seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
mask_shape = list(map(int, self.mask.shape))
graph_typecheck.assert_shape(expanded_tensor, mask_shape + expected_extra_dims)
value_if_masked = expanded_tensor.dtype.as_numpy_dtype(value_if_masked)
if_masked_tensor = tf.fill(expanded_tensor.shape, value_if_masked)
mask = self.mask
for i in range(2, 2 + len(expected_extra_dims)):
mask = tf.expand_dims(mask, axis=i)
| tensorflow.fill | 11,600 |
import tensorflow as tf
if os.path.isdir(DATA_PATH): shutil.rmtree(DATA_PATH)
os.mkdir(DATA_PATH)
sess.run(tf.global_variables_initializer())
| tensorflow.global_variables_initializer | 11,601 |
import tensorflow as tf
| tensorflow.Session | 11,602 |
import tensorflow as tf
if self.config.use_position_attn:
start_logits = tf.squeeze(
conv(self._attention(tf.concat([self.enc[1], self.enc[2]], axis=-1), name="attn1"), 1, bias=False,
name="start_pointer"), -1)
end_logits = tf.squeeze(
conv(self._attention(tf.concat([self.enc[1], self.enc[3]], axis=-1), name="attn2"), 1, bias=False,
name="end_pointer"), -1)
else:
start_logits = tf.squeeze(
conv(tf.concat([self.enc[1], self.enc[2]], axis=-1), 1, bias=False, name="start_pointer"), -1)
end_logits = tf.squeeze(
conv(tf.concat([self.enc[1], self.enc[3]], axis=-1), 1, bias=False, name="end_pointer"), -1)
self.logits = [mask_logits(start_logits, mask=tf.reshape(self.c_mask, [N, -1])),
mask_logits(end_logits, mask=tf.reshape(self.c_mask, [N, -1]))]
self.logits1, self.logits2 = [l for l in self.logits]
outer = tf.matmul(tf.expand_dims(tf.nn.softmax(self.logits1), axis=2),
tf.expand_dims(tf.nn.softmax(self.logits2), axis=1))
outer = tf.matrix_band_part(outer, 0, self.max_a_len)
self.yp1 = tf.argmax(tf.reduce_max(outer, axis=2), axis=1)
self.yp2 = tf.argmax(tf.reduce_max(outer, axis=1), axis=1)
def _compute_loss(self):
def focal_loss(logits, labels, weights=None, alpha=0.25, gamma=2):
logits = tf.nn.sigmoid(logits)
| tensorflow.reshape | 11,603 |
import tensorflow as tf
padding='same', activation=tf.nn.relu)
self.drop3 = tf.layers.dropout(self.conv4, self.config.cifar10_cnn["keep_prob"], training=self.train)
# b. Flatten input data
self.flatten = tf.reshape(self.drop3, [-1, self.config.cifar10_cnn["fc1_nb_units"]])
# Create connected layers: fc1, fc2
with tf.contrib.framework.arg_scope([tf.contrib.layers.fully_connected],
normalizer_fn=tf.contrib.layers.batch_norm,
normalizer_params={"is_training": self.train}):
self.fc1 = tf.contrib.layers.fully_connected(self.flatten, self.config.cifar10_cnn["fc1_nb_units"])
self.fc2 = tf.contrib.layers.fully_connected(self.fc1, self.config.data["num_categories"], activation_fn=None)
# Compute loss
with tf.name_scope("loss"):
self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.fc2, labels=self.y))
# Optimizer
with tf.name_scope("training_op"):
self.training_op = tf.compat.v1.train.AdamOptimizer(self.learning_rate).minimize(self.loss)
| tensorflow.contrib.layers.fully_connected | 11,604 |
import tensorflow as tf
regularizer = tf.contrib.layers.l2_regularizer(1e-4)
def Convolutional_Block(inputs, shortcut, num_filters, name, is_training):
print("-"*20)
print("Convolutional Block", str(num_filters), name)
print("-"*20)
with tf.variable_scope("conv_block_" + str(num_filters) + "_" + name):
for i in range(2):
with tf.variable_scope("conv1d_%s" % str(i)):
filter_shape = [3, inputs.get_shape()[2], num_filters]
W = tf.get_variable(name='W', shape=filter_shape,
initializer=he_normal,
regularizer=regularizer)
inputs = tf.nn.conv1d(inputs, W, stride=1, padding="SAME")
inputs = tf.layers.batch_normalization(inputs=inputs, momentum=0.997, epsilon=1e-5,
center=True, scale=True, training=is_training)
inputs = tf.nn.relu(inputs)
print("Conv1D:", inputs.get_shape())
print("-"*20)
if shortcut is not None:
print("-"*5)
print("Optional Shortcut:", shortcut.get_shape())
print("-"*5)
return inputs + shortcut
return inputs
| tensorflow.nn.conv1d | 11,605 |
import tensorflow as tf
return output
def layer_normalization_layer(self, data):
output = tf.contrib.layers.layer_norm(data)
return output
| tensorflow.contrib.layers.layer_norm | 11,606 |
import tensorflow as tf
def variable(self, name, shape, initializer,regularizer=None):
with tf.device('/cpu:0'):
return tf.get_variable(name, shape, initializer=initializer, regularizer=regularizer, trainable=True)
def fc_layer(self, bottom, in_size, out_size, name):
with tf.variable_scope(name):
weights, biases = self.get_fc_var(in_size, out_size, name)
x = tf.reshape(bottom, [-1, in_size])
fc = tf.nn.bias_add(tf.matmul(x, weights), biases)
tf.summary.histogram('weight', weights)
tf.summary.histogram('bias', biases)
return fc
def get_conv_var(self, filter_size, in_channels, out_channels, name):
initial_value = tf.truncated_normal([filter_size, filter_size, in_channels, out_channels], 0.0, stddev = 1 / math.sqrt(float(filter_size * filter_size)))
filters = self.get_var(initial_value = initial_value, name = name, idx = 'weights', var_name = "_filters")
initial_value = tf.truncated_normal([out_channels], 0.0, 1.0)
biases = self.get_var(initial_value = initial_value, name = name, idx = 'biases', var_name = "_biases")
return filters, biases
| tensorflow.summary.histogram | 11,607 |
import tensorflow as tf
inter = tf.reshape(values, [self.resolution,
self.resolution,
self.resolution])
inter = tf.transpose(tf.reduce_max(inter, axis=a))
im = axs[fig_obj_count, 4].matshow(inter.numpy())
plt.colorbar(im, ax=axs[fig_obj_count, 4])
print(mtype, fig_obj_count, 2)
fig_obj_count += 1
intersection = tf.reduce_sum(tf.math.sign(tf.nn.relu(sdf_values - 1)))
union = tf.reduce_sum(tf.math.sign(sdf_values))
iou = intersection / union
if not tf.math.is_nan(iou):
ious.append(iou)
status3 = False
if status3:
_ = plt.figure(figsize=(5, 5))
plt.clf()
| tensorflow.nn.relu | 11,608 |
from tensorflow.python.framework import ops
Args:
x: `Tensor` numerator of numeric type.
y: `Tensor` denominator of numeric type.
name: A name for the operation (optional).
Returns:
`x / y` evaluated in floating point.
Raises:
TypeError: If `x` and `y` have different dtypes.
"""
with ops.op_scope([x, y], name, "truediv") as name:
x = ops.convert_to_tensor(x, name="x")
y = ops.convert_to_tensor(y, name="y")
x_dtype = x.dtype.base_dtype
y_dtype = y.dtype.base_dtype
if x_dtype != y_dtype:
raise TypeError("x and y must have the same dtype, got %r != %r" %
(x_dtype, y_dtype))
try:
dtype = _TRUEDIV_TABLE[x_dtype]
except KeyError:
raise TypeError("Invalid dtype %r in __truediv__" % x_dtype)
if dtype is not None:
| tensorflow.python.framework.ops.convert_to_tensor | 11,609 |
import tensorflow as tf
filename = os.path.join(test_dir, "metafile")
with self.test_session():
# Creates a graph.
v0 = tf.Variable(10.0, name="v0")
var = tf.Variable(tf.constant(0, dtype=tf.int64))
count_up_to = var.count_up_to(3)
input_queue = tf.FIFOQueue(30, tf.float32, shared_name="collection_queue")
qr = tf.train.QueueRunner(input_queue, [count_up_to])
tf.initialize_all_variables()
# Creates a saver.
save = tf.train.Saver({"v0": v0})
# Adds a set of collections.
tf.add_to_collection("int_collection", 3)
tf.add_to_collection("float_collection", 3.5)
tf.add_to_collection("string_collection", "hello")
tf.add_to_collection("variable_collection", v0)
# Add QueueRunners.
tf.train.add_queue_runner(qr)
# Adds user_defined proto in three formats: string, bytes and Any.
queue_runner = queue_runner_pb2.QueueRunnerDef(queue_name="test_queue")
tf.add_to_collection("user_defined_string_collection", str(queue_runner))
tf.add_to_collection("user_defined_bytes_collection",
queue_runner.SerializeToString())
any_buf = Any()
any_buf.Pack(queue_runner)
tf.add_to_collection("user_defined_any_collection", any_buf)
| tensorflow.add_to_collection | 11,610 |
from tensorflow.python.ops import variable_scope
ValueError: If `weights` is not `None` and its shape doesn't match `values`,
or if either `metrics_collections` or `updates_collections` are not a list
or tuple.
"""
with variable_scope.variable_scope(name, 'mean', [values, weights]):
values = math_ops.to_float(values)
total = _create_local('total', shape=[])
| tensorflow.python.ops.variable_scope.variable_scope | 11,611 |
import tensorflow as tf
enc_inp, dec_inp, cell, num_symbols=5, embedding_size=2,
output_projection=(w, b))
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 2), res[0].shape)
# Test that previous-feeding model ignores inputs after the first.
dec_inp2 = [tf.constant(0, tf.int32, shape=[2])] * 3
with tf.variable_scope("other"):
d3, _ = tf.nn.seq2seq.embedding_tied_rnn_seq2seq(
enc_inp, dec_inp2, cell, num_symbols=5, embedding_size=2,
feed_previous=tf.constant(True))
sess.run([tf.global_variables_initializer()])
tf.get_variable_scope().reuse_variables()
d1, _ = tf.nn.seq2seq.embedding_tied_rnn_seq2seq(
| tensorflow.constant | 11,612 |
import tensorflow as tf
def center_crop(image, size):
image_height = tf.shape(image)[0]
image_width = tf.shape(image)[1]
offset_height = (image_height - size) // 2
offset_width = (image_width - size) // 2
image = tf.slice(image, [offset_height, offset_width, 0], [size, size, -1])
return image
def lighting(image, std, eigval, eigvec):
v = tf.random_normal(shape=[3], stddev=std) * eigval
inc = tf.matmul(eigvec, tf.reshape(v, [3, 1]))
image = tf.cast(tf.cast(image, tf.float32) + tf.reshape(inc, [3]), image.dtype)
return image
def validation_mapper(byte):
image = tf.image.decode_jpeg(
tf.reshape(byte, shape=[]), 3, **JPEG_OPT)
image = resize_shortest_edge(image, tf.shape(image), 256)
image = center_crop(image, 224)
| tensorflow.random_normal | 11,613 |
import tensorflow as tf
if full_tensorboard_log:
tf.summary.histogram('rewards', rew_t_ph)
tf.summary.histogram('importance_weights', importance_weights_ph)
if tf_util.is_image(obs_phs[0]):
tf.summary.image('observation', obs_phs[0])
| tensorflow.summary.histogram | 11,614 |
import tensorflow as tf
layer_a1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg)
layer_a2 = tf.layers.dense(layer_a1, 256, tf.nn.relu, kernel_regularizer=reg)
mu = tf.layers.dense(layer_a2, self.a_dim, tf.nn.tanh, kernel_regularizer=reg)
# sigma = tf.layers.dense(layer_a2, self.a_dim, tf.nn.softplus, kernel_regularizer=reg)
sigma = tf.get_variable(name='pi_sigma', shape=self.a_dim, initializer=tf.constant_initializer(0.5))
sigma = tf.clip_by_value(sigma, 0.0, 1.0)
norm_dist = tf.distributions.Normal(loc=mu * self.a_bound, scale=sigma)
params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name)
return norm_dist, params
def build_cnet(self, state_in, name, reuse=False):
reg = tf.contrib.layers.l2_regularizer(1e-3)
with tf.variable_scope(name, reuse=reuse):
layer_c1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg)
layer_c2 = tf.layers.dense(layer_c1, 256, tf.nn.relu, kernel_regularizer=reg)
vf = tf.layers.dense(layer_c2, 1, kernel_regularizer=reg)
params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name)
return vf, params
# Update the network
def train(self, s, a, r, adv):
start = time()
| tensorflow.contrib.layers.l2_regularizer | 11,615 |
import tensorflow as tf
with tf.control_dependencies(init_ops):
| tensorflow.control_dependencies | 11,616 |
import tensorflow as tf
a scalar tensor representing the correlation loss value.
"""
with tf.variable_scope(name):
batch_size = tf.shape(source_samples)[0]
samples = tf.concat(values=[source_samples, target_samples], axis=0)
samples = flatten(samples)
domain_selection_mask = tf.concat(
| tensorflow.concat | 11,617 |
import tensorflow as tf
self.assertEqual(output.shape, (batch_size,))
def testTrainEvalWithReuse(self):
train_batch_size = 5
eval_batch_size = 2
height, width = 150, 150
num_classes = 1000
train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
mobilenet_v1.mobilenet_v1(train_inputs, num_classes)
eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
logits, _ = mobilenet_v1.mobilenet_v1(eval_inputs, num_classes,
reuse=True)
predictions = tf.argmax(logits, 1)
with self.test_session() as sess:
| tensorflow.random_uniform | 11,618 |
import tensorflow as tf
relevant example.
propensity_weights: (tf.Tensor) A tensor of the same shape as `output` containing the weight of each element.
name: A string used as the name for this variable scope.
Returns:
(tf.Tensor) A single value tensor containing the loss.
"""
# loss = None
with tf.name_scope(name, "click_loglikelihood"):
ob_prob=tf.nn.softmax(propensity)
rel_prob=tf.nn.softmax(train_output)
click_prob=ob_prob*rel_prob
click_prob_norm=click_prob/tf.reduce_sum(click_prob,axis=1,keep_dims=True)
label_dis = labels/ tf.reduce_sum(labels, 1, keep_dims=True)
entropy = tf.reduce_sum(tf.math.log(click_prob_norm)*label_dis,1)
return tf.reduce_mean(entropy)
def click_weighted_pairwise_loss(self, output, labels, propensity_weights, name=None):
"""Computes pairwise entropy loss with propensity weighting.
| tensorflow.nn.softmax | 11,619 |
from tensorflow.python.framework import ops
def _define_vars(self, params):
pass
def inference_graph(self, data):
with ops.device(self.device_assigner):
# Compute activations for the neural network.
nn_activations = [layers.fully_connected(data, self.params.layer_size)]
for _ in range(1, self.params.num_layers):
| tensorflow.python.framework.ops.device | 11,620 |
import tensorflow as tf
)
self.assertAllClose(
augmented_tensor_dict_out[fields.InputDataFields.groundtruth_boxes],
[[10, 10, 20, 20]]
)
self.assertAllClose(
augmented_tensor_dict_out[fields.InputDataFields.groundtruth_keypoints],
[[[10, 20], [10, 10]]]
)
def _fake_model_preprocessor_fn(image):
return (image, tf.expand_dims(tf.shape(image)[1:], axis=0))
def _fake_image_resizer_fn(image, mask):
return (image, mask, tf.shape(image))
class DataTransformationFnTest(test_case.TestCase):
def test_combine_additional_channels_if_present(self):
image = np.random.rand(4, 4, 3).astype(np.float32)
additional_channels = np.random.rand(4, 4, 2).astype(np.float32)
| tensorflow.shape | 11,621 |
import tensorflow as tf
output = run_node(node_def, [])
np.testing.assert_equal(output["Y"].shape, shape)
np.testing.assert_almost_equal(output["Y"].flatten(), values)
# test sparse tensor
if not legacy_opset_pre_ver(11):
expected = np.array([[1, 0, 0, 0], [0, 0, 2, 0], [0, 0, 0, 0]])
x = np.array([[0, 0], [1, 2]]).flatten().astype(np.int64)
values = helper.make_tensor("values", TensorProto.INT32, [2], [1, 2])
indices = helper.make_tensor("indices", TensorProto.INT64, [2, 2], x)
a = helper.make_sparse_tensor(values, indices,[3, 4])
node_def = helper.make_node("Constant", [], ["Y"], sparse_value=a)
output = run_node(node_def, [])
b = tf.sparse_to_dense(output["Y"].indices, output["Y"].dense_shape, output["Y"].values)
result = b.eval(session=tf.Session())
np.testing.assert_equal(result, expected)
def test_constant_fill(self):
if not legacy_opset_pre_ver(9):
raise unittest.SkipTest(
"ONNX version {} doesn't support ConstantFill.".format(
defs.onnx_opset_version()))
shape = [1, 2, 3, 4]
extra_shape = [5, 6]
value = 3.
node_def = helper.make_node(
"ConstantFill",
["X"],
| tensorflow.Session | 11,622 |
import tensorflow as tf
def build_batch_stats():
"""Builds the batch statistics calculation ops."""
# We use the moving mean as an estimate of the mean in order to perform
# a more numerically stable calculation of the batch mean.
# Copy for better stability.
shift = tf.add(self._moving_mean, 0)
counts, shifted_sum_x, shifted_sum_x2, _ = tf.nn.sufficient_statistics(
input_batch,
reduction_indices,
keep_dims=True,
shift=shift,
name="batch_norm_ss")
| tensorflow.nn.sufficient_statistics | 11,623 |
import tensorflow as tf
print(" [*] Reading checkpoint...")
model_dir = "%s_%s" % (self.dataset_dir, self.image_size)
checkpoint_dir = os.path.join(checkpoint_dir, model_dir)
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name))
return True
| tensorflow.train.get_checkpoint_state | 11,624 |
import tensorflow as tf
vat_loss, ul_u_updated = vat.virtual_adversarial_loss(ul_x, ul_u, ul_logit)
ent_loss = L.entropy_y_x(ul_logit)
additional_loss = vat_loss + ent_loss
elif FLAGS.method == 'baseline':
additional_loss = 0
else:
raise NotImplementedError
loss = nll_loss + additional_loss
opt = tf.train.AdamOptimizer(learning_rate=lr, beta1=mom)
tvars = tf.trainable_variables()
grads_and_vars = opt.compute_gradients(loss, tvars)
train_op = opt.apply_gradients(grads_and_vars, global_step=global_step)
return loss, train_op, global_step, ul_u_updated
def build_eval_graph(x, y, ul_x, ul_u):
losses = {}
| tensorflow.train.AdamOptimizer | 11,625 |
import tensorflow.contrib.graph_editor as ge
bottleneck_ts = []
for t in ts:
b = set(ge.get_backward_walk_ops(t.op, inclusive=True, within_ops=fwd_ops))
f = set(ge.get_forward_walk_ops(t.op, inclusive=False, within_ops=fwd_ops))
| tensorflow.contrib.graph_editor.get_backward_walk_ops | 11,626 |
from tensorflow.python.framework import ops
with ops.control_dependencies([train_step]):
with ops.get_default_graph().colocate_with(global_step):
| tensorflow.python.framework.ops.get_default_graph | 11,627 |
import tensorflow as tf
batch_size = tf.shape(attention_weights)[0]
src_len = tf.shape(attention_weights)[2]
trg_len = tf.shape(attention_weights)[1]
src_indices = tf.tile(tf.reshape(tf.range(src_len), shape=[1, 1, src_len]), [batch_size, trg_len, 1])
trg_indices = tf.tile(tf.reshape(tf.range(trg_len), shape=[1, trg_len, 1]), [batch_size, 1, src_len])
source_length = encoder_input_length[0]
target_length = tf.to_int32(tf.reduce_sum(trg_mask, axis=1))
true_src_len = tf.reshape(source_length, shape=[batch_size, 1, 1]) - 1
true_trg_len = tf.reshape(target_length, shape=[batch_size, 1, 1]) - 1
src_mask = tf.to_float(tf.sequence_mask(source_length, maxlen=src_len))
mask = tf.matmul(tf.expand_dims(trg_mask, axis=2), tf.expand_dims(src_mask, axis=1))
monotonous = tf.sqrt(((true_trg_len * src_indices - true_src_len * trg_indices) ** 2)
| tensorflow.reduce_sum | 11,628 |
import tensorflow as tf
def stable_var(input_, mean=None, axes=[0]):
"""Numerically more stable variance computation."""
if mean is None:
mean = tf.reduce_mean(input_, axes)
res = tf.square(input_ - mean)
max_sqr = tf.reduce_max(res, axes)
res /= max_sqr
res = tf.reduce_mean(res, axes)
res *= max_sqr
| tensorflow.square | 11,629 |
import tensorflow as tf
'Could not compute vocabulary size for {}, does not exist'.format(
vocab_filename))
elif vocab_path.endswith('tfrecord.gz'):
dataset = tf.data.TFRecordDataset(vocab_path, compression_type='GZIP')
def reduce_fn(accum, elem):
return tf.size(elem, out_type=tf.int64, name='vocabulary_size') + accum
return _get_tensor_value(
dataset.batch(tf.int32.max).reduce(
tf.constant(0, tf.int64), reduce_fn))
else:
with tf.io.gfile.GFile(vocab_path, 'rb') as f:
return sum(1 for _ in f)
def vocabulary_by_name(self, vocab_filename: str) -> List[bytes]:
"""Like vocabulary_file_by_name but returns a list."""
vocab_path = self.vocabulary_file_by_name(vocab_filename)
if not vocab_path:
raise ValueError('Could not read vocabulary: {}, does not exist'.format(
| tensorflow.constant | 11,630 |
import tensorflow as tf
print(v.op.name + " - loaded successfully")
print("All pretrained weights of resnet18 is loaded")
def _residual_block(self, name, x, filters, pool_first=False, strides=1, dilation=1):
print('Building residual unit: %s' % name)
with tf.variable_scope(name):
# get input channels
in_channel = x.shape.as_list()[-1]
# Shortcut connection
shortcut = tf.identity(x)
if pool_first:
if in_channel == filters:
if strides == 1:
shortcut = tf.identity(x)
else:
shortcut= tf.pad(x, tf.constant([[0,0],[1,1],[1,1],[0,0]]), "CONSTANT")
shortcut = tf.nn.max_pool(shortcut, [1, strides, strides, 1], [1, strides, strides, 1], 'VALID')
else:
shortcut = self._conv('shortcut_conv', x, padding='VALID',
num_filters=filters, kernel_size=(1, 1), stride=(strides, strides),
bias=self.bias)
else:
if dilation != 1:
shortcut = self._conv('shortcut_conv', x, padding='VALID',
num_filters=filters, kernel_size=(1, 1), dilation=dilation, bias=self.bias)
# Residual
x = self._conv('conv_1', x, padding=[[0,0],[1,1],[1,1],[0,0]],
| tensorflow.identity | 11,631 |
import tensorflow as tf
elif args.experiment_type == "sweep":
test = ContextAESweep()
test.build(tfinput, args.ablation_type)
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
sess = tf.Session(config=config)
learning_rate = tf.placeholder(tf.float32, shape=[])
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(test.loss)
sess.run(tf.global_variables_initializer())
allloss = []
validloss = []
itr = 0
saver = tf.train.Saver()
| tensorflow.Session | 11,632 |
import tensorflow as tf
bounds=bounds,
var_list=variables, # supply with bounds to match order!
tol=1e-14,
)
tf.scalar_summary('nll', nll)
init_op = tf.initialize_all_variables()
# from http://stackoverflow.com/a/35907755/1199693
| tensorflow.scalar_summary | 11,633 |
import tensorflow as tf
])), 1), [1, 0])
rep = tf.to_int32(rep)
x = tf.matmul(tf.reshape(x, (-1, 1)), rep)
return tf.reshape(x, [-1])
| tensorflow.reshape | 11,634 |
import tensorflow as tf
head_init = dense_maxnorm(head_init, self.maxnorm)
rel_init = dense_maxnorm(rel_init, self.maxnorm)
tail_init = dense_maxnorm(tail_init, self.maxnorm)
self.head_embedding_vars = tf.Variable(head_init)
self.rel_embedding_vars = tf.Variable(rel_init)
self.tail_embedding_vars = tf.Variable(tail_init)
# Embedding layer for each (head, rel, tail) triple being fed in as input
head_embed = tf.nn.embedding_lookup(self.head_embedding_vars, self.head_input)
rel_embed = tf.nn.embedding_lookup(self.rel_embedding_vars, self.rel_input)
tail_embed = tf.nn.embedding_lookup(self.tail_embedding_vars, self.tail_input)
# Model output
raw_output = tf.reduce_sum(tf.mul(tf.mul(head_embed, rel_embed), tail_embed), 1)
self.output, self.loss = self._create_output_and_loss(raw_output)
# Optimization
self.train_step = self.opt.minimize(self.loss)
if self.maxnorm is not None:
# Post-processing to limit embedding vars to L2 ball
head_constraint = self._norm_constraint_op(self.head_embedding_vars,
| tensorflow.nn.embedding_lookup | 11,635 |
import tensorflow as tf
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op,
scaffold_fn=scaffold_fn)
elif mode == tf.estimator.ModeKeys.EVAL:
| tensorflow.contrib.tpu.TPUEstimatorSpec | 11,636 |
import tensorflow as tf
[1, 1, 1, 1, 0, 0, 0, 0]],
dtype=tf.float32)
mask1 = tf.constant([[1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]],
dtype=tf.float32)
mask2 = tf.constant([[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 1],
[0, 1, 1, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 1, 1, 1, 1],
[0, 0, 0, 0, 1, 1, 1, 1]],
dtype=tf.float32)
masks = tf.stack([mask0, mask1, mask2])
return masks
| tensorflow.constant | 11,637 |
import tensorflow as tf
trainable=False)
def build_batch_stats():
"""Builds the batch statistics calculation ops."""
# We use the moving mean as an estimate of the mean in order to perform
# a more numerically stable calculation of the batch mean.
# Copy for better stability.
shift = tf.add(self._moving_mean, 0)
counts, shifted_sum_x, shifted_sum_x2, _ = tf.nn.sufficient_statistics(
input_batch,
reduction_indices,
keep_dims=True,
shift=shift,
name="batch_norm_ss")
| tensorflow.add | 11,638 |
import tensorflow as tf
ema = tf.train.ExponentialMovingAverage(decay=0.9)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
mean, var = tf.cond(b_train,
mean_var_with_update,
lambda: (ema.average(batch_mean), ema.average(batch_var)))
| tensorflow.identity | 11,639 |
import tensorflow as tf
f = tf.nn.sigmoid(f)
o = tf.nn.sigmoid(o)
u = tf.tanh(u)
c = f*c + i*u
h = o*tf.tanh(c)
xs[idx] = h
s = tf.concat(axis=1, values=[c, h])
return xs, s
def ortho_init(scale=1.0):
def _ortho_init(shape, dtype, partition_info=None):
| tensorflow.concat | 11,640 |
import tensorflow as tf
grads = tf.gradients(loss, self.params)
norm_grads = None
if self.max_grad_norm is not None:
grads, norm_grads = tf.clip_by_global_norm(grads, self.max_grad_norm)
grads = list(zip(grads, self.params))
with tf.variable_scope("input_info", reuse=False):
tf.summary.scalar('rewards', tf.reduce_mean(self.reward_ph))
tf.summary.scalar('learning_rate', tf.reduce_mean(self.learning_rate))
tf.summary.scalar('advantage', tf.reduce_mean(adv))
tf.summary.scalar('action_probability', tf.reduce_mean(self.mu_ph))
if self.full_tensorboard_log:
tf.summary.histogram('rewards', self.reward_ph)
tf.summary.histogram('learning_rate', self.learning_rate)
tf.summary.histogram('advantage', adv)
tf.summary.histogram('action_probability', self.mu_ph)
if tf_util.is_image(self.observation_space):
tf.summary.image('observation', train_model.obs_ph)
else:
tf.summary.histogram('observation', train_model.obs_ph)
trainer = tf.train.RMSPropOptimizer(learning_rate=self.learning_rate_ph, decay=self.rprop_alpha,
epsilon=self.rprop_epsilon)
_opt_op = trainer.apply_gradients(grads)
# so when you call _train, you first do the gradient step, then you apply ema
| tensorflow.summary.histogram | 11,641 |
import tensorflow as tf
while True:
random.shuffle(train_examples)
for example in train_examples:
tensorized_example = self.tensorize_example(example, is_training=True)
feed_dict = dict(zip(self.queue_input_tensors, tensorized_example))
session.run(self.enqueue_op, feed_dict=feed_dict)
enqueue_thread = threading.Thread(target=_enqueue_loop)
enqueue_thread.daemon = True
enqueue_thread.start()
def restore(self, session):
# Don't try to restore unused variables from the TF-Hub ELMo module.
vars_to_restore = [v for v in tf.global_variables() if "module/" not in v.name]
saver = tf.train.Saver(vars_to_restore)
checkpoint_path = os.path.join(self.config["log_dir"], "model.max.ckpt")
print("Restoring from {}".format(checkpoint_path))
session.run(tf.global_variables_initializer())
saver.restore(session, checkpoint_path)
def load_lm_embeddings(self, doc_key):
if self.lm_file is None:
return np.zeros([0, 0, self.lm_size, self.lm_layers])
file_key = doc_key.replace("/", ":")
group = self.lm_file[file_key]
| tensorflow.global_variables | 11,642 |
import tensorflow as tf
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
if ex_index < 5:
tf.logging.info("*** Example ***")
tf.logging.info("id: %s" % (example.unique_id))
tf.logging.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in input_tokens]))
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
| tensorflow.logging.info | 11,643 |
import tensorflow as tf
"input_ids": tf.FixedLenFeature([max_seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([max_seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([max_seq_length], tf.int64),
"masked_lm_positions": tf.FixedLenFeature(
[max_predictions_per_seq], tf.int64
),
"masked_lm_ids": tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_weights": tf.FixedLenFeature(
[max_predictions_per_seq], tf.float32
),
"next_sentence_labels": tf.FixedLenFeature([1], tf.int64),
}
| tensorflow.FixedLenFeature | 11,644 |
import tensorflow as tf
# Construct predictions
image = tf.placeholder(tf.float32, shape=[hps.batch_size, image_size, image_size,
num_channel]) ############MNIST and CIFAR10 are different ar here
| tensorflow.placeholder | 11,645 |
from tensorflow.contrib.learn.python.learn.datasets import base
train_path = os.path.join(module_path, 'data', 'text_train.csv')
test_path = os.path.join(module_path, 'data', 'text_test.csv')
train = base.load_csv_without_header(
train_path, target_dtype=np.int32, features_dtype=np.str, target_column=0)
test = base.load_csv_without_header(
| tensorflow.contrib.learn.python.learn.datasets.base.load_csv_without_header | 11,646 |
import tensorflow as tf
images = tf.constant(1.2, tf.float32, shape=[100, 28])
with tf.name_scope("hidden1"):
| tensorflow.name_scope | 11,647 |
import tensorflow as tf
elif activation == "elu":
new_context_act = tf.nn.elu(new_context)
elif activation == "linear":
new_context_act = tf.identity(new_context)
else:
raise RuntimeError
gate_sig = tf.nn.sigmoid(gate)
combination_res = gate_sig * new_context_act + (1 - gate_sig) * rep_map # bs,bn,bl,vec
with tf.variable_scope('restore_original_length'):
combination_res_reshape = tf.reshape(combination_res, [bs, bn * bl, ivec]) # bs,bn*bl,vec
output = combination_res_reshape[:, :sl, :]
| tensorflow.nn.sigmoid | 11,648 |
import tensorflow as tf
output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
tf.logging.info("***** Eval results *****")
for key in sorted(result.keys()):
tf.logging.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
if __name__ == "__main__":
tf.app.run()
| tensorflow.app.run | 11,649 |
from tensorflow.python.framework import ops
return [op.inputs[1].get_shape()]
@ops.RegisterShape("AssignAdd")
@ops.RegisterShape("AssignSub")
def _AssignUpdateShape(op):
"""Shape function for the AssignAdd and AssignSub dense update ops."""
return [op.inputs[0].get_shape().merge_with(op.inputs[1].get_shape())]
| tensorflow.python.framework.ops.RegisterShape | 11,650 |
import tensorflow as tf
if hparams.predict_linear:
tf.summary.scalar("linear_loss", model.linear_loss)
for i in range(hparams.tacotron_num_gpus):
tf.summary.histogram("mel_outputs %d" % i, model.tower_linear_outputs[i])
tf.summary.histogram("mel_targets %d" % i, model.tower_linear_targets[i])
tf.summary.scalar("regularization_loss", model.regularization_loss)
tf.summary.scalar("stop_token_loss", model.stop_token_loss)
tf.summary.scalar("loss", model.loss)
tf.summary.scalar("learning_rate", model.learning_rate) # Control learning rate decay speed
if hparams.tacotron_teacher_forcing_mode == "scheduled":
tf.summary.scalar("teacher_forcing_ratio", model.ratio) # Control teacher forcing
# ratio decay when mode = "scheduled"
gradient_norms = [tf.norm(grad) for grad in model.gradients]
tf.summary.histogram("gradient_norm", gradient_norms)
tf.summary.scalar("max_gradient_norm", tf.reduce_max(gradient_norms)) # visualize
# gradients (in case of explosion)
return tf.summary.merge_all()
| tensorflow.summary.scalar | 11,651 |
from tensorflow.contrib import framework as contrib_framework
build model.
Args:
features: `Tensor` or `dict` of `Tensor` objects.
targets: `Tensor` or `dict` of `Tensor` objects.
Returns:
Tuple of train `Operation` and loss `Tensor`.
"""
_, loss = self._model_fn(features, targets, ModeKeys.TRAIN)
train_op = layers.optimize_loss(
loss,
contrib_framework.get_global_step(),
learning_rate=self.learning_rate,
optimizer=self.optimizer,
clip_gradients=self.clip_gradients)
return train_op, loss
def _get_eval_ops(self, features, targets, metrics):
"""Method that builds model graph and returns evaluation ops.
Expected to be overriden by sub-classes that require custom support.
This implementation uses `model_fn` passed as parameter to constructor to
build model.
| tensorflow.contrib.framework.get_global_step | 11,652 |
import tensorflow as tf
(common_image_attention.DistributionType.CAT, None, 256),
)
def testPostProcessImageInferMode(self, likelihood, num_mixtures, depth):
batch = 1
rows = 8
cols = 24
block_length = 4
block_width = 2
hparams = tf.contrib.training.HParams(
block_raster_scan=True,
hidden_size=2,
likelihood=likelihood,
mode=tf.estimator.ModeKeys.PREDICT,
num_mixtures=num_mixtures,
query_shape=[block_length, block_width],
)
| tensorflow.contrib.training.HParams | 11,653 |
import tensorflow as tf
horizon_tgt = horizon_sumV1(tgt, horizon)
pred_flat = tf.reshape(horizon_pred, [-1])
tgt_flat = tf.reshape(horizon_tgt, [-1])
batch = tf.stack([pred_flat, tgt_flat], 1)
sample_func = sample_pair(batch)
def sample_compute(_):
pairs = sample_func()
loss = compute_contra_loss(*pairs, hard_ratio=hard_ratio)
pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.size(loss, out_type=tf.float32)
p = tf.cond(tf.random_uniform((), dtype=tf.float32) < 1e-4,
lambda: tf.print('csrt acc ', [pct]),
lambda: tf.no_op())
with tf.control_dependencies([p]):
return tf.reduce_mean(loss)
loss = tf.map_fn(fn=lambda inp: sample_compute(inp), elems=tf.range(resample), dtype=tf.float32,
parallel_iterations=32)
final_loss = tf.reduce_mean(loss)
return final_loss
def contra_traj_lossV6(pred, tgt, horizon=12):
horizon_pred, horizon_tgt = horizon_sumV1(pred, horizon), horizon_sumV1(tgt, horizon)
# horizon_pred, horizon_tgt = horizon_sumV2(pred, tgt, horizon)
pred_flat1, pred_flat2 = tf.reshape(horizon_pred, [-1, 1]), tf.reshape(horizon_pred, [1, -1])
tgt_flat1, tgt_flat2 = tf.reshape(horizon_tgt, [-1, 1]), tf.reshape(horizon_tgt, [1, -1])
| tensorflow.control_dependencies | 11,654 |
import tensorflow as tf
# pre-calculate cumsum
cumsum_y_pred = tf.cumsum(y_pred)
hazard_ratio = tf.exp(y_pred)
cumsum_hazard_ratio = tf.cumsum(hazard_ratio)
| tensorflow.exp | 11,655 |
import tensorflow as tf
values = []
bleu = 100 * bleu_hook.bleu_wrapper(
decode_hparams.decode_reference, decode_hparams.decode_to_file)
values.append(tf.Summary.Value(tag="BLEU", simple_value=bleu))
tf.logging.info("%s: BLEU = %6.2f" % (decode_hparams.decode_to_file, bleu))
if hook_args.hparams.mlperf_mode:
current_step = decode_hparams.mlperf_decode_step
| tensorflow.Summary.Value | 11,656 |
import tensorflow as tf
output_weights = tf.get_variable(
"output_weights",
shape=[2, bert_config.hidden_size],
initializer=modeling.create_initializer(bert_config.initializer_range))
output_bias = tf.get_variable(
"output_bias", shape=[2], initializer=tf.zeros_initializer())
logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
if clip:
log_probs = tf.log(tf.clip_by_value(tf.nn.softmax(logits, axis=-1), 1e-6, 1.0 - 1e-6))
else:
log_probs = tf.nn.log_softmax(logits, axis=-1)
labels = tf.reshape(labels, [-1])
| tensorflow.matmul | 11,657 |
import tensorflow as tf
initializer=tf.constant_initializer(0), trainable=False)
label = tf.reshape(label, [-1])
centers_batch = tf.gather(centers, label)
diff = (1 - alfa) * (centers_batch - features)
centers = tf.scatter_sub(centers, label, diff)
# centers = tf.nn.l2_normalize(centers, 1, 1e-10, name='centers_norm')
loss = tf.reduce_mean(tf.square(features - centers_batch))
return loss, centers
| tensorflow.scatter_sub | 11,658 |
import tensorflow as tf
outputs = tf.matmul(inputs_, tf.transpose(
memory_, [0, 2, 1])) / (hidden ** 0.5)
mask = tf.tile(tf.expand_dims(mask, axis=1), [1, JX, 1])
logits = tf.nn.softmax(softmax_mask(outputs, mask))
outputs = tf.matmul(logits, memory)
res = tf.concat([inputs, outputs], axis=2)
with tf.variable_scope("gate"):
dim = res.get_shape().as_list()[-1]
d_res = dropout(res, keep_prob=keep_prob, is_train=is_train)
| tensorflow.concat | 11,659 |
import tensorflow as tf
name="update_moving_variance").op
return update_mean_op, update_variance_op
def build_no_ops():
return (tf.no_op(), tf.no_op())
# Only make the ops if we know that `is_training=True`, or the value of
# `is_training` is unknown.
is_training_const = utils.constant_value(is_training)
| tensorflow.no_op | 11,660 |
import tensorflow as tf
# Pad mask.
mask_ = tf.expand_dims(mask, 3)
mask_ = _pad_input(mask_, ksize, strides, padding, bsize=bsize, bstrides=bstrides)
| tensorflow.expand_dims | 11,661 |
import tensorflow as tf
Can be empty.
"""
sum_loss = _gather_clone_loss(clone, num_clones, regularization_losses)
clone_grad = None
if sum_loss is not None:
with tf.device(clone.device):
clone_grad = optimizer.compute_gradients(sum_loss, **kwargs)
return sum_loss, clone_grad
| tensorflow.device | 11,662 |
import tensorflow as tf
regularization_loss = tf.losses.get_regularization_loss()
# create localization and classification losses
losses = ssd.loss(labels, params)
tf.losses.add_loss(params['localization_loss_weight'] * losses['localization_loss'])
tf.losses.add_loss(params['classification_loss_weight'] * losses['classification_loss'])
tf.summary.scalar('regularization_loss', regularization_loss)
tf.summary.scalar('localization_loss', losses['localization_loss'])
tf.summary.scalar('classification_loss', losses['classification_loss'])
total_loss = tf.losses.get_total_loss(add_regularization_losses=True)
if mode == tf.estimator.ModeKeys.EVAL:
batch_size = features['images'].shape[0].value
assert batch_size == 1
| tensorflow.summary.scalar | 11,663 |
import tensorflow as tf
vz = tf.contrib.lookup.MutableHashTable(key_dtype=tf.string,
value_dtype=tf.int64,
default_value=-1)
vx_keys = tf.reshape(tf.Variable([], collections=[], dtype=tf.string), (-1, 1))
vz_keys = tf.reshape(tf.Variable([], collections=[], dtype=tf.string), (-1, 1))
x_t = tf.gather(x, l)
x_t_len = tf.strings.length(x_t)
x_t = tf.string_split([x_t], delimiter='').values
z_t = tf.gather(y, m)
z_t_len = tf.strings.length(z_t)
z_t = tf.string_split([z_t], delimiter='').values
| tensorflow.gather | 11,664 |
import tensorflow as tf
perturb_ops.append(operation)
assert len(perturb_ops) == len(all_vars)
return tf.group(*perturb_ops)
# Set up functionality to re-compute `param_noise_scale`. This perturbs yet another copy
# of the network and measures the effect of that perturbation in action space. If the perturbation
# is too big, reduce scale of perturbation, otherwise increase.
with tf.variable_scope("adaptive_model", reuse=False):
adaptive_policy = q_func(sess, ob_space, ac_space, 1, 1, None, obs_phs=obs_phs)
perturb_for_adaption = perturb_vars(original_scope="model", perturbed_scope="adaptive_model/model")
kl_loss = tf.reduce_sum(
tf.nn.softmax(policy.q_values) *
(tf.log(tf.nn.softmax(policy.q_values)) - tf.log(tf.nn.softmax(adaptive_policy.q_values))),
axis=-1)
mean_kl = tf.reduce_mean(kl_loss)
def update_scale():
"""
update the scale expression
:return: (TensorFlow Tensor) the updated scale expression
"""
with tf.control_dependencies([perturb_for_adaption]):
update_scale_expr = tf.cond(mean_kl < param_noise_threshold,
| tensorflow.nn.softmax | 11,665 |
from tensorflow.python.ops import math_ops
target = target[self.name] if isinstance(target, dict) else target
loss_unweighted = self._loss_fn(logits, target)
weight_tensor = self.get_weight_tensor(features)
if weight_tensor is None:
return math_ops.reduce_mean(loss_unweighted, name="loss")
else:
loss_unweighted = array_ops.reshape(loss_unweighted, shape=(-1,))
loss_weighted = math_ops.mul(
loss_unweighted,
| tensorflow.python.ops.math_ops.reduce_mean | 11,666 |
import tensorflow as tf
for pt in [pt_0, pt_1, pt_2, pt_3]:
if pt[0] < box_limits_x[0]:
box_limits_x[0] = pt[0]
if pt[0] > box_limits_x[1]:
box_limits_x[1] = pt[0]
if pt[1] < box_limits_z[0]:
box_limits_z[0] = pt[1]
if pt[1] > box_limits_z[1]:
box_limits_z[1] = pt[1]
mean_x = tf.reduce_mean(box_limits_x)
mean_z = tf.reduce_mean(box_limits_z)
else:
mean_x = tf.reduce_mean(labeled_translations[:, 0])
mean_z = tf.reduce_mean(labeled_translations[:, 2])
samples_world = grid.generate(
(mean_x - 0.5, 0.0, mean_z - 0.5), (mean_x + 0.5, 1.0, mean_z + 0.5),
[self.resolution, self.resolution, self.resolution])
# samples_world = grid.generate(
# (box_limits_x[0][0], box_limits_y[0], box_limits_z[0][0]),
# (box_limits_x[1][0], box_limits_y[1], box_limits_z[1][0]),
# [self.resolution, self.resolution, self.resolution])
# samples_world = grid.generate(
# (-5.0, -5.0, -5.0),
# (5.0, 5.0, 5.0),
# [self.resolution, self.resolution, self.resolution])
samples_world = tf.reshape(samples_world, [-1, 3])
ious = []
| tensorflow.reduce_mean | 11,667 |
from tensorflow.python.platform import test
dtypes.int64)
return sparse_tensor.SparseTensor(
constant_op.constant(indices, dtypes.int64, [len(indices), 2]),
constant_op.constant(values, value_type, [len(indices)]),
constant_op.constant(shape, dtypes.int64))
if __name__ == '__main__':
test.main()
| tensorflow.python.platform.test.main | 11,668 |
from tensorflow.python.framework import ops
auc = compute_auc(tp, fn, tn, fp, 'value')
update_op = compute_auc(
tp_update_op, fn_update_op, tn_update_op, fp_update_op, 'update_op')
if metrics_collections:
ops.add_to_collections(metrics_collections, auc)
if updates_collections:
ops.add_to_collections(updates_collections, update_op)
| tensorflow.python.framework.ops.add_to_collections | 11,669 |
import tensorflow as tf
+ tf.matmul(
rnn_in,
self.W_in * self.input_Connectivity,
transpose_b=True, name="2")
+ self.b_rec)\
+ np.sqrt(2.0 * self.alpha * self.rec_noise * self.rec_noise)\
* tf.random_normal(state.get_shape(), mean=0.0, stddev=1.0)
return new_state
def rnn_output(self, new_state):
if self.dale_ratio:
new_output = tf.matmul(tf.nn.relu(new_state),
tf.matmul(tf.abs(self.W_out) * self.output_Connectivity,
self.Dale_out, name="in_2"), transpose_b=True, name="3") \
+ self.b_out
else:
new_output = tf.matmul(tf.nn.relu(new_state),
self.W_out * self.output_Connectivity, transpose_b=True, name="3") \
+ self.b_out
return new_output
def rnn_step_scan(self, state, rnn_in):
| tensorflow.nn.relu | 11,670 |
from tensorflow.python.platform import gfile
class BoostedTreeEstimatorTest(test_util.TensorFlowTestCase):
def setUp(self):
self._export_dir_base = tempfile.mkdtemp() + "export/"
gfile.MkDir(self._export_dir_base)
def testFitAndEvaluateDontThrowException(self):
learner_config = learner_pb2.LearnerConfig()
| tensorflow.python.platform.gfile.MkDir | 11,671 |
import tensorflow as tf
self.beta = safe_get("beta", [shape[-1]],
initializer=tf.constant_initializer(0.))
beta = tf.reshape(self.beta, [1, 1, 1, -1])
assert self.epsilon is not None
assert mean_sq is not None
assert mean is not None
std = tf.sqrt(self.epsilon + mean_sq - tf.square(mean))
out = x - mean
out = out / std
out = out * gamma
out = out + beta
return out
| tensorflow.square | 11,672 |
import tensorflow as tf
batch_size=10, model_params=None, c2v=None,
max_sequence_len=None,
dropout_keep_prob=None,
weights=None):
self.params = model_params
self._out_vocab_size = out_vocab_size # num. of languages
self.weights = tf.constant(weights, dtype=tf.float32, name='class_weights')
with tf.variable_scope("tweetff"):
hidden = tf.get_variable("ff_hidden",
[c2v.embedding_dims, out_vocab_size])
bias = tf.get_variable('ff_bias', [out_vocab_size])
#probably useless. at least I don't want to use it
self.seq_lens = tf.placeholder(tf.int64, [batch_size], name='seq_lens')
self.x = tf.placeholder(tf.int32, [batch_size, max_sequence_len],
name='x')
self.y = tf.placeholder(tf.float32, [batch_size, out_vocab_size],
name='y')
self.example_weights = tf.placeholder(tf.float32, [batch_size],
name='example_weights')
# get one 'word' embedding for the full tweet
tweet_embedding = c2v.GetEmbeddings(self.x)[:,1,:]
logits = tf.nn.xw_plus_b(tweet_embedding, hidden, bias)
self.probs = tf.nn.softmax(logits)
| tensorflow.placeholder | 11,673 |
import tensorflow as tf
if decoder.context_mapping:
with tf.variable_scope(scope_name):
| tensorflow.variable_scope | 11,674 |
import tensorflow as tf
return layer
def get_weight_initializer(params):
initializer = []
scope = tf.get_variable_scope()
scope.reuse_variables()
for layer, value in params.items():
op = tf.get_variable('%s' % layer).assign(value)
initializer.append(op)
return initializer
def save_model(name, scope, sess):
variables = tf.get_collection(tf.GraphKeys.WEIGHTS, scope=scope)
d = [(v.name.split(':')[0], sess.run(v)) for v in variables]
cPickle.dump(d, open(name, 'wb'))
| tensorflow.get_variable | 11,675 |
import tensorflow as tf
lstm_c = tf.nn.rnn_cell.DropoutWrapper(lstm_c, output_keep_prob=self.keep_prob)
state_init_c = lstm_c.zero_state(batch_size=batch_size, dtype=tf.float32)
lstm_cin = tf.expand_dims(layer_c2, axis=1)
out_c, state_final_c = tf.nn.dynamic_rnn(cell=lstm_c, inputs=lstm_cin, initial_state=state_init_c)
cell_out_c = tf.reshape(out_c, [-1, 256])
vf = tf.layers.dense(cell_out_c, 1, kernel_regularizer=reg)
params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name)
return vf, params, state_init_c, state_final_c
| tensorflow.reshape | 11,676 |
import tensorflow as tf
widths, x_centers = tf.meshgrid(widths, x_centers)
heights, y_centers = tf.meshgrid(heights, y_centers)
anchor_centers = tf.stack([x_centers, y_centers], axis=2)
anchor_centers = tf.reshape(anchor_centers, [-1, 2])
anchor_sizes = tf.stack([widths, heights], axis=2)
| tensorflow.stack | 11,677 |
import tensorflow as tf
self.loss_db_sum = tf.summary.scalar("db_loss", self.D_B_loss)
self.loss_da_sum = tf.summary.scalar("da_loss", self.D_A_loss)
self.loss_d_sum = tf.summary.scalar("d_loss",self.discriminator_loss)
self.db_loss_real_sum = tf.summary.scalar("db_loss_real", self.D_B_loss_real)
self.db_loss_fake_sum = tf.summary.scalar("db_loss_fake", self.D_B_loss_fake)
self.da_loss_real_sum = tf.summary.scalar("da_loss_real", self.D_A_loss_real)
self.da_loss_fake_sum = tf.summary.scalar("da_loss_fake", self.D_A_loss_fake)
self.d_sum = tf.summary.merge(
[self.loss_da_sum, self.da_loss_real_sum, self.da_loss_fake_sum,
| tensorflow.summary.scalar | 11,678 |
import tensorflow as tf
self.vis_summary = tf.summary.image('visualization', self.vis_placeholder)
# embedding
dists = l2(self.embedding_test[:-1] - self.embedding_test[1:])
self.dist = dists
metrics = []
metrics.append(tf.summary.histogram('point_distance', dists))
metrics.append(tf.summary.scalar('training/trajectory_length', tf.reduce_sum(dists)))
self.blur_ph = tf.placeholder(dtype=tf.float32)
metrics.append(tf.summary.scalar('training/blur_sigma', self.blur_ph))
pred = self.embedding_test[1:-1]*2 - self.embedding_test[0:-2]
pred_error = l2(pred - self.embedding_test[2:])
mean_dist, mean_pred_error = tf.reduce_mean(dists), tf.reduce_mean(pred_error)
improvement = (mean_dist-mean_pred_error)/mean_dist
pairwise_improvement = tf.nn.relu(dists[1:] - pred_error)
| tensorflow.summary.scalar | 11,679 |
import tensorflow as tf
def input_fn_builder(input_files,
max_seq_length,
max_predictions_per_seq,
is_training,
num_cpu_threads=4):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
def input_fn(params):
"""The actual input function."""
batch_size = params["batch_size"]
name_to_features = {
"input_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"input_mask":
tf.FixedLenFeature([max_seq_length], tf.int64),
"segment_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"masked_lm_positions":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_ids":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_weights":
tf.FixedLenFeature([max_predictions_per_seq], tf.float32),
"next_sentence_labels":
tf.FixedLenFeature([1], tf.int64),
}
| tensorflow.FixedLenFeature | 11,680 |
import tensorflow as tf
for order in range(-degree, degree + 1):
degree_l.append(degree)
order_m.append(order)
return (tf.convert_to_tensor(value=degree_l),
tf.convert_to_tensor(value=order_m))
def _evaluate_legendre_polynomial_pmm_eval(m, x):
pmm = tf.pow(1.0 - tf.pow(x, 2.0), tf.cast(m, dtype=x.dtype) / 2.0)
ones = tf.ones_like(m)
pmm *= tf.cast(
tf.pow(-ones, m) * double_factorial(2 * m - 1),
dtype=pmm.dtype)
return pmm
| tensorflow.pow | 11,681 |
import tensorflow as tf
symbol = "\\s" # For visual purposes, swap space with \s
f.write("{}\n".format(symbol))
char_embedding_meta = char_embedding_meta.replace(log_dir, "..")
# Book keeping
step = 0
time_window = ValueWindow(100)
loss_window = ValueWindow(100)
saver = tf.train.Saver(max_to_keep=5)
log("Tacotron training set to a maximum of {} steps".format(args.tacotron_train_steps))
# Memory allocation on the GPU as needed
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
# Train
| tensorflow.train.Saver | 11,682 |
import tensorflow as tf
def _repeat(x, n_repeats):
with tf.variable_scope('_repeat'):
rep = tf.transpose(
tf.expand_dims(tf.ones(shape=tf.stack([
n_repeats,
])), 1), [1, 0])
rep = tf.to_int32(rep)
x = tf.matmul(tf.reshape(x, (-1, 1)), rep)
return tf.reshape(x, [-1])
def _interpolate(im, x, y, z, out_size):
"""Bilinear interploation layer.
Args:
im: A 5D tensor of size [num_batch, depth, height, width, num_channels].
It is the input volume for the transformation layer (tf.float32).
| tensorflow.reshape | 11,683 |
import tensorflow as tf
criterion_map = {
'L1': nn.L1Loss(),
'L2': nn.L2Loss(),
'MSE': nn.MSELoss(),
}
criterion = criterion_map[FLAGS.model.loss]
loss_mod = MultiStepLoss(model, normalizers, dim_state, dim_action, criterion, FLAGS.model.multi_step)
loss_mod.build_backward(FLAGS.model.lr, FLAGS.model.weight_decay)
shadow_loss_mods = [MultiStepLoss(shadow_model, normalizers, dim_state, dim_action, criterion, FLAGS.model.multi_step) for shadow_model in shadow_models]
for shadow_loss_mod in shadow_loss_mods:
shadow_loss_mod.build_backward(FLAGS.model.lr, FLAGS.model.weight_decay)
algo = TRPO(vfn=vfn, policy=policy, dim_state=dim_state, dim_action=dim_action, **FLAGS.TRPO.as_dict())
advtask = ADVTASK(dim_state, dim_action, policy, vfn, warmup_policy, warmup_vfn, task, alpha=alpha, beta=beta, nsample=nsample, atype=atype)
tf.get_default_session().run(tf.global_variables_initializer())
print ("norm params:", normalizers_parameters)
print ("norm_copy params:", normalizers_copy_parameters)
norm_before = tf.get_default_session().run(normalizers_parameters)
print ("norm_before:", norm_before)
assert FLAGS.algorithm != 'MF', "don't support model free for now"
print (f"n_envs for task: {nsample}//{FLAGS.plan.max_steps}={nsample//FLAGS.plan.max_steps}")
runners = {
'test': make_real_runner(FLAGS.plan.n_envs, task_config=task),
'collect': make_real_runner(FLAGS.plan.n_envs, task_config=task), #1
| tensorflow.global_variables_initializer | 11,684 |
import tensorflow as tf
+ 0.00392377*t**(-8))
a = 7.5
return __phi_f(tf.minimum(x, a)) - __phi_f(a) + __phi_g(tf.maximum(x, a))
N = tf.cast(tf.shape(X)[0], tf.float32)
if y is None:
y = silverman_rule_of_thumb(N)
A = 1/(N*N*tf.sqrt(y))
B = 2.0/(N*tf.sqrt(y+0.5))
A1 = euclidean_norm_squared(tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(X, 1)), axis=2)/(4*y)
B1 = euclidean_norm_squared(X, axis=1)/(2+4*y)
return 1/tf.sqrt(1+y) + A*tf.reduce_sum(__phi(A1)) - B*tf.reduce_sum(__phi(B1))
def cw(X, y=None):
D = tf.cast(tf.shape(X)[1], tf.float32)
N = tf.cast(tf.shape(X)[0], tf.float32)
if y is None:
y = silverman_rule_of_thumb(N)
K = 1/(2*D-3)
| tensorflow.expand_dims | 11,685 |
import tensorflow as tf
y += dense(conv, encoder.attn_size, use_bias=False, name='C_a')
v = get_variable('v_a', [encoder.attn_size])
return tf.reduce_sum(v * tf.tanh(y), axis=2)
def global_attention(state, hidden_states, encoder, encoder_input_length, scope=None, context=None, **kwargs):
with tf.variable_scope(scope or 'attention_{}'.format(encoder.name)):
if context is not None and encoder.use_context:
state = tf.concat([state, context], axis=1)
e = compute_energy(hidden_states, state, encoder, input_length=encoder_input_length, **kwargs)
mask = tf.sequence_mask(encoder_input_length, maxlen=tf.shape(hidden_states)[1], dtype=tf.float32)
e *= mask
if encoder.attn_norm_fun == 'none':
weights = e
elif encoder.attn_norm_fun == 'sigmoid':
weights = tf.nn.sigmoid(e)
elif encoder.attn_norm_fun == 'max':
weights = tf.one_hot(tf.argmax(e, -1), depth=tf.shape(e)[1])
else:
e -= tf.reduce_max(e, axis=1, keep_dims=True)
T = encoder.attn_temperature or 1.0
| tensorflow.shape | 11,686 |
import tensorflow.contrib.graph_editor as ge
return ops.name if hasattr(ops, "name") else str(ops)
def my_add_control_inputs(wait_to_do_ops, inputs_to_do_before):
for op in wait_to_do_ops:
ci = [i for i in inputs_to_do_before if op.control_inputs is None or i not in op.control_inputs]
ge.add_control_inputs(op, ci)
| tensorflow.contrib.graph_editor.add_control_inputs | 11,687 |
import tensorflow as tf
cast0 = tf.dtypes.as_string(add if not swap else sub, name="TOSTR0")
else:
cast0 = tf.cast(add if not swap else sub, tf_output0_dtype, "CAST0")
| tensorflow.cast | 11,688 |
import tensorflow as tf
self.all_params = tf.trainable_variables()
if self.config.l2_norm is not None:
self.logger.info("applying l2 loss")
variables = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
l2_loss = tf.contrib.layers.apply_regularization(regularizer, variables)
self.loss += l2_loss
if self.config.decay is not None:
self.var_ema = tf.train.ExponentialMovingAverage(self.config.decay)
ema_op = self.var_ema.apply(tf.trainable_variables())
with tf.control_dependencies([ema_op]):
self.loss = tf.identity(self.loss)
self.shadow_vars = []
self.global_vars = []
for var in tf.global_variables():
v = self.var_ema.average(var)
if v:
self.shadow_vars.append(v)
self.global_vars.append(var)
self.assign_vars = []
for g, v in zip(self.global_vars, self.shadow_vars):
self.assign_vars.append(tf.assign(g, v))
| tensorflow.identity | 11,689 |
import tensorflow as tf
learning_rate
"""
with tf.name_scope(name):
learning_rate = tf.cast(learning_rate, dtype=tf.float32)
global_step = tf.cast(global_step, dtype=tf.float32)
step_size = tf.cast(step_size, dtype=tf.float32)
max_lr = tf.cast(max_lr, dtype=tf.float32)
if mode == 'tri':
periodic_comp = tf.mod((global_step + step_size / 4) / step_size, 1)
first_factor = tf.abs(periodic_comp - 0.5)
second_factor = 2 * (max_lr - learning_rate)
second_comp = learning_rate
elif mode == 'sin':
first_factor = (learning_rate - max_lr) / 2.
second_factor = tf.sin((pi * global_step) / step_size)
second_comp = (learning_rate + max_lr) / 2.
elif mode == 'saw':
first_factor = max_lr - learning_rate
second_factor = tf.mod(global_step / step_size, 1)
| tensorflow.abs | 11,690 |
from tensorflow.python.framework import ops
def _OverrideBinaryOperatorHelper(func, op_name):
"""Register operators with different tensor and scalar versions.
Args:
func: the operator
op_name: name of the operator being overridden
"""
def binary_op_wrapper(x, y):
with ops.op_scope([x, y], None, op_name) as name:
assert isinstance(x, ops.Tensor)
y = ops.convert_to_tensor(y, dtype=x.dtype.base_dtype, name="y")
return func(x, y, name=name)
ops.Tensor._override_operator("__%s__" % op_name, binary_op_wrapper)
del binary_op_wrapper
def r_binary_op_wrapper(y, x):
with ops.op_scope([x, y], None, op_name) as name:
| tensorflow.python.framework.ops.op_scope | 11,691 |
import tensorflow as tf
elif norm == 'G':
X = tf.contrib.layers.group_norm(X, groups=16, scope=scope, reuse=reuse)
if nonlin:
X = tf.nn.leaky_relu(X, 0.2)
return X
with tf.variable_scope('discriminator') as scope:
if reuse:
scope.reuse_variables()
print('D in:', X.get_shape().as_list())
X = self.conv('DZ1', X, 512, 1, 1)
X = tf.nn.leaky_relu(X, 0.2)
X = self.conv('DZ2', X, 512, 1, 1)
X = tf.nn.leaky_relu(X, 0.2)
X = self.conv('DZ3', X, 512, 1, 1)
X = tf.nn.leaky_relu(X, 0.2)
X = self.conv('DZ4', X, 512, 1, 1)
X = tf.nn.leaky_relu(X, 0.2)
X = discrim_conv('d_out', X, 1, 1, norm=False, nonlin=False, init_stddev=0.02)
print('D out:', X.get_shape().as_list())
return X
| tensorflow.nn.leaky_relu | 11,692 |
import tensorflow as tf
lambda: tf.zeros([bs, sl+1, hn], tf.float32),
lambda: tf.scatter_nd(
tf.stack([range_head, head_org_idx], -1), attn_result, [bs, sl+1, hn])
)
range_unhead = tf.tile(tf.expand_dims(tf.range(bs), -1), [1, sl_unhead])
scatter_pooling = tf.cond(
tf.equal(sl_unhead, 0),
lambda: tf.zeros([bs, sl+1, hn], tf.float32),
lambda: tf.scatter_nd(
| tensorflow.range | 11,693 |
import tensorflow as tf
gfile.MakeDirs(save_dir)
with self.test_session() as sess:
v = tf.Variable(10.0, name="v")
save = tf.train.Saver({"v": v}, max_to_keep=2)
tf.initialize_all_variables().run()
self.assertEqual([], save.last_checkpoints)
s1 = save.save(sess, os.path.join(save_dir, "s1"))
self.assertEqual([s1], save.last_checkpoints)
| tensorflow.initialize_all_variables | 11,694 |
import tensorflow as tf
[tf.float32, tf.float32])
rois.set_shape([None, 5])
rpn_scores.set_shape([None, 1])
return rois, rpn_scores
def _crop_pool_layer(self, bottom, rois, name):
with tf.variable_scope(name):
# tf.squeeze()返回一个张量,这个张量是将原始input中所有维度中为1的那些维都删掉的结果
batch_ids = tf.squeeze(tf.slice(rois, [0, 0], [-1, 1], name="batch_id"), [1])
# Get the normalized coordinates of bboxes
bottom_shape = tf.shape(bottom)
height = (tf.to_float(bottom_shape[1]) - 1.) * np.float32(self._feat_stride[0])
width = (tf.to_float(bottom_shape[2]) - 1.) * np.float32(self._feat_stride[0])
| tensorflow.variable_scope | 11,695 |
import tensorflow as tf
image_width = tf.shape(image)[1]
offset_height = (image_height - size) // 2
offset_width = (image_width - size) // 2
image = tf.slice(image, [offset_height, offset_width, 0], [size, size, -1])
return image
def lighting(image, std, eigval, eigvec):
v = tf.random_normal(shape=[3], stddev=std) * eigval
inc = tf.matmul(eigvec, tf.reshape(v, [3, 1]))
image = tf.cast(tf.cast(image, tf.float32) + tf.reshape(inc, [3]), image.dtype)
return image
def validation_mapper(byte):
image = tf.image.decode_jpeg(
tf.reshape(byte, shape=[]), 3, **JPEG_OPT)
image = resize_shortest_edge(image, tf.shape(image), 256)
image = center_crop(image, 224)
image = tf.reverse(image, axis=[2]) # to BGR
return image
| tensorflow.cast | 11,696 |
import tensorflow as tf
print ("query_size mismatch")
query = tf.concat(values = [
query,
query,
], axis=1)
if time_major:
# (T,B,D) => (B,T,D)
facts = tf.array_ops.transpose(facts, [1, 0, 2])
facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer
querry_size = query.get_shape().as_list()[-1]
queries = tf.tile(query, [1, tf.shape(facts)[1]])
queries = tf.reshape(queries, tf.shape(facts))
din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag)
d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag)
| tensorflow.array_ops.transpose | 11,697 |
import tensorflow as tf
def _fixed_padding(self, dataset: tf.data.Dataset, pad_id=0, max_sequence_length=512, **kwargs) -> tf.data.Dataset:
maxlen = tf.constant(max_sequence_length, dtype=tf.int32)
pad_id = tf.constant(pad_id, dtype=tf.int32)
# fmt: off
padded_shapes = kwargs.get("padded_shapes", ([maxlen, ], [maxlen, ], [maxlen, ], [maxlen, ]))
| tensorflow.constant | 11,698 |
import tensorflow as tf
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([], tf.int64),
"is_real_example": tf.FixedLenFeature([], tf.int64),
}
def _decode_record(record, name_to_features):
| tensorflow.FixedLenFeature | 11,699 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.