seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf cell = tf.nn.rnn_cell.MultiRNNCell([tf.nn.rnn_cell.GRUCell(24)] * 2, state_is_tuple=True) return tf.nn.seq2seq.embedding_attention_seq2seq( enc_inp, dec_inp, cell, num_encoder_symbols=classes, num_decoder_symbols=classes, embedding_size=24) targets = [dec_inp[i+1] for i in range(len(dec_inp) - 1)] + [0] return tf.nn.seq2seq.model_with_buckets( enc_inp, dec_inp, targets, weights, buckets, GRUSeq2Seq, per_example_loss=per_example_loss) # Now we construct the copy model. inp = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)]
tensorflow.nn.seq2seq.model_with_buckets
9,400
import tensorflow as tf tf.FixedLenFeature([max_predictions_per_seq], tf.int64), "masked_lm_weights": tf.FixedLenFeature([max_predictions_per_seq], tf.float32), "next_sentence_labels": tf.FixedLenFeature([1], tf.int64), } # For training, we want a lot of parallel reading and shuffling.
tensorflow.FixedLenFeature
9,401
import tensorflow as tf if self.hparams.l2_loss > 0: for p in denoise_params: # self.weighs_propen=p # p=tf.Print(p,[p],message="show the weights") self.exam_loss += self.hparams.l1_loss * tf.reduce_sum(tf.abs(p)) for p in ranking_model_params: self.rank_loss += self.hparams.l2_loss * tf.nn.l2_loss(p) self.loss = self.exam_loss + self.hparams.ranker_loss_weight * self.rank_loss denoise_gradients = tf.gradients(self.exam_loss, denoise_params) ranking_model_gradients = tf.gradients(self.rank_loss, ranking_model_params) if self.hparams.max_gradient_norm > 0: denoise_gradients, denoise_norm = tf.clip_by_global_norm(denoise_gradients, self.hparams.max_gradient_norm) ranking_model_gradients, ranking_model_norm = tf.clip_by_global_norm(ranking_model_gradients, self.hparams.max_gradient_norm * self.hparams.ranker_loss_weight) self.norm = tf.global_norm(denoise_gradients + ranking_model_gradients) opt_denoise = self.optimizer_func(self.hparams.learning_rate) opt_ranker = self.optimizer_func(self.ranker_learning_rate)
tensorflow.gradients
9,402
import tensorflow as tf dec = tf.layers.max_pooling1d(dec, pool_size=2, strides=1, padding="same") dec = tf.layers.conv1d(dec, embed_size // 2, 3, name="decoder-conv1-1", padding="SAME") dec = tf.nn.relu(tf.layers.batch_normalization(dec, training=self.training)) dec = tf.layers.conv1d(dec, embed_size // 2, 3, name="decoder-conv1-2", padding="SAME") dec = tf.layers.batch_normalization(dec, training=self.training) dec = tf.layers.dense(dec, embed_size // 2) for i in range(4): dec = highwaynet( dec, num_units=embed_size // 2, scope="decoder-highwaynet-{}".format(i) ) with tf.variable_scope("decoder-gru", reuse=False): cell = tf.contrib.rnn.GRUCell(embed_size // 2) cell_bw = tf.contrib.rnn.GRUCell(embed_size // 2) outputs, _ = tf.nn.bidirectional_dynamic_rnn(cell, cell_bw, dec, dtype=tf.float32) outputs = tf.concat(outputs, 2) self.Z_hat = tf.layers.dense(outputs, 1 + fourier_window_size // 2) self.loss1 = tf.reduce_mean(tf.abs(self.Y_hat - self.Y)) self.loss2 = tf.reduce_mean(tf.abs(self.Z_hat - self.Z)) self.loss = self.loss1 + self.loss2 self.optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(self.loss)
tensorflow.variable_scope
9,403
import tensorflow as tf Args: inputs: 5-D tensor BxDxHxWxC kernel_size: a list of 3 ints stride: a list of 3 ints Returns: Variable tensor """ with tf.variable_scope(scope) as sc: kernel_d, kernel_h, kernel_w = kernel_size stride_d, stride_h, stride_w = stride outputs = tf.nn.avg_pool3d(inputs, ksize=[1, kernel_d, kernel_h, kernel_w, 1], strides=[1, stride_d, stride_h, stride_w, 1], padding=padding, name=sc.name) return outputs def batch_norm_template(inputs, is_training, scope, moments_dims, bn_decay): """ Batch normalization on convolutional maps and beyond... Ref.: http://stackoverflow.com/questions/33949786/how-could-i-use-batch-normalization-in-tensorflow
tensorflow.nn.avg_pool3d
9,404
import tensorflow as tf random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64) chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions)
tensorflow.where
9,405
import tensorflow as tf mask_ = tf.ones([FLAGS.batch_size,64,64,3]) mask = tf.pad(mask_, [[0,0],[32,32],[32,32],[0,0]]) mask2__ = tf.ones([FLAGS.batch_size,78,78,3]) mask2_ = tf.pad(mask2__, [[0,0],[25,25],[25,25],[0,0]]) mask2 = mask2_ - mask pred_annotation, logits = inference((1-mask)*image + mask*255, keep_probability,z) tf.summary.image("input_image", image, max_outputs=2) tf.summary.image("ground_truth", tf.cast(annotation, tf.uint8), max_outputs=2) tf.summary.image("pred_annotation", tf.cast(pred_annotation, tf.uint8), max_outputs=2) # loss0 = tf.reduce_mean(tf.abs(z)) loss = tf.reduce_mean(tf.sqrt(tf.reduce_sum(tf.square((image - logits)),[1,2,3]))) # loss2 = tf.reduce_mean(tf.square((image - logits)*mask2)) # loss = loss1 + loss2 + loss0 # loss = tf.reduce_mean(tf.squared_difference(logits ,annotation )) loss_summary = tf.summary.scalar("entropy", loss) grads = train_z(loss,z) trainable_var = tf.trainable_variables() if FLAGS.debug:
tensorflow.cast
9,406
import tensorflow as tf return tf.reduce_sum(kl) @pytest.mark.parametrize('white', [True, False]) def test_oned(session_tf, white, mu, sqrt, K_batch): """ Check that the KL divergence matches a 1D by-hand calculation. """ m = 0 mu1d = mu[m,:][None,:] # 1 x N s1d = sqrt[:,m,m][:,None,None] # N x 1 x 1 K1d = K_batch[:,m,m][:,None,None] # N x 1 x 1 kl = gauss_kl(mu1d,s1d,K1d if not white else None) kl_tf = tf_kl_1d(tf.reshape(mu1d,(-1,)), # N tf.reshape(s1d,(-1,)), # N None if white else tf.reshape(K1d,(-1,))) # N np.testing.assert_allclose(kl.eval(), kl_tf.eval()) if __name__ == "__main__": tf.test.main()
tensorflow.reshape
9,407
import tensorflow as tf phrase_starts: [batch_size, phrase_length] vocab_dist: [batch_size, vsize] attn_dist: [batch_size, phrase_length] return: [batch_size, phrase_length] ''' def singel_instance(x): cur_passage_words = x[0] # [passage_length] cur_phrase_starts = x[1] # [phrase_length] cur_vocab_dist = x[2] # [vsize] cur_attn_dist = x[3] # [passage_length] # first: get the first word for each phrase first_words = tf.gather(cur_passage_words, cur_phrase_starts) # [phrase_length] # second: get the probs for each word first_word_probs = tf.gather(cur_vocab_dist, first_words) # [phrase_length] return cur_attn_dist + first_word_probs elems = (in_passage_words, phrase_starts, vocab_dist, attn_dist) return tf.map_fn(singel_instance, elems, dtype=tf.float32) # [batch_size, phrase_length] class CovCopyAttenGen: def __init__(self, placeholders, options, vocab): self.options = options
tensorflow.gather
9,408
import tensorflow as tf
tensorflow.log
9,409
import tensorflow as tf :param bias_start: :param scope: :return: """ # Reshape input to (batch_size, num_nodes, input_dim) output_size = self._num_units batch_size = inputs.get_shape()[0].value inputs = tf.reshape(inputs, [batch_size, self._num_nodes, -1]) input_size = inputs.get_shape()[2].value dtype = inputs.dtype x = inputs x0 = tf.transpose(x, perm=[1, 2,0]) # (num_nodes, total_arg_size, batch_size) x0 = tf.reshape(x0, shape=[self._num_nodes, input_size * batch_size])
tensorflow.reshape
9,410
import tensorflow as tf def _bn(self, name, x): with tf.variable_scope(name): moving_average_decay = 0.9 decay = moving_average_decay batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2]) mu = tf.get_variable('mu', batch_mean.shape, dtype=tf.float32, initializer=tf.zeros_initializer(), trainable=False) tf.add_to_collection(tf.GraphKeys.GLOBAL_VARIABLES, mu) tf.add_to_collection('mu_sigma_bn', mu) sigma = tf.get_variable('sigma', batch_var.shape, dtype=tf.float32, initializer=tf.ones_initializer(), trainable=False) tf.add_to_collection(tf.GraphKeys.GLOBAL_VARIABLES, sigma) tf.add_to_collection('mu_sigma_bn', sigma) beta = tf.get_variable('beta', batch_mean.shape, dtype=tf.float32, initializer=tf.zeros_initializer()) gamma = tf.get_variable('gamma', batch_var.shape, dtype=tf.float32, initializer=tf.ones_initializer()) # BN when training update = 1.0 - decay update_mu = mu.assign_sub(update * (mu - batch_mean)) update_sigma = sigma.assign_sub(update * (sigma - batch_var)) tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_mu)
tensorflow.ones_initializer
9,411
import tensorflow as tf def prenet(inputs, is_training, layer_sizes, scope=None): x = inputs drop_rate = 0.5 if is_training else 0.0 with tf.variable_scope(scope or 'prenet'): for i, size in enumerate(layer_sizes): dense = tf.layers.dense(x, units=size, activation=tf.nn.relu, name='dense_%d' % (i + 1)) x = tf.layers.dropout(dense, rate=drop_rate, training=is_training, name='dropout_%d' % (i + 1)) return x def encoder_cbhg(inputs, input_lengths, is_training, depth): input_channels = inputs.get_shape()[2]
tensorflow.layers.dense
9,412
import tensorflow as tf
tensorflow.constant_initializer
9,413
import tensorflow as tf # lin1_ = tf.matmul(tf.reshape(self.q_concat_, shape=[-1, 1, self.n_agents]), self.w1_) + tf.reshape(self.b1_, shape=[-1, 1, 32]) # a1_ = tf.nn.elu(lin1_, name='a1_') # self.Q_tot_ = tf.reshape(tf.matmul(a1_, self.w2_), shape=[-1, 1]) + self.b2_ # todo: add q_target, loss, train_op # with tf.variable_scope('q_target'): with tf.variable_scope('loss'): self.loss = tf.reduce_mean(tf.squared_difference(self.q_target, tf.squeeze(self.Q_tot), name='TD_error')) # self.loss = tf.reduce_mean(tf.squared_difference(self.q_target, self.Q_tot, name='TD_error')) with tf.variable_scope('train'): self._train_op = tf.train.RMSPropOptimizer(self.lr).minimize(self.loss)
tensorflow.variable_scope
9,414
import tensorflow as tf dones_vec = tf.reshape(dones, (batch_size, num_tasks)) relabelled_obs = self._task_distribution.combine(states_tiled, tasks_tiled) action_distribution = self._actor( relabelled_obs, step_type=(), network_state=())[0] log_pi = common.log_probability(action_distribution, actions_tiled, action_spec) log_pi_vec = tf.reshape(log_pi, (batch_size, num_tasks)) logits_vec = ( rewards_vec - log_pi_vec + self._gamma * (1.0 - dones_vec) * q_vals_vec) if self._relabel_type == "random": logits_vec = tf.ones_like(logits_vec) # Hack to make sampling random ## End new version if self._normalize_cols: logits_vec = logits_vec - tf.math.reduce_logsumexp( logits_vec, axis=0)[None] relabel_indices = tf.random.categorical(logits=logits_vec, num_samples=1) ### Metrics global_step = tf.compat.v1.train.get_or_create_global_step() orig_indices = tf.range( self._sample_batch_size, dtype=relabel_indices.dtype)
tensorflow.ones_like
9,415
import tensorflow as tf inp = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)] out = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)] weights = [tf.ones_like(inp[0], dtype=tf.float32) for _ in range(8)] with tf.variable_scope("root"): _, losses = SampleGRUSeq2Seq(inp, out, weights) updates = [] params = tf.global_variables() optimizer = tf.train.AdamOptimizer(0.03, epsilon=1e-5) for i in range(len(buckets)): full_grads = tf.gradients(losses[i], params) grads, _ = tf.clip_by_global_norm(full_grads, 30.0) update = optimizer.apply_gradients(zip(grads, params)) updates.append(update) sess.run([tf.global_variables_initializer()]) steps = 6 for _ in range(steps): bucket = random.choice(np.arange(len(buckets))) length = buckets[bucket][0] i = [np.array([np.random.randint(9) + 1 for _ in range(batch_size)], dtype=np.int32) for _ in range(length)]
tensorflow.clip_by_global_norm
9,416
import tensorflow as tf * masks: list of masks for weight sparsification * prune_op: pruning operation """ masks, prune_ops = [], [] with tf.variable_scope(self.mask_scope): for var, var_name_n_prune_ratio in zip(self.maskable_vars, self.var_names_n_prune_ratios): # obtain the dynamic pruning ratio assert var.name == var_name_n_prune_ratio[0], \ 'unmatched variable names: %s vs. %s' % (var.name, var_name_n_prune_ratio[0])
tensorflow.variable_scope
9,417
import tensorflow as tf def int_to_bit(self, x_int, num_bits, base=2): """Turn x_int representing numbers into a bitwise (lower-endian) tensor. Args: x_int: Tensor containing integer to be converted into base notation. num_bits: Number of bits in the representation. base: Base of the representation. Returns: Corresponding number expressed in base. """ x_l = tf.to_int32(tf.expand_dims(x_int, axis=-1)) x_labels = [] for i in range(num_bits): x_labels.append( tf.floormod( tf.floordiv(tf.to_int32(x_l), tf.to_int32(base)**i), tf.to_int32(base))) res = tf.concat(x_labels, axis=-1) return tf.to_float(res) def embed(self, x): """Embedding function that takes discrete latent and returns embedding.
tensorflow.expand_dims
9,418
import tensorflow as tf # Global pooling X = self._add_global_avg_pool(X, w, h, ch) # Fully connected with tf.variable_scope('fully_connected'): aux_logits = self._add_fully_connected(X, (ch,), K, no_reg=True) return aux_logits
tensorflow.variable_scope
9,419
from tensorflow.python.ops import math_ops def _log_cdf(self, x): return math_ops.log(self.cdf(x)) @distribution_util.AppendDocstring(_poisson_sample_note) def _cdf(self, x): x = self._assert_valid_sample(x, check_integer=False) return math_ops.igammac(math_ops.floor(x + 1), self.rate) def _log_normalization(self): return self.rate def _log_unnormalized_prob(self, x): x = self._assert_valid_sample(x, check_integer=True) return x * math_ops.log(self.rate) - math_ops.lgamma(x + 1) def _mean(self): return array_ops.identity(self.rate) def _variance(self): return array_ops.identity(self.rate) @distribution_util.AppendDocstring( """Note: when `rate` is an integer, there are actually two modes: `rate` and `rate - 1`. In this case we return the larger, i.e., `rate`.""") def _mode(self): return math_ops.floor(self.rate)
tensorflow.python.ops.math_ops.lgamma
9,420
import tensorflow as tf mean_kl = tf.reduce_mean(kl) def update_scale(): with tf.control_dependencies([perturb_for_adaption]): update_scale_expr = tf.cond(mean_kl < param_noise_threshold,
tensorflow.control_dependencies
9,421
import tensorflow as tf
tensorflow.math.reduce_sum
9,422
import tensorflow as tf ) estimator = tf.estimator.Estimator(
tensorflow.estimator.Estimator
9,423
import tensorflow as tf with tf.device("/device:CPU:0"): ds = tf.data.Dataset.from_tensors(tensors).repeat() return tfe.Iterator(ds) self._benchmark_eager_train( "eager_train_dataset_with_defun", make_iterator, device_and_data_format(), defun=True) if __name__ == "__main__": tf.enable_eager_execution() tf.test.main()
tensorflow.enable_eager_execution
9,424
import tensorflow as tf tf.app.flags.DEFINE_string('pm', '66661', 'pooling scheme across scales. Each number specifies the number of scales remaining at each layer. The first number has to be the same as used in --num_scales.') tf.app.flags.DEFINE_integer('conv_kernel', 5, 'Size of convolutional kernel') tf.app.flags.DEFINE_integer('pool_kernel', 3, 'Size of spatial pooling kernel') tf.app.flags.DEFINE_integer('feats_per_layer', 32, 'Number of feature channels at each layer') tf.app.flags.DEFINE_boolean('total_pool', True, 'If true, pool all feature maps to 1x1 size in final layer') tf.app.flags.DEFINE_integer('pool_stride', '1', 'If 2, we get progressive pooling - with overlap pooling, AlexNet style')
tensorflow.app.flags.DEFINE_boolean
9,425
import tensorflow as tf self.config.update(config) required = getattr(self, 'required_config_keys', []) if self.datasets: required += self.required_baseconfig for r in required: assert r in self.config, 'Required configuration entry: \'{}\''.format(r) assert set(self.datasets) <= self.dataset_names, \ 'Unknown dataset name: {}'.format(set(self.datasets)-self.dataset_names) assert n_gpus > 0, 'TODO: CPU-only training is currently not supported.' if data_shape is None: self.data_shape = {i: s['shape'] for i, s in self.input_spec.items()} with tf.variable_scope('', reuse=tf.AUTO_REUSE): self._build_graph() def _gpu_tower(self, data, mode): # Split the batch between the GPUs (data parallelism) with tf.device('/cpu:0'): with tf.name_scope('{}_data_sharding'.format(mode)): batch_size = self.config['batch_size'] if (mode == Mode.TRAIN) \ else self.config['eval_batch_size'] shards = {d: tf.unstack(v, num=batch_size*self.n_gpus, axis=0) for d, v in data.items()} shards = [{d: tf.stack(v[i::self.n_gpus]) for d, v in shards.items()} for i in range(self.n_gpus)]
tensorflow.variable_scope
9,426
import tensorflow as tf def _add_image_summary(self, image, boxes): # add back mean ''' tf.stack()这是一个矩阵拼接的函数,tf.unstack()则是一个矩阵分解的函数 ''' image += cfg.FLAGS2["pixel_means"] # bgr to rgb (opencv uses bgr) channels = tf.unstack(image, axis=-1) image = tf.stack([channels[2], channels[1], channels[0]], axis=-1) # dims for normalization width = tf.to_float(tf.shape(image)[2]) height = tf.to_float(tf.shape(image)[1]) # from [x1, y1, x2, y2, cls] to normalized [y1, x1, y1, x1] cols = tf.unstack(boxes, axis=1) boxes = tf.stack([cols[1] / height, cols[0] / width,
tensorflow.stack
9,427
from tensorflow.python.framework import ops # gradients either. return [tensor_shape.unknown_shape(ndims=4)] @ops.RegisterShape("DepthwiseConv2dNativeBackpropFilter") def _DepthwiseConv2dNativeBackpropFilterShape(op): """Shape function for the DepthwiseConv2dNativeBackpropFilter op.""" filter_shape = tensor_util.constant_value(op.inputs[1])
tensorflow.python.framework.ops.RegisterShape
9,428
import tensorflow as tf :param stochastic_ph: (TensorFlow Tensor) the stochastic placeholder :param update_eps_ph: (TensorFlow Tensor) the update_eps placeholder :param sess: (TensorFlow session) The current TensorFlow session :param param_noise_filter_func: (function (TensorFlow Tensor): bool) function that decides whether or not a variable should be perturbed. Only applicable if param_noise is True. If set to None, default_param_noise_filter is used by default. :return: (function (TensorFlow Tensor, bool, float): TensorFlow Tensor, (TensorFlow Tensor, TensorFlow Tensor) act function to select and action given observation (See the top of the file for details), A tuple containing the observation placeholder and the processed observation placeholder respectively. """ if param_noise_filter_func is None: param_noise_filter_func = default_param_noise_filter update_param_noise_threshold_ph = tf.placeholder(tf.float32, (), name="update_param_noise_threshold") update_param_noise_scale_ph = tf.placeholder(tf.bool, (), name="update_param_noise_scale") reset_ph = tf.placeholder(tf.bool, (), name="reset") eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0)) param_noise_scale = tf.get_variable("param_noise_scale", (), initializer=tf.constant_initializer(0.01), trainable=False) param_noise_threshold = tf.get_variable("param_noise_threshold", (), initializer=tf.constant_initializer(0.05), trainable=False) # Unmodified Q. policy = q_func(sess, ob_space, ac_space, 1, 1, None) obs_phs = (policy.obs_ph, policy.processed_obs) # Perturbable Q used for the actual rollout.
tensorflow.placeholder
9,429
import tensorflow as tf return deconv_layer def variable(self, name, shape, initializer,regularizer=None): with tf.device('/cpu:0'): return tf.get_variable(name, shape, initializer=initializer, regularizer=regularizer, trainable=True) def fc_layer(self, bottom, in_size, out_size, name): with tf.variable_scope(name): weights, biases = self.get_fc_var(in_size, out_size, name) x = tf.reshape(bottom, [-1, in_size]) fc = tf.nn.bias_add(tf.matmul(x, weights), biases) tf.summary.histogram('weight', weights) tf.summary.histogram('bias', biases) return fc def get_conv_var(self, filter_size, in_channels, out_channels, name): initial_value = tf.truncated_normal([filter_size, filter_size, in_channels, out_channels], 0.0, stddev = 1 / math.sqrt(float(filter_size * filter_size))) filters = self.get_var(initial_value = initial_value, name = name, idx = 'weights', var_name = "_filters") initial_value = tf.truncated_normal([out_channels], 0.0, 1.0) biases = self.get_var(initial_value = initial_value, name = name, idx = 'biases', var_name = "_biases")
tensorflow.matmul
9,430
import tensorflow as tf return context, alpha def _selector(self, context, h, reuse=False): with tf.variable_scope('selector', reuse=reuse): w = tf.get_variable('w', [self.H, 1], initializer=self.weight_initializer) b = tf.get_variable('b', [1], initializer=self.const_initializer) beta = tf.nn.sigmoid(tf.matmul(h, w) + b, 'beta') # (N, 1) context = tf.multiply(beta, context, name='selected_context') return context, beta def _decode_lstm(self, x, h, context, dropout=False, reuse=False): with tf.variable_scope('logits', reuse=reuse): w_h = tf.get_variable('w_h', [self.H, self.M], initializer=self.weight_initializer) b_h = tf.get_variable('b_h', [self.M], initializer=self.const_initializer) w_out = tf.get_variable('w_out', [self.M, self.V], initializer=self.weight_initializer) b_out = tf.get_variable('b_out', [self.V], initializer=self.const_initializer) if dropout: h = tf.nn.dropout(h, 0.5) h_logits = tf.matmul(h, w_h) + b_h if self.ctx2out: w_ctx2out = tf.get_variable('w_ctx2out', [self.D, self.M], initializer=self.weight_initializer) h_logits += tf.matmul(context, w_ctx2out)
tensorflow.get_variable
9,431
import tensorflow as tf :type shape: tuple :type name: str :rtype: dictionary """ Winit = tf.truncated_normal(shape, mean=0, stddev=0.1) binit = tf.zeros(shape[-1]) layer = {} layer["weights"] = tf.get_variable(name + "/weights", dtype=tf.float32,
tensorflow.truncated_normal
9,432
from tensorflow.python.platform import gfile s1 = save.save(sess, os.path.join(save_dir, "s1")) self.assertEqual([s1], save.last_checkpoints) self.assertEqual(2, len(gfile.Glob(s1))) self.assertTrue(gfile.Exists(save._MetaGraphFilename(s1))) s2 = save.save(sess, os.path.join(save_dir, "s2")) self.assertEqual([s1, s2], save.last_checkpoints) self.assertEqual(2, len(gfile.Glob(s1))) self.assertTrue(gfile.Exists(save._MetaGraphFilename(s1))) self.assertEqual(2, len(gfile.Glob(s2))) self.assertTrue(gfile.Exists(save._MetaGraphFilename(s2))) s3 = save.save(sess, os.path.join(save_dir, "s3")) self.assertEqual([s2, s3], save.last_checkpoints) self.assertEqual(0, len(gfile.Glob(s1)))
tensorflow.python.platform.gfile.Glob
9,433
import tensorflow as tf 'image/format': tf.FixedLenFeature((), tf.string, default_value='jpeg'), 'image/height': tf.FixedLenFeature([1], tf.int64), 'image/width': tf.FixedLenFeature([1], tf.int64), 'image/channels': tf.FixedLenFeature([1], tf.int64), 'image/shape': tf.FixedLenFeature([3], tf.int64), 'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/label': tf.VarLenFeature(dtype=tf.int64), 'image/object/bbox/difficult': tf.VarLenFeature(dtype=tf.int64), 'image/object/bbox/truncated': tf.VarLenFeature(dtype=tf.int64), } items_to_handlers = { 'image': slim.tfexample_decoder.Image('image/encoded', 'image/format'), 'shape': slim.tfexample_decoder.Tensor('image/shape'), 'object/bbox': slim.tfexample_decoder.BoundingBox( ['xmin', 'ymin', 'xmax', 'ymax'], 'image/object/bbox/'),
tensorflow.VarLenFeature
9,434
import tensorflow as tf correct = tf.equal( tf.cast(tf.ones_like(label_ids, dtype=tf.int32), tf.int32), tf.cast(pred_label, tf.int32) ) st_accuracy = tf.reduce_mean(tf.cast(correct, tf.float32)) pred_label = tf.argmax(distillation_loss["te_logits"], axis=-1, output_type=tf.int32) correct = tf.equal( tf.cast(tf.zeros_like(label_ids, dtype=tf.int32), tf.int32), tf.cast(pred_label, tf.int32) ) te_accuracy = tf.reduce_mean(tf.cast(correct, tf.float32)) except: te_accuracy = tf.constant(0.0) st_accuracy = tf.constant(0.0) try: st_accuracy = tf.reduce_mean(distillation_loss["src_f1_prob"]) te_accuracy = tf.reduce_mean(distillation_loss["tgt_f1_prob"]) except: te_accuracy = tf.constant(0.0) st_accuracy = tf.constant(0.0)
tensorflow.cast
9,435
import tensorflow as tf features['inputs'] = targets return (features, targets) def spc_tokenize(tokenizer, features, targets): del targets tokenized_text = tokenizer.tokenize(features['text']) features['targets'] = tf.cast(tokenized_text, tf.int64) features['inputs'] = features['targets'] return features, features['targets'] if tokenization == 'spc': spm_path = spm_path or t5_data().DEFAULT_SPM_PATH with tf.compat.v1.gfile.GFile(spm_path, 'rb') as f: spc_model = f.read() tokenizer = tf_text.SentencepieceTokenizer(model=spc_model) dataset = dataset.map(functools.partial(spc_tokenize, tokenizer)) else: dataset = dataset.map(unicode_decode_chars) def target_right_length(_, target): return tf.less(tf.shape(target)[0], max_target_length + 1) if max_target_length > 0: dataset = dataset.filter(target_right_length)
tensorflow.compat.v1.gfile.GFile
9,436
from tensorflow.contrib.framework import deprecated for i, _ in enumerate(self._hidden_units) ] logits_weights = [self.get_variable_value("dnn/logits/weights")] return hiddenlayer_weights + logits_weights @property @deprecated("2016-10-30", "This method will be removed after the deprecation date. " "To inspect variables, use get_variable_names() and " "get_variable_value().") def bias_(self): hiddenlayer_bias = [
tensorflow.contrib.framework.deprecated
9,437
import tensorflow as tf def clf(x, ny, w_init=tf.random_normal_initializer(stddev=0.02), b_init=tf.constant_initializer(0), train=False): with tf.variable_scope('clf'): nx = shape_list(x)[-1] w = tf.get_variable("w", [nx, ny], initializer=w_init) b = tf.get_variable("b", [ny], initializer=b_init) return tf.matmul(x, w)+b def model(X, M, Y, train=False, reuse=False): with tf.variable_scope('model', reuse=reuse): we = tf.get_variable("we", [n_vocab+n_special+n_ctx, n_embd], initializer=tf.random_normal_initializer(stddev=0.02)) we = dropout(we, embd_pdrop, train) #X:[n_batch_train, 2, n_ctx, 2] -> [n_batch_train*2,n_ctx,2] X = tf.reshape(X, [-1, n_ctx, 2]) M = tf.reshape(M, [-1, n_ctx]) h = embed(X, we) #h=[-1,n_ctx,emb] for layer in range(n_layer): h = block(h, 'h%d'%layer, train=train, scale=True) #h=[-1,n_ctx,emb] lm_h [-1,emb] lm_h = tf.reshape(h[:, :-1], [-1, n_embd]) lm_logits = tf.matmul(lm_h, we, transpose_b=True) lm_losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=lm_logits, labels=tf.reshape(X[:, 1:, 0], [-1])) lm_losses = tf.reshape(lm_losses, [shape_list(X)[0], shape_list(X)[1]-1]) lm_losses = tf.reduce_sum(lm_losses*M[:, 1:], 1)/tf.reduce_sum(M[:, 1:], 1)
tensorflow.reshape
9,438
import tensorflow as tf output = tf.add_n([ w_z0_y0_x0 * i_z0_y0_x0, w_z0_y0_x1 * i_z0_y0_x1, w_z0_y1_x0 * i_z0_y1_x0, w_z0_y1_x1 * i_z0_y1_x1, w_z1_y0_x0 * i_z1_y0_x0, w_z1_y0_x1 * i_z1_y0_x1, w_z1_y1_x0 * i_z1_y1_x0, w_z1_y1_x1 * i_z1_y1_x1 ]) return output def _meshgrid(depth, height, width, z_near, z_far): with tf.variable_scope('_meshgrid'): x_t = tf.reshape( tf.tile(tf.linspace(-1.0, 1.0, width), [height * depth]), [depth, height, width]) y_t = tf.reshape( tf.tile(tf.linspace(-1.0, 1.0, height), [width * depth]), [depth, width, height]) y_t = tf.transpose(y_t, [0, 2, 1]) sample_grid = tf.tile( tf.linspace(float(z_near), float(z_far), depth), [width * height]) z_t = tf.reshape(sample_grid, [height, width, depth]) z_t = tf.transpose(z_t, [2, 0, 1]) z_t = 1 / z_t
tensorflow.linspace
9,439
import tensorflow as tf name = "core%d" % i tt_cores[i] = tf.convert_to_tensor(tt_cores[i], name=name) if not _are_tt_cores_valid(tt_cores, shape, tt_ranks): raise ValueError('The tt_cores provided to TensorTrain constructor are ' 'not valid, have different dtypes, or are inconsistent ' 'with the provided shape or TT-ranks.') self._tt_cores = tuple(tt_cores) self._raw_shape = shapes.clean_raw_shape(shape) if self._raw_shape is None: self._raw_shape = _infer_raw_shape(self._tt_cores) self._tt_ranks = None if tt_ranks is None else tf.TensorShape(tt_ranks) if self._tt_ranks is None: self._tt_ranks = _infer_tt_ranks(self._tt_cores) @property def tt_cores(self): """A tuple of TT-cores. Returns: A tuple of 3d or 4d tensors shape `[r_k-1, n_k, r_k]` or
tensorflow.TensorShape
9,440
import tensorflow as tf tf_update_ops = [lowering.lowered_operation(op) for op in update_ops] tf_update_ops.append(tf.assign_add(global_step, 1)) # tf.logging.info("tf_update_ops: {}".format(tf_update_ops)) train_op = tf.group(tf_update_ops) with mtf.utils.outside_all_rewrites(): # Copy master variables to slices. Must be called first. restore_hook = mtf.MtfRestoreHook(lowering) saver = tf.train.Saver( tf.global_variables(), sharded=True, max_to_keep=10, keep_checkpoint_every_n_hours=2, defer_build=False, save_relative_paths=True) tf.add_to_collection(tf.GraphKeys.SAVERS, saver) saver_listener = mtf.MtfCheckpointSaverListener(lowering) saver_hook = tf.train.CheckpointSaverHook( hparams.model_dir, save_steps=1000, saver=saver, listeners=[saver_listener]) # EVAL mode if mode == tf.estimator.ModeKeys.EVAL: tf_logits = lowering.export_to_tf_tensor(logits) return model.estimator_spec_eval(features, tf_logits, labels, tf_loss, restore_hook, use_tpu) if use_tpu:
tensorflow.add_to_collection
9,441
import tensorflow as tf def test_dtype_and_shape_inherited_from_base_dist(self): batch_shape = (2, 3) with self.test_session(): qdist = distributions.QuantizedDistribution( base_dist_cls=distributions.Normal, lower_cutoff=1.0, upper_cutoff=10.0, mu=tf.zeros(batch_shape), sigma=tf.ones(batch_shape)) self.assertEqual(batch_shape, qdist.get_batch_shape()) self.assertAllEqual(batch_shape, qdist.batch_shape().eval()) self.assertEqual((), qdist.get_event_shape()) self.assertAllEqual((), qdist.event_shape().eval())
tensorflow.zeros
9,442
import tensorflow as tf self.kernel = self.gaussian_kernel(size,mean,std) self.kernel = tf.tile(self.kernel[:, :, tf.newaxis, tf.newaxis], [1, 1, 3, 1]) self.paddings = tf.convert_to_tensor([[size,size],[size,size],[0,0]]) x_aug = tf.nn.separable_conv2d(tf.expand_dims(tf.pad(x,self.paddings,'SYMMETRIC'), 0), self.kernel, self.pointwise_filter,strides=[1, 1, 1, 1], padding='VALID') x_aug = tf.squeeze(x_aug) return tf.concat([x, x_aug],axis=2) def high_low_pass(self,x): x_low = tf.nn.separable_conv2d(tf.expand_dims(tf.pad(x,self.paddings,'SYMMETRIC'), 0), self.kernel, self.pointwise_filter,strides=[1, 1, 1, 1], padding='VALID') x_low = tf.squeeze(x_low) x_high = x - x_low return tf.concat([x, x_high, x_low],axis=2) def no_op(self,x): return x
tensorflow.concat
9,443
import tensorflow as tf def _expand_independent_outputs(fvar, full_cov, full_output_cov): """ Reshapes fvar to the correct shape, specified by `full_cov` and `full_output_cov`. :param fvar: has shape N x P (full_cov = False) or P x N x N (full_cov = True). :return: 1. full_cov: True and full_output_cov: True fvar N x P x N x P 2. full_cov: True and full_output_cov: False fvar P x N x N 3. full_cov: False and full_output_cov: True fvar N x P x P 4. full_cov: False and full_output_cov: False fvar N x P """ if full_cov and full_output_cov: fvar = tf.matrix_diag(tf.transpose(fvar)) # N x N x P x P fvar = tf.transpose(fvar, [0, 2, 1, 3]) # N x P x N x P if not full_cov and full_output_cov: fvar = tf.matrix_diag(fvar) # N x P x P if full_cov and not full_output_cov: pass # P x N x N if not full_cov and not full_output_cov: pass # N x P return fvar
tensorflow.transpose
9,444
import tensorflow as tf autoencoder_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1).minimize(autoencoder_loss) discriminator_g_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1).minimize(dc_g_loss, var_list=dc_g_var) discriminator_c_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1).minimize(dc_c_loss, var_list=dc_c_var) generator_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1).minimize(generator_loss, var_list=en_var) supervised_encoder_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1).minimize(supervised_encoder_loss, var_list=en_var) init = tf.global_variables_initializer() # Reshape immages to display them input_images = tf.reshape(x_input, [-1, 28, 28, 1]) generated_images = tf.reshape(decoder_output, [-1, 28, 28, 1]) # Tensorboard visualization tf.summary.scalar(name='Autoencoder Loss', tensor=autoencoder_loss) tf.summary.scalar(name='Discriminator gauss Loss', tensor=dc_g_loss) tf.summary.scalar(name='Discriminator categorical Loss', tensor=dc_c_loss) tf.summary.scalar(name='Generator Loss', tensor=generator_loss) tf.summary.scalar(name='Supervised Encoder Loss', tensor=supervised_encoder_loss) tf.summary.histogram(name='Encoder Gauss Distribution', values=encoder_output_latent) tf.summary.histogram(name='Real Gauss Distribution', values=real_distribution) tf.summary.histogram(name='Encoder Categorical Distribution', values=encoder_output_label) tf.summary.histogram(name='Real Categorical Distribution', values=categorial_distribution) tf.summary.image(name='Input Images', tensor=input_images, max_outputs=10) tf.summary.image(name='Generated Images', tensor=generated_images, max_outputs=10)
tensorflow.reshape
9,445
import tensorflow as tf with tf.variable_scope('target_q'): self.target_q = R + self.gamma * self.q_ with tf.variable_scope('abs_TD'): self.abs_td = tf.abs(self.target_q - self.q) self.ISWeights = tf.placeholder(tf.float32, [None, 1], name='IS_weights') with tf.variable_scope('TD_error'): self.loss = tf.reduce_mean(self.ISWeights * tf.squared_difference(self.target_q, self.q))
tensorflow.abs
9,446
import tensorflow as tf tgtimg_h0, tgtimg_h1, tgtimg_h2, tgtimg_h3, tgtimg_h4, tgtimg_z = encode(tgtimg) tgtctx_h0, tgtctx_h1, tgtctx_h2, tgtctx_h3, tgtctx_h4, tgtctx_z = encode(tgtctx) with tf.variable_scope("translate") as scope: trans_h0 = lrelu(linear(tf.nn.dropout(tf.concat([srcimg_z, tgtctx_z], 1), keep_prob), featsize, 'trans_h0')) trans_z = linear(tf.nn.dropout(trans_h0, keep_prob), featsize, 'trans_z')
tensorflow.variable_scope
9,447
from tensorflow.python.ops import variable_scope as vs """Gated recurrent unit (GRU) with nunits cells.""" if self._gate_linear is None: bias_ones = self._bias_initializer if self._bias_initializer is None: bias_ones = init_ops.constant_initializer(1.0, dtype=inputs.dtype) with vs.variable_scope("gates"): # Reset gate and update gate. self._gate_linear = _Linear( [inputs, state], 2 * self._num_units, True,
tensorflow.python.ops.variable_scope.variable_scope
9,448
import tensorflow as tf if decoder.cell_type.lower() == 'lstm' and decoder.use_lstm_full_state: output = new_state return output, new_state def update_pos(pos, symbol, max_pos=None): if not decoder.pred_edits: return pos is_keep = tf.equal(symbol, utils.KEEP_ID) is_del = tf.equal(symbol, utils.DEL_ID) is_not_ins = tf.logical_or(is_keep, is_del) pos = beam_search.resize_like(pos, symbol) max_pos = beam_search.resize_like(max_pos, symbol) pos += tf.to_float(is_not_ins) if max_pos is not None: pos = tf.minimum(pos, tf.to_float(max_pos))
tensorflow.equal
9,449
import tensorflow as tf argmax = lambda: tf.argmax(output_, 1) target = lambda: inputs.read(time + 1) softmax = lambda: tf.squeeze(tf.multinomial(tf.log(tf.nn.softmax(output_)), num_samples=1), axis=1) use_target = tf.logical_and(time < time_steps - 1, tf.random_uniform([]) >= feed_previous) predicted_symbol = tf.case([ (use_target, target), (tf.logical_not(feed_argmax), softmax)], default=argmax) # default case is useful for beam-search predicted_symbol.set_shape([None]) predicted_symbol = tf.stop_gradient(predicted_symbol) input_ = embed(predicted_symbol) pos = update_pos(pos, predicted_symbol, encoder_input_length[align_encoder_id])
tensorflow.logical_not
9,450
import tensorflow as tf decay = bn_decay if bn_decay is not None else 0.9 ema = tf.train.ExponentialMovingAverage(decay=decay) # Operator that maintains moving averages of variables. ema_apply_op = tf.cond(is_training, lambda: ema.apply([batch_mean, batch_var]), lambda: tf.no_op()) # Update moving average and return current batch's avg and var. def mean_var_with_update(): with tf.control_dependencies([ema_apply_op]): return tf.identity(batch_mean), tf.identity(batch_var) # ema.average returns the Variable holding the average of var. mean, var = tf.cond(is_training, mean_var_with_update, lambda: (ema.average(batch_mean), ema.average(batch_var))) normed = tf.nn.batch_normalization(inputs, mean, var, beta, gamma, 1e-3) return normed
tensorflow.control_dependencies
9,451
import tensorflow as tf model.latest_saver.restore(sess, tf.train.latest_checkpoint(latest_dir)) else: if tf.train.get_checkpoint_state(best_dir) and args.restore == "best": print('Reading model parameters from %s' % best_dir) model.best_saver.restore(sess, tf.train.latest_checkpoint(best_dir)) else: print("Created model with fresh parameters.") global_variable = [gv for gv in tf.global_variables() if args.name in gv.name] sess.run(tf.variables_initializer(global_variable)) return model def main(args): if args.debug: debug()
tensorflow.variables_initializer
9,452
from tensorflow.python.framework import ops raise ValueError("keep_prob must be a scalar tensor or a float in the " "range (0, 1], got %g" % keep_prob) keep_prob = ops.convert_to_tensor( keep_prob, dtype=x.dtype, name="keep_prob")
tensorflow.python.framework.ops.convert_to_tensor
9,453
import tensorflow as tf initial_state = tf.contrib.layers.layer_norm(initial_state, activation_fn=activation_fn, scope='initial_state_layer_norm') else: initial_state = dense(initial_state, cell_state_size, use_bias=True, name='initial_state_projection', activation=activation_fn) if decoder.cell_type.lower() == 'lstm' and decoder.use_lstm_full_state: initial_output = initial_state else: # Last layer's state is the right-most part. Output is the left-most part of an LSTM's state. initial_output = initial_state[:, -cell_output_size:] time = tf.constant(0, dtype=tf.int32, name='time') outputs = tf.TensorArray(dtype=tf.float32, size=time_steps) samples = tf.TensorArray(dtype=tf.int64, size=time_steps) inputs = tf.TensorArray(dtype=tf.int64, size=time_steps).unstack(tf.to_int64(tf.transpose(decoder_inputs))) states = tf.TensorArray(dtype=tf.float32, size=time_steps) weights = tf.TensorArray(dtype=tf.float32, size=time_steps) attns = tf.TensorArray(dtype=tf.float32, size=time_steps) initial_symbol = inputs.read(0) # first symbol is BOS initial_input = embed(initial_symbol) initial_pos = tf.zeros([batch_size], tf.float32) initial_weights = tf.zeros(tf.shape(attention_states[align_encoder_id])[:2]) zero_context = tf.zeros(shape=tf.shape(attention_states[align_encoder_id][:,0])) # FIXME with tf.variable_scope('decoder_{}'.format(decoder.name)): initial_context, _ = look(0, initial_output, initial_input, pos=initial_pos, prev_weights=initial_weights, context=zero_context)
tensorflow.transpose
9,454
import tensorflow as tf class AssignOpTest(tf.test.TestCase): # NOTE(mrry): We exclude thess tests from the TSAN TAP target, because they # contain benign and deliberate data races when multiple threads update # the same parameters without a lock. def testParallelUpdateWithoutLocking(self): with self.test_session() as sess: ones_t = tf.fill([1024, 1024], 1.0) p = tf.Variable(tf.zeros([1024, 1024])) adds = [tf.assign_add(p, ones_t, use_locking=False) for _ in range(20)] tf.initialize_all_variables().run() def run_add(add_op): sess.run(add_op) threads = [self.checkedThread(target=run_add, args=(add_op,)) for add_op in adds] for t in threads: t.start()
tensorflow.assign_add
9,455
import tensorflow as tf shifted_X = tf.pad(X, ((0, 0), (0, 1), (0, 1), (0, 0)))[:, 1:, 1:, :] half_2 = tf.nn.avg_pool(shifted_X, ksize=(1, 1, 1, 1), strides=(1, 2, 2, 1), padding='VALID') # Apply 1 x 1 convolution to each half separately W_half_1 = self._make_var('W_half_1', (1, 1, in_ch, out_ch >> 1)) X_half_1 = tf.nn.conv2d(half_1, W_half_1, (1, 1, 1, 1), padding='VALID') W_half_2 = self._make_var('W_half_2', (1, 1, in_ch, out_ch >> 1)) X_half_2 = tf.nn.conv2d(half_2, W_half_2, (1, 1, 1, 1), padding='VALID') # Concat both halves across channels X = tf.concat([X_half_1, X_half_2], axis=3) # Apply batch normalization X = self._add_batch_norm(X, out_ch, is_train=is_train)
tensorflow.nn.conv2d
9,456
import tensorflow as tf ) return base_conv_tensors def build_discriminator_growth_layer_block(self, params, block_idx): """Creates discriminator growth block. Args: params: dict, user passed parameters. block_idx: int, the current growth block's index. Returns: List of tensors from growth block `Conv2D` layers. """ with tf.variable_scope(name_or_scope=self.name, reuse=tf.AUTO_REUSE): # Get conv block layer properties. conv_block = params["discriminator_growth_conv_blocks"][block_idx] # Create new inner convolutional layers. conv_tensors = [ self.conv_layer_blocks[1 + block_idx][i]( inputs=tf.zeros( shape=[1] + conv_block[i][0:3], dtype=tf.float32 ) ) for i in range(len(conv_block)) ] print_obj(
tensorflow.variable_scope
9,457
import tensorflow as tf except: te_accuracy = tf.constant(0.0)
tensorflow.constant
9,458
import tensorflow as tf # RooArgusBG argus("argus","Argus PDF",mes,m0,argpar) ; def argus_pdf(m, m0, c, p=0.5): t = m / m0 u = 1 - t * t argus_t_ge_1 = m * tf.pow(u, p) * tf.exp(c * u) return tf.maximum(tf.zeros_like(m), argus_t_ge_1, name="argus_pdf") # // --- Construct signal+background PDF --- # RooRealVar nsig("nsig","#signal events",200,0.,10000) ;
tensorflow.exp
9,459
import tensorflow as tf eval_config = get_config() eval_config.batch_size = 1 eval_config.num_steps = 1 with tf.Graph().as_default(): initializer = tf.random_uniform_initializer(-config.init_scale, config.init_scale) with tf.name_scope("Train"): train_input = PTBInput(config=config, data=train_data, name="TrainInput")
tensorflow.random_uniform_initializer
9,460
import tensorflow as tf mixed_idx = tf.range(0, self.mixed_label.get_shape().as_list()[0], 1) mixed_idx = tf.random_shuffle(mixed_idx)[0:self.batch_size] self.mixed_pc = tf.gather(self.mixed_pc, mixed_idx) self.mixed_label = tf.gather(self.mixed_label, mixed_idx) self.mixed_pred, mixed_end_points = self.get_pred(self.mixed_pc) self.mixed_loss = self.get_loss(self.mixed_pred, self.mixed_label, mixed_end_points) with tf.variable_scope('discriminator') as scope: self.real_prob, self.real_logit = self.discriminator(self.real_pc_rotated, scope=scope, **disc_kwargs) self.synthetic_prob, self.synthetic_logit = self.discriminator(self.gen_out_rotated, reuse=True, scope=scope, **disc_kwargs) # Compute WGAN losses self.loss_d = tf.reduce_mean(self.synthetic_logit) - tf.reduce_mean(self.real_logit) # comparing rotated fake and real images self.loss_g = -tf.reduce_mean(self.synthetic_logit)
tensorflow.variable_scope
9,461
import tensorflow as tf ''' self.value, self.next_loc_mean, self.loc_std, self.next_loc, self.state_out, self.state_in, self.state_init = self._build_net(self.inputs, self.prev_loc, RNN_SIZE, TRAINING, a_size) # self.goal_pos if TRAINING: self.target_v = tf.placeholder(tf.float32, [None], 'Vtarget') self.advantages = tf.placeholder(shape=[None], dtype=tf.float32) self.sampled_next_locs = tf.placeholder(tf.float32, [None,2]) # sampled action is stored here self.policy = gaussian_pdf(self.next_loc_mean, self.loc_std, self.sampled_next_locs) # Distribution == Policy
tensorflow.placeholder
9,462
import tensorflow as tf "output_bias", shape=[2], initializer=tf.zeros_initializer()) logits = tf.matmul(input_tensor, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) log_probs = tf.nn.log_softmax(logits, axis=-1) labels = tf.reshape(labels, [-1]) one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) loss = tf.reduce_mean(per_example_loss) return (loss, per_example_loss, log_probs) def gather_indexes(sequence_tensor, positions): """Gathers the vectors at the specific positions over a minibatch.""" sequence_shape = modeling.get_shape_list(sequence_tensor, expected_rank=3) batch_size = sequence_shape[0]
tensorflow.reduce_mean
9,463
import tensorflow as tf self.is_training = True def set_is_training(self, isTrain): self.is_training = isTrain def build(self, rgb, label_num, train_mode=None, last_layer_type = "softmax"): """ load variable from npy to build the Resnet or Generate a new one :param rgb: rgb image [batch, height, width, 3] values scaled [0, 1] :param train_mode: a bool tensor, usually a placeholder: if True, dropout will be turned on """ red, green, blue = tf.split(axis=3, num_or_size_splits=3, value=rgb) assert red.get_shape().as_list()[1:] == [224, 224, 1] assert green.get_shape().as_list()[1:] == [224, 224, 1] assert blue.get_shape().as_list()[1:] == [224, 224, 1] bgr = tf.concat(axis=3, values=[ blue - configs['VGG_MEAN'][0], green - configs['VGG_MEAN'][1], red - configs['VGG_MEAN'][2], ]) print(bgr.get_shape().as_list()) assert bgr.get_shape().as_list()[1:] == [224, 224, 3]
tensorflow.split
9,464
import tensorflow as tf if v.get_shape().ndims == 2: variables.append(v) with tf.name_scope('weight_decay'): if penalty_type == 'l1': cost = tf.add_n([tf.reduce_sum(tf.abs(v)) for v in variables])
tensorflow.name_scope
9,465
import tensorflow as tf i, FLAGS.eval_batch_count, time.time() - time_start, is_succ)) else: print('The %d batch in total %d, the eps = %f (%f sec)' % ( i, FLAGS.eval_batch_count, 0.05 * k, time.time() - time_start)) #Local logits (predict_ADV,logits_part_adv) = sess.run( [predict_adv, tsne_logit_adv],feed_dict={adv_image:adv_img} ) #Local entropy and confidence for nor_img (entropy_test_nor_help,labels_nor_help,confidence_test_nor_help) = sess.run( [entropy,tf.argmax(predict,axis=1),tf.reduce_max(predict, axis=1)],feed_dict={predict:predict_NOR} ) # Local entropy and confidence for adv_img (entropy_test_adv_help, labels_adv_help, confidence_test_adv_help) = sess.run( [entropy, tf.argmax(predict, axis=1), tf.reduce_max(predict, axis=1)], feed_dict={predict: predict_ADV} ) if FLAGS.attack_method == 'carliniL2_specific' or FLAGS.attack_method == 'carliniL2_highden': print('Log-density-ratio in attacking function of nor/adv is %f'%np.sum(log_density_ratio)) m_tsne_logits_adv = (copy.copy(logits_part_adv)).reshape((1, 64)) m_tsne_logits_adv = np.repeat(m_tsne_logits_adv,100,axis=0)
tensorflow.reduce_max
9,466
import tensorflow as tf self.v = DenseLayer(1, False, tf.nn.relu, initializers=self._initializers, regularizers=self._regularizers, name='OutputVector') self.score = tf.squeeze(self.v(self._cur_user * self._cur_item)) negative_output = tf.squeeze(self.v(self._cur_user * self._cur_item_negative)) tf.add_to_collection(GraphKeys.PREDICTION, self.score) self.loss = LossLayer()(self.score, negative_output) self._optimizer = OptimizerLayer(self.config.optimizer, clip=5.0, params={})
tensorflow.add_to_collection
9,467
import tensorflow as tf # hardware related configuration tf.app.flags.DEFINE_integer( 'num_readers', 16, 'The number of parallel readers that read data from the dataset.') tf.app.flags.DEFINE_integer( 'num_preprocessing_threads', 48, 'The number of threads used to create the batches.') tf.app.flags.DEFINE_integer( 'num_cpu_threads', 0, 'The number of cpu cores used to train.') tf.app.flags.DEFINE_float( 'gpu_memory_fraction', 1., 'GPU memory fraction to use.') # scaffold related configuration tf.app.flags.DEFINE_string( 'data_dir', '../PASCAL/VOC_TF/VOC0712TF/', 'The directory where the dataset input data is stored.')
tensorflow.app.flags.DEFINE_integer
9,468
import tensorflow as tf verbose=True) print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity)) valid_perplexity = run_epoch(session, mvalid) print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity)) test_perplexity = run_epoch(session, mtest) print("Test Perplexity: %.3f" % test_perplexity) if FLAGS.save_path: print("Saving model to %s." % FLAGS.save_path) sv.saver.save(session, FLAGS.save_path, global_step=sv.global_step) if __name__ == "__main__": tf.app.run()
tensorflow.app.run
9,469
import tensorflow as tf if label.shape.ndims == 1: loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=label) else: loss = tf.losses.softmax_cross_entropy( label, logits, label_smoothing=label_smoothing, reduction=tf.losses.Reduction.NONE) loss = tf.reduce_mean(loss, name='xentropy-loss') def prediction_incorrect(logits, label, topk=1, name='incorrect_vector'): with tf.name_scope('prediction_incorrect'): x = tf.logical_not(tf.nn.in_top_k(logits, label, topk)) return tf.cast(x, tf.float32, name=name) wrong = prediction_incorrect(logits, label, 1, name='wrong-top1') add_moving_summary(tf.reduce_mean(wrong, name='train-error-top1')) wrong = prediction_incorrect(logits, label, 5, name='wrong-top5') add_moving_summary(tf.reduce_mean(wrong, name='train-error-top5'))
tensorflow.name_scope
9,470
import tensorflow as tf def metric_fn(per_example_loss, label_ids, logits, is_real_example): predictions = tf.argmax(logits, axis=-1, output_type=tf.int32) accuracy = tf.metrics.accuracy( labels=label_ids, predictions=predictions, weights=is_real_example) loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example) return { "eval_accuracy": accuracy, "eval_loss": loss,
tensorflow.metrics.mean
9,471
import tensorflow as tf def _get_features_dict(input_dict): """Extracts features dict from input dict.""" source_id = _replace_empty_string_with_random_number( input_dict[fields.InputDataFields.source_id]) hash_from_source_id = tf.string_to_hash_bucket_fast(source_id, HASH_BINS) features = { fields.InputDataFields.image: input_dict[fields.InputDataFields.image], HASH_KEY: tf.cast(hash_from_source_id, tf.int32), fields.InputDataFields.true_image_shape:
tensorflow.string_to_hash_bucket_fast
9,472
import tensorflow as tf A = 1/(N*N*tf.sqrt(y)) B = 2.0/(N*tf.sqrt(y+0.5))
tensorflow.sqrt
9,473
import tensorflow as tf ], ] self.assertAllEqual( expected, relative_pos_gen.make_local_relative_att_ids( seq_len=3, local_radius=4, batch_size=2)) def test_make_local_relative_att_ids_batch_size_2_tensor(self): dummy_batch = tf.ones([2, 5]) relative_pos_gen = feature_utils.RelativePositionGenerator(max_distance=3) expected = [ [ [6, 6, 5, 4, 0, 1, 2, 3, 3], # [6, 6, 5, 4, 0, 1, 2, 3, 3], #
tensorflow.ones
9,474
import tensorflow as tf endpoints = ['Conv2d_0', 'Conv2d_1_depthwise', 'Conv2d_1_pointwise', 'Conv2d_2_depthwise', 'Conv2d_2_pointwise', 'Conv2d_3_depthwise', 'Conv2d_3_pointwise', 'Conv2d_4_depthwise', 'Conv2d_4_pointwise', 'Conv2d_5_depthwise', 'Conv2d_5_pointwise', 'Conv2d_6_depthwise', 'Conv2d_6_pointwise', 'Conv2d_7_depthwise', 'Conv2d_7_pointwise', 'Conv2d_8_depthwise', 'Conv2d_8_pointwise', 'Conv2d_9_depthwise', 'Conv2d_9_pointwise', 'Conv2d_10_depthwise', 'Conv2d_10_pointwise', 'Conv2d_11_depthwise', 'Conv2d_11_pointwise', 'Conv2d_12_depthwise', 'Conv2d_12_pointwise', 'Conv2d_13_depthwise', 'Conv2d_13_pointwise'] for index, endpoint in enumerate(endpoints): with tf.Graph().as_default(): inputs = tf.random_uniform((batch_size, height, width, 3)) out_tensor, end_points = mobilenet_v1.mobilenet_v1_base( inputs, final_endpoint=endpoint) self.assertTrue(out_tensor.op.name.startswith( 'MobilenetV1/' + endpoint)) self.assertItemsEqual(endpoints[:index + 1], end_points.keys()) def testBuildCustomNetworkUsingConvDefs(self): batch_size = 5 height, width = 224, 224 conv_defs = [ mobilenet_v1.Conv(kernel=[3, 3], stride=2, depth=32), mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=64), mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=2, depth=128),
tensorflow.Graph
9,475
import tensorflow as tf """ if args is None: args = self._args else: args = deep_merge_dict(self._args, args, local_overwrite=False) eos = tf.constant(self._multilingual_dp.meta["eos_id"], dtype=tf.int64) int_zero = tf.zeros([], dtype=tf.int64) dataset = ds.build(map_func=self.get_data_preprocess_fn(mode, ds.status, args), map_output_dtypes=self.inputs_signature(mode)[0],
tensorflow.constant
9,476
import tensorflow as tf tf.logging.info("*** Example ***") tf.logging.info("guid: %s" % (example.guid)) tf.logging.info("tokens: %s" % " ".join( [tokenization.printable_text(x) for x in tokens])) tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids])) tf.logging.info("label: %s (id = %d)" % (example.label, label_id)) feature = InputFeatures( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id,
tensorflow.logging.info
9,477
import tensorflow as tf temp_val_data = {'X': np.zeros((sh[0] * 2, sh[1], sh[2] // 2, sh[3]), self.val_data['X'].dtype), 'Y': np.zeros((sh[0] * 2, sh[1], sh[2] // 2), self.val_data['Y'].dtype)} for i in range(sh[0]): temp_val_data['X'][i * 2, :, :, :] = self.val_data['X'][i, :, :sh[2] // 2, :] temp_val_data['X'][i * 2 + 1, :, :, :] = self.val_data['X'][i, :, sh[2] // 2:, :] temp_val_data['Y'][i * 2, :, :] = self.val_data['Y'][i, :, :sh[2] // 2] temp_val_data['Y'][i * 2 + 1, :, :] = self.val_data['Y'][i, :, sh[2] // 2:] self.val_data = temp_val_data def init_tfdata(self, batch_size, main_dir, resize_shape, mode='train'): self.data_session = tf.Session() print("Creating the iterator for training data") with tf.device('/cpu:0'): segdl = SegDataLoader(main_dir, batch_size, (resize_shape[0], resize_shape[1]), resize_shape, # * 2), resize_shape, 'data/cityscapes_tfdata/train.txt') iterator = Iterator.from_structure(segdl.data_tr.output_types, segdl.data_tr.output_shapes) next_batch = iterator.get_next() self.init_op = iterator.make_initializer(segdl.data_tr) self.data_session.run(self.init_op)
tensorflow.Session
9,478
import tensorflow as tf def run(self): if FLAGS.job_name == 'ps': log_fn('Running parameter server %s' % self.task_index) self.server.join() return with tf.Graph().as_default(): if FLAGS.eval: self._eval_cnn() else: self._benchmark_cnn() def _eval_cnn(self): """Evaluate the model from a checkpoint using validation dataset.""" (enqueue_ops, fetches) = self._build_model() saver = tf.train.Saver(tf.global_variables()) summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, tf.get_default_graph()) target = '' with tf.Session(target=target, config=create_config_proto()) as sess: for i in xrange(len(enqueue_ops)): sess.run(enqueue_ops[:(i+1)]) if FLAGS.train_dir is None: raise ValueError('Trained model directory not specified') global_step = load_checkpoint(saver, sess, FLAGS.train_dir) start_time = time.time() count_top_1 = 0.0 count_top_5 = 0.0 total_eval_count = self.num_batches * self.batch_size
tensorflow.global_variables
9,479
import tensorflow as tf op_tanh = self.tanh_constant / self.op_tanh_reduce logits = op_tanh * tf.tanh(logits)
tensorflow.tanh
9,480
import tensorflow as tf from tensorflow.tools.docs import doc_controls # pylint: enable=g-direct-tensorflow-import from tensorflow_metadata.proto.v0 import schema_pb2 def _get_tensor_value(tensor_or_eager_tensor: tf.Tensor) -> Any: if ops.executing_eagerly_outside_functions(): return np.asarray(tensor_or_eager_tensor) else: with tf.compat.v1.Session(): return tensor_or_eager_tensor.eval() class _TransformedFeaturesDict(dict): """A wrapper around dict. Overrides pop to return None instead of throwing a KeyError when invoked with a key that is not found in the dictionary.
tensorflow.compat.v1.Session
9,481
import tensorflow as tf decoded = tf.sparse.SparseTensor(indices[0], values[0], shape[0]) decoded = tf.cast(tf.sparse.to_dense(decoded), tf.int32)
tensorflow.sparse.to_dense
9,482
import tensorflow as tf c, h = tf.split(axis=1, num_or_size_splits=2, value=s) for idx, (x, m) in enumerate(zip(xs, ms)): c = c*(1-m) h = h*(1-m) z = _ln(tf.matmul(x, wx), gx, bx) + _ln(tf.matmul(h, wh), gh, bh) + b i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z) i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f) o = tf.nn.sigmoid(o) u = tf.tanh(u) c = f*c + i*u h = o*tf.tanh(_ln(c, gc, bc)) xs[idx] = h s = tf.concat(axis=1, values=[c, h]) return xs, s
tensorflow.nn.sigmoid
9,483
import tensorflow as tf seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=eval_drop_remainder) result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps) output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt") with tf.gfile.GFile(output_eval_file, "w") as writer: tf.logging.info("***** Eval results *****") for key in sorted(result.keys()): tf.logging.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) if FLAGS.do_predict:
tensorflow.gfile.GFile
9,484
import tensorflow as tf dec_inp_dict2["1"] = [ tf.constant(0, tf.int32, shape=[2]) for _ in range(4)] with tf.variable_scope("other"): outputs_dict3, _ = tf.nn.seq2seq.one2many_rnn_seq2seq( enc_inp, dec_inp_dict2, cell, 2, dec_symbols_dict, embedding_size=2, feed_previous=tf.constant(True)) sess.run([tf.global_variables_initializer()]) tf.get_variable_scope().reuse_variables() outputs_dict1, _ = tf.nn.seq2seq.one2many_rnn_seq2seq( enc_inp, dec_inp_dict, cell, 2, dec_symbols_dict, embedding_size=2, feed_previous=True) outputs_dict2, _ = tf.nn.seq2seq.one2many_rnn_seq2seq( enc_inp, dec_inp_dict2, cell, 2, dec_symbols_dict, embedding_size=2, feed_previous=True) res1 = sess.run(outputs_dict1["0"]) res2 = sess.run(outputs_dict2["0"])
tensorflow.nn.seq2seq.one2many_rnn_seq2seq
9,485
import tensorflow as tf ("rbf4", RBFSampler(gamma=0.5, n_components=100)) ]) featurizer.fit(scaler.transform(observation_examples)) def featurize_state(state): scaled = scaler.transform([state]) featurized = featurizer.transform(scaled) return featurized[0] def build_policy_net_MountainCarContinuous(input_tf): mu = tf.layers.dense(input_tf, num_action, tf.nn.tanh, kernel_initializer=w_init, name='mu') # estimated action value sigma = tf.layers.dense(input_tf, num_action, tf.nn.softplus, kernel_initializer=w_init, name='sigma') # estimated variance return mu,sigma; class PolicyEstimator_MountainCarContinuous(): def __init__(self, entropy_beta=0.1, learning_rate=0.001, par_idx=0,scope="policy_estimator"): w_init = tf.random_normal_initializer(0.,.1); with tf.variable_scope(scope+"_"+str(par_idx)): # state, target and action self.state = tf.placeholder(tf.float32, [None,400], name="state") self.target = tf.placeholder(tf.float32,[None,1], name="target")
tensorflow.layers.dense
9,486
import tensorflow as tf w * ratio, h / ratio ]) priors.append([ x_center, y_center, w / ratio, h * ratio ]) priors = np.array(priors, dtype=np.float32) if clamp: np.clip(priors, 0.0, 1.0, out=priors) return tf.convert_to_tensor(priors) @tf.function def assign_priors(gt_boxes, gt_labels, corner_form_priors, iou_threshold=0.45): """Assign ground truth boxes and targets to priors. Args: gt_boxes (num_targets, 4): ground truth boxes. gt_labels (num_targets): labels of targets. priors (num_priors, 4): corner form priors Returns: boxes (num_priors, 4): real values for priors. labels (num_priors): labels for priors.
tensorflow.convert_to_tensor
9,487
import tensorflow as tf import math as m from rec_errors import euclidean_norm_squared def silverman_rule_of_thumb(N: int): return tf.pow(4/(3*N), 0.4) def cw_1d(X, y=None):
tensorflow.pow
9,488
import tensorflow as tf return update_scale_expr # Functionality to update the threshold for parameter space noise. update_param_noise_threshold_expr = param_noise_threshold.assign(tf.cond(update_param_noise_threshold_ph >= 0, lambda: update_param_noise_threshold_ph, lambda: param_noise_threshold)) # Put everything together. deterministic_actions = tf.argmax(q_values_perturbed, axis=1) batch_size = tf.shape(observations_ph.get())[0] random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64) chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions) output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions) update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps)) updates = [ update_eps_expr, tf.cond(reset_ph, lambda: perturb_vars(original_scope="q_func", perturbed_scope="perturbed_q_func"), lambda: tf.group(*[])), tf.cond(update_param_noise_scale_ph, lambda: update_scale(), lambda: tf.Variable(0., trainable=False)), update_param_noise_threshold_expr, ] _act = U.function(inputs=[observations_ph, stochastic_ph, update_eps_ph, reset_ph, update_param_noise_threshold_ph, update_param_noise_scale_ph], outputs=output_actions, givens={update_eps_ph: -1.0, stochastic_ph: True, reset_ph: False, update_param_noise_threshold_ph: False, update_param_noise_scale_ph: False}, updates=updates) def act(ob, reset=False, update_param_noise_threshold=False, update_param_noise_scale=False, stochastic=True, update_eps=-1): return _act(ob, stochastic, update_eps, reset, update_param_noise_threshold, update_param_noise_scale) return act
tensorflow.cond
9,489
import tensorflow as tf flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.") tf.flags.DEFINE_string( "tpu_name", None,
tensorflow.flags.DEFINE_string
9,490
import tensorflow as tf results, imgs = sess.run(next_element) print('names: {}'.format(results['member/name'])) print('ages: {}'.format(results['member/age'])) print('heights: {}'.format(results['member/height'])) print('prefer_prods: {}'.format(results['member/prefer_prods'])) for img in imgs: img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) cv2.imshow('img', img) cv2.waitKey(-1) def parse_function(example_proto): features = {'member/name': tf.io.FixedLenFeature([], tf.string), 'member/encoded': tf.io.FixedLenFeature([], tf.string), 'member/age': tf.io.FixedLenFeature([], tf.int64), 'member/height': tf.io.VarLenFeature(tf.float32), 'member/prefer_prods': tf.io.VarLenFeature(tf.int64)} features = tf.io.parse_single_example(example_proto, features) images = tf.image.decode_png(features['member/encoded'], channels=3) # 注意png原本有4個channel,但執行到下面的處理會出錯,所以前一行先降成3個channel。 images = tf.image.random_brightness(images, 0.1) images = tf.image.random_saturation(images, 0.7, 1.3) images = tf.image.random_contrast(images, 0.6, 1.5) images = tf.image.random_flip_left_right(images) return features, images
tensorflow.io.FixedLenFeature
9,491
import tensorflow as tf # TPUEstimator estimator = tf.contrib.tpu.TPUEstimator( model_fn=model_fn, config=config, params=params, train_batch_size=args.train_batch_size, eval_batch_size=32, export_to_tpu=False) else: config = tf.estimator.RunConfig( model_dir=args.model_dir, save_checkpoints_steps=10, save_summary_steps=10) estimator = tf.estimator.Estimator( model_fn, config=config, params=params)
tensorflow.estimator.RunConfig
9,492
import tensorflow as tf initializer=tf.random_normal_initializer()) alpha_logstd = tf.get_variable('alpha_logstd_layer'+str(h), shape=[1, 1, n_basis, n_out], initializer=tf.random_normal_initializer()) alpha_std = tf.exp(alpha_logstd) # Compute epsilon from {n_samples} standard Gaussian # epsilon = tf.random_normal([n_samples, 1, n_out*2, n_out]) epsilon = tf.random_uniform([n_samples, 1, n_basis, n_out]) hyp_params = tf.get_variable('hyp_params_layer'+str(h), shape=[2], initializer=tf.random_normal_initializer()) l1, l2 = tf.nn.sigmoid(hyp_params[0]), tf.exp(hyp_params[1]) epsilon = tf.sinh(epsilon*l2)/tf.cosh(epsilon*l2)**l1/l2 # Compute A_{h+1} A = tf.tile(alpha_mean+epsilon*alpha_std, [1, tf.shape(X)[0], 1, 1]) # Compute z_{h}A_{h+1} Z1 = tf.matmul(Z, A[:,:,:n_basis//2,:])/tf.sqrt(n_basis*.5) Z2 = tf.matmul(Z, A[:,:,n_basis//2:,:])/tf.sqrt(n_basis*.5) # Compute u_{h+1} and v_{h+1} U, V = tf.cos(Z1)+tf.cos(Z2), tf.sin(Z1)+tf.sin(Z2) Z = tf.concat([U, V], 3)/tf.sqrt(n_out*1.) KL += tf.reduce_mean(alpha_std**2+alpha_mean**2-2*alpha_logstd-1)/2. # Output layer else:
tensorflow.sinh
9,493
import tensorflow as tf im = axs[fig_obj_count, 1].matshow(inter.numpy()) plt.colorbar(im, ax=axs[fig_obj_count, 1]) values = sdf_values inter = tf.reshape(values, [self.resolution, self.resolution, self.resolution]) inter = tf.transpose(tf.reduce_max(inter, axis=a)) im = axs[fig_obj_count, 2].matshow(inter.numpy()) plt.colorbar(im, ax=axs[fig_obj_count, 2]) fig_obj_count += 1 intersection = tf.reduce_sum(tf.math.sign(tf.nn.relu(sdf_values - 1))) union = tf.reduce_sum(tf.math.sign(sdf_values)) iou = intersection / union self.collisions.append(num_collisions) self.intersections.append(intersection) self.ious.append(iou) return num_collisions, intersection, iou def evaluate(self): """Evaluate.""" if self.slave: data = {'collisions': self.collisions, 'intersections': self.intersections, 'ious': self.ious} with gfile.Open(self.path, 'wb') as file:
tensorflow.math.sign
9,494
import tensorflow as tf @registry.register_model class DenseBitwiseCategoricalPolicy(PolicyBase): """Dense network with bitwise input and categorical output.""" def body(self, features): observations = features["inputs"] flat_x = tf.layers.flatten(observations) with tf.variable_scope("dense_bitwise"): flat_x = discretization.int_to_bit_embed(flat_x, 8, 32) x = tf.layers.dense(flat_x, 256, activation=tf.nn.relu) x = tf.layers.dense(flat_x, 128, activation=tf.nn.relu) logits = tf.layers.dense(x, self.hparams.problem.num_actions) value = tf.layers.dense(x, 1)[..., 0] return {"target_policy": logits, "target_value": value} @registry.register_model class RandomPolicy(PolicyBase):
tensorflow.layers.dense
9,495
import tensorflow as tf for v in tf.trainable_variables(): if v.get_shape().ndims == 2: variables.append(v) with tf.name_scope('weight_decay'): if penalty_type == 'l1': cost = tf.add_n([tf.reduce_sum(tf.abs(v)) for v in variables]) elif penalty_type == 'l2': cost = tf.add_n([tf.nn.l2_loss(v) for v in variables]) else: raise NotImplementedError('Unsupported penalty_type %s' % penalty_type) cost *= penalty
tensorflow.abs
9,496
import tensorflow as tf Args: nodes: A `Tensor` of `int64`. edge_types: A 1-D `Tensor` of int32. Specify edge types to filter outgoing edges. Return: A tuple of `SparseTensor` (neibors, weights). neighbors: A `SparseTensor` of `int64`. weights: A `SparseTensor` of `float`. types: A `SparseTensor` of `int32` """ sp_returns = base._LIB_OP.get_sorted_full_neighbor(nodes, edge_types) return tf.SparseTensor(*sp_returns[:3]), tf.SparseTensor(*sp_returns[3:6]), \ tf.SparseTensor(*sp_returns[6:]) def sample_fanout(nodes, edge_types, counts, default_node=-1): """ Sample multi-hop neighbors of nodes according to weight in graph. Args: nodes: A 1-D `Tensor` of `int64`. edge_types: A list of 1-D `Tensor` of int32. Specify edge types to filter outgoing edges in each hop.
tensorflow.SparseTensor
9,497
import tensorflow as tf if tf_var.name in params else values[i] for (i, tf_var) in enumerate(tf_vars) } self._sess.run(m.vars_assign_op, feed_dict=var_feeddict) def _make_placeholders(self): w = self._train_params['image_size'] h = self._train_params['image_size'] in_ch = 3 # Num channels of input images train_images_ph = tf.placeholder(tf.int32, name='train_images_ph', shape=(None, w, h, in_ch)) # Train images pred_images_ph = tf.placeholder(tf.int32, name='pred_images_ph', shape=(None, w, h, in_ch)) # Predict images train_classes_ph = tf.placeholder(tf.int32, name='train_classes_ph', shape=(None,)) # Train classes pred_classes_ph = tf.placeholder(tf.int32, name='pred_classes_ph', shape=(None,)) # Predict classes normal_arch_ph = tf.placeholder(tf.int32, name='normal_arch_ph', shape=(CELL_NUM_BLOCKS, 4)) reduction_arch_ph = tf.placeholder(tf.int32, name='reduction_arch_ph', shape=(CELL_NUM_BLOCKS, 4)) return _ModelPlaceholder(train_images_ph, train_classes_ph, pred_images_ph, pred_classes_ph, normal_arch_ph, reduction_arch_ph) def _forward(self, X, step, normal_arch, reduction_arch, is_train=False, **knobs): K = self._train_params['K'] # No. of classes in_ch = 3 # Num channels of input images w = self._train_params['image_size'] # Initial input width h = self._train_params['image_size'] # Initial input height
tensorflow.placeholder
9,498
from tensorflow.python.framework import ops return cost @ops.RegisterShape("SparseSoftmaxCrossEntropyWithLogits") def _SparseSoftmaxCrossEntropyWithLogitsShape(op): """Shape function for SparseSoftmaxCrossEntropyWithLogits op.""" logits_shape = op.inputs[0].get_shape() input_shape = logits_shape.with_rank(2) batch_size = input_shape[0] # labels_shape op.inputs[1].get_shape().merge_with(tensor_shape.vector(batch_size)) return [tensor_shape.vector(batch_size.value), input_shape] @ops.RegisterShape("SoftmaxCrossEntropyWithLogits") def _SoftmaxCrossEntropyWithLogitsShape(op): """Shape function for SoftmaxCrossEntropyWithLogits op.""" logits_shape = op.inputs[0].get_shape() labels_shape = op.inputs[1].get_shape() input_shape = logits_shape.merge_with(labels_shape).with_rank(2) batch_size = input_shape[0] return [tensor_shape.vector(batch_size.value), input_shape] def avg_pool(value, ksize, strides, padding, data_format="NHWC", name=None): """Performs the average pooling on the input. Each entry in `output` is the mean of the corresponding size `ksize`
tensorflow.python.framework.ops.RegisterShape
9,499