seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
from tensorflow.python.ops import gen_math_ops \\\\(y = |x|\\\\). See [`tf.complex_abs()`](#tf_complex_abs) to compute the absolute value of a complex number. Args: x: A `Tensor` of type `float`, `double`, `int32`, or `int64`. name: A name for the operation (optional). Returns: A `Tensor` the same size and type as `x` with absolute values. """ with ops.op_scope([x], name, "Abs") as name: x = ops.convert_to_tensor(x, name="x") if x.dtype == types.complex64: return gen_math_ops.complex_abs(x, name=name) return gen_math_ops._abs(x, name=name) def pow(x, y, name=None): """Computes the power of one value to another. Given a tensor `x` and a tensor `y`, this operation computes \\\\(x^y\\\\) for corresponding elements in `x` and `y`. For example: ``` # tensor 'x' is [[2, 2]], [3, 3]] # tensor 'y' is [[8, 16], [2, 3]] tf.pow(x, y) ==> [[256, 65536], [9, 27]]
tensorflow.python.ops.gen_math_ops.complex_abs
3,400
from tensorflow.python.platform import gfile # Check that s1 is still here, but s2 is gone. self.assertTrue(gfile.Exists(s1)) self.assertFalse(gfile.Exists(s2)) self.assertTrue(gfile.Exists(s3)) self.assertTrue(gfile.Exists(s4))
tensorflow.python.platform.gfile.Exists
3,401
import tensorflow as tf for i in range(hparams.tacotron_num_gpus): tf.summary.histogram("mel_outputs %d" % i, model.tower_mel_outputs[i]) tf.summary.histogram("mel_targets %d" % i, model.tower_mel_targets[i]) tf.summary.scalar("before_loss", model.before_loss) tf.summary.scalar("after_loss", model.after_loss) if hparams.predict_linear: tf.summary.scalar("linear_loss", model.linear_loss) for i in range(hparams.tacotron_num_gpus): tf.summary.histogram("mel_outputs %d" % i, model.tower_linear_outputs[i]) tf.summary.histogram("mel_targets %d" % i, model.tower_linear_targets[i]) tf.summary.scalar("regularization_loss", model.regularization_loss) tf.summary.scalar("stop_token_loss", model.stop_token_loss)
tensorflow.summary.scalar
3,402
from tensorflow.contrib.framework.python.framework import checkpoint_utils def weights(self): """Returns the cluster weights.""" return checkpoint_utils.load_variable( self.model_dir, gmm_ops.GmmAlgorithm.CLUSTERS_WEIGHT)
tensorflow.contrib.framework.python.framework.checkpoint_utils.load_variable
3,403
import tensorflow as tf stitch3_1, stitch3_2 = apply_cross_stitch(fc3_1, fc3_2) else: stitch3_1, stitch3_2 = fc3_1, fc3_2 dropout3_1 = contrib.layers.dropout(stitch3_1, keep_prob=keep_prob, is_training=is_training, scope="dropout3_1") dropout3_2 = contrib.layers.dropout(stitch3_2, keep_prob=keep_prob, is_training=is_training, scope="dropout3_2") output_1 = contrib.layers.fully_connected(dropout3_1, n_output_1, activation_fn=None, scope="output_1") output_2 = contrib.layers.fully_connected(dropout3_2, n_output_2, activation_fn=None, scope="output_2") with tf.variable_scope("loss"): loss_base_1 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_1, logits=output_1)) loss_base_2 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_2, logits=output_2)) reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) loss_total = loss_base_1 + loss_base_2 + tf.reduce_sum(reg_losses) with tf.variable_scope("evaluation"): accuracy_1 = tf.reduce_mean(tf.cast(tf.equal( tf.argmax(output_1, axis=-1), tf.argmax(y_1, axis=-1)), tf.float32), name="accuracy_1") accuracy_2 = tf.reduce_mean(tf.cast(tf.equal( tf.argmax(output_2, axis=-1),
tensorflow.variable_scope
3,404
import tensorflow as tf if full_output_cov: fvar = ( tf.matrix_diag(tf.tile((eKff - tf.trace(Li_eKuffu_Lit))[:, None], [1, num_func])) + tf.matrix_diag(tf.einsum("nij,dji->nd", Li_eKuffu_Lit, cov)) +
tensorflow.trace
3,405
import tensorflow as tf return c # Create the bi-directional LSTM with tf.variable_scope('wordrnn'): with tf.variable_scope('fw'): cell_fw = GetCell() with tf.variable_scope('bw'): cell_bw = GetCell() rnnout, _, _ = tf.nn.bidirectional_rnn(cell_fw, cell_bw, self._inputs, dtype=tf.float32, sequence_length=self.seq_lens)
tensorflow.variable_scope
3,406
import tensorflow as tf self.summary_tags += tag self.summary_placeholders[tag] = tf.placeholder('float32', None, name=tag) self.summary_ops[tag] = tf.summary.scalar(tag, self.summary_placeholders[tag]) for tag, shape in self.images_summary_tags: self.summary_tags += tag self.summary_placeholders[tag] = tf.placeholder('float32', shape, name=tag) self.summary_ops[tag] = tf.summary.image(tag, self.summary_placeholders[tag], max_outputs=10) def add_summary(self, step, summaries_dict=None, summaries_merged=None): """
tensorflow.placeholder
3,407
import tensorflow as tf click_feature = [tf.expand_dims(tf.zeros_like(self.labels[i]) , -1) for _ in range(4*list_size)] click_feature[i] = tf.expand_dims(tf.ones_like(self.labels[i]) , -1) # click_feature[list_size:]=[tf.expand_dims(tf.zeros_like(self.labels[i]) , -1) for _ in range(3*list_size)] click_feature[list_size:list_size+i] =[tf.expand_dims(self.labels[k] , -1) for k in range(i-1,-1,-1)] click_feature[2*list_size:2*list_size+i+1]=[tf.expand_dims(self.types[k] , -1) for k in range(i,-1,-1)] click_feature[3*list_size:3*list_size+list_size-i-1]=[tf.expand_dims(self.types[k] , -1) for k in range(i+1,list_size)] # Predict propensity with a simple network output_propensity_list.append(propensity_network(tf.concat(click_feature, 1), i))
tensorflow.expand_dims
3,408
import tensorflow as tf tf.flags.DEFINE_string( "tpu_zone", None, "[Optional] GCE zone where the Cloud TPU is located in. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") tf.flags.DEFINE_string( "gcp_project", None, "[Optional] Project name for the Cloud TPU-enabled project. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.") flags.DEFINE_integer( "num_tpu_cores", 8, "Only used if `use_tpu` is True. Total number of TPU cores to use.") class InputExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None): """Constructs a InputExample.
tensorflow.flags.DEFINE_string
3,409
import tensorflow as tf normalizer_params={"is_training": self.train}): self.fc1 = tf.contrib.layers.fully_connected(self.flatten, self.config.cifar10_cnn["fc1_nb_units"]) self.fc2 = tf.contrib.layers.fully_connected(self.fc1, self.config.data["num_categories"], activation_fn=None) # Compute loss with tf.name_scope("loss"): self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.fc2, labels=self.y)) # Optimizer with tf.name_scope("training_op"): self.training_op = tf.compat.v1.train.AdamOptimizer(self.learning_rate).minimize(self.loss) # Perf metrics with tf.name_scope("accuracy"): prediction = tf.equal(tf.argmax(self.fc2, 1), tf.argmax(self.y, 1)) self.accuracy = tf.reduce_mean(tf.cast(prediction, tf.float32))
tensorflow.name_scope
3,410
import tensorflow as tf # self.imitation_loss = self.bc_loss #+ self.next_loc_loss_il # Get gradients from local network using local losses and # normalize the gradients using clipping local_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope+'/qvalues') self.gradients = tf.gradients(self.loss, local_vars) self.var_norms = tf.global_norm(local_vars) grads, self.grad_norms = tf.clip_by_global_norm(self.gradients, GRAD_CLIP) # Apply local gradients to global network global_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, GLOBAL_NET_SCOPE+'/qvalues') self.apply_grads = trainer.apply_gradients(zip(grads, global_vars))
tensorflow.global_norm
3,411
import tensorflow as tf # bgr to rgb (opencv uses bgr) channels = tf.unstack(image, axis=-1) image = tf.stack([channels[2], channels[1], channels[0]], axis=-1) # dims for normalization width = tf.to_float(tf.shape(image)[2]) height = tf.to_float(tf.shape(image)[1]) # from [x1, y1, x2, y2, cls] to normalized [y1, x1, y1, x1] cols = tf.unstack(boxes, axis=1) boxes = tf.stack([cols[1] / height, cols[0] / width, cols[3] / height, cols[2] / width], axis=1) # add batch dimension (assume batch_size==1) #assert image.get_shape()[0] == 1
tensorflow.unstack
3,412
import tensorflow as tf if cell is None: cell = tf.contrib.rnn.BasicRNNCell(hidden_dims, activation=activation) # cell = tf.contrib.rnn.LSTMCell(hidden_dims, activation=activation) if keep_prob < 1.0: keep_prob = _global_keep_prob(keep_prob) cell = tf.contrib.rnn.DropoutWrapper(cell, keep_prob, keep_prob) if opts.get("name"): tf.add_to_collection(opts.get("name"), cell) if decoder_fn is None: outputs, final_state = tf.nn.dynamic_rnn(cell, tensor, sequence_length=sequence_length, initial_state=initial_state, dtype=tf.float32) final_context_state = None else: # TODO: turn off sequence_length? outputs, final_state, final_context_state = seq2seq.dynamic_rnn_decoder( cell, decoder_fn, inputs=None, sequence_length=sequence_length) if return_final_state: return final_state else: return outputs
tensorflow.nn.dynamic_rnn
3,413
import tensorflow as tf # Optimizers autoencoder_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1).minimize(autoencoder_loss) discriminator_g_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1).minimize(dc_g_loss, var_list=dc_g_var) discriminator_c_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1).minimize(dc_c_loss, var_list=dc_c_var) generator_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1).minimize(generator_loss, var_list=en_var) supervised_encoder_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1).minimize(supervised_encoder_loss, var_list=en_var) init = tf.global_variables_initializer() # Reshape immages to display them input_images = tf.reshape(x_input, [-1, 28, 28, 1]) generated_images = tf.reshape(decoder_output, [-1, 28, 28, 1]) # Tensorboard visualization tf.summary.scalar(name='Autoencoder Loss', tensor=autoencoder_loss) tf.summary.scalar(name='Discriminator gauss Loss', tensor=dc_g_loss) tf.summary.scalar(name='Discriminator categorical Loss', tensor=dc_c_loss) tf.summary.scalar(name='Generator Loss', tensor=generator_loss) tf.summary.scalar(name='Supervised Encoder Loss', tensor=supervised_encoder_loss) tf.summary.histogram(name='Encoder Gauss Distribution', values=encoder_output_latent)
tensorflow.global_variables_initializer
3,414
import tensorflow as tf Returns: A dictionary of tensors obtained by applying data augmentation ops to the input tensor dictionary. """ tensor_dict[fields.InputDataFields.image] = tf.expand_dims( tf.cast(tensor_dict[fields.InputDataFields.image], dtype=tf.float32), 0) include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks in tensor_dict) include_keypoints = (fields.InputDataFields.groundtruth_keypoints
tensorflow.cast
3,415
import tensorflow as tf dynamic_bstride=block_params.bstrides, dynamic_boffset=block_params.boffset, transpose=transpose) # Convolution on patches. if transpose: q = tf.nn.conv2d(p, w, strides, 'VALID', data_format='NCHW', use_cudnn_on_gpu=True) else: q = tf.nn.conv2d(p, w, strides, 'VALID', use_cudnn_on_gpu=True) # Allocate output tensor. if use_var: y = sbnet_module.sparse_scatter_var( q, indices.bin_counts, indices.active_block_indices,
tensorflow.nn.conv2d
3,416
import tensorflow as tf for i in range(max_train_step): batch_x, batch_gt = mnist.train.next_batch(batch_size) sess.run(train_op, feed_dict={x: batch_x, gt: batch_gt}) if i % 100 == 0: correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(gt, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print('=> accuracy: {}'.format(sess.run(accuracy, feed_dict={x: mnist.test.images, gt: mnist.test.labels}))) saver.save(sess, 'mnist/mnist_{:02d}.ckpt'.format(int(i / 100) + 1))
tensorflow.argmax
3,417
import tensorflow as tf return_dict["cls_logits"] = cls_logits return return_dict def get_race_loss(FLAGS, features, is_training): """Loss for downstream multi-choice QA tasks such as RACE.""" bsz_per_core = tf.shape(features["input_ids"])[0] def _transform_features(feature): out = tf.reshape(feature, [bsz_per_core, 4, -1]) out = tf.transpose(out, [2, 0, 1]) out = tf.reshape(out, [-1, bsz_per_core * 4]) return out
tensorflow.shape
3,418
import tensorflow as tf y_permute_dim = list(range(get_ndim(y))) y_permute_dim = [y_permute_dim.pop(-2)] + y_permute_dim xt = tf.reshape(x, [-1, x_shape[-1]]) yt = tf.reshape(tf.transpose(y, perm=y_permute_dim), [y_shape[-2], -1]) return tf.reshape( tf.matmul(xt, yt), x_shape[:-1] + y_shape[:-2] + y_shape[-1:]) out = tf.matmul(x, y) return out
tensorflow.matmul
3,419
from tensorflow.contrib.framework import deprecated_arg_values feed_fn=feed_fn, batch_size=batch_size, steps=steps, metrics=custom_metrics, name=name, checkpoint_path=checkpoint_path, hooks=hooks) @deprecated_arg_values( estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS, as_iterable=False) def predict(self, x=None, input_fn=None, batch_size=None, as_iterable=True): """Returns predicted scores for given features. Args:
tensorflow.contrib.framework.deprecated_arg_values
3,420
import tensorflow as tf edge_type2dim=edge_type2dim, placeholders=placeholders, batch_size=FLAGS.batch_size, margin=FLAGS.max_margin ) print("Initialize session") sess = tf.Session() sess.run(tf.global_variables_initializer()) feed_dict = {} ########################################################### # # Train model # ###########################################################
tensorflow.global_variables_initializer
3,421
import tensorflow as tf # Increment episode count. with tf.control_dependencies(control_inputs=(assignment,)): assignment = tf.assign_add(ref=self.episode_count, value=num_episodes) # Increment memory index. with tf.control_dependencies(control_inputs=(assignment,)): assignment = tf.assign( ref=self.episode_indices[-1], value=tf.where(self.memory_index + num_instances > self.capacity, self.episode_indices[self.episode_count - 1], self.capacity - 1) ) with tf.control_dependencies(control_inputs=(assignment,)): assignment = tf.assign(ref=self.memory_index, value=((self.memory_index + num_instances) % self.capacity)) with tf.control_dependencies(control_inputs=(assignment,)): return tf.no_op() def tf_retrieve_indices(self, indices): """ Fetches experiences for given indices. Args: indices: Index tensor
tensorflow.control_dependencies
3,422
import tensorflow as tf pool = tf.transpose(pool, [0,2,1]) # Linear elif downsampling_type=='linear': pool = tf.layers.conv1d(inputs=inputs, filters=inputs.get_shape()[2], kernel_size=3, strides=2, padding='same', use_bias=False) # Maxpooling else: pool = tf.layers.max_pooling1d(inputs=inputs, pool_size=3, strides=2, padding='same', name=name) if optional_shortcut: shortcut = tf.layers.conv1d(inputs=shortcut, filters=shortcut.get_shape()[2], kernel_size=1, strides=2, padding='same', use_bias=False) print("-"*5) print("Optional Downsampling Shortcut:", shortcut.get_shape()) print("-"*5)
tensorflow.layers.max_pooling1d
3,423
from tensorflow.python.ops import nn_ops return None, self._loss, sampled_words def calculate_encoder_features(self, encoder_states, encoder_dim): options = self.options input_shape = tf.shape(encoder_states) batch_size = input_shape[0] passage_len = input_shape[1] with variable_scope.variable_scope("attention_decoder"): encoder_features = tf.expand_dims(encoder_states, axis=2) # now is shape [batch_size, passage_len, 1, encoder_dim] W_h = variable_scope.get_variable("W_h", [1, 1, encoder_dim, options.attention_vec_size]) self.W_h = W_h encoder_features = nn_ops.conv2d(encoder_features, W_h, [1, 1, 1, 1], "SAME") # [batch_size, passage_len, 1, attention_vec_size] encoder_features = tf.reshape(encoder_features, [batch_size, passage_len, options.attention_vec_size]) return encoder_features def decode_mode(self, word_vocab, beam_size, state_t_1, context_t_1, coverage_t_1, word_t, encoder_states, encoder_features, passage_word_idx, passage_mask): options = self.options with variable_scope.variable_scope("attention_decoder"): v = variable_scope.get_variable("v", [options.attention_vec_size]) v = tf.expand_dims(tf.expand_dims(v, axis=0), axis=0) w_c = None
tensorflow.python.ops.nn_ops.conv2d
3,424
import tensorflow as tf errors = U.huber_loss(td_error) weighted_error = tf.reduce_mean(importance_weights_ph * errors) # compute optimization op (potentially with gradient clipping) if grad_norm_clipping is not None: gradients = optimizer.compute_gradients(weighted_error, var_list=q_func_vars) for i, (grad, var) in enumerate(gradients): if grad is not None: gradients[i] = (tf.clip_by_norm(grad, grad_norm_clipping), var) optimize_expr = optimizer.apply_gradients(gradients) else: optimize_expr = optimizer.minimize(weighted_error, var_list=q_func_vars) # update_target_fn will be called periodically to copy Q network to target Q network update_target_expr = [] for var, var_target in zip(sorted(q_func_vars, key=lambda v: v.name),
tensorflow.clip_by_norm
3,425
import tensorflow as tf texts_test = [x for ix, x in enumerate(texts) if ix in test_indices] target_train = [x for ix, x in enumerate(target) if ix in train_indices] target_test = [x for ix, x in enumerate(target) if ix in test_indices] # Setup Index Matrix for one-hot-encoding identity_mat = tf.diag(tf.ones(shape=[embedding_size])) # Create variables for logistic regression A = tf.Variable(tf.random_normal(shape=[embedding_size,1])) b = tf.Variable(tf.random_normal(shape=[1,1])) # Initialize placeholders x_data = tf.placeholder(shape=[sentence_size], dtype=tf.int32) y_target = tf.placeholder(shape=[1, 1], dtype=tf.float32) # Text-Vocab Embedding x_embed = tf.nn.embedding_lookup(identity_mat, x_data) x_col_sums = tf.reduce_sum(x_embed, 0) # Declare model operations x_col_sums_2D = tf.expand_dims(x_col_sums, 0) model_output = tf.add(tf.matmul(x_col_sums_2D, A), b) # Declare loss function (Cross Entropy loss)
tensorflow.placeholder
3,426
from tensorflow.python.ops import math_ops def _run_metrics(predictions, targets, metrics, weights): result = {} targets = math_ops.cast(targets, predictions.dtype) for name, metric in six.iteritems(metrics or {}): if "weights" in inspect.getargspec(metric)[0]: result[name] = metric(predictions, targets, weights=weights)
tensorflow.python.ops.math_ops.cast
3,427
import tensorflow as tf new_mems = {mem_name: xlnet_model.get_new_memory()} lookup_table = xlnet_model.get_embedding_table() initializer = xlnet_model.get_initializer() with tf.variable_scope("model", reuse=tf.AUTO_REUSE): # LM loss lm_loss = modeling.lm_loss( hidden=output, target=tgt,
tensorflow.variable_scope
3,428
import tensorflow as tf (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tensorflow.train.Scaffold
3,429
import tensorflow as tf A0 = euclidean_norm_squared(tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(X, 1)), axis=2) A = tf.reduce_sum(phi_sampling(A0/(4*y), D)) B0 = euclidean_norm_squared(tf.subtract(tf.expand_dims(Y, 0), tf.expand_dims(Y, 1)), axis=2) B = tf.reduce_sum(phi_sampling(B0/(4*y), D)) C0 = euclidean_norm_squared(tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(Y, 1)), axis=2) C = tf.reduce_sum(phi_sampling(C0/(4*y), D)) return T*(A + B - 2*C)
tensorflow.expand_dims
3,430
import tensorflow as tf # we don't actually round to the nearest 8bit value when sampling u = tf.random_uniform(tf.shape(means), minval=1e-5, maxval=1. - 1e-5) x = means + tf.exp(log_scales) * (tf.log(u) - tf.log(1. - u)) x0 = tf.minimum(tf.maximum(x[:, :, :, 0], -1.), 1.) x1 = tf.minimum(tf.maximum( x[:, :, :, 1] + coeffs[:, :, :, 0] * x0, -1.), 1.) x2 = tf.minimum(tf.maximum( x[:, :, :, 2] + coeffs[:, :, :, 1] * x0 + coeffs[:, :, :, 2] * x1, -1.), 1.) return tf.concat([tf.reshape(x0, xs[:-1] + [1]), tf.reshape(x1, xs[:-1] + [1]), tf.reshape(x2, xs[:-1] + [1])], 3)
tensorflow.reshape
3,431
import tensorflow as tf [batch_size], minval=1, maxval=nclass, dtype=tf.int32, name='synthetic_labels') # Note: This results in a H2D copy, but no computation # Note: This avoids recomputation of the random values, but still # results in a H2D copy. images = tf.contrib.framework.local_variable(images, name='images') labels = tf.contrib.framework.local_variable(labels, name='labels') # Change to 0-based (don't use background class like Inception does) labels -= 1 if num_compute_devices == 1: images_splits = [images] labels_splits = [labels] else: images_splits = tf.split(images, num_compute_devices, 0) labels_splits = tf.split(labels, num_compute_devices, 0)
tensorflow.contrib.framework.local_variable
3,432
import tensorflow as tf st = tf.SparseTensor(indices, values, shape) st_handles = add_many_sparse_to_tensors_map(st) st_roundtrip = take_many_sparse_from_tensors_map( sparse_map_op=st_handles.op, sparse_handles=st_handles) st_roundtrip_op = st_roundtrip.values.op st_serialized = tf.serialize_many_sparse(st) st_deserialized = tf.deserialize_many_sparse( st_serialized, dtype=values.dtype) st_deserialized_op = st_deserialized.values.op tf.global_variables_initializer().run() st_roundtrip_values = sess.run(st_roundtrip) st_deserialized_values = sess.run(st_deserialized)
tensorflow.deserialize_many_sparse
3,433
import tensorflow as tf input_tensor = gather_indexes(input_tensor, positions) with tf.variable_scope("cls/predictions"): # We apply one more non-linear transformation before the output layer.
tensorflow.variable_scope
3,434
import tensorflow as tf next_sentence_log_probs) = get_next_sentence_output( bert_config, model.get_pooled_output(), next_sentence_labels) total_loss = masked_lm_loss + next_sentence_loss tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string)
tensorflow.train.init_from_checkpoint
3,435
import tensorflow as tf self.e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Critic/eval_net') self.t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Critic/target_net') with tf.variable_scope('target_q'): self.target_q = R + self.gamma * self.q_ with tf.variable_scope('abs_TD'): self.abs_td = tf.abs(self.target_q - self.q) self.ISWeights = tf.placeholder(tf.float32, [None, 1], name='IS_weights') with tf.variable_scope('TD_error'): self.loss = tf.reduce_mean(self.ISWeights * tf.squared_difference(self.target_q, self.q)) with tf.variable_scope('C_train'): self.train_op = tf.train.AdamOptimizer(self.lr).minimize(self.loss, global_step=GLOBAL_STEP) with tf.variable_scope('a_grad'): self.a_grads = tf.gradients(self.q, a)[0] # tensor of gradients of each sample (None, a_dim) def _build_net(self, s, a, scope, trainable): with tf.variable_scope(scope): init_w = tf.random_normal_initializer(0., 0.01) init_b = tf.constant_initializer(0.01) with tf.variable_scope('l1'): n_l1 = 700 # combine the action and states together in this way
tensorflow.train.AdamOptimizer
3,436
import tensorflow as tf opt = tf.train.GradientDescentOptimizer(learning_rate) elif FLAGS.optimizer == 'rmsprop': opt = tf.train.RMSPropOptimizer(learning_rate, FLAGS.rmsprop_decay, momentum=FLAGS.rmsprop_momentum, epsilon=FLAGS.rmsprop_epsilon) else: raise ValueError('Optimizer "%s" was not recognized', FLAGS.optimizer) self.variable_mgr.append_apply_gradients_ops( gradient_state, opt, clipped_grads, training_ops) train_op = tf.group(*(training_ops + update_ops + extra_nccl_ops)) with tf.device(self.cpu_device): if self.task_index == 0 and FLAGS.summary_verbosity > 0: tf.summary.scalar('learning_rate', learning_rate) tf.summary.scalar('total_loss', total_loss) for grad, var in avg_grads: if grad is not None: tf.summary.histogram(var.op.name + '/gradients', grad) for var in tf.trainable_variables(): tf.summary.histogram(var.op.name, var) fetches = [train_op, total_loss] + enqueue_ops return (enqueue_ops, fetches) def add_forward_pass_and_gradients( self, host_images, host_labels, nclass, phase_train, device_num, input_data_type, data_type, input_nchan, use_synthetic_gpu_images, gpu_copy_stage_ops, gpu_compute_stage_ops, gpu_grad_stage_ops):
tensorflow.summary.scalar
3,437
import tensorflow as tf if FLAGS.ckpt_no is not None and not tf.gfile.Exists(path_ckpt): with tf.gfile.GFile(path_ckpt, "w") as writer: writer.write('model_checkpoint_path: "%s-%s"\n' % (os.path.join(FLAGS.recover_dir, "model.ckpt"), str(FLAGS.ckpt_no))) writer.write('all_model_checkpoint_paths: "%s-%s"\n' % (os.path.join(FLAGS.recover_dir, "model.ckpt"), str(FLAGS.ckpt_no))) if FLAGS.ckpt_no_input is not None and not tf.gfile.Exists(path_ckpt_input): with tf.gfile.GFile(path_ckpt_input, "w") as writer: writer.write('model_checkpoint_path: "%s-%s"\n' % (os.path.join(FLAGS.recover_dir, "input.ckpt"), str(FLAGS.ckpt_no_input))) writer.write('all_model_checkpoint_paths: "%s-%s"\n' % (os.path.join(FLAGS.recover_dir, "input.ckpt"), str(FLAGS.ckpt_no_input))) if FLAGS.use_hvd and hvd.rank() == 0 and (FLAGS.do_train or FLAGS.do_train_eval):
tensorflow.gfile.Exists
3,438
from tensorflow.python.framework import ops ] cell = lambda: lstm_ops.LSTMBlockCell(num_units=num_units) # pylint: disable=cell-var-from-loop multi_cell = rnn_cell.MultiRNNCell( [cell() for _ in range(num_layers)]) outputs, final_state = core_rnn.static_rnn( multi_cell, inputs, dtype=dtypes.float32) trainable_variables = ops.get_collection( ops.GraphKeys.TRAINABLE_VARIABLES) gradients = gradients_impl.gradients([outputs, final_state], trainable_variables) training_op = control_flow_ops.group(*gradients) self._BenchmarkOp(training_op, "tf_rnn_lstm_block_cell %s %s" % (config_name, self._GetConfigDesc(config)))
tensorflow.python.framework.ops.get_collection
3,439
import tensorflow as tf element_shape=(facts[:, 0, :].get_shape())) _, output_op, _ = tf.while_loop(cond, body, [facts, output_ta, 0]) self_attention = output_op.stack() self_attention = tf.transpose(self_attention, perm = [1, 0, 2]) return self_attention def din_fcn_shine(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False): if isinstance(facts, tuple): # In case of Bi-RNN, concatenate the forward and the backward RNN outputs. facts = tf.concat(facts, 2) if time_major: # (T,B,D) => (B,T,D) facts = tf.array_ops.transpose(facts, [1, 0, 2]) # Trainable parameters mask = tf.equal(mask, tf.ones_like(mask)) facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer querry_size = query.get_shape().as_list()[-1]
tensorflow.concat
3,440
import tensorflow as tf if opt: # we have to hardcode the max batch size here! use the batch size from the generator as this will be used for PG N, CL = config.batch_size if not self.demo else config.batch_size, config.char_limit self.c_maxlen = tf.reduce_max(self.c_len) self.q_maxlen = tf.reduce_max(self.q_len) self.c = tf.slice(self.c, [0, 0], [N, self.c_maxlen]) self.q = tf.slice(self.q, [0, 0], [N, self.q_maxlen]) self.c_mask = tf.slice(self.c_mask, [0, 0], [N, self.c_maxlen]) self.q_mask = tf.slice(self.q_mask, [0, 0], [N, self.q_maxlen]) self.ch = tf.slice(self.ch, [0, 0, 0], [N, self.c_maxlen, CL]) self.qh = tf.slice(self.qh, [0, 0, 0], [N, self.q_maxlen, CL]) self.y1 = tf.argmax(tf.slice(self.y1, [0, 0], [N, self.c_maxlen]),axis=-1) self.y2 = tf.argmax(tf.slice(self.y2, [0, 0], [N, self.c_maxlen]),axis=-1) else: self.c_maxlen, self.q_maxlen = config.para_limit, config.ques_limit self.ch_len = tf.reshape(tf.reduce_sum( tf.cast(tf.cast(self.ch, tf.bool), tf.int32), axis=2), [-1]) self.qh_len = tf.reshape(tf.reduce_sum( tf.cast(tf.cast(self.qh, tf.bool), tf.int32), axis=2), [-1]) self.forward()
tensorflow.slice
3,441
import tensorflow as tf .FullyConnected('fct', out_dim=6, nl=tf.identity, W_init=tf.constant_initializer(), b_init=tf.constant_initializer([1, 0, HALF_DIFF, 0, 1, HALF_DIFF]))()) # output 6 parameters for affine transformation stn = tf.reshape(stn, [-1, 2, 3], name='affine') # bx2x3 stn = tf.reshape(tf.transpose(stn, [2, 0, 1]), [3, -1]) # 3 x (bx2) coor = tf.reshape(tf.matmul(xys, stn), [WARP_TARGET_SIZE, WARP_TARGET_SIZE, -1, 2])
tensorflow.reshape
3,442
import tensorflow as tf eval_config.num_steps = 1 with tf.Graph().as_default(): initializer = tf.random_uniform_initializer(-config.init_scale,
tensorflow.Graph
3,443
import tensorflow as tf kl_sum =tf.reduce_sum(kl_sum) assert_almost_equal(kl_sum.eval(), kl_batch.eval()) def tf_kl_1d(q_mu, q_sigma, p_var=1.0): p_var = tf.ones_like(q_sigma) if p_var is None else p_var q_var = tf.square(q_sigma) kl = 0.5 * (q_var / p_var + tf.square(q_mu) / p_var - 1 + tf.log(p_var / q_var)) return tf.reduce_sum(kl) @pytest.mark.parametrize('white', [True, False]) def test_oned(session_tf, white, mu, sqrt, K_batch): """ Check that the KL divergence matches a 1D by-hand calculation. """
tensorflow.reduce_sum
3,444
import tensorflow as tf self.labels = kwargs.pop("labels", "labels") @classmethod def from_tfrecord_files(cls, input_files, **kwargs) -> tf.data.Dataset: dataset = utils.read_tfrecord_files(input_files, **kwargs) d = cls(examples=None, **kwargs) # parse example features = { d.input_ids: tf.io.VarLenFeature(tf.int64), d.token_type_ids: tf.io.VarLenFeature(tf.int64), d.attention_mask: tf.io.VarLenFeature(tf.int64), d.labels: tf.io.VarLenFeature(tf.int64), } dataset = dataset.map( lambda x: tf.io.parse_example(x, features), num_parallel_calls=utils.AUTOTUNE,
tensorflow.io.VarLenFeature
3,445
import tensorflow as tf def gather_indexes(sequence_tensor, positions): """Gathers the vectors at the specific positions over a minibatch.""" sequence_shape = modeling.get_shape_list(sequence_tensor, expected_rank=3) batch_size = sequence_shape[0] seq_length = sequence_shape[1] width = sequence_shape[2] flat_offsets = tf.reshape( tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1]) flat_positions = tf.reshape(positions + flat_offsets, [-1]) flat_sequence_tensor = tf.reshape(sequence_tensor, [batch_size * seq_length, width]) output_tensor = tf.gather(flat_sequence_tensor, flat_positions) return output_tensor def input_fn_builder(input_files, max_seq_length,
tensorflow.range
3,446
import tensorflow as tf types = (types, np.bool) shapes = (shapes, tf.TensorShape([batch_size]))
tensorflow.TensorShape
3,447
import tensorflow as tf # 得到前景和背景anchor的index rpn_select = tf.where(tf.not_equal(rpn_label, -1)) rpn_cls_score = tf.reshape(tf.gather(rpn_cls_score, rpn_select), [-1, 2]) rpn_label = tf.reshape(tf.gather(rpn_label, rpn_select), [-1]) rpn_cross_entropy = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits(logits=rpn_cls_score, labels=rpn_label)) # RPN, bbox loss rpn_bbox_pred = self._predictions['rpn_bbox_pred'] rpn_bbox_targets = self._anchor_targets['rpn_bbox_targets'] rpn_bbox_inside_weights = self._anchor_targets['rpn_bbox_inside_weights'] rpn_bbox_outside_weights = self._anchor_targets['rpn_bbox_outside_weights']
tensorflow.nn.sparse_softmax_cross_entropy_with_logits
3,448
import tensorflow as tf Returns: l2_out: L2-normalized output tensor of shape [batch_size, 192] Hint: Parameter reuse indicates whether the inference graph should use parameter sharing or not. You can study how to implement parameter sharing in TensorFlow from the following sources: https://www.tensorflow.org/versions/r0.11/how_tos/variable_scope/index.html """ with tf.variable_scope('Siamese', reuse=reuse): ######################## # PUT YOUR CODE HERE # ######################## ######################## logits = self.__forward_pass(x, reuse) l2_out = tf.nn.l2_normalize(logits, dim=1) ########################
tensorflow.variable_scope
3,449
import tensorflow as tf pi_dropout_mask_generator = DropoutMaskGenerator(pi_in_dim, hidden_sizes, model_prob=1.0 - dropout_rate) pi_dropout_mask_phs = pi_dropout_mask_generator.generate_dropout_mask_placeholders() pi, pi_reg = mlp_variational(x, pi_dropout_mask_phs, list(hidden_sizes) + [act_dim], activation, output_activation, dropout_rate) pi = act_limit * pi with tf.variable_scope('q1'): q1_in_ph = tf.concat([x, a], axis=-1) q1_in_dim = q1_in_ph.shape.as_list()[1] q1_dropout_mask_generator = DropoutMaskGenerator(q1_in_dim, hidden_sizes, model_prob=1.0 - dropout_rate) q1_dropout_mask_phs = q1_dropout_mask_generator.generate_dropout_mask_placeholders()
tensorflow.variable_scope
3,450
import tensorflow as tf dilations=(1, dilation, dilation, 1)) x = x * mask_ratio if use_bias: bias = tf.get_variable("bias" + id, [channels], initializer=tf.constant_initializer(0.0)) x = tf.nn.bias_add(x, bias) return x * update_mask x = tf.nn.conv2d(input, filters, strides=[1, stride, stride, 1], padding=padding, name='zero-conv_' + id,
tensorflow.nn.bias_add
3,451
import tensorflow as tf 'use_ohkm', True, 'Wether we will use the ohkm for hard keypoints.') tf.app.flags.DEFINE_string( 'data_format', 'channels_first', # 'channels_first' or 'channels_last' 'A flag to override the data format used in the model. channels_first ' 'provides a performance boost on GPU but is not always compatible ' 'with CPU. If left unspecified, the data format will be chosen ' 'automatically based on whether TensorFlow was built for CPU or GPU.') # optimizer related configuration tf.app.flags.DEFINE_integer( 'tf_random_seed', 20180417, 'Random seed for TensorFlow initializers.') tf.app.flags.DEFINE_float( 'weight_decay', 1e-5, 'The weight decay on the model weights.') tf.app.flags.DEFINE_float( 'mse_weight', 1., 'The weight decay on the model weights.') tf.app.flags.DEFINE_float( 'momentum', 0.9, 'The momentum for the MomentumOptimizer and RMSPropOptimizer.') tf.app.flags.DEFINE_float('learning_rate', 1e-4, 'Initial learning rate.')#1e-3 tf.app.flags.DEFINE_float( 'end_learning_rate', 0.000001, 'The minimal end learning rate used by a polynomial decay learning rate.') tf.app.flags.DEFINE_float( 'warmup_learning_rate', 0.00001, 'The start warm-up learning rate to avoid NAN.') tf.app.flags.DEFINE_integer(
tensorflow.app.flags.DEFINE_float
3,452
import tensorflow as tf repeat_op_sq = tf.square((repeat_op - tf.transpose(repeat_op))) weights = repeat_op_sq / tf.to_float((num_ratings - 1)**2) pred_ = predictions**y_pow try: pred_norm = pred_ / \ (eps + tf.reshape(tf.reduce_sum(pred_, 1), [-1, 1])) except Exception: pred_norm = pred_ / \ (eps + tf.reshape(tf.reduce_sum(pred_, 1), [batch_size, 1])) hist_rater_a = tf.reduce_sum(pred_norm, 0) hist_rater_b = tf.reduce_sum(labels, 0) conf_mat = tf.matmul(tf.transpose(pred_norm), labels) nom = tf.reduce_sum(weights * conf_mat) denom = tf.reduce_sum(weights * tf.matmul( tf.reshape(hist_rater_a, [num_ratings, 1]), tf.reshape(hist_rater_b, [1, num_ratings])) / tf.to_float(batch_size)) try:
tensorflow.reduce_sum
3,453
import tensorflow as tf >>> m.optimize(X, Y, 'L-BFGS-B', disp=False, ftol=.0001) message: 'SciPy optimizer completed successfully.' success: True x: array([...]) >>> print("m.a: {:.3f}".format(np.asscalar(m.a.value))) m.a: 0.001 >>> print("m.b: {:.3f}".format(np.asscalar(m.b.value))) m.b: 1.000 """ X_key = X if isinstance(X, tf.Tensor) else None Y_key = Y if isinstance(Y, tf.Tensor) else None key = ("_Model__loss", X_key, Y_key) if key not in self.cache: X_tensor = (X if isinstance(X, tf.Tensor) else tf.placeholder(tf.as_dtype(X.dtype))) Y_tensor = (Y if isinstance(Y, tf.Tensor) else tf.placeholder(tf.as_dtype(Y.dtype))) self.cache[key] = (self._compile_loss(X_tensor, Y_tensor), X_tensor, Y_tensor) loss, X_tensor, Y_tensor = self.cache[key] feed_dict = self.feed_dict if not isinstance(X, tf.Tensor): feed_dict[X_tensor] = X if not isinstance(Y, tf.Tensor): feed_dict[Y_tensor] = Y variables = [p.free_state for p in self.params if not p.fixed] variables = utils.unique(variables) free_state = tf.concat(0, [tf.reshape(v, [-1]) for v in variables])
tensorflow.as_dtype
3,454
from tensorflow.python.ops import variables burn_in_steps = 10 benchmark_steps = 40 with session.Session() as sess: sess.run(variables.global_variables_initializer()) for i in xrange(burn_in_steps + benchmark_steps): if i == burn_in_steps:
tensorflow.python.ops.variables.global_variables_initializer
3,455
import tensorflow as tf tf.summary.histogram(v.name[:-2] + '_hist', v) tf.summary.histogram(v.name[:-2] + '_grad_hist', g) with tf.control_dependencies([train_op]), tf.name_scope('ema'): ema = tf.train.ExponentialMovingAverage(decay=MOVING_AVERAGE_DECAY, num_updates=global_step) train_op = ema.apply(tf.trainable_variables()) return tf.estimator.EstimatorSpec(mode, loss=total_loss, train_op=train_op) def add_weight_decay(weight_decay): """Add L2 regularization to all (or some) trainable kernel weights.""" weight_decay = tf.constant( weight_decay, tf.float32, [], 'weight_decay' ) trainable_vars = tf.trainable_variables() kernels = [ v for v in trainable_vars if ('weights' in v.name or 'kernel' in v.name) and 'depthwise_weights' not in v.name ] for K in kernels: x = tf.multiply(weight_decay, tf.nn.l2_loss(K)) tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, x)
tensorflow.constant
3,456
from tensorflow.contrib.learn.python.learn.datasets import base validation = DataSet(validation_images, validation_labels, dtype=dtype, reshape=reshape) test = DataSet(test_images, test_labels, dtype=dtype, reshape=reshape) return base.Datasets(train=train, validation=validation, test=test) def load_mnist(): return read_data_sets('MNIST_data')
tensorflow.contrib.learn.python.learn.datasets.base.Datasets
3,457
import tensorflow as tf height = shape[0] width = shape[1] height_assert = tf.Assert( tf.equal(height, image_height), ['Wrong height for tensor %s [expected][actual]', image.name, height, image_height]) width_assert = tf.Assert( tf.equal(width, image_width), ['Wrong width for tensor %s [expected][actual]', image.name, width, image_width]) asserts.extend([height_assert, width_assert]) # Create a random bounding box. # # Use tf.random_uniform and not numpy.random.rand as doing the former would
tensorflow.equal
3,458
import tensorflow as tf # Save the initialized values in the file at "save_path" val = save.save(sess, save_path) self.assertTrue(isinstance(val, six.string_types)) self.assertEqual(save_path, val) # Start a second session. In that session the variables # have not been initialized either. with self.test_session(graph=tf.Graph()) as sess: v0 = tf.Variable(-1.0, name="v0") v1 = tf.Variable(-1.0, name="v1") save = tf.train.Saver([v0, v1]) with self.assertRaisesWithPredicateMatch( tf.OpError, lambda e: "uninitialized value v0" in e.message):
tensorflow.Graph
3,459
from tensorflow.python.ops import math_ops predictions_2d = array_ops.reshape(predictions, [-1, 1]) labels_2d = array_ops.reshape( math_ops.cast(labels, dtype=dtypes.bool), [1, -1])
tensorflow.python.ops.math_ops.cast
3,460
import tensorflow as tf def testEmbeddingTiedRNNSeq2Seq(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): enc_inp = [tf.constant(1, tf.int32, shape=[2]) for i in range(2)] dec_inp = [tf.constant(i, tf.int32, shape=[2]) for i in range(3)] cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True) dec, mem = tf.nn.seq2seq.embedding_tied_rnn_seq2seq( enc_inp, dec_inp, cell, num_symbols=5, embedding_size=2) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 5), res[0].shape) res = sess.run([mem]) self.assertEqual((2, 2), res[0].c.shape) self.assertEqual((2, 2), res[0].h.shape)
tensorflow.global_variables_initializer
3,461
import tensorflow as tf tgt_posi_dif = tf.where(geq, tgt_dif, -tgt_dif) pred_posi_dif = tf.where(geq, pred_dif, -pred_dif) loss = tf.maximum(0., tgt_posi_dif - pred_posi_dif) cstr_pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.cast(tf.reduce_prod(tf.shape(loss)), tf.float32) unorm_w = tf.exp((tgt_flat1 + tgt_flat2)/temp) loss = unorm_w * loss / (tf.reduce_sum(unorm_w)) a = tf.print(tf.reduce_sum(unorm_w)) with tf.control_dependencies([a]): final_loss = tf.reduce_sum(loss) return final_loss, cstr_pct def contra_traj_lossV8(pred, tgt, horizon=12): horizon_pred, horizon_tgt = horizon_sumV1(pred, horizon), horizon_sumV1(tgt, horizon) # horizon_pred, horizon_tgt = horizon_sumV2(pred, tgt, horizon) horizon_pred1, horizon_pred2 = tf.split(horizon_pred, 2, axis=0) horizon_tgt1, horizon_tgt2 = tf.split(horizon_tgt, 2, axis=0) pred_flat1, pred_flat2 = tf.reshape(horizon_pred1, [-1, 1]), tf.reshape(horizon_pred2, [1, -1]) tgt_flat1, tgt_flat2 = tf.reshape(horizon_tgt1, [-1, 1]), tf.reshape(horizon_tgt2, [1, -1])
tensorflow.reduce_sum
3,462
import tensorflow as tf def get_variables(self): return {'w':self.w,'b':self.b} class DilatedConv3D(object) : def __init__(self,name,input_dim,output_dim,k_t=2,k_h=3,k_w=3,d_t=2,d_h=1,d_w=1, stddev=0.02, data_format='NDHWC') : with tf.variable_scope(name) : assert(data_format == 'NDHWC') self.w = tf.get_variable('w', [k_t, k_h, k_w, input_dim, output_dim], initializer=tf.truncated_normal_initializer(stddev=stddev)) self.b = tf.get_variable('b',[output_dim], initializer=tf.constant_initializer(0.0)) self.strides = [1,1,1]
tensorflow.variable_scope
3,463
from tensorflow.python.framework import ops TypeError: If `x` and `y` have different dtypes. """ with ops.op_scope([x, y], name, "truediv") as name: x = ops.convert_to_tensor(x, name="x")
tensorflow.python.framework.ops.op_scope
3,464
import tensorflow as tf if __name__ == "__main__": tf.test.main()
tensorflow.test.main
3,465
import tensorflow as tf Returns: A transformed tensor (tf.float32). """ with tf.variable_scope('_interpolate'): num_batch = im.get_shape().as_list()[0] depth = im.get_shape().as_list()[1] height = im.get_shape().as_list()[2] width = im.get_shape().as_list()[3] channels = im.get_shape().as_list()[4] x = tf.to_float(x) y = tf.to_float(y) z = tf.to_float(z) depth_f = tf.to_float(depth) height_f = tf.to_float(height) width_f = tf.to_float(width) # Number of disparity interpolated. out_depth = out_size[0] out_height = out_size[1] out_width = out_size[2] zero = tf.zeros([], dtype='int32') # 0 <= z < depth, 0 <= y < height & 0 <= x < width.
tensorflow.to_float
3,466
import tensorflow as tf G = tf.Print( self.end_points_G['softmax'], [tf.reduce_mean(G_means), tf.reduce_mean(G_vars)], "generator mean and average var",
tensorflow.reduce_mean
3,467
import tensorflow as tf y_ = tf.placeholder(tf.float32, [None, FLAGS.num_classes]) # Whether model is training train = tf.placeholder(tf.bool, []) # Build the graph for the deep net y_conv, img_summary = deepnn(x, train) # Define your loss function - softmax_cross_entropy with tf.variable_scope('x_entropy'): cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv)) # Define your AdamOptimiser, using FLAGS.learning_rate to minimixe the loss function decayed_learning_rate = tf.train.exponential_decay(FLAGS.learning_rate, tf.Variable(0, trainable=False), 1000, 0.8) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): optimiser = tf.train.AdamOptimizer(decayed_learning_rate, name="Adam").minimize(cross_entropy) # calculate the prediction and the accuracy accuracy, acc_op = tf.metrics.accuracy(labels=tf.argmax(y_, axis=1), predictions=tf.argmax(y_conv, axis=1)) loss_summary = tf.summary.scalar('Loss', cross_entropy) acc_summary = tf.summary.scalar('Accuracy', accuracy) # summaries for TensorBoard visualisation validation_summary = tf.summary.merge([img_summary, acc_summary]) training_summary = tf.summary.merge([img_summary, loss_summary]) test_summary = tf.summary.merge([img_summary, acc_summary])
tensorflow.control_dependencies
3,468
import tensorflow as tf + self.b_out else: new_output = tf.matmul(tf.nn.relu(new_state), self.W_out * self.output_Connectivity, transpose_b=True, name="3") \ + self.b_out return new_output def rnn_step_scan(self, state, rnn_in): if self.dale_ratio: new_state = (1-self.alpha) * state \ + self.alpha * ( tf.matmul( tf.nn.relu(state), tf.matmul( tf.abs(self.W_rec) * self.rec_Connectivity, self.Dale_rec, name="in_1"), transpose_b=True, name="1") + tf.matmul( rnn_in, tf.abs(self.W_in) * self.input_Connectivity, transpose_b=True, name="2") + self.b_rec) \ + np.sqrt(2.0 * self.alpha * self.rec_noise * self.rec_noise)\ * tf.random_normal(state.get_shape(), mean=0.0, stddev=1.0) else: new_state = ((1 - self.alpha) * state) \
tensorflow.nn.relu
3,469
import tensorflow as tf mu,var = tf.nn.moments(t,axes=[0,1,2]) std = tf.sqrt(var+self.epsilon) return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)] require_init = tf.reduce_any(tf.is_nan(self.g)) init_ops = tf.cond(require_init,_init,lambda : [self.g,self.b]) with tf.control_dependencies(init_ops): w = tf.reshape(self.g,[1,1,tf.shape(self.v)[2],1]) * tf.nn.l2_normalize(self.v,axis=[0,1,3]) return tf.nn.bias_add( tf.nn.conv2d_transpose(input_var,w, output_shape=shapes, strides=self.strides, padding='SAME', data_format='NHWC'), self.b,data_format='NHWC',name=name) def get_variables(self): #TODO: self.v should be l2-normalized or not? / currently not. return {'v':self.v,'b':self.b,'g':self.g}
tensorflow.nn.conv2d_transpose
3,470
import tensorflow as tf input_shape = [batch_size, image_size, image_size, input_nchan] images = tf.truncated_normal( input_shape, dtype=input_data_type, stddev=1e-1, name='synthetic_images') labels = tf.random_uniform( [batch_size], minval=1, maxval=nclass, dtype=tf.int32, name='synthetic_labels') # Note: This results in a H2D copy, but no computation # Note: This avoids recomputation of the random values, but still # results in a H2D copy. images = tf.contrib.framework.local_variable(images, name='images') labels = tf.contrib.framework.local_variable(labels, name='labels') # Change to 0-based (don't use background class like Inception does) labels -= 1 if num_compute_devices == 1: images_splits = [images] labels_splits = [labels] else: images_splits = tf.split(images, num_compute_devices, 0) labels_splits = tf.split(labels, num_compute_devices, 0) return nclass, images_splits, labels_splits def create_config_proto(): config = tf.ConfigProto()
tensorflow.contrib.framework.local_variable
3,471
import tensorflow as tf def lnlstm(xs, ms, s, scope, nh, init_scale=1.0): nbatch, nin = [v.value for v in xs[0].get_shape()] with tf.variable_scope(scope): wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(init_scale)) gx = tf.get_variable("gx", [nh*4], initializer=tf.constant_initializer(1.0)) bx = tf.get_variable("bx", [nh*4], initializer=tf.constant_initializer(0.0)) wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init(init_scale)) gh = tf.get_variable("gh", [nh*4], initializer=tf.constant_initializer(1.0)) bh = tf.get_variable("bh", [nh*4], initializer=tf.constant_initializer(0.0))
tensorflow.constant_initializer
3,472
import tensorflow as tf geq = tf.cast(tgt_dif > 0, tf.bool) tgt_posi_dif = tf.where(geq, tgt_dif, -tgt_dif) pred_posi_dif = tf.where(geq, pred_dif, -pred_dif) loss = tf.maximum(0., tgt_posi_dif - pred_posi_dif)
tensorflow.where
3,473
import tensorflow as tf writer.close() def file_based_input_fn_builder(input_file, seq_length, is_training, drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" name_to_features = { "input_ids": tf.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length], tf.int64), "label_ids": tf.FixedLenFeature([], tf.int64), "is_real_example": tf.FixedLenFeature([], tf.int64), } def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.parse_single_example(record, name_to_features)
tensorflow.FixedLenFeature
3,474
import tensorflow as tf learning_rate = 0.0001 logging.info(" lambda_l2_w: %f" % lambda_l2_w) logging.info(" learning_rate: %f" % learning_rate) # Mean-square-error i.e. quadratic-cost mse = tf.reduce_sum(tf.squared_difference(y, x_recon), 1) mse = tf.reduce_mean(mse) # in theano: mse = ((y - x) ** 2 ).sum(axis=1).mean() # mse = tf.reduce_mean(tf.reduce_sum(tf.square(tf.sub(y, x_recon)), 1)) # mse = tf.reduce_mean(tf.squared_difference(y, x_recon)) # <haodong>: Error # mse = tf.sqrt(tf.reduce_mean(tf.square(y - x_recon))) # <haodong>: Error # Cross-entropy # ce = cost.cross_entropy(y, x_recon) # <haodong>: list , list , Error (only be used for softmax output) # ce = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y, x_recon)) # <haodong>: list , list , Error (only be used for softmax output) # ce = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(y, x_recon)) # <haodong>: list , index , Error (only be used for softmax output) L2_w = tf.contrib.layers.l2_regularizer(lambda_l2_w)(self.train_params[0]) \ + tf.contrib.layers.l2_regularizer(lambda_l2_w)(self.train_params[2]) # faster than the code below # L2_w = lambda_l2_w * tf.reduce_mean(tf.square(self.train_params[0])) + lambda_l2_w * tf.reduce_mean( tf.square(self.train_params[2])) # DropNeuro # P_o = cost.lo_regularizer(0.03)( # self.train_params[0]) # + cost.lo_regularizer(0.5)(self.train_params[2]) # <haodong>: if add lo on decoder, no neuron will be broken # P_i = cost.li_regularizer(0.03)(self.train_params[0]) # + cost.li_regularizer(0.001)(self.train_params[2]) # L1 of activation outputs activation_out = self.all_layers[-2] L1_a = 0.001 * tf.reduce_mean(activation_out) # <haodong>: theano: T.mean( self.a[i] ) # some neuron are broken, white and black # L1_a = 0.001 * tf.reduce_mean( tf.reduce_sum(activation_out, 0) ) # <haodong>: some neuron are broken, white and black # L1_a = 0.001 * 100 * tf.reduce_mean( tf.reduce_sum(activation_out, 1) ) # <haodong>: some neuron are broken, white and black
tensorflow.contrib.layers.l2_regularizer
3,475
import tensorflow as tf @gin.configurable(module='trax.data', denylist=['dataset', 'training']) def wmt_concat_preprocess(dataset, training, max_length=-1, max_eval_length=-1): """Preprocessing for WMT: filter exceeding maximum length and concatenate.""" dataset = wmt_preprocess(dataset, training, max_length, max_eval_length) def concat_and_add_mask(features, targets): inp = features['inputs'] pad = tf.expand_dims(tf.zeros_like(inp[0]), axis=0) concat = tf.concat([inp, pad, targets], axis=0) mask = tf.concat([tf.zeros_like(inp), pad, tf.ones_like(targets)], axis=0) features['inputs'] = concat features['mask'] = mask return features, concat dataset = dataset.map(concat_and_add_mask) return dataset
tensorflow.zeros_like
3,476
import tensorflow as tf s = tf.shape(x) sh = x.get_shape().as_list() x = tf.reshape(x, [tf.reduce_prod(s[:-1]), sh[-1]]) x = dense(x, num_units, **kwargs) return tf.reshape(x, [-1] + sh[1:-1] + [num_units]) def dense(x, num_units, scope="dense", training=True, ema=None, init=False, bias_initializer=tf.constant_initializer(0.)): with tf.variable_scope(scope): V = tf.get_variable('V', shape=[int(x.get_shape()[1]), num_units], dtype=tf.float32, initializer=tf.random_normal_initializer(0, 0.05), trainable=True) g = tf.get_variable('g', shape=[num_units], dtype=tf.float32, initializer=tf.constant_initializer(1.), trainable=True) b = tf.get_variable('b', shape=[num_units], dtype=tf.float32, initializer=bias_initializer, trainable=True) def maybe_avg(v): if ema is not None and not init: v = tf.cond(training, lambda: v, lambda: ema.average(v)) return v if init: x = tf.matmul(x, tf.nn.l2_normalize(V.initialized_value(), 0))
tensorflow.constant_initializer
3,477
import tensorflow as tf # or GPU. estimator = tf.contrib.tpu.TPUEstimator(
tensorflow.contrib.tpu.TPUEstimator
3,478
import tensorflow as tf else: tf.set_random_seed(i) np.random.seed(i) random.seed(i) def get_session(): tf.reset_default_graph() tf_config = tf.ConfigProto( inter_op_parallelism_threads=1, intra_op_parallelism_threads=1) session = tf.Session(config=tf_config) print("AVAILABLE GPUS: ", get_available_gpus()) return session def get_env(env_id, seed): env = gym.make(env_id) set_global_seeds(seed) env.seed(seed)
tensorflow.Session
3,479
from tensorflow.python.ops import math_ops def _event_shape(self): return constant_op.constant([], dtype=dtypes.int32) def _get_event_shape(self): return tensor_shape.scalar() def _sample_n(self, n, seed=None): """See the documentation for tf.random_gamma for more details.""" return 1. / random_ops.random_gamma([n], self.alpha, beta=self.beta, dtype=self.dtype, seed=seed) def _log_prob(self, x): x = control_flow_ops.with_dependencies([check_ops.assert_positive(x)] if self.validate_args else [], x) return (self.alpha * math_ops.log(self.beta) - math_ops.lgamma(self.alpha) - (self.alpha + 1.) * math_ops.log(x) - self.beta / x) def _prob(self, x): return math_ops.exp(self._log_prob(x)) def _log_cdf(self, x): return math_ops.log(self._cdf(x)) def _cdf(self, x): x = control_flow_ops.with_dependencies([check_ops.assert_positive(x)] if self.validate_args else [], x) # Note that igammac returns the upper regularized incomplete gamma # function Q(a, x), which is what we want for the CDF.
tensorflow.python.ops.math_ops.log
3,480
import tensorflow as tf os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, device_count={'GPU': gpu}) config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = 0.5 # Placeholders self.sess = tf.Session(config=config) self.s_dim, self.a_dim = env.observation_space.shape, env.action_space.shape[0] self.a_bound = (env.action_space.high - env.action_space.low) / 2 self.actions = tf.placeholder(tf.float32, [None, self.a_dim], 'action') self.state = tf.placeholder(tf.float32, [None, self.s_dim[0]], 'state') self.advantage = tf.placeholder(tf.float32, [None, 1], 'advantage') self.rewards = tf.placeholder(tf.float32, [None, 1], 'discounted_r') # Dateset with experiennce replay self.dataset = tf.data.Dataset.from_tensor_slices({'state': self.state, 'actions': self.actions, 'rewards': self.rewards, 'advantage': self.advantage}) self.dataset = self.dataset.shuffle(buffer_size=10000) self.dataset = self.dataset.batch(self.MINIBATCH) self.dataset = self.dataset.cache() self.dataset = self.dataset.repeat(self.EPOCHS) self.data_iter = self.dataset.make_initializable_iterator() batch = self.data_iter.get_next() # Call ppo net pi_old, pi_old_params = self.build_anet(batch['state'], 'oldpi') pi, pi_params = self.build_anet(batch['state'], 'pi') pi_eval, _ = self.build_anet(self.state, 'pi', reuse=True)
tensorflow.data.Dataset.from_tensor_slices
3,481
import tensorflow as tf neg_dist = tf.reduce_sum(tf.square(tf.subtract(anchor, negative)), 1) basic_loss = tf.add(tf.subtract(pos_dist, neg_dist), alpha) loss = tf.reduce_mean(tf.maximum(basic_loss, 0.0), 0) return loss
tensorflow.maximum
3,482
import tensorflow as tf self.grads_and_vars = self._optimizer.compute_gradients(total_loss) # clip gradients clipped_grads_and_vars = self._clip_gradients(self.grads_and_vars, self._grad_clipping_tuple) # compute norms in case they need to be logged self.gradient_norms = [tf.norm(g) + NUMTOL for (g, v) in clipped_grads_and_vars] self.weight_norms = [tf.norm(v) + NUMTOL for (g, v) in clipped_grads_and_vars] # check that gradients are finite grads = [tf.check_numerics(g, "grads is not finite") for (g, v) in clipped_grads_and_vars] variables = [tf.check_numerics(v, "grads is not finite") for (g, v) in clipped_grads_and_vars] self.gradient_weight_global_norms = [tf.global_norm(grads), tf.global_norm(variables)] # 2nd part of minimize: apply_gradient optimizer_step = self._optimizer.apply_gradients(clipped_grads_and_vars, global_step=self.global_step) update_ops = tf.group(*self.update_ops) self.training_op = tf.group(update_ops, optimizer_step) def set_check_ops(self): self._check_ops = 1
tensorflow.global_norm
3,483
import tensorflow as tf def main(): if not tf.io.gfile.exists(a.output_dir): tf.io.gfile.makedirs(a.output_dir)
tensorflow.io.gfile.exists
3,484
import tensorflow as tf """ sess = tf.get_default_session() if variables is None: variables = tf.global_variables() else: variables = list(variables) if len(variables) == 0: return [] if semver.match(tf.__version__, '<1.0.0'): init_flag = sess.run( tf.pack([tf.is_variable_initialized(v) for v in variables])) else: init_flag = sess.run( tf.stack([tf.is_variable_initialized(v) for v in variables])) return [v for v, f in zip(variables, init_flag) if not f] def get_hard_target_model_updates(target, source): """Return list of target model update ops. These are hard target updates. The source weights are copied directly to the target network. Parameters ---------- target: keras.models.Model The target model. Should have same architecture as source model.
tensorflow.is_variable_initialized
3,485
import tensorflow as tf metrics = self.evaluate('validation', mute=True) tf.logging.info( 'Iter {:4d}: loss {:.4f}'.format(i, loss) + ''.join([', {} {:.4f}'.format(m, metrics[m]) for m in metrics])) if output_dir is not None: train_writer.add_summary(summaries, i) metrics_summaries = tf.Summary(value=[ tf.Summary.Value(tag=m, simple_value=v) for m, v in metrics.items()]) train_writer.add_summary(metrics_summaries, i) tf.logging.info('Training finished') def predict(self, data, keys='*', batch=False): assert set(data.keys()) >= set(self.data_shape.keys()) if isinstance(keys, str): if keys == '*': op = self.pred_out # just gather all outputs else: op = self.pred_out[keys] else: op = {k: self.pred_out[k] for k in keys}
tensorflow.logging.info
3,486
import tensorflow as tf # approximately as (ignoring boundary issues and initial_value): # # cumsum(decay_prods * sequence) / decay_prods # where decay_prods = reverse_cumprod(decay) # # One reason this hasn't been done is that multiplying then dividing again by # products of decays isn't ideal numerically, in particular if any of the # decays are zero it results in NaNs. with tf.name_scope(name, values=[sequence, decay, initial_value]): if sequence_lengths is not None: # Zero out sequence and decay beyond sequence_lengths. with tf.control_dependencies( [tf.assert_equal(sequence.shape[0], decay.shape[0])]): mask = tf.sequence_mask(sequence_lengths, maxlen=sequence.shape[0], dtype=sequence.dtype) mask = tf.transpose(mask)
tensorflow.name_scope
3,487
import tensorflow as tf multiple sorted values. Default to 10 intervals over the 0-1 range, or find the min/max if an int is provided (not recommended because multi-phase analysis is inefficient). categorical: (Optional) A `bool` that treats `x` as discrete values if true. name: (Optional) A name for this operation. Returns: counts: The histogram, as counts per bin. boundaries: A `Tensor` used to build the histogram representing boundaries. """ with tf.compat.v1.name_scope(name, 'histogram'): x = tf.reshape(tf_utils.get_values(x), [-1]) if categorical: x_dtype = x.dtype x = x if x_dtype == tf.string else tf.strings.as_string(x) elements, counts = count_per_key(x) if x_dtype != elements.dtype: elements = tf.strings.to_number(elements, tf.int64) return counts, elements if boundaries is None:
tensorflow.compat.v1.name_scope
3,488
import tensorflow as tf d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag) d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]]) scores = d_layer_3_all # Mask if mask is not None: # key_masks = tf.sequence_mask(facts_length, tf.shape(facts)[1]) # [B, T] key_masks = tf.expand_dims(mask, 1) # [B, 1, T] paddings = tf.ones_like(scores) * (-2 ** 32 + 1) if not forCnn: scores = tf.where(key_masks, scores, paddings) # [B, 1, T] # Scale # scores = scores / (facts.get_shape().as_list()[-1] ** 0.5)
tensorflow.ones_like
3,489
import tensorflow as tf Args: config: A `DeploymentConfig` object. model_fn: A callable. Called as `model_fn(*args, **kwargs)` args: Optional list of arguments to pass to `model_fn`. kwargs: Optional list of keyword arguments to pass to `model_fn`. optimizer: Optional `Optimizer` object. If passed the model is deployed for training with that optimizer. summarize_gradients: Whether or not add summaries to the gradients. Returns: A `DeployedModel` namedtuple. """ # Gather initial summaries. summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES)) # Create Clones. clones = create_clones(config, model_fn, args, kwargs) first_clone = clones[0] # Gather update_ops from the first clone. These contain, for example, # the updates for the batch_norm variables created by model_fn. update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone.scope) train_op = None total_loss = None with tf.device(config.optimizer_device()): if optimizer: # Place the global step on the device storing the variables.
tensorflow.get_collection
3,490
import tensorflow as tf self.compute_shape(l2_shape[3], self.ff_pool_strides[1][2]), final_dim] else: l2_shape = tf.identity(x_shape) # Initialize hidden layer activities if self.hidden_init == 'identity': l1_h2 = tf.identity(x) l2_h2 = tf.zeros(l2_shape, dtype=self.dtype) l3_h2 = tf.zeros(l3_shape, dtype=self.dtype) elif self.hidden_init == 'random': l1_h2 = tf.random_normal(x_shape, dtype=self.dtype) l2_h2 = tf.random_normal(l2_shape, dtype=self.dtype) l3_h2 = tf.random_normal(l3_shape, dtype=self.dtype) elif self.hidden_init == 'zeros': l1_h2 = tf.zeros(x_shape, dtype=self.dtype) l2_h2 = tf.zeros(l2_shape, dtype=self.dtype) l3_h2 = tf.zeros(l3_shape, dtype=self.dtype) else: raise RuntimeError # While loop elems = [ i0, x, l1_h2,
tensorflow.random_normal
3,491
import tensorflow as tf keepdims: A boolean, whether to keep the dimensions or not. If keepdims is False, the rank of the tensor is reduced by 1 for each entry in axis. If keep_dims is True, the reduced dimensions are retained with length 1. Returns ------- A tensor with the mean of elements of x. """ axis = _normalize_axis(axis, get_ndim(x)) if x.dtype.base_dtype == tf.bool: x = tf.cast(x, tf.float32) return tf.reduce_mean(x, axis=axis, keep_dims=keepdims) def dot(x, y): """Multiplies 2 tensors (and/or variables) and returns a *tensor*. When attempting to multiply a ND tensor with a ND tensor, it reproduces the Theano behavior. (e.g. (2, 3).(4, 3, 5) = (2, 4, 5)) Parameters ---------- x: Tensor or variable.
tensorflow.reduce_mean
3,492
import tensorflow as tf grads = optimizer.compute_gradients(loss_val, var_list=var_list) if FLAGS.debug: # print(len(var_list)) for grad, var in grads: utils.add_gradient_summary(grad, var) return optimizer.apply_gradients(grads) def train_z(loss,Z): return tf.gradients(ys = loss, xs = Z) def main(argv=None): keep_probability = tf.placeholder(tf.float32, name="keep_probabilty") image = tf.placeholder(tf.float32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 3], name="input_image") annotation = tf.placeholder(tf.float32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 3], name="annotation") z = tf.placeholder(tf.float32, shape=[None, 4, 4, 128], name="z") # pred_annotation, logits = inference(image, keep_probability,z) # tf.summary.image("input_image", image, max_outputs=2) # tf.summary.image("ground_truth", tf.cast(annotation, tf.uint8), max_outputs=2) # tf.summary.image("pred_annotation", tf.cast(pred_annotation, tf.uint8), max_outputs=2) # loss = tf.reduce_mean((tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, # labels=tf.squeeze(annotation, squeeze_dims=[3]), # name="entropy")))
tensorflow.placeholder
3,493
import tensorflow as tf # Initialize session sess = tf.Session() sess.run(tf.global_variables_initializer())
tensorflow.Session
3,494
import tensorflow as tf if param_noise: act_f = build_act_with_param_noise(make_obs_ph, q_func, num_actions, scope=scope, reuse=reuse, param_noise_filter_func=param_noise_filter_func) else: act_f = build_act(make_obs_ph, q_func, num_actions, scope=scope, reuse=reuse) with tf.variable_scope(scope, reuse=reuse): # set up placeholders obs_t_input = U.ensure_tf_input(make_obs_ph("obs_t")) act_t_ph = tf.placeholder(tf.int32, [None], name="action") rew_t_ph = tf.placeholder(tf.float32, [None], name="reward") obs_tp1_input = U.ensure_tf_input(make_obs_ph("obs_tp1"))
tensorflow.variable_scope
3,495
import tensorflow as tf reg += self.L1_in * tf.reduce_mean(tf.abs(self.W_in) * self.input_Connectivity) reg += self.L1_rec * tf.reduce_mean(tf.abs(self.W_rec) * self.rec_Connectivity) if self.dale_ratio: reg += self.L1_out * tf.reduce_mean(tf.matmul(tf.abs(self.W_out) * self.output_Connectivity, self.Dale_out)) else: reg += self.L1_out * tf.reduce_mean(tf.abs(self.W_out) * self.output_Connectivity) # L2 weight regularization reg += self.L2_in * tf.reduce_mean(tf.square(tf.abs(self.W_in) * self.input_Connectivity)) reg += self.L2_rec * tf.reduce_mean(tf.square(tf.abs(self.W_rec) * self.rec_Connectivity))
tensorflow.abs
3,496
import tensorflow as tf labels=gtboxes_and_label_h[0, :, -1], method=0) tf.summary.image('Compare/gtboxes_h_gpu:%d' % i, gtboxes_in_img_h) if cfgs.ADD_BOX_IN_TENSORBOARD: detections_in_img = self.drawer.draw_boxes_with_categories_and_scores( img_batch=tf.expand_dims(img[0, :, :, :], axis=0), boxes=outputs[0], scores=outputs[1], labels=outputs[2], method=2) tf.summary.image('Compare/final_detection_gpu:%d' % i, detections_in_img) loss_dict = outputs[-1] total_loss_dict, total_losses = self.loss_dict(loss_dict, num_gpu) if i == num_gpu - 1: regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) # weight_decay_loss = tf.add_n(slim.losses.get_regularization_losses()) total_losses = total_losses + tf.add_n(regularization_losses)
tensorflow.summary.image
3,497
import tensorflow as tf seq_len=self.q_len, scope="Encoder_Residual_Block", reuse=True, # Share the weights between passage and question bias=False, dropout=self.dropout) def _fuse(self): with tf.variable_scope("Context_to_Query_Attention_Layer"): C = tf.tile(tf.expand_dims(self.c_embed_encoding, 2), [1, 1, self.max_q_len, 1]) Q = tf.tile(tf.expand_dims(self.q_embed_encoding, 1), [1, self.max_p_len, 1, 1]) S = trilinear([C, Q, C * Q], input_keep_prob=1.0 - self.dropout) mask_q = tf.expand_dims(self.q_mask, 1) S_ = tf.nn.softmax(mask_logits(S, mask=mask_q)) mask_c = tf.expand_dims(self.c_mask, 2) S_T = tf.transpose(tf.nn.softmax(mask_logits(S, mask=mask_c), dim=1), (0, 2, 1)) self.c2q = tf.matmul(S_, self.q_embed_encoding) self.q2c = tf.matmul(tf.matmul(S_, S_T), self.c_embed_encoding) self.attention_outputs = [self.c_embed_encoding, self.c2q, self.c_embed_encoding * self.c2q, self.c_embed_encoding * self.q2c]
tensorflow.expand_dims
3,498
import tensorflow as tf The output tensor of the block; shape should match inputs. """ shortcut = inputs inputs = batch_norm(inputs, training, data_format) inputs = tf.nn.relu(inputs) # The projection shortcut should come after the first batch norm and ReLU # since it performs a 1x1 convolution.
tensorflow.nn.relu
3,499