seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
output_weights = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
if is_training:
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
|
tensorflow.zeros_initializer
| 4,900 |
import tensorflow as tf
def __init__(self, feature_extractor, gpu, batch_size):
self.feature_extractor = feature_extractor
self.gpu = gpu
self.batch_size = batch_size
global sess
sess = init_gpu(gpu)
global graph
graph = tf.get_default_graph()
model_dir = os.path.join(os.path.expanduser('~'), '.fawkes')
if not os.path.exists(os.path.join(model_dir, "mtcnn.p.gz")):
os.makedirs(model_dir, exist_ok=True)
get_file("mtcnn.p.gz", "http://sandlab.cs.uchicago.edu/fawkes/files/mtcnn.p.gz", cache_dir=model_dir,
cache_subdir='')
|
tensorflow.get_default_graph
| 4,901 |
import tensorflow as tf
num_dims = shape.size
if tt_rank.size == 1:
tt_rank = tt_rank * np.ones(num_dims - 1)
tt_rank = np.insert(tt_rank, 0, 1)
tt_rank = np.append(tt_rank, 1)
tt_rank = tt_rank.astype(int)
tt_cores = [None] * num_dims
with tf.name_scope(name):
for i in range(num_dims):
curr_core_shape = (tt_rank[i], shape[i], tt_rank[i + 1])
tt_cores[i] = tf.random_normal(curr_core_shape, mean=mean, stddev=stddev,
dtype=dtype)
return TensorTrain(tt_cores, shape, tt_rank)
def tensor_batch_with_random_cores(shape, tt_rank=2, batch_size=1,
mean=0., stddev=1., dtype=tf.float32,
name='t3f_tensor_batch_with_random_cores'):
"""Generate a batch of TT-tensors of given shape with N(mean, stddev^2) cores.
|
tensorflow.random_normal
| 4,902 |
import tensorflow as tf
def contra_step_lossV5(pred, tgt, resample=1):
# p = tf.print('begin loss v5', [resample, pred.shape,tgt.shape])
# with tf.control_dependencies([p]):
pred_flat = tf.reshape(pred, [-1])
tgt_flat = tf.reshape(tgt, [-1])
batch = tf.stack([pred_flat, tgt_flat], 1)
num_sam = tools.shape(batch)[0]
index = tf.range(num_sam)
divider = tf.constant(resample, dtype=tf.float32)
def sample_compute(cur_loss, i):
batch1 = tf.gather(batch, tf.random.shuffle(index))
|
tensorflow.stack
| 4,903 |
import tensorflow as tf
self._build_graph()
# save info
self.saver = tf.train.Saver()
# initialize the model
self.sess.run(tf.global_variables_initializer())
def _build_graph(self):
"""
Builds the computation graph with Tensorflow
"""
|
tensorflow.global_variables_initializer
| 4,904 |
import tensorflow as tf
self.rank_loss = self.loss_func(train_output, reshaped_train_labels, self.propensity_weights)
pw_list = tf.unstack(self.propensity_weights, axis=1) # Compute propensity weights
self.click_metrics=self.click_loglikelihood(reshaped_train_labels,\
self.propensity,train_output)
tf.summary.scalar('click_metrics',self.click_metrics,collections=['train'])
for i in range(len(pw_list)):
tf.summary.scalar('Inverse Propensity weights %d' % i, tf.reduce_mean(pw_list[i]), collections=['train'])
tf.summary.scalar('Rank Loss', tf.reduce_mean(self.rank_loss), collections=['train'])
# Compute examination loss
self.relevance_weights = self.get_normalized_weights(self.logits_to_prob(train_output))
self.exam_loss = self.loss_func(self.propensity, reshaped_train_labels, self.relevance_weights)
rw_list = tf.unstack(self.relevance_weights, axis=1) # Compute propensity weights
for i in range(len(rw_list)):
|
tensorflow.reduce_mean
| 4,905 |
import tensorflow as tf
x = tf.tanh(tf.layers.dense(x, hparams.bottleneck_bits, name="bottleneck"))
d = x + tf.stop_gradient(2.0 * tf.to_float(tf.less(0.0, x)) - 1.0 - x)
|
tensorflow.less
| 4,906 |
import tensorflow as tf
last_forward = tf.gather_nd(encoder_outputs_[:, :, :cell_output_size], indices)
last_forward.set_shape([None, cell_output_size])
if encoder.final_state == 'concat_last': # concats last states of all backward layers (full LSTM states)
encoder_state_ = tf.concat(encoder_states_, axis=1)
elif encoder.final_state == 'average':
mask = tf.sequence_mask(encoder_input_length_, maxlen=tf.shape(encoder_outputs_)[1], dtype=tf.float32)
mask = tf.expand_dims(mask, axis=2)
encoder_state_ = tf.reduce_sum(mask * encoder_outputs_, axis=1) / tf.reduce_sum(mask, axis=1)
elif encoder.final_state == 'average_inputs':
mask = tf.sequence_mask(encoder_input_length_, maxlen=tf.shape(encoder_inputs_)[1], dtype=tf.float32)
mask = tf.expand_dims(mask, axis=2)
encoder_state_ = tf.reduce_sum(mask * encoder_inputs_, axis=1) / tf.reduce_sum(mask, axis=1)
elif encoder.bidir and encoder.final_state == 'last_both':
encoder_state_ = tf.concat([last_forward, last_backward], axis=1)
elif encoder.final_state == 'none':
encoder_state_ = tf.zeros(shape=[batch_size, 0])
elif encoder.bidir and not encoder.final_state == 'last_forward': # last backward hidden state
encoder_state_ = last_backward
else: # last forward hidden state
encoder_state_ = last_forward
if encoder.bidir and encoder.bidir_projection:
encoder_outputs_ = dense(encoder_outputs_, cell_output_size, use_bias=False, name='bidir_projection')
|
tensorflow.reduce_sum
| 4,907 |
import tensorflow as tf
var_value = tf.contrib.framework.load_variable(checkpoint_dir, from_name)
assign_ops.append(tf.assign(var, var_value))
|
tensorflow.assign
| 4,908 |
import tensorflow as tf
# Monitor losses and entropy in tensorboard
tf.summary.scalar('policy_loss', policy_loss)
tf.summary.scalar('qf1_loss', qf1_loss)
tf.summary.scalar('qf2_loss', qf2_loss)
tf.summary.scalar('value_loss', value_loss)
tf.summary.scalar("Imitation_loss",self.actor_loss_di)
tf.summary.scalar('entropy', self.entropy)
tf.summary.scalar('importance weight',tf.reduce_mean(self.weight_ph))
if ent_coef_loss is not None:
tf.summary.scalar('ent_coef_loss', ent_coef_loss)
|
tensorflow.summary.scalar
| 4,909 |
import tensorflow as tf
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
def input_fn(params):
|
tensorflow.to_int32
| 4,910 |
import tensorflow as tf
elif actL == 'esp' or actL == 'relu': #r2 score
norm= tf.reduce_mean( tf.squared_difference(Y,tf.reduce_mean(Y)) )
accuracy = 1 - tf.divide( tf.reduce_mean(tf.squared_difference(an, Y)), norm)
elif actL == 'softmax': #accuracy score for multiclass classification
Yp = tf.sigmoid(betan*hn)
correct = tf.equal(tf.argmax(Yp), tf.argmax(Y))
accuracy= tf.reduce_mean(tf.cast(correct, "float"))
#-----------------Initialize the graph and start the session-------------------------------------------------
init = tf.global_variables_initializer()
with tf.Session() as sess:
# Run the initialization
sess.run(init)
jj=0
for epoch in range(num_iterations):
_ , epoch_cost, epoch_grad, epoch_acc_train = sess.run([min, cost, grads_var, accuracy], feed_dict={X: X_tr, Y: Y_tr})
# Print the cost every interval epoch (here uses the inhomogenous interval but you can change it)
if jj< e_len and epoch % epoch_sample[jj] == 0:
|
tensorflow.global_variables_initializer
| 4,911 |
import tensorflow as tf
# print(self.name, 'EP:', GLOBALE_EP)
# GLOBALE_EP += 1 # 加一回合
# break # 结束本回合
# global_step = SESS.run(self.global_AC.global_step)
if __name__ == '__main__':
SESS = tf.Session()
with tf.device('/cpu:0'):
OPT = tf.train.AdamOptimizer(1e-4) # 后续主要是使用该optimizer中的apply—gradients操作
# OPT_C = tf.train.RMSPropOptimizer(LR_C, name='RMSPropC') # 定义critic训练过程
GLOBAL_AC = ACnet(scope=GLOBAL_NET_SCOPE) # 创建中央大脑GLOBALE_AC,只创建结构(A和C的参数)
workers = []
for i in range(N_workers): # N—workers等于cpu数量
|
tensorflow.Session
| 4,912 |
import tensorflow as tf
precision_range=(0.0, 1.0),
num_anchors=20,
weights=1.0,
dual_rate_factor=0.1,
label_priors=None,
surrogate_type='xent',
lambdas_initializer=tf.constant_initializer(1.0),
reuse=None,
variables_collections=None,
trainable=True,
scope=None):
"""Computes precision-recall AUC loss.
|
tensorflow.constant_initializer
| 4,913 |
import tensorflow as tf
b = tf.Variable(tf.zeros(shape[1]))
self.x = x
self.w = w
self.b = b
y = tf.nn.softmax(tf.matmul(x, w) + b)
y_ = tf.placeholder(tf.float32, [None, shape[1]])
self.y_ = y_
cross_entropy = tf.reduce_mean(
-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])
)
self.cross_entropy = cross_entropy
self.cross_entropy_grads = tf.gradients(cross_entropy, [w, b])
self.sess = tf.Session()
# In order to get and set the weights, we pass in the loss function to
# Ray's TensorFlowVariables to automatically create methods to modify
# the weights.
self.variables = ray.experimental.tf_utils.TensorFlowVariables(
cross_entropy, self.sess
)
def loss(self, xs, ys):
"""Computes the loss of the network."""
|
tensorflow.gradients
| 4,914 |
from tensorflow.python.training import moving_averages
def build_update_ops():
"""Builds the exponential moving average update ops."""
update_mean_op = moving_averages.assign_moving_average(
variable=self._moving_mean,
value=mean,
decay=self._decay_rate,
name="update_moving_mean").op
update_second_moment_op = moving_averages.assign_moving_average(
variable=self._moving_second_moment,
value=second_moment,
decay=self._decay_rate,
name="update_moving_second_moment").op
return update_mean_op, update_second_moment_op
def build_no_ops():
return (tf.no_op(), tf.no_op())
|
tensorflow.python.training.moving_averages.assign_moving_average
| 4,915 |
import tensorflow as tf
else:
entropy = - targets*tf.log(targets) - (1. - targets)*tf.log(1. - targets)
return sigmoid_ce_with_logits(logits, tf.ones_like(logits)*targets) - entropy
def gradient_difference_loss(x, y):
x_h_diff = x[:, 1:] - x[:, :-1]
x_w_diff = x[:, :, 1:] - x[:, :, :-1]
y_h_diff = y[:, 1:] - y[:, :-1]
y_w_diff = y[:, :, 1:] - y[:, :, :-1]
h_diff = tf.abs(tf.abs(x_h_diff) - tf.abs(y_h_diff))
w_diff = tf.abs(tf.abs(x_w_diff) - tf.abs(y_w_diff))
return h_diff + tf.transpose(w_diff)
def leaky_relu(x, leak=0.2, name='leaky_relu'):
with tf.variable_scope(name):
f1 = 0.5 * (1 + leak)
f2 = 0.5 * (1 - leak)
return f1 * x + f2 * abs(x)
|
tensorflow.abs
| 4,916 |
import tensorflow as tf
|
tensorflow.reshape
| 4,917 |
import tensorflow as tf
z1 = z0 + 1
x0_clip = tf.clip_by_value(x0, zero, max_x)
x1_clip = tf.clip_by_value(x1, zero, max_x)
y0_clip = tf.clip_by_value(y0, zero, max_y)
y1_clip = tf.clip_by_value(y1, zero, max_y)
z0_clip = tf.clip_by_value(z0, zero, max_z)
z1_clip = tf.clip_by_value(z1, zero, max_z)
dim3 = width
dim2 = width * height
|
tensorflow.clip_by_value
| 4,918 |
from tensorflow.python.ops import sparse_ops
expand_dims = [dim]
expanded_shape = array_ops.concat(
0, (array_ops.slice(tensor.shape, [0], expand_dims), [1],
array_ops.slice(tensor.shape, expand_dims, [-1])),
name='expanded_shape')
expanded = sparse_ops.sparse_reshape(
tensor, shape=expanded_shape, name='expand')
if multiple == 1:
return expanded
return sparse_ops.sparse_concat(
dim - 1 if dim < 0 else dim, [expanded] * multiple, name=scope)
# Dense.
expanded = array_ops.expand_dims(
tensor, dim if (dim >= 0) else (dim - 1), name='expand')
if multiple == 1:
return expanded
ones = array_ops.ones_like(array_ops.shape(tensor))
|
tensorflow.python.ops.sparse_ops.sparse_concat
| 4,919 |
import tensorflow as tf
损失函数想要表达的意思: 输出的特征图数量为关键点的数量,意味着输出的是每一个像素属于各个关键点的置信度
"""
batch_size = y_pred.shape[0]
num_of_joints = y_pred.shape[-1] # 有多少个关键点
y_pred = tf.reshape(y_pred, shape=(batch_size, -1, num_of_joints)) # 合并宽和高
heatmap_pred_list = tf.split(value=y_pred,
num_or_size_splits=num_of_joints,
axis=-1) # 拆分每一个关键点的特征图 [batch_size, -1, 1]
y_true = tf.reshape(y_true, shape=(batch_size, -1, num_of_joints))
heatmap_true_list = tf.split(value=y_true, # y_true执行与y_pred相同的操作
num_or_size_splits=num_of_joints,
axis=-1)
losses = [] # 计算每一个关键点的损失值,并累加求平均
for i in range(num_of_joints):
heatmap_pred = tf.squeeze(heatmap_pred_list[i])
heatmap_true = tf.squeeze(heatmap_true_list[i])
loss = 0.5 * tf.losses.mean_squared_error(y_pred=heatmap_pred * true_weight[:, i],
y_true=heatmap_true * true_weight[:, i])
|
tensorflow.split
| 4,920 |
import tensorflow as tf
self.error_rate = 1. - \
tf.reduce_mean(tf.to_float(tf.nn.in_top_k(
self.end_points_D['class_logits'], targets, 1)))
if gpu_idx == 0:
update = tf.assign(num_error_rate, num_error_rate + 1.)
with tf.control_dependencies([update]):
tc = tf.maximum(.01, 1. / num_error_rate)
update = tf.assign(avg_error_rate, (1. - tc) * avg_error_rate + tc * self.error_rate)
with tf.control_dependencies([update]):
self.d_loss_class = tf.identity(self.d_loss_class)
self.d_loss_fake = tf.nn.sigmoid_cross_entropy_with_logits(
logits=self.end_points_D['D_on_G_logits'],
labels=tf.zeros_like(self.end_points_D['D_on_G_logits']))
self.d_loss_class = tf.reduce_mean(self.d_loss_class)
|
tensorflow.assign
| 4,921 |
import tensorflow as tf
if expected_rank is not None:
assert_rank(tensor, expected_rank, name)
shape = tensor.shape.as_list()
non_static_indexes = []
for (index, dim) in enumerate(shape):
if dim is None:
non_static_indexes.append(index)
if not non_static_indexes:
return shape
dyn_shape = tf.shape(tensor)
for index in non_static_indexes:
shape[index] = dyn_shape[index]
return shape
def reshape_to_matrix(input_tensor):
"""Reshapes a >= rank 2 tensor to a rank 2 tensor (i.e., a matrix)."""
ndims = input_tensor.shape.ndims
if ndims < 2:
raise ValueError("Input tensor must have at least rank 2. Shape = %s" %
(input_tensor.shape))
if ndims == 2:
return input_tensor
|
tensorflow.shape
| 4,922 |
import tensorflow as tf
#self.fc0 = self.fc_layer(self.pool5, 2048, 1024, "fc0")
#self.relu1 = tf.nn.relu(self.fc0)
#if train_mode is not None:
# self.relu1 = tf.cond(train_mode, lambda: tf.nn.dropout(self.relu1, self.dropout), lambda: self.relu1)
#elif self.trainable:
# self.relu1 = tf.nn.dropout(self.relu1, self.dropout)
self.y_soft = tf.nn.softmax(self.final_layer)
self.logits = tf.reshape(self.final_layer, (-1, 3))
print(self.logits)
self.predicted = tf.argmax(self.final_layer, axis = 3)
print(self.predicted.get_shape().as_list())
# cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=self.labels, logits=logits, name=None)
# self.loss = tf.reduce_mean(cross_entropy, name = 'xcross_entropy')
# if(last_layer_type == "sigmoid"):
# self.prob = tf.nn.sigmoid(self.fc1, name="prob")
# elif(last_layer_type == "softmax"):
# self.prob = tf.nn.softmax(self.fc1, name="prob")
|
tensorflow.argmax
| 4,923 |
import tensorflow as tf
# ! self.obs_space = env.observation_space.shape
self.r = tf.placeholder(tf.float32, (None,1))
self.ac = tf.placeholder(tf.float32, (None, self.act_space))
self.adv = tf.placeholder(tf.float32, [None]) # unused
# specific to FeUdal
self.prev_g = tf.placeholder(tf.float32, (None, None, self.g_dim))
self.ri = tf.placeholder(tf.float32, (None,))
self.s_diff = tf.placeholder(tf.float32, (None, self.g_dim))
def build_perception(self):
self._obs = tf.expand_dims(self.obs, -1) # !
self._obs = tf.expand_dims(self._obs, -1) # !
conv1 = tf.layers.conv2d(inputs=self._obs,
filters=16,
kernel_size=[2, 1], # ! kernel_size = [8,8]
activation=tf.nn.elu,
strides=1) # ! strides = 4
conv2 = tf.layers.conv2d(inputs=conv1,
filters=32,
kernel_size=[2, 1], # ! kernel_size = [4,4]
activation=tf.nn.elu,
strides=1) # ! strides = 2
flattened_filters = policy_utils.flatten(conv2)
self.z = tf.layers.dense(inputs=flattened_filters,
|
tensorflow.layers.conv2d
| 4,924 |
import tensorflow as tf
filter_depths=[128, 128, 512], kernel_size=3)
x = self.__identity_block(stage=2, block=5, inputs=x,
filter_depths=[128, 128, 512], kernel_size=3)
x = self.__conv_block(stage=3, block=0, inputs=x,
filter_depths=[256, 256, 1024], kernel_size=3,
stride=2)
x = self.__identity_block(stage=3, block=1, inputs=x,
filter_depths=[256, 256, 1024],
kernel_size=3)
x = self.__identity_block(stage=3, block=2, inputs=x,
filter_depths=[256, 256, 1024],
kernel_size=3)
x = tf.keras.layers.AveragePooling2D(pool_size=7, strides=1,
padding="valid", name="pool")(x)
x = tf.reshape(x, shape=(-1, 1024))
self.logits = self.__fully_connected(name="fc_nsfw",
inputs=x, num_outputs=2)
self.predictions = tf.nn.softmax(self.logits, name="predictions")
"""Get weights for layer with given name
"""
def __get_weights(self, layer_name, field_name):
if not layer_name in self.weights:
raise ValueError("No weights for layer named '{}' found"
|
tensorflow.keras.layers.AveragePooling2D
| 4,925 |
import tensorflow as tf
correlation_matrix = tf.matmul(private_samples, shared_samples, transpose_a=True)
cost = tf.reduce_mean(tf.square(correlation_matrix)) * weight
cost = tf.where(cost > 0, cost, 0, name='value')
assert_op = tf.Assert(tf.is_finite(cost), [cost])
|
tensorflow.where
| 4,926 |
import tensorflow as tf
eval_config.num_steps = 1
with tf.Graph().as_default():
initializer = tf.random_uniform_initializer(-config.init_scale,
config.init_scale)
with tf.name_scope("Train"):
train_input = PTBInput(config=config, data=train_data, name="TrainInput")
with tf.variable_scope("Model", reuse=None, initializer=initializer):
m = PTBModel(is_training=True, config=config, input_=train_input)
tf.summary.scalar("Training Loss", m.cost)
tf.summary.scalar("Learning Rate", m.lr)
with tf.name_scope("Valid"):
valid_input = PTBInput(config=config, data=valid_data, name="ValidInput")
with tf.variable_scope("Model", reuse=True, initializer=initializer):
mvalid = PTBModel(is_training=False, config=config, input_=valid_input)
tf.summary.scalar("Validation Loss", mvalid.cost)
with tf.name_scope("Test"):
test_input = PTBInput(
config=eval_config, data=test_data, name="TestInput")
with tf.variable_scope("Model", reuse=True, initializer=initializer):
mtest = PTBModel(is_training=False, config=eval_config,
input_=test_input)
models = {"Train": m, "Valid": mvalid, "Test": mtest}
for name, model in models.iteritems():
model.export_ops(name)
metagraph = tf.train.export_meta_graph()
|
tensorflow.variable_scope
| 4,927 |
import tensorflow as tf
# raw mask for positive > 0.5, and for negetive < 0.3
# each positive examples has one label
positive_mask = glabels > 0#tf.logical_and(glabels > 0, gscores > params['match_threshold'])
fpositive_mask = tf.cast(positive_mask, tf.float32)
n_positives = tf.reduce_sum(fpositive_mask)
# negtive examples are those max_overlap is still lower than neg_threshold, note that some positive may also has lower jaccard
# note those gscores is 0 is either be ignored during anchors encode or anchors have 0 overlap with all ground truth
#negtive_mask = tf.logical_and(tf.logical_and(tf.logical_not(tf.logical_or(positive_mask, glabels < 0)), gscores < params['neg_threshold']), gscores > 0.)
|
tensorflow.reduce_sum
| 4,928 |
import tensorflow as tf
margin=margin,
use_semi_hard=use_semi_hard,
anchor_positive_mining_distances=anchor_positive_mining_distances,
anchor_match_mining_distance_matrix=(
anchor_match_mining_distance_matrix)))
negative_distances = tf.boolean_mask(
negative_distances,
mask=negative_distances < negative_distances.dtype.max)
negative_mining_distances = tf.boolean_mask(
negative_mining_distances,
mask=negative_distances < negative_distances.dtype.max)
active_triplet_ratio = (
tf.cast(num_active_triplets, dtype=tf.float32) / num_total_triplets)
active_mining_triplet_ratio = (
tf.cast(num_active_mining_triplets, dtype=tf.float32) /
num_total_triplets)
active_loss = (
loss / tf.math.maximum(1e-12, tf.stop_gradient(active_triplet_ratio)))
active_mining_loss = (
mining_loss /
tf.math.maximum(1e-12, tf.stop_gradient(active_mining_triplet_ratio)))
tag = 'SemiHardNegative' if use_semi_hard else 'HardNegative'
summaries = {
|
tensorflow.cast
| 4,929 |
import tensorflow as tf
self.char_mat, self.qh), [N * QL, CL, dc])
ch_emb = tf.nn.dropout(ch_emb, 1.0 - 0.5 * self.dropout)
qh_emb = tf.nn.dropout(qh_emb, 1.0 - 0.5 * self.dropout)
|
tensorflow.nn.dropout
| 4,930 |
import tensorflow as tf
features=tf.parse_single_example(serialized_example,
features={
'label':tf.FixedLenFeature([], tf.int64),
'img_raw' : tf.FixedLenFeature([], tf.string),
})
image=tf.decode_raw(features['img_raw'],tf.uint8)
label=tf.cast(features['label'],tf.int32)
image=tf.reshape(image,[4096,1])
return image,label
def get_batch(image,label,batch_size,crop_size):
#print(image.shape)
|
tensorflow.cast
| 4,931 |
import tensorflow as tf
flags.mark_flag_as_required("data_dir")
flags.mark_flag_as_required("task_name")
flags.mark_flag_as_required("vocab_file")
flags.mark_flag_as_required("bert_config_file")
flags.mark_flag_as_required("output_dir")
tf.app.run()
|
tensorflow.app.run
| 4,932 |
import tensorflow as tf
num_dims = shape[0].size
if tt_rank.size == 1:
tt_rank = tt_rank * np.ones(num_dims - 1)
tt_rank = np.concatenate([[1], tt_rank, [1]])
shape = shape.astype(int)
tt_rank = tt_rank.astype(int)
tt_cores = [None] * num_dims
with tf.name_scope(name):
for i in range(num_dims):
curr_core_shape = (batch_size, tt_rank[i], shape[0][i], shape[1][i],
tt_rank[i + 1])
tt_cores[i] = tf.random_normal(curr_core_shape, mean=mean, stddev=stddev,
dtype=dtype)
|
tensorflow.name_scope
| 4,933 |
from tensorflow.contrib.learn.python.learn.estimators import test_data
iris.data[:, i], dtype=dtypes.float32), (-1, 1))
})
# The following shows how to provide the SparseTensor data for
# a SparseColumn.
features['dummy_sparse_column'] = sparse_tensor.SparseTensor(
values=('en', 'fr', 'zh'),
indices=((0, 0), (0, 1), (60, 0)),
dense_shape=(len(iris.target), 2))
labels = array_ops.reshape(
constant_op.constant(
iris.target, dtype=dtypes.int32), (-1, 1))
return features, labels
iris = test_data.prepare_iris_data_for_logistic_regression()
cont_features = [
feature_column.real_valued_column(str(i)) for i in range(4)
]
linear_features = [
feature_column.bucketized_column(
cont_features[i],
test_data.get_quantile_based_buckets(iris.data[:, i], 10))
for i in range(4)
]
linear_features.append(
feature_column.sparse_column_with_hash_bucket(
'dummy_sparse_column', hash_bucket_size=100))
|
tensorflow.contrib.learn.python.learn.estimators.test_data.prepare_iris_data_for_logistic_regression
| 4,934 |
import tensorflow as tf
def dense(inputs, hidden, use_bias=True, scope="dense"):
with tf.variable_scope(scope):
shape = tf.shape(inputs)
dim = inputs.get_shape().as_list()[-1]
out_shape = [shape[idx] for idx in range(
len(inputs.get_shape().as_list()) - 1)] + [hidden]
flat_inputs = tf.reshape(inputs, [-1, dim])
W = tf.get_variable("W", [dim, hidden])
res = tf.matmul(flat_inputs, W)
if use_bias:
b = tf.get_variable(
"b", [hidden], initializer=tf.constant_initializer(0.))
res = tf.nn.bias_add(res, b)
res = tf.reshape(res, out_shape)
return res
|
tensorflow.constant_initializer
| 4,935 |
import tensorflow as tf
if grad_norm_clipping is not None:
for i, (grad, var) in enumerate(gradients):
if grad is not None:
gradients[i] = (tf.clip_by_norm(grad, grad_norm_clipping), var)
with tf.variable_scope("input_info", reuse=False):
|
tensorflow.clip_by_norm
| 4,936 |
import tensorflow as tf
# for i in range(nor_img_all.shape[0]):
# imsave(FLAGS.attack_method + '_' + FLAGS.dataset + '/' + f1 + '/nor_img/nor_img_' + str(i) + '.png', nor_img_all[i,:,:,0])
# imsave(FLAGS.attack_method + '_' + FLAGS.dataset + '/' + f1 + '/adv_img/adv_img_' + str(i) + '.png', adv_img_all[i,:,:,0])
# imsave(FLAGS.attack_method + '_' + FLAGS.dataset + '/' + f1 + '/noise_img/noise_img_' + str(i) + '.png', noise_img_all[i, :, :, 0])
return None
def apply_attack_loop(hps):
#Construct graph
images, labels = input_name.build_input(
FLAGS.dataset, FLAGS.eval_data_path, hps.batch_size, FLAGS.mode)#FLAGS.mode='attack', batch_size=200
Res = model_name.ResNet(hps, images, FLAGS.mode, Reuse=False)
Res.build_graph()
saver = tf.train.Saver()
#Open session and restore checkpoint
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
tf.train.start_queue_runners(sess)
ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) # Choose dir according to rt
tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path)
num_sample = hps.batch_size*FLAGS.eval_batch_count
# Initialize results to save
entropy_test_adv_all = np.array([])
confidence_test_adv_all = np.array([])
entropy_test_nor_all = np.array([])
confidence_test_nor_all = np.array([])
logits_adv_all = np.reshape(np.array([]), (0, 64))
logits_nor_all = np.reshape(np.array([]), (0, 64))
|
tensorflow.ConfigProto
| 4,937 |
import tensorflow as tf
def test_op_shape(self):
with self.test_session():
batcher = dynamic_batching._Batcher(minimum_batch_size=1,
maximum_batch_size=1,
timeout_ms=None)
_, computation_id = batcher.get_inputs([tf.int32])
self.assertEqual([], computation_id.shape)
class DynamicBatchingBenchmarks(tf.test.Benchmark):
def benchmark_batching_small(self):
with tf.Session() as session:
@dynamic_batching.batch_fn
def f(a, b):
return a + b
outputs = []
for _ in xrange(1000):
outputs.append(f(tf.ones([1, 10]), tf.ones([1, 10])))
op_to_benchmark = tf.group(*outputs)
tf.train.start_queue_runners()
self.run_op_benchmark(
name='batching_many_small',
sess=session,
|
tensorflow.Session
| 4,938 |
from tensorflow.python.ops import logging_ops as logging
def after_create_session(self, session, _):
assert self._init_op.graph == ops.get_default_graph()
assert self._is_initialized_op.graph == self._init_op.graph
while True:
try:
if session.run(self._is_initialized_op):
break
elif self._is_chief:
session.run(self._init_op)
else:
time.sleep(1)
except RuntimeError as e:
logging.info(e)
class GMM(estimator.Estimator):
"""An estimator for GMM clustering."""
SCORES = 'scores'
ASSIGNMENTS = 'assignments'
ALL_SCORES = 'all_scores'
def __init__(self,
num_clusters,
model_dir=None,
|
tensorflow.python.ops.logging_ops.info
| 4,939 |
import tensorflow as tf
def din_attention(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False):
if isinstance(facts, tuple):
# In case of Bi-RNN, concatenate the forward and the backward RNN outputs.
facts = tf.concat(facts, 2)
print ("querry_size mismatch")
query = tf.concat(values = [
query,
|
tensorflow.concat
| 4,940 |
import tensorflow as tf
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
probabilities = tf.nn.softmax(logits, axis=-1)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, logits, probabilities)
def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps, use_tpu,
use_one_hot_embeddings):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
|
tensorflow.reduce_mean
| 4,941 |
import tensorflow as tf
# Get gradient from returned list of length 1.
mixed_gradients = tf.gradients(
ys=mixed_loss,
xs=[mixed_images],
name="gradients"
)[0]
print_obj(func_name, "mixed_gradients", mixed_gradients)
# Get gradient's L2 norm.
mixed_norms = tf.sqrt(
x=tf.reduce_sum(
input_tensor=tf.square(
x=mixed_gradients,
name="squared_grads"
),
axis=[1, 2, 3]
) + 1e-8
)
print_obj(func_name, "mixed_norms", mixed_norms)
# Get squared difference from target of 1.0.
squared_difference = tf.square(
|
tensorflow.square
| 4,942 |
import tensorflow as tf
signed_logits_difference = labels_difference * logits_difference
raw_loss = losses_utils.weighted_surrogate_loss(
labels=tf.ones_like(signed_logits_difference),
logits=signed_logits_difference,
surrogate_type=surrogate_type)
weighted_loss = weights_product * raw_loss
# Zero out entries of the loss where labels_difference zero (so loss is only
# computed on pairs with different labels).
loss = tf.reduce_mean(tf.abs(labels_difference) * weighted_loss, 0) * 0.5
loss = tf.reshape(loss, original_shape)
return loss, {}
def recall_at_precision_loss(labels,
logits,
target_precision,
weights=1.0,
dual_rate_factor=0.1,
label_priors=None,
|
tensorflow.reshape
| 4,943 |
from tensorflow.python.framework import op_def_registry as _op_def_registry
result = _op_def_lib.apply_op(
"XlaRecv",
dtype=dtype,
shape=shape,
tensor_name=tensor_name,
name=name if name else "XlaRecv")
return result
def _InitOpDefLibrary():
op_list = _op_def_pb2.OpList()
_text_format.Merge(_InitOpDefLibrary.op_list_ascii, op_list)
_op_def_registry.register_op_list(op_list)
op_def_lib = _op_def_library.OpDefLibrary()
op_def_lib.add_op_list(op_list)
return op_def_lib
_InitOpDefLibrary.op_list_ascii = """op {
name: "_Recv"
output_arg {
name: "tensor"
type_attr: "tensor_type"
}
|
tensorflow.python.framework.op_def_registry.register_op_list
| 4,944 |
import tensorflow as tf
gamma = tf.get_variable("gamma", [1], initializer=tf.constant_initializer(0.0))
o = tf.reshape(o, shape=[-1, height, width, num_channels // 2]) # [bs, h, w, C]
o = conv(o, scope='attn_conv', filter_dims=[1, 1, channels], stride_dims=[1, 1], non_linear_fn=act_func)
x = gamma * o + x
|
tensorflow.reshape
| 4,945 |
from tensorflow.python.framework import ops
(self._batch_ndims_static, self._event_ndims_static, ndims))
return ops.convert_to_tensor(sample_ndims, name="sample_ndims")
|
tensorflow.python.framework.ops.convert_to_tensor
| 4,946 |
import tensorflow as tf
|
tensorflow.variable_scope
| 4,947 |
import tensorflow as tf
return attn_result
def mean_pooling_for_unselected_head(
unhead_org_idx, sl_unhead, rep_unhead_mask,
dep_org_idx, sl_dep, rep_dep_mask,
rep_dep_tensor, direction
):
with tf.name_scope('pooling_for_un_head'):
undep_idxs = tf.tile(tf.expand_dims(dep_org_idx, 1), [1, sl_unhead, 1]) # [bs, sluh, sld]
unhead_idxs = tf.tile(tf.expand_dims(unhead_org_idx, 2), [1, 1, sl_dep]) # [bs, sluh, sld]
if direction is None:
direct_mask_un = tf.not_equal(unhead_idxs, undep_idxs) # [bs, sluh, sld]
else:
if direction == 'forward':
direct_mask_un = tf.greater(unhead_idxs, undep_idxs) # [bs, sluh, sld]
|
tensorflow.name_scope
| 4,948 |
import tensorflow as tf
bias_var_shape = [nf] if one_dim_bias else [1, nf, 1, 1]
nin = x.get_shape()[channel_ax].value
wshape = [rf, rf, nin, nf]
with tf.variable_scope(scope):
w = tf.get_variable("w", wshape, initializer=ortho_init(init_scale))
b = tf.get_variable("b", bias_var_shape, initializer=tf.constant_initializer(0.0))
if not one_dim_bias and data_format == 'NHWC':
b = tf.reshape(b, bshape)
return tf.nn.conv2d(x, w, strides=strides, padding=pad, data_format=data_format) + b
def fc(x, scope, nh, *, init_scale=1.0, init_bias=0.0):
with tf.variable_scope(scope):
nin = x.get_shape()[1].value
w = tf.get_variable("w", [nin, nh], initializer=ortho_init(init_scale))
print("w is "+str(w))
b = tf.get_variable("b", [nh], initializer=tf.constant_initializer(init_bias))
return tf.matmul(x, w)+b
def batch_to_seq(h, nbatch, nsteps, flat=False):
if flat:
h = tf.reshape(h, [nbatch, nsteps])
else:
h = tf.reshape(h, [nbatch, nsteps, -1])
return [tf.squeeze(v, [1]) for v in tf.split(axis=1, num_or_size_splits=nsteps, value=h)]
def seq_to_batch(h, flat = False):
shape = h[0].get_shape().as_list()
if not flat:
assert(len(shape) > 1)
nh = h[0].get_shape()[-1].value
|
tensorflow.constant_initializer
| 4,949 |
import tensorflow as tf
print(var.name)
self.test_image_A = tf.placeholder(tf.float32,[None, self.image_size,self.image_size,self.input_dim], name='test_A')
self.test_image_B = tf.placeholder(tf.float32,[None, self.image_size, self.image_size,self.output_c_dim], name='test_B')
self.saver = tf.train.Saver()
def train_network(self):
self.learning_rate = tf.placeholder(tf.float32)
self.d_optimizer = tf.train.AdamOptimizer(self.learning_rate,beta1=self.beta1,beta2=self.beta2).minimize(self.discriminator_loss,var_list=self.d_variables)
self.g_optimizer = tf.train.AdamOptimizer(self.learning_rate,beta1=self.beta1,beta2=self.beta2).minimize(self.generator_loss,var_list=self.g_variables)
self.init_op = tf.global_variables_initializer()
self.sess = tf.Session()
self.sess.run(self.init_op)
#self.dataset_dir = '/home/santanu/Downloads/DiscoGAN/edges2handbags/train/'
self.writer = tf.summary.FileWriter("./logs", self.sess.graph)
count = 1
start_time = time.time()
for epoch in range(self.epoch):
data_A = os.listdir(self.dataset_dir + 'trainA/')
data_B = os.listdir(self.dataset_dir + 'trainB/')
data_A = [ (self.dataset_dir + 'trainA/' + str(file_name)) for file_name in data_A ]
|
tensorflow.global_variables_initializer
| 4,950 |
import tensorflow as tf
outputs[-1] * mask_bw, seq_lengths=seq_len, seq_dim=0, batch_dim=1)
out_bw, _ = gru_bw(inputs_bw, initial_state=(init_bw, ))
out_bw = tf.reverse_sequence(
out_bw, seq_lengths=seq_len, seq_dim=0, batch_dim=1)
outputs.append(tf.concat([out_fw, out_bw], axis=2))
if concat_layers:
res = tf.concat(outputs[1:], axis=2)
else:
res = outputs[-1]
res = tf.transpose(res, [1, 0, 2])
return res
|
tensorflow.concat
| 4,951 |
import tensorflow as tf
d_logits = logits_from_embedding_fn([emb + d for (emb, d) in zip(embedded, perturbs)])
kl = _kl_divergence_with_logits(logits, d_logits, weights, num_classes)
perturbs = tf.gradients(
kl, perturbs, aggregation_method=tf.AggregationMethod.EXPERIMENTAL_ACCUMULATE_N)
perturbs = [tf.stop_gradient(d) for d in perturbs]
perturbs = [_scale_l2(_mask_by_length(d, length), perturb_norm_length) for d in perturbs]
vadv_logits = logits_from_embedding_fn([emb + d for (emb, d) in zip(embedded, perturbs)])
return _kl_divergence_with_logits(logits, vadv_logits, weights, num_classes)
def _mask_by_length(t, length):
maxlen = t.get_shape().as_list()[1]
mask = tf.sequence_mask(length, maxlen=maxlen)
mask = tf.expand_dims(tf.cast(mask, tf.float32), -1)
return t * mask
def _scale_l2(x, norm_length):
alpha = tf.reduce_max(tf.abs(x), (1, 2), keep_dims=True) + 1e-12
l2_norm = alpha * tf.sqrt(tf.reduce_sum(tf.pow(x / alpha, 2), (1, 2), keep_dims=True) + 1e-6)
x_unit = x / l2_norm
return norm_length * x_unit
def _end_of_seq_mask(tokens, vocab_size):
"""Generate a mask for the EOS token (1.0 on EOS, 0.0 otherwise).
|
tensorflow.cast
| 4,952 |
import tensorflow as tf
config.left_right_group_map[category][0],
config.left_right_group_map[category][1],
config.left_right_group_map[category][2]],
tf.int64, stateful=True)
with tf.control_dependencies([save_image_op]):
pred_x, pred_y = pred_x * 1., pred_y * 1.
return pred_x, pred_y
def gaussian_blur(inputs, inputs_filters, sigma, data_format, name=None):
with tf.name_scope(name, "gaussian_blur", [inputs]):
data_format_ = 'NHWC' if data_format=='channels_last' else 'NCHW'
if data_format_ == 'NHWC':
inputs = tf.transpose(inputs, [0, 2, 3, 1])
ksize = int(6 * sigma + 1.)
x = tf.expand_dims(tf.range(ksize, delta=1, dtype=tf.float32), axis=1)
y = tf.transpose(x, [1, 0])
kernel_matrix = tf.exp(- ((x - ksize/2.) ** 2 + (y - ksize/2.) ** 2) / (2 * sigma ** 2))
#print(kernel_matrix)
kernel_filter = tf.reshape(kernel_matrix, [ksize, ksize, 1, 1])
kernel_filter = tf.tile(kernel_filter, [1, 1, inputs_filters, 1])
#kernel_filter = tf.transpose(kernel_filter, [1, 0, 2, 3])
outputs = tf.nn.depthwise_conv2d(inputs, kernel_filter, strides=[1, 1, 1, 1], padding='SAME', data_format=data_format_, name='blur')
if data_format_ == 'NHWC':
outputs = tf.transpose(outputs, [0, 3, 1, 2])
return outputs
cpn_backbone = cpn.cascaded_pyramid_net
if 'seresnext50' in FLAGS.backbone:
cpn_backbone = cpn.xt_cascaded_pyramid_net
|
tensorflow.transpose
| 4,953 |
import tensorflow as tf
def difference_loss(private_samples, shared_samples, weight=1.0, name='difference_loss'):
"""Adds the difference loss between the private and shared representations.
Args:
private_samples: a tensor of shape [num_samples, num_features].
shared_samples: a tensor of shape [num_samples, num_features].
weight: the weight of the incoherence loss.
name: the name of the tf summary.
"""
with tf.name_scope(name):
private_samples -= tf.reduce_mean(private_samples, 0)
shared_samples -= tf.reduce_mean(shared_samples, 0)
private_samples = tf.nn.l2_normalize(private_samples, 1)
shared_samples = tf.nn.l2_normalize(shared_samples, 1)
correlation_matrix = tf.matmul(private_samples, shared_samples, transpose_a=True)
cost = tf.reduce_mean(tf.square(correlation_matrix)) * weight
cost = tf.where(cost > 0, cost, 0, name='value')
assert_op = tf.Assert(tf.is_finite(cost), [cost])
with tf.control_dependencies([assert_op]):
|
tensorflow.reduce_mean
| 4,954 |
import tensorflow as tf
outputs = {
'foo': tf.convert_to_tensor([0, 1, 2, 3], dtype=tf.int64),
'bar': tf.convert_to_tensor([0, 2, 0, 2], dtype=tf.int64),
}
# Annotate an arbitrary proto at the schema level (not sure what global
# schema boundaries would mean, but hey I'm just a test).
boundaries = tf.constant([[1.0]])
message_type = annotations_pb2.BucketBoundaries.DESCRIPTOR.full_name
sizes = tf.expand_dims([tf.size(boundaries)], axis=0)
message_proto = tf.raw_ops.EncodeProto(
sizes=sizes, values=[tf.cast(boundaries, tf.float32)],
field_names=['boundaries'], message_type=message_type)[0]
type_url = os.path.join('type.googleapis.com', message_type)
schema_inference.annotate(type_url, message_proto)
with tf.compat.v1.Session(graph=graph) as session:
schema = schema_inference.infer_feature_schema(outputs, graph, session)
|
tensorflow.size
| 4,955 |
import tensorflow as tf
if continuous:
gain_bc = tf.stop_gradient(adv_bc *
tf.nn.relu(1.0 - (self.correction_term / (rho_i_ + eps))) *
f_i_)
else:
log_f_bc = tf.log(f_i_ + eps) # / (f_old + eps)
gain_bc = tf.reduce_sum(log_f_bc *
tf.stop_gradient(
adv_bc *
tf.nn.relu(1.0 - (self.correction_term / (rho + eps))) *
f_i_),
axis=1)
# IMP: This is sum, as expectation wrt f
loss_bc = -tf.reduce_mean(gain_bc)
loss_policy = loss_f + loss_bc
# Value/Q function loss, and explained variance
|
tensorflow.nn.relu
| 4,956 |
import tensorflow as tf
def avg_pool(self, bottom, name):
return tf.nn.avg_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name)
def max_pool(self, bottom, name):
return tf.nn.max_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name)
def conv_layer(self, bottom, name):
with tf.variable_scope(name):
filt = self.get_conv_filter(name)
conv = tf.nn.conv2d(bottom, filt, [1, 1, 1, 1], padding='SAME')
conv_biases = self.get_bias(name)
bias = tf.nn.bias_add(conv, conv_biases)
|
tensorflow.variable_scope
| 4,957 |
import tensorflow as tf
return tf.less(l, max_length + 1)
def eval_right_length(example, target):
l = tf.maximum(tf.shape(example['inputs'])[0], tf.shape(target)[0])
return tf.less(l, max_eval_length + 1)
if max_length > 0 and training:
dataset = dataset.filter(train_right_length)
|
tensorflow.less
| 4,958 |
from tensorflow.python.util import compat
temp_graph, inputs, outputs, out_names=self._out_names)
# Extra kwargs are treated as attrs on the function def.
kwargs_attr = _parse_kwargs_as_attrs(**self._extra_kwargs)
for k in kwargs_attr:
self._definition.attr[k].CopyFrom(kwargs_attr[k])
# Hash the definition and its dependencies.
hasher = hashlib.sha1()
def _hash_func_def():
"""Hash the function definition agnostic to node/map ordering."""
def update_num(n):
hasher.update(compat.as_bytes("%x" % n))
def update_str(s):
update_num(len(s))
hasher.update(compat.as_bytes(s))
def update_strs(slist):
update_num(len(slist))
for s in slist:
update_str(s)
for adef in self._definition.signature.input_arg:
update_str(adef.SerializeToString())
|
tensorflow.python.util.compat.as_bytes
| 4,959 |
from tensorflow.python.framework import ops
"""
with ops.op_scope([x], name, "Tanh") as name:
x = ops.convert_to_tensor(x, name="x")
return gen_math_ops._tanh(x, name=name)
ops.RegisterShape("Abs")(common_shapes.unchanged_shape)
ops.RegisterShape("Ceil")(common_shapes.unchanged_shape)
ops.RegisterShape("Conj")(common_shapes.unchanged_shape)
ops.RegisterShape("Cos")(common_shapes.unchanged_shape)
ops.RegisterShape("Exp")(common_shapes.unchanged_shape)
ops.RegisterShape("Floor")(common_shapes.unchanged_shape)
ops.RegisterShape("Imag")(common_shapes.unchanged_shape)
ops.RegisterShape("Inv")(common_shapes.unchanged_shape)
ops.RegisterShape("IsFinite")(common_shapes.unchanged_shape)
ops.RegisterShape("IsInf")(common_shapes.unchanged_shape)
ops.RegisterShape("IsNan")(common_shapes.unchanged_shape)
ops.RegisterShape("Log")(common_shapes.unchanged_shape)
ops.RegisterShape("LogicalNot")(common_shapes.unchanged_shape)
ops.RegisterShape("Neg")(common_shapes.unchanged_shape)
|
tensorflow.python.framework.ops.RegisterShape
| 4,960 |
import tensorflow as tf
vaX, vaM = transform_roc(vaX1, vaX2, vaX3)
if submit:
teX, teM = transform_roc(teX1, teX2, teX3)
n_train = len(trY)
n_valid = len(vaY)
n_batch_train = n_batch*n_gpu
n_updates_total = (n_train//n_batch_train)*n_iter
X_train = tf.placeholder(tf.int32, [n_batch_train, 2, n_ctx, 2])
M_train = tf.placeholder(tf.float32, [n_batch_train, 2, n_ctx])
X = tf.placeholder(tf.int32, [None, 2, n_ctx, 2])
M = tf.placeholder(tf.float32, [None, 2, n_ctx])
Y_train = tf.placeholder(tf.int32, [n_batch_train])
Y = tf.placeholder(tf.int32, [None])
train, logits, clf_losses, lm_losses = mgpu_train(X_train, M_train, Y_train)
clf_loss = tf.reduce_mean(clf_losses)
params = find_trainable_variables('model')
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
sess.run(tf.global_variables_initializer())
shapes = json.load(open('model/params_shapes.json'))
offsets = np.cumsum([np.prod(shape) for shape in shapes])
init_params = [np.load('model/params_{}.npy'.format(n)) for n in range(10)]
init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]
init_params[0] = init_params[0][:n_ctx]
|
tensorflow.placeholder
| 4,961 |
import tensorflow as tf
embedding_table = tf.get_variable(
name=word_embedding_name,
shape=[vocab_size, embedding_size],
initializer=create_initializer(initializer_range))
if use_one_hot_embeddings:
flat_input_ids = tf.reshape(input_ids, [-1])
one_hot_input_ids = tf.one_hot(flat_input_ids, depth=vocab_size)
output = tf.matmul(one_hot_input_ids, embedding_table)
else:
output = tf.nn.embedding_lookup(embedding_table, input_ids)
input_shape = get_shape_list(input_ids)
output = tf.reshape(output,
input_shape[0:-1] + [input_shape[-1] * embedding_size])
return (output, embedding_table)
def embedding_postprocessor(input_tensor,
use_token_type=False,
token_type_ids=None,
token_type_vocab_size=16,
token_type_embedding_name="token_type_embeddings",
use_position_embeddings=True,
position_embedding_name="position_embeddings",
initializer_range=0.02,
max_position_embeddings=512,
|
tensorflow.reshape
| 4,962 |
from tensorflow.python.framework import ops
"""
return cast(x, types.bfloat16, name=name)
ops.Tensor._override_operator("__neg__", neg)
ops.Tensor._override_operator("__abs__", abs)
# __invert__ corresponds to the ~ operator. Here we follow the numpy convention
# ~ marks an elementwise bit-wise inverse. This is only implemented for boolean
|
tensorflow.python.framework.ops.Tensor._override_operator
| 4,963 |
from tensorflow.python.framework import ops
ops.Tensor._override_operator("__neg__", neg)
ops.Tensor._override_operator("__abs__", abs)
# __invert__ corresponds to the ~ operator. Here we follow the numpy convention
# ~ marks an elementwise bit-wise inverse. This is only implemented for boolean
|
tensorflow.python.framework.ops.Tensor._override_operator
| 4,964 |
import tensorflow as tf
print ("creating protobuf...")
g_1 = tf.get_default_graph()
with tf.Session(graph = g_1) as sess:
saver = tf.train.import_meta_graph('save/model.ckpt.meta', clear_devices=True)
saver.restore(sess, ckpt_name)
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, dst_nodes)
tf.train.write_graph(tf.graph_util.extract_sub_graph(graph_def, dst_nodes), path, fname, as_text=False)
|
tensorflow.graph_util.convert_variables_to_constants
| 4,965 |
import tensorflow as tf
batch_size, size=num_elements, dtype=np.int64)
indices_value = np.arange(num_elements, dtype=np.int64)
indices = np.asarray(
sorted(zip(indices_batch, indices_value)), dtype=np.int64)
values = ["feature_value_for_embedding_lookup"] * num_elements
shape = np.asarray([batch_size, num_elements], dtype=np.int64)
with tf.Session() as sess:
with tf.device("/cpu:0"):
indices = tf.Variable(indices)
values = tf.Variable(values)
shape = tf.Variable(shape)
st = tf.SparseTensor(indices, values, shape)
st_handles = add_many_sparse_to_tensors_map(st)
st_roundtrip = take_many_sparse_from_tensors_map(
sparse_map_op=st_handles.op, sparse_handles=st_handles)
st_roundtrip_op = st_roundtrip.values.op
st_serialized = tf.serialize_many_sparse(st)
st_deserialized = tf.deserialize_many_sparse(
st_serialized, dtype=values.dtype)
st_deserialized_op = st_deserialized.values.op
|
tensorflow.SparseTensor
| 4,966 |
import tensorflow as tf
# Output is result of linear activation of last layer of RNN
weight = tf.Variable(tf.random_normal([LSTM_SIZE, N_OUTPUTS]))
|
tensorflow.random_normal
| 4,967 |
import tensorflow as tf
hidden_sizes, model_prob=1.0 - dropout_rate)
rnd_pred_act_dropout_mask_phs = rnd_pred_act_dropout_mask_generator.generate_dropout_mask_placeholders()
rnd_pred_act, rnd_pred_act_reg = mlp_variational(x_ph, rnd_pred_act_dropout_mask_phs,
list(hidden_sizes) + [act_dim], activation,
output_activation, dropout_rate)
rnd_pred_act = act_limit * rnd_pred_act
with tf.variable_scope('rnd_targ_cri'):
rnd_targ_cri = tf.squeeze(mlp(tf.concat([x_ph, a_ph], axis=-1), list(hidden_sizes) + [1], activation, None), axis=1)
with tf.variable_scope('rnd_pred_cri'):
rnd_pred_cri = tf.squeeze(mlp(tf.concat([x_ph, a_ph], axis=-1), list(hidden_sizes) + [1], activation, None),
axis=1)
rnd_pred_cri_in_ph = tf.concat([x_ph, a_ph], axis=-1)
rnd_pred_cri_in_dim = rnd_pred_cri_in_ph.shape.as_list()[1]
rnd_pred_cri_dropout_mask_generator = DropoutMaskGenerator(rnd_pred_cri_in_dim,
hidden_sizes, model_prob=1.0 - dropout_rate)
rnd_pred_cri_dropout_mask_phs = rnd_pred_cri_dropout_mask_generator.generate_dropout_mask_placeholders()
|
tensorflow.variable_scope
| 4,968 |
import tensorflow as tf
"""Tensorflow Example proto decoder for object detection.
A decoder to decode string tensors containing serialized tensorflow.Example
protos for object detection.
"""
import tensorflow as tf
class TfExampleDecoder(object):
"""Tensorflow Example proto decoder."""
def __init__(self, include_mask=False):
self._include_mask = include_mask
self._keys_to_features = {
'image/encoded':
tf.io.FixedLenFeature((), tf.string),
'image/source_id':
tf.io.FixedLenFeature((), tf.string),
'image/height':
tf.io.FixedLenFeature((), tf.int64),
'image/width':
tf.io.FixedLenFeature((), tf.int64),
'image/object/bbox/xmin':
tf.io.VarLenFeature(tf.float32),
'image/object/bbox/xmax':
tf.io.VarLenFeature(tf.float32),
'image/object/bbox/ymin':
tf.io.VarLenFeature(tf.float32),
'image/object/bbox/ymax':
tf.io.VarLenFeature(tf.float32),
|
tensorflow.io.FixedLenFeature
| 4,969 |
import tensorflow as tf
logits_clip = getattr(config, "logits_clip", 0.)
if logits_clip > 0:
min_logit = tf.reduce_min(logits)
return tf.minimum(logits - min_logit, logits_clip)
else:
return logits
@registry.register_model
class FeedForwardCategoricalPolicy(PolicyBase):
"""Feed-forward categorical."""
def body(self, features):
observations = features["inputs_raw"]
observations = tf.cast(observations, tf.float32)
flat_observations = tf.layers.flatten(observations)
with tf.variable_scope("policy"):
x = flat_observations
for size in self.hparams.policy_layers:
x = tf.layers.dense(x, size, activation=tf.nn.relu)
logits = tf.layers.dense(x, self.hparams.problem.num_actions)
logits = tf.expand_dims(logits, axis=1)
with tf.variable_scope("value"):
x = flat_observations
for size in self.hparams.value_layers:
x = tf.layers.dense(x, size, activation=tf.nn.relu)
value = tf.layers.dense(x, 1)
logits = clip_logits(logits, self.hparams)
|
tensorflow.cast
| 4,970 |
import tensorflow as tf
from tensorflow.contrib import slim
from npu_bridge.estimator import npu_ops
from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig
tf.app.flags.DEFINE_integer('input_size', 512, '')
tf.app.flags.DEFINE_integer('batch_size_per_gpu', 14, '')
tf.app.flags.DEFINE_integer('num_readers', 16, '')
tf.app.flags.DEFINE_float('learning_rate', 0.0001, '')
tf.app.flags.DEFINE_integer('max_steps', 100000, '')
tf.app.flags.DEFINE_integer('loss_scale', 1024, '')
tf.app.flags.DEFINE_float('moving_average_decay', 0.997, '')
tf.app.flags.DEFINE_string('gpu_list', '1', '')
tf.app.flags.DEFINE_string('checkpoint_path', '/tmp/east_resnet_v1_50_rbox/', '')
|
tensorflow.app.flags.DEFINE_integer
| 4,971 |
from tensorflow.python.platform import gfile
IOError, lambda e: "Cannot parse file"):
tf.train.import_meta_graph(filename)
# Deletes the file
gfile.Remove(filename)
with self.assertRaisesWithPredicateMatch(
IOError, lambda e: "does not exist"):
|
tensorflow.python.platform.gfile.Remove
| 4,972 |
import tensorflow as tf
if not FLAGS.do_train and not FLAGS.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
tf.gfile.MakeDirs(FLAGS.output_dir)
input_files = []
for input_pattern in FLAGS.input_file.split(","):
input_files.extend(tf.gfile.Glob(input_pattern))
|
tensorflow.gfile.MakeDirs
| 4,973 |
import tensorflow as tf
# casting to float on GPU ensures lower data transfer times.
if lander:
obs_t_float = self.obs_t_ph
obs_tp1_float = self.obs_tp1_ph
else:
obs_t_float = tf.cast(self.obs_t_ph, tf.float32) / 255.0
obs_tp1_float = tf.cast(self.obs_tp1_ph, tf.float32) / 255.0
# Here, you should fill in your own code to compute the Bellman error. This requires
# evaluating the current and next Q-values and constructing the corresponding error.
|
tensorflow.cast
| 4,974 |
import tensorflow as tf
def main(frame):
print("Searching faces...")
with tf.Graph().as_default():
faces = evaluate(
weight_file_path= "weights.pckl", frame = frame,
prob_thresh=0.7, nms_thresh=0.1, #non max suppression threshold,
|
tensorflow.Graph
| 4,975 |
import tensorflow as tf
def get_fc_weight(self, name):
return tf.constant(self.data_dict[name][0], name="weights")
|
tensorflow.constant
| 4,976 |
import tensorflow as tf
input_.targets,
tf.ones([self.batch_size, self.num_steps], dtype=data_type()),
average_across_timesteps=False,
average_across_batch=True)
# Update the cost
self._cost = tf.reduce_sum(loss)
self._final_state = state
if not is_training:
return
self._lr = tf.Variable(0.0, trainable=False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(self._cost, tvars),
config.max_grad_norm)
optimizer = tf.train.GradientDescentOptimizer(self._lr)
self._train_op = optimizer.apply_gradients(
zip(grads, tvars),
global_step=tf.train.get_or_create_global_step())
self._new_lr = tf.placeholder(
tf.float32, shape=[], name="new_learning_rate")
self._lr_update = tf.assign(self._lr, self._new_lr)
def _build_rnn_graph(self, inputs, config, is_training):
|
tensorflow.trainable_variables
| 4,977 |
import tensorflow as tf
labels=masked_lm_ids,
predictions=masked_lm_predictions,
weights=masked_lm_weights)
masked_lm_mean_loss = tf.metrics.mean(
values=masked_lm_example_loss, weights=masked_lm_weights)
|
tensorflow.metrics.mean
| 4,978 |
import tensorflow as tf
"""
src = batch_of_data["feature"]
if self._trg_lang_tag_position in ["src", "source"]:
src = tf.concat([tf.expand_dims(batch_of_data["trg_lang"], axis=1), src], axis=1)
if self._with_src_lang_tag:
src = tf.concat([tf.expand_dims(batch_of_data["src_lang"], axis=1), src], axis=1)
input_dict = {"src": src,
"src_length": deduce_text_length(src, self._multilingual_dp.meta["pad_id"],
self._multilingual_dp.meta["padding_mode"])}
if self._trg_lang_tag_position in ["trg", "target"]:
target_bos = batch_of_data["trg_lang"]
else:
target_bos = tf.tile([tf.convert_to_tensor(
self._multilingual_dp.meta["bos_id"], dtype=tf.int64)], [tf.shape(src)[0]])
if mode == compat.ModeKeys.INFER:
input_dict["trg_input"] = target_bos
else:
input_dict["trg"] = batch_of_data["label"]
input_dict["trg_length"] = deduce_text_length(batch_of_data["label"],
self._multilingual_dp.meta["pad_id"],
self._multilingual_dp.meta["padding_mode"])
input_dict["trg_input"] = tf.concat([tf.expand_dims(target_bos, axis=1),
batch_of_data["label"][:, :-1]], axis=1)
return input_dict
def get_data_postprocess_fn(self, data_status, **kwargs) -> callable:
if data_status == compat.DataStatus.PROJECTED:
|
tensorflow.shape
| 4,979 |
import tensorflow as tf
self.IRK_alpha = weights[0:-1,:]
self.IRK_beta = weights[-1:,:]
self.IRK_times = tmp[q**2+q:]
# tf placeholders and graph
self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
log_device_placement=True))
self.x0_tf = tf.placeholder(tf.float32, shape=(None, self.x0.shape[1]))
self.x1_tf = tf.placeholder(tf.float32, shape=(None, self.x1.shape[1]))
self.u0_tf = tf.placeholder(tf.float32, shape=(None, self.u0.shape[1]))
self.u1_tf = tf.placeholder(tf.float32, shape=(None, self.u1.shape[1]))
self.dummy_x0_tf = tf.placeholder(tf.float32, shape=(None, self.q)) # dummy variable for fwd_gradients
self.dummy_x1_tf = tf.placeholder(tf.float32, shape=(None, self.q)) # dummy variable for fwd_gradients
self.U0_pred = self.net_U0(self.x0_tf) # N0 x q
self.U1_pred = self.net_U1(self.x1_tf) # N1 x q
self.loss = tf.reduce_sum(tf.square(self.u0_tf - self.U0_pred)) + \
tf.reduce_sum(tf.square(self.u1_tf - self.U1_pred))
|
tensorflow.placeholder
| 4,980 |
import tensorflow as tf
c, ei, ev, v, n_cs, n_vs, n_cands, cands, best_cands, cand_scores = batch
pred_scores = policy['model']((c, ei, ev, v, tf.reduce_sum(n_cs, keepdims=True), tf.reduce_sum(n_vs, keepdims=True)), tf.convert_to_tensor(False))
|
tensorflow.reduce_sum
| 4,981 |
import tensorflow as tf
grad, = tf.gradients(loss, x)
r=old_div(grad*loss,tf.reduce_sum(tf.square(grad)))
|
tensorflow.square
| 4,982 |
import tensorflow as tf
z = tf.py_func(my_func, [x, y], [tf.float32])
self.assertEqual(z[0].eval(), my_func(1.0, 2.0).astype(np.float32))
# array
with self.test_session():
x = tf.constant([1.0, 2.0], tf.float64)
y = tf.constant([2.0, 3.0], tf.float64)
z = tf.py_func(my_func, [x, y], [tf.float64])
self.assertAllEqual(
z[0].eval(),
my_func([1.0, 2.0], [2.0, 3.0]).astype(np.float64))
# a bit exotic type (complex64)
with self.test_session():
x = tf.constant(1+2j, tf.complex64)
y = tf.constant(3+4j, tf.complex64)
z, = tf.py_func(my_func, [x, y], [tf.complex64])
self.assertAllClose(z.eval(), my_func(1+2j, 3+4j))
# a bit excotic function (rfft)
with self.test_session():
x = tf.constant([1., 2., 3., 4.], tf.float32)
def rfft(x):
return np.fft.rfft(x).astype(np.complex64)
y, = tf.py_func(rfft, [x], [tf.complex64])
self.assertAllClose(y.eval(), np.fft.rfft([1., 2., 3., 4.]))
# returns a python literal.
with self.test_session():
def literal(x):
|
tensorflow.constant
| 4,983 |
from tensorflow.python.ops import array_ops
else:
loss_unweighted = array_ops.reshape(loss_unweighted, shape=(-1,))
|
tensorflow.python.ops.array_ops.reshape
| 4,984 |
import tensorflow as tf
def build_generator(self,image,reuse=False,name='generator'):
with tf.variable_scope(name):
if reuse:
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
"""U-Net Generator"""
def lrelu(x, alpha,name='lrelu'):
with tf.variable_scope(name):
return tf.nn.relu(x) - alpha * tf.nn.relu(-x)
def instance_norm(x,name='instance_norm'):
with tf.variable_scope(name):
if reuse:
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
|
tensorflow.variable_scope
| 4,985 |
import tensorflow as tf
bert_config.initializer_range))
input_tensor = modeling.layer_norm(input_tensor)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
output_bias = tf.get_variable(
"output_bias",
shape=[bert_config.vocab_size],
initializer=tf.zeros_initializer())
logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
log_probs = tf.nn.log_softmax(logits, axis=-1)
label_ids = tf.reshape(label_ids, [-1])
label_weights = tf.reshape(label_weights, [-1])
|
tensorflow.zeros_initializer
| 4,986 |
import tensorflow as tf
blk_shape = tf.shape(blk_indices)
blk_indices_ = tf.reshape(blk_indices, [-1, 3])
ksize = tf.shape(w)
# Calculate the block strides.
bstrides = _calc_block_strides(blk_shape, ksize, strides)
# Calculate the output size.
x_shape = tf.shape(x)
out_shape = calc_out_size_4d(x_shape, ksize, strides, padding)
# Pad input.
x_ = _pad_input(
x, ksize, strides, padding, bsize=[1, blk_shape[1], blk_shape[2], 1], bstrides=bstrides)
# Convolution when number of indices is larger than zero.
|
tensorflow.shape
| 4,987 |
import tensorflow as tf
For the scale (gamma), a ones initializer is used by default.
Args:
var_name: name of variable as a string.
"""
if var_name not in self._initializers:
if var_name == self.GAMMA:
self._initializers[self.GAMMA] = tf.ones_initializer()
elif var_name == self.BETA:
self._initializers[self.BETA] = tf.zeros_initializer()
def _build_statistics_variance(self, input_batch,
reduction_indices, use_batch_stats):
"""Builds the statistics part of the graph when using moving variance.
|
tensorflow.ones_initializer
| 4,988 |
import tensorflow as tf
# Step-wise contrastive loss
pred1, pred2 = tf.split(pred, 2, axis=0)
tgt1, tgt2 = tf.split(tgt, 2, axis=0)
geq = tf.cast((tgt1 - tgt2) > 0, tf.bool)
tgt_larg = tf.where(geq, tgt1, tgt2)
tgt_small = tf.where(geq, tgt2, tgt1)
pred_larg = tf.where(geq, pred1, pred2)
pred_small = tf.where(geq, pred2, pred1)
loss = tf.maximum(0.0, (tgt_larg - tgt_small) - (pred_larg - pred_small) + margin)
loss = tf.reduce_mean(loss)
return loss
def contra_step_lossV4(pred, tgt):
# 50*50
# Step-wise contrastive loss
even = [2 * i for i in range(25)]
odd = [2 * i + 1 for i in range(25)]
pred1 = tf.gather(pred, even)
pred2 = tf.gather(pred, odd)
|
tensorflow.reduce_mean
| 4,989 |
import tensorflow as tf
def data_format():
return "channels_first" if tfe.num_gpus() else "channels_last"
def random_dataset():
batch_size = 64
images = tf.random_normal([batch_size, 784])
labels = tf.random_uniform([batch_size], minval=0, maxval=10, dtype=tf.int32)
return tf.data.Dataset.from_tensors((images, labels))
def train(defun=False):
model = mnist.create_model(data_format())
if defun:
model.call = tfe.defun(model.call)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)
dataset = random_dataset()
with tf.device(device()):
|
tensorflow.data.Dataset.from_tensors
| 4,990 |
import tensorflow as tf
d = tf.data.Dataset.from_tensor_slices({
"input_ids":
tf.constant(
all_input_ids, shape=[num_examples, seq_length],
|
tensorflow.constant
| 4,991 |
import tensorflow as tf
def bucket_distance(self, distances):
"""
Places the given values (designed for distances) into 10 semi-logscale buckets:
[0, 1, 2, 3, 4, 5-7, 8-15, 16-31, 32-63, 64+].
"""
logspace_idx = tf.to_int32(tf.floor(tf.log(tf.to_float(distances))/math.log(2))) + 3
use_identity = tf.to_int32(distances <= 4)
combined_idx = use_identity * distances + (1 - use_identity) * logspace_idx
return tf.clip_by_value(combined_idx, 0, 9)
def get_slow_antecedent_scores(self, top_span_emb, top_antecedents, top_antecedent_emb, top_antecedent_offsets, top_span_speaker_ids, genre_emb):
k = util.shape(top_span_emb, 0)
|
tensorflow.to_int32
| 4,992 |
import tensorflow as tf
)
trainable_vars = tf.trainable_variables()
kernels = [
v for v in trainable_vars
if ('weights' in v.name or 'kernel' in v.name) and 'depthwise_weights' not in v.name
]
for K in kernels:
x = tf.multiply(weight_decay, tf.nn.l2_loss(K))
tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, x)
class RestoreMovingAverageHook(tf.train.SessionRunHook):
def __init__(self, model_dir):
super(RestoreMovingAverageHook, self).__init__()
self.model_dir = model_dir
|
tensorflow.add_to_collection
| 4,993 |
import tensorflow as tf
features = []
for (ex_index, example) in enumerate(examples):
if ex_index % 10000 == 0:
tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
feature = convert_single_example(ex_index, example, label_list,
max_seq_length, tokenizer)
features.append(feature)
return features
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
processors = {
"faq": FAQProcessor,
}
tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case,
FLAGS.init_checkpoint)
if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict:
raise ValueError(
"At least one of `do_train`, `do_eval` or `do_predict' must be True.")
|
tensorflow.logging.set_verbosity
| 4,994 |
from tensorflow.contrib.distributions.python.ops import distribution_util
@distribution_util.AppendDocstring(_poisson_sample_note)
def _log_prob(self, x):
return self._log_unnormalized_prob(x) - self._log_normalization()
@distribution_util.AppendDocstring(_poisson_sample_note)
def _prob(self, x):
return math_ops.exp(self._log_prob(x))
@distribution_util.AppendDocstring(_poisson_sample_note)
def _log_cdf(self, x):
return math_ops.log(self.cdf(x))
@distribution_util.AppendDocstring(_poisson_sample_note)
def _cdf(self, x):
x = self._assert_valid_sample(x, check_integer=False)
return math_ops.igammac(math_ops.floor(x + 1), self.rate)
def _log_normalization(self):
return self.rate
def _log_unnormalized_prob(self, x):
x = self._assert_valid_sample(x, check_integer=True)
return x * math_ops.log(self.rate) - math_ops.lgamma(x + 1)
|
tensorflow.contrib.distributions.python.ops.distribution_util.AppendDocstring
| 4,995 |
import tensorflow as tf
dropout=1 - config.keep_prob if is_training else 0)
params_size_t = self._cell.params_size()
self._rnn_params = tf.get_variable(
"lstm_params",
initializer=tf.random_uniform(
[params_size_t], -config.init_scale, config.init_scale),
validate_shape=False)
c = tf.zeros([config.num_layers, self.batch_size, config.hidden_size],
tf.float32)
h = tf.zeros([config.num_layers, self.batch_size, config.hidden_size],
tf.float32)
self._initial_state = (tf.contrib.rnn.LSTMStateTuple(h=h, c=c),)
outputs, h, c = self._cell(inputs, h, c, self._rnn_params, is_training)
outputs = tf.transpose(outputs, [1, 0, 2])
|
tensorflow.zeros
| 4,996 |
import tensorflow as tf
tmp2 = tf.tensordot(query, w2, axes=1)
tmp2 = tf.reshape(tmp2, [-1, 1, tf.shape(tmp2)[-1]])
tmp = tf.tanh((tmp1 + tmp2) + b)
# For each of the timestamps its vector of size A from `tmp` is reduced with `v` vector
v_dot_tmp = tf.tensordot(tmp, v, axes=1, name='v_dot_tmp') # (B,T) shape
key_masks = mask # [B, 1, T]
# key_masks = tf.expand_dims(mask, 1) # [B, 1, T]
paddings = tf.ones_like(v_dot_tmp) * (-2 ** 32 + 1)
v_dot_tmp = tf.where(key_masks, v_dot_tmp, paddings) # [B, 1, T]
alphas = tf.nn.softmax(v_dot_tmp, name='alphas') # (B,T) shape
# Output of (Bi-)RNN is reduced with attention vector; the result has (B,D) shape
#output = tf.reduce_sum(facts * tf.expand_dims(alphas, -1), 1)
output = facts * tf.expand_dims(alphas, -1)
output = tf.reshape(output, tf.shape(facts))
# output = output / (facts.get_shape().as_list()[-1] ** 0.5)
if not return_alphas:
return output
else:
|
tensorflow.nn.softmax
| 4,997 |
import tensorflow as tf
sv.stop()
def _build_model(self):
"""Build the TensorFlow graph."""
image_size = self.model_conf.get_image_size()
data_type = tf.float32
input_data_type = tf.float32
input_nchan = 3
tf.set_random_seed(1234)
np.random.seed(4321)
phase_train = not (FLAGS.eval or FLAGS.forward_only)
log_fn('Generating model')
losses = []
device_grads = []
all_logits = []
|
tensorflow.set_random_seed
| 4,998 |
import tensorflow as tf
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(Total_loss)
correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(one_hot_labels, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# val_dir = '/data0/AIChallenger/ai_challenger_scene_validation_20170908/scene_validation_images_20170908/'
# annotations = '/data0/AIChallenger/ai_challenger_scene_validation_20170908/scene_validation_annotations_20170908.json'
# # a DataFlow you implement to produce [tensor1, tensor2, ..] lists from whatever sources:
|
tensorflow.cast
| 4,999 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.