seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
from tensorflow.python.ops import init_ops
return list(zip(clipped_gradients, variables))
def _adaptive_max_norm(norm, std_factor, decay, global_step, epsilon, name):
"""Find max_norm given norm and previous average."""
with vs.variable_scope(name, "AdaptiveMaxNorm", [norm]):
log_norm = math_ops.log(norm + epsilon)
def moving_average(name, value, decay):
moving_average_variable = vs.get_variable(
name,
shape=value.get_shape(),
dtype=value.dtype,
initializer=init_ops.zeros_initializer(),
trainable=False)
return moving_averages.assign_moving_average(
moving_average_variable, value, decay, zero_debias=False)
# quicker adaptation at the beginning
if global_step is not None:
n = math_ops.cast(global_step, dtypes.float32)
decay = math_ops.minimum(decay, n / (n + 1.))
# update averages
mean = moving_average("mean", log_norm, decay)
sq_mean = moving_average("sq_mean", math_ops.square(log_norm), decay)
| tensorflow.python.ops.init_ops.zeros_initializer | 3,100 |
import tensorflow as tf
param_noise_filter_func = default_param_noise_filter
update_param_noise_threshold_ph = tf.placeholder(tf.float32, (), name="update_param_noise_threshold")
update_param_noise_scale_ph = tf.placeholder(tf.bool, (), name="update_param_noise_scale")
reset_ph = tf.placeholder(tf.bool, (), name="reset")
eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0))
param_noise_scale = tf.get_variable("param_noise_scale", (), initializer=tf.constant_initializer(0.01),
| tensorflow.placeholder | 3,101 |
import tensorflow as tf
ivec = hn or org_ivec
with tf.variable_scope(scope or 'directional_attention_%s' % direction or 'diag'):
# non-linear
rep_map = bn_dense_layer(rep_tensor, ivec, True, 0., 'bn_dense_map', activation,
False, wd, keep_prob, is_train)
# ensure the seletion is right
dep_selection = tf.logical_and(rep_mask, dep_selection)
head_selection = tf.logical_and(rep_mask, head_selection)
rep_dep_tensor, rep_dep_mask, dep_org_idx = reduce_data_rep_max_len(rep_map, dep_selection)
rep_head_tensor,rep_head_mask, head_org_idx = reduce_data_rep_max_len(rep_map, head_selection)
sl_dep, sl_head = tf.shape(rep_dep_tensor)[1], tf.shape(rep_head_tensor)[1]
if keep_unselected:
| tensorflow.logical_and | 3,102 |
import tensorflow as tf
len(eval_examples), num_actual_eval_examples,
len(eval_examples) - num_actual_eval_examples)
tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)
| tensorflow.logging.info | 3,103 |
import tensorflow as tf
Returns
-------
A tensor with the variance of elements of `x`.
"""
axis = _normalize_axis(axis, get_ndim(x))
if x.dtype.base_dtype == tf.bool:
x = tf.cast(x, tf.float32)
m = tf.reduce_mean(x, axis=axis, keep_dims=True)
devs_squared = tf.square(x - m)
return tf.reduce_mean(devs_squared, axis=axis, keep_dims=keepdims)
def euclidean_distance(test, support, max_dist_sq=20):
"""Computes pairwise euclidean distances between provided tensors
TODO(rbharath): BROKEN! THIS DOESN'T WORK!
| tensorflow.square | 3,104 |
import tensorflow as tf
tf.train.import_meta_graph(filename)
# Writes wrong contents to the file.
tf.train.write_graph(saver.as_saver_def(), os.path.dirname(filename),
os.path.basename(filename))
with self.test_session(graph=tf.Graph()):
# Import should fail.
with self.assertRaisesWithPredicateMatch(
IOError, lambda e: "Cannot parse file"):
tf.train.import_meta_graph(filename)
# Deletes the file
gfile.Remove(filename)
with self.assertRaisesWithPredicateMatch(
IOError, lambda e: "does not exist"):
tf.train.import_meta_graph(filename)
def testSliceVariable(self):
| tensorflow.train.import_meta_graph | 3,105 |
import tensorflow as tf
def save_model_params(sess,
file_path):
# assert file_path.endswith('.npz')
param_dict = {v.name: v.eval(sess) for v in tf.global_variables()}
np.savez_compressed(file_path, **param_dict)
def load_model_params(net,
param_dict,
sess,
ignore_missing=False):
for param_name, param_data in param_dict:
with tf.variable_scope(param_name, reuse=True):
try:
var = tf.get_variable(param_name)
sess.run(var.assign(param_data))
except ValueError:
if not ignore_missing:
raise
def prepare_model(model_name,
use_pretrained,
pretrained_model_file_path):
kwargs = {'pretrained': use_pretrained}
net = get_model(model_name, **kwargs)
input_image_size = net.in_size[0] if hasattr(net, 'in_size') else 224
| tensorflow.get_variable | 3,106 |
import tensorflow as tf
out = tf.reshape(tensor, shape=shape)
return out
@layer
def dense_layer(tensor, hidden_dims, weight=None, bias=None, **opts):
original_tensor_shape = tf.shape(tensor)
in_dim = int(tensor.get_shape()[-1])
rank = _rank(tensor)
if rank > 2:
# -- time distributed dense
tensor = tf.reshape(tensor, shape=(-1, in_dim))
name = opts.get("name", "")
if weight is None:
initializer = tf.contrib.layers.xavier_initializer(uniform=True)
weight = tf.get_variable("{}_dense_W".format(name), initializer=initializer(shape=(in_dim, hidden_dims)))
if bias is None:
bias = tf.get_variable("{}_dense_b".format(name), initializer=tf.zeros(shape=hidden_dims))
out = tf.add(tf.matmul(tensor, weight), bias)
| tensorflow.reshape | 3,107 |
import tensorflow as tf
self.is_training_pl = tf.placeholder(tf.bool, shape=(), name='is_training_pl')
self.bn_decay = train_rotation_prediction.get_bn_decay(batch)
self.get_pred = partial(self.model_pred.get_model,
is_training=self.is_training_pl,
bn_decay=self.bn_decay,
num_angles=self.num_angles,
use_input_trans=self.use_input_trans,
use_feature_trans=self.use_feature_trans)
self.get_loss = partial(self.model_pred.get_loss, use_trans_loss=self.use_trans_loss)
with tf.variable_scope(name):
self.noise = tf.placeholder(tf.float32, shape=[self.batch_size, self.noise_dim], name='noise') # Noise vector.
self.real_pc = tf.placeholder(tf.float32, shape=[self.batch_size] + self.n_output, name='real_pc') # Ground-truth.
with tf.variable_scope('rotation'):
self.rot_label_pl = tf.placeholder(tf.int32, shape=self.batch_size, name='rot_label_pl')
self.real_pc_rotated = self.rotate_n_angles(self.real_pc, self.rot_label_pl)
self.real_pc_pred, real_pc_end_points = self.get_pred(self.real_pc_rotated)
self.real_pc_rot_loss = self.get_loss(self.real_pc_pred, self.rot_label_pl, real_pc_end_points)
with tf.variable_scope('generator'):
self.generator_out = self.generator(self.noise, self.n_output, **gen_kwargs)
| tensorflow.variable_scope | 3,108 |
import tensorflow as tf
all_features.update(self._context_keys_to_features)
all_features.update(self._sequence_keys_to_features)
# Reshape non-sparse elements just once:
for k, value in all_features.items():
if isinstance(value, tf.FixedLenFeature):
example[k] = tf.reshape(example[k], value.shape)
if not items:
items = self._items_to_handlers.keys()
outputs = []
| tensorflow.reshape | 3,109 |
import tensorflow as tf
tgt_small = tf.where(geq, tgt2, tgt1)
pred_larg = tf.where(geq, pred1, pred2)
pred_small = tf.where(geq, pred2, pred1)
loss = tf.maximum(0.0, ((tgt_larg - tgt_small) - (pred_larg - pred_small)))
loss = tf.reduce_mean(loss)
return loss
| tensorflow.maximum | 3,110 |
import tensorflow as tf
def train():
"""Train CIFAR-10 for a number of steps."""
with tf.Graph().as_default(), tf.device('/cpu:0'):
# Create a variable to count the number of train() calls. This equals the
# number of batches processed * FLAGS.num_gpus.
global_step = tf.get_variable(
'global_step', [],
initializer=tf.constant_initializer(0), trainable=False)
# Calculate the learning rate schedule.
num_batches_per_epoch = (cifar10.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN /
FLAGS.batch_size)
decay_steps = int(num_batches_per_epoch * cifar10.NUM_EPOCHS_PER_DECAY)
# Decay the learning rate exponentially based on the number of steps.
lr = tf.train.exponential_decay(cifar10.INITIAL_LEARNING_RATE,
global_step,
decay_steps,
cifar10.LEARNING_RATE_DECAY_FACTOR,
staircase=True)
# Create an optimizer that performs gradient descent.
opt = tf.train.GradientDescentOptimizer(lr)
# Calculate the gradients for each model tower.
tower_grads = []
with tf.variable_scope(tf.get_variable_scope()):
for i in xrange(FLAGS.num_gpus):
with tf.device('/gpu:%d' % i):
with tf.name_scope('%s_%d' % (cifar10.TOWER_NAME, i)) as scope:
| tensorflow.train.exponential_decay | 3,111 |
import tensorflow as tf
save_path = os.path.join(self.get_temp_dir(), "cache_rereads")
# Save and reload one Variable named "var0".
self._SaveAndLoad("var0", 0.0, 1.0, save_path)
# Save and reload one Variable named "var1" in the same file.
# The cached readers should know to re-read the file.
self._SaveAndLoad("var1", 1.1, 2.2, save_path)
def testGPU(self):
if not tf.test.is_built_with_cuda():
return
save_path = os.path.join(self.get_temp_dir(), "gpu")
with tf.Session("", graph=tf.Graph()) as sess:
with sess.graph.device("/gpu:0"):
v0_1 = tf.Variable(123.45)
save = tf.train.Saver({"v0": v0_1})
tf.initialize_all_variables().run()
save.save(sess, save_path)
with tf.Session("", graph=tf.Graph()) as sess:
with sess.graph.device("/gpu:0"):
v0_2 = tf.Variable(543.21)
save = tf.train.Saver({"v0": v0_2})
tf.initialize_all_variables().run()
self.assertAllClose(543.21, v0_2.eval())
save.restore(sess, save_path)
self.assertAllClose(123.45, v0_2.eval())
def testVariables(self):
save_path = os.path.join(self.get_temp_dir(), "variables")
with tf.Session("", graph=tf.Graph()) as sess:
| tensorflow.initialize_all_variables | 3,112 |
import tensorflow as tf
return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size])
def get_test_batch(image,label,batch_size):
images,labels=tf.train.batch([image,label],batch_size=batch_size)
return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size])
def get_valid_batch(image,label,batch_size):
images,labels=tf.train.batch([image,label],batch_size=batch_size)
return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size])
class trainwork(object):
def __init__(self):
with tf.variable_scope('scop'):
self.w1=tf.get_variable('w1', [4096,2048],initializer=tf.contrib.layers.xavier_initializer_conv2d())
self.w2=tf.get_variable('w2', [2048,3072],initializer=tf.contrib.layers.xavier_initializer_conv2d())
self.w3=tf.get_variable('w3', [3072,512],initializer=tf.contrib.layers.xavier_initializer_conv2d())
self.w4=tf.get_variable('w4', [512,classnum],initializer=tf.contrib.layers.xavier_initializer_conv2d())
self.b1 = tf.get_variable('b1', [2048],initializer=tf.constant_initializer(0.0))
self.b2 = tf.get_variable('b2', [3072],initializer=tf.constant_initializer(0.0))
self.b3 = tf.get_variable('b3', [512],initializer=tf.constant_initializer(0.0))
self.b4 = tf.get_variable('b4', [classnum],initializer=tf.constant_initializer(0.0))
def inference(self,images):
images=tf.cast(images,tf.float32)/255.0
l1 = tf.matmul(images, self.w1)+self.b1
l1=tf.nn.relu(l1)
| tensorflow.contrib.layers.xavier_initializer_conv2d | 3,113 |
import tensorflow as tf
n_valid = len(vaY)
n_batch_train = n_batch*n_gpu
n_updates_total = (n_train//n_batch_train)*n_iter
X_train = tf.placeholder(tf.int32, [n_batch_train, 2, n_ctx, 2])
M_train = tf.placeholder(tf.float32, [n_batch_train, 2, n_ctx])
X = tf.placeholder(tf.int32, [None, 2, n_ctx, 2])
M = tf.placeholder(tf.float32, [None, 2, n_ctx])
| tensorflow.placeholder | 3,114 |
import tensorflow as tf
# In matrix multiplication mode, the block patch should be the same as the kernel size.
assert_shape = tf.assert_equal(
tf.stack([blk_shape[1], blk_shape[2]]),
tf.stack([ksize[0], ksize[1]]),
message='Expect blk_indices.shape[1] == w.shape[0] and blk_indices.shape[2] == w.shape[1].')
| tensorflow.stack | 3,115 |
import tensorflow as tf
return 1 - (tf.to_float(is_training) * dropout_rate)
def coarse_to_fine_pruning(self, top_span_emb, top_span_mention_scores, c):
k = util.shape(top_span_emb, 0)
top_span_range = tf.range(k) # [k]
antecedent_offsets = tf.expand_dims(top_span_range, 1) - tf.expand_dims(top_span_range, 0) # [k, k]
antecedents_mask = antecedent_offsets >= 1 # [k, k]
fast_antecedent_scores = tf.expand_dims(top_span_mention_scores, 1) + tf.expand_dims(top_span_mention_scores, 0) # [k, k]
| tensorflow.range | 3,116 |
from tensorflow.python.ops import nn
return features
return {"": features}
def _get_optimizer(optimizer):
if callable(optimizer):
return optimizer()
else:
return optimizer
def _add_hidden_layer_summary(value, tag):
summary.scalar("%s_fraction_of_zero_values" % tag, nn.zero_fraction(value))
summary.histogram("%s_activation" % tag, value)
def _dnn_model_fn(features, labels, mode, params, config=None):
"""Deep Neural Net model_fn.
Args:
features: `Tensor` or dict of `Tensor` (depends on data passed to `fit`).
labels: `Tensor` of shape [batch_size, 1] or [batch_size] labels of
dtype `int32` or `int64` in the range `[0, n_classes)`.
mode: Defines whether this is training, evaluation or prediction.
| tensorflow.python.ops.nn.zero_fraction | 3,117 |
import tensorflow as tf
logger.error("error msg = {}, error type = {}, error file = {}, error line = {}".format(e, exc_type, fname, exc_tb.tb_lineno))
raise RuntimeError("Error in CIFAR10CNN construction regarding the checkpoints and model directories!")
###################
## build_model() ##
###################
def build_model(self):
"""
Build the custom CNN for the CIFAR-10 dataset.
"""
# The input data holders (cf. shapes after prepa)
self.X = tf.compat.v1.placeholder(tf.float32, shape = (None,
self.config.data["image_size"],
self.config.data["image_size"],
self.config.data["num_channels"]), name="X") # ex. (50000, 32, 32, 3)
self.y = tf.compat.v1.placeholder(tf.int32, shape = (None, self.config.data["num_categories"]), name="y") # ex. (50000, 10)
self.train = tf.compat.v1.placeholder(tf.bool)
# The CNN architecture = conv/poo layers + flatten layer + connected layers
with tf.name_scope("cnn"):
# a. Create convolution/pooling layers = conv + drop + pool + conv + drop + pool + conv + pool + conv + drop
self.conv1 = tf.layers.conv2d(self.X,
self.config.cifar10_cnn["num_filters"],
self.config.cifar10_cnn["filter_size"],
| tensorflow.compat.v1.placeholder | 3,118 |
import tensorflow as tf
labels_0_n = isu.map_labels_to_0_to_n(labels)
expected_labels_0_n = tf.constant([[-1, 0, 1],
| tensorflow.constant | 3,119 |
import tensorflow as tf
x = tf.zeros([1000000], dtype=np.float32)
y = tf.py_func(lambda x: x + 1, [x], [tf.float32])
| tensorflow.py_func | 3,120 |
import tensorflow as tf
def __call__(self, x, update=False):
with tf.variable_scope(self.name) as scope:
if not update:
new_coeff = 1. / (self.batch_size + 1.)
old_coeff = 1. - new_coeff
new_mean = tf.reduce_mean(x, [1, 2], keep_dims=True)
new_mean_sq = tf.reduce_mean(tf.square(x), [1, 2], keep_dims=True)
mean = new_coeff * new_mean + old_coeff * self.mean
mean_sq = new_coeff * new_mean_sq + old_coeff * self.mean_sq
out = tf.nn.relu(self._normalize(x, mean, mean_sq, "live"))
# Update the mean and mean_sq when passing the reference data
else:
self.mean = tf.reduce_mean(x, [0, 1, 2], keep_dims=True)
self.mean_sq = tf.reduce_mean(tf.square(x), [0, 1, 2], keep_dims=True)
out = tf.nn.relu(self._normalize(x, self.mean, self.mean_sq, "reference"))
return out
def _normalize(self, x, mean, mean_sq, message):
# make sure this is called with a variable scope
shape = x.get_shape().as_list()
assert len(shape) == 4
self.gamma = safe_get("gamma", [shape[-1]],
initializer=tf.random_normal_initializer(1., 0.02))
gamma = tf.reshape(self.gamma, [1, 1, 1, -1])
self.beta = safe_get("beta", [shape[-1]],
initializer=tf.constant_initializer(0.))
beta = tf.reshape(self.beta, [1, 1, 1, -1])
| tensorflow.square | 3,121 |
import tensorflow as tf
'Number of steps between logging results to the console and saving summaries (default: %(default)d)')
tf.app.flags.DEFINE_integer('save-model', 1000,
| tensorflow.app.flags.DEFINE_integer | 3,122 |
import tensorflow as tf
label_ids = tf.reshape(label_ids, [-1])
one_hot_labels = tf.one_hot(
label_ids, depth=bert_config.vocab_size, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1])
loss = tf.reshape(per_example_loss, [-1, tf.shape(positions)[1]])
# TODO: dynamic gather from per_example_loss
return loss
| tensorflow.shape | 3,123 |
import tensorflow as tf
os.makedirs(d)
print("Folder created:", d)
with tf.Graph().as_default():
with tf.Session() as sess:
# Load the model
facenet.load_model(args.model_dir)
| tensorflow.Session | 3,124 |
import tensorflow as tf
trainable=False)
# ------------------------------------------------
# Network loss
# ------------------------------------------------
self.predictions, self.states = self.compute_predictions()
self.error = self.mean_square_error()
self.loss = self.error + self.regularization()
# regularized loss function
def reg_loss(self):
return self.mean_square_error() + self.regularization()
# mean squared error
def mean_square_error(self):
return tf.reduce_mean(tf.square(self.output_mask * (self.predictions - self.y)))
# regularizations
def regularization(self):
reg = 0
# L1 weight regularization
reg += self.L1_in * tf.reduce_mean(tf.abs(self.W_in) * self.input_Connectivity)
reg += self.L1_rec * tf.reduce_mean(tf.abs(self.W_rec) * self.rec_Connectivity)
if self.dale_ratio:
reg += self.L1_out * tf.reduce_mean(tf.matmul(tf.abs(self.W_out) * self.output_Connectivity, self.Dale_out))
else:
reg += self.L1_out * tf.reduce_mean(tf.abs(self.W_out) * self.output_Connectivity)
# L2 weight regularization
| tensorflow.square | 3,125 |
import tensorflow as tf
self.head_scores = util.projection(context_outputs, 1) # [num_words, 1]
span_head_scores = tf.gather(self.head_scores, span_indices) # [k, max_span_width, 1]
span_mask = tf.expand_dims(tf.sequence_mask(span_width, self.config["max_span_width"], dtype=tf.float32), 2) # [k, max_span_width, 1]
span_head_scores += tf.log(span_mask) # [k, max_span_width, 1]
span_attention = tf.nn.softmax(span_head_scores, 1) # [k, max_span_width, 1]
span_head_emb = tf.reduce_sum(span_attention * span_text_emb, 1) # [k, emb]
span_emb_list.append(span_head_emb)
span_emb = tf.concat(span_emb_list, 1) # [k, emb]
return span_emb # [k, emb]
| tensorflow.reduce_sum | 3,126 |
import tensorflow as tf
request.model_spec.signature_name = 'serving_default'
# This is correct (default constant).
request.inputs['input'].CopyFrom(make_tensor_proto(input_data,
shape=input_data.shape))
# Boiler-Plate
response = stub.Predict(request, timeout)
result = response.outputs['output']
print(tf.make_ndarray(result))
| tensorflow.make_ndarray | 3,127 |
import tensorflow as tf
inp=[gtboxes_and_label_r, -1],
Tout=tf.float32)
gtboxes_and_label_r_ = tf.reshape(gtboxes_and_label_r_, [-1, 6])
| tensorflow.reshape | 3,128 |
from tensorflow.python.framework import ops
import string
import requests
import io
from zipfile import ZipFile
from tensorflow.contrib import learn
from tensorflow.python.framework import ops
ops.reset_default_graph()
# Start a graph session
sess = tf.Session()
# Check if data was downloaded, otherwise download it and save for future use
| tensorflow.python.framework.ops.reset_default_graph | 3,129 |
import tensorflow as tf
order_m.append(order)
return (tf.convert_to_tensor(value=degree_l),
tf.convert_to_tensor(value=order_m))
def _evaluate_legendre_polynomial_pmm_eval(m, x):
pmm = tf.pow(1.0 - tf.pow(x, 2.0), tf.cast(m, dtype=x.dtype) / 2.0)
ones = tf.ones_like(m)
pmm *= tf.cast(
tf.pow(-ones, m) * double_factorial(2 * m - 1),
dtype=pmm.dtype)
return pmm
| tensorflow.ones_like | 3,130 |
import tensorflow as tf
candidate_end_sentence_indices = tf.gather(flattened_sentence_indices, tf.minimum(candidate_ends, num_words - 1)) # [num_words, max_span_width]
candidate_mask = tf.logical_and(candidate_ends < num_words, tf.equal(candidate_start_sentence_indices, candidate_end_sentence_indices)) # [num_words, max_span_width]
flattened_candidate_mask = tf.reshape(candidate_mask, [-1]) # [num_words * max_span_width]
candidate_starts = tf.boolean_mask(tf.reshape(candidate_starts, [-1]), flattened_candidate_mask) # [num_candidates]
candidate_ends = tf.boolean_mask(tf.reshape(candidate_ends, [-1]), flattened_candidate_mask) # [num_candidates]
candidate_sentence_indices = tf.boolean_mask(tf.reshape(candidate_start_sentence_indices, [-1]), flattened_candidate_mask) # [num_candidates]
| tensorflow.reshape | 3,131 |
from tensorflow.python.framework import ops
sp_indices = [sp_m.indices for sp_m in sp_matrices]
sp_values = [sp_m.values for sp_m in sp_matrices]
sp_shape = [sp_m.dense_shape for sp_m in sp_matrices]
return self.b_module.bspmdt(sp_ids = sp_indices, sp_values = sp_values, sp_shape = sp_shape, rhs = dense_matrices, adjoint_a = adjoint_a, adjoint_b = adjoint_b)
b_module = tf.load_op_library('./batched.so')
@ops.RegisterGradient("Bspmdt")
def _bspmdt_grad(op, *grad):
"""Gradients for the dense tensors in the SparseTensorDenseMatMul ops.
Args:
op: the Bspmdt ops
grads: the incoming gradients
| tensorflow.python.framework.ops.RegisterGradient | 3,132 |
import tensorflow as tf
num_objects = num_objects_batch[i]
num_objects = tf.cast(tf.reshape(num_objects, [-1, ]), tf.float32)
img_h = img_h_batch[i]
img_w = img_w_batch[i]
inputs_list.append([img, gtboxes_and_label_h, gtboxes_and_label_r, num_objects, img_h, img_w])
tower_grads = []
biases_regularizer = tf.no_regularizer
weights_regularizer = tf.contrib.layers.l2_regularizer(cfgs.WEIGHT_DECAY)
with tf.variable_scope(tf.get_variable_scope()):
for i in range(num_gpu):
with tf.device('/gpu:%d' % i):
with tf.name_scope('tower_%d' % i):
with slim.arg_scope(
[slim.model_variable, slim.variable],
device='/device:CPU:0'):
with slim.arg_scope([slim.conv2d, slim.conv2d_in_plane,
slim.conv2d_transpose, slim.separable_conv2d,
slim.fully_connected],
weights_regularizer=weights_regularizer,
biases_regularizer=biases_regularizer,
biases_initializer=tf.constant_initializer(0.0)):
| tensorflow.get_variable_scope | 3,133 |
import tensorflow as tf
def mlp_dropout(x, hidden_sizes=(32,), activation=tf.tanh, output_activation=None, dropout_rate=0):
for h in hidden_sizes[:-1]:
x = tf.layers.dense(x, units=h, activation=activation)
x = tf.layers.dropout(x, rate=dropout_rate, training=True)
x = tf.layers.dropout(x, rate=dropout_rate, training=True)
return tf.layers.dense(x, units=hidden_sizes[-1], activation=output_activation)
def mlp(x, hidden_sizes=(32,), activation=tf.tanh, output_activation=None):
for h in hidden_sizes[:-1]:
x = tf.layers.dense(x, units=h, activation=activation)
return tf.layers.dense(x, units=hidden_sizes[-1], activation=output_activation)
def get_vars(scope):
return [x for x in tf.global_variables() if scope in x.name]
def count_vars(scope):
v = get_vars(scope)
return sum([np.prod(var.shape.as_list()) for var in v])
| tensorflow.layers.dense | 3,134 |
from tensorflow.python.framework import ops
Raises:
ValueError: if inputs have invalid dtypes or values.
"""
if k < 1:
raise ValueError('Invalid k=%s.' % k)
with ops.name_scope(None, 'num_relevant', (labels,)) as scope:
# For SparseTensor, calculate separate count for each row.
if isinstance(labels, (ops.SparseTensor, ops.SparseTensorValue)):
labels_sizes = set_ops.set_size(labels)
return math_ops.minimum(labels_sizes, k, name=scope)
| tensorflow.python.framework.ops.name_scope | 3,135 |
import tensorflow as tf
"""
with tf.name_scope(name):
weight_l1_t = tf.convert_to_tensor(weight_l1, dtype=var.dtype.base_dtype, name='weight_l1')
weight_l2_t = tf.convert_to_tensor(weight_l2, dtype=var.dtype.base_dtype, name='weight_l2')
reg_l1 = tf.multiply(weight_l1_t, tf.reduce_sum(tf.abs(var)), name='value_l1')
reg_l2 = tf.multiply(weight_l2_t, tf.nn.l2_loss(var), name='value_l2')
return tf.add(reg_l1, reg_l2, name='value')
def l1_regularizer(scale, name='l1_regularizer'):
"""Returns a function that can be used to apply L1 regularization to weights.
L1 regularization encourages sparsity.
| tensorflow.add | 3,136 |
import tensorflow as tf
b = tf.get_variable("b", [n_state], initializer=tf.constant_initializer(0))
return _norm(x, g, b, axis=axis)
def dropout(x, pdrop, train):
if train and pdrop > 0:
x = tf.nn.dropout(x, 1-pdrop)
return x
def mask_attn_weights(w):
n = shape_list(w)[-1]
b = tf.matrix_band_part(tf.ones([n, n]), -1, 0)
b = tf.reshape(b, [1, 1, n, n])
w = w*b + -1e9*(1-b)
return w
def _attn(q, k, v, train=False, scale=False):
#w=[-1,head,n_ctx,n_ctx]
w = tf.matmul(q, k)
if scale:
n_state = shape_list(v)[-1]
w = w*tf.rsqrt(tf.cast(n_state, tf.float32))
| tensorflow.reshape | 3,137 |
import tensorflow as tf
if self.train_data['ties'] == 'breslow':
s = cumsum_hazard_ratio[trisk[-1]]
logL += tf.log(s) * d
elif self.train_data['ties'] == 'efron':
s = cumsum_hazard_ratio[trisk[-1]]
r = cumsum_hazard_ratio[tfail[-1]] - (0 if tfail[0] == 0 else cumsum_hazard_ratio[tfail[0]-1])
for j in range(d):
logL += tf.log(s - j * r / d)
else:
raise NotImplementedError('tie breaking method not recognized')
# negative average log-likelihood
observations = tf.reduce_sum(y_true)
return logL / observations
def _Metrics_CI(self, label_true, y_pred):
"""
Compute the concordance-index value.
Parameters:
label_true: dict, like {'e': event, 't': time}, Observation and Time in survival analyze.
y_pred: np.array, predictive proportional risk of network.
Returns:
| tensorflow.reduce_sum | 3,138 |
from tensorflow.contrib.framework import deprecated_args
in_top_k = math_ops.to_float(nn.in_top_k(predictions, labels, k))
return streaming_mean(in_top_k,
_mask_weights(ignore_mask, weights),
metrics_collections,
updates_collections,
name or _at_k_name('recall', k))
# TODO(ptucker): Validate range of values in labels?
@deprecated_args(IGNORE_MASK_DATE, IGNORE_MASK_INSTRUCTIONS, 'ignore_mask')
def streaming_sparse_recall_at_k(predictions,
labels,
k,
class_id=None,
ignore_mask=None,
weights=None,
metrics_collections=None,
updates_collections=None,
| tensorflow.contrib.framework.deprecated_args | 3,139 |
import tensorflow as tf
with tf.Session() as sess:
summary_writer = tf.summary.FileWriter(run_log_dir + '_train', sess.graph, flush_secs=5)
summary_writer_validation = tf.summary.FileWriter(run_log_dir + '_validate', sess.graph, flush_secs=5)
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
# Training and validation
| tensorflow.global_variables_initializer | 3,140 |
import tensorflow as tf
"initialize the variables"
sess.run(tf.global_variables_initializer())
raw_data_yp = np.insert(raw_data_y,0,0,axis=0)[:-1]
val_data_yp = np.insert(val_data_y,0,0,axis=0)[:-1]
"see the trainable variables"
# print("The trainable variables are:")
variable_names = [v.name for v in tf.trainable_variables()]
variable_shapes = [v.get_shape() for v in tf.trainable_variables()]
parameter_num = 0
for name, shape in zip(variable_names, variable_shapes):
# print('{}\nShape: {}'.format(name, shape))
parameter_num += shape[0]*shape[1] if np.size(shape)>1 else shape[0]
"train the graph"
training_losses = []
| tensorflow.trainable_variables | 3,141 |
import tensorflow as tf
in_channels = x.get_shape()[-1].value
with tf.variable_scope(layer_name):
| tensorflow.variable_scope | 3,142 |
import tensorflow as tf
def testFProp(self):
with self.session(use_gpu=False):
tf.set_random_seed(93820985)
p = self._testParams()
mdl = p.Instantiate()
mdl.FPropDefaultTheta()
tf.global_variables_initializer().run()
test_utils.CompareToGoldenSingleFloat(self, 4.472597, mdl.loss.eval())
actual_var_names = [_.name for _ in tf.all_variables()]
print('all vars \n', '\n'.join(actual_var_names))
expected_var_names = [
'global_step:0', 'test_mdl/enc/conv_L0/w/var:0',
'test_mdl/enc/conv_L0/beta/var:0', 'test_mdl/enc/conv_L0/gamma/var:0',
'test_mdl/enc/conv_L0/moving_mean/var:0',
'test_mdl/enc/conv_L0/moving_variance/var:0',
'test_mdl/enc/conv_L1/w/var:0', 'test_mdl/enc/conv_L1/beta/var:0',
'test_mdl/enc/conv_L1/gamma/var:0',
'test_mdl/enc/conv_L1/moving_mean/var:0',
| tensorflow.all_variables | 3,143 |
import tensorflow as tf
saver = tf.train.Saver()
#-----------------Initialize the cost and gradients---------------------------------------------------------
costs = [] #store the cost for different opochs
cost = obj([an,hn], betan, Y, activation)
#-----------------Initialize the optimizer-----------------------------------------------------------------
# Implement an exponential learning rate decay every 1000 epochs
#Implement a dynamical learning rate
global_step = tf.Variable(0., trainable=False)
rate = tf.train.exponential_decay(starter_learning, global_step, 500, 0.9) #exponential learning rate decay
#rate = starter_learning
tvars = tf.trainable_variables() #list of trainable variables
Npar= flatten(tvars).get_shape()[1] #total number of paramters in the network
print('there are:', Npar,'parameters in the network')
optimizer = tf.train.AdamOptimizer(learning_rate = rate) #Initialize Adam optimizer
grads_var = optimizer.compute_gradients(cost, tvars ) #Get gradients layer by layer. Note that this function returns the pair (grads, var)
grads = [grads_var[i][0] for i in range(len(grads_var))] #extract the gradients
min = optimizer.apply_gradients(grads_and_vars= grads_var, global_step= global_step) #Apply the gradients to look for critical points
gradients_and_par = [] #store gradients and training paramters for different epochs
hessians = [] #store the hessian for different epochs
residuals= [] #store the value of the residuals for different epochs
| tensorflow.trainable_variables | 3,144 |
import tensorflow as tf
tmp = np.float32(np.loadtxt('../../Utilities/IRK_weights/Butcher_IRK%d.txt' % (q), ndmin = 2))
weights = np.reshape(tmp[0:q**2+q], (q+1,q))
self.IRK_alpha = weights[0:-1,:]
self.IRK_beta = weights[-1:,:]
self.IRK_times = tmp[q**2+q:]
# tf placeholders and graph
self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
log_device_placement=True))
self.x0_tf = tf.placeholder(tf.float32, shape=(None, self.x0.shape[1]))
self.x1_tf = tf.placeholder(tf.float32, shape=(None, self.x1.shape[1]))
self.u0_tf = tf.placeholder(tf.float32, shape=(None, self.u0.shape[1]))
self.u1_tf = tf.placeholder(tf.float32, shape=(None, self.u1.shape[1]))
self.dummy_x0_tf = tf.placeholder(tf.float32, shape=(None, self.q)) # dummy variable for fwd_gradients
self.dummy_x1_tf = tf.placeholder(tf.float32, shape=(None, self.q)) # dummy variable for fwd_gradients
self.U0_pred = self.net_U0(self.x0_tf) # N0 x q
self.U1_pred = self.net_U1(self.x1_tf) # N1 x q
self.loss = tf.reduce_sum(tf.square(self.u0_tf - self.U0_pred)) + \
tf.reduce_sum(tf.square(self.u1_tf - self.U1_pred))
self.optimizer = tf.contrib.opt.ScipyOptimizerInterface(self.loss,
method = 'L-BFGS-B',
options = {'maxiter': 50000,
| tensorflow.placeholder | 3,145 |
import tensorflow as tf
lambda: tf.shape(x)))
x = tf.placeholder(dtype=tf.int32, shape=[1])
# None would fire an exception were it actually executed.
self.assertFalse(normal._is_scalar_helper(x.get_shape, lambda: None))
self.assertFalse(normal._is_scalar_helper(lambda: tf.TensorShape(None),
lambda: tf.shape(x)))
# Test case 3.
x = tf.placeholder(dtype=tf.int32)
is_scalar = normal._is_scalar_helper(x.get_shape, lambda: tf.shape(x))
self.assertTrue(is_scalar.eval(feed_dict={x: 1}))
self.assertFalse(is_scalar.eval(feed_dict={x: [1]}))
if __name__ == '__main__':
tf.test.main()
| tensorflow.placeholder | 3,146 |
import tensorflow as tf
self.c_len = tf.reduce_sum(tf.cast(self.c_mask, tf.int32), axis=1)
self.q_len = tf.reduce_sum(tf.cast(self.q_mask, tf.int32), axis=1)
self.dropout = tf.placeholder(tf.float32, name="dropout")
self.global_step = tf.Variable(0, name="global_step", trainable=False)
"""
:descrition: The embedding layer, question and passage share embeddings
| tensorflow.Variable | 3,147 |
import tensorflow as tf
std = tf.sqrt(var+self.epsilon)
return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)]
require_init = tf.reduce_any(tf.is_nan(self.g))
init_ops = tf.cond(require_init,_init,lambda : [self.g,self.b])
| tensorflow.is_nan | 3,148 |
import tensorflow as tf
optimizer = tf.train.MomentumOptimizer(lr, momentum=cfgs.MOMENTUM)
r3det_gwd = build_whole_network.DetectionNetworkR3DetGWD(cfgs=self.cfgs,
is_training=True)
with tf.name_scope('get_batch'):
if cfgs.IMAGE_PYRAMID:
shortside_len_list = tf.constant(cfgs.IMG_SHORT_SIDE_LEN)
shortside_len = tf.random_shuffle(shortside_len_list)[0]
else:
shortside_len = cfgs.IMG_SHORT_SIDE_LEN
| tensorflow.constant | 3,149 |
import tensorflow as tf
elif self.hparams.loss_func == 'click_weighted_log_loss':
self.loss_func = self.click_weighted_log_loss
elif self.hparams.loss_func == 'click_weighted_pairwise_loss':
self.loss_func = self.click_weighted_pairwise_loss
else: # softmax loss without weighting
self.loss_func = self.softmax_loss
# Compute rank loss
reshaped_train_labels = tf.transpose(tf.convert_to_tensor(train_labels)) # reshape from [rank_list_size, ?] to [?, rank_list_size]
self.propensity_weights = self.get_normalized_weights(self.logits_to_prob(self.propensity))
self.rank_loss = self.loss_func(train_output, reshaped_train_labels, self.propensity_weights)
pw_list = tf.unstack(self.propensity_weights, axis=1) # Compute propensity weights
self.click_metrics=self.click_loglikelihood(reshaped_train_labels,\
self.propensity,train_output)
tf.summary.scalar('click_metrics',self.click_metrics,collections=['train'])
for i in range(len(pw_list)):
| tensorflow.convert_to_tensor | 3,150 |
import tensorflow as tf
def linear(input_, output_size, scope=None, stddev=0.02, bias_start=0.0, with_w=False):
shape = input_.get_shape().as_list()
with tf.variable_scope(scope or "Linear"):
matrix = tf.get_variable("Matrix", [shape[1], output_size], tf.float32,
tf.random_normal_initializer(stddev=stddev))
bias = tf.get_variable("bias", [output_size],
initializer=tf.constant_initializer(bias_start))
if with_w:
return tf.matmul(input_, matrix) + bias, matrix, bias
else:
return tf.matmul(input_, matrix) + bias
| tensorflow.constant_initializer | 3,151 |
import tensorflow as tf
"label_ids": tf.FixedLenFeature([], tf.int64),
"is_real_example": tf.FixedLenFeature([], tf.int64),
}
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
def input_fn(params):
"""The actual input function."""
batch_size = params["batch_size"]
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
d = tf.data.TFRecordDataset(input_file)
if is_training:
| tensorflow.to_int32 | 3,152 |
import tensorflow as tf
import os
os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu_list
if not tf.gfile.Exists(FLAGS.checkpoint_path):
tf.gfile.MkDir(FLAGS.checkpoint_path)
else:
if not FLAGS.restore:
| tensorflow.gfile.MkDir | 3,153 |
import tensorflow as tf
out += aux
out = activation(out)
if dropout > 0:
out = tf.layers.dropout(out, rate=dropout, training=training)
if sum(dim[2]) > 2:
out = deconv2d(out, [2*dim[0], dim[1], dim[2]], scope="%s_conv_out"%scope, training=training, ema=ema, init=init)
else:
| tensorflow.layers.dropout | 3,154 |
import tensorflow as tf
# should we be taking the mean elem-wise by batch? i think this is a big bug
avg_neg_log_lhood = tf.reduce_sum(neg_log_lhoods) / tf.reduce_sum(target_weights)
| tensorflow.reduce_sum | 3,155 |
import tensorflow as tf
inter_block_attn_output = tf.reduce_sum(self_attn_result * inter_block_soft, 2) # bs,bn,vec
with tf.variable_scope('self_attn_inter_block'):
inter_block_attn_output_mask = tf.cast(tf.ones([bs, bn], tf.int32), tf.bool)
block_ct_res = directional_attention_with_dense(
inter_block_attn_output, inter_block_attn_output_mask, direction, 'disa',
keep_prob, is_train, wd, activation
) # [bs,bn,vec]
block_ct_res_tile = tf.tile(tf.expand_dims(block_ct_res, 2), [1, 1, bl, 1])#[bs,bn,vec]->[bs,bn,bl,vec]
with tf.variable_scope('combination'):
# input:1.rep_map[bs,bn,bl,vec]; 2.self_attn_result[bs,bn,bl,vec]; 3.rnn_res_tile[bs,bn,bl,vec]
rep_tensor_with_ct = tf.concat([rep_map, self_attn_result, block_ct_res_tile], -1) # [bs,bn,bl,3vec]
new_context_and_gate = linear(rep_tensor_with_ct, 2 * ivec, True, 0., 'linear_new_context_and_gate',
False, wd, keep_prob, is_train) # [bs,bn,bl,2vec]
new_context, gate = tf.split(new_context_and_gate, 2, 3) # bs,bn,bl,vec
if activation == "relu":
| tensorflow.expand_dims | 3,156 |
import tensorflow as tf
class_predictions_with_background = ops.position_sensitive_crop_regions(
class_feature_map,
boxes=tf.reshape(proposal_boxes, [-1, self._box_code_size]),
box_ind=get_box_indices(proposal_boxes),
crop_size=self._crop_size,
num_spatial_bins=self._num_spatial_bins,
global_pool=True)
class_predictions_with_background = tf.squeeze(
class_predictions_with_background, squeeze_dims=[1, 2])
class_predictions_with_background = tf.reshape(
class_predictions_with_background,
[batch_size * num_boxes, 1, total_classes])
return {BOX_ENCODINGS: box_encodings,
CLASS_PREDICTIONS_WITH_BACKGROUND:
class_predictions_with_background}
| tensorflow.reshape | 3,157 |
import tensorflow as tf
else self.config['eval_batch_size']
shards = {d: tf.unstack(v, num=batch_size*self.n_gpus, axis=0)
for d, v in data.items()}
shards = [{d: tf.stack(v[i::self.n_gpus]) for d, v in shards.items()}
for i in range(self.n_gpus)]
| tensorflow.stack | 3,158 |
import tensorflow as tf
Args:
params: dict, user passed parameters.
Returns:
List of tensors from base `Conv2D` layers.
"""
with tf.variable_scope(name_or_scope=self.name, reuse=tf.AUTO_REUSE):
# Get conv block layer properties.
conv_block = params["discriminator_base_conv_blocks"][0]
# The base conv block is always the 0th one.
base_conv_layer_block = self.conv_layer_blocks[0]
| tensorflow.variable_scope | 3,159 |
import tensorflow as tf
model_fn=model_fn,
config=run_config,
train_batch_size=FLAGS.train_batch_size,
eval_batch_size=FLAGS.eval_batch_size,
predict_batch_size=FLAGS.predict_batch_size)
if FLAGS.do_train:
train_file = os.path.join(FLAGS.output_dir, "train.tf_record")
file_based_convert_examples_to_features(
train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file)
tf.logging.info("***** Running training *****")
tf.logging.info(" Num examples = %d", len(train_examples))
tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
tf.logging.info(" Num steps = %d", num_train_steps)
train_input_fn = file_based_input_fn_builder(
input_file=train_file,
seq_length=FLAGS.max_seq_length,
is_training=True,
drop_remainder=True)
estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)
| tensorflow.logging.info | 3,160 |
import tensorflow as tf
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
run_config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
master=FLAGS.master,
model_dir=FLAGS.output_dir,
save_checkpoints_steps=FLAGS.save_checkpoints_steps,
keep_checkpoint_max=20,
tpu_config=tf.contrib.tpu.TPUConfig(
iterations_per_loop=FLAGS.iterations_per_loop,
num_shards=FLAGS.num_tpu_cores,
per_host_input_for_training=is_per_host))
model_fn = model_fn_builder(
bert_config=bert_config,
init_checkpoint=FLAGS.init_checkpoint,
learning_rate=FLAGS.learning_rate,
num_train_steps=FLAGS.num_train_steps,
| tensorflow.contrib.tpu.TPUConfig | 3,161 |
import tensorflow as tf
def create_int_feature(values):
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return f
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(feature.input_ids)
features["input_mask"] = create_int_feature(feature.input_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
features["label_ids"] = create_int_feature([feature.label_id])
features["is_real_example"] = create_int_feature(
[int(feature.is_real_example)])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
writer.close()
def file_based_input_fn_builder(input_file, seq_length, is_training,
drop_remainder):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length], tf.int64),
| tensorflow.train.Features | 3,162 |
import tensorflow as tf
Parameters
----------
test: tf.Tensor
Of shape (n_test, n_feat)
support: tf.Tensor
Of shape (n_support, n_feat)
Returns
-------
tf.Tensor:
Of shape (n_test, n_support)
"""
rnorm_test = tf.rsqrt(
tf.reduce_sum(tf.square(test), 1, keep_dims=True)) + 1e-7
rnorm_support = tf.rsqrt(
tf.reduce_sum(tf.square(support), 1, keep_dims=True)) + 1e-7
test_normalized = test * rnorm_test
support_normalized = support * rnorm_support
# Transpose for mul
support_normalized_t = tf.transpose(support_normalized, perm=[1, 0])
g = tf.matmul(test_normalized, support_normalized_t) # Gram matrix
return g
def elu(x, alpha=1.):
"""Exponential linear unit.
Parameters
----------
| tensorflow.square | 3,163 |
import tensorflow as tf
# casting to float on GPU ensures lower data transfer times.
if lander:
obs_t_float = self.obs_t_ph
obs_tp1_float = self.obs_tp1_ph
else:
obs_t_float = tf.cast(self.obs_t_ph, tf.float32) / 255.0
obs_tp1_float = tf.cast(self.obs_tp1_ph, tf.float32) / 255.0
# Here, you should fill in your own code to compute the Bellman error. This requires
# evaluating the current and next Q-values and constructing the corresponding error.
# TensorFlow will differentiate this error for you, you just need to pass it to the
# optimizer. See assignment text for details.
# Your code should produce one scalar-valued tensor: total_error
| tensorflow.cast | 3,164 |
import tensorflow as tf
alphas = tf.transpose(tf.stack(alpha_list), (1, 0, 2)) # (N, T, L)
| tensorflow.stack | 3,165 |
import tensorflow as tf
if use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
| tensorflow.logging.info | 3,166 |
import tensorflow as tf
def get_test_batch(image,label,batch_size):
images,labels=tf.train.batch([image,label],batch_size=batch_size)
return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size])
def get_valid_batch(image,label,batch_size):
images,labels=tf.train.batch([image,label],batch_size=batch_size)
return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size])
class trainwork(object):
def __init__(self):
with tf.variable_scope('scop'):
self.w1=tf.get_variable('w1', [4096,2048],initializer=tf.contrib.layers.xavier_initializer_conv2d())
self.w2=tf.get_variable('w2', [2048,3072],initializer=tf.contrib.layers.xavier_initializer_conv2d())
self.w3=tf.get_variable('w3', [3072,512],initializer=tf.contrib.layers.xavier_initializer_conv2d())
self.w4=tf.get_variable('w4', [512,classnum],initializer=tf.contrib.layers.xavier_initializer_conv2d())
self.b1 = tf.get_variable('b1', [2048],initializer=tf.constant_initializer(0.0))
self.b2 = tf.get_variable('b2', [3072],initializer=tf.constant_initializer(0.0))
self.b3 = tf.get_variable('b3', [512],initializer=tf.constant_initializer(0.0))
self.b4 = tf.get_variable('b4', [classnum],initializer=tf.constant_initializer(0.0))
def inference(self,images):
images=tf.cast(images,tf.float32)/255.0
l1 = tf.matmul(images, self.w1)+self.b1
l1=tf.nn.relu(l1)
l2 = tf.matmul(l1, self.w2)+self.b2
| tensorflow.contrib.layers.xavier_initializer_conv2d | 3,167 |
import tensorflow as tf
:param white: bool
:return: N x R or R x N x N
"""
logger.debug("base conditional")
# compute kernel stuff
num_func = tf.shape(f)[1] # R
Lm = tf.cholesky(Kmm)
# Compute the projection matrix A
A = tf.matrix_triangular_solve(Lm, Kmn, lower=True)
| tensorflow.shape | 3,168 |
import tensorflow as tf
from lottery_ticket.foundations import model_fc
from lottery_ticket.foundations import paths
from lottery_ticket.foundations import pruning
from lottery_ticket.foundations import save_restore
from lottery_ticket.foundations import trainer
from lottery_ticket.foundations.experiment_base import ExperimentBase
from lottery_ticket.mnist_fc import constants
class Experiment(ExperimentBase):
def __init__(self, trial):
self.output_dir = paths.trial(paths.experiment(constants.EXPERIMENT_PATH, 'big_two_layer'), trial)
def train_once(self, iteration, presets=None, masks=None):
tf.reset_default_graph()
sess = tf.Session()
dataset = dataset_mnist.DatasetMnist(
constants.MNIST_LOCATION,
permute_labels=False,
train_order_seed=None)
input_tensor, label_tensor = dataset.placeholders
hyperparameters = {'layers': [(1000, tf.nn.relu), (500, tf.nn.relu), (10, None)]}
model = model_fc.ModelFc(hyperparameters, input_tensor, label_tensor, presets=presets, masks=masks)
params = {
'test_interval': 100,
'save_summaries': True,
'save_network': True,
}
return trainer.train(
| tensorflow.Session | 3,169 |
import tensorflow as tf
def batched_matrix_vector_multiply(vector, matrix):
""" computes x^T A in mini-batches. """
vector_batch_as_matricies = tf.expand_dims(vector, [1])
mult_result = tf.matmul(vector_batch_as_matricies, matrix)
squeezed_result = tf.squeeze(mult_result, [1])
return squeezed_result
def euclidean_loss_layer(a, b, multiplier=100.0, use_l1=False, eps=0.01):
""" Math: out = (action - mlp_out)'*precision*(action-mlp_out)
= (u-uhat)'*A*(u-uhat)"""
multiplier = tf.constant(multiplier, dtype='float') #for bc #10000
uP =a*multiplier-b*multiplier
if use_l1:
return tf.reduce_mean(eps*tf.square(uP) + tf.abs(uP))
return tf.reduce_mean(tf.square(uP))
def conv2d(img, w, b, strides=[1, 1, 1, 1], is_dilated=False):
if is_dilated:
layer = tf.nn.atrous_conv2d(img, w, rate=2, padding='SAME') + b
else:
layer = tf.nn.conv2d(img, w, strides=strides, padding='SAME') + b
return layer
def dropout(layer, keep_prob=0.9, is_training=True, name=None, selu=False):
if selu:
return dropout_selu(layer, 1.0 - keep_prob, name=name, training=is_training)
if is_training:
return tf.nn.dropout(layer, keep_prob=keep_prob, name=name)
else:
| tensorflow.square | 3,170 |
import tensorflow as tf
with tf.variable_scope(scope):
wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(init_scale))
gx = tf.get_variable("gx", [nh*4], initializer=tf.constant_initializer(1.0))
bx = tf.get_variable("bx", [nh*4], initializer=tf.constant_initializer(0.0))
| tensorflow.constant_initializer | 3,171 |
from tensorflow.python.framework import ops
Args:
x: A `Tensor` of type `float` or `double`.
name: A name for the operation (optional).
Returns:
A `Tensor` of same shape and type as `x`.
"""
x = ops.convert_to_tensor(x, name="x")
if x.dtype.is_integer:
return x
else:
return floor(x + 0.5, name=name)
| tensorflow.python.framework.ops.convert_to_tensor | 3,172 |
import tensorflow as tf
shape=[],
dtype=tf.int64,
initializer=tf.initializers.zeros(),
trainable=False,
collections=[tf.GraphKeys.GLOBAL_VARIABLES])
return global_step
def get_src_train_op(loss): # pylint: disable=unused-argument
"""Returns the source training op."""
global_step = tf.train.get_global_step()
src_learning_rate = FLAGS.learning_rate
src_learning_rate = tf.train.piecewise_constant(
global_step, [800,],
[FLAGS.learning_rate, FLAGS.learning_rate * 0.1])
optimizer = tf.train.MomentumOptimizer(
learning_rate=src_learning_rate,
momentum=0.9,
use_nesterov=True
)
| tensorflow.train.get_global_step | 3,173 |
import tensorflow as tf
# dtype=tf.float32,
# initializer=tf.contrib.layers.xavier_initializer(),
# regularizer=tf.contrib.layers.l2_regularizer(self.params["regularizer_rate"]),
# trainable=True
# )
embeddings = tf.nn.embedding_lookup(embedding_variable, word_ids)
return embeddings
def dropout_layer(self, data):
training = self.mode == tf.estimator.ModeKeys.TRAIN
| tensorflow.nn.embedding_lookup | 3,174 |
from tensorflow.contrib.learn.python.learn import session_run_hook
monitor_fetches.extend(monitor_requests)
if monitor_fetches:
request["monitors"] = dict(
zip(monitor_fetches, [_as_graph_element(f) for f in monitor_fetches]))
return session_run_hook.SessionRunArgs(request)
def after_run(self, run_context, run_values):
result = run_values.results[
"monitors"] if "monitors" in run_values.results else {}
| tensorflow.contrib.learn.python.learn.session_run_hook.SessionRunArgs | 3,175 |
import tensorflow as tf
# In case of Bi-RNN, concatenate the forward and the backward RNN outputs.
facts = tf.concat(facts, 2)
if time_major:
# (T,B,D) => (B,T,D)
facts = tf.array_ops.transpose(facts, [1, 0, 2])
# Trainable parameters
mask = tf.equal(mask, tf.ones_like(mask))
facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer
querry_size = query.get_shape().as_list()[-1]
query = tf.layers.dense(query, facts_size, activation=None, name='f1_trans_shine' + stag)
query = prelu(query)
queries = tf.tile(query, [1, tf.shape(facts)[1]])
queries = tf.reshape(queries, tf.shape(facts))
din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
d_layer_1_all = tf.layers.dense(din_all, facts_size, activation=tf.nn.sigmoid, name='f1_shine_att' + stag)
d_layer_2_all = tf.layers.dense(d_layer_1_all, facts_size, activation=tf.nn.sigmoid, name='f2_shine_att' + stag)
d_layer_2_all = tf.reshape(d_layer_2_all, tf.shape(facts))
output = d_layer_2_all
return output
| tensorflow.shape | 3,176 |
import tensorflow as tf
if reduce_fn is None:
scalar = args[i][0]
else:
scalar = reduce_fn(args[i])
with tf.contrib.summary.record_summaries_every_n_global_steps(
100, global_step=step):
tf.contrib.summary.scalar(prefix + name, scalar, step=step)
| tensorflow.contrib.summary.record_summaries_every_n_global_steps | 3,177 |
import tensorflow as tf
initializer=tf.constant_initializer(0.0))
b = tf.get_variable(name='bias',
shape=[out_nodes],
initializer=tf.constant_initializer(0.0))
# batch?
flat_x = tf.reshape(x, [-1,size])
x = tf.nn.bias_add(tf.matmul(flat_x,w), b)
x = tf.nn.relu(x)
return x
def lstm():
'''
Build LSTM cell
'''
| tensorflow.nn.relu | 3,178 |
import tensorflow as tf
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
if is_training:
d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files))
d = d.repeat()
d = d.shuffle(buffer_size=len(input_files))
| tensorflow.constant | 3,179 |
import tensorflow as tf
return res + bias_term
def _clip_and_normalize(word_probs, epsilon):
'''
word_probs: 1D tensor of [vsize]
'''
word_probs = tf.clip_by_value(word_probs, epsilon, 1.0 - epsilon)
return word_probs / tf.reduce_sum(word_probs, axis=-1, keep_dims=True) # scale preds so that the class probas of each sample sum to 1
def CE_loss(word_probs, answers, loss_weights):
'''
word_probs: [batch_size, max_dec_steps, vocab]
answers: [batch_size, max_dec_steps]
| tensorflow.reduce_sum | 3,180 |
import tensorflow as tf
pairwise_improvement_bool = tf.cast(pairwise_improvement > 0, pairwise_improvement.dtype)
self.pairwise_improvement_bool = pairwise_improvement_bool
metrics.append(tf.summary.scalar('training/avg_dist', mean_dist))
metrics.append(tf.summary.scalar('training/pred_dist', mean_pred_error))
metrics.append(tf.summary.scalar('training/improvement', improvement))
metrics.append(tf.summary.scalar('training/improvement_abs', tf.nn.relu(improvement)))
metrics.append(tf.summary.histogram('training/improvement_abs_hist', nut.nan_to_zero(improvement)))
| tensorflow.summary.scalar | 3,181 |
import tensorflow as tf
@dynamic_batching.batch_fn
def f(_):
return tf.constant(1)
output = f(tf.constant([1]))
coord = tf.train.Coordinator()
tf.train.start_queue_runners(coord=coord)
with self.assertRaises(tf.errors.CancelledError):
session.run(output)
with self.assertRaisesRegexp(tf.errors.InvalidArgumentError,
'Output shape must have a batch dimension'):
| tensorflow.train.start_queue_runners | 3,182 |
import tensorflow as tf
self.assertAllClose(np.asarray([4.828314, 4.828314]), res)
def testModelWithBucketsScopeAndLoss(self):
"""Test that variable scope reuse is not reset after model_with_buckets."""
classes = 10
buckets = [(4, 4), (8, 8)]
with self.test_session():
# Here comes a sample Seq2Seq model using GRU cells.
def SampleGRUSeq2Seq(enc_inp, dec_inp, weights, per_example_loss):
"""Example sequence-to-sequence model that uses GRU cells."""
def GRUSeq2Seq(enc_inp, dec_inp):
cell = tf.nn.rnn_cell.MultiRNNCell([tf.nn.rnn_cell.GRUCell(24)] * 2,
state_is_tuple=True)
return tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp, cell, num_encoder_symbols=classes,
num_decoder_symbols=classes, embedding_size=24)
targets = [dec_inp[i+1] for i in range(len(dec_inp) - 1)] + [0]
return tf.nn.seq2seq.model_with_buckets(
enc_inp, dec_inp, targets, weights, buckets, GRUSeq2Seq,
per_example_loss=per_example_loss)
# Now we construct the copy model.
inp = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)]
| tensorflow.nn.rnn_cell.GRUCell | 3,183 |
import tensorflow as tf
'predicting a single box per class per location.')
batch_size = tf.shape(proposal_boxes)[0]
num_boxes = tf.shape(proposal_boxes)[1]
def get_box_indices(proposals):
proposals_shape = proposals.get_shape().as_list()
if any(dim is None for dim in proposals_shape):
proposals_shape = tf.shape(proposals)
ones_mat = tf.ones(proposals_shape[:2], dtype=tf.int32)
multiplier = tf.expand_dims(
tf.range(start=0, limit=proposals_shape[0]), 1)
return tf.reshape(ones_mat * multiplier, [-1])
net = image_features
with slim.arg_scope(self._conv_hyperparams):
net = slim.conv2d(net, self._depth, [1, 1], scope='reduce_depth')
| tensorflow.ones | 3,184 |
import tensorflow as tf
sess_soft = tf.Session(config=config)
# 4. 当使用CPU时,TensorFlow默认占据大部分CPU内存。虽然这也是时常期望的,但是我们能谨慎分配GPU内存。当TensorFlow一直不释放GPU内存时,如有必要,我们可以设置GPU内存增长选项让GPU内存分配缓慢增大到最大限制
config.gpu_options.allow_growth = True
sess_grow = tf.Session(config=config)
# 5. 如果希望限制死TensorFlow使用GPU内存的百分比,可以使用config设置per_process_gpu_memory_fraction
config.gpu_options.per_process_gpu_memory_fraction = 0.4
sess_limited = tf.Session(config=config)
# 6. 有时,我们希望代码健壮到可以决定运行多少GPU合适。TensorFlow有内建函数可以探测到。如果我们期望代码在GPU内存合适时利用GPU计算能力,并分配指定操作给GPU,那么该功能是有益的
if tf.test.is_built_with_cuda(): pass
# 7. 我们希望分配指定操作给GPU。下面是一个示例代码,做了一些简单的计算,并将它们分配给主CPU和两个副GPU
with tf.device('/cpu:0'):
a = tf.constant([1.0, 3.0, 5.0], shape=[1,3])
b = tf.constant([2.0, 4.0, 6.0], shape=[3, 1])
with tf.device('/gpu:0'):
c = tf.matmul(a,b)
c = tf.reshape(c, [-1])
with tf.device('/gpu:1'):
d = tf.matmul(b, a)
flat_d = tf.reshape(d, [-1])
combined = tf.multiply(c, flat_d)
print(sess.run(combined))
| tensorflow.device | 3,185 |
import tensorflow as tf
num_decoder_symbols=5, embedding_size=2, output_projection=(w, b))
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 2), res[0].shape)
# Test that previous-feeding model ignores inputs after the first.
dec_inp2 = [tf.constant(0, tf.int32, shape=[2]) for _ in range(3)]
with tf.variable_scope("other"):
d3, _ = tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp2, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2,
feed_previous=tf.constant(True))
sess.run([tf.global_variables_initializer()])
tf.get_variable_scope().reuse_variables()
d1, _ = tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2, feed_previous=True)
d2, _ = tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp2, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2, feed_previous=True)
res1 = sess.run(d1)
res2 = sess.run(d2)
res3 = sess.run(d3)
| tensorflow.constant | 3,186 |
import tensorflow as tf
last_backward = encoder_outputs_[:, 0, cell_output_size:]
indices = tf.stack([tf.range(batch_size), encoder_input_length_ - 1], axis=1)
last_forward = tf.gather_nd(encoder_outputs_[:, :, :cell_output_size], indices)
last_forward.set_shape([None, cell_output_size])
if encoder.final_state == 'concat_last': # concats last states of all backward layers (full LSTM states)
encoder_state_ = tf.concat(encoder_states_, axis=1)
elif encoder.final_state == 'average':
mask = tf.sequence_mask(encoder_input_length_, maxlen=tf.shape(encoder_outputs_)[1], dtype=tf.float32)
mask = tf.expand_dims(mask, axis=2)
encoder_state_ = tf.reduce_sum(mask * encoder_outputs_, axis=1) / tf.reduce_sum(mask, axis=1)
elif encoder.final_state == 'average_inputs':
mask = tf.sequence_mask(encoder_input_length_, maxlen=tf.shape(encoder_inputs_)[1], dtype=tf.float32)
mask = tf.expand_dims(mask, axis=2)
encoder_state_ = tf.reduce_sum(mask * encoder_inputs_, axis=1) / tf.reduce_sum(mask, axis=1)
elif encoder.bidir and encoder.final_state == 'last_both':
encoder_state_ = tf.concat([last_forward, last_backward], axis=1)
| tensorflow.shape | 3,187 |
import tensorflow as tf
with tf.variable_scope("discriminator_z_projection", reuse=tf.AUTO_REUSE) as scope:
k1 = tf.get_variable("kernel1", [dim, dim * 4])
k2 = tf.get_variable("kernel2", [dim * 4, dim])
z_proj = tf.matmul(tf.nn.leaky_relu(tf.matmul(latents, k1), name=scope.name), k2)
z_proj = z_proj / tf.reshape(tf.norm(z_proj, ord=2, axis=-1), [bs, 1])
return z_proj
def create_loss(self, features, labels, params, is_training=True):
| tensorflow.norm | 3,188 |
import tensorflow as tf
initialization:
Orthogonal weights: tf.initializers.orthogonal()
Xavier : tf.contrib.layers.xavier_initializer(seed=1)
'''
tf.set_random_seed(1) # defines the seed of the random number generator
parameters={}
L = len(layers) # number of layers in the network
first = activation[0] #Activation of the first layer
if first == 'esp':
train = True
init = tf.random_normal_initializer(stddev= stbeta)
#init = tf.ones_initializer()
else:
train= False
init = tf.ones_initializer()
for l in range(1, L):
parameters['w' + str(l)] = tf.get_variable('w' + str(l), [layers[l], layers[l-1]],dtype= 'float64' , initializer= tf.contrib.layers.xavier_initializer(seed=1) )
parameters['b' + str(l)] = tf.get_variable('b' + str(l), [layers[l], 1],dtype= 'float64', initializer = tf.zeros_initializer())
parameters['beta' + str(l)] = tf.get_variable('beta'+ str(l), [layers[l], 1], dtype= 'float64', initializer = init, trainable= train )
assert(parameters['w' + str(l)].shape == (layers[l], layers[l-1]))
| tensorflow.random_normal_initializer | 3,189 |
import tensorflow as tf
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
if is_training:
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
probabilities = tf.nn.softmax(logits, axis=-1)
log_probs = tf.nn.log_softmax(logits, axis=-1)
| tensorflow.nn.dropout | 3,190 |
import tensorflow as tf
bounds = []
for v in variables:
key = v.name[:v.name.find(':')]
lower, upper = constraint[key]
bounds.append((lower, upper))
max_steps = 1000
status_every = 1
# Create an optimizer with the desired parameters.
opt = tf.contrib.opt.ScipyOptimizerInterface(nll,
options={'maxiter': max_steps,
# 'disp': True,
# 'tol': 1e-20,
'maxls': 10,
},
# inequalities=inequalities,
# method='SLSQP' # supports inequalities
# method='BFGS',
bounds=bounds,
var_list=variables, # supply with bounds to match order!
tol=1e-14,
| tensorflow.contrib.opt.ScipyOptimizerInterface | 3,191 |
import tensorflow as tf
# bce_loss_list = []
# for pred_ind in list(range(len(pred_outputs))):
# bce_loss_list.append(tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=pred_outputs[pred_ind], labels=targets_list[pred_ind]/255., name='loss_{}'.format(pred_ind)), name='loss_mean_{}'.format(pred_ind)))
# mse_loss = tf.multiply(params['mse_weight'] / params['num_stacks'], tf.add_n(bce_loss_list), name='mse_loss')
# tf.summary.scalar('mse', mse_loss)
# tf.losses.add_loss(mse_loss)
# Add weight decay to the loss. We exclude the batch norm variables because
# doing so leads to a small improvement in accuracy.
loss = mse_loss + params['weight_decay'] * tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables() if 'batch_normalization' not in v.name])
total_loss = tf.identity(loss, name='total_loss')
tf.summary.scalar('loss', total_loss)
if mode == tf.estimator.ModeKeys.EVAL:
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, predictions=predictions, eval_metric_ops=metrics)
if mode == tf.estimator.ModeKeys.TRAIN:
global_step = tf.train.get_or_create_global_step()
| tensorflow.trainable_variables | 3,192 |
from tensorflow.contrib.learn.python.learn.io import data_feeder
def _get_input_fn(x, y, batch_size):
# TODO(ipoloshukin): Remove this when refactor of data_feeder is done
if hasattr(x, 'create_graph') and hasattr(y, 'create_graph'):
def input_fn():
return x.create_graph(), y.create_graph()
return input_fn, None
df = data_feeder.setup_train_data_feeder(x, y,
n_classes=None,
batch_size=batch_size)
return df.input_builder, df.get_feed_dict_fn()
def _get_predict_input_fn(x, batch_size):
# TODO(ipoloshukin): Remove this when refactor of data_feeder is done
| tensorflow.contrib.learn.python.learn.io.data_feeder.setup_train_data_feeder | 3,193 |
import tensorflow as tf
if use_scale:
gamma = tf.get_variable('gamma', [channnel], initializer=tf.constant_initializer(1.0))
gamma = tf.reshape(gamma, new_shape)
else:
| tensorflow.reshape | 3,194 |
import tensorflow as tf
"""
with tf.variable_scope(scope, reuse=reuse):
observations_ph = make_obs_ph("observation")
stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic")
update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps")
eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0))
q_values = q_func(observations_ph.get(), num_actions, scope="q_func")
deterministic_actions = tf.argmax(q_values, axis=1)
batch_size = tf.shape(observations_ph.get())[0]
random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64)
chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps
stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions)
output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions)
update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps))
_act = U.function(inputs=[observations_ph, stochastic_ph, update_eps_ph],
outputs=output_actions,
givens={update_eps_ph: -1.0, stochastic_ph: True},
updates=[update_eps_expr])
def act(ob, stochastic=True, update_eps=-1):
return _act(ob, stochastic, update_eps)
return act
| tensorflow.stack | 3,195 |
import tensorflow as tf
"""
with tf.variable_scope('_interpolate'):
| tensorflow.variable_scope | 3,196 |
import tensorflow as tf
self.features = features
self.labels = labels
self.mode = mode
self.params = params
def input_layer(self):
# data = np.loadtxt(self.params['vocab'], dtype=np.unicode, encoding=None)
data = self.params["vocab_data"]
mapping_strings = tf.Variable(data)
vocab_words = tf.contrib.lookup.index_table_from_tensor(
mapping_strings, num_oov_buckets=1
)
# Word Embeddings
words = tf.identity(self.features["words"], name="input_words")
word_ids = vocab_words.lookup(words)
#
# raw_nwords = tf.identity(features['words_len'], name='input_words_len')
# nwords = tf.feature_column.input_layer({'words_len': raw_nwords}, params['words_len_feature_columns'])
# nwords = tf.reshape(nwords, [-1])
# nwords = tf.to_int32(nwords)
# words = features['words']
# words = tf.convert_to_tensor(words)
#
# nwords = features['words_len']
# nwords = tf.convert_to_tensor(nwords)
| tensorflow.identity | 3,197 |
import tensorflow as tf
param_eta = tf.placeholder(dtype=tf.float32, shape=[], name="param_eta")
param_omega = tf.placeholder(dtype=tf.float32, shape=[], name="param_omega")
old_entropy = tf.placeholder(dtype=tf.float32, shape=[], name="old_entropy")
varphis = tf.placeholder(dtype=tf.float32, shape=[None, None], name="varphis")
Kt = tf.placeholder(dtype=tf.float32, shape=[None, None], name="Kt")
prec = tf.placeholder(dtype=tf.float32, shape=[None, None], name="prec")
Waa = tf.placeholder(dtype=tf.float32, shape=[None, None], name="Waa")
Wsa = tf.placeholder(dtype=tf.float32, shape=[None, None], name="Wsa")
wa = tf.placeholder(dtype=tf.float32, shape=[None, None], name="wa")
# varphis = ext.new_tensor(
# 'varphis',
# ndim=2,
| tensorflow.placeholder | 3,198 |
import tensorflow as tf
alpha_t = tf.where(tf.equal(onehot_labels, 1.0), alpha_t, 1-alpha_t)
losses = tf.reduce_sum(-alpha_t * tf.pow(1. - predictions_pt, gamma) * tf.log(predictions_pt+epsilon),
| tensorflow.pow | 3,199 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.