seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
from tensorflow.python.ops import math_ops
```
entropy = alpha - log(beta) + log(Gamma(alpha))
+ (1-alpha)digamma(alpha)
```
where digamma(alpha) is the digamma function.""")
def _entropy(self):
return (self.alpha +
math_ops.log(self.beta) +
math_ops.lgamma(self.alpha) -
(1. + self.alpha) * math_ops.digamma(self.alpha))
@distribution_util.AppendDocstring(
"""The mean of an inverse gamma distribution is `beta / (alpha - 1)`,
when `alpha > 1`, and `NaN` otherwise. If `self.allow_nan_stats` is
`False`, an exception will be raised rather than returning `NaN`""")
def _mean(self):
mean = self.beta / (self.alpha - 1.)
if self.allow_nan_stats:
nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
return array_ops.where(
| tensorflow.python.ops.math_ops.digamma | 12,000 |
import tensorflow as tf
def pad_and_gather(vecs, mask_inds, pad=None):
"""
pad a vector with a zero row and gather with input inds
"""
if pad is None:
pad = tf.expand_dims(tf.zeros_like(vecs[0]), 0)
else:
pad = tf.expand_dims(pad, 0)
vecs_padded = tf.concat(0, [vecs, pad])
# flatten mask and edges
vecs_gathered = tf.gather(vecs_padded, mask_inds)
return vecs_gathered
def padded_segment_reduce(vecs, segment_inds, num_segments, reduction_mode):
"""
Reduce the vecs with segment_inds and reduction_mode
Input:
vecs: A Tensor of shape (batch_size, vec_dim)
segment_inds: A Tensor containing the segment index of each
vec row, should agree with vecs in shape[0]
| tensorflow.gather | 12,001 |
import tensorflow as tf
tf.logging.info("removing {}".format(src_ckpt))
tf.gfile.Remove(src_ckpt)
| tensorflow.gfile.Remove | 12,002 |
import tensorflow as tf
selected_rows = tf.nn.embedding_lookup(var_matrix, indices)
row_norms = tf.sqrt(tf.reduce_sum(tf.square(selected_rows), 1))
scaling = maxnorm / tf.maximum(row_norms, maxnorm)
scaled = selected_rows * tf.expand_dims(scaling, 1)
return tf.scatter_update(var_matrix, indices, scaled)
| tensorflow.expand_dims | 12,003 |
import tensorflow as tf
self.assertAllClose(
np.array([[0.2, 0.3, 0.5], [0.1, 0.6, 0.3]], np.float32),
transformed_inputs[fields.InputDataFields.groundtruth_classes])
def test_use_multiclass_scores_when_not_present(self):
image = np.random.rand(4, 4, 3).astype(np.float32)
tensor_dict = {
fields.InputDataFields.image:
tf.constant(image),
fields.InputDataFields.groundtruth_boxes:
tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)),
fields.InputDataFields.multiclass_scores:
tf.placeholder(tf.float32),
fields.InputDataFields.groundtruth_classes:
tf.constant(np.array([1, 2], np.int32))
}
input_transformation_fn = functools.partial(
inputs.transform_input_data,
model_preprocess_fn=_fake_model_preprocessor_fn,
image_resizer_fn=_fake_image_resizer_fn,
num_classes=3, use_multiclass_scores=True)
with self.test_session() as sess:
transformed_inputs = sess.run(
input_transformation_fn(tensor_dict=tensor_dict),
| tensorflow.placeholder | 12,004 |
import tensorflow as tf
self.b0 = tf.Variable(tf.zeros([512]))
self.w1 = tf.Variable(tf.random_normal([512, 10]))
| tensorflow.random_normal | 12,005 |
from tensorflow.python.ops import math_ops
count = _create_local('count_tensor', shape=values.get_shape())
num_values = array_ops.ones_like(values)
if weights is not None:
weights = math_ops.to_float(weights)
values = math_ops.mul(values, weights)
num_values = math_ops.mul(num_values, weights)
total_compute_op = state_ops.assign_add(total, values)
count_compute_op = state_ops.assign_add(count, num_values)
def compute_mean(total, count, name):
non_zero_count = math_ops.maximum(count,
array_ops.ones_like(count),
name=name)
return math_ops.truediv(total, non_zero_count, name=name)
mean = compute_mean(total, count, 'value')
with ops.control_dependencies([total_compute_op, count_compute_op]):
update_op = compute_mean(total, count, 'update_op')
if metrics_collections:
ops.add_to_collections(metrics_collections, mean)
if updates_collections:
ops.add_to_collections(updates_collections, update_op)
return mean, update_op
| tensorflow.python.ops.math_ops.truediv | 12,006 |
import tensorflow as tf
def model(X, M, Y, train=False, reuse=False):
with tf.variable_scope('model', reuse=reuse):
we = tf.get_variable("we", [n_vocab+n_special+n_ctx, n_embd], initializer=tf.random_normal_initializer(stddev=0.02))
we = dropout(we, embd_pdrop, train)
#X:[n_batch_train, 2, n_ctx, 2] -> [n_batch_train*2,n_ctx,2]
X = tf.reshape(X, [-1, n_ctx, 2])
M = tf.reshape(M, [-1, n_ctx])
h = embed(X, we)
#h=[-1,n_ctx,emb]
for layer in range(n_layer):
h = block(h, 'h%d'%layer, train=train, scale=True)
#h=[-1,n_ctx,emb] lm_h [-1,emb]
lm_h = tf.reshape(h[:, :-1], [-1, n_embd])
lm_logits = tf.matmul(lm_h, we, transpose_b=True)
lm_losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=lm_logits, labels=tf.reshape(X[:, 1:, 0], [-1]))
lm_losses = tf.reshape(lm_losses, [shape_list(X)[0], shape_list(X)[1]-1])
lm_losses = tf.reduce_sum(lm_losses*M[:, 1:], 1)/tf.reduce_sum(M[:, 1:], 1)
clf_h = tf.reshape(h, [-1, n_embd])
pool_idx = tf.cast(tf.argmax(tf.cast(tf.equal(X[:, :, 0], clf_token), tf.float32), 1), tf.int32)
clf_h = tf.gather(clf_h, tf.range(shape_list(X)[0], dtype=tf.int32)*n_ctx+pool_idx)
clf_h = tf.reshape(clf_h, [-1, 2, n_embd])
if train and clf_pdrop > 0:
shape = shape_list(clf_h)
shape[1] = 1
clf_h = tf.nn.dropout(clf_h, 1-clf_pdrop, shape)
| tensorflow.reshape | 12,007 |
import tensorflow as tf
with tf.variable_scope('generator'):
| tensorflow.variable_scope | 12,008 |
import tensorflow as tf
return sess.run(self.value_estimate, { self.state: [state] })[0][0]
def update(self, state, target, sess=None):
sess = sess or tf.get_default_session()
for st_idx in range(len(state)):
state[st_idx]=featurize_state(state[st_idx]);
| tensorflow.get_default_session | 12,009 |
import tensorflow as tf
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
| tensorflow.to_int32 | 12,010 |
import tensorflow as tf
self.q_next = tf.layers.dense(a_fc1_, self.num_a, kernel_initializer=w_initializer,
bias_initializer=b_initializer, name='q_t')
# [batch*n_agents, 1]
self.q_selected = tf.reduce_sum(tf.multiply(self.q_eval, self.a), axis=1)
# ------------------ build mixing_net ------------------
with tf.variable_scope('mixing_net'):
| tensorflow.multiply | 12,011 |
import tensorflow as tf
layer_a1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg)
layer_a2 = tf.layers.dense(layer_a1, 256, tf.nn.relu, kernel_regularizer=reg)
mu = tf.layers.dense(layer_a2, self.a_dim, tf.nn.tanh, kernel_regularizer=reg)
# sigma = tf.layers.dense(layer_a2, self.a_dim, tf.nn.softplus, kernel_regularizer=reg)
sigma = tf.get_variable(name='pi_sigma', shape=self.a_dim, initializer=tf.constant_initializer(0.5))
sigma = tf.clip_by_value(sigma, 0.0, 1.0)
norm_dist = tf.distributions.Normal(loc=mu * self.a_bound, scale=sigma)
params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name)
return norm_dist, params
def build_cnet(self, state_in, name, reuse=False):
reg = tf.contrib.layers.l2_regularizer(1e-3)
| tensorflow.distributions.Normal | 12,012 |
import tensorflow as tf
new_w = epi_len - horizon + 1
weights = np.zeros([epi_len, new_w])
for i in range(new_w):
weights[i:i + horizon, i] = 1.0
weights = tf.convert_to_tensor(weights, dtype=tf.float32)
horizon_sum = tf.matmul(input, weights)
return horizon_sum
| tensorflow.convert_to_tensor | 12,013 |
from tensorflow.examples.tutorials.mnist import input_data
import TensorFI as ti
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
# In this example, we limit mnist data
Xtr, Ytr = mnist.train.next_batch(5000) #5000 for training (nn candidates)
| tensorflow.examples.tutorials.mnist.input_data.read_data_sets | 12,014 |
import tensorflow as tf
self.batch_pos_cnt = batch_pos_cnt
self.max_iter = max_iter
self.model_type = model_type
self.add_bias = add_bias
if opt is None:
opt = tf.train.AdagradOptimizer(1.0)
self.opt = opt
self.sess = None
self.train_step = None
self.post_step = None
self.graph = tf.Graph()
with self.graph.as_default():
self.head_input = tf.placeholder(tf.int32, shape=[None])
self.rel_input = tf.placeholder(tf.int32, shape=[None])
self.tail_input = tf.placeholder(tf.int32, shape=[None])
self.target = tf.placeholder(tf.float32, shape=[None])
def _create_model(self, train_triples):
''' Subclasses must build Graph and set self.train_step '''
raise Exception('subclass must implement')
def _create_batch_provider(self, train_triples):
''' Default implementation '''
return ContrastiveTrainingProvider(train_triples, self.batch_pos_cnt)
| tensorflow.placeholder | 12,015 |
import tensorflow as tf
gpu_compute_stage_ops.extend(
[put_op for _, (put_op, _) in six.iteritems(staging_ops)])
enqueue_ops.append(tf.group(*gpu_compute_stage_ops))
if gpu_grad_stage_ops:
staging_delta_ops += gpu_grad_stage_ops
if staging_delta_ops:
enqueue_ops.append(tf.group(*(staging_delta_ops)))
if not phase_train:
if FLAGS.forward_only:
all_logits = tf.concat(all_logits, 0)
fetches = [all_logits] + enqueue_ops
else:
all_top_1_ops = tf.reduce_sum(all_top_1_ops)
all_top_5_ops = tf.reduce_sum(all_top_5_ops)
fetches = [all_top_1_ops, all_top_5_ops] + enqueue_ops
return (enqueue_ops, fetches)
extra_nccl_ops = []
apply_gradient_devices, gradient_state = (
self.variable_mgr.preprocess_device_grads(device_grads))
| tensorflow.concat | 12,016 |
import tensorflow as tf
tmp = x + tmp * scale
tmp = tf.keras.layers.LeakyReLU(alpha=0.2)(tmp)
| tensorflow.keras.layers.LeakyReLU | 12,017 |
import tensorflow as tf
Q_filter = tf.cast((qf1 > min_q)|(qf2 > min_q),tf.float32)
#Q_filter_1 = tf.cast(qf1 > min_q,tf.float32)
#Q_filter_2 = tf.cast(qf2 > min_q,tf.float32)
im_loss1 = tf.square(self.actions_ph - self.deterministic_actions_ph)*Q_filter*self.is_demo_ph
#im_loss2 = tf.square(self.actions_ph - self.deterministic_actions_ph)*Q_filter_2*self.is_demo_ph
#actor_loss_di1 = tf.reduce_mean(im_loss1)
#actor_loss_di2 = tf.reduce_mean(im_loss2)
| tensorflow.square | 12,018 |
import tensorflow as tf
# If you want to use the token-level output, use model.get_sequence_output()
# instead.
output_layer = model.get_pooled_output()
hidden_size = output_layer.shape[-1].value
output_weights = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
if is_training:
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
probabilities = tf.nn.softmax(logits, axis=-1)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
| tensorflow.variable_scope | 12,019 |
import tensorflow as tf
wvs_weighted = tf.mul(tf.reshape(tf.transpose(self.cs), [-1, 1]),
tf.reshape(wvs, [-1, in_size]))
| tensorflow.reshape | 12,020 |
import tensorflow as tf
# Monitor values
(summary_op, monitored_values) = self._add_monitoring_of_values()
# Add saver
tf_vars = tf.global_variables()
saver = tf.train.Saver(tf_vars)
# Allow loading of model variables
(var_phs, vars_assign_op) = self._add_vars_assign_op(tf_vars)
| tensorflow.train.Saver | 12,021 |
import tensorflow as tf
[self.batch_size, s_h8, s_w8, self.gf_dim*4], name='d_h1'))
output_h2 = lrelu(deconv2d(tf.concat([output_h1, tgtctx_h2], 3),
[self.batch_size, s_h4, s_w4, self.gf_dim*2], name='d_h2'))
output_h3 = lrelu(deconv2d(tf.concat([output_h2, tgtctx_h1], 3),
[self.batch_size, s_h2, s_w2, self.gf_dim*1], name='d_h3'))
output_h4 = deconv2d(tf.concat([output_h3, tgtctx_h0], 3),
[self.batch_size, s_h, s_w, self.c_dim], name='d_h4')
scope.reuse_variables()
truthoutput_z_ = lrelu(linear(tgtimg_z, self.gf_dim*8*s_h16*s_w16, 'd_h0_lin'))
truthoutput_h0 = tf.reshape(truthoutput_z_, [-1, s_h16, s_w16, self.gf_dim * 8])
truthoutput_h1 = lrelu(deconv2d(tf.concat([truthoutput_h0, tgtctx_h3], 3),
[self.batch_size, s_h8, s_w8, self.gf_dim*4], name='d_h1'))
truthoutput_h2 = lrelu(deconv2d(tf.concat([truthoutput_h1, tgtctx_h2], 3),
[self.batch_size, s_h4, s_w4, self.gf_dim*2], name='d_h2'))
truthoutput_h3 = lrelu(deconv2d(tf.concat([truthoutput_h2, tgtctx_h1], 3),
[self.batch_size, s_h2, s_w2, self.gf_dim*1], name='d_h3'))
truthoutput_h4 = deconv2d(tf.concat([truthoutput_h3, tgtctx_h0], 3),
[self.batch_size, s_h, s_w, self.c_dim], name='d_h4')
self.simloss = tf.reduce_mean((trans_z - tgtimg_z) ** 2) * 1e3
mean, var = tf.nn.moments(tgtimg_z, axes=[0])
print(var.get_shape())
| tensorflow.concat | 12,022 |
import tensorflow as tf
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
if is_training:
d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files))
d = d.repeat()
d = d.shuffle(buffer_size=len(input_files))
# `cycle_length` is the number of parallel files that get read.
cycle_length = min(num_cpu_threads, len(input_files))
# `sloppy` mode means that the interleaving is not exact. This adds
# even more randomness to the training pipeline.
d = d.apply(
tf.contrib.data.parallel_interleave(
tf.data.TFRecordDataset,
sloppy=is_training,
cycle_length=cycle_length))
d = d.shuffle(buffer_size=100)
else:
d = tf.data.TFRecordDataset(input_files)
# Since we evaluate for a fixed number of steps we don't want to encounter
# out-of-range exceptions.
d = d.repeat()
# We must `drop_remainder` on training because the TPU requires fixed
# size dimensions. For eval, we assume we are evaluating on the CPU or GPU
| tensorflow.contrib.data.parallel_interleave | 12,023 |
import tensorflow as tf
jitter = tfhacks.eye(tf.shape(mu)[0], var.dtype) * 1e-06
L = tf.batch_cholesky(tf.transpose(var, (2, 0, 1)) + jitter)
V_shape = [tf.shape(L)[0], tf.shape(L)[1], num_samples]
V = tf.random_normal(V_shape, dtype=L.dtype)
samples = tf.expand_dims(tf.transpose(mu), -1) + tf.batch_matmul(L, V)
return tf.transpose(samples)
@autoflow((tf.float64, [None, None]), (tf.float64, [None, None]),
(tf.float64, [None, None]))
def compute_posterior_mean_var(self, X, Y, test_points):
| tensorflow.transpose | 12,024 |
import tensorflow as tf
labels = tf.random_uniform([batch_size], minval=1, maxval=4, dtype=tf.int64)
prem = tf.random_uniform(
| tensorflow.random_uniform | 12,025 |
import tensorflow as tf
y = self._get_one_hot_labels(labels)
sampled_y = self._get_one_hot_labels(features["sampled_labels"])
else:
y = None
sampled_y = None
all_y = None
# Batch size per core.
bs = images.shape[0].value
def augment(imgs):
imgs = random_crop_and_resize(imgs)
imgs = random_apply(color_distortion, imgs, self._aug_color_jitter_prob)
imgs = random_apply(color_drop, imgs, self._aug_color_drop_prob)
return tf.stop_gradient(imgs)
aug_images, aug_generated = augment(images), augment(generated)
# concat all images
all_images = tf.concat([images, generated, aug_images, aug_generated], 0)
if self.conditional:
all_y = tf.concat([y, sampled_y, y, sampled_y], axis=0)
# Compute discriminator output for real and fake images in one batch.
d_all, d_all_logits, d_latents = self.discriminator(
x=all_images, y=all_y, is_training=is_training)
| tensorflow.stop_gradient | 12,026 |
import tensorflow as tf
def contra_traj_lossV2(pred, tgt, horizon=9):
# Step-wise contrastive loss
horizon_pred = horizon_sumV1(pred, horizon)
horizon_tgt = horizon_sumV1(tgt, horizon)
pred1, pred2 = tf.split(horizon_pred, 2, axis=0)
tgt1, tgt2 = tf.split(horizon_tgt, 2, axis=0)
geq = tf.cast((tgt1 - tgt2) > 0, tf.bool)
tgt_larg = tf.where(geq, tgt1, tgt2)
tgt_small = tf.where(geq, tgt2, tgt1)
pred_larg = tf.where(geq, pred1, pred2)
pred_small = tf.where(geq, pred2, pred1)
| tensorflow.split | 12,027 |
import tensorflow as tf
biases = tf.get_variable("biases", [output_size],
dtype=dtype,
initializer=tf.constant_initializer(
bias_start, dtype=dtype))
x = tf.nn.bias_add(x, biases)
# Reshape res back to: (batch_size, num_node, state_dim)
return tf.reshape(x, [batch_size, self._num_nodes, output_size]) | tensorflow.nn.bias_add | 12,028 |
import tensorflow as tf
def INLReLU(x, name=None):
x = InstanceNorm('inorm', x)
return LeakyReLU(x, name=name)
class Model(GANModelDesc):
def _get_inputs(self):
return [InputDesc(tf.float32, (None, SHAPE, SHAPE, 3), 'inputA'),
InputDesc(tf.float32, (None, SHAPE, SHAPE, 3), 'inputB')]
@staticmethod
def build_res_block(x, name, chan, first=False):
with tf.variable_scope(name):
input = x
return (LinearWrap(x)
.tf.pad([[0, 0], [0, 0], [1, 1], [1, 1]], mode='SYMMETRIC')
.Conv2D('conv0', chan, padding='VALID')
.tf.pad([[0, 0], [0, 0], [1, 1], [1, 1]], mode='SYMMETRIC')
.Conv2D('conv1', chan, padding='VALID', nl=tf.identity)
.InstanceNorm('inorm')()) + input
@auto_reuse_variable_scope
def generator(self, img):
assert img is not None
with argscope([Conv2D, Deconv2D], nl=INReLU, kernel_shape=3):
| tensorflow.variable_scope | 12,029 |
import tensorflow as tf
tf.flags.DEFINE_string('job_name', '',
'One of "ps", "worker", "". Empty for local training')
tf.flags.DEFINE_string('ps_hosts', '', 'Comma-separated list of target hosts')
tf.flags.DEFINE_string('worker_hosts', '',
'Comma-separated list of target hosts')
tf.flags.DEFINE_integer('task_index', 0, 'Index of task within the job')
tf.flags.DEFINE_string('server_protocol', 'grpc', 'protocol for servers')
tf.flags.DEFINE_boolean('cross_replica_sync', True, '')
# Summary and Save & load checkpoints.
tf.flags.DEFINE_integer('summary_verbosity', 0,
"""Verbosity level for summary ops. Pass 0 to disable
both summaries and checkpoints.""")
tf.flags.DEFINE_integer('save_summaries_steps', 0,
| tensorflow.flags.DEFINE_boolean | 12,030 |
import tensorflow as tf
"""
if pad is None:
pad = tf.expand_dims(tf.zeros_like(vecs[0]), 0)
else:
pad = tf.expand_dims(pad, 0)
vecs_padded = tf.concat(0, [vecs, pad])
# flatten mask and edges
vecs_gathered = tf.gather(vecs_padded, mask_inds)
| tensorflow.expand_dims | 12,031 |
import tensorflow as tf
# do logit = W*X+b
logit = tf.nn.xw_plus_b(H_drop, W, b, name="scores")
predictions = tf.nn.softmax(logit, name="predictions")
#claulate loss and optimizer
with tf.variable_scope("FCoptimize", reuse=None):
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits= logit, labels=Y)
+ l2_reg_lambda * l2_loss)
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)
# calculate accuracy
correct_predictions = tf.equal(tf.argmax(predictions, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")
| tensorflow.nn.softmax_cross_entropy_with_logits | 12,032 |
import tensorflow as tf
self.assertAllClose(masks.numpy(), expected_masks.numpy())
def test_inputs_Distances_to_centers(self):
inputs = tf.random.uniform(
[100, 8], minval=-10, maxval=10.0, dtype=tf.float32)
centers = tf.random.uniform(
[5, 8], minval=-10, maxval=10.0, dtype=tf.float32)
distances1 = isu.inputs_distances_to_centers(inputs, centers)
num_centers = tf.shape(centers)[0]
inputs_reshaped = tf.tile(tf.expand_dims(inputs, axis=1),
tf.stack([1, num_centers, 1]))
distances2 = tf.reduce_sum(tf.square(inputs_reshaped - centers), axis=2)
self.assertAllClose(distances1.numpy(), distances2.numpy(), atol=0.001)
def test_pairwise_iou_matrix(self):
mask0 = tf.constant([[1, 0],
[0, 1]], dtype=tf.float32)
mask1 = tf.constant([[1, 1],
| tensorflow.expand_dims | 12,033 |
import tensorflow as tf
if data_shape is None:
self.data_shape = {i: s['shape'] for i, s in self.input_spec.items()}
with tf.variable_scope('', reuse=tf.AUTO_REUSE):
self._build_graph()
def _gpu_tower(self, data, mode):
# Split the batch between the GPUs (data parallelism)
with tf.device('/cpu:0'):
with tf.name_scope('{}_data_sharding'.format(mode)):
batch_size = self.config['batch_size'] if (mode == Mode.TRAIN) \
else self.config['eval_batch_size']
shards = {d: tf.unstack(v, num=batch_size*self.n_gpus, axis=0)
for d, v in data.items()}
shards = [{d: tf.stack(v[i::self.n_gpus]) for d, v in shards.items()}
for i in range(self.n_gpus)]
| tensorflow.device | 12,034 |
import tensorflow as tf
assert tf.get_variable_scope().reuse is False
return tf.nn.relu(x) - alpha * tf.nn.relu(-x)
def instance_norm(x,name='instance_norm'):
with tf.variable_scope(name):
if reuse:
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
| tensorflow.variable_scope | 12,035 |
import tensorflow as tf
keep_prob=1., is_train=None, wd=0., activation='elu', hn=None):
assert direction is not None
def scaled_tanh(x, scale=5.):
return scale * tf.nn.tanh(1. / scale * x)
bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape(rep_tensor)[2]
ivec = hn or rep_tensor.get_shape().as_list()[2]
input_dim = rep_tensor.get_shape().as_list()[2]
with tf.variable_scope(scope or 'block_simple'):
# @1. split sequence
with tf.variable_scope('split_seq'):
| tensorflow.shape | 12,036 |
import tensorflow as tf
# Currently we do not support strides > 1 in this matrix multiplication mode. Could be supported
# in the future.
assert_strides = tf.assert_equal(
tf.cast(tf.stack([strides[1], strides[2]]), tf.int64),
tf.constant([1, 1], dtype=tf.int64),
message='Strides > 1 not supported.')
# Convolution when number of indices is larger than zero.
| tensorflow.constant | 12,037 |
import tensorflow as tf
with tf.variable_scope("loss", reuse=reuse):
# set up placeholders
act_t_ph = tf.placeholder(tf.int32, [None], name="action")
rew_t_ph = tf.placeholder(tf.float32, [None], name="reward")
done_mask_ph = tf.placeholder(tf.float32, [None], name="done")
| tensorflow.placeholder | 12,038 |
import tensorflow as tf
def predict(self, state, sess=None):
sess = sess or tf.get_default_session()
| tensorflow.get_default_session | 12,039 |
import tensorflow as tf
crop_height = (
model_options.crop_size[0]
if model_options.crop_size else tf.shape(images)[1])
crop_width = (
| tensorflow.shape | 12,040 |
import tensorflow as tf
h, w, _ = image.shape
grid = 8
image = image[:h // grid * grid, :w // grid * grid, :]
mask = mask[:h // grid * grid, :w // grid * grid, :]
image = np.expand_dims(image, 0)
mask = np.expand_dims(mask, 0)
input_image = np.concatenate([image, mask], axis=2)
sess_config = tf.ConfigProto()
sess_config.gpu_options.allow_growth = True
with tf.Session(config=sess_config) as sess:
input_image = tf.constant(input_image, dtype=tf.float32)
output = model.build_server_graph(FLAGS, input_image)
output = (output + 1.) * 127.5
output = tf.reverse(output, [-1])
output = tf.saturate_cast(output, tf.uint8)
# load pretrained model
vars_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
assign_ops = []
for var in vars_list:
vname = var.name
from_name = vname
var_value = tf.contrib.framework.load_variable(checkpoint_dir, from_name)
assign_ops.append(tf.assign(var, var_value))
sess.run(assign_ops)
result = sess.run(output)
tf.reset_default_graph()
return result[0][:, :, ::-1]
| tensorflow.reverse | 12,041 |
import tensorflow as tf
####################################
# Utils
####################################
def _do_cutout(self, image, im_width, im_height, cutout_size):
mask = tf.ones([cutout_size, cutout_size], dtype=tf.int32)
start_x = tf.random.uniform(shape=(1,), minval=0, maxval=im_width, dtype=tf.int32)
start_y = tf.random.uniform(shape=(1,), minval=0, maxval=im_height, dtype=tf.int32)
mask = tf.pad(mask, [[cutout_size + start_y[0], im_height - start_y[0]],
[cutout_size + start_x[0], im_width - start_x[0]]])
mask = mask[cutout_size: cutout_size + im_height,
cutout_size: cutout_size + im_width]
mask = tf.tile(tf.reshape(mask, (im_height, im_width, 1)), (1, 1, 3))
image = tf.where(tf.equal(mask, 0), x=image, y=tf.zeros_like(image))
return image
def _add_drop_path(self, X, keep_prob):
| tensorflow.pad | 12,042 |
import tensorflow as tf
"""
super(RNNColorbot, self).__init__(name="")
self.label_dimension = label_dimension
self.keep_prob = keep_prob
self.cells = tf.contrib.checkpoint.List(
[tf.nn.rnn_cell.BasicLSTMCell(size) for size in rnn_cell_sizes])
self.relu = layers.Dense(
label_dimension, activation=tf.nn.relu, name="relu")
def call(self, inputs, training=False):
"""Implements the RNN logic and prediction generation.
| tensorflow.nn.rnn_cell.BasicLSTMCell | 12,043 |
import tensorflow as tf
recall = recall_score(labels_all,predicted_score)
apk_sc = rank_metrics.apk(actual, predicted, k=50)
return roc_sc, auprc_score,accuracy,precision,recall,f ,apk_sc
def construct_placeholders(edge_types):
placeholders = {
'batch': tf.placeholder(tf.int32, name='batch'),
'batch_neg': tf.placeholder(tf.int32, name='batch_neg'),
'batch_node':tf.placeholder(tf.int32,name = 'batch_node'),
'adj_min_batch': tf.placeholder(tf.float32,name='adj_min_batch'),
'sim_min_batch': tf.placeholder(tf.float32,name='sim_min_batch'),
'batch_edge_type_idx': tf.placeholder(tf.int32, shape=(), name='batch_edge_type_idx'),
'batch_row_edge_type': tf.placeholder(tf.int32, shape=(), name='batch_row_edge_type'),
'batch_col_edge_type': tf.placeholder(tf.int32, shape=(), name='batch_col_edge_type'),
'degrees': tf.placeholder(tf.int32),
'dropout': tf.placeholder_with_default(0., shape=()),
}
| tensorflow.placeholder | 12,044 |
import tensorflow as tf
def decode(roi, deltas, variances=None):
with tf.name_scope('BoundingBoxTransform/decode'):
(roi_width, roi_height,
roi_urx, roi_ury) = get_width_upright(roi)
dx, dy, dw, dh = tf.split(deltas, 4, axis=1)
if variances is None:
variances = [1., 1.]
pred_ur_x = dx * roi_width * variances[0] + roi_urx
pred_ur_y = dy * roi_height * variances[0] + roi_ury
pred_w = tf.exp(dw * variances[1]) * roi_width
pred_h = tf.exp(dh * variances[1]) * roi_height
bbox_x1 = pred_ur_x - 0.5 * pred_w
bbox_y1 = pred_ur_y - 0.5 * pred_h
# This -1. extra is different from reference implementation.
bbox_x2 = pred_ur_x + 0.5 * pred_w - 1.
bbox_y2 = pred_ur_y + 0.5 * pred_h - 1.
bboxes = tf.concat(
[bbox_x1, bbox_y1, bbox_x2, bbox_y2], axis=1)
return bboxes
| tensorflow.exp | 12,045 |
import tensorflow as tf
if is_training:
return tf.nn.dropout(layer, keep_prob=keep_prob, name=name)
else:
return tf.add(layer, 0, name=name)
def norm(layer, norm_type='batch_norm', decay=0.9, id=0, is_training=True, activation_fn=tf.nn.relu, prefix='conv_'):
if norm_type != 'batch_norm' and norm_type != 'layer_norm':
return tf.nn.relu(layer)
with tf.variable_scope('norm_layer_%s%d' % (prefix, id)) as vs:
if norm_type == 'batch_norm':
if is_training:
try:
layer = tf.contrib.layers.batch_norm(layer, is_training=True, center=True,
scale=False, decay=decay, activation_fn=activation_fn, updates_collections=None, scope=vs) # updates_collections=None
| tensorflow.nn.relu | 12,046 |
import tensorflow as tf
z_t = tf.gather(y, m)
z_t_len = tf.strings.length(z_t)
z_t = tf.string_split([z_t], delimiter='').values
for i in tf.range(start=0, limit=x_t_len - self._p + 1, delta=1, dtype=None, name='range'):
u = tf.string_join(x_t[i:i + self._p], '')
vx_keys, r = tf.cond(
tf.greater(vx.lookup(u), -1),
| tensorflow.range | 12,047 |
from tensorflow.contrib.opt.python.training import variable_clipping_optimizer
def _setupSparse(self, is_distributed, dtype):
with self._maybeWithDevice("/job:ps" if is_distributed else None):
var0 = variables.Variable(
[[0.0, 1.0], [2.0, 3.0], [4.0, 5.0]], dtype=dtype)
var1 = variables.Variable(
[[0.0, 1.0], [0.0, 3.0], [0.0, 5.0]], dtype=dtype)
with self._maybeWithDevice("/job:worker" if is_distributed else None):
grads = ops.IndexedSlices(
constant_op.constant(
[[0.1, 0.1], [0.1, 0.1]], dtype=dtype), [0, 2], [3, 2])
sgd = gradient_descent.GradientDescentOptimizer(3.0)
clip_opt = variable_clipping_optimizer.VariableClippingOptimizer(
sgd, {var0: [1],
var1: [0]}, 2.0)
update_op = clip_opt.apply_gradients(
list(zip([grads, grads], [var0, var1])))
variables.global_variables_initializer().run()
return var0, var1, update_op
def _assertSparseCorrect(self, var0, var1, update_op):
# Fetch params to validate initial values
self.assertAllCloseAccordingToType([[0.0, 1.0], [2.0, 3.0], [4.0, 5.0]],
var0.eval())
| tensorflow.contrib.opt.python.training.variable_clipping_optimizer.VariableClippingOptimizer | 12,048 |
import tensorflow as tf
# 上面的wtih或者是name都是可选的,可以选择添加,也可以选择不添加,but下面的这一行是一定要写的。
# 这个表明了 在当前的目录下面创建以恶搞logs的文件家,然后把图的信息保存进去
# 这样运行完这段代码之后,就会有一个logs的文件夹被创建
if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1: # tensorflow version < 0.12
writer = tf.train.SummaryWriter('logs/', sess.graph)
else: # tensorflow version >= 0.12
writer = tf.summary.FileWriter("logs/", sess.graph)
if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
init = tf.initialize_all_variables()
else:
init = tf.global_variables_initializer()
sess.run(init) | tensorflow.__version__.split | 12,049 |
import tensorflow as tf
rnn_output = feats_all
rnn_output_size = nfeats_tot
if do_rnn:
with tf.variable_scope('rnn_proj'):
rnn_proj_w = tf.get_variable('W', [nfeats_tot, rnn_size], initializer=tf.uniform_unit_scaling_initializer(factor=1.0, dtype=dtype), dtype=dtype)
rnn_proj_b = tf.get_variable('b', [rnn_size], initializer=tf.constant_initializer(0.0), dtype=dtype)
rnn_inputs = tf.nn.bias_add(tf.matmul(feats_all, rnn_proj_w), rnn_proj_b)
rnn_inputs = tf.reshape(rnn_inputs, [batch_size, rnn_nunroll, rnn_size])
rnn_inputs = tf.split(rnn_inputs, rnn_nunroll, axis=1)
rnn_inputs = [tf.squeeze(input_, [1]) for input_ in rnn_inputs]
if rnn_cell_type == 'rnn':
cell_fn = tf.nn.rnn_cell.BasicRNNCell
| tensorflow.matmul | 12,050 |
import tensorflow as tf
def compile_data(tmp_dir, datasets, filename, datatypes_to_clean=None):
"""Concatenates all `datasets` and saves to `filename`."""
datatypes_to_clean = datatypes_to_clean or []
filename = os.path.join(tmp_dir, filename)
lang1_fname = filename + ".lang1"
lang2_fname = filename + ".lang2"
if tf.gfile.Exists(lang1_fname) and tf.gfile.Exists(lang2_fname):
tf.logging.info("Skipping compile data, found files:\n%s\n%s", lang1_fname,
lang2_fname)
return filename
with tf.gfile.GFile(lang1_fname, mode="w") as lang1_resfile:
with tf.gfile.GFile(lang2_fname, mode="w") as lang2_resfile:
for dataset in datasets:
url = dataset[0]
compressed_filename = os.path.basename(url)
compressed_filepath = os.path.join(tmp_dir, compressed_filename)
if url.startswith("http"):
generator_utils.maybe_download(tmp_dir, compressed_filename, url)
if compressed_filename.endswith(".zip"):
zipfile.ZipFile(os.path.join(compressed_filepath),
| tensorflow.gfile.GFile | 12,051 |
import tensorflow as tf
self.epsilon = epsilon
def __call__(self,input_var,name=None,**kwargs) :
if( input_var.shape.ndims > 2 ) :
dims = tf.reduce_prod(tf.shape(input_var)[1:])
input_var = tf.reshape(input_var,[-1,dims])
def _init():
v_norm = tf.nn.l2_normalize(self.v,axis=0)
t = tf.matmul(input_var,v_norm)
mu,var = tf.nn.moments(t,axes=[0])
std = tf.sqrt(var+self.epsilon)
return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)]
require_init = tf.reduce_any(tf.is_nan(self.g))
init_ops = tf.cond(require_init,_init,lambda : [self.g,self.b])
with tf.control_dependencies(init_ops):
w = tf.expand_dims(self.g,axis=0) * tf.nn.l2_normalize(self.v,axis=0)
return tf.matmul(input_var,w)+self.b
def get_variables(self):
#TODO: self.v should be l2-normalized or not? / currently not.
return {'v':self.v,'b':self.b,'g':self.g}
| tensorflow.assign | 12,052 |
import tensorflow as tf
if self.demo:
self.c = tf.placeholder(tf.int32, [None, config.test_para_limit],"context")
self.q = tf.placeholder(tf.int32, [None, config.test_ques_limit],"question")
self.ch = tf.placeholder(tf.int32, [None, config.test_para_limit, config.char_limit],"context_char")
| tensorflow.placeholder | 12,053 |
import tensorflow as tf
return f
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(feature.input_ids)
features["input_mask"] = create_int_feature(feature.input_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
features["label_ids"] = create_int_feature([feature.label_id])
features["is_real_example"] = create_int_feature(
[int(feature.is_real_example)])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
return tf_example
def file_based_input_fn_builder(input_file, seq_length, is_training,
drop_remainder):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
name_to_features = {
| tensorflow.train.Features | 12,054 |
import tensorflow as tf
X = self._calibrate(X, w, h, ch, w // stride, h // stride, ch, is_train=is_train)
X = tf.reshape(X, (-1, w // stride, h // stride, ch)) # Sanity shape check
return X
def _add_max_pool_3x3_op(self, X, input_idx, ni, w, h, ch, is_reduction, is_dynamic, is_train):
filter_size = 3
stride = 2 if is_reduction else 1
with tf.variable_scope('max_pool_3x3_op'):
X = tf.nn.max_pool(X, ksize=(1, filter_size, filter_size, 1), strides=[1, stride, stride, 1], padding='SAME')
X = tf.reshape(X, (-1, w // stride, h // stride, ch)) # Sanity shape check
return X
def _add_separable_conv_3x3_op(self, *args, **kwargs):
return self._add_separable_conv_op(*args, **kwargs, filter_size=3)
| tensorflow.variable_scope | 12,055 |
import tensorflow as tf
Returns:
A tensor with softmax-normalized values on the last dimension.
"""
with tf.name_scope(name, 'softmax_N', [tensor]):
exp_tensor = tf.exp(tensor)
reduction_indices = [tensor.get_shape().ndims - 1]
return tf.div(exp_tensor,
tf.reduce_sum(
exp_tensor, axis=reduction_indices, keep_dims=True))
def optimizer(optimizer="adam", learning_rate=.001, momentum=.9):
"""Create model optimizer.
Parameters
| tensorflow.reduce_sum | 12,056 |
import tensorflow as tf
# Calculate the gradients for each model tower.
tower_grads = []
with tf.variable_scope(tf.get_variable_scope()):
for i in xrange(FLAGS.num_gpus):
with tf.device('/gpu:%d' % i):
with tf.name_scope('%s_%d' % (cifar10.TOWER_NAME, i)) as scope:
# Calculate the loss for one tower of the CIFAR model. This function
# constructs the entire CIFAR model but shares the variables across
# all towers.
loss = tower_loss(scope)
# Reuse variables for the next tower.
tf.get_variable_scope().reuse_variables()
# Retain the summaries from the final tower.
summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)
# Calculate the gradients for the batch of data on this CIFAR tower.
grads = opt.compute_gradients(loss)
# Keep track of the gradients across all towers.
tower_grads.append(grads)
# We must calculate the mean of each gradient. Note that this is the
| tensorflow.get_variable_scope | 12,057 |
import tensorflow as tf
self.g_sum = tf.summary.merge([self.loss_GABA_sum,self.loss_GBAB_sum,self.g_total_loss_sum])
self.loss_db_sum = tf.summary.scalar("db_loss", self.D_B_loss)
self.loss_da_sum = tf.summary.scalar("da_loss", self.D_A_loss)
self.loss_d_sum = tf.summary.scalar("d_loss",self.discriminator_loss)
self.db_loss_real_sum = tf.summary.scalar("db_loss_real", self.D_B_loss_real)
self.db_loss_fake_sum = tf.summary.scalar("db_loss_fake", self.D_B_loss_fake)
self.da_loss_real_sum = tf.summary.scalar("da_loss_real", self.D_A_loss_real)
self.da_loss_fake_sum = tf.summary.scalar("da_loss_fake", self.D_A_loss_fake)
self.d_sum = tf.summary.merge(
[self.loss_da_sum, self.da_loss_real_sum, self.da_loss_fake_sum,
self.loss_db_sum, self.db_loss_real_sum, self.db_loss_fake_sum,
self.loss_d_sum]
)
trainable_variables = tf.trainable_variables()
self.d_variables = [var for var in trainable_variables if 'discriminator' in var.name]
| tensorflow.summary.merge | 12,058 |
import tensorflow as tf
with tf.control_dependencies([baseline_update]):
self.reward = tf.identity(self.reward)
self.loss = self.sample_log_prob * (self.reward - self.baseline)
self.train_step = tf.Variable(0, dtype=tf.int32, trainable=False, name="train_step")
tf_variables = [var for var in tf.trainable_variables() if var.name.startswith(self.name)]
print("-" * 80)
for var in tf_variables:
print(var)
self.train_op, self.lr, self.grad_norm, self.optimizer = get_train_ops(
self.loss,
| tensorflow.trainable_variables | 12,059 |
import tensorflow as tf
else:
raise NotImplementedError
bias_var_shape = [nf] if one_dim_bias else [1, nf, 1, 1]
nin = x.get_shape()[channel_ax].value
wshape = [rf, rf, nin, nf]
with tf.variable_scope(scope):
w = tf.get_variable("w", wshape, initializer=ortho_init(init_scale))
b = tf.get_variable("b", bias_var_shape, initializer=tf.constant_initializer(0.0))
if not one_dim_bias and data_format == 'NHWC':
b = tf.reshape(b, bshape)
return tf.nn.conv2d(x, w, strides=strides, padding=pad, data_format=data_format) + b
def fc(x, scope, nh, *, init_scale=1.0, init_bias=0.0):
with tf.variable_scope(scope):
nin = x.get_shape()[1].value
w = tf.get_variable("w", [nin, nh], initializer=ortho_init(init_scale))
print("w is "+str(w))
b = tf.get_variable("b", [nh], initializer=tf.constant_initializer(init_bias))
| tensorflow.reshape | 12,060 |
from tensorflow.python.framework import ops
value matches `metric`.
"""
default_name = _at_k_name('average_precision', k)
with ops.name_scope(name, default_name, (predictions, labels)) as scope:
# Calculate per-example average precision, and apply weights.
average_precision = sparse_average_precision_at_k(
predictions=predictions, labels=labels, k=k)
if weights is not None:
weights = math_ops.to_double(weights)
average_precision = math_ops.mul(average_precision, weights)
# Create accumulation variables and update ops for max average precision and
# total average precision.
with ops.name_scope(None, 'max', (average_precision,)) as max_scope:
# `max` is the max possible precision. Since max for any row is 1.0:
# - For the unweighted case, this is just the number of rows.
# - For the weighted case, it's the sum of the weights broadcast across
# `average_precision` rows.
max_var = contrib_variables.local_variable(
array_ops.zeros([], dtype=dtypes.float64), name=max_scope)
if weights is None:
batch_max = math_ops.to_double(
array_ops.size(average_precision, name='batch_max'))
else:
# TODO(ptucker): More efficient way to broadcast?
broadcast_weights = math_ops.mul(
| tensorflow.python.framework.ops.name_scope | 12,061 |
import tensorflow as tf
sync_lp_time = stop - start
print(f"Got {len(sync_lp_observations)} observations in {sync_lp_time:.2f}s")
# %% [markdown]
# ## Comparison
# To compare outcomes of sync and async runs, let's plot their respective regrets side by side, and print out the running time. For this toy problem we expect async scenario to run a little bit faster on machines with multiple CPU.
# %%
from util.plotting import plot_regret
import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 2)
sync_lp_min_idx = tf.squeeze(tf.argmin(sync_lp_observations, axis=0))
async_lp_min_idx = tf.squeeze(tf.argmin(async_lp_observations, axis=0))
plot_regret(
sync_lp_observations.numpy(), ax[0], num_init=len(initial_data), idx_best=sync_lp_min_idx
)
ax[0].set_yscale("log")
ax[0].set_ylabel("Regret")
ax[0].set_ylim(0.0000001, 100)
ax[0].set_xlabel("# evaluations")
ax[0].set_title(f"Sync LP, {len(sync_lp_observations)} points, time {sync_lp_time:.2f}")
plot_regret(
async_lp_observations.numpy(), ax[1], num_init=len(initial_data), idx_best=async_lp_min_idx
)
ax[1].set_yscale("log")
| tensorflow.argmin | 12,062 |
import tensorflow as tf
# landm loss (smooth L1)
mask_landm_b = tf.broadcast_to(mask_landm, tf.shape(landm_true))
| tensorflow.shape | 12,063 |
import tensorflow as tf
rep_tensor_split = tf.reshape(rep_tensor_comp, [bs, block_num, block_len, input_dim]) # bs,bn,bl,d
rep_mask_split = tf.reshape(rep_mask_comp, [bs, block_num, block_len]) # bs,bn,bl
# non-linear
rep_map = bn_dense_layer(rep_tensor_split, ivec, True, 0., 'bn_dense_map', activation,
False, wd, keep_prob, is_train) # bs,bn,bl,vec
rep_map_tile = tf.tile(tf.expand_dims(rep_map, 2), [1, 1, block_len, 1, 1]) # bs,bn,bl,bl,vec
# rep_map_dp = dropout(rep_map, keep_prob, is_train)
bn = block_num
bl = block_len
with tf.variable_scope('self_attention'):
# @2.self-attention in block
| tensorflow.expand_dims | 12,064 |
import tensorflow as tf
layers = []
input = tf.concat([inputs, targets], axis=3)
with tf.variable_scope('layer_1'):
convolved = discrim_conv(input, ndf, stride=2)
| tensorflow.variable_scope | 12,065 |
import tensorflow as tf
pv_sum += len(input_arr)
last_index = idx
return gauc / pv_sum
def attention(query, facts, attention_size, mask, stag='null', mode='LIST', softmax_stag=1, time_major=False, return_alphas=False):
if isinstance(facts, tuple):
# In case of Bi-RNN, concatenate the forward and the backward RNN outputs.
facts = tf.concat(facts, 2)
if time_major:
# (T,B,D) => (B,T,D)
facts = tf.array_ops.transpose(facts, [1, 0, 2])
mask = tf.equal(mask, tf.ones_like(mask))
hidden_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer
input_size = query.get_shape().as_list()[-1]
| tensorflow.concat | 12,066 |
import tensorflow as tf
if encoder.final_state == 'concat_last': # concats last states of all backward layers (full LSTM states)
encoder_state_ = tf.concat(encoder_states_, axis=1)
elif encoder.final_state == 'average':
mask = tf.sequence_mask(encoder_input_length_, maxlen=tf.shape(encoder_outputs_)[1], dtype=tf.float32)
mask = tf.expand_dims(mask, axis=2)
encoder_state_ = tf.reduce_sum(mask * encoder_outputs_, axis=1) / tf.reduce_sum(mask, axis=1)
elif encoder.final_state == 'average_inputs':
mask = tf.sequence_mask(encoder_input_length_, maxlen=tf.shape(encoder_inputs_)[1], dtype=tf.float32)
mask = tf.expand_dims(mask, axis=2)
encoder_state_ = tf.reduce_sum(mask * encoder_inputs_, axis=1) / tf.reduce_sum(mask, axis=1)
elif encoder.bidir and encoder.final_state == 'last_both':
encoder_state_ = tf.concat([last_forward, last_backward], axis=1)
elif encoder.final_state == 'none':
encoder_state_ = tf.zeros(shape=[batch_size, 0])
elif encoder.bidir and not encoder.final_state == 'last_forward': # last backward hidden state
encoder_state_ = last_backward
else: # last forward hidden state
encoder_state_ = last_forward
if encoder.bidir and encoder.bidir_projection:
encoder_outputs_ = dense(encoder_outputs_, cell_output_size, use_bias=False, name='bidir_projection')
if encoder.attend_inputs:
encoder_outputs.append(encoder_inputs_)
elif encoder.attend_both:
encoder_outputs.append(tf.concat([encoder_inputs_, encoder_outputs_], axis=2))
else:
| tensorflow.zeros | 12,067 |
from tensorflow.python.framework import ops
else:
assert not self._exported_as_v1
# TODO(b/149997088): Raise an exception once we no longer support using
# the Keras layer with estimator based Trainer.
tf.compat.v1.logging.warning('Loading a TF2 SavedModel but eager mode '
'seems disabled.')
# If exported as TF2 SavedModel but not invoked in eager mode,
# re-initialize the saved_model_loader_value as __init__ could have been
# called in a different graph context.
default_graph = ops.get_default_graph()
if (self._loaded_saved_model_graph is None or
self._loaded_saved_model_graph is not default_graph):
self._saved_model_loader_value = saved_transform_io_v2.SavedModelLoader(
self._tft_output.transform_savedmodel_dir)
self._loaded_saved_model_graph = default_graph
return self._saved_model_loader_value
def _init_batch_counters(self, *args, **kwargs): # pylint: disable=g-doc-args
| tensorflow.python.framework.ops.get_default_graph | 12,068 |
import tensorflow as tf
import TensorFI as ti
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
# In this example, we limit mnist data
Xtr, Ytr = mnist.train.next_batch(5000) #5000 for training (nn candidates)
Xte, Yte = mnist.test.next_batch(200) #200 for testing
# tf Graph Input
xtr = tf.placeholder("float", [None, 784])
xte = tf.placeholder("float", [784])
# Nearest Neighbor calculation using L1 Distance
# Calculate L1 Distance
distance = tf.reduce_sum(tf.abs(tf.add(xtr, tf.negative(xte))),
reduction_indices=1)
# Prediction: Get min distance index (Nearest neighbor)
pred = tf.arg_min(distance, 0)
accuracy = 0.
# Initialize the variables (i.e. assign their default value)
| tensorflow.placeholder | 12,069 |
import tensorflow as tf
rec = tf.cast(kw * kh, tf.float32)
n_max = 7 + tf.math.ceil(tf.math.log(rec) / tf.math.log(2.))
| tensorflow.math.log | 12,070 |
import tensorflow as tf
'''
total_loss = self.loss
# add regularizers in case there are any
if len(self.regularizers)>0:
total_loss += tf.add_n(self.regularizers, name="regularization")
# 1st part of minimize: compute_gradient
self.grads_and_vars = self._optimizer.compute_gradients(total_loss)
# clip gradients
clipped_grads_and_vars = self._clip_gradients(self.grads_and_vars, self._grad_clipping_tuple)
# compute norms in case they need to be logged
self.gradient_norms = [tf.norm(g) + NUMTOL for (g, v) in clipped_grads_and_vars]
self.weight_norms = [tf.norm(v) + NUMTOL for (g, v) in clipped_grads_and_vars]
# check that gradients are finite
grads = [tf.check_numerics(g, "grads is not finite") for (g, v) in clipped_grads_and_vars]
variables = [tf.check_numerics(v, "grads is not finite") for (g, v) in clipped_grads_and_vars]
self.gradient_weight_global_norms = [tf.global_norm(grads), tf.global_norm(variables)]
# 2nd part of minimize: apply_gradient
optimizer_step = self._optimizer.apply_gradients(clipped_grads_and_vars, global_step=self.global_step)
update_ops = tf.group(*self.update_ops)
self.training_op = tf.group(update_ops, optimizer_step)
| tensorflow.norm | 12,071 |
import tensorflow as tf
identity_mat = tf.diag(tf.ones(shape=[embedding_size]))
# Create variables for logistic regression
A = tf.Variable(tf.random_normal(shape=[embedding_size,1]))
b = tf.Variable(tf.random_normal(shape=[1,1]))
# Initialize placeholders
x_data = tf.placeholder(shape=[sentence_size], dtype=tf.int32)
| tensorflow.random_normal | 12,072 |
import tensorflow as tf
outputs_to_predictions[output].append(
tf.expand_dims(tf.nn.softmax(logits_reversed), 4))
| tensorflow.nn.softmax | 12,073 |
import tensorflow as tf
return roc_sc, auprc_score,accuracy,precision,recall,f ,apk_sc
def construct_placeholders(edge_types):
placeholders = {
'batch': tf.placeholder(tf.int32, name='batch'),
'batch_neg': tf.placeholder(tf.int32, name='batch_neg'),
'batch_node':tf.placeholder(tf.int32,name = 'batch_node'),
'adj_min_batch': tf.placeholder(tf.float32,name='adj_min_batch'),
'sim_min_batch': tf.placeholder(tf.float32,name='sim_min_batch'),
'batch_edge_type_idx': tf.placeholder(tf.int32, shape=(), name='batch_edge_type_idx'),
'batch_row_edge_type': tf.placeholder(tf.int32, shape=(), name='batch_row_edge_type'),
'batch_col_edge_type': tf.placeholder(tf.int32, shape=(), name='batch_col_edge_type'),
'degrees': tf.placeholder(tf.int32),
'dropout': tf.placeholder_with_default(0., shape=()),
}
placeholders.update({
'adj_mats_%d,%d,%d' % (i, j, k): tf.sparse_placeholder(tf.float32)
for i, j in edge_types for k in range(edge_types[i,j])})
placeholders.update({
'feat_%d' % i: tf.sparse_placeholder(tf.float32)
for i, _ in edge_types})
return placeholders
###########################################################
test_size = 0.20
| tensorflow.placeholder | 12,074 |
import tensorflow as tf
def main(_):
tf.reset_default_graph()
# Import data
cifar = cf.cifar10(batchSize=FLAGS.batch_size, downloadDir=FLAGS.data_dir)
with tf.variable_scope('inputs'):
# Create the model
x = tf.placeholder(tf.float32, [None, FLAGS.img_width * FLAGS.img_height * FLAGS.img_channels])
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, FLAGS.num_classes])
# Whether model is training
train = tf.placeholder(tf.bool, [])
# Build the graph for the deep net
y_conv, img_summary = deepnn(x, train)
| tensorflow.placeholder | 12,075 |
import tensorflow as tf
start_logits = tf.squeeze(conv(tf.concat([self.enc[1], self.enc[2]],axis = -1),1, bias = False, name = "start_pointer"),-1)
end_logits = tf.squeeze(conv(tf.concat([self.enc[1], self.enc[3]],axis = -1),1, bias = False, name = "end_pointer"), -1)
self.logits = [mask_logits(start_logits, mask = self.c_mask),
mask_logits(end_logits, mask = self.c_mask)]
logits1, logits2 = [l for l in self.logits]
outer = tf.matmul(tf.expand_dims(tf.nn.softmax(logits1), axis=2),
tf.expand_dims(tf.nn.softmax(logits2), axis=1))
outer = tf.matrix_band_part(outer, 0, config.ans_limit)
self.yp1 = tf.argmax(tf.reduce_max(outer, axis=2), axis=1)
self.yp2 = tf.argmax(tf.reduce_max(outer, axis=1), axis=1)
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits1, labels=self.y1)
| tensorflow.nn.softmax | 12,076 |
import tensorflow as tf
prev_c, prev_h = next_c, next_h
anchors = anchors.write(layer_id, tf.zeros_like(next_h[-1]))
anchors_w_1 = anchors_w_1.write(
layer_id, tf.matmul(next_h[-1], self.w_attn_1))
def _condition(layer_id, *args):
return tf.less(layer_id, self.num_cells + 2)
def _body(layer_id, inputs, prev_c, prev_h, anchors, anchors_w_1, arc_seq,
entropy, log_prob):
indices = tf.range(0, layer_id, dtype=tf.int32)
start_id = 4 * (layer_id - 2)
| tensorflow.less | 12,077 |
import tensorflow as tf
extended_vsize = vsize
if self.max_phrase_size is not None:
extended_vsize += self.max_phrase_size
extra_zeros = tf.zeros((batch_size, self.max_phrase_size))
vocab_dist = tf.concat(values=[vocab_dist, extra_zeros], axis=1) # [batch_size, extended_vsize]
if self.options.add_first_word_prob_for_phrase: # add prob of the first word to each phrase
| tensorflow.zeros | 12,078 |
import tensorflow as tf
pred_max = tf.reduce_max(predictions, axis=-1)
pred_indices = tf.argmax(predictions, axis=-1)
pred_x, pred_y = tf.cast(tf.floormod(pred_indices, heatmap_size), tf.float32), tf.cast(tf.floordiv(pred_indices, heatmap_size), tf.float32)
width, height = tf.cast(width, tf.float32), tf.cast(height, tf.float32)
pred_x, pred_y = pred_x * width / tf.cast(heatmap_size, tf.float32), pred_y * height / tf.cast(heatmap_size, tf.float32)
if clip_at_zero:
pred_x, pred_y = pred_x * tf.cast(pred_max>0, tf.float32), pred_y * tf.cast(pred_max>0, tf.float32)
pred_x = pred_x * tf.cast(pred_max>0, tf.float32) + tf.cast(pred_max<=0, tf.float32) * (width / 2.)
pred_y = pred_y * tf.cast(pred_max>0, tf.float32) + tf.cast(pred_max<=0, tf.float32) * (height / 2.)
if config.PRED_DEBUG:
pred_indices_ = tf.squeeze(pred_indices)
image_ = tf.squeeze(image) * 255.
pred_heatmap = tf.one_hot(pred_indices_, heatmap_size*heatmap_size, on_value=1., off_value=0., axis=-1, dtype=tf.float32)
| tensorflow.cast | 12,079 |
import tensorflow as tf
self.eval_op_names = ['loss', 'pr_trn', 'pr_msk'] + list(metrics.keys())
self.saver_eval = tf.train.Saver(self.vars)
| tensorflow.train.Saver | 12,080 |
import tensorflow as tf
self.ch = tf.placeholder(tf.int32, [self.config.batch_size * self.max_p_num, self.config.max_p_len,
self.config.max_ch_len], "context_char")
self.qh = tf.placeholder(tf.int32, [self.config.batch_size * self.max_p_num, self.config.max_q_len,
self.config.max_ch_len], "question_char")
self.start_label = tf.placeholder(tf.int32, [self.config.batch_size], "answer_label1")
self.end_label = tf.placeholder(tf.int32, [self.config.batch_size], "answer_label2")
self.position_emb = position_embedding(self.c, 2 * self.config.hidden_size)
self.c_mask = tf.cast(self.c, tf.bool) # index 0 is padding symbol N x self.max_p_num, max_p_len
self.q_mask = tf.cast(self.q, tf.bool)
self.c_len = tf.reduce_sum(tf.cast(self.c_mask, tf.int32), axis=1)
self.q_len = tf.reduce_sum(tf.cast(self.q_mask, tf.int32), axis=1)
self.dropout = tf.placeholder(tf.float32, name="dropout")
self.global_step = tf.Variable(0, name="global_step", trainable=False)
"""
:descrition: The embedding layer, question and passage share embeddings
"""
| tensorflow.cast | 12,081 |
import tensorflow as tf
def main(_):
tf.reset_default_graph()
| tensorflow.reset_default_graph | 12,082 |
import tensorflow as tf
self.q = tf.slice(self.q, [0, 0], [N, self.q_maxlen])
self.c_mask = tf.slice(self.c_mask, [0, 0], [N, self.c_maxlen])
self.q_mask = tf.slice(self.q_mask, [0, 0], [N, self.q_maxlen])
self.ch = tf.slice(self.ch, [0, 0, 0], [N, self.c_maxlen, CL])
self.qh = tf.slice(self.qh, [0, 0, 0], [N, self.q_maxlen, CL])
self.y1 = tf.argmax(tf.slice(self.y1, [0, 0], [N, self.c_maxlen]),axis=-1)
| tensorflow.slice | 12,083 |
from tensorflow.python.framework import ops
denominator,
array_ops.ones_like(denominator))
iou = math_ops.div(cm_diag, denominator)
return math_ops.reduce_mean(iou, name=name)
mean_iou = compute_mean_iou('mean_iou')
if metrics_collections:
ops.add_to_collections(metrics_collections, mean_iou)
if updates_collections:
ops.add_to_collections(updates_collections, update_op)
return mean_iou, update_op
def _next_array_size(required_size, growth_factor=1.5):
"""Calculate the next size for reallocating a dynamic array.
Args:
required_size: number or tf.Tensor specifying required array capacity.
growth_factor: optional number or tf.Tensor specifying the growth factor
| tensorflow.python.framework.ops.add_to_collections | 12,084 |
import tensorflow as tf
predictions = tf.nn.softmax(logits)
y_as_list = tf.unstack(y, num=num_steps, axis=1)
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y,logits=logits)
total_loss = tf.reduce_mean(losses)
train_step = tf.train.AdagradOptimizer(learning_rate).minimize(total_loss)
'''训练网络'''
def train_rnn(num_epochs, num_steps, state_size=4, verbose=True):
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
#sess = tf_debug.LocalCLIDebugWrapperSession(sess)
training_losses = []
for idx, epoch in enumerate(gen_epochs(num_epochs, num_steps)):
training_loss = 0
training_state = np.zeros((batch_size, state_size)) # ->(200, 4)
if verbose:
print('\nepoch', idx)
for step, (X, Y) in enumerate(epoch):
tr_losses, training_loss_, training_state, _ = \
sess.run([losses, total_loss, final_state, train_step], feed_dict={x:X, y:Y, init_state:training_state})
| tensorflow.global_variables_initializer | 12,085 |
import tensorflow as tf
return params, params
def encode(self, x, encode_params):
"""See base class."""
addend = dummy_rng_source(encode_params[self.SEED_PARAM_KEY],
x.shape.num_elements())
addend = tf.reshape(addend, x.shape)
return {self.ENCODED_VALUES_KEY: x + addend}
def decode(self,
encoded_tensors,
decode_params,
| tensorflow.reshape | 12,086 |
import tensorflow as tf
# name='last_pred_mse')
# filter all invisible keypoint maybe better for this task
# all_visible = tf.logical_and(key_v>0, isvalid>0)
# targets_list = [tf.boolean_mask(targets_list[ind], all_visible) for ind in list(range(len(targets_list)))]
# pred_outputs = [tf.boolean_mask(pred_outputs[ind], all_visible, name='boolean_mask_{}'.format(ind)) for ind in list(range(len(pred_outputs)))]
all_visible = tf.expand_dims(tf.expand_dims(tf.cast(tf.logical_and(key_v>0, isvalid>0), tf.float32), axis=-1), axis=-1)
targets_list = [targets_list[ind] * all_visible for ind in list(range(len(targets_list)))]
pred_outputs = [pred_outputs[ind] * all_visible for ind in list(range(len(pred_outputs)))]
sq_diff = tf.reduce_sum(tf.squared_difference(targets, pred_outputs[-1]), axis=-1)
last_pred_mse = tf.metrics.mean_absolute_error(sq_diff, tf.zeros_like(sq_diff), name='last_pred_mse')
metrics = {'normalized_error': ne_mertric, 'last_pred_mse':last_pred_mse}
predictions = {'normalized_error': ne_mertric[1]}
ne_mertric = tf.identity(ne_mertric[1], name='ne_mertric')
base_learning_rate = params['learning_rate']
mse_loss_list = []
| tensorflow.squared_difference | 12,087 |
import tensorflow as tf
self.resolution])
inter = tf.transpose(tf.reduce_max(inter, axis=a))
| tensorflow.reduce_max | 12,088 |
from tensorflow.python.ops import math_ops
# To prevent broadcasting inside "-".
if len(target.get_shape()) == 1:
target = array_ops.expand_dims(target, dim=[1])
logits.get_shape().assert_is_compatible_with(target.get_shape())
return math_ops.square(logits - math_ops.to_float(target))
def _log_loss_with_two_classes(logits, target):
# sigmoid_cross_entropy_with_logits requires [batch_size, 1] target.
| tensorflow.python.ops.math_ops.to_float | 12,089 |
from tensorflow.python.ops import parsing_ops
return self._target_column.logits_to_predictions(logits, proba=True)
def _get_feature_ops_from_example(self, examples_batch):
column_types = layers.create_feature_spec_for_parsing((
self._get_linear_feature_columns() or []) + (
self._get_dnn_feature_columns() or []))
features = parsing_ops.parse_example(examples_batch, column_types)
return features
def _get_linear_feature_columns(self):
if not self._linear_feature_columns:
return None
| tensorflow.python.ops.parsing_ops.parse_example | 12,090 |
import tensorflow as tf
if pt[1] > box_limits_z[1]:
box_limits_z[1] = pt[1]
mean_x = tf.reduce_mean(box_limits_x)
mean_z = tf.reduce_mean(box_limits_z)
else:
mean_x = tf.reduce_mean(labeled_translations[:, 0])
| tensorflow.reduce_mean | 12,091 |
import tensorflow as tf
output_ = generate(output, input_, context)
argmax = lambda: tf.argmax(output_, 1)
target = lambda: inputs.read(time + 1)
softmax = lambda: tf.squeeze(tf.multinomial(tf.log(tf.nn.softmax(output_)), num_samples=1),
axis=1)
use_target = tf.logical_and(time < time_steps - 1, tf.random_uniform([]) >= feed_previous)
predicted_symbol = tf.case([
| tensorflow.nn.softmax | 12,092 |
import tensorflow as tf
sims_logits = sims_logits - tf.reshape(logits_max, [-1, 1])
sims_probs = tf.nn.softmax(sims_logits)
sim_labels = tf.constant(np.arange(bs * 2, dtype=np.int32))
sims_onehot = tf.one_hot(sim_labels, bs * 2)
c_real_loss = - tf.reduce_mean(
tf.reduce_sum(sims_onehot * tf.log(sims_probs + 1e-10), 1))
self.d_loss += c_real_loss * self._weight_contrastive_loss_d
self._tpu_summary.scalar("loss/c_real_loss", c_real_loss)
self._tpu_summary.scalar("loss/penalty", penalty_loss)
| tensorflow.log | 12,093 |
import tensorflow as tf
op_id = tf.to_int32(op_id)
op_id = tf.reshape(op_id, [1])
arc_seq = arc_seq.write(start_id + 2 * i + 1, op_id)
curr_log_prob = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=op_id)
log_prob += curr_log_prob
curr_ent = tf.stop_gradient(tf.nn.softmax_cross_entropy_with_logits(
logits=logits, labels=tf.nn.softmax(logits)))
entropy += curr_ent
inputs = tf.nn.embedding_lookup(self.w_emb, op_id)
next_c, next_h = stack_lstm(inputs, prev_c, prev_h, self.w_lstm)
anchors = anchors.write(layer_id, next_h[-1])
anchors_w_1 = anchors_w_1.write(layer_id, tf.matmul(next_h[-1], self.w_attn_1))
inputs = self.g_emb
return (layer_id + 1, inputs, next_c, next_h, anchors, anchors_w_1,
arc_seq, entropy, log_prob)
loop_vars = [
tf.constant(2, dtype=tf.int32, name="layer_id"),
inputs,
prev_c,
prev_h,
anchors,
anchors_w_1,
| tensorflow.matmul | 12,094 |
import tensorflow as tf
# in the future.
assert_strides = tf.assert_equal(
tf.cast(tf.stack([strides[1], strides[2]]), tf.int64),
tf.constant([1, 1], dtype=tf.int64),
| tensorflow.stack | 12,095 |
import tensorflow as tf
grads = tf.gradients(self.loss, self.var_list)
grads, _ = tf.clip_by_global_norm(grads, 40)
with tf.name_scope('sync'): # worker和global的同步过程
with tf.name_scope('pull'): # 获取global参数,复制到local—net
self.pull_params_op = tf.group(*[v1.assign(v2)
for v1, v2 in zip(self.var_list, globalAC.var_list)])
with tf.name_scope('push'): # 将参数传送到gloabl中去
self.update_params_op = OPT.apply_gradients(zip(grads, globalAC.var_list))
# 其中传送的是local—net的actor和critic的参数梯度grads,具体计算在上面定义
# apply_gradients是tf.train.Optimizer中自带的功能函数,将求得的梯度参数更新到global中
self.inc_step = self.global_step.assign_add(tf.shape(self.obs)[0])
self.train_op = tf.group(self.update_params_op, self.inc_step)
# GLOBALE_STEP += tf.shape(self.obs)[0]
def build_model(self):
"""
Builds the manager and worker models.
"""
with tf.variable_scope('FeUdal'):
self.build_placeholders()
self.build_perception()
| tensorflow.shape | 12,096 |
import tensorflow as tf
epsilon = tf.sinh(epsilon*l2)/tf.cosh(epsilon*l2)**l1/l2
# Compute A_{h+1}
A = tf.tile(alpha_mean+epsilon*alpha_std, [1, tf.shape(X)[0], 1, 1])
# Compute z_{h}A_{h+1}
Z1 = tf.matmul(Z, A[:,:,:n_basis//2,:])/tf.sqrt(n_basis*.5)
Z2 = tf.matmul(Z, A[:,:,n_basis//2:,:])/tf.sqrt(n_basis*.5)
# Compute u_{h+1} and v_{h+1}
U, V = tf.cos(Z1)+tf.cos(Z2), tf.sin(Z1)+tf.sin(Z2)
Z = tf.concat([U, V], 3)/tf.sqrt(n_out*1.)
KL += tf.reduce_mean(alpha_std**2+alpha_mean**2-2*alpha_logstd-1)/2.
| tensorflow.sqrt | 12,097 |
import tensorflow as tf
q_tp1_using_online_net = q_func(obs_tp1_input.get(), num_actions, scope="q_func", reuse=True)
q_tp1_best_using_online_net = tf.arg_max(q_tp1_using_online_net, 1)
q_tp1_best = tf.reduce_sum(q_tp1 * tf.one_hot(q_tp1_best_using_online_net, num_actions), 1)
else:
| tensorflow.one_hot | 12,098 |
import tensorflow as tf
tf.expand_dims(tf.nn.softmax(self.logits2), axis=1))
outer = tf.matrix_band_part(outer, 0, self.max_a_len)
self.yp1 = tf.argmax(tf.reduce_max(outer, axis=2), axis=1)
self.yp2 = tf.argmax(tf.reduce_max(outer, axis=1), axis=1)
def _compute_loss(self):
def focal_loss(logits, labels, weights=None, alpha=0.25, gamma=2):
logits = tf.nn.sigmoid(logits)
zeros = array_ops.zeros_like(logits, dtype=logits.dtype)
pos_p_sub = array_ops.where(labels > zeros, labels - logits, zeros)
neg_p_sub = array_ops.where(labels > zeros, zeros, logits)
cross_ent = - alpha * (pos_p_sub ** gamma) * tf.log(tf.clip_by_value(logits, 1e-8, 1.0)) \
- (1 - alpha) * (neg_p_sub ** gamma) * tf.log(tf.clip_by_value(1.0 - logits, 1e-8, 1.0))
return tf.reduce_sum(cross_ent, 1)
start_label = tf.one_hot(self.start_label, tf.shape(self.logits1)[1], axis=1)
end_label = tf.one_hot(self.end_label, tf.shape(self.logits2)[1], axis=1)
if self.config.loss_type == 'cross_entropy':
start_loss = tf.nn.softmax_cross_entropy_with_logits(
logits=self.logits1, labels=start_label)
end_loss = tf.nn.softmax_cross_entropy_with_logits(
logits=self.logits2, labels=end_label)
| tensorflow.clip_by_value | 12,099 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.