seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf training_decoder_output, _, _ = tf.contrib.seq2seq.dynamic_decode( decoder=training_decoder, impute_finished=True, maximum_iterations=tf.reduce_max(seq_lens), ) self.Y_hat = training_decoder_output.rnn_output out_decoder2 = tf.reshape(self.Y_hat, [tf.shape(self.Y_hat)[0], -1, n_mels]) dec = conv1d_banks(out_decoder2, K=decoder_num_banks, is_training=self.training) dec = tf.layers.max_pooling1d(dec, pool_size=2, strides=1, padding="same") dec = tf.layers.conv1d(dec, embed_size // 2, 3, name="decoder-conv1-1", padding="SAME") dec = tf.nn.relu(tf.layers.batch_normalization(dec, training=self.training)) dec = tf.layers.conv1d(dec, embed_size // 2, 3, name="decoder-conv1-2", padding="SAME") dec = tf.layers.batch_normalization(dec, training=self.training) dec = tf.layers.dense(dec, embed_size // 2) for i in range(4): dec = highwaynet( dec, num_units=embed_size // 2, scope="decoder-highwaynet-{}".format(i) ) with tf.variable_scope("decoder-gru", reuse=False): cell = tf.contrib.rnn.GRUCell(embed_size // 2) cell_bw = tf.contrib.rnn.GRUCell(embed_size // 2)
tensorflow.layers.batch_normalization
7,600
import tensorflow as tf def test_maximum_batch_size(self): with self.test_session() as session: @dynamic_batching.batch_fn_with_options(maximum_batch_size=2) def f(a, b): batch_size = tf.shape(a)[0] return a + b, tf.tile([batch_size], [batch_size]) outputs = [ f(tf.constant([1]), tf.constant([2])), f(tf.constant([1]), tf.constant([2])), f(tf.constant([1]), tf.constant([2])), f(tf.constant([1]), tf.constant([2])), f(tf.constant([1]), tf.constant([2])), ] tf.train.start_queue_runners() results = session.run(outputs) for value, batch_size in results: self.assertEqual(3, value) self.assertGreaterEqual(2, batch_size) def test_static_shape(self): assertions_triggered = [0] @dynamic_batching.batch_fn_with_options(minimum_batch_size=1, maximum_batch_size=2) def f0(a): self.assertEqual(None, a.shape[0].value)
tensorflow.train.start_queue_runners
7,601
import tensorflow as tf def example_reading_spec(self): data_fields = {"inputs": tf.VarLenFeature(tf.int64), "targets": tf.VarLenFeature(tf.int64)} data_items_to_decoders = None
tensorflow.VarLenFeature
7,602
import tensorflow as tf return float( self.sess.run(self.cross_entropy, feed_dict={self.x: xs, self.y_: ys}) ) def grad(self, xs, ys): """Computes the gradients of the network.""" return self.sess.run( self.cross_entropy_grads, feed_dict={self.x: xs, self.y_: ys} ) @ray.remote class NetActor(object): def __init__(self, xs, ys): os.environ["CUDA_VISIBLE_DEVICES"] = "" with tf.device("/cpu:0"): self.net = LinearModel([784, 10]) self.xs = xs self.ys = ys # Compute the loss on a batch of data. def loss(self, theta): net = self.net net.variables.set_flat(theta) return net.loss(self.xs, self.ys) # Compute the gradient of the loss on a batch of data. def grad(self, theta): net = self.net net.variables.set_flat(theta)
tensorflow.device
7,603
import tensorflow as tf beta1=beta1).minimize(supervised_encoder_loss, var_list=en_var) init = tf.global_variables_initializer() # Reshape immages to display them input_images = tf.reshape(x_input, [-1, 28, 28, 1]) generated_images = tf.reshape(decoder_output, [-1, 28, 28, 1]) # Tensorboard visualization tf.summary.scalar(name='Autoencoder Loss', tensor=autoencoder_loss) tf.summary.scalar(name='Discriminator gauss Loss', tensor=dc_g_loss) tf.summary.scalar(name='Discriminator categorical Loss', tensor=dc_c_loss) tf.summary.scalar(name='Generator Loss', tensor=generator_loss) tf.summary.scalar(name='Supervised Encoder Loss', tensor=supervised_encoder_loss) tf.summary.histogram(name='Encoder Gauss Distribution', values=encoder_output_latent) tf.summary.histogram(name='Real Gauss Distribution', values=real_distribution) tf.summary.histogram(name='Encoder Categorical Distribution', values=encoder_output_label) tf.summary.histogram(name='Real Categorical Distribution', values=categorial_distribution) tf.summary.image(name='Input Images', tensor=input_images, max_outputs=10) tf.summary.image(name='Generated Images', tensor=generated_images, max_outputs=10) summary_op = tf.summary.merge_all() # Saving the model saver = tf.train.Saver() step = 0 with tf.Session() as sess: if train_model:
tensorflow.summary.scalar
7,604
import tensorflow as tf deconv = tf.layers.batch_normalization(deconv, momentum = 0.9) if activation_function == "relu": deconv = tf.nn.relu(deconv, name = 'relu') if activation_function == "leakyrelu": deconv = tf.nn.leaky_relu(deconv, alpha=relu_factor) if activation_function == "elu": deconv = tf.nn.elu(deconv, name = 'elu') return deconv
tensorflow.nn.leaky_relu
7,605
import tensorflow as tf half_1 = tf.nn.avg_pool(X, ksize=(1, 1, 1, 1), strides=(1, 2, 2, 1), padding='VALID') shifted_X = tf.pad(X, ((0, 0), (0, 1), (0, 1), (0, 0)))[:, 1:, 1:, :] half_2 = tf.nn.avg_pool(shifted_X, ksize=(1, 1, 1, 1), strides=(1, 2, 2, 1), padding='VALID')
tensorflow.nn.avg_pool
7,606
import tensorflow as tf zs = tf.map_fn(loop_hyper_encoder, ys, dtype=tf.float32, parallel_iterations=1, back_prop=False) print("Hyper Encoder") z_hats, _ = entropy_bottleneck(zs, False) print("Quantize hyperprior") def loop_hyper_deocder(z): z = tf.expand_dims(z, 0) loc, scale = hyper_decoder(z) return tf.squeeze(loc, [0]), tf.squeeze(scale, [0]) locs, scales = tf.map_fn(loop_hyper_deocder, z_hats, dtype=(tf.float32, tf.float32), parallel_iterations=1, back_prop=False) lower_bound = 1e-9# TODO
tensorflow.expand_dims
7,607
import tensorflow as tf return return_dict def get_race_loss(FLAGS, features, is_training): """Loss for downstream multi-choice QA tasks such as RACE.""" bsz_per_core = tf.shape(features["input_ids"])[0] def _transform_features(feature): out = tf.reshape(feature, [bsz_per_core, 4, -1]) out = tf.transpose(out, [2, 0, 1]) out = tf.reshape(out, [-1, bsz_per_core * 4]) return out inp = _transform_features(features["input_ids"]) seg_id = _transform_features(features["segment_ids"]) inp_mask = _transform_features(features["input_mask"]) label = tf.reshape(features["label_ids"], [bsz_per_core]) xlnet_config = xlnet.XLNetConfig(json_path=FLAGS.model_config_path) run_config = xlnet.create_run_config(is_training, True, FLAGS)
tensorflow.transpose
7,608
import tensorflow as tf def testAddCollectionDefFails(self): with self.test_session(): # Creates a graph. v0 = tf.Variable(10.0, name="v0") # Creates a saver. save = tf.train.Saver({"v0": v0})
tensorflow.Variable
7,609
import tensorflow as tf def _process_and_truncate(text, trunc, max_len): if data_status != compat.DataStatus.PROJECTED: text = self._multilingual_dp.encode( text, is_processed=(data_status == compat.DataStatus.PROCESSED)) if mode == compat.ModeKeys.TRAIN and trunc and max_len: if compat.is_tf_tensor(text): text = tf.cond( tf.less_equal(tf.size(text), max_len), lambda: text, lambda: tf.concat([text[:(max_len - 1)], text[-1:]], axis=0)) elif len(text) > max_len: text = text[:(max_len - 1)] + text[-1:] return text def _process_lang(lang):
tensorflow.size
7,610
import tensorflow as tf # Make a matrix where each row contains [0, 1, ..., max_sequence_len] r = tf.range(0, max_sequence_len, 1) range_row = tf.expand_dims(r, 0) range_tiled = tf.tile(range_row, [batch_size, 1]) # Use the logical operations to create a mask indicator = tf.less(range_tiled, lengths_tiled) sz = [batch_size, max_sequence_len] self._mask = tf.select(indicator, tf.ones(sz), tf.zeros(sz)) def _DoPredictions(self, in_size, mats, class_weights=None): """Takes in an array of states and calculates predictions. Get the cross-entropy for each example in the vector self._xent. Args: in_size: size of the hidden state vectors
tensorflow.ones
7,611
import tensorflow as tf with tf.name_scope('accuracy'): correct_prediction_action = tf.equal( tf.argmax(one_hot_labels_action, 1), tf.argmax(self.predictions_action, 1) ) self.accuracy_action = tf.reduce_mean(tf.cast(correct_prediction_action, 'float')) tf.scalar_summary('accuracy_action', self.accuracy_action) correct_prediction_arguments = tf.equal(tf.argmax(one_hot_labels_arguments, 2), tf.argmax(self.predictions_arguments, 2)) self.accuracy_arguments = tf.reduce_mean(tf.cast(correct_prediction_arguments, 'float')) tf.scalar_summary('accuracy_arguments', self.accuracy_arguments)
tensorflow.argmax
7,612
import tensorflow as tf tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) output_spec = None if mode == tf.estimator.ModeKeys.TRAIN: train_op = optimization.create_optimizer( total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
tensorflow.train.init_from_checkpoint
7,613
from tensorflow.python.ops import math_ops keep_prob = ops.convert_to_tensor( keep_prob, dtype=x.dtype, name="keep_prob") keep_prob.get_shape().assert_is_compatible_with(tensor_shape.scalar()) noise_shape = noise_shape or array_ops.shape(x) # uniform [keep_prob, 1.0 + keep_prob) random_tensor = keep_prob random_tensor += random_ops.random_uniform( noise_shape, seed=seed, dtype=x.dtype) # 0. if [keep_prob, 1.0) and 1. if [1.0, 1.0 + keep_prob) binary_tensor = math_ops.floor(random_tensor) ret = x * math_ops.inv(keep_prob) * binary_tensor ret.set_shape(x.get_shape()) return ret def top_k(input, k=1, sorted=True, name=None): """Finds values and indices of the `k` largest entries for the last dimension. If the input is a vector (rank-1), finds the `k` largest entries in the vector and outputs their values and indices as vectors. Thus `values[j]` is the `j`-th largest entry in `input`, and its index is `indices[j]`.
tensorflow.python.ops.math_ops.inv
7,614
import tensorflow as tf self.w2=tf.get_variable('w2', [1024,classnum],initializer=tf.contrib.layers.xavier_initializer_conv2d()) self.b1 = tf.get_variable('b1', [1024],initializer=tf.constant_initializer(0.0)) self.b2 = tf.get_variable('b2', [classnum],initializer=tf.constant_initializer(0.0)) def inference(self,images): images=tf.cast(images,tf.float32)/255.0 l1 = tf.matmul(images, self.w1)+self.b1 l1=tf.nn.relu(l1) out = tf.matmul(l1, self.w2)+self.b2 return out def test_inference(self,images): images=tf.cast(images,tf.float32)/255.0 l1 = tf.matmul(images, self.w1)+self.b1 l1=tf.nn.relu(l1) out = tf.matmul(l1, self.w2)+self.b2 return out def valid_inference(self,images): images=tf.cast(images,tf.float32)/255.0 l1 = tf.matmul(images, self.w1)+self.b1 l1=tf.nn.relu(l1) out = tf.matmul(l1, self.w2)+self.b2 return out def softmax_loss(self,predicts,labels):
tensorflow.matmul
7,615
import tensorflow as tf max_num_pos = int(positive_fraction * sample_size) sampled_pos_idx = subsample_indicator(positive_idx, max_num_pos) num_sampled_pos = tf.reduce_sum(tf.cast(sampled_pos_idx, tf.int32)) if sample_size is None: negative_positive_ratio = (1 - positive_fraction) / positive_fraction max_num_neg = tf.cast(negative_positive_ratio * tf.cast(num_sampled_pos, dtype=tf.float32), dtype=tf.int32) else: max_num_neg = sample_size - num_sampled_pos sampled_neg_idx = subsample_indicator(negative_idx, max_num_neg) return tf.logical_or(sampled_pos_idx, sampled_neg_idx) def batch_sample_balanced_positive_negative(indicators, sample_size, labels, positive_fraction=0.5, dtype=tf.float32): """Subsamples minibatches to a desired balance of positives and negatives. Arguments:
tensorflow.logical_or
7,616
import tensorflow as tf layers = tf.keras.layers def parse(line): """Parse a line from the colors dataset.""" # Each line of the dataset is comma-separated and formatted as # color_name, r, g, b # so `items` is a list [color_name, r, g, b]. items = tf.string_split([line], ",").values rgb = tf.string_to_number(items[1:], out_type=tf.float32) / 255. # Represent the color name as a one-hot encoded character sequence. color_name = items[0] chars = tf.one_hot(tf.decode_raw(color_name, tf.uint8), depth=256) # The sequence length is needed by our RNN. length = tf.cast(tf.shape(chars)[0], dtype=tf.int64) return rgb, chars, length def maybe_download(filename, work_directory, source_url): """Download the data from source url, unless it's already here.
tensorflow.string_to_number
7,617
import tensorflow as tf label_id = label_map[example.label] if ex_index < 5: tf.logging.info("*** Example ***") tf.logging.info("guid: %s" % (example.guid)) tf.logging.info("tokens: %s" % " ".join( [tokenization.printable_text(x) for x in tokens])) tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids])) tf.logging.info("label: %s (id = %d)" % (example.label, label_id)) feature = InputFeatures( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id, is_real_example=True) return feature
tensorflow.logging.info
7,618
import tensorflow as tf # If you want to use the token-level output, use model.get_sequence_output() # instead. output_layer = model.get_pooled_output() hidden_size = output_layer.shape[-1].value output_weights = tf.get_variable( "output_weights", [num_labels, hidden_size], initializer=tf.truncated_normal_initializer(stddev=0.02)) output_bias = tf.get_variable( "output_bias", [num_labels], initializer=tf.zeros_initializer()) with tf.variable_scope("loss"): if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) probabilities = tf.nn.softmax(logits, axis=-1) log_probs = tf.nn.log_softmax(logits, axis=-1)
tensorflow.zeros_initializer
7,619
from tensorflow.contrib import metrics as metrics_lib logits = array_ops.concat(1, [array_ops.zeros_like(logits), logits]) if proba: return nn.softmax(logits) else: return math_ops.argmax(logits, 1) def _default_eval_metrics(self): if self._num_label_columns == 1: return _get_default_binary_metrics_for_eval(thresholds=[.5]) return {} def get_eval_ops(self, features, logits, targets, metrics=None): loss = self.loss(logits, targets, features) result = {"loss": metrics_lib.streaming_mean(loss)} # Adds default metrics. if metrics is None: # TODO(b/29366811): This currently results in both an "accuracy" and an # "accuracy/threshold_0.500000_mean" metric for binary classification. metrics = {("accuracy", "classes"): metrics_lib.streaming_accuracy} predictions = math_ops.sigmoid(logits) targets_float = math_ops.to_float(targets) default_metrics = self._default_eval_metrics() for metric_name, metric_op in default_metrics.items(): result[metric_name] = metric_op(predictions, targets_float)
tensorflow.contrib.metrics.streaming_mean
7,620
import tensorflow as tf tf.flags.DEFINE_string("data_dir", "/scratch1/ram095/nips20/paris_street", "path to dataset") tf.flags.DEFINE_float("learning_rate", "1e-4", "Learning rate for Adam Optimizer")
tensorflow.flags.DEFINE_float
7,621
import tensorflow as tf with tf.variable_scope('source2token_self_attn'): inter_block_logits = bn_dense_layer(self_attn_result, ivec, True, 0., 'bn_dense_map', 'linear', False, wd, keep_prob, is_train) # bs,bn,bl,vec inter_block_logits_masked = exp_mask_for_high_rank(inter_block_logits, rep_mask_split) # bs,bn,bl,vec inter_block_soft = tf.nn.softmax(inter_block_logits_masked, 2) # bs,bn,bl,vec inter_block_attn_output = tf.reduce_sum(self_attn_result * inter_block_soft, 2) # bs,bn,vec with tf.variable_scope('self_attn_inter_block'): inter_block_attn_output_mask = tf.cast(tf.ones([bs, bn], tf.int32), tf.bool) block_ct_res = directional_attention_with_dense(
tensorflow.reduce_sum
7,622
import tensorflow as tf "inputs": observations, "epoch": tf.constant(epoch + 1), "input_action": tf.zeros(obs_shape[:2] + [1], dtype=tf.int32), "input_reward": tf.zeros(obs_shape[:2] + [1], dtype=tf.int32), "targets": tf.zeros(obs_shape[:1] + [num_target_frames] + obs_shape[2:]), "target_action": tf.zeros( obs_shape[:1] + [num_target_frames, 1], dtype=tf.int32), "target_reward": tf.zeros( obs_shape[:1] + [num_target_frames, 1], dtype=tf.int32), "target_policy": tf.zeros( obs_shape[:1] + [num_target_frames] + [action_space.n]), "target_value": tf.zeros( obs_shape[:1] + target_value_shape_suffix) } model.distributional_value_size = max(distributional_size, 1) model.use_epochs = hparams.use_epochs with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE): t2t_model.create_dummy_vars()
tensorflow.zeros
7,623
import tensorflow as tf img = img - img.min() img *= 255.0/img.max() file_name = 'heatmap_{}_{}.jpg'.format(save_image_with_heatmap.counter, ind) imsave(os.path.join(config.DEBUG_DIR, file_name), img.astype(np.uint8)) return save_image_with_heatmap.counter def get_keypoint(image, targets, predictions, heatmap_size, height, width, category, clip_at_zero=True, data_format='channels_last', name=None): predictions = tf.reshape(predictions, [1, -1, heatmap_size*heatmap_size]) pred_max = tf.reduce_max(predictions, axis=-1) pred_indices = tf.argmax(predictions, axis=-1) pred_x, pred_y = tf.cast(tf.floormod(pred_indices, heatmap_size), tf.float32), tf.cast(tf.floordiv(pred_indices, heatmap_size), tf.float32) width, height = tf.cast(width, tf.float32), tf.cast(height, tf.float32) pred_x, pred_y = pred_x * width / tf.cast(heatmap_size, tf.float32), pred_y * height / tf.cast(heatmap_size, tf.float32) if clip_at_zero: pred_x, pred_y = pred_x * tf.cast(pred_max>0, tf.float32), pred_y * tf.cast(pred_max>0, tf.float32) pred_x = pred_x * tf.cast(pred_max>0, tf.float32) + tf.cast(pred_max<=0, tf.float32) * (width / 2.) pred_y = pred_y * tf.cast(pred_max>0, tf.float32) + tf.cast(pred_max<=0, tf.float32) * (height / 2.) if config.PRED_DEBUG:
tensorflow.floormod
7,624
import tensorflow as tf # Build another graph with 2 nodes, initialized # differently, and a Restore node for them. with self.test_session(graph=tf.Graph()) as sess: v0_2 = tf.Variable(1000.0, name="v0") v1_2 = tf.Variable(2000.0, name="v1") save2 = tf.train.Saver([v0_2, v1_2])
tensorflow.Variable
7,625
import tensorflow as tf self.assertEqual((2, 4), res[0].shape) res = sess.run([mem]) self.assertEqual((2, 2), res[0].shape) def testDynamicAttentionDecoder2(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): cell = tf.nn.rnn_cell.GRUCell(2) inp = tf.constant(0.5, shape=[2, 2, 2]) enc_outputs, enc_state = tf.nn.dynamic_rnn(cell, inp, dtype=tf.float32) attn_states = enc_outputs dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3 dec, mem = tf.nn.seq2seq.attention_decoder( dec_inp, enc_state, attn_states, cell, output_size=4, num_heads=2) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 4), res[0].shape) res = sess.run([mem]) self.assertEqual((2, 2), res[0].shape) def testAttentionDecoderStateIsTuple(self):
tensorflow.nn.seq2seq.attention_decoder
7,626
import tensorflow as tf with tf.variable_scope('rnd_pred_act'): # rnd_pred_act = act_limit * mlp(x_ph, list(hidden_sizes) + [act_dim], activation, output_activation) rnd_pred_act_in_dim = x_ph.shape.as_list()[1] rnd_pred_act_dropout_mask_generator = DropoutMaskGenerator(rnd_pred_act_in_dim, hidden_sizes, model_prob=1.0 - dropout_rate) rnd_pred_act_dropout_mask_phs = rnd_pred_act_dropout_mask_generator.generate_dropout_mask_placeholders() rnd_pred_act, rnd_pred_act_reg = mlp_variational(x_ph, rnd_pred_act_dropout_mask_phs, list(hidden_sizes) + [act_dim], activation, output_activation, dropout_rate) rnd_pred_act = act_limit * rnd_pred_act with tf.variable_scope('rnd_targ_cri'): rnd_targ_cri = tf.squeeze(mlp(tf.concat([x_ph, a_ph], axis=-1), list(hidden_sizes) + [1], activation, None), axis=1) with tf.variable_scope('rnd_pred_cri'): rnd_pred_cri = tf.squeeze(mlp(tf.concat([x_ph, a_ph], axis=-1), list(hidden_sizes) + [1], activation, None), axis=1) rnd_pred_cri_in_ph = tf.concat([x_ph, a_ph], axis=-1) rnd_pred_cri_in_dim = rnd_pred_cri_in_ph.shape.as_list()[1] rnd_pred_cri_dropout_mask_generator = DropoutMaskGenerator(rnd_pred_cri_in_dim, hidden_sizes, model_prob=1.0 - dropout_rate) rnd_pred_cri_dropout_mask_phs = rnd_pred_cri_dropout_mask_generator.generate_dropout_mask_placeholders() rnd_pred_cri, rnd_pred_cri_reg = mlp_variational(rnd_pred_cri_in_ph, rnd_pred_cri_dropout_mask_phs, list(hidden_sizes) + [1],
tensorflow.concat
7,627
import tensorflow as tf if FLAGS.mode == 'train': train_dataset_reader = dataset.BatchDatset(train_records, image_options) validation_dataset_reader = dataset.BatchDatset(valid_records, image_options) sess = tf.Session() print("Setting up Saver...") saver = tf.train.Saver() # create two summary writers to show training loss and validation loss in the same graph # need to create two folders 'train' and 'validation' inside FLAGS.logs_dir train_writer = tf.summary.FileWriter(osp.join(FLAGS.logs_dir , 'train'), sess.graph) validation_writer = tf.summary.FileWriter(osp.join(FLAGS.logs_dir , 'validation')) sess.run(tf.global_variables_initializer()) ckpt = tf.train.get_checkpoint_state(FLAGS.logs_dir) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) print("Model restored...") if FLAGS.mode == "train": for itr in xrange(MAX_ITERATION): train_images, train_annotations = train_dataset_reader.next_batch(FLAGS.batch_size) feed_dict = {image: train_images, annotation: train_annotations, keep_probability: 0.85} sess.run(train_op, feed_dict=feed_dict) if itr % 10 == 0:
tensorflow.global_variables_initializer
7,628
import tensorflow as tf correct = tf.equal(tf.arg_max(logits,1), tf.arg_max(labels,1)) correct = tf.cast(correct, tf.int32) n_correct = tf.reduce_sum(correct) return n_correct def optimize(loss, learning_rate, global_step): ''' Optimization, use Gradient Descent as default ''' with tf.name_scope('optimizer'): optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate) train_op = optimizer.minimize(loss, global_step=global_step) return train_op def print_all_variables(train_only=True): ''' Print all trainable and non-trainable variables '''
tensorflow.name_scope
7,629
import tensorflow as tf def testSeqAE(self): FLAGS.use_seq2seq_autoencoder = True graphs.VatxtModel().language_model_training() def testBidirLM(self): graphs.VatxtBidirModel().language_model_graph() def testBidirClassifier(self): at_methods = [None, 'rp', 'at', 'vat', 'atvat'] for method in at_methods: FLAGS.adv_training_method = method with tf.Graph().as_default(): graphs.VatxtBidirModel().classifier_graph() # Ensure variables have been reused # Embedding + 2 LSTM layers + hidden layers + logits layer expected_num_vars = 1 + 2 * 2 * FLAGS.rnn_num_layers + 2 * ( FLAGS.cl_num_layers) + 2 self.assertEqual(len(tf.trainable_variables()), expected_num_vars) def testEvalGraph(self): _, _ = graphs.VatxtModel().eval_graph()
tensorflow.Graph
7,630
import tensorflow as tf """Preprocess a single raw image.""" image = tf.image.decode_image(encoded_image, channels=shape[-1]) image.set_shape(shape) return tf.cast(image, dtype) def serving_input_receiver_fn(): image_bytes_list = tf.placeholder( shape=[None], dtype=tf.string, ) images = tf.map_fn( _preprocess_image, image_bytes_list, back_prop=False, dtype=dtype) return tf.estimator.export.TensorServingInputReceiver( features=images, receiver_tensors=image_bytes_list) return serving_input_receiver_fn def _encode_image(image_array, fmt='PNG'): """encodes an (numpy) image array to string. Args: image_array: (numpy) image array fmt: image format to use
tensorflow.estimator.export.TensorServingInputReceiver
7,631
import tensorflow as tf class TFRecordDataset(TFDataset): def get_num_partitions(self): self.train_rdd.getNumPartitions() def __init__(self, file_path, parse_fn, batch_size, batch_per_thread, hard_code_batch_size=False, validation_file_path=None): import tensorflow as tf g = tf.Graph() with g.as_default(): serialized_example = tf.placeholder(dtype=tf.string, shape=[]) results = parse_fn(serialized_example) flattened = nest.flatten(results) output_names = [tf.cast(t, dtype=tf.float32).name for t in flattened] serialized_graph = bytearray(g.as_graph_def().SerializeToString()) sc = getOrCreateSparkContext() train_rdd = callBigDlFunc("float", "createRDDFromTFRecords", file_path, sc, serialized_graph, serialized_example.name, output_names)
tensorflow.placeholder
7,632
import tensorflow as tf out = tf.matmul(l1, self.w2)+self.b2 return out def test_inference(self,images): images=tf.cast(images,tf.float32)/255.0 l1 = tf.matmul(images, self.w1)+self.b1 l1=tf.nn.relu(l1) out = tf.matmul(l1, self.w2)+self.b2
tensorflow.cast
7,633
import tensorflow.contrib.eager as tfe x_dim=hparams.x_dim, minus_loglikelihood_fn=energy_fn, n_steps=hparams.n_steps, eps=hparams.eps) optimizer = tf.train.AdamOptimizer(learning_rate=hparams.learning_rate) step_fn = tfe.defun(step) if defun else step # Warmup to reduce initialization effect when timing warmup( dynamics,
tensorflow.contrib.eager.defun
7,634
from tensorflow.contrib.metrics.python.ops import metric_ops if proba: return nn.softmax(logits) else: return math_ops.argmax(logits, 1) def _default_eval_metrics(self): if self._num_label_columns == 1: return get_default_binary_metrics_for_eval(thresholds=[.5]) return {} def get_eval_ops(self, features, logits, labels, metrics=None): loss = self.loss(logits, labels, features) result = {"loss": metric_ops.streaming_mean(loss)} # Adds default metrics. if metrics is None: # TODO(b/29366811): This currently results in both an "accuracy" and an # "accuracy/threshold_0.500000_mean" metric for binary classification. metrics = {("accuracy", "classes"): metric_ops.streaming_accuracy} predictions = math_ops.sigmoid(logits) labels_float = math_ops.to_float(labels) default_metrics = self._default_eval_metrics() for metric_name, metric_op in default_metrics.items():
tensorflow.contrib.metrics.python.ops.metric_ops.streaming_mean
7,635
import tensorflow as tf for i in range(n_iters): loss, samples = step_fn(dynamics, optimizer, samples) if verbose: print("Iteration %d: loss %.4f" % (i, loss)) if logdir: with summary_writer.as_default(): with tf.contrib.summary.always_record_summaries(): tf.contrib.summary.scalar("loss", loss) class L2hmcTest(tf.test.TestCase): """Unit tests for l2hmc in both eager and graph mode.""" def test_apply_transition(self): """Testing function `Dynamics.apply_transition` in graph and eager mode."""
tensorflow.contrib.summary.scalar
7,636
import tensorflow as tf activation_fn=tf.nn.relu, normalizer_fn=slim.batch_norm, padding='SAME', stride=1, reuse=reuse): with slim.arg_scope([slim.batch_norm], **batch_norm_params): with tf.variable_scope(_DECODER_SCOPE, _DECODER_SCOPE, [features]): feature_list = feature_extractor.networks_to_feature_maps[ model_variant][feature_extractor.DECODER_END_POINTS] if feature_list is None: tf.logging.info('Not found any decoder end points.') return features else: decoder_features = features for i, name in enumerate(feature_list): decoder_features_list = [decoder_features] feature_name = '{}/{}'.format( feature_extractor.name_scope[model_variant], name) decoder_features_list.append( slim.conv2d(
tensorflow.logging.info
7,637
import tensorflow as tf if not no_moving_average: moving_mean = self._make_var('moving_mean', (in_ch,), trainable=False, init_constant=0) moving_variance = self._make_var('moving_variance', (in_ch,), trainable=False, init_constant=1) if is_train: # For training, do batch norm with batch mean & variance # Update moving averages if training (X, mean, variance) = tf.nn.fused_batch_norm(X, scale, offset, epsilon=epsilon, is_training=True) update_mean = moving_averages.assign_moving_average(moving_mean, mean, decay) update_variance = moving_averages.assign_moving_average(moving_variance, variance, decay) with tf.control_dependencies([update_mean, update_variance]): X = tf.identity(X) else: # For prediction, do batch norm with computed moving mean & variance from training # Don't update moving averages if predicting
tensorflow.nn.fused_batch_norm
7,638
import tensorflow as tf f2 = tf.reduce_sum(half(masked, 1), 2) / tf.reduce_sum(half(mask, 1)) return tf.concat([x, f1, f2], 1)
tensorflow.concat
7,639
import tensorflow as tf with tf.variable_scope('train'): self._train_op = tf.train.RMSPropOptimizer(self.lr).minimize(self.loss)
tensorflow.train.RMSPropOptimizer
7,640
import tensorflow as tf dynamic_size=True, element_shape=(facts[:, 0, :].get_shape())) _, output_op, _ = tf.while_loop(cond, body, [facts, output_ta, 0]) self_attention = output_op.stack()
tensorflow.while_loop
7,641
from tensorflow.python.framework import ops with ops.control_dependencies([assign_op]): copy_op = array[:size].assign(old_value[:size]) # return value needs to be the same dtype as no_op() for cond with ops.control_dependencies([copy_op]): return control_flow_ops.no_op() new_size = size + batch_size array_size = array_ops.shape_internal(array, optimize=False)[0] maybe_reallocate_op = control_flow_ops.cond( new_size > array_size, reallocate, control_flow_ops.no_op) with ops.control_dependencies([maybe_reallocate_op]): append_values_op = array[size:new_size].assign(batch_values) with ops.control_dependencies([append_values_op]): update_op = size.assign(new_size) if metrics_collections: ops.add_to_collections(metrics_collections, value) if updates_collections: ops.add_to_collections(updates_collections, update_op)
tensorflow.python.framework.ops.control_dependencies
7,642
import tensorflow as tf with tf.variable_scope("cls/seq_relationship"): output_weights = tf.get_variable( "output_weights", shape=[2, bert_config.hidden_size], initializer=modeling.create_initializer(bert_config.initializer_range)) output_bias = tf.get_variable( "output_bias", shape=[2], initializer=tf.zeros_initializer()) logits = tf.matmul(input_tensor, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) log_probs = tf.nn.log_softmax(logits, axis=-1) labels = tf.reshape(labels, [-1]) one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) loss = tf.reduce_mean(per_example_loss) return (loss, per_example_loss, log_probs) def gather_indexes(sequence_tensor, positions): """Gathers the vectors at the specific positions over a minibatch.""" sequence_shape = modeling.get_shape_list(sequence_tensor, expected_rank=3) batch_size = sequence_shape[0] seq_length = sequence_shape[1] width = sequence_shape[2]
tensorflow.one_hot
7,643
import tensorflow as tf with tf.control_dependencies(control_inputs=deltas):
tensorflow.control_dependencies
7,644
import tensorflow as tf for t in threads: t.join() vals = p.eval() ones = np.ones((1024, 1024)).astype(np.float32) self.assertTrue((vals >= ones).all()) self.assertTrue((vals <= ones * 20).all()) def testParallelAssignWithoutLocking(self): with self.test_session() as sess: ones_t = tf.fill([1024, 1024], float(1)) p = tf.Variable(tf.zeros([1024, 1024])) assigns = [tf.assign(p, tf.mul(ones_t, float(i)), False) for i in range(1, 21)] tf.initialize_all_variables().run() def run_assign(assign_op): sess.run(assign_op) threads = [self.checkedThread(target=run_assign, args=(assign_op,)) for assign_op in assigns] for t in threads: t.start()
tensorflow.zeros
7,645
import tensorflow as tf for input_pattern in FLAGS.input_file.split(","): input_files.extend(tf.gfile.Glob(input_pattern))
tensorflow.gfile.Glob
7,646
import tensorflow as tf ] print_obj( "build_discriminator_layers", "conv_block_tensors", conv_block_tensors ) with tf.control_dependencies(control_inputs=conv_block_tensors): # Build logits layer internals using call. logits_tensor = self.build_discriminator_logits_layer( params=params ) print_obj( "build_discriminator_layers",
tensorflow.control_dependencies
7,647
import tensorflow as tf aug_images, aug_generated = augment(images), augment(generated) # concat all images all_images = tf.concat([images, generated, aug_images, aug_generated], 0) if self.conditional:
tensorflow.concat
7,648
import tensorflow as tf fc = tf.nn.bias_add(tf.matmul(x, weights), biases) tf.summary.histogram('weight', weights) tf.summary.histogram('bias', biases) return fc
tensorflow.summary.histogram
7,649
import tensorflow as tf pmm1 = tf.where(tf.less_equal(n, l), pmn, pmm1) n += 1 return x, n, l, m, pmm, pmm1 def _evaluate_legendre_polynomial_loop(x, m, l, pmm, pmm1): n = m + 2 x, n, l, m, pmm, pmm1 = tf.while_loop( cond=_evaluate_legendre_polynomial_loop_cond, body=_evaluate_legendre_polynomial_loop_body, loop_vars=[x, n, l, m, pmm, pmm1]) return pmm1
tensorflow.while_loop
7,650
from tensorflow.python.framework import ops name: `String`. The name to give this op. Returns: ndims: Scalar number of dimensions associated with a `Tensor`. """ with self._name_scope(name, values=[x]): x = ops.convert_to_tensor(x, name="x") ndims = x.get_shape().ndims if ndims is None: return array_ops.rank(x, name="ndims") return ops.convert_to_tensor(ndims, dtype=dtypes.int32, name="ndims")
tensorflow.python.framework.ops.convert_to_tensor
7,651
import tensorflow as tf params.train.iterations_per_loop, num_cores_per_replica=num_cores_per_replica, input_partition_dims=input_partition_dims, per_host_input_for_training=tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 # pylint: disable=line-too-long ) run_config = tf.contrib.tpu.RunConfig( cluster=tpu_cluster_resolver, evaluation_master=params.platform.eval_master, model_dir=params.model_dir, log_step_count_steps=params.train.iterations_per_loop, tpu_config=tpu_config,
tensorflow.contrib.tpu.RunConfig
7,652
import tensorflow as tf ]) src_features = tf.gather(src_features, indices, axis=0) src_features = tf.stop_gradient(src_features) src_labels = tf.gather(src_labels, indices) inst_weights = bs * inst_weights / tf.reduce_sum(inst_weights) src_one_hot_labels = tf.one_hot(tf.cast(src_labels, tf.int64), num_classes) src_logits, dst_logits = get_model_logits(src_features, finetune_features, mode, num_classes,
tensorflow.reduce_sum
7,653
import tensorflow as tf o_d1 = self.general_deconv2d(o_c5, self.base_number_of_features * 8, 3, stride = 2, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_deconv2d_1') o_me1 = tf.concat([o_d1, o_c4], 3) # Skip connection o_d2 = self.general_deconv2d(o_me1, self.base_number_of_features * 4, 3, stride = 2, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_deconv2d_2') o_me2 = tf.concat([o_d2, o_c3], 3) # Skip connection o_d3 = self.general_deconv2d(o_me2, self.base_number_of_features * 2, 3, stride = 2, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_deconv2d_3') o_me3 = tf.concat([o_d3, o_c2], 3) # Skip connection o_d4 = self.general_deconv2d(o_me3, self.base_number_of_features, 3, stride = 2, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_deconv2d_4') o_me4 = tf.concat([o_d4, o_c1], 3) # Skip connection logits = tf.layers.conv2d(o_me4, self.args.num_classes, 1, 1, 'SAME', activation = None) prediction = tf.nn.softmax(logits, name = name + '_softmax') return logits, prediction def general_conv2d(self, input_data, filters = 64, kernel_size = 7, stride = 1, stddev = 0.02, activation_function = "relu", padding = "VALID", do_norm=True, relu_factor = 0, name="conv2d"): with tf.variable_scope(name): conv = tf.layers.conv2d(input_data, filters, kernel_size, stride, padding, activation=None) if do_norm: conv = tf.layers.batch_normalization(conv, momentum=0.9) if activation_function == "relu": conv = tf.nn.relu(conv, name = 'relu') if activation_function == "leakyrelu": conv = tf.nn.leaky_relu(conv, alpha=relu_factor) if activation_function == "elu": conv = tf.nn.elu(conv, name = 'elu') return conv def general_deconv2d(self, input_data, filters = 64, kernel_size = 7, stride = 1, stddev = 0.02, activation_function = "relu", padding = "VALID", do_norm = True, relu_factor = 0, name="deconv2d"):
tensorflow.layers.conv2d
7,654
import tensorflow as tf else: #was used to train LM c = tf.nn.conv1d(x, w, stride=1, padding=pad)+b
tensorflow.nn.conv1d
7,655
import tensorflow as tf batch_size = sequence_shape[0] seq_length = sequence_shape[1] width = sequence_shape[2] flat_offsets = tf.reshape( tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1]) flat_positions = tf.reshape(positions + flat_offsets, [-1]) flat_sequence_tensor = tf.reshape(sequence_tensor, [batch_size * seq_length, width]) output_tensor = tf.gather(flat_sequence_tensor, flat_positions) return output_tensor def input_fn_builder(input_files, max_seq_length, max_predictions_per_seq, is_training, num_cpu_threads=4):
tensorflow.gather
7,656
import tensorflow as tf def nin(x, num_units, **kwargs): s = tf.shape(x) sh = x.get_shape().as_list() x = tf.reshape(x, [tf.reduce_prod(s[:-1]), sh[-1]]) x = dense(x, num_units, **kwargs) return tf.reshape(x, [-1] + sh[1:-1] + [num_units])
tensorflow.reduce_prod
7,657
from tensorflow.python.ops import state_ops predictions = array_ops.reshape(predictions, [-1]) labels_rank = labels.get_shape().ndims if labels_rank > 1: labels = array_ops.reshape(labels, [-1]) weights = _mask_weights(ignore_mask, weights) if weights is not None: weights_rank = weights.get_shape().ndims if weights_rank > 1: weights = array_ops.reshape(weights, [-1]) # Accumulate the prediction to current confusion matrix. current_cm = confusion_matrix_ops.confusion_matrix( predictions, labels, num_classes, weights=weights, dtype=cm_dtype) update_op = state_ops.assign_add(total_cm, current_cm) def compute_mean_iou(name): """Compute the mean intersection-over-union via the confusion matrix.""" sum_over_row = math_ops.to_float(math_ops.reduce_sum(total_cm, 0)) sum_over_col = math_ops.to_float(math_ops.reduce_sum(total_cm, 1)) cm_diag = math_ops.to_float(array_ops.diag_part(total_cm)) denominator = sum_over_row + sum_over_col - cm_diag # If the value of the denominator is 0, set it to 1 to avoid # zero division. denominator = math_ops.select( math_ops.greater(denominator, 0), denominator, array_ops.ones_like(denominator))
tensorflow.python.ops.state_ops.assign_add
7,658
import tensorflow as tf 'bar': tf.convert_to_tensor([0, 2, 0, 2]), } boundaries_foo = tf.expand_dims(tf.convert_to_tensor([.5, 1.5]), axis=0) boundaries_bar = tf.expand_dims(tf.convert_to_tensor([.1, .2]), axis=0) outputs = {}
tensorflow.convert_to_tensor
7,659
import tensorflow as tf encoding_stage.AdaptiveEncodingStageInterface)) # Calling the method again should create a new instance. new_stage = self.default_encoding_stage() self.assertIsNot(stage, new_stage) def test_encoding_stage_constructor_does_not_modify_graph(self): """Tests that the constructor of encoding stage does not modify graph.""" graph_def = tf.get_default_graph().as_graph_def() self.default_encoding_stage() new_graph_def = tf.get_default_graph().as_graph_def() tf.test.assert_equal_graph_def(graph_def, new_graph_def) def test_encoding_stage_name(self): """Tests that the `name` property returns a string."""
tensorflow.get_default_graph
7,660
import tensorflow as tf for i in range(num_gpu): with tf.device('/gpu:%d' % i): with tf.name_scope('tower_%d' % i): with slim.arg_scope( [slim.model_variable, slim.variable], device='/device:CPU:0'): with slim.arg_scope([slim.conv2d, slim.conv2d_in_plane, slim.conv2d_transpose, slim.separable_conv2d, slim.fully_connected], weights_regularizer=weights_regularizer, biases_regularizer=biases_regularizer, biases_initializer=tf.constant_initializer(0.0)): gtboxes_and_label_h, gtboxes_and_label_q = tf.py_func(self.get_gtboxes_and_label, inp=[inputs_list[i][1], inputs_list[i][2], inputs_list[i][3]], Tout=[tf.float32, tf.float32]) gtboxes_and_label_h = tf.reshape(gtboxes_and_label_h, [cfgs.BATCH_SIZE, -1, 5]) # Unnecessary, if you have already sorted when making tfrecord and no data augmentation. gtboxes_and_label_q = tf.py_func(func=re_order,
tensorflow.constant_initializer
7,661
import tensorflow as tf pq.put(np.atleast_2d(point.numpy())) while points_observed < num_observations: # keep asking queue for new observations until one arrives try: new_data = oq.get_nowait() print(f"Process {pid}: Main : received data {new_data}", flush=True) except: continue # new_data is a tuple of (point, observation value) # here we turn it into a Dataset and tell of it Trieste points_observed += 1 new_data = Dataset( query_points=tf.constant(new_data[0], dtype=tf.float64), observations=tf.constant(new_data[1], dtype=tf.float64), ) async_bo.tell(new_data) # now we can ask Trieste for one more point # and feed that back into the points queue point = async_bo.ask() print(f"Process {pid}: Main : acquired point {point}", flush=True) pq.put(np.atleast_2d(point)) finally: terminate_processes(observer_processes) stop = timeit.default_timer()
tensorflow.constant
7,662
import tensorflow as tf # Run a linear projection of `hidden_size` then add a residual # with `layer_input`. with tf.variable_scope("output"): attention_output = dense_layer_3d_proj(
tensorflow.variable_scope
7,663
from tensorflow.python.platform import tf_logging as logging # Exports depend on saved checkpoints for constructing the graph and # getting the global step from the graph instance saved in the checkpoint. # If the checkpoint is stale with respect to current step, the global step # is taken to be the last saved checkpoint's global step and exporter # doesn't export the same checkpoint again with the following error. logging.info("Skipping exporting because the existing checkpoint has " "already been exported. " "Consider exporting less frequently.") def end(self, session=None): super(ExportMonitor, self).end(session=session) latest_path = saver_lib.latest_checkpoint(self._estimator.model_dir) if latest_path is None: logging.info("Skipping export at the end since model has not been saved " "yet.") return try: self._last_export_dir = self._estimator.export( self.export_dir, exports_to_keep=self.exports_to_keep, signature_fn=self.signature_fn, input_fn=self._input_fn, default_batch_size=self._default_batch_size, input_feature_key=self._input_feature_key, use_deprecated_input_fn=self._use_deprecated_input_fn) except RuntimeError:
tensorflow.python.platform.tf_logging.info
7,664
import tensorflow as tf self.epsilon = epsilon def __call__(self,input_var,name=None,**kwargs) : def _init(): v_norm = tf.nn.l2_normalize(self.v,axis=[0,1,2]) t = tf.nn.conv2d(input_var,v_norm,self.strides,self.padding,data_format='NHWC') mu,var = tf.nn.moments(t,axes=[0,1,2]) std = tf.sqrt(var+self.epsilon) return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)] require_init = tf.reduce_any(tf.is_nan(self.g)) init_ops = tf.cond(require_init,_init,lambda : [self.g,self.b]) with tf.control_dependencies(init_ops): w = tf.reshape(self.g,[1,1,1,tf.shape(self.v)[-1]]) * tf.nn.l2_normalize(self.v,axis=[0,1,2]) return tf.nn.bias_add( tf.nn.conv2d(input_var, w,data_format='NHWC', strides=self.strides, padding=self.padding), self.b,data_format='NHWC',name=name) def get_variables(self): #TODO: self.v should be l2-normalized or not? / currently not. return {'v':self.v,'b':self.b,'g':self.g} class DepthConv2d(object) : def __init__(self,name,input_dim,channel_multiplier,k_h=4,k_w=4,d_h=2,d_w=2, stddev=0.02, data_format='NCHW', padding='SAME') : with tf.variable_scope(name) :
tensorflow.nn.l2_normalize
7,665
import tensorflow as tf top_antecedents = tf.maximum(raw_top_antecedents, 0) # [k, c] top_fast_antecedent_scores = tf.expand_dims(top_span_mention_scores, 1) + tf.gather(top_span_mention_scores, top_antecedents) # [k, c] top_fast_antecedent_scores += tf.log(tf.to_float(top_antecedents_mask)) # [k, c]
tensorflow.gather
7,666
import tensorflow as tf # Step-wise contrastive loss horizon_pred, horizon_tgt = horizon_sumV2(pred, tgt, horizon) # pred1, pred2 = tf.split(horizon_pred, 2, axis=0) # tgt1, tgt2 = tf.split(horizon_tgt, 2, axis=0) even = [2 * i for i in range(25)] odd = [2 * i + 1 for i in range(25)] pred1 = tf.gather(horizon_pred, even) pred2 = tf.gather(horizon_pred, odd) tgt1 = tf.gather(horizon_tgt, even) tgt2 = tf.gather(horizon_tgt, odd) geq = tf.cast((tgt1 - tgt2) > 0, tf.bool) tgt_larg = tf.where(geq, tgt1, tgt2) tgt_small = tf.where(geq, tgt2, tgt1) pred_larg = tf.where(geq, pred1, pred2) pred_small = tf.where(geq, pred2, pred1) loss = tf.maximum(0.0, ((tgt_larg - tgt_small) - (pred_larg - pred_small))) loss = tf.reduce_mean(loss) return loss def apply_optimizers(objectives, trainer, config): # Make sure all losses are computed and apply loss scales. processed = [] values = [ob.value for ob in objectives] for ob in objectives: loss = {min: ob.value, max: -ob.value}[ob.goal]
tensorflow.where
7,667
import tensorflow as tf sess = tf.get_default_session() sess.run(tf.global_variables_initializer())
tensorflow.global_variables_initializer
7,668
import tensorflow as tf true_image_shapes: int32 tensor of shape [batch, 3] where each row is of the form [height, width, channels] indicating the shapes of true images in the resized images, as resized images can be padded with zeros. Returns: prediction_dict: a dictionary holding prediction tensors to be passed to the Loss or Postprocess functions. """ flattened_inputs = tf.contrib.layers.flatten(preprocessed_inputs) class_prediction = tf.contrib.layers.fully_connected( flattened_inputs, self._num_classes) box_prediction = tf.contrib.layers.fully_connected(flattened_inputs, 4) return { 'class_predictions_with_background': tf.reshape( class_prediction, [-1, 1, self._num_classes]), 'box_encodings': tf.reshape(box_prediction, [-1, 1, 4])
tensorflow.contrib.layers.flatten
7,669
import tensorflow as tf Returns: A new tensor where all rows have been scaled as necessary ''' axis_norms = tf.sqrt(tf.reduce_sum(tf.square(var_matrix), 1)) scaling = maxnorm / tf.maximum(axis_norms, maxnorm) return var_matrix * tf.expand_dims(scaling, 1)
tensorflow.square
7,670
import tensorflow as tf X = self.conv('d_1', X, 512, size=1, stride=1, padding="SAME") X = tf.nn.leaky_relu(X, 0.2) X = self.conv('d_2', X, 512, size=1, stride=1, padding="SAME") X = tf.nn.leaky_relu(X, 0.2) X = self.conv('d_3', X, 512, size=1, stride=1, padding="SAME") X = tf.nn.leaky_relu(X, 0.2) X = self.conv('d_out', X, 1, size=1, stride=1, padding="SAME") print('D out:', X.get_shape().as_list())
tensorflow.nn.leaky_relu
7,671
import tensorflow as tf # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. output_bias = tf.get_variable( "output_bias", shape=[bert_config.vocab_size], initializer=tf.zeros_initializer()) logits = tf.matmul(input_tensor, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) log_probs = tf.nn.log_softmax(logits, axis=-1) label_ids = tf.reshape(label_ids, [-1]) label_weights = tf.reshape(label_weights, [-1]) one_hot_labels = tf.one_hot( label_ids, depth=bert_config.vocab_size, dtype=tf.float32) # The `positions` tensor might be zero-padded (if the sequence is too # short to have the maximum number of predictions). The `label_weights` # tensor has a value of 1.0 for every real prediction and 0.0 for the # padding predictions. per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1]) numerator = tf.reduce_sum(label_weights * per_example_loss) denominator = tf.reduce_sum(label_weights) + 1e-5 loss = numerator / denominator return (loss, per_example_loss, log_probs)
tensorflow.one_hot
7,672
import tensorflow as tf if use_hvd: d = d.shard(hvd.size(), hvd.rank()) #TODO only for Horovod, shard to mimic single_GPU = False print("Data shard: %s %s" % (hvd.size(), hvd.rank())) d = d.repeat() d = d.shuffle(buffer_size=len(input_files)) # `cycle_length` is the number of parallel files that get read. cycle_length = min(num_cpu_threads, len(input_files)) # `sloppy` mode means that the interleaving is not exact. This adds # even more randomness to the training pipeline. d = d.apply( tf.contrib.data.parallel_interleave( tf.data.TFRecordDataset, sloppy=is_training, cycle_length=cycle_length)) d = d.shuffle(buffer_size=100) else: d = tf.data.TFRecordDataset(input_files) # Since we evaluate for a fixed number of steps we don't want to encounter # out-of-range exceptions. # d = d.repeat() # We must `drop_remainder` on training because the TPU requires fixed # size dimensions. For eval, we assume we are evaluating on the CPU or GPU
tensorflow.contrib.data.parallel_interleave
7,673
import tensorflow as tf output_bias = tf.get_variable( "output_bias", shape=[bert_config.vocab_size], initializer=tf.zeros_initializer()) logits = tf.matmul(input_tensor, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) if clip: log_probs = tf.log(tf.clip_by_value(tf.nn.softmax(logits, axis=-1), 1e-6, 1.0 - 1e-6)) else: log_probs = tf.nn.log_softmax(logits, axis=-1) label_ids = tf.reshape(label_ids, [-1]) label_weights = tf.reshape(label_weights, [-1]) one_hot_labels = tf.one_hot( label_ids, depth=bert_config.vocab_size, dtype=tf.float32) # The `positions` tensor might be zero-padded (if the sequence is too
tensorflow.nn.log_softmax
7,674
import tensorflow as tf loss_vf = 0.5 * tf.reduce_mean(tf.square(batch['rewards'] - self.vf)) self.a_grads = tf.gradients(loss_pg, self.pi_params) self.c_grads = tf.gradients(loss_vf, self.vf_params) self.a_grads, _ = tf.clip_by_global_norm(self.a_grads, 20.0) self.c_grads, _ = tf.clip_by_global_norm(self.c_grads, 20.0) opt = tf.train.AdamOptimizer(self.LR) self.update_a_op = opt.apply_gradients(zip(self.a_grads, self.pi_params)) self.update_c_op = opt.apply_gradients(zip(self.c_grads, self.vf_params)) self.sess.run(tf.global_variables_initializer()) # Tensorboard if summary_dir is not None: self.writer = tf.summary.FileWriter(summary_dir) tf.summary.scalar('Loss/Policy', loss_pg) tf.summary.scalar('Loss/Value', loss_vf) tf.summary.scalar('Loss/Entropy', - 0.01 * tf.reduce_mean(pi.entropy())) tf.summary.scalar('Var/Policy Mode', tf.reduce_mean(pi.mode())) tf.summary.scalar('Var/Policy Sigma', tf.reduce_mean(pi.stddev())) tf.summary.scalar('Var/Value', tf.reduce_mean(self.vf)) self.summarise = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES)) # AC net def build_anet(self, state_in, name, reuse=False): reg = tf.contrib.layers.l2_regularizer(1e-3) with tf.variable_scope(name, reuse=reuse): layer_a1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg)
tensorflow.summary.scalar
7,675
import tensorflow as tf if ex_index % 10000 == 0: tf.logging.info("Writing example %d of %d" % (ex_index, len(examples))) feature = convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer) features.append(feature) return features def serving_input_fn(): label_ids = tf.placeholder(tf.int32, [None], name='label_ids') input_ids = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='input_ids') input_mask = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='input_mask') segment_ids = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='segment_ids') input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({ 'label_ids': label_ids, 'input_ids': input_ids, 'input_mask': input_mask, 'segment_ids': segment_ids, })() return input_fn
tensorflow.placeholder
7,676
import tensorflow as tf if 'batch_normalization' not in v.name]) total_loss = tf.identity(loss, name='total_loss') if mode == tf.estimator.ModeKeys.TRAIN: global_step = tf.train.get_or_create_global_step() lr_values = [params['learning_rate'] * decay for decay in params['lr_decay_factors']] learning_rate = tf.train.piecewise_constant(tf.cast(global_step, tf.int32),
tensorflow.train.get_or_create_global_step
7,677
import tensorflow as tf latest_dir = '%s/checkpoint_latest' % args.model_dir best_dir = '%s/checkpoint_best' % args.model_dir if tf.train.get_checkpoint_state(latest_dir) and args.restore == "last": print("Reading model parameters from %s" % latest_dir) model.latest_saver.restore(sess, tf.train.latest_checkpoint(latest_dir)) else: if tf.train.get_checkpoint_state(best_dir) and args.restore == "best": print('Reading model parameters from %s' % best_dir) model.best_saver.restore(sess, tf.train.latest_checkpoint(best_dir)) else: print("Created model with fresh parameters.") global_variable = [gv for gv in tf.global_variables() if args.name in gv.name] sess.run(tf.variables_initializer(global_variable)) return model
tensorflow.train.latest_checkpoint
7,678
import tensorflow as tf self.c = 10 self.vf_hidden_size = 128 # for value function network self.alpha = 0.5 # for build loss self.batch_processor = FeudalBatchProcessor(self.c) self.build_model() # build feudal policy model with tf.name_scope('local_grad'): grads = tf.gradients(self.loss, self.var_list) grads, _ = tf.clip_by_global_norm(grads, 40) with tf.name_scope('sync'): # worker和global的同步过程 with tf.name_scope('pull'): # 获取global参数,复制到local—net self.pull_params_op = tf.group(*[v1.assign(v2) for v1, v2 in zip(self.var_list, globalAC.var_list)]) with tf.name_scope('push'): # 将参数传送到gloabl中去 self.update_params_op = OPT.apply_gradients(zip(grads, globalAC.var_list))
tensorflow.clip_by_global_norm
7,679
import tensorflow as tf aux_logits = self._add_aux_head(*layers[-1], K, is_train) aux_logits_list.append(aux_logits) # Global average pooling (X, w, h, ch) = layers[-1] X = self._add_global_avg_pool(X, w, h, ch) # Add dropout if training if is_train: X = tf.nn.dropout(X, dropout_keep_prob) # Compute logits from X with tf.variable_scope('fully_connected'): logits = self._add_fully_connected(X, (ch,), K) return (logits, aux_logits_list) def _optimize(self, loss, step, **knobs): opt_momentum = knobs['opt_momentum'] # Momentum optimizer momentum grad_clip_norm = knobs['grad_clip_norm'] # L2 norm to clip gradients by # Compute learning rate, gradients tf_trainable_vars = tf.trainable_variables() lr = self._get_learning_rate(step, **knobs)
tensorflow.variable_scope
7,680
import tensorflow as tf layer = conv(inp, 'resconv1'+nom, size=3, strides=first_stride, out_channels=out_num_filters, alpha=alpha, padding='SAME') layer = batch_norm(layer, 'batch_norm_resconv1'+nom, phase=phase) layer = conv(layer, 'resconv2'+nom, size=3, strides=[1, 1, 1, 1], out_channels=out_num_filters, apply_relu=False,alpha=alpha, padding='SAME') layer = batch_norm(layer, 'batch_norm_resconv2'+nom, phase=phase) if increase_dim: projection = conv(inp, 'projconv'+nom, size=1, strides=[1, 2, 2, 1], out_channels=out_num_filters, alpha=alpha, apply_relu=False,padding='SAME',bias=False) projection = batch_norm(projection, 'batch_norm_projconv'+nom, phase=phase) if last: block = layer + projection else: block = layer + projection block = tf.nn.relu(block, name='relu') else: if last: block = layer + inp else: block = layer + inp block = tf.nn.relu(block, name='relu') return block # First conv #layer = batch_norm(inp, 'batch_norm_0', phase=phase)
tensorflow.nn.relu
7,681
import tensorflow as tf dec, mem = tf.nn.seq2seq.attention_decoder( dec_inp, enc_state, attn_states, cell, output_size=4, num_heads=2) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 4), res[0].shape)
tensorflow.global_variables_initializer
7,682
import tensorflow as tf return True def example_reading_spec(self): data_fields = {"dist_targets": tf.VarLenFeature(tf.int64)} if self.has_inputs:
tensorflow.VarLenFeature
7,683
import tensorflow as tf """Convert indices to one-hot.""" shape = input_.get_shape().as_list() n_elem = numpy.prod(shape) indices = tf.range(n_elem) indices = tf.cast(indices, tf.int64) indices_input = tf.concat(axis=0, values=[indices, tf.reshape(input_, [-1])])
tensorflow.range
7,684
import tensorflow as tf total_fast_rcnn_loss_t = tf.reshape(total_fast_rcnn_loss, [1]) fast_rcnn_class_loss_t = tf.reshape(fast_rcnn_class_loss, [1]) fast_rcnn_box_loss_t = tf.reshape(fast_rcnn_box_loss, [1]) mask_loss_t = tf.reshape(mask_loss, [1]) learning_rate_t = tf.reshape(learning_rate, [1]) host_call = (host_call_fn,
tensorflow.reshape
7,685
import tensorflow as tf Run ``sess.run(tf.global_variables_initializer())`` for TF 0.12+ or ``sess.run(tf.initialize_all_variables())`` for TF 0.11. Parameters ---------- sess : Session TensorFlow session. """ assert sess is not None # try: # TF12+ sess.run(tf.global_variables_initializer()) # except: # TF11 # sess.run(tf.initialize_all_variables()) class Layer(object): """The basic :class:`Layer` class represents a single layer of a neural network. It should be subclassed when implementing new types of layers. Because each layer can keep track of the layer(s) feeding into it, a network's output :class:`Layer` instance can double as a handle to the full network.
tensorflow.global_variables_initializer
7,686
import tensorflow as tf used = tf.sign(tf.reduce_max(tf.abs(data), axis=2)) length = tf.reduce_sum(used, axis=1)
tensorflow.reduce_sum
7,687
import tensorflow as tf config = tf.ConfigProto() if FLAGS.enbl_multi_gpu: config.gpu_options.visible_device_list = str(mgw.local_rank()) # pylint: disable=no-member else: config.gpu_options.visible_device_list = '0' # pylint: disable=no-member sess = tf.Session(config=config) # data input pipeline with tf.variable_scope(self.data_scope): iterator = self.build_dataset_train()
tensorflow.Session
7,688
import tensorflow as tf feature_emb = tf.concat(feature_emb_list, 2) # [k, c, emb] feature_emb = tf.nn.dropout(feature_emb, self.dropout) # [k, c, emb] target_emb = tf.expand_dims(top_span_emb, 1) # [k, 1, emb] similarity_emb = top_antecedent_emb * target_emb # [k, c, emb] target_emb = tf.tile(target_emb, [1, c, 1]) # [k, c, emb]
tensorflow.expand_dims
7,689
import tensorflow as tf features[movielens.ITEM_COLUMN], rconst.ITEM_DTYPE), (batch_size,)) def decode_binary(data_bytes): # tf.decode_raw does not support bool as a decode type. As a result it is # necessary to decode to int8 (7 of the bits will be ignored) and then # cast to bool. return tf.reshape(tf.cast(tf.decode_raw(data_bytes, tf.int8), tf.bool), (batch_size,)) if self._is_training: mask_start_index = tf.decode_raw( features[rconst.MASK_START_INDEX], tf.int32)[0] valid_point_mask = tf.less(tf.range(batch_size), mask_start_index) return { movielens.USER_COLUMN: users, movielens.ITEM_COLUMN: items, rconst.VALID_POINT_MASK: valid_point_mask, }, decode_binary(features["labels"]) return { movielens.USER_COLUMN: users, movielens.ITEM_COLUMN: items, rconst.DUPLICATE_MASK: decode_binary(features[rconst.DUPLICATE_MASK]),
tensorflow.range
7,690
import tensorflow as tf horizon_tgt = tf.matmul(tgt, cur_weights) return horizon_pred, horizon_tgt def contra_traj_lossV2(pred, tgt, horizon=9): # Step-wise contrastive loss horizon_pred = horizon_sumV1(pred, horizon) horizon_tgt = horizon_sumV1(tgt, horizon) pred1, pred2 = tf.split(horizon_pred, 2, axis=0) tgt1, tgt2 = tf.split(horizon_tgt, 2, axis=0) geq = tf.cast((tgt1 - tgt2) > 0, tf.bool) tgt_larg = tf.where(geq, tgt1, tgt2) tgt_small = tf.where(geq, tgt2, tgt1) pred_larg = tf.where(geq, pred1, pred2) pred_small = tf.where(geq, pred2, pred1) loss = tf.maximum(0.0, ((tgt_larg - tgt_small) - (pred_larg - pred_small))) loss = tf.reduce_mean(loss) return loss # randrom horizon def contra_traj_lossV3(pred, tgt, horizon=12): # Step-wise contrastive loss horizon_pred, horizon_tgt = horizon_sumV2(pred, tgt, horizon)
tensorflow.where
7,691
import tensorflow as tf model.build_graph() op = model.predictions.op logit, = op.inputs if RCE_train==True: logit = -logit if tsne_logits==True: return tf.nn.softmax(logit), model.t_SNE_logits if logits==True: return tf.nn.softmax(logit), logit return tf.nn.softmax(logit) class models_carlini: def __init__(self,hps): self.image_size = image_size self.num_channels = num_channel############MNIST and CIFAR10 are different ar here self.num_labels = num_classes
tensorflow.nn.softmax
7,692
import tensorflow as tf tf.app.flags.DEFINE_integer('max-steps', 10000, 'Number of mini-batches to train on. (default: %(default)d)') tf.app.flags.DEFINE_integer('log-frequency', 10, 'Number of steps between logging results to the console and saving summaries (default: %(default)d)')
tensorflow.app.flags.DEFINE_integer
7,693
import tensorflow as tf [1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]], dtype=tf.float32) mask2 = tf.constant([[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1]], dtype=tf.float32) masks = tf.stack([mask0, mask1, mask2]) return masks def test_map_labels_to_0_to_n1(self): labels = tf.constant([[-1, 2, 5], [0, 9, 1]], dtype=tf.int32) labels_0_n = isu.map_labels_to_0_to_n(labels) expected_labels_0_n = tf.constant([[-1, 2, 3], [0, 4, 1]], dtype=tf.int32) self.assertAllEqual(labels_0_n.numpy(), expected_labels_0_n.numpy()) def test_map_labels_to_0_to_n2(self): labels = tf.constant([[-1, 1, 2], [1, 1, 2]], dtype=tf.int32) labels_0_n = isu.map_labels_to_0_to_n(labels) expected_labels_0_n = tf.constant([[-1, 0, 1], [0, 0, 1]], dtype=tf.int32) self.assertAllEqual(labels_0_n.numpy(), expected_labels_0_n.numpy())
tensorflow.constant
7,694
import tensorflow as tf with tf.variable_scope(name, reuse=reuse): layer_a1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg) layer_a2 = tf.layers.dense(layer_a1, 256, tf.nn.relu, kernel_regularizer=reg) lstm_a = tf.nn.rnn_cell.LSTMCell(num_units=256) lstm_a = tf.nn.rnn_cell.DropoutWrapper(lstm_a, output_keep_prob=self.keep_prob) state_init_a = lstm_a.zero_state(batch_size=batch_size, dtype=tf.float32) lstm_ain = tf.expand_dims(layer_a2, axis=1) out_a, state_final_a = tf.nn.dynamic_rnn(cell=lstm_a, inputs=lstm_ain, initial_state=state_init_a) cell_out_a = tf.reshape(out_a, [-1, 256]) mu = tf.layers.dense(cell_out_a, self.a_dim, tf.nn.tanh, kernel_regularizer=reg) sigma = tf.layers.dense(cell_out_a, self.a_dim, tf.nn.softplus, kernel_regularizer=reg) # sigma = tf.get_variable(name='pi_sigma', shape=self.a_dim, initializer=tf.constant_initializer(0.5)) sigma = tf.clip_by_value(sigma, 0.0, 1.0) norm_dist = tf.distributions.Normal(loc=mu * self.a_bound, scale=sigma) params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name) return norm_dist, params, state_init_a, state_final_a def build_cnet(self, state_in, name, reuse=False, batch_size=64): reg = tf.contrib.layers.l2_regularizer(1e-3) with tf.variable_scope(name, reuse=reuse): layer_c1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg) layer_c2 = tf.layers.dense(layer_c1, 256, tf.nn.relu, kernel_regularizer=reg) lstm_c = tf.nn.rnn_cell.LSTMCell(num_units=256) lstm_c = tf.nn.rnn_cell.DropoutWrapper(lstm_c, output_keep_prob=self.keep_prob)
tensorflow.clip_by_value
7,695
import tensorflow as tf # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length label_id = label_map[example.label] if ex_index < 5: tf.logging.info("*** Example ***") tf.logging.info("guid: %s" % (example.guid)) tf.logging.info("tokens: %s" % " ".join( [tokenization.printable_text(x) for x in tokens])) tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids])) tf.logging.info("label: %s (id = %d)" % (example.label, label_id)) feature = InputFeatures( input_ids=input_ids, input_mask=input_mask,
tensorflow.logging.info
7,696
import tensorflow as tf self.yp1 = tf.argmax(tf.reduce_max(outer, axis=2), axis=1) self.yp2 = tf.argmax(tf.reduce_max(outer, axis=1), axis=1)
tensorflow.reduce_max
7,697
import tensorflow as tf tf.app.flags.DEFINE_string('pm', '66661', 'pooling scheme across scales. Each number specifies the number of scales remaining at each layer. The first number has to be the same as used in --num_scales.') tf.app.flags.DEFINE_integer('conv_kernel', 5, 'Size of convolutional kernel') tf.app.flags.DEFINE_integer('pool_kernel', 3, 'Size of spatial pooling kernel') tf.app.flags.DEFINE_integer('feats_per_layer', 32, 'Number of feature channels at each layer') tf.app.flags.DEFINE_boolean('total_pool', True, 'If true, pool all feature maps to 1x1 size in final layer') tf.app.flags.DEFINE_integer('pool_stride', '1', 'If 2, we get progressive pooling - with overlap pooling, AlexNet style')
tensorflow.app.flags.DEFINE_integer
7,698
import tensorflow as tf rep_mask_split = tf.reshape(rep_mask_comp, [bs, block_num, block_len]) # bs,bn,bl # non-linear rep_map = bn_dense_layer(rep_tensor_split, ivec, True, 0., 'bn_dense_map', activation, False, wd, keep_prob, is_train) # bs,bn,bl,vec rep_map_tile = tf.tile(tf.expand_dims(rep_map, 2), [1, 1, block_len, 1, 1]) # bs,bn,bl,bl,vec # rep_map_dp = dropout(rep_map, keep_prob, is_train) bn = block_num bl = block_len with tf.variable_scope('self_attention'): # @2.self-attention in block # mask generation sl_indices = tf.range(block_len, dtype=tf.int32) sl_col, sl_row = tf.meshgrid(sl_indices, sl_indices) if direction == 'forward': direct_mask = tf.greater(sl_row, sl_col) # bl,bl else: direct_mask = tf.greater(sl_col, sl_row) # bl,bl direct_mask_tile = tf.tile( tf.expand_dims(tf.expand_dims(direct_mask, 0), 0), [bs, bn, 1, 1]) # bs,bn,bl,bl rep_mask_tile_1 = tf.tile(tf.expand_dims(rep_mask_split, 2), [1, 1, bl, 1]) # bs,bn,bl,bl rep_mask_tile_2 = tf.tile(tf.expand_dims(rep_mask_split, 3), [1, 1, 1, bl]) # bs,bn,bl,bl rep_mask_tile = tf.logical_and(rep_mask_tile_1, rep_mask_tile_2) attn_mask = tf.logical_and(direct_mask_tile, rep_mask_tile, name='attn_mask') # bs,bn,bl,bl # attention f_bias = tf.get_variable('f_bias', [ivec], tf.float32, tf.constant_initializer(0.))
tensorflow.meshgrid
7,699