and user message ''' message = [] reward = 0 action, params = command[0], command[1:] if action in self.domain.user_templates_list: message = { 'body': action.format(*[p['value'] for p in params]), 'template': action, 'variables': [] } self.room.agent.state.passenger_partial_command = [] else: assert False, "Invalid action: '%s'" % action # self.dones = {'__all__': self.state.is_done()} return reward, message
Python
def _get_valid_actions_mask(self): ''' Return indicator mask of valid actions ''' mask = [0] * len(self.user_shared_state["action_space_partitions"]) assert len(mask) == self.room.agent.state.passenger_max_actions, \ "%d != %d" % (len(mask) == len(self.room.agent.state.passenger_max_actions)) empty_command = len(self.room.agent.state.passenger_partial_command) == 0 for index, action_type_and_sub_index in self.user_shared_state["action_space_partitions"].items(): action_type, sub_index = action_type_and_sub_index if (action_type == ActionType.TEMPLATE and empty_command) or \ (action_type == ActionType.VARIABLE and not empty_command and \ sub_index < len(self.room.agent.state.passenger_variables)): # TODO ADD (action_type == ActionType.NO_ACTION and empty_command) or \ mask[index] = 1 return mask
def _get_valid_actions_mask(self): ''' Return indicator mask of valid actions ''' mask = [0] * len(self.user_shared_state["action_space_partitions"]) assert len(mask) == self.room.agent.state.passenger_max_actions, \ "%d != %d" % (len(mask) == len(self.room.agent.state.passenger_max_actions)) empty_command = len(self.room.agent.state.passenger_partial_command) == 0 for index, action_type_and_sub_index in self.user_shared_state["action_space_partitions"].items(): action_type, sub_index = action_type_and_sub_index if (action_type == ActionType.TEMPLATE and empty_command) or \ (action_type == ActionType.VARIABLE and not empty_command and \ sub_index < len(self.room.agent.state.passenger_variables)): # TODO ADD (action_type == ActionType.NO_ACTION and empty_command) or \ mask[index] = 1 return mask
Python
def init_policy_server(config): ''' Start the policy serve r that receives (state, action, reward) batches and computes gradients for RL ''' # By default, Ray will parallelize its workload. However, if you need to debug your Ray program, # it may be easier to do everything on a single process. You can force all Ray functions to occur # on a single process with local_mode=True. memory_limit = 1024 * 1024 * 1024 * 10 # GB ray.init(local_mode=config["debug_mode"], object_store_memory=memory_limit) trainer_config = config["trainer_config"] assert torch.cuda.device_count() >= trainer_config["num_gpus"] trainer_config["input"] = lambda ioctx: PolicyServerInput(ioctx, config["policy_server_host"], int(config["policy_server_port"])) custom_model = config.get("custom_model", None) if custom_model: register_custom_model(custom_model) trainer_config["model"]["custom_model"] = custom_model agent_obs_space, agent_action_space = \ make_observation_space_and_action_space(config, True) if config["multiagent"]: user_obs_space, user_action_space = \ make_observation_space_and_action_space(config, False) trainer_config["multiagent"] = { "policies": { # the first tuple value is None -> uses default policy "agent": (None, agent_obs_space, agent_action_space, {}), "user": (None, user_obs_space, user_action_space, {}) }, "policy_mapping_fn": lambda agent_id: agent_id } from ray.rllib.examples.env.random_env import RandomMultiAgentEnv # Create a fake env for the server. This env will never be used (neither # for sampling, nor for evaluation) and its obs/action Spaces do not # matter either (multi-agent config above defines Spaces per Policy). register_env("custom_env", lambda c: RandomMultiAgentEnv(c)) else: def custom_env(env_config): ''' Create an env stub for policy training. Only the action_space and observation_space attributes need to be defined, no other env functions are needed (e.g. step(), reset(), etc). ''' env = gym.Env() env.action_space = agent_action_space env.observation_space = agent_obs_space return env register_env("custom_env", custom_env) trainer = SUPPORTED_TRAINER_CLASSES[config["trainer_class"]]( env="custom_env", config=trainer_config) os.makedirs(config["model_checkpoint_dir"], exist_ok=True) # Attempt to restore from checkpoint if possible. latest_checkpoint = os.path.join( config["model_checkpoint_dir"], "latest_ckpt") if os.path.exists(latest_checkpoint): latest_checkpoint = open(latest_checkpoint).read() print("Restoring from checkpoint", latest_checkpoint) trainer.restore(latest_checkpoint) # Serving and training loop print("######## Training loop begins... ########") count = 0 while True: train_log = trainer.train() # print(pretty_print(train_log)) count += 1 if count % config["checkpoint_freq"] == 0: checkpoint = trainer.save() print("#### Writing checkpoint for train iteration", count, "####") with open(latest_checkpoint, "w") as f: f.write(checkpoint)
def init_policy_server(config): ''' Start the policy serve r that receives (state, action, reward) batches and computes gradients for RL ''' # By default, Ray will parallelize its workload. However, if you need to debug your Ray program, # it may be easier to do everything on a single process. You can force all Ray functions to occur # on a single process with local_mode=True. memory_limit = 1024 * 1024 * 1024 * 10 # GB ray.init(local_mode=config["debug_mode"], object_store_memory=memory_limit) trainer_config = config["trainer_config"] assert torch.cuda.device_count() >= trainer_config["num_gpus"] trainer_config["input"] = lambda ioctx: PolicyServerInput(ioctx, config["policy_server_host"], int(config["policy_server_port"])) custom_model = config.get("custom_model", None) if custom_model: register_custom_model(custom_model) trainer_config["model"]["custom_model"] = custom_model agent_obs_space, agent_action_space = \ make_observation_space_and_action_space(config, True) if config["multiagent"]: user_obs_space, user_action_space = \ make_observation_space_and_action_space(config, False) trainer_config["multiagent"] = { "policies": { # the first tuple value is None -> uses default policy "agent": (None, agent_obs_space, agent_action_space, {}), "user": (None, user_obs_space, user_action_space, {}) }, "policy_mapping_fn": lambda agent_id: agent_id } from ray.rllib.examples.env.random_env import RandomMultiAgentEnv # Create a fake env for the server. This env will never be used (neither # for sampling, nor for evaluation) and its obs/action Spaces do not # matter either (multi-agent config above defines Spaces per Policy). register_env("custom_env", lambda c: RandomMultiAgentEnv(c)) else: def custom_env(env_config): ''' Create an env stub for policy training. Only the action_space and observation_space attributes need to be defined, no other env functions are needed (e.g. step(), reset(), etc). ''' env = gym.Env() env.action_space = agent_action_space env.observation_space = agent_obs_space return env register_env("custom_env", custom_env) trainer = SUPPORTED_TRAINER_CLASSES[config["trainer_class"]]( env="custom_env", config=trainer_config) os.makedirs(config["model_checkpoint_dir"], exist_ok=True) # Attempt to restore from checkpoint if possible. latest_checkpoint = os.path.join( config["model_checkpoint_dir"], "latest_ckpt") if os.path.exists(latest_checkpoint): latest_checkpoint = open(latest_checkpoint).read() print("Restoring from checkpoint", latest_checkpoint) trainer.restore(latest_checkpoint) # Serving and training loop print("######## Training loop begins... ########") count = 0 while True: train_log = trainer.train() # print(pretty_print(train_log)) count += 1 if count % config["checkpoint_freq"] == 0: checkpoint = trainer.save() print("#### Writing checkpoint for train iteration", count, "####") with open(latest_checkpoint, "w") as f: f.write(checkpoint)
Python
def custom_env(env_config): ''' Create an env stub for policy training. Only the action_space and observation_space attributes need to be defined, no other env functions are needed (e.g. step(), reset(), etc). ''' env = gym.Env() env.action_space = agent_action_space env.observation_space = agent_obs_space return env
def custom_env(env_config): ''' Create an env stub for policy training. Only the action_space and observation_space attributes need to be defined, no other env functions are needed (e.g. step(), reset(), etc). ''' env = gym.Env() env.action_space = agent_action_space env.observation_space = agent_obs_space return env
Python
def action_space_partitions(domain, max_variables, for_agent): ''' Returns a dictionary that maps an action_index to an ActionType and its subindex args: domain - Domain object from domain.py max_variables - max number of variables to choose from for_agent - If set to True, computes action space partitions for the agent. If False, computes partitions for the user. ''' index = 0 partitions = {} partitions[index] = (ActionType.NO_ACTION, None) if for_agent: for i in range(len(domain.api_functions)): index += 1 partitions[index] = (ActionType.API, i) index += 1 partitions[index] = (ActionType.END_DIALOG_API, None) for i in range(len(domain.agent_templates_list if for_agent else \ domain.user_templates_list)): index += 1 partitions[index] = (ActionType.TEMPLATE, i) for i in range(max_variables): index += 1 partitions[index] = (ActionType.VARIABLE, i) return partitions
def action_space_partitions(domain, max_variables, for_agent): ''' Returns a dictionary that maps an action_index to an ActionType and its subindex args: domain - Domain object from domain.py max_variables - max number of variables to choose from for_agent - If set to True, computes action space partitions for the agent. If False, computes partitions for the user. ''' index = 0 partitions = {} partitions[index] = (ActionType.NO_ACTION, None) if for_agent: for i in range(len(domain.api_functions)): index += 1 partitions[index] = (ActionType.API, i) index += 1 partitions[index] = (ActionType.END_DIALOG_API, None) for i in range(len(domain.agent_templates_list if for_agent else \ domain.user_templates_list)): index += 1 partitions[index] = (ActionType.TEMPLATE, i) for i in range(max_variables): index += 1 partitions[index] = (ActionType.VARIABLE, i) return partitions
Python
def _query_matches(self, query: str, place: Place) -> bool: '''Test if query matches place.''' return (fuzz.partial_ratio(query, place.name.lower()) > 80 or any(fuzz.token_sort_ratio(query, type_) > 80 for type_ in place.types) )
def _query_matches(self, query: str, place: Place) -> bool: '''Test if query matches place.''' return (fuzz.partial_ratio(query, place.name.lower()) > 80 or any(fuzz.token_sort_ratio(query, type_) > 80 for type_ in place.types) )
Python
def _place_to_response(p: Place, src_lat: str, src_lng: str): '''convert a Place, `p`, to the format expected by the api''' dist = MicroworldMapProvider._dist(src_lat, src_lng, p.lat, p.lng) if int(p.lat) <= 5 and int(p.lng) <= 5: city = 'Marina del Rey' elif int(p.lat) <= 5 and int(p.lng) > 5: city = 'Santa Monica' elif int(p.lat) > 5 and int(p.lng) <= 5: city = 'Culver City' elif int(p.lat) > 5 and int(p.lng) > 5: city = 'Sawtelle' else: city = 'Los Angeles' street_names = [ 'First', 'Second', 'Third', 'Fourth', 'Fifth', 'Sixth', 'Seventh', 'Eighth', 'Ninth', 'Tenth'] return [ {'name': 'name', 'value': p.name}, {'name': 'address_simple', 'value': street_names[min(len(street_names) - 1, int(p.lng) - 1)] + ' Street'}, {'name': 'latitude', 'value': p.lat}, {'name': 'longitude', 'value': p.lng}, {'name': 'types', 'value': [ {'name': i, 'value': type_} for i, type_ in enumerate(p.types) ]}, {'name': 'rating', 'value': p.rating}, {'name': 'price', 'value': p.price}, {'name': 'distance', 'value': '{} mi'.format(dist)}, {'name': 'duration', 'value': '{} mins'.format(dist)}, {'name': 'neighborhood', 'value': city}, ]
def _place_to_response(p: Place, src_lat: str, src_lng: str): '''convert a Place, `p`, to the format expected by the api''' dist = MicroworldMapProvider._dist(src_lat, src_lng, p.lat, p.lng) if int(p.lat) <= 5 and int(p.lng) <= 5: city = 'Marina del Rey' elif int(p.lat) <= 5 and int(p.lng) > 5: city = 'Santa Monica' elif int(p.lat) > 5 and int(p.lng) <= 5: city = 'Culver City' elif int(p.lat) > 5 and int(p.lng) > 5: city = 'Sawtelle' else: city = 'Los Angeles' street_names = [ 'First', 'Second', 'Third', 'Fourth', 'Fifth', 'Sixth', 'Seventh', 'Eighth', 'Ninth', 'Tenth'] return [ {'name': 'name', 'value': p.name}, {'name': 'address_simple', 'value': street_names[min(len(street_names) - 1, int(p.lng) - 1)] + ' Street'}, {'name': 'latitude', 'value': p.lat}, {'name': 'longitude', 'value': p.lng}, {'name': 'types', 'value': [ {'name': i, 'value': type_} for i, type_ in enumerate(p.types) ]}, {'name': 'rating', 'value': p.rating}, {'name': 'price', 'value': p.price}, {'name': 'distance', 'value': '{} mi'.format(dist)}, {'name': 'duration', 'value': '{} mins'.format(dist)}, {'name': 'neighborhood', 'value': city}, ]
Python
def find_place(self, query, latitude, longitude): ''' Return the place that contains query and is closest to latitude longitude Google maps does something more complicated to find the best (but not always closest) match ''' query = query.strip().lower() matching_places = self.get_matching_places(query) if matching_places: closest_place = min(matching_places, key=lambda place: self._dist(latitude, longitude, place.lat, place.lng)) return self._place_to_response(closest_place, latitude, longitude) else: # no matching places raise ValueError( 'No places could be found matching {}. See {} for a list of places'.format(query, self.places_path))
def find_place(self, query, latitude, longitude): ''' Return the place that contains query and is closest to latitude longitude Google maps does something more complicated to find the best (but not always closest) match ''' query = query.strip().lower() matching_places = self.get_matching_places(query) if matching_places: closest_place = min(matching_places, key=lambda place: self._dist(latitude, longitude, place.lat, place.lng)) return self._place_to_response(closest_place, latitude, longitude) else: # no matching places raise ValueError( 'No places could be found matching {}. See {} for a list of places'.format(query, self.places_path))
Python
def _place_to_response(p: Place, src_lat: str, src_lng: str): '''convert a Place, `p`, to the format expected by the api''' dist = MicroworldMapProvider2._dist(src_lat, src_lng, p.lat, p.lng) if float(p.lat) <= 5 and float(p.lng) <= 5: city = 'Marina del Rey' elif float(p.lat) <= 5 and float(p.lng) > 5: city = 'Santa Monica' elif float(p.lat) > 5 and float(p.lng) <= 5: city = 'Culver City' elif float(p.lat) > 5 and float(p.lng) > 5: city = 'Sawtelle' else: city = 'Los Angeles' street_names = [ 'First', 'Second', 'Third', 'Fourth', 'Fifth', 'Sixth', 'Seventh', 'Eighth', 'Ninth', 'Tenth'] try: streetname = street_names[int(p.lng) - 1] + ' Street' address = p.lat + ' ' + streetname except ValueError: streetname = '' address = '' result = [ {'name': 'name', 'value': p.name}, {'name': 'address_simple', 'value': address}, {'name': 'streetname', 'value': streetname}, {'name': 'latitude', 'value': p.lat}, {'name': 'longitude', 'value': p.lng}, {'name': 'types', 'value': [ {'name': i, 'value': type_} for i, type_ in enumerate(p.types) ]}, {'name': 'rating', 'value': p.rating}, {'name': 'price', 'value': p.price}, {'name': 'distance', 'value': '{} mi'.format(dist)}, {'name': 'duration', 'value': '{} mins'.format(dist)}, {'name': 'neighborhood', 'value': city}, ] # remove blank values result = [variable for variable in result if variable['value']] return result
def _place_to_response(p: Place, src_lat: str, src_lng: str): '''convert a Place, `p`, to the format expected by the api''' dist = MicroworldMapProvider2._dist(src_lat, src_lng, p.lat, p.lng) if float(p.lat) <= 5 and float(p.lng) <= 5: city = 'Marina del Rey' elif float(p.lat) <= 5 and float(p.lng) > 5: city = 'Santa Monica' elif float(p.lat) > 5 and float(p.lng) <= 5: city = 'Culver City' elif float(p.lat) > 5 and float(p.lng) > 5: city = 'Sawtelle' else: city = 'Los Angeles' street_names = [ 'First', 'Second', 'Third', 'Fourth', 'Fifth', 'Sixth', 'Seventh', 'Eighth', 'Ninth', 'Tenth'] try: streetname = street_names[int(p.lng) - 1] + ' Street' address = p.lat + ' ' + streetname except ValueError: streetname = '' address = '' result = [ {'name': 'name', 'value': p.name}, {'name': 'address_simple', 'value': address}, {'name': 'streetname', 'value': streetname}, {'name': 'latitude', 'value': p.lat}, {'name': 'longitude', 'value': p.lng}, {'name': 'types', 'value': [ {'name': i, 'value': type_} for i, type_ in enumerate(p.types) ]}, {'name': 'rating', 'value': p.rating}, {'name': 'price', 'value': p.price}, {'name': 'distance', 'value': '{} mi'.format(dist)}, {'name': 'duration', 'value': '{} mins'.format(dist)}, {'name': 'neighborhood', 'value': city}, ] # remove blank values result = [variable for variable in result if variable['value']] return result
Python
def parse_action(text): ''' Extract the action from a prediction ''' text = text[:text.find('[PARAM]')] if '[PARAM]' in text else text return text[len('[ACTION]'):].strip()
def parse_action(text): ''' Extract the action from a prediction ''' text = text[:text.find('[PARAM]')] if '[PARAM]' in text else text return text[len('[ACTION]'):].strip()
Python
def parse_params(text): ''' Extract the parameters from a prediction ''' return text.partition('[PARAM]')[2].strip().split( ' [PARAM] ') if '[PARAM]' in text else []
def parse_params(text): ''' Extract the parameters from a prediction ''' return text.partition('[PARAM]')[2].strip().split( ' [PARAM] ') if '[PARAM]' in text else []
Python
def preprocess_context(context_lines): ''' Preprocess the context to split on underscores ''' context_lines = [line.replace('_', ' ') for line in context_lines] # return new_lines variable_replaced_lines = [] variable_dict = {} for line in context_lines: match = re.match('(.*) = (.*)', line) if match is not None: variable_dict[match.group(2)] = match.group(1) if line.startswith('PREDICT'): params = parse_params(line.strip()) if 'find place' in line or 'places nearby' in line: params = params[1:] for param in params: line = line.replace(param, variable_dict.get(param, param)) variable_replaced_lines.append(line) return variable_replaced_lines
def preprocess_context(context_lines): ''' Preprocess the context to split on underscores ''' context_lines = [line.replace('_', ' ') for line in context_lines] # return new_lines variable_replaced_lines = [] variable_dict = {} for line in context_lines: match = re.match('(.*) = (.*)', line) if match is not None: variable_dict[match.group(2)] = match.group(1) if line.startswith('PREDICT'): params = parse_params(line.strip()) if 'find place' in line or 'places nearby' in line: params = params[1:] for param in params: line = line.replace(param, variable_dict.get(param, param)) variable_replaced_lines.append(line) return variable_replaced_lines
Python
def reset(self): ''' Called before each episode, returns the first observation ''' if self.num_episodes % 1000 == 0: logger.warning("completed {} episodes.".format(self.num_episodes)) if self.num_episodes >= self.print_episodes: logger.warning('episode ' + str(self.num_episodes)) logger.warning('------------') _, _, history,_ = self.state.get_global_state() for h in history: logger.warning(h) logger.warning('-------------') self.num_episodes += 1 # select the destination if self.is_supervised and self.num_episodes < self.supervised_episodes: a_list = [3, 4] distribution = [.5, .5] destination_id = random.choices(a_list, distribution)[0] else: destination_id = random.randint(3, len(NanoworldEnv.parameters) - 1) if self.num_episodes >= self.print_episodes: logger.warning('set destination: ' + NanoworldEnv.parameters[destination_id]) self.state = DialogStateNano(NanoworldEnv.max_num_actions, desired_destination=NanoworldEnv.parameters[destination_id]) self.obs = { 'passenger': self.state.make_passenger_observation() } return self.obs
def reset(self): ''' Called before each episode, returns the first observation ''' if self.num_episodes % 1000 == 0: logger.warning("completed {} episodes.".format(self.num_episodes)) if self.num_episodes >= self.print_episodes: logger.warning('episode ' + str(self.num_episodes)) logger.warning('------------') _, _, history,_ = self.state.get_global_state() for h in history: logger.warning(h) logger.warning('-------------') self.num_episodes += 1 # select the destination if self.is_supervised and self.num_episodes < self.supervised_episodes: a_list = [3, 4] distribution = [.5, .5] destination_id = random.choices(a_list, distribution)[0] else: destination_id = random.randint(3, len(NanoworldEnv.parameters) - 1) if self.num_episodes >= self.print_episodes: logger.warning('set destination: ' + NanoworldEnv.parameters[destination_id]) self.state = DialogStateNano(NanoworldEnv.max_num_actions, desired_destination=NanoworldEnv.parameters[destination_id]) self.obs = { 'passenger': self.state.make_passenger_observation() } return self.obs
Python
def step(self, action_dict): ''' Given an action_dict, compute the next observation, rewards, and dones ''' # pdb.set_trace() driver_obs = None passenger_obs = None if 'driver' in action_dict: driver_obs = self.driver_step(action_dict['driver']) if 'passenger' in action_dict: passenger_obs = self.passenger_step(action_dict['passenger']) if self.state.turn == 0: passenger_obs = self.state.make_passenger_observation() driver_obs = None elif self.state.turn == 1: driver_obs = self.state.make_driver_observation() passenger_obs = None self.obs = {} self.rewards = {} if passenger_obs: self.obs['passenger'] = passenger_obs self.rewards['passenger'] = self.compute_passenger_reward() if driver_obs: self.obs['driver'] = driver_obs self.rewards['driver'] = self.compute_driver_reward() self.dones = {'__all__': self.state.is_done()} if self.state.is_done(): self.obs['passenger'] = self.state.make_passenger_observation() self.rewards['passenger'] = self.compute_passenger_reward() self.obs['driver'] = self.state.make_driver_observation() self.rewards['driver'] = self.compute_driver_reward() self.infos = {} return self.obs, self.rewards, self.dones, self.infos
def step(self, action_dict): ''' Given an action_dict, compute the next observation, rewards, and dones ''' # pdb.set_trace() driver_obs = None passenger_obs = None if 'driver' in action_dict: driver_obs = self.driver_step(action_dict['driver']) if 'passenger' in action_dict: passenger_obs = self.passenger_step(action_dict['passenger']) if self.state.turn == 0: passenger_obs = self.state.make_passenger_observation() driver_obs = None elif self.state.turn == 1: driver_obs = self.state.make_driver_observation() passenger_obs = None self.obs = {} self.rewards = {} if passenger_obs: self.obs['passenger'] = passenger_obs self.rewards['passenger'] = self.compute_passenger_reward() if driver_obs: self.obs['driver'] = driver_obs self.rewards['driver'] = self.compute_driver_reward() self.dones = {'__all__': self.state.is_done()} if self.state.is_done(): self.obs['passenger'] = self.state.make_passenger_observation() self.rewards['passenger'] = self.compute_passenger_reward() self.obs['driver'] = self.state.make_driver_observation() self.rewards['driver'] = self.compute_driver_reward() self.infos = {} return self.obs, self.rewards, self.dones, self.infos
Python
def _step(self, action_index): ''' Steps the user one-click forward and sends utterances using templates after all placeholders are filled. Args: action_index - index corresponding to the item-to-click (wait-for-agent/template/variable) Returns: (reward, message) tuple. Message corresponds to the user message to respond with, it may be None. ''' self.room.agent.state.steps += 1 reward = 0 message = [] action_type, sub_index = self.user_shared_state["action_space_partitions"][action_index] reward_function = self.user_shared_state["rl_config"]["rewards"] if action_type == ActionType.NO_ACTION: # print("DEBUG User made no action") message = { 'body': "NO ACTION", 'template': "NO ACTION", 'variables': [] } return 0, message elif action_type == ActionType.TEMPLATE: template = self.domain.user_templates_list[sub_index] if not self.room.agent.state.passenger_partial_command: # print("User clicked template: {}".format(template)) self.room.agent.state.passenger_partial_command.append(template) else: # print("User tried invalid template click: {}".format(template)) assert False return reward_function['passenger_invalid_template'], message elif action_type == ActionType.VARIABLE: # TODO: Combine utterance variables, as is done in the UI if self.room.agent.state.passenger_partial_command: if 0 <= sub_index < len(self.room.agent.state.passenger_variables): # print("User clicked variable {}".format(sub_index)) variable = self.room.agent.state.passenger_variables[sub_index] if len(self.room.agent.state.passenger_partial_command) > 0 and \ type(self.room.agent.state.passenger_partial_command[-1]) is dict and \ self.room.agent.state.passenger_partial_command[-1].get('full_name', '').startswith('a') and \ variable.get('full_name', '').startswith('a'): # Concatenate consecutive user variables new_user_variable = variable.get('value') if not new_user_variable.startswith("'"): new_user_variable = ' ' + new_user_variable self.room.agent.state.passenger_partial_command[-1]['full_name'] += ' + ' + variable.get('full_name') self.room.agent.state.passenger_partial_command[-1]['value'] += new_user_variable else: self.room.agent.state.passenger_partial_command.append(variable) else: # print("User tried invalid variable click: {}".format(sub_index)) return reward_function['passenger_invalid_variable'], message else: # print("User tried invalid variable click (no template selected)") assert False return reward_function['passenger_invalid_variable'], message else: assert False, "Invalid action_type: %s" % str(action_type) if self._command_complete(self.room.agent.state.passenger_partial_command): # print("User completing an action: {}".format(self.room.agent.state.passenger_partial_command)) reward, message = self._execute_command(self.room.agent.state.passenger_partial_command) return reward, message
def _step(self, action_index): ''' Steps the user one-click forward and sends utterances using templates after all placeholders are filled. Args: action_index - index corresponding to the item-to-click (wait-for-agent/template/variable) Returns: (reward, message) tuple. Message corresponds to the user message to respond with, it may be None. ''' self.room.agent.state.steps += 1 reward = 0 message = [] action_type, sub_index = self.user_shared_state["action_space_partitions"][action_index] reward_function = self.user_shared_state["rl_config"]["rewards"] if action_type == ActionType.NO_ACTION: # print("DEBUG User made no action") message = { 'body': "NO ACTION", 'template': "NO ACTION", 'variables': [] } return 0, message elif action_type == ActionType.TEMPLATE: template = self.domain.user_templates_list[sub_index] if not self.room.agent.state.passenger_partial_command: # print("User clicked template: {}".format(template)) self.room.agent.state.passenger_partial_command.append(template) else: # print("User tried invalid template click: {}".format(template)) assert False return reward_function['passenger_invalid_template'], message elif action_type == ActionType.VARIABLE: # TODO: Combine utterance variables, as is done in the UI if self.room.agent.state.passenger_partial_command: if 0 <= sub_index < len(self.room.agent.state.passenger_variables): # print("User clicked variable {}".format(sub_index)) variable = self.room.agent.state.passenger_variables[sub_index] if len(self.room.agent.state.passenger_partial_command) > 0 and \ type(self.room.agent.state.passenger_partial_command[-1]) is dict and \ self.room.agent.state.passenger_partial_command[-1].get('full_name', '').startswith('a') and \ variable.get('full_name', '').startswith('a'): # Concatenate consecutive user variables new_user_variable = variable.get('value') if not new_user_variable.startswith("'"): new_user_variable = ' ' + new_user_variable self.room.agent.state.passenger_partial_command[-1]['full_name'] += ' + ' + variable.get('full_name') self.room.agent.state.passenger_partial_command[-1]['value'] += new_user_variable else: self.room.agent.state.passenger_partial_command.append(variable) else: # print("User tried invalid variable click: {}".format(sub_index)) return reward_function['passenger_invalid_variable'], message else: # print("User tried invalid variable click (no template selected)") assert False return reward_function['passenger_invalid_variable'], message else: assert False, "Invalid action_type: %s" % str(action_type) if self._command_complete(self.room.agent.state.passenger_partial_command): # print("User completing an action: {}".format(self.room.agent.state.passenger_partial_command)) reward, message = self._execute_command(self.room.agent.state.passenger_partial_command) return reward, message
Python
def call_api(self, slot_values: list) -> Tuple[dict, list]: '''Return a 2-tuple: a debugging message, and a list of new variables (None if request is unsuccessful)''' if self.n_slots != len(slot_values): raise ValueError('Incorrect number of slot values') request_params = [ {'param': name, 'variable_name': var['full_name'], 'value': var['value']} for name, var in zip(self.param_names, slot_values) ] # Format debug information formatted_params = ' | '.join('{} = {}'.format(name, var['value']) for name, var in zip(self.param_names, slot_values)) variable_names = [v['full_name'] for v in slot_values] new_variables = None # Make API call try: response = self.function(request_params) error_message = load_variable(response['variables'], 'error') # returns None if no error except Exception as e: # Catch Python errors error_message = e raise # Error handling if error_message: debug_message = { 'body': 'DEBUG: Made an unsuccessful API call to {} with arguments {}. Received the error: {}.'.format(self.endpoint, formatted_params, str(error_message)), 'template': 'DEBUG', 'variables': variable_names, 'sender': 'agent' } elif not response: # Empty responses are considered unsuccessful. This may change in the future, # so it's better to explicitly throw an error or return an error message debug_message = { 'body': 'DEBUG: Made an unsuccessful API call to {} with arguments {}. Got an empty response.'.format(self.endpoint, formatted_params), 'template': 'DEBUG', 'variables': variable_names, 'sender': 'agent' } else: # API call was successful debug_message = { 'body': 'DEBUG: Made a successful API call to {} with arguments {}.'.format(self.endpoint, formatted_params), 'template': 'DEBUG', 'variables': [v['full_name'] for v in slot_values], 'sender': 'agent', } new_variables = flatten_variables(response['variables']) return debug_message, new_variables
def call_api(self, slot_values: list) -> Tuple[dict, list]: '''Return a 2-tuple: a debugging message, and a list of new variables (None if request is unsuccessful)''' if self.n_slots != len(slot_values): raise ValueError('Incorrect number of slot values') request_params = [ {'param': name, 'variable_name': var['full_name'], 'value': var['value']} for name, var in zip(self.param_names, slot_values) ] # Format debug information formatted_params = ' | '.join('{} = {}'.format(name, var['value']) for name, var in zip(self.param_names, slot_values)) variable_names = [v['full_name'] for v in slot_values] new_variables = None # Make API call try: response = self.function(request_params) error_message = load_variable(response['variables'], 'error') # returns None if no error except Exception as e: # Catch Python errors error_message = e raise # Error handling if error_message: debug_message = { 'body': 'DEBUG: Made an unsuccessful API call to {} with arguments {}. Received the error: {}.'.format(self.endpoint, formatted_params, str(error_message)), 'template': 'DEBUG', 'variables': variable_names, 'sender': 'agent' } elif not response: # Empty responses are considered unsuccessful. This may change in the future, # so it's better to explicitly throw an error or return an error message debug_message = { 'body': 'DEBUG: Made an unsuccessful API call to {} with arguments {}. Got an empty response.'.format(self.endpoint, formatted_params), 'template': 'DEBUG', 'variables': variable_names, 'sender': 'agent' } else: # API call was successful debug_message = { 'body': 'DEBUG: Made a successful API call to {} with arguments {}.'.format(self.endpoint, formatted_params), 'template': 'DEBUG', 'variables': [v['full_name'] for v in slot_values], 'sender': 'agent', } new_variables = flatten_variables(response['variables']) return debug_message, new_variables
Python
def predict_action(self, message: str, events: list, available_variables: list): ''' Choose the next action when nothing is selected. Selects a variable container (either a template or API call or wait for user) Should return an instance of Template or API ''' raise NotImplementedError
def predict_action(self, message: str, events: list, available_variables: list): ''' Choose the next action when nothing is selected. Selects a variable container (either a template or API call or wait for user) Should return an instance of Template or API ''' raise NotImplementedError
Python
def fill_template(self, message: str, events: list, template: Template, slot_index: int, available_variables: list, selected_variables: list) -> dict: ''' Choose the next click when a template is currently selected Should return an element from available_variables''' raise NotImplementedError
def fill_template(self, message: str, events: list, template: Template, slot_index: int, available_variables: list, selected_variables: list) -> dict: ''' Choose the next click when a template is currently selected Should return an element from available_variables''' raise NotImplementedError
Python
def fill_api(self, message: str, events: list, api: API, slot_index: int, available_variables: list, selected_variables: list) -> dict: ''' Choose the next click when an API is selected Should return an element from available_variables ''' raise NotImplementedError
def fill_api(self, message: str, events: list, api: API, slot_index: int, available_variables: list, selected_variables: list) -> dict: ''' Choose the next click when an API is selected Should return an element from available_variables ''' raise NotImplementedError
Python
def find_latlon(self, request_params, alternate_events=None): '''find_place, but only returns lat/long''' query = load_parameter(request_params, "query") latlon = load_parameter(request_params, "src lat/long") # find_latlon is currently only supported with google maps response = self.api_call(self.map_provider.find_latlon, request_params, query, latlon, alternate_events=alternate_events) return response
def find_latlon(self, request_params, alternate_events=None): '''find_place, but only returns lat/long''' query = load_parameter(request_params, "query") latlon = load_parameter(request_params, "src lat/long") # find_latlon is currently only supported with google maps response = self.api_call(self.map_provider.find_latlon, request_params, query, latlon, alternate_events=alternate_events) return response
Python
def start_driving_no_map(self, request_params, alternate_events=None): '''Start driving with a text confirmation instead of a map''' latitude = load_parameter(request_params, "dest latitude") longitude = load_parameter(request_params, "dest longitude") # we can't reliably split the variable name into entity and variable type because # variable names can include v2_0_rating and v1_place_id destination_name_variable = request_params[0]['variable_name'].replace( 'latitude', 'name') destination_address_variable = request_params[0]['variable_name'].replace( 'latitude', 'address') destination_name = self.manager.lookup_variable_by_name( destination_name_variable) destination_address = self.manager.lookup_variable_by_name( destination_address_variable) request_params.append({ 'name': 'confirmationString', 'variable_name': 'confirmationString', 'value': 'The agent selected your destination as {} at {} ({}, {}). Is this correct?' .format(destination_name, destination_address, latitude, longitude) }) return self.api_call(self.map_provider.start_driving_no_map, request_params, latitude, longitude, alternate_events=alternate_events)
def start_driving_no_map(self, request_params, alternate_events=None): '''Start driving with a text confirmation instead of a map''' latitude = load_parameter(request_params, "dest latitude") longitude = load_parameter(request_params, "dest longitude") # we can't reliably split the variable name into entity and variable type because # variable names can include v2_0_rating and v1_place_id destination_name_variable = request_params[0]['variable_name'].replace( 'latitude', 'name') destination_address_variable = request_params[0]['variable_name'].replace( 'latitude', 'address') destination_name = self.manager.lookup_variable_by_name( destination_name_variable) destination_address = self.manager.lookup_variable_by_name( destination_address_variable) request_params.append({ 'name': 'confirmationString', 'variable_name': 'confirmationString', 'value': 'The agent selected your destination as {} at {} ({}, {}). Is this correct?' .format(destination_name, destination_address, latitude, longitude) }) return self.api_call(self.map_provider.start_driving_no_map, request_params, latitude, longitude, alternate_events=alternate_events)
Python
def _step(self, action_index): ''' Steps the agent one-click forward and executes apis/templates if a full command results from the click. Args: action_index - index corresponding to the item-to-click (api/template/variable) Returns: (reward, message, ended_dialog) tuple. Message corresponds to the agent message to respond with, it may be None. ''' self.state.steps += 1 reward = {"agent": 0} ended_dialog = False message = [] action_type, sub_index = self.agent_shared_state["action_space_partitions"][action_index] reward_function = self.agent_shared_state["rl_config"]["rewards"] if action_type == ActionType.NO_ACTION: # print("DEBUG Driver made no action") message = { 'body': "NO ACTION", 'template': "NO ACTION", 'variables': [] } return {"agent": 0}, message, ended_dialog elif action_type in (ActionType.API, ActionType.END_DIALOG_API): api = list(self.domain.api_functions.values())[sub_index] if action_type == ActionType.API \ else self.domain.end_dialog if not self.state.driver_partial_command: # print( "Driver clicked API call: {}".format( api['function'].endpoint)) self.state.driver_partial_command.append( api['function'].endpoint) else: # print("Driver tried invalid API click: {}".format(api['function'].endpoint)) assert False return {"agent": reward_function['driver_invalid_api']}, message, ended_dialog elif action_type == ActionType.TEMPLATE: template = self.domain.agent_templates_list[sub_index] if not self.state.driver_partial_command: # print("Driver clicked template: {}".format(template)) self.state.driver_partial_command.append(template) else: # print("Driver tried invalid template click: {}".format(template)) assert False return {"agent": reward_function['driver_invalid_template']}, message, ended_dialog elif action_type == ActionType.VARIABLE: if self.state.driver_partial_command: if 0 <= sub_index < len(self.state.driver_variables): # print("Driver clicked variable {}".format(sub_index)) variable = self.state.driver_variables[sub_index] if len(self.state.driver_partial_command) > 0 and \ type(self.state.driver_partial_command[-1]) is dict and \ self.state.driver_partial_command[-1].get('full_name', '').startswith('u') and \ variable.get('full_name', '').startswith('u'): # Concatenate consecutive user variables new_user_variable = variable.get('value') if not new_user_variable.startswith("'"): new_user_variable = ' ' + new_user_variable self.state.driver_partial_command[-1]['full_name'] += ' + ' + variable.get('full_name') self.state.driver_partial_command[-1]['value'] += new_user_variable else: self.state.driver_partial_command.append(variable) else: # print( "Driver tried invalid variable click: {}".format(sub_index)) assert False return {"agent": reward_function['driver_invalid_variable']}, message, ended_dialog else: # print("Driver tried invalid variable click (no action selected)") assert False return {"agent": reward_function['driver_invalid_variable']}, message, ended_dialog else: assert False, "Invalid action_type: %s" % str(action_type) if self._command_complete(self.state.driver_partial_command): print("Driver completed an action: {}".format( self.state.driver_partial_command)) reward, message, ended_dialog = self._execute_command( self.state.driver_partial_command) return reward, message, ended_dialog
def _step(self, action_index): ''' Steps the agent one-click forward and executes apis/templates if a full command results from the click. Args: action_index - index corresponding to the item-to-click (api/template/variable) Returns: (reward, message, ended_dialog) tuple. Message corresponds to the agent message to respond with, it may be None. ''' self.state.steps += 1 reward = {"agent": 0} ended_dialog = False message = [] action_type, sub_index = self.agent_shared_state["action_space_partitions"][action_index] reward_function = self.agent_shared_state["rl_config"]["rewards"] if action_type == ActionType.NO_ACTION: # print("DEBUG Driver made no action") message = { 'body': "NO ACTION", 'template': "NO ACTION", 'variables': [] } return {"agent": 0}, message, ended_dialog elif action_type in (ActionType.API, ActionType.END_DIALOG_API): api = list(self.domain.api_functions.values())[sub_index] if action_type == ActionType.API \ else self.domain.end_dialog if not self.state.driver_partial_command: # print( "Driver clicked API call: {}".format( api['function'].endpoint)) self.state.driver_partial_command.append( api['function'].endpoint) else: # print("Driver tried invalid API click: {}".format(api['function'].endpoint)) assert False return {"agent": reward_function['driver_invalid_api']}, message, ended_dialog elif action_type == ActionType.TEMPLATE: template = self.domain.agent_templates_list[sub_index] if not self.state.driver_partial_command: # print("Driver clicked template: {}".format(template)) self.state.driver_partial_command.append(template) else: # print("Driver tried invalid template click: {}".format(template)) assert False return {"agent": reward_function['driver_invalid_template']}, message, ended_dialog elif action_type == ActionType.VARIABLE: if self.state.driver_partial_command: if 0 <= sub_index < len(self.state.driver_variables): # print("Driver clicked variable {}".format(sub_index)) variable = self.state.driver_variables[sub_index] if len(self.state.driver_partial_command) > 0 and \ type(self.state.driver_partial_command[-1]) is dict and \ self.state.driver_partial_command[-1].get('full_name', '').startswith('u') and \ variable.get('full_name', '').startswith('u'): # Concatenate consecutive user variables new_user_variable = variable.get('value') if not new_user_variable.startswith("'"): new_user_variable = ' ' + new_user_variable self.state.driver_partial_command[-1]['full_name'] += ' + ' + variable.get('full_name') self.state.driver_partial_command[-1]['value'] += new_user_variable else: self.state.driver_partial_command.append(variable) else: # print( "Driver tried invalid variable click: {}".format(sub_index)) assert False return {"agent": reward_function['driver_invalid_variable']}, message, ended_dialog else: # print("Driver tried invalid variable click (no action selected)") assert False return {"agent": reward_function['driver_invalid_variable']}, message, ended_dialog else: assert False, "Invalid action_type: %s" % str(action_type) if self._command_complete(self.state.driver_partial_command): print("Driver completed an action: {}".format( self.state.driver_partial_command)) reward, message, ended_dialog = self._execute_command( self.state.driver_partial_command) return reward, message, ended_dialog
Python
def _execute_command(self, command): ''' Executes a complete API or template command and returns the reward, agent message, and whether the dialog was ended by an API call or not ''' message = [] reward = {"agent": 0} ended_dialog = False action, params = command[0], command[1:] api = None if action == self.domain.end_dialog['function'].endpoint: api = self.domain.end_dialog else: api = self.domain.api_functions.get(action, None) if api: response = api["function"](self._format_api_params(api, params)) self.state.driver_partial_command = [] self.state.api_call_count += 1 variables = flatten_variables(response) if hasattr(api['function'], 'completes_dialog'): ended_dialog = True else: if any('error' in v.get('full_name', 'test') for v in variables) or len(variables) == 0: # print("API call was an error or empty") reward["agent"] = self.agent_shared_state["rl_config"]["rewards"]['driver_bad_api_call'] else: # print("API call got results!") reward["agent"] = self.agent_shared_state["rl_config"]["rewards"]['driver_good_api_call'] reward["user"] = self.agent_shared_state["rl_config"]["rewards"]['passenger_good_api_call'] elif action in self.domain.agent_templates_list: message = { 'body': action.format(*[p['value'] for p in params]), 'template': action, 'variables': [] } self.state.driver_partial_command = [] else: assert False, "Invalid action: '%s'" % action # self.dones = {'__all__': self.state.is_done()} return reward, message, ended_dialog
def _execute_command(self, command): ''' Executes a complete API or template command and returns the reward, agent message, and whether the dialog was ended by an API call or not ''' message = [] reward = {"agent": 0} ended_dialog = False action, params = command[0], command[1:] api = None if action == self.domain.end_dialog['function'].endpoint: api = self.domain.end_dialog else: api = self.domain.api_functions.get(action, None) if api: response = api["function"](self._format_api_params(api, params)) self.state.driver_partial_command = [] self.state.api_call_count += 1 variables = flatten_variables(response) if hasattr(api['function'], 'completes_dialog'): ended_dialog = True else: if any('error' in v.get('full_name', 'test') for v in variables) or len(variables) == 0: # print("API call was an error or empty") reward["agent"] = self.agent_shared_state["rl_config"]["rewards"]['driver_bad_api_call'] else: # print("API call got results!") reward["agent"] = self.agent_shared_state["rl_config"]["rewards"]['driver_good_api_call'] reward["user"] = self.agent_shared_state["rl_config"]["rewards"]['passenger_good_api_call'] elif action in self.domain.agent_templates_list: message = { 'body': action.format(*[p['value'] for p in params]), 'template': action, 'variables': [] } self.state.driver_partial_command = [] else: assert False, "Invalid action: '%s'" % action # self.dones = {'__all__': self.state.is_done()} return reward, message, ended_dialog
Python
def generate_agent_response(self, api_call): ''' Generate an agent response utterance by calling find_place or places_nearby. ''' assert api_call in ("places_nearby", "find_place") api_signature = (api_call, self.query, self.relative_landmark_query) logging.debug("last_api_signature: {}".format(self.last_api_signature)) logging.debug("new_api_signature: {}".format(api_signature)) if api_signature == self.last_api_signature: return utils.construct_agent_response( "Can you be more specific? I couldn't find anything new.", delay=2) self.dst_list = None src = self.initial_variables if self.relative_landmark_query != self.last_api_signature[2]: self.relative_landmark = self.extract_relative_landmark( self.initial_variables, self.relative_landmark_query) logging.debug( "Setting new relative landmark {} with query: {}".format( self.relative_landmark, self.relative_landmark_query)) if self.relative_landmark: src = { "latitude": self.relative_landmark.lat, "longitude": self.relative_landmark.lng } self.last_api_signature = api_signature if not self.query: return utils.construct_agent_response( "Can you be more specific? I couldn't find anything.", delay=2) query_params = utils.construct_query_params(src, self.query) if api_call == "places_nearby": api_response = self.map_api_interface.places_nearby(query_params)[ 'variables'] else: api_response = self.map_api_interface.find_place(query_params)[ 'variables'] # TODO DEBUG # logging.debug("API_RESPONSE %s" % json.dumps(api_response, indent=2)) # agent_utt = "[query] %s [end] " % (self.query) agent_utt = "" if len(api_response) == 0: agent_utt += "Search yielded zero results. Can you please state clearly, where you want to go? Thanks!" self.reset_state() return utils.construct_agent_response(agent_utt) if api_call == "places_nearby": # call find_place self.dst_list = [Destination(response['value']) for response in api_response] if len(self.dst_list) == 1: self.dst = self.dst_list[0] self.dst_list = None agent_utt += "My search only yielded one result. " + \ utils.gen_agent_utt_for_single_dst( self.dst, self.relative_landmark) else: dest_names = [d.name for d in self.dst_list] for i, name in enumerate(dest_names): # if dest_names.count(name) > 1: dest = self.dst_list[i] if dest.st: dest_names[i] = "%s on %s" % (name, dest.st) else: dest_names[i] = "%s located at %s" % (name, dest.addr) assert len(self.dst_list) > 1, len(self.dst_list) agent_utt += "I found these places: %s. " % ( ', '.join("[%d] %s" % (i + 1, name) for i, name in enumerate(dest_names))) agent_utt += "They are %s away respectively" % ( ', '.join(d.drive_time for d in self.dst_list)) if self.relative_landmark: agent_utt += " from %s. " % (self.relative_landmark.name) else: agent_utt += ". " agent_utt += "Is it one of those? " else: # called find_place self.dst = Destination(api_response) agent_utt += utils.gen_agent_utt_for_single_dst( self.dst, self.relative_landmark) return utils.construct_agent_response(agent_utt)
def generate_agent_response(self, api_call): ''' Generate an agent response utterance by calling find_place or places_nearby. ''' assert api_call in ("places_nearby", "find_place") api_signature = (api_call, self.query, self.relative_landmark_query) logging.debug("last_api_signature: {}".format(self.last_api_signature)) logging.debug("new_api_signature: {}".format(api_signature)) if api_signature == self.last_api_signature: return utils.construct_agent_response( "Can you be more specific? I couldn't find anything new.", delay=2) self.dst_list = None src = self.initial_variables if self.relative_landmark_query != self.last_api_signature[2]: self.relative_landmark = self.extract_relative_landmark( self.initial_variables, self.relative_landmark_query) logging.debug( "Setting new relative landmark {} with query: {}".format( self.relative_landmark, self.relative_landmark_query)) if self.relative_landmark: src = { "latitude": self.relative_landmark.lat, "longitude": self.relative_landmark.lng } self.last_api_signature = api_signature if not self.query: return utils.construct_agent_response( "Can you be more specific? I couldn't find anything.", delay=2) query_params = utils.construct_query_params(src, self.query) if api_call == "places_nearby": api_response = self.map_api_interface.places_nearby(query_params)[ 'variables'] else: api_response = self.map_api_interface.find_place(query_params)[ 'variables'] # TODO DEBUG # logging.debug("API_RESPONSE %s" % json.dumps(api_response, indent=2)) # agent_utt = "[query] %s [end] " % (self.query) agent_utt = "" if len(api_response) == 0: agent_utt += "Search yielded zero results. Can you please state clearly, where you want to go? Thanks!" self.reset_state() return utils.construct_agent_response(agent_utt) if api_call == "places_nearby": # call find_place self.dst_list = [Destination(response['value']) for response in api_response] if len(self.dst_list) == 1: self.dst = self.dst_list[0] self.dst_list = None agent_utt += "My search only yielded one result. " + \ utils.gen_agent_utt_for_single_dst( self.dst, self.relative_landmark) else: dest_names = [d.name for d in self.dst_list] for i, name in enumerate(dest_names): # if dest_names.count(name) > 1: dest = self.dst_list[i] if dest.st: dest_names[i] = "%s on %s" % (name, dest.st) else: dest_names[i] = "%s located at %s" % (name, dest.addr) assert len(self.dst_list) > 1, len(self.dst_list) agent_utt += "I found these places: %s. " % ( ', '.join("[%d] %s" % (i + 1, name) for i, name in enumerate(dest_names))) agent_utt += "They are %s away respectively" % ( ', '.join(d.drive_time for d in self.dst_list)) if self.relative_landmark: agent_utt += " from %s. " % (self.relative_landmark.name) else: agent_utt += ". " agent_utt += "Is it one of those? " else: # called find_place self.dst = Destination(api_response) agent_utt += utils.gen_agent_utt_for_single_dst( self.dst, self.relative_landmark) return utils.construct_agent_response(agent_utt)
Python
def most_frequent(fc_range, key): '''return the most frequent value of fc_range[i][key] for all i''' c = Counter( block[key] for block in fc_range if hasattr( block, key)).most_common(1) if c: return c[0][0] else: return None
def most_frequent(fc_range, key): '''return the most frequent value of fc_range[i][key] for all i''' c = Counter( block[key] for block in fc_range if hasattr( block, key)).most_common(1) if c: return c[0][0] else: return None
Python
def weather_at_time(self, lat, lon, time_query): ''' Fetch the weather at a specified location and time (between now and 7 days from now). The future limit is because Darksky's forecast only extends that far. It doesn't support times in the past because 1) it's not a common use case, and 2) implementing it for ranges of >1 day (e.g. last week) would require making multiple requests and more code If desired, look at the time='whatever' parameter in darkskylib lat, lon - floats time_query - a string with a relative time. Something like 'tonight at 8' is fine note: you should ensure that wit.ai app's timezone is set to GMT darksky returns forecasts in local times without a timezone ''' # find date/time with wit.ai and duckling response = self.wit_client.message(time_query)['entities'] if not response['datetime']: raise ValueError('could not parse time, <{}>'.format(time_query)) else: # assume that time_query only contains one datetime object, but # duckling is pretty good about handling ranges time_instance = response['datetime'][0] # parse a wit.ai datetime object, which should look like: # { # 'type': 'value', # 'grain': 'second' | minute' | 'hour' | 'day' | 'week' | 'year' # 'value': '2020-01-01T12:30:00.000+00:00' # } # OR an interval containing a start and end that each look like the # above is_interval = False if time_instance['type'] == 'interval': # for queries like "this weekend", the result will be a range. # just use the start time. start_dt = datetime.strptime( time_instance['from']['value'], "%Y-%m-%dT%H:%M:%S.%f+00:00") end_dt = datetime.strptime( time_instance['to']['value'], "%Y-%m-%dT%H:%M:%S.%f+00:00") grain = time_instance['from']['grain'] is_interval = True elif time_instance['type'] == 'value': start_dt = datetime.strptime( time_instance['value'], "%Y-%m-%dT%H:%M:%S.%f+00:00") grain = time_instance['grain'] if grain == 'week': end_dt = start_dt + timedelta(days=7) is_interval = True else: raise Exception('unrecognized type', time_instance['type']) # Get the full forecast that corresponds to the time granularity fc = forecast(self.darksky_key, lat, lon, extend='hourly') if grain == 'second' or grain == 'minute': try: # minutely forecasts are only available in some parts of the # world. test if they work fc_range = fc.minutely # they also don't always include temperature, so test this too _temperature_test = fc.minutely[0].temperature except AttributeError: fc_range = fc.hourly grain = 'hour' elif grain == 'hour': fc_range = fc.hourly elif grain == 'day' or grain == 'week' or grain == 'month' or grain == 'year': fc_range = fc.daily try: summary = fc_range.summary except AttributeError: summary = fc_range[0].summary # if we parsed an interval, create an aggregate forecast if is_interval: # trim the ends of the range. note: darksky only provides hourly # forecasts for the next 48 hours, and daily forecasts for the next # week fc_filtered_range = [block for block in fc_range if start_dt.timestamp( ) <= block.time <= end_dt.timestamp()] aggregate_fc = self.aggregate_forecast(fc_filtered_range) transformed_forecast = self.transform_forecast(aggregate_fc) return transformed_forecast + [ {'name': 'summary', 'value': summary}, {'name': 'start_date', 'value': start_dt.strftime('%a, %b %d')}, {'name': 'start_time', 'value': start_dt.strftime('%H:%M')}, {'name': 'end_date', 'value': end_dt.strftime('%a, %b %d')}, {'name': 'end_time', 'value': end_dt.strftime('%H:%M')}, {'name': 'grain', 'value': grain}, ] else: # return the forecast for that time transformed_forecast = self.transform_forecast(fc.currently) return transformed_forecast + [ {'name': 'summary', 'value': summary}, {'name': 'date', 'value': start_dt.strftime('%a, %b %d')}, {'name': 'time', 'value': start_dt.strftime('%H:%M')}, {'name': 'grain', 'value': grain}, ] return timestamp
def weather_at_time(self, lat, lon, time_query): ''' Fetch the weather at a specified location and time (between now and 7 days from now). The future limit is because Darksky's forecast only extends that far. It doesn't support times in the past because 1) it's not a common use case, and 2) implementing it for ranges of >1 day (e.g. last week) would require making multiple requests and more code If desired, look at the time='whatever' parameter in darkskylib lat, lon - floats time_query - a string with a relative time. Something like 'tonight at 8' is fine note: you should ensure that wit.ai app's timezone is set to GMT darksky returns forecasts in local times without a timezone ''' # find date/time with wit.ai and duckling response = self.wit_client.message(time_query)['entities'] if not response['datetime']: raise ValueError('could not parse time, <{}>'.format(time_query)) else: # assume that time_query only contains one datetime object, but # duckling is pretty good about handling ranges time_instance = response['datetime'][0] # parse a wit.ai datetime object, which should look like: # { # 'type': 'value', # 'grain': 'second' | minute' | 'hour' | 'day' | 'week' | 'year' # 'value': '2020-01-01T12:30:00.000+00:00' # } # OR an interval containing a start and end that each look like the # above is_interval = False if time_instance['type'] == 'interval': # for queries like "this weekend", the result will be a range. # just use the start time. start_dt = datetime.strptime( time_instance['from']['value'], "%Y-%m-%dT%H:%M:%S.%f+00:00") end_dt = datetime.strptime( time_instance['to']['value'], "%Y-%m-%dT%H:%M:%S.%f+00:00") grain = time_instance['from']['grain'] is_interval = True elif time_instance['type'] == 'value': start_dt = datetime.strptime( time_instance['value'], "%Y-%m-%dT%H:%M:%S.%f+00:00") grain = time_instance['grain'] if grain == 'week': end_dt = start_dt + timedelta(days=7) is_interval = True else: raise Exception('unrecognized type', time_instance['type']) # Get the full forecast that corresponds to the time granularity fc = forecast(self.darksky_key, lat, lon, extend='hourly') if grain == 'second' or grain == 'minute': try: # minutely forecasts are only available in some parts of the # world. test if they work fc_range = fc.minutely # they also don't always include temperature, so test this too _temperature_test = fc.minutely[0].temperature except AttributeError: fc_range = fc.hourly grain = 'hour' elif grain == 'hour': fc_range = fc.hourly elif grain == 'day' or grain == 'week' or grain == 'month' or grain == 'year': fc_range = fc.daily try: summary = fc_range.summary except AttributeError: summary = fc_range[0].summary # if we parsed an interval, create an aggregate forecast if is_interval: # trim the ends of the range. note: darksky only provides hourly # forecasts for the next 48 hours, and daily forecasts for the next # week fc_filtered_range = [block for block in fc_range if start_dt.timestamp( ) <= block.time <= end_dt.timestamp()] aggregate_fc = self.aggregate_forecast(fc_filtered_range) transformed_forecast = self.transform_forecast(aggregate_fc) return transformed_forecast + [ {'name': 'summary', 'value': summary}, {'name': 'start_date', 'value': start_dt.strftime('%a, %b %d')}, {'name': 'start_time', 'value': start_dt.strftime('%H:%M')}, {'name': 'end_date', 'value': end_dt.strftime('%a, %b %d')}, {'name': 'end_time', 'value': end_dt.strftime('%H:%M')}, {'name': 'grain', 'value': grain}, ] else: # return the forecast for that time transformed_forecast = self.transform_forecast(fc.currently) return transformed_forecast + [ {'name': 'summary', 'value': summary}, {'name': 'date', 'value': start_dt.strftime('%a, %b %d')}, {'name': 'time', 'value': start_dt.strftime('%H:%M')}, {'name': 'grain', 'value': grain}, ] return timestamp
Python
def initialize(self): '''Reset the message interface. This is also called when restarting a dialog''' self.messages = [] self.user_utterance_variables = [] self.user_utterance_variables_without_full_names = [] self.user_utterance_number = 0 self.emit_fn('/history/user_utterance_variables', self.user_utterance_variables_without_full_names) self.agent_utterance_variables = [] self.agent_utterance_variables_without_full_names = [] self.agent_utterance_number = 0 self.emit_fn('/history/agent_utterance_variables', self.agent_utterance_variables_without_full_names) self.emit_fn('/history/messages', self.messages) initial_message = copy.deepcopy( self.initial_message) if isinstance(self.agent, HumanAgent) else self.agent.initial_message() self.handle_message(copy.deepcopy(initial_message))
def initialize(self): '''Reset the message interface. This is also called when restarting a dialog''' self.messages = [] self.user_utterance_variables = [] self.user_utterance_variables_without_full_names = [] self.user_utterance_number = 0 self.emit_fn('/history/user_utterance_variables', self.user_utterance_variables_without_full_names) self.agent_utterance_variables = [] self.agent_utterance_variables_without_full_names = [] self.agent_utterance_number = 0 self.emit_fn('/history/agent_utterance_variables', self.agent_utterance_variables_without_full_names) self.emit_fn('/history/messages', self.messages) initial_message = copy.deepcopy( self.initial_message) if isinstance(self.agent, HumanAgent) else self.agent.initial_message() self.handle_message(copy.deepcopy(initial_message))
Python
def clean_words(words): ''' args: words - list of word tokens returns: list of words lowercased and with non-alphanumeric characters removed. ''' return ["".join(c for c in word.lower() if c.isalnum()) for word in words]
def clean_words(words): ''' args: words - list of word tokens returns: list of words lowercased and with non-alphanumeric characters removed. ''' return ["".join(c for c in word.lower() if c.isalnum()) for word in words]
Python
def find_longest_match_indicator(cleaned_word_tokens, indicator_map): ''' Finds the longest match indicator, STARTING from the first token, e.g. if first token doesn't match, no matches will be returned. args: cleaned_word_tokens - list that is lowercased with all all non-alphanumeric characters removed. returns: The longest match in the form of a list of word tokens. If no match was found, returns None ''' first_word = cleaned_word_tokens[0] other_words = cleaned_word_tokens[1:] if len( cleaned_word_tokens) > 1 else [] longest_matching_suffix = None if first_word in indicator_map: suffixes = indicator_map[first_word] assert suffixes for suffix in suffixes: if len(other_words) < len(suffix): continue if longest_matching_suffix is None or len( suffix) > len(longest_matching_suffix): clean_suffix = other_words[:len(suffix)] if clean_suffix == suffix: longest_matching_suffix = suffix output = None if longest_matching_suffix is None else [ first_word] + longest_matching_suffix if output: logging.debug("Found indicator: {}".format(output)) return output
def find_longest_match_indicator(cleaned_word_tokens, indicator_map): ''' Finds the longest match indicator, STARTING from the first token, e.g. if first token doesn't match, no matches will be returned. args: cleaned_word_tokens - list that is lowercased with all all non-alphanumeric characters removed. returns: The longest match in the form of a list of word tokens. If no match was found, returns None ''' first_word = cleaned_word_tokens[0] other_words = cleaned_word_tokens[1:] if len( cleaned_word_tokens) > 1 else [] longest_matching_suffix = None if first_word in indicator_map: suffixes = indicator_map[first_word] assert suffixes for suffix in suffixes: if len(other_words) < len(suffix): continue if longest_matching_suffix is None or len( suffix) > len(longest_matching_suffix): clean_suffix = other_words[:len(suffix)] if clean_suffix == suffix: longest_matching_suffix = suffix output = None if longest_matching_suffix is None else [ first_word] + longest_matching_suffix if output: logging.debug("Found indicator: {}".format(output)) return output
Python
def reset(self): ''' Called before each episode, returns the first observation ''' if self.num_epidodes % 1000 == 0: logger.warning("completed {} episodes.".format(self.num_epidodes)) if self.num_epidodes >= 10000: logger.warning('episode ' + str(self.num_epidodes)) logger.warning('------------') _, _, history, _ = self.state.get_global_state() for h in history: logger.warning(h) logger.warning('-------------') self.num_epidodes += 1 destination_id = random.randint(1, 2) if self.num_epidodes >= 10000: logger.warning( 'set destination: ' + NanoworldEnv.destination[destination_id]) self.state = DialogStateNano( NanoworldEnv.max_num_actions, desired_destination=NanoworldEnv.destination[destination_id]) self.obs = { 'driver': self.state.make_driver_observation(), 'passenger': self.state.make_passenger_observation() } return self.obs
def reset(self): ''' Called before each episode, returns the first observation ''' if self.num_epidodes % 1000 == 0: logger.warning("completed {} episodes.".format(self.num_epidodes)) if self.num_epidodes >= 10000: logger.warning('episode ' + str(self.num_epidodes)) logger.warning('------------') _, _, history, _ = self.state.get_global_state() for h in history: logger.warning(h) logger.warning('-------------') self.num_epidodes += 1 destination_id = random.randint(1, 2) if self.num_epidodes >= 10000: logger.warning( 'set destination: ' + NanoworldEnv.destination[destination_id]) self.state = DialogStateNano( NanoworldEnv.max_num_actions, desired_destination=NanoworldEnv.destination[destination_id]) self.obs = { 'driver': self.state.make_driver_observation(), 'passenger': self.state.make_passenger_observation() } return self.obs
Python
def step(self, action_dict): ''' Given an action_dict, compute the next observation, rewards, and dones ''' if 'driver' in action_dict: driver_obs = self.driver_step(action_dict['driver']) if self.state.is_done(): driver_reward = self.compute_driver_reward() return {'driver': driver_obs, 'passenger': self.state.make_passenger_observation()}, \ {'driver': driver_reward, 'passenger': self.compute_passenger_reward()}, \ {'__all__': self.state.is_done()}, {} if 'passenger' in action_dict: passenger_obs = self.passenger_step(action_dict['passenger']) self.obs = { 'driver': driver_obs, 'passenger': passenger_obs } self.rewards = { 'driver': self.compute_driver_reward(), 'passenger': self.compute_passenger_reward() } self.dones = {'__all__': self.state.is_done()} self.infos = {} return self.obs, self.rewards, self.dones, self.infos
def step(self, action_dict): ''' Given an action_dict, compute the next observation, rewards, and dones ''' if 'driver' in action_dict: driver_obs = self.driver_step(action_dict['driver']) if self.state.is_done(): driver_reward = self.compute_driver_reward() return {'driver': driver_obs, 'passenger': self.state.make_passenger_observation()}, \ {'driver': driver_reward, 'passenger': self.compute_passenger_reward()}, \ {'__all__': self.state.is_done()}, {} if 'passenger' in action_dict: passenger_obs = self.passenger_step(action_dict['passenger']) self.obs = { 'driver': driver_obs, 'passenger': passenger_obs } self.rewards = { 'driver': self.compute_driver_reward(), 'passenger': self.compute_passenger_reward() } self.dones = {'__all__': self.state.is_done()} self.infos = {} return self.obs, self.rewards, self.dones, self.infos
Python
def _get_received(self): '''return a list of messages received from the server from the agent''' result = [] for variable in self.socket_client.get_received(): if variable['name'] == '/message' and variable['args'][0]['sender'] == 'agent': result.append(variable['args'][0]['body']) return result
def _get_received(self): '''return a list of messages received from the server from the agent''' result = [] for variable in self.socket_client.get_received(): if variable['name'] == '/message' and variable['args'][0]['sender'] == 'agent': result.append(variable['args'][0]['body']) return result
Python
def _setup_helper(self): '''Create commonly used objects and join the chatroom''' self.flask_client, self.socket_client = self.app.create_test_clients() self.interfaces = self.app.rooms['0'].interfaces self.socket_client.emit('join', {'roomId': '0', 'sender': 'agent'}) self.domain = self.app.domain.clone(self.interfaces)
def _setup_helper(self): '''Create commonly used objects and join the chatroom''' self.flask_client, self.socket_client = self.app.create_test_clients() self.interfaces = self.app.rooms['0'].interfaces self.socket_client.emit('join', {'roomId': '0', 'sender': 'agent'}) self.domain = self.app.domain.clone(self.interfaces)
Python
def at_time(self, request_params): '''Return the current weather at the specified time''' lat_long = load_parameter(request_params, "lat/long") lat, lon = lat_long.split(',') time_query = load_parameter(request_params, "time query") response = self.api_call( self.provider.weather_at_time, request_params, lat, lon, time_query) return response
def at_time(self, request_params): '''Return the current weather at the specified time''' lat_long = load_parameter(request_params, "lat/long") lat, lon = lat_long.split(',') time_query = load_parameter(request_params, "time query") response = self.api_call( self.provider.weather_at_time, request_params, lat, lon, time_query) return response
Python
def clear_variables(self): '''Reset variables available to the agent. This should be called when resetting the chat''' self.request_number = 0 self.request_variables = [copy.deepcopy(self.initial_variables)] self.emit('/history/request_variables/agent', self.request_variables) if self.get_destination is not None: source_lat, source_lng = None, None for variable in self.initial_variables['variables']: if variable['name'] == 'latitude': source_lat = variable['value'] elif variable['name'] == 'longitude': source_lng = variable['value'] user_destination = self.get_destination(source_lat, source_lng) user_destination['name'] = 'destination' user_destination['variables'] = user_destination['value'] del user_destination['value'] for variable in user_destination['variables']: if variable['name'] == 'latitude': self.dst_lat = variable['value'] elif variable['name'] == 'longitude': self.dst_lng = variable['value'] self.user_destination = self.remove_latlong(user_destination) add_full_names( self.user_destination['variables'], self.user_destination['variable_group']) if self.user is not None: self.user.destination = user_destination else: self.user_destination = None self.emit('/history/request_variables/user', [self.user_destination]) self.end_hint = None
def clear_variables(self): '''Reset variables available to the agent. This should be called when resetting the chat''' self.request_number = 0 self.request_variables = [copy.deepcopy(self.initial_variables)] self.emit('/history/request_variables/agent', self.request_variables) if self.get_destination is not None: source_lat, source_lng = None, None for variable in self.initial_variables['variables']: if variable['name'] == 'latitude': source_lat = variable['value'] elif variable['name'] == 'longitude': source_lng = variable['value'] user_destination = self.get_destination(source_lat, source_lng) user_destination['name'] = 'destination' user_destination['variables'] = user_destination['value'] del user_destination['value'] for variable in user_destination['variables']: if variable['name'] == 'latitude': self.dst_lat = variable['value'] elif variable['name'] == 'longitude': self.dst_lng = variable['value'] self.user_destination = self.remove_latlong(user_destination) add_full_names( self.user_destination['variables'], self.user_destination['variable_group']) if self.user is not None: self.user.destination = user_destination else: self.user_destination = None self.emit('/history/request_variables/user', [self.user_destination]) self.end_hint = None
Python
def _command_complete(self, partial_command): ''' Args: partial_command - A list consisting of API endpoint or a template plus its parameters Returns bool: Whether the partial command has all the necessary parameters or not ''' if len(partial_command) == 0: return False action, params = partial_command[0], partial_command[1:] api = self.domain.api_functions.get(action, None) if api is not None: return len(api["params"]) == len(params) if action == self.domain.end_dialog['function'].endpoint: return len(self.domain.end_dialog["params"]) == len(params) for template in self.domain.agent_templates_list: if template == action: return len(re.findall(r'{.*?}', template)) == len(params) assert False, "Couldn't find matching api or templates for action: '%s'" % action
def _command_complete(self, partial_command): ''' Args: partial_command - A list consisting of API endpoint or a template plus its parameters Returns bool: Whether the partial command has all the necessary parameters or not ''' if len(partial_command) == 0: return False action, params = partial_command[0], partial_command[1:] api = self.domain.api_functions.get(action, None) if api is not None: return len(api["params"]) == len(params) if action == self.domain.end_dialog['function'].endpoint: return len(self.domain.end_dialog["params"]) == len(params) for template in self.domain.agent_templates_list: if template == action: return len(re.findall(r'{.*?}', template)) == len(params) assert False, "Couldn't find matching api or templates for action: '%s'" % action
Python
def find_variable(request_body, parameter_name, value): '''Find the full name of a variable''' for variable in request_body: if variable['name'] == parameter_name and abs( float(variable['value']) - float(value)) < 0.000005: return variable['full_name'] elif isinstance(variable['value'], list): val = find_variable(variable['value'], parameter_name, value) if val is not None: return val
def find_variable(request_body, parameter_name, value): '''Find the full name of a variable''' for variable in request_body: if variable['name'] == parameter_name and abs( float(variable['value']) - float(value)) < 0.000005: return variable['full_name'] elif isinstance(variable['value'], list): val = find_variable(variable['value'], parameter_name, value) if val is not None: return val
Python
def driver_valid_actions(self): ''' Return list of valid actions for driver ''' null_action_mask = [1] api_and_template_mask = [len(self.state.driver_partial_command) == 0 for _ in MicroworldEnv.apis + MicroworldEnv.driver_templates] variable_mask = [] for i in range(self.max_variables): if i >= len(self.state.driver_variables) or \ len(self.state.driver_partial_command) == 0: variable_mask.append(0) else: variable = self.state.driver_variables[i] if self.state.driver_partial_command[0] in ('find_place', 'places_nearby'): if len(self.state.driver_partial_command) == 1: # Query parameter, must click a user utterance variable_mask.append(variable.get('full_name', '').startswith('u')) elif len(self.state.driver_partial_command) == 2: # Latitude variable_mask.append('latitude' in variable.get('full_name', '')) elif len(self.state.driver_partial_command) == 3: # Longitude variable_mask.append('longitude' in variable.get('full_name', '')) elif self.state.driver_partial_command[0] == 'start_driving': if len(self.state.driver_partial_command) == 1: # Latitude variable_mask.append('latitude' in variable.get('full_name', '')) elif len(self.state.driver_partial_command) == 2: # Longitude variable_mask.append('longitude' in variable.get('full_name', '')) else: variable_mask.append(1) return null_action_mask + api_and_template_mask + variable_mask
def driver_valid_actions(self): ''' Return list of valid actions for driver ''' null_action_mask = [1] api_and_template_mask = [len(self.state.driver_partial_command) == 0 for _ in MicroworldEnv.apis + MicroworldEnv.driver_templates] variable_mask = [] for i in range(self.max_variables): if i >= len(self.state.driver_variables) or \ len(self.state.driver_partial_command) == 0: variable_mask.append(0) else: variable = self.state.driver_variables[i] if self.state.driver_partial_command[0] in ('find_place', 'places_nearby'): if len(self.state.driver_partial_command) == 1: # Query parameter, must click a user utterance variable_mask.append(variable.get('full_name', '').startswith('u')) elif len(self.state.driver_partial_command) == 2: # Latitude variable_mask.append('latitude' in variable.get('full_name', '')) elif len(self.state.driver_partial_command) == 3: # Longitude variable_mask.append('longitude' in variable.get('full_name', '')) elif self.state.driver_partial_command[0] == 'start_driving': if len(self.state.driver_partial_command) == 1: # Latitude variable_mask.append('latitude' in variable.get('full_name', '')) elif len(self.state.driver_partial_command) == 2: # Longitude variable_mask.append('longitude' in variable.get('full_name', '')) else: variable_mask.append(1) return null_action_mask + api_and_template_mask + variable_mask
Python
def passenger_valid_actions(self): ''' Return list of valid actions for passenger ''' return [1] + \ [len(self.state.passenger_partial_command) == 0 for _ in MicroworldEnv.passenger_templates] + \ [len(self.state.passenger_partial_command) > 0 and i < len(self.state.passenger_variables) for i in range(self.max_variables)]
def passenger_valid_actions(self): ''' Return list of valid actions for passenger ''' return [1] + \ [len(self.state.passenger_partial_command) == 0 for _ in MicroworldEnv.passenger_templates] + \ [len(self.state.passenger_partial_command) > 0 and i < len(self.state.passenger_variables) for i in range(self.max_variables)]
Python
def reset(self): ''' Called before each episode, returns the first observation ''' logger.info("[{}] Resetting environment".format(self.room_id)) self.dialog_completed = False self.socket.emit('/restart_dialog', { 'roomId': self.room_id, }) self.state = DialogState(self.max_steps, self.max_utterances, self.max_variables, self.embed_dim, self.max_command_length, self.max_conversation_length, self.passenger_max_actions, self.passenger_max_actions) self.state.update_state(self.get_global_state()) self.obs = { 'driver': self.state.make_driver_observation(self.driver_valid_actions()), 'passenger': self.state.make_passenger_observation(self.passenger_valid_actions()) } self.rewards = {'driver': 0, 'passenger': 0} self.dones = {'__all__': False} self.infos = {} return self.obs
def reset(self): ''' Called before each episode, returns the first observation ''' logger.info("[{}] Resetting environment".format(self.room_id)) self.dialog_completed = False self.socket.emit('/restart_dialog', { 'roomId': self.room_id, }) self.state = DialogState(self.max_steps, self.max_utterances, self.max_variables, self.embed_dim, self.max_command_length, self.max_conversation_length, self.passenger_max_actions, self.passenger_max_actions) self.state.update_state(self.get_global_state()) self.obs = { 'driver': self.state.make_driver_observation(self.driver_valid_actions()), 'passenger': self.state.make_passenger_observation(self.passenger_valid_actions()) } self.rewards = {'driver': 0, 'passenger': 0} self.dones = {'__all__': False} self.infos = {} return self.obs
Python
def _driver_step(self, action): ''' Returns the driver's reward from the action ''' reward = 0 if action == 0: # 0 => No action logger.info("[{}] Driver clicked no action".format(self.room_id)) return MicroworldEnv.rewards['driver_no_action'] elif 1 <= action < 1 + len(MicroworldEnv.apis): # API clicked api_index = action - 1 api = MicroworldEnv.apis[api_index] if not self.state.driver_partial_command: self.state.driver_partial_command.append(api.name) logger.info("[{}] Driver clicked API call: {}".format(self.room_id, api.name)) else: logger.info("[{}] Driver tried invalid API click: {}".format(self.room_id, api.name)) reward = MicroworldEnv.rewards['driver_invalid_api'] if reward: logger.info("[{}] --- Driver got a reward: {}".format(self.room_id, reward)) return reward elif 1 + len(self.apis) <= action < 1 + len(self.apis) + len(self.driver_templates): # Template clicked template_index = action - len(MicroworldEnv.apis) - 1 template = MicroworldEnv.driver_templates[template_index] if not self.state.driver_partial_command: logger.info("[{}] Driver clicked template: {}".format(self.room_id, template)) self.state.driver_partial_command.append(template) else: logger.info("[{}] Driver tried invalid template click: {}".format(self.room_id, template)) reward = MicroworldEnv.rewards['driver_invalid_template'] if reward: logger.info("[{}] --- Driver got a reward: {}".format(self.room_id, reward)) return reward else: # Variable clicked # TODO: Combine utterance variables, as is done in the UI if self.state.driver_partial_command: variable_index = action - len(MicroworldEnv.apis) - len(MicroworldEnv.driver_templates) - 1 if 0 <= variable_index < len(self.state.driver_variables): variable = self.state.driver_variables[variable_index] logger.info("[{}] Driver clicked variable: {}".format(self.room_id, variable)) self.state.driver_partial_command.append(variable) else: logger.info("[{}] Driver tried invalid variable click: {}".format(self.room_id, variable_index)) reward = MicroworldEnv.rewards['driver_invalid_variable'] if reward: logger.info("[{}] --- Driver got a reward: {}".format(self.room_id, reward)) return reward else: logger.info("[{}] Driver tried invalid variable click (no action selected)".format(self.room_id)) reward = MicroworldEnv.rewards['driver_invalid_variable'] if reward: logger.info("[{}] --- Driver got a reward: {}".format(self.room_id, reward)) return reward if self._driver_command_complete(self.state.driver_partial_command): logger.info("[{}] --- Driver completed an action: {}".format(self.room_id, self.state.driver_partial_command)) reward = self._apply_driver_command(self.state.driver_partial_command) if reward: logger.info("[{}] --- Driver got a reward: {}".format(self.room_id, reward)) return reward
def _driver_step(self, action): ''' Returns the driver's reward from the action ''' reward = 0 if action == 0: # 0 => No action logger.info("[{}] Driver clicked no action".format(self.room_id)) return MicroworldEnv.rewards['driver_no_action'] elif 1 <= action < 1 + len(MicroworldEnv.apis): # API clicked api_index = action - 1 api = MicroworldEnv.apis[api_index] if not self.state.driver_partial_command: self.state.driver_partial_command.append(api.name) logger.info("[{}] Driver clicked API call: {}".format(self.room_id, api.name)) else: logger.info("[{}] Driver tried invalid API click: {}".format(self.room_id, api.name)) reward = MicroworldEnv.rewards['driver_invalid_api'] if reward: logger.info("[{}] --- Driver got a reward: {}".format(self.room_id, reward)) return reward elif 1 + len(self.apis) <= action < 1 + len(self.apis) + len(self.driver_templates): # Template clicked template_index = action - len(MicroworldEnv.apis) - 1 template = MicroworldEnv.driver_templates[template_index] if not self.state.driver_partial_command: logger.info("[{}] Driver clicked template: {}".format(self.room_id, template)) self.state.driver_partial_command.append(template) else: logger.info("[{}] Driver tried invalid template click: {}".format(self.room_id, template)) reward = MicroworldEnv.rewards['driver_invalid_template'] if reward: logger.info("[{}] --- Driver got a reward: {}".format(self.room_id, reward)) return reward else: # Variable clicked # TODO: Combine utterance variables, as is done in the UI if self.state.driver_partial_command: variable_index = action - len(MicroworldEnv.apis) - len(MicroworldEnv.driver_templates) - 1 if 0 <= variable_index < len(self.state.driver_variables): variable = self.state.driver_variables[variable_index] logger.info("[{}] Driver clicked variable: {}".format(self.room_id, variable)) self.state.driver_partial_command.append(variable) else: logger.info("[{}] Driver tried invalid variable click: {}".format(self.room_id, variable_index)) reward = MicroworldEnv.rewards['driver_invalid_variable'] if reward: logger.info("[{}] --- Driver got a reward: {}".format(self.room_id, reward)) return reward else: logger.info("[{}] Driver tried invalid variable click (no action selected)".format(self.room_id)) reward = MicroworldEnv.rewards['driver_invalid_variable'] if reward: logger.info("[{}] --- Driver got a reward: {}".format(self.room_id, reward)) return reward if self._driver_command_complete(self.state.driver_partial_command): logger.info("[{}] --- Driver completed an action: {}".format(self.room_id, self.state.driver_partial_command)) reward = self._apply_driver_command(self.state.driver_partial_command) if reward: logger.info("[{}] --- Driver got a reward: {}".format(self.room_id, reward)) return reward
Python
def step(self, action_dict): ''' Given an action_dict, compute the next observation, rewards, and dones ''' # (state, action) => state if 'driver' in action_dict: driver_reward = self._driver_step(action_dict['driver']) if 'passenger' in action_dict: passenger_reward = self._passenger_step(action_dict['passenger']) # Update obs from state self.state.update_state(self.get_global_state()) self.state.steps += 1 self.obs = { 'driver': self.state.make_driver_observation(self.driver_valid_actions()), 'passenger': self.state.make_passenger_observation(self.passenger_valid_actions()) } if not self.dialog_completed: self.dones = {'__all__': self.state.is_done()} if self.dones['__all__']: driver_reward += MicroworldEnv.rewards['driver_max_steps'] passenger_reward += MicroworldEnv.rewards['passenger_max_steps'] self.rewards = {'driver': driver_reward, 'passenger': passenger_reward} self.infos = {} return self.obs, self.rewards, self.dones, self.infos
def step(self, action_dict): ''' Given an action_dict, compute the next observation, rewards, and dones ''' # (state, action) => state if 'driver' in action_dict: driver_reward = self._driver_step(action_dict['driver']) if 'passenger' in action_dict: passenger_reward = self._passenger_step(action_dict['passenger']) # Update obs from state self.state.update_state(self.get_global_state()) self.state.steps += 1 self.obs = { 'driver': self.state.make_driver_observation(self.driver_valid_actions()), 'passenger': self.state.make_passenger_observation(self.passenger_valid_actions()) } if not self.dialog_completed: self.dones = {'__all__': self.state.is_done()} if self.dones['__all__']: driver_reward += MicroworldEnv.rewards['driver_max_steps'] passenger_reward += MicroworldEnv.rewards['passenger_max_steps'] self.rewards = {'driver': driver_reward, 'passenger': passenger_reward} self.infos = {} return self.obs, self.rewards, self.dones, self.infos
Python
def _command_complete(self, partial_command): ''' Args: partial_command - A list consisting of API endpoint or a template plus its parameters Returns bool: Whether the partial command has all the necessary parameters or not ''' if len(partial_command) == 0: return False action, params = partial_command[0], partial_command[1:] for template in self.domain.user_templates_list: if template == action: return len(re.findall(r'{.*?}', template)) == len(params) assert False, "Couldn't find matching api or templates for action: '%s'" % action
def _command_complete(self, partial_command): ''' Args: partial_command - A list consisting of API endpoint or a template plus its parameters Returns bool: Whether the partial command has all the necessary parameters or not ''' if len(partial_command) == 0: return False action, params = partial_command[0], partial_command[1:] for template in self.domain.user_templates_list: if template == action: return len(re.findall(r'{.*?}', template)) == len(params) assert False, "Couldn't find matching api or templates for action: '%s'" % action
Python
def acquire(self, blocking=True): """ Acquire the lock, if possible. If the lock is in use, and `blocking` is False, return False. Otherwise, check again every `self.delay` seconds until it either gets the lock or exceeds `timeout` number of seconds, in which case it raises an exception. """ start_time = time.time() while True: try: # Attempt to create the lockfile. # These flags cause os.open to raise an OSError if the file # already exists. fd = os.open(self.lockfile, os.O_CREAT | os.O_EXCL | os.O_RDWR) with os.fdopen(fd, "a") as f: # Print some info about the current process as debug info # for anyone who bothers to look. f.write(self._lock_file_contents) break except OSError as e: if e.errno != errno.EEXIST: raise if self.timeout is not None and ( time.time() - start_time) >= self.timeout: raise FileLock.FileLockException("Timeout occurred.") if not blocking: return False time.sleep(self.delay) self.is_locked = True return True
def acquire(self, blocking=True): """ Acquire the lock, if possible. If the lock is in use, and `blocking` is False, return False. Otherwise, check again every `self.delay` seconds until it either gets the lock or exceeds `timeout` number of seconds, in which case it raises an exception. """ start_time = time.time() while True: try: # Attempt to create the lockfile. # These flags cause os.open to raise an OSError if the file # already exists. fd = os.open(self.lockfile, os.O_CREAT | os.O_EXCL | os.O_RDWR) with os.fdopen(fd, "a") as f: # Print some info about the current process as debug info # for anyone who bothers to look. f.write(self._lock_file_contents) break except OSError as e: if e.errno != errno.EEXIST: raise if self.timeout is not None and ( time.time() - start_time) >= self.timeout: raise FileLock.FileLockException("Timeout occurred.") if not blocking: return False time.sleep(self.delay) self.is_locked = True return True
Python
def on_message_with_alternate_events( self, events, initial_alternate_events=None): ''' Optional implementation: This is an experimental version of on_message() that adds initial_alternate_events as additional context before predicting the next action. ''' raise NotImplementedError
def on_message_with_alternate_events( self, events, initial_alternate_events=None): ''' Optional implementation: This is an experimental version of on_message() that adds initial_alternate_events as additional context before predicting the next action. ''' raise NotImplementedError
Python
def on_dialog_finished(self, completed: bool, correct: bool): ''' Called at the end of a dialog ''' pass
def on_dialog_finished(self, completed: bool, correct: bool): ''' Called at the end of a dialog ''' pass
Python
def on_dialog_finished(self, completed, correct): ''' Called at the end of a dialog. If the dialog is restarted before completion, 'completed' is set to False. ''' reward_function = self.agent_shared_state["rl_config"]["rewards"] if self.state.is_done(): # early termination agent_reward = reward_function["driver_max_steps"] else: agent_reward = reward_function["driver_correct_destination"] if correct \ else reward_function["driver_incorrect_destination"] user_reward = None if not isinstance(self.room.user, HumanUser): if self.state.is_done(): # early termination user_reward = reward_function["passenger_max_steps"] else: user_reward = reward_function["passenger_correct_destination"] if correct\ else reward_function["passenger_incorrect_destination"] # print("DEBUG: Dialog was finished with reward", agent_reward + user_reward) if user_reward is not None: joint_reward = {"agent": agent_reward, "user": user_reward} else: joint_reward = {"agent": agent_reward} self.send_reward_to_policy_server(joint_reward) if self.agent_shared_state["rl_config"]["multiagent"]: final_obs = { **self.make_observation(), **(self.room.user.make_observation() if not isinstance(self.room.user, HumanUser) else {}) } else: final_obs = self.make_observation() self.policy_client.end_episode( self.current_episode_id, final_obs)
def on_dialog_finished(self, completed, correct): ''' Called at the end of a dialog. If the dialog is restarted before completion, 'completed' is set to False. ''' reward_function = self.agent_shared_state["rl_config"]["rewards"] if self.state.is_done(): # early termination agent_reward = reward_function["driver_max_steps"] else: agent_reward = reward_function["driver_correct_destination"] if correct \ else reward_function["driver_incorrect_destination"] user_reward = None if not isinstance(self.room.user, HumanUser): if self.state.is_done(): # early termination user_reward = reward_function["passenger_max_steps"] else: user_reward = reward_function["passenger_correct_destination"] if correct\ else reward_function["passenger_incorrect_destination"] # print("DEBUG: Dialog was finished with reward", agent_reward + user_reward) if user_reward is not None: joint_reward = {"agent": agent_reward, "user": user_reward} else: joint_reward = {"agent": agent_reward} self.send_reward_to_policy_server(joint_reward) if self.agent_shared_state["rl_config"]["multiagent"]: final_obs = { **self.make_observation(), **(self.room.user.make_observation() if not isinstance(self.room.user, HumanUser) else {}) } else: final_obs = self.make_observation() self.policy_client.end_episode( self.current_episode_id, final_obs)
Python
def _get_valid_actions_mask(self): ''' Return indicator mask of valid actions for driver TODO use action partition indices instead of hard-coded ordering if different action types. ''' mask = [0] * len(self.agent_shared_state["action_space_partitions"]) assert len(mask) == self.state.driver_max_actions, \ "%d != %d" % (len(mask) == len(self.state.driver_max_actions)) empty_command = len(self.state.driver_partial_command) == 0 for index, action_type_and_sub_index in self.agent_shared_state["action_space_partitions"].items(): action_type, sub_index = action_type_and_sub_index if empty_command and action_type in \ (ActionType.API, ActionType.END_DIALOG_API, ActionType.TEMPLATE): # TODO add ActionType.NO_ACTION mask[index] = 1 elif not empty_command and action_type == ActionType.VARIABLE and \ sub_index < len(self.state.driver_variables): variable = self.state.driver_variables[sub_index] variable_name = variable.get('full_name', '') if self.state.driver_partial_command[0] in ('/maps/find_place', '/maps/places_nearby'): if (len(self.state.driver_partial_command) == 1 # Query parameter, must click a user utterance and variable_name.startswith('u')) or \ (len(self.state.driver_partial_command) == 2 and (variable_name.startswith('u') or 'latitude' in variable_name)) or \ (len(self.state.driver_partial_command) == 3 and 'longitude' in variable_name): mask[index] = 1 elif self.state.driver_partial_command[0] == '/maps/start_driving_no_map': if (len(self.state.driver_partial_command) == 1 and 'latitude' in variable_name) or \ (len(self.state.driver_partial_command) == 2 and 'longitude' in variable_name): mask[index] = 1 else: # Template variable mask[index] = 1 return mask
def _get_valid_actions_mask(self): ''' Return indicator mask of valid actions for driver TODO use action partition indices instead of hard-coded ordering if different action types. ''' mask = [0] * len(self.agent_shared_state["action_space_partitions"]) assert len(mask) == self.state.driver_max_actions, \ "%d != %d" % (len(mask) == len(self.state.driver_max_actions)) empty_command = len(self.state.driver_partial_command) == 0 for index, action_type_and_sub_index in self.agent_shared_state["action_space_partitions"].items(): action_type, sub_index = action_type_and_sub_index if empty_command and action_type in \ (ActionType.API, ActionType.END_DIALOG_API, ActionType.TEMPLATE): # TODO add ActionType.NO_ACTION mask[index] = 1 elif not empty_command and action_type == ActionType.VARIABLE and \ sub_index < len(self.state.driver_variables): variable = self.state.driver_variables[sub_index] variable_name = variable.get('full_name', '') if self.state.driver_partial_command[0] in ('/maps/find_place', '/maps/places_nearby'): if (len(self.state.driver_partial_command) == 1 # Query parameter, must click a user utterance and variable_name.startswith('u')) or \ (len(self.state.driver_partial_command) == 2 and (variable_name.startswith('u') or 'latitude' in variable_name)) or \ (len(self.state.driver_partial_command) == 3 and 'longitude' in variable_name): mask[index] = 1 elif self.state.driver_partial_command[0] == '/maps/start_driving_no_map': if (len(self.state.driver_partial_command) == 1 and 'latitude' in variable_name) or \ (len(self.state.driver_partial_command) == 2 and 'longitude' in variable_name): mask[index] = 1 else: # Template variable mask[index] = 1 return mask
Python
def _step(self, action_index): ''' Steps the agent one-click forward and executes apis/templates if a full command results from the click. Args: action_index - index corresponding to the item-to-click (api/template/variable) Returns: (reward, message) tuple. Message corresponds to the agent message to respond with, it may be None. ''' raise NotImplementedError
def _step(self, action_index): ''' Steps the agent one-click forward and executes apis/templates if a full command results from the click. Args: action_index - index corresponding to the item-to-click (api/template/variable) Returns: (reward, message) tuple. Message corresponds to the agent message to respond with, it may be None. ''' raise NotImplementedError
Python
def load_variable(api_variables, variable_name): '''Used by runnable log to select a variable by name''' for variable in api_variables: if variable['name'] == variable_name: return variable['value']
def load_variable(api_variables, variable_name): '''Used by runnable log to select a variable by name''' for variable in api_variables: if variable['name'] == variable_name: return variable['value']
Python
def load_parameter(request_body, parameter_name): '''Find `parameter_name` in `request_body`, which should be in the format that data is sent by requests''' for parameter in request_body: if parameter['param'] == parameter_name: return parameter['value']
def load_parameter(request_body, parameter_name): '''Find `parameter_name` in `request_body`, which should be in the format that data is sent by requests''' for parameter in request_body: if parameter['param'] == parameter_name: return parameter['value']
Python
def make_english_list(list_, conjunction, oxford_comma=False): ''' Turns a list into an English list. The conjunction should be a word like 'and' or 'or'. e.g. [cat, dog, pig], conjunction='and' -> "cat, dog and pig" Returns a string ''' if len(list_) <= 1: return ''.join(list_) elif len(list_) == 2: oxford_comma = False # two element lists never get Oxford commas list_ = list_[:] if oxford_comma: list_[-1] = conjunction + ' ' + list_[-1] return ', '.join(list_) else: list_[-2:] = [list_[-2] + ' ' + conjunction + ' ' + list_[-1]] return ', '.join(list_)
def make_english_list(list_, conjunction, oxford_comma=False): ''' Turns a list into an English list. The conjunction should be a word like 'and' or 'or'. e.g. [cat, dog, pig], conjunction='and' -> "cat, dog and pig" Returns a string ''' if len(list_) <= 1: return ''.join(list_) elif len(list_) == 2: oxford_comma = False # two element lists never get Oxford commas list_ = list_[:] if oxford_comma: list_[-1] = conjunction + ' ' + list_[-1] return ', '.join(list_) else: list_[-2:] = [list_[-2] + ' ' + conjunction + ' ' + list_[-1]] return ', '.join(list_)
Python
def route(endpoint, **kwargs): ''' Decorator to annotate a function, which is used to create React API endpoints (see apis/base.py for how they are consumed) endpoint (str): the URL endpoint used to mount this function ''' def decorator(fcn): fcn.endpoint = endpoint fcn.flask_kwargs = kwargs return fcn return decorator
def route(endpoint, **kwargs): ''' Decorator to annotate a function, which is used to create React API endpoints (see apis/base.py for how they are consumed) endpoint (str): the URL endpoint used to mount this function ''' def decorator(fcn): fcn.endpoint = endpoint fcn.flask_kwargs = kwargs return fcn return decorator
Python
def completes_dialog(success=True, confirmation_type=None, *, confirmation_params=None): ''' This decorator needs to be called after @route I'm not sure why, but it has something to do with how decorators interact ''' if confirmation_type not in [ 'map', 'rate_satisfaction', 'confirm_information', 'default']: raise ValueError( 'Got unexpected confirmation type "{}"'.format(confirmation_type)) def decorator(fcn): fcn.completes_dialog = True @wraps(fcn) def api_call(self, request_params, *args, **kwargs): result = fcn(self, request_params, *args, **kwargs) self.manager.end_dialog( success=success, confirmation_type=confirmation_type, method_name=fcn.__name__, request_params=request_params) return result return api_call return decorator
def completes_dialog(success=True, confirmation_type=None, *, confirmation_params=None): ''' This decorator needs to be called after @route I'm not sure why, but it has something to do with how decorators interact ''' if confirmation_type not in [ 'map', 'rate_satisfaction', 'confirm_information', 'default']: raise ValueError( 'Got unexpected confirmation type "{}"'.format(confirmation_type)) def decorator(fcn): fcn.completes_dialog = True @wraps(fcn) def api_call(self, request_params, *args, **kwargs): result = fcn(self, request_params, *args, **kwargs) self.manager.end_dialog( success=success, confirmation_type=confirmation_type, method_name=fcn.__name__, request_params=request_params) return result return api_call return decorator
Python
def add_adjacent_variable(param_name, replacement): ''' Add a variable to the request_params before the request. This is useful for finding extra information about a variable without making the agent enter it param_name - name to give the new variable replacement - a 2-tuple, containing the first variable name in request_params and the new key to add the value of TODO: Make this operate on the entity that the variable corresponds to and move this functionality into interface functions ''' def decorator(fcn): @wraps(fcn) def api_call(self, request_params, *args, **kwargs): new_variable_name = request_params[0]['variable_name'].replace( replacement[0], replacement[1]) new_variable_value = self.manager.lookup_variable_by_name( new_variable_name, 'undefined') request_params.append({ "param": param_name, "variable_name": new_variable_name, "value": new_variable_value }) return fcn(self, request_params, *args, **kwargs) return api_call return decorator
def add_adjacent_variable(param_name, replacement): ''' Add a variable to the request_params before the request. This is useful for finding extra information about a variable without making the agent enter it param_name - name to give the new variable replacement - a 2-tuple, containing the first variable name in request_params and the new key to add the value of TODO: Make this operate on the entity that the variable corresponds to and move this functionality into interface functions ''' def decorator(fcn): @wraps(fcn) def api_call(self, request_params, *args, **kwargs): new_variable_name = request_params[0]['variable_name'].replace( replacement[0], replacement[1]) new_variable_value = self.manager.lookup_variable_by_name( new_variable_name, 'undefined') request_params.append({ "param": param_name, "variable_name": new_variable_name, "value": new_variable_value }) return fcn(self, request_params, *args, **kwargs) return api_call return decorator