seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
# a_fc2_ = tf.layers.dense(a_fc1_, 128, tf.nn.relu, kernel_initializer=w_initializer,
# bias_initializer=b_initializer, name='agent_fc2_t')
# a_fc3_ = tf.layers.dense(a_fc2_, 64, tf.nn.relu, kernel_initializer=w_initializer,
# bias_initializer=b_initializer, name='agent_fc3_t')
self.q_next = tf.layers.dense(a_fc1_, self.num_a, kernel_initializer=w_initializer,
bias_initializer=b_initializer, name='q_t')
# [batch*n_agents, 1]
self.q_selected = tf.reduce_sum(tf.multiply(self.q_eval, self.a), axis=1)
# ------------------ build mixing_net ------------------
with tf.variable_scope('mixing_net'):
# [batch, n_agents]
self.q_concat = tf.reshape(self.q_selected, [-1, self.n_agents])
self.q_concat_ =tf.reshape(self.q_m_, [-1, self.n_agents])
with tf.variable_scope('eval_hyper'):
self.Q_tot = Qmix_mixer(self.q_concat, self.S, self.num_global_s, self.n_agents, 32)
with tf.variable_scope('target_hyper'):
self.Q_tot_ = Qmix_mixer(self.q_concat_, self.S_, self.num_global_s, self.n_agents, 32)
# with tf.variable_scope('layer_mix_eval'):
# lin1 = tf.matmul(tf.reshape(self.q_concat, shape=[-1, 1, self.n_agents]), self.w1) + tf.reshape(self.b1, shape=[-1, 1, 32])
# a1 = tf.nn.elu(lin1, name='a1')
# self.Q_tot = tf.reshape(tf.matmul(a1, self.w2), shape=[-1, 1]) + self.b2
| tensorflow.reshape | 1,000 |
from tensorflow.python.ops import clip_ops
return train_tensor
def _clip_gradients_by_norm(grads_and_vars, clip_gradients):
"""Clips gradients by global norm."""
gradients, variables = zip(*grads_and_vars)
clipped_gradients, _ = clip_ops.clip_by_global_norm(gradients, clip_gradients)
return list(zip(clipped_gradients, variables))
def _adaptive_max_norm(norm, std_factor, decay, global_step, epsilon, name):
"""Find max_norm given norm and previous average."""
| tensorflow.python.ops.clip_ops.clip_by_global_norm | 1,001 |
import tensorflow as tf
Args:
data_set: dataset instance to use to access data for training/validation
weights_from: str, if not None, initializes model from exisiting weights
start_epoch: int, epoch number to start training from
e.g. for retarining set the epoch number you want to resume training from
summary_every: int, epoch interval to write summary; higher value means lower frequency
of summary writing
"""
with tf.Graph().as_default(), tf.device('/gpu:0'):
self._setup_model_loss(num_classes=num_classes)
if self.is_summary:
self._setup_summaries(self.capped_d_grads, self.capped_g_grads)
self._setup_misc()
self._print_info(data_set)
self._train_semi_supervised(data_set, start_epoch, weights_from, summary_every, model_name,
weights_dir)
| tensorflow.device | 1,002 |
import tensorflow as tf
tf.cast(num_active_triplets, dtype=tf.float32) / num_total_triplets)
active_mining_triplet_ratio = (
tf.cast(num_active_mining_triplets, dtype=tf.float32) /
num_total_triplets)
active_loss = (
loss / tf.math.maximum(1e-12, tf.stop_gradient(active_triplet_ratio)))
active_mining_loss = (
mining_loss /
tf.math.maximum(1e-12, tf.stop_gradient(active_mining_triplet_ratio)))
tag = 'SemiHardNegative' if use_semi_hard else 'HardNegative'
summaries = {
# Summaries related to triplet loss computation.
'triplet_loss/Anchor/%s/Distance/Mean' % tag:
tf.math.reduce_mean(negative_distances),
'triplet_loss/%s/Loss/All' % tag:
loss,
| tensorflow.stop_gradient | 1,003 |
import tensorflow as tf
tf.summary.scalar("model/value_loss", vf_loss / bs)
tf.summary.scalar("model/entropy", entropy / bs)
| tensorflow.summary.scalar | 1,004 |
import tensorflow as tf
correct_prediction_action = tf.equal(
tf.argmax(one_hot_labels_action, 1),
tf.argmax(self.predictions_action, 1)
)
self.accuracy_action = tf.reduce_mean(tf.cast(correct_prediction_action, 'float'))
tf.scalar_summary('accuracy_action', self.accuracy_action)
correct_prediction_arguments = tf.equal(tf.argmax(one_hot_labels_arguments, 2),
tf.argmax(self.predictions_arguments, 2))
self.accuracy_arguments = tf.reduce_mean(tf.cast(correct_prediction_arguments, 'float'))
tf.scalar_summary('accuracy_arguments', self.accuracy_arguments)
| tensorflow.scalar_summary | 1,005 |
import tensorflow as tf
return final_loss
def contra_traj_lossV6(pred, tgt, horizon=12):
horizon_pred, horizon_tgt = horizon_sumV1(pred, horizon), horizon_sumV1(tgt, horizon)
# horizon_pred, horizon_tgt = horizon_sumV2(pred, tgt, horizon)
pred_flat1, pred_flat2 = tf.reshape(horizon_pred, [-1, 1]), tf.reshape(horizon_pred, [1, -1])
tgt_flat1, tgt_flat2 = tf.reshape(horizon_tgt, [-1, 1]), tf.reshape(horizon_tgt, [1, -1])
tgt_dif = tgt_flat1 - tgt_flat2
pred_dif = pred_flat1 - pred_flat2
geq = tf.cast(tgt_dif > 0, tf.bool)
tgt_posi_dif = tf.where(geq, tgt_dif, -tgt_dif)
pred_posi_dif = tf.where(geq, pred_dif, -pred_dif)
loss = tf.maximum(0., tgt_posi_dif - pred_posi_dif)
cstr_pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.cast(tf.reduce_prod(tf.shape(loss)), tf.float32)
final_loss = tf.reduce_mean(loss)
return final_loss, cstr_pct
def contra_traj_lossV7(pred, tgt, horizon=12, temp=100):
horizon_pred, horizon_tgt = horizon_sumV1(pred, horizon), horizon_sumV1(tgt, horizon)
| tensorflow.cast | 1,006 |
import tensorflow as tf
strides=self.ff_conv_strides[idx],
padding=self.padding)
processed_l2_h2 = tf.nn.bias_add(
processed_l2_h2,
getattr(self, 'ff_bias_%s' % idx))
processed_l2_h2 = self.ff_nl(processed_l2_h2)
if self.batch_norm:
with tf.variable_scope(
'l3_h2_bn_ff_%s' % idx,
reuse=self.scope_reuse) as scope:
processed_l2_h2 = tf.contrib.layers.batch_norm(
inputs=processed_l2_h2,
scale=True,
center=True,
| tensorflow.variable_scope | 1,007 |
import tensorflow as tf
#train_step=tf.train.GradientDescentOptimizer(0.001).minimize(cross_entropy)
valid_pre = tf.reshape(valid_inf, [validnum, classnum])
valid_correct_prediction=tf.equal(tf.argmax(valid_inf,1),tf.argmax(valid_labels,1))
valid_accuracy=tf.reduce_mean(tf.cast(valid_correct_prediction,tf.float32))
| tensorflow.argmax | 1,008 |
import tensorflow as tf
mode=tf.estimator.ModeKeys.TRAIN,
num_mixtures=num_mixtures,
)
decoder_output = tf.random_normal([batch, rows, cols, hparams.hidden_size])
targets = tf.random_uniform([batch, height, width, channels],
minval=-1., maxval=1.)
| tensorflow.random_normal | 1,009 |
import tensorflow as tf
depth_multiplier=2.0)
for key in endpoint_keys:
original_depth = end_points[key].get_shape().as_list()[3]
new_depth = end_points_with_multiplier[key].get_shape().as_list()[3]
self.assertEqual(2.0 * original_depth, new_depth)
def testRaiseValueErrorWithInvalidDepthMultiplier(self):
batch_size = 5
height, width = 224, 224
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
with self.assertRaises(ValueError):
_ = mobilenet_v1.mobilenet_v1(
inputs, num_classes, depth_multiplier=-0.1)
with self.assertRaises(ValueError):
_ = mobilenet_v1.mobilenet_v1(
inputs, num_classes, depth_multiplier=0.0)
def testHalfSizeImages(self):
batch_size = 5
height, width = 112, 112
num_classes = 1000
| tensorflow.random_uniform | 1,010 |
from tensorflow.contrib.layers.python.layers import utils
variable=self._moving_variance,
value=variance,
decay=self._decay_rate,
name="update_moving_variance").op
return update_mean_op, update_variance_op
def build_no_ops():
return (tf.no_op(), tf.no_op())
# Only make the ops if we know that `is_training=True`, or the value of
# `is_training` is unknown.
is_training_const = utils.constant_value(is_training)
if is_training_const is None or is_training_const:
update_mean_op, update_variance_op = utils.smart_cond(
is_training,
build_update_ops,
build_no_ops,
)
# Every new connection creates a new op which adds its contribution
# to the running average when ran.
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_mean_op)
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_variance_op)
| tensorflow.contrib.layers.python.layers.utils.constant_value | 1,011 |
import tensorflow as tf
class PairwiseGMF(ModelBase):
def __init__(self, config):
"""
:param config:
"""
# super(PairwiseGMF, self).__init__(config)
self.config = config
self._activation_fn = tf.nn.relu
self._embedding_initializers = {
'embeddings': tf.truncated_normal_initializer(stddev=0.01),
}
self._embedding_regularizers = {}
self._initializers = {
"w": tf.contrib.layers.xavier_initializer(),
}
self._regularizers = {
'w': tf.contrib.layers.l2_regularizer(config.l2)
}
| tensorflow.truncated_normal_initializer | 1,012 |
import tensorflow as tf
return z2, fldj
def _inverse(self, x1, z2, **kwargs):
params = self.parameterizer(x1)
mus, log_sigmas = params[:,:,:,0::2], params[:,:,:,1::2]
x2, ildj = gaussianize(z2, mus, log_sigmas, inverse=tf.constant(True))
return x2, ildj
def log_gaussianize(x, mus, log_sigmas, inverse=tf.constant(False)):
"""
| tensorflow.constant | 1,013 |
import tensorflow as tf
end_log_probs, k=FLAGS.end_n_top)
end_top_log_probs = tf.reshape(
| tensorflow.reshape | 1,014 |
import tensorflow as tf
else:
all_top_1_ops = tf.reduce_sum(all_top_1_ops)
| tensorflow.reduce_sum | 1,015 |
import tensorflow as tf
axis=[1, 2, 3]
) + 1e-8
)
print_obj(func_name, "mixed_norms", mixed_norms)
# Get squared difference from target of 1.0.
squared_difference = tf.square(
x=mixed_norms - 1.0,
name="squared_difference"
)
print_obj(func_name, "squared_difference", squared_difference)
| tensorflow.square | 1,016 |
import tensorflow as tf
# create new Session for the DeepSurv Class
self.sess = tf.Session(graph=G)
| tensorflow.Session | 1,017 |
import tensorflow as tf
where:
p = the spectrum weight
"""
def __init__(self, p=2):
self._dim = None
self._p = p
def _compute(self, x, y):
self._dim = x._rank()
kernel = np.zeros((tf.size(x), tf.size(y)))
for l in tf.range(start=0, limit=tf.size(x), delta=1, dtype=None, name='l_range'):
for m in tf.range(start=0, limit=tf.size(y), delta=1, dtype=None, name='m_range'):
vx = tf.contrib.lookup.MutableHashTable(key_dtype=tf.string,
value_dtype=tf.int64,
default_value=-1)
vz = tf.contrib.lookup.MutableHashTable(key_dtype=tf.string,
value_dtype=tf.int64,
default_value=-1)
vx_keys = tf.reshape(tf.Variable([], collections=[], dtype=tf.string), (-1, 1))
vz_keys = tf.reshape(tf.Variable([], collections=[], dtype=tf.string), (-1, 1))
| tensorflow.size | 1,018 |
import tensorflow as tf
[-1, masked_lm_log_probs.shape[-1]])
masked_lm_predictions = tf.argmax(
masked_lm_log_probs, axis=-1, output_type=tf.int32)
masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1])
masked_lm_ids = tf.reshape(masked_lm_ids, [-1])
masked_lm_weights = tf.reshape(masked_lm_weights, [-1])
| tensorflow.reshape | 1,019 |
import tensorflow as tf
rep_tensor_comp = tf.concat([rep_tensor, tf.zeros([bs, comp_len, input_dim], tf.float32)], 1)
rep_mask_comp = tf.concat([rep_mask, tf.cast(tf.zeros([bs, comp_len], tf.int32), tf.bool)], 1)
rep_tensor_split = tf.reshape(rep_tensor_comp, [bs, block_num, block_len, input_dim]) # bs,bn,bl,d
rep_mask_split = tf.reshape(rep_mask_comp, [bs, block_num, block_len]) # bs,bn,bl
# non-linear
| tensorflow.reshape | 1,020 |
import tensorflow as tf
zip(capped_grads, variables), global_step=self.global_step)
def forward(self):
config = self.config
N, PL, QL, CL, d, dc, nh = config.batch_size if not self.demo else config.batch_size, self.c_maxlen, self.q_maxlen, config.char_limit, config.hidden, config.char_dim, config.num_heads
with tf.variable_scope("Input_Embedding_Layer"):
ch_emb = tf.reshape(tf.nn.embedding_lookup(
self.char_mat, self.ch), [N * PL, CL, dc])
qh_emb = tf.reshape(tf.nn.embedding_lookup(
self.char_mat, self.qh), [N * QL, CL, dc])
ch_emb = tf.nn.dropout(ch_emb, 1.0 - 0.5 * self.dropout)
qh_emb = tf.nn.dropout(qh_emb, 1.0 - 0.5 * self.dropout)
# Bidaf style conv-highway encoder
ch_emb = conv(ch_emb, d,
bias = True, activation = tf.nn.relu, kernel_size = 5, name = "char_conv", reuse = None)
qh_emb = conv(qh_emb, d,
bias = True, activation = tf.nn.relu, kernel_size = 5, name = "char_conv", reuse = True)
ch_emb = tf.reduce_max(ch_emb, axis = 1)
qh_emb = tf.reduce_max(qh_emb, axis = 1)
| tensorflow.nn.dropout | 1,021 |
import tensorflow as tf
predictions: 2D tensor or array, [batch_size, num_classes] predictions of the network .
labels: 2D or array tensor, [batch_size, num_classes] ground truth labels or target labels.
eps: a constant to set upper or lower limit for labels, smoothening factor
name: Optional scope/name for op_scope.
Returns:
A tensor with the log loss.
"""
with tf.name_scope(name):
predictions = tf.to_float(predictions)
labels = tf.to_float(labels)
predictions = tf.clip_by_value(predictions, eps, 1 - eps)
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
loss = -tf.reduce_mean(labels * tf.log(predictions))
return loss
def log_loss_tf(predictions, labels, eps=1e-7, weights=1.0, name='log_loss'):
"""Define a log loss.
| tensorflow.to_float | 1,022 |
import tensorflow as tf
N = tf.cast(tf.shape(X)[0], tf.float32)
D_int = tf.cast(D, tf.int32)
N_int = tf.cast(N, tf.int32)
if y is None:
y = silverman_rule_of_thumb(N)
YDistr = tf.contrib.distributions.MultivariateNormalDiag(loc=tf.zeros(D_int, tf.float32),
scale_diag=tf.ones(D_int, tf.float32))
Y = YDistr.sample(N_int)
T = 1.0/(2.0*N*tf.sqrt(m.pi*y))
A0 = euclidean_norm_squared(tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(X, 1)), axis=2)
A = tf.reduce_sum(phi_sampling(A0/(4*y), D))
B0 = euclidean_norm_squared(tf.subtract(tf.expand_dims(Y, 0), tf.expand_dims(Y, 1)), axis=2)
B = tf.reduce_sum(phi_sampling(B0/(4*y), D))
C0 = euclidean_norm_squared(tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(Y, 1)), axis=2)
C = tf.reduce_sum(phi_sampling(C0/(4*y), D))
return T*(A + B - 2*C)
| tensorflow.expand_dims | 1,023 |
import tensorflow as tf
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
features={
'wav_raw': tf.FixedLenFeature([], tf.string),
'noisy_raw': tf.FixedLenFeature([], tf.string),
})
wave = tf.decode_raw(features['wav_raw'], tf.int32)
wave.set_shape(canvas_size)
wave = (2./65535.) * tf.cast((wave - 32767), tf.float32) + 1.
noisy = tf.decode_raw(features['noisy_raw'], tf.int32)
noisy.set_shape(canvas_size)
noisy = (2./65535.) * tf.cast((noisy - 32767), tf.float32) + 1.
if preemph > 0:
wave = tf.cast(pre_emph(wave, preemph), tf.float32)
noisy = tf.cast(pre_emph(noisy, preemph), tf.float32)
return wave, noisy
| tensorflow.cast | 1,024 |
import tensorflow as tf
elif type=='mix_scramble':
self.augment = self.mix_scramble
elif type=='blur':
self.augment = self.gaussian_blur
self.pointwise_filter = tf.eye(3, batch_shape=[1, 1])
elif type=='high_low_pass':
self.augment = self.high_low_pass
self.kernel = self.gaussian_kernel(size,mean,std)
self.kernel = tf.tile(self.kernel[:, :, tf.newaxis, tf.newaxis], [1, 1, 3, 1])
self.pointwise_filter = tf.eye(3, batch_shape=[1, 1])
self.paddings = [[size,size],[size,size],[0,0]]
elif type=='no_op':
self.augment = self.no_op
def gaussian_kernel(self,size,mean,std):
"""Makes 2D gaussian Kernel for convolution."""
d = tfp.distributions.Normal(mean, std)
vals = d.prob(tf.range(start = -size, limit = size + 1, dtype = tf.float32))
| tensorflow.eye | 1,025 |
import tensorflow as tf
dual_rate_factor=dual_rate_factor)
# Create biases with shape [1, num_labels, num_anchors].
biases = tf.contrib.framework.model_variable(
name='biases',
shape=[1, num_labels, num_anchors],
dtype=logits.dtype,
initializer=tf.zeros_initializer(),
collections=variables_collections,
trainable=trainable)
# Maybe create label_priors.
label_priors = maybe_create_label_priors(label_priors, labels, weights, variables_collections)
label_priors = tf.reshape(label_priors, [1, num_labels, 1])
# Expand logits, labels, and weights to shape [batch_size, num_labels, 1].
logits = tf.expand_dims(logits, 2)
labels = tf.expand_dims(labels, 2)
weights = tf.expand_dims(weights, 2)
# Calculate weighted loss and other outputs. The log(2.0) term corrects for
# logloss not being an upper bound on the indicator function.
loss = weights * losses_utils.weighted_surrogate_loss(
labels,
logits + biases,
surrogate_type=surrogate_type,
positive_weights=1.0 + lambdas * (1.0 - precision_values),
negative_weights=lambdas * precision_values)
maybe_log2 = tf.log(2.0) if surrogate_type == 'xent' else 1.0
maybe_log2 = tf.cast(maybe_log2, logits.dtype.base_dtype)
| tensorflow.expand_dims | 1,026 |
import tensorflow as tf
def _meshgrid(depth, height, width, z_near, z_far):
with tf.variable_scope('_meshgrid'):
x_t = tf.reshape(
| tensorflow.variable_scope | 1,027 |
import tensorflow as tf
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
graph = tf.Graph()
with graph.as_default():
tf.set_random_seed(self.seed)
self.user_id = tf.placeholder(shape=[None, ], dtype=tf.int32, name='user_id')
self.item_id = tf.placeholder(shape=[None, ], dtype=tf.int32, name='item_id')
self.labels = tf.placeholder(shape=[None, 1], dtype=tf.float32, name='labels')
self.interaction = gmf(uid=self.user_id, iid=self.item_id, num_users=self.train_set.num_users,
num_items=self.train_set.num_items, emb_size=self.num_factors,
reg_user=self.regs[0], reg_item=self.regs[1], seed=self.seed)
| tensorflow.placeholder | 1,028 |
import tensorflow as tf
save.save(sess, filepath, global_step=1)
inc.eval()
save.save(sess, filepath, global_step=2)
with self.test_session() as sess:
# Build a new graph with different initialization.
v0 = tf.Variable(-1.0)
# Create a new saver.
save = tf.train.Saver({"v0": v0})
tf.initialize_all_variables().run()
# Get the most recent checkpoint name from the training history file.
name = tf.train.latest_checkpoint(traindir)
self.assertIsNotNone(name)
# Restore "v0" from that checkpoint.
save.restore(sess, name)
self.assertEqual(v0.eval(), 2.0)
class CheckpointStateTest(tf.test.TestCase):
def _TestDir(self, test_name):
test_dir = os.path.join(self.get_temp_dir(), test_name)
if os.path.exists(test_dir):
| tensorflow.train.latest_checkpoint | 1,029 |
from tensorflow.contrib.eager.python.examples.l2hmc import l2hmc
x = tf.random_normal([hparams.n_samples, hparams.x_dim],
dtype=tf.float32)
dynamics = l2hmc.Dynamics(
x_dim=hparams.x_dim,
| tensorflow.contrib.eager.python.examples.l2hmc.l2hmc.Dynamics | 1,030 |
import tensorflow as tf
Returns:
a Tensor of timing signals [batch, seq_len, channels]
"""
num_timescales = channels // 2
log_timescale_increment = (
math.log(float(max_timescale) / float(min_timescale)) /
(tf.to_float(num_timescales) - 1))
inv_timescales = min_timescale * tf.exp(
tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)
scaled_time = (
tf.expand_dims(tf.to_float(position), 2) * tf.expand_dims(
tf.expand_dims(inv_timescales, 0), 0))
signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=2)
signal = tf.pad(signal, [[0, 0], [0, 0], [0, tf.mod(channels, 2)]])
return signal
def embedding_lookup(input_ids,
vocab_size,
embedding_size=128,
initializer_range=0.02,
| tensorflow.to_float | 1,031 |
from tensorflow.contrib.framework.python.ops import variables as contrib_variables
_add_hidden_layer_summary(logits, scope.name)
def _train_op_fn(loss):
"""Returns the op to optimize the loss."""
return optimizers.optimize_loss(
loss=loss,
global_step=contrib_variables.get_global_step(),
learning_rate=_LEARNING_RATE,
optimizer=_get_optimizer(optimizer),
gradient_multipliers=(
dnn_linear_combined._extract_embedding_lr_multipliers( # pylint: disable=protected-access
embedding_lr_multipliers, parent_scope, input_layer_scope)),
| tensorflow.contrib.framework.python.ops.variables.get_global_step | 1,032 |
import tensorflow as tf
stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions)
output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions)
update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps))
| tensorflow.cond | 1,033 |
import tensorflow as tf
tf.io.FixedLenFeature((), tf.string),
'image/height':
tf.io.FixedLenFeature((), tf.int64),
'image/width':
tf.io.FixedLenFeature((), tf.int64),
'image/object/bbox/xmin':
tf.io.VarLenFeature(tf.float32),
'image/object/bbox/xmax':
tf.io.VarLenFeature(tf.float32),
'image/object/bbox/ymin':
tf.io.VarLenFeature(tf.float32),
'image/object/bbox/ymax':
tf.io.VarLenFeature(tf.float32),
'image/object/class/label':
tf.io.VarLenFeature(tf.int64),
'image/object/area':
| tensorflow.io.VarLenFeature | 1,034 |
import tensorflow as tf
return roc_sc, auprc_score,accuracy,precision,recall,f ,apk_sc
def construct_placeholders(edge_types):
placeholders = {
'batch': tf.placeholder(tf.int32, name='batch'),
'batch_neg': tf.placeholder(tf.int32, name='batch_neg'),
'batch_node':tf.placeholder(tf.int32,name = 'batch_node'),
'adj_min_batch': tf.placeholder(tf.float32,name='adj_min_batch'),
'sim_min_batch': tf.placeholder(tf.float32,name='sim_min_batch'),
'batch_edge_type_idx': tf.placeholder(tf.int32, shape=(), name='batch_edge_type_idx'),
'batch_row_edge_type': tf.placeholder(tf.int32, shape=(), name='batch_row_edge_type'),
'batch_col_edge_type': tf.placeholder(tf.int32, shape=(), name='batch_col_edge_type'),
'degrees': tf.placeholder(tf.int32),
'dropout': tf.placeholder_with_default(0., shape=()),
| tensorflow.placeholder | 1,035 |
import tensorflow as tf
both summaries and checkpoints.""")
tf.flags.DEFINE_integer('save_summaries_steps', 0,
"""How often to save summaries for trained models.
Pass 0 to disable summaries.""")
tf.flags.DEFINE_integer('save_model_secs', 0,
"""How often to save trained models. Pass 0 to disable
checkpoints""")
tf.flags.DEFINE_string('train_dir', None,
"""Path to session checkpoints.""")
tf.flags.DEFINE_string('eval_dir', '/tmp/tf_cnn_benchmarks/eval',
"""Directory where to write eval event logs.""")
tf.flags.DEFINE_string('pretrain_dir', None,
"""Path to pretrained session checkpoints.""")
tf.flags.DEFINE_string('result_storage', None,
"""Specifies storage option for benchmark results.
None means results won't be stored.
'cbuild_benchmark_datastore' means results will be stored
in cbuild datastore (note: this option requires special
pemissions and meant to be used from cbuilds).""")
FLAGS = tf.flags.FLAGS
log_fn = print # tf.logging.info
class GlobalStepWatcher(threading.Thread):
"""A helper class for globe_step.
| tensorflow.flags.DEFINE_string | 1,036 |
import tensorflow as tf
b = tf.reshape(b, bshape)
return tf.nn.conv2d(
x,
w,
strides=strides,
padding=pad,
data_format=data_format) + b
def fc(self, x, scope, nh, *, init_scale=1.0, init_bias=0.0):
with tf.variable_scope(scope):
nin = x.get_shape()[1].value
w = tf.get_variable(
"w", [nin, nh], initializer=self.ortho_init(init_scale))
b = tf.get_variable(
"b", [nh], initializer=tf.constant_initializer(init_bias))
return tf.matmul(x, w) + b
def ortho_init(self, scale=1.0):
def _ortho_init(shape, dtype, partition_info=None):
# lasagne ortho init for tf
shape = tuple(shape)
if len(shape) == 2:
flat_shape = shape
elif len(shape) == 4: # assumes NHWC
flat_shape = (np.prod(shape[:-1]), shape[-1])
else:
raise NotImplementedError
a = np.random.normal(0.0, 1.0, flat_shape)
| tensorflow.constant_initializer | 1,037 |
import tensorflow as tf
def _add_avg_pool_3x3_op(self, X, input_idx, ni, w, h, ch, is_reduction, is_dynamic, is_train):
filter_size = 3
stride = 2 if is_reduction else 1
with tf.variable_scope('avg_pool_3x3_op'):
X = tf.nn.avg_pool(X, ksize=(1, filter_size, filter_size, 1), strides=[1, stride, stride, 1], padding='SAME')
X = tf.reshape(X, (-1, w // stride, h // stride, ch)) # Sanity shape check
| tensorflow.variable_scope | 1,038 |
from tensorflow.contrib.metrics.python.ops import set_ops
class_id: Class for which we want binary metrics.
weights: `Tensor` whose shape is broadcastable to the the first [D1, ... DN]
dimensions of `predictions_idx` and `labels`.
name: Name of operation.
Returns:
A [D1, ... DN] `Tensor` of true positive counts.
"""
with ops.name_scope(name, 'true_positives', (predictions_idx, labels)):
labels, predictions_idx = _maybe_select_class_id(
labels, predictions_idx, class_id)
tp = set_ops.set_size(set_ops.set_intersection(predictions_idx, labels))
tp = math_ops.to_double(tp)
if weights is not None:
weights = math_ops.to_double(weights)
tp = math_ops.mul(tp, weights)
return tp
def _streaming_sparse_true_positive_at_k(predictions_idx,
labels,
k=None,
| tensorflow.contrib.metrics.python.ops.set_ops.set_intersection | 1,039 |
import tensorflow as tf
kernel = tf.get_variable("weights", [kH, kW, nIn, nOut],
initializer=tf.truncated_normal_initializer(stddev=1e-1),
regularizer=l2_regularizer, dtype=inpOp.dtype)
cnv = tf.nn.conv2d(inpOp, kernel, [1, dH, dW, 1], padding=padType)
if use_batch_norm:
| tensorflow.nn.conv2d | 1,040 |
import tensorflow as tf
HaaInv = tf.matrix_inverse(Haa)
# The two terms 'term1' and 'term2' which come from normalizers of the
# 1. Original policy distribution
# 2. The distribution after completing the square
sigma = tf.matrix_inverse(prec)
term1 = -0.5 * param_eta * tf.log(tf.matrix_determinant(2 * np.pi * sigma))
if self.beta == 0:
term2 = 0.5 * param_eta * tf.log(tf.matrix_determinant(2 * np.pi * param_eta * HaaInv))
else:
term2 = 0.5 * (param_eta + param_omega) * tf.log(tf.matrix_determinant(2 * np.pi * (param_eta + param_omega) * HaaInv))
dual = param_eta * self.epsilon - param_omega * beta + \
term1 + term2 + tf.reduce_mean(
0.5 * (tf.reduce_sum(tf.matmul(ha, HaaInv) * ha, axis=1) - hss))
| tensorflow.matrix_determinant | 1,041 |
import tensorflow as tf
eval_config.batch_size = 1
eval_config.num_steps = 1
with tf.Graph().as_default():
initializer = tf.random_uniform_initializer(-config.init_scale,
config.init_scale)
with tf.name_scope("Train"):
| tensorflow.random_uniform_initializer | 1,042 |
from tensorflow.python.framework import ops
predictions, labels = tensor_util.remove_squeezable_dimensions(
predictions, labels)
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
radial_diffs = math_ops.mul(predictions, labels)
radial_diffs = math_ops.reduce_sum(radial_diffs,
reduction_indices=[dim,],
keep_dims=True)
mean_distance, update_op = streaming_mean(radial_diffs, weights,
None,
None,
name or 'mean_cosine_distance')
mean_distance = math_ops.sub(1.0, mean_distance)
update_op = math_ops.sub(1.0, update_op)
if metrics_collections:
ops.add_to_collections(metrics_collections, mean_distance)
if updates_collections:
ops.add_to_collections(updates_collections, update_op)
return mean_distance, update_op
@deprecated_args(IGNORE_MASK_DATE, IGNORE_MASK_INSTRUCTIONS, 'ignore_mask')
def streaming_percentage_less(values, threshold, ignore_mask=None, weights=None,
metrics_collections=None,
updates_collections=None,
name=None):
"""Computes the percentage of values less than the given threshold.
| tensorflow.python.framework.ops.add_to_collections | 1,043 |
import tensorflow as tf
else:
inputs = tf.split(inputdata, split, channel_axis)
| tensorflow.split | 1,044 |
import tensorflow as tf
- one_hot_labels_action * tf.log(tf.clip_by_value(self.predictions_action, 1e-10, 1.0)),
name='loss'
)
loss_arguments = tf.reduce_mean(
- one_hot_labels_arguments * tf.log(tf.clip_by_value(self.predictions_arguments, 1e-10, 1.0)),
name='loss'
)
self.loss = loss_action + loss_arguments
tf.scalar_summary('loss', self.loss)
with tf.name_scope('accuracy'):
correct_prediction_action = tf.equal(
tf.argmax(one_hot_labels_action, 1),
tf.argmax(self.predictions_action, 1)
)
self.accuracy_action = tf.reduce_mean(tf.cast(correct_prediction_action, 'float'))
tf.scalar_summary('accuracy_action', self.accuracy_action)
| tensorflow.scalar_summary | 1,045 |
import tensorflow as tf
self.initial_learning_rate = initial_learning_rate
self.maximal_learning_rate = maximal_learning_rate
self.step_size = step_size
self.scale_fn = scale_fn
self.scale_mode = scale_mode
self.name = name
def __call__(self, step):
with tf.name_scope(self.name or "CyclicalLearningRate"):
initial_learning_rate = tf.convert_to_tensor(
self.initial_learning_rate, name="initial_learning_rate"
)
dtype = initial_learning_rate.dtype
maximal_learning_rate = tf.cast(self.maximal_learning_rate, dtype)
step_size = tf.cast(self.step_size, dtype)
cycle = tf.floor(1 + step / (2 * step_size))
x = tf.abs(step / step_size - 2 * cycle + 1)
| tensorflow.convert_to_tensor | 1,046 |
import tensorflow as tf
from google.protobuf import text_format
import tensorflow as tf
import preprocessing
import datasets
NUM_TEST_IMAGES = 50000
def load_graph(model_file):
graph = tf.Graph()
graph_def = tf.compat.v1.GraphDef()
import os
file_ext = os.path.splitext(model_file)[1]
with open(model_file, "rb") as f:
if file_ext == '.pbtxt':
text_format.Merge(f.read(), graph_def)
else:
graph_def.ParseFromString(f.read())
| tensorflow.compat.v1.GraphDef | 1,047 |
import tensorflow as tf
nms_classes_expected1 = tf.constant([1, 2, 2], dtype=tf.int32)
(nms_masks2,
nms_scores2,
nms_classes2) = isu.instance_non_maximum_suppression_2d_scores(
masks,
scores,
3,
min_score_thresh=0.65,
min_iou_thresh=0.5,
is_class_agnostic=False)
nms_masks_expected2 = tf.stack([mask2, mask0, mask5, mask4])
nms_scores_expected2 = tf.constant([0.95, 1.0, 0.8, 0.7], dtype=tf.float32)
nms_classes_expected2 = tf.constant([0, 1, 2, 2], dtype=tf.int32)
self.assertAllEqual(nms_masks1.numpy(), nms_masks_expected1.numpy())
self.assertAllClose(nms_scores1.numpy(), nms_scores_expected1.numpy())
self.assertAllEqual(nms_classes1.numpy(), nms_classes_expected1.numpy())
self.assertAllEqual(nms_masks2.numpy(), nms_masks_expected2.numpy())
self.assertAllClose(nms_scores2.numpy(), nms_scores_expected2.numpy())
self.assertAllEqual(nms_classes2.numpy(), nms_classes_expected2.numpy())
| tensorflow.stack | 1,048 |
import tensorflow as tf
std = tf.sqrt(var+self.epsilon)
return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)]
require_init = tf.reduce_any(tf.is_nan(self.g))
init_ops = tf.cond(require_init,_init,lambda : [self.g,self.b])
with tf.control_dependencies(init_ops):
w = tf.reshape(self.g,[1,1,1,tf.shape(self.v)[-1]]) * tf.nn.l2_normalize(self.v,axis=[0,1,2])
return tf.nn.bias_add(
tf.nn.conv2d(input_var, w,data_format='NHWC',
strides=self.strides, padding=self.padding),
self.b,data_format='NHWC',name=name)
def get_variables(self):
#TODO: self.v should be l2-normalized or not? / currently not.
return {'v':self.v,'b':self.b,'g':self.g}
class DepthConv2d(object) :
| tensorflow.nn.conv2d | 1,049 |
import tensorflow as tf
tf.summary.scalar('policy_gradient_loss', loss_policy)
tf.summary.scalar('value_function_loss', loss_q)
| tensorflow.summary.scalar | 1,050 |
import tensorflow as tf
for w, filter_size in enumerate(encoder.convolutions, 1):
filter_ = get_variable('filter_{}'.format(w), [w, encoder.embedding_size, filter_size])
if w > 1:
right = (w - 1) // 2
left = (w - 1) - right
pad_right = tf.tile(pad, [1, right, 1])
pad_left = tf.tile(pad, [1, left, 1])
inputs_ = tf.concat([pad_left, encoder_inputs_, pad_right], axis=1)
else:
inputs_ = encoder_inputs_
inputs_ = tf.nn.convolution(inputs_, filter=filter_, padding='VALID')
inputs.append(inputs_)
encoder_inputs_ = tf.concat(inputs, axis=2)
# if encoder.convolution_activation.lower() == 'relu':
encoder_inputs_ = tf.nn.relu(encoder_inputs_)
if encoder.maxout_stride:
if encoder.binary:
raise NotImplementedError
stride = encoder.maxout_stride
k = tf.to_int32(tf.ceil(time_steps / stride) * stride) - time_steps # TODO: simpler
pad = tf.zeros([batch_size, k, tf.shape(encoder_inputs_)[2]])
encoder_inputs_ = tf.concat([encoder_inputs_, pad], axis=1)
encoder_inputs_ = tf.nn.pool(encoder_inputs_, window_shape=[stride], pooling_type='MAX',
padding='VALID', strides=[stride])
encoder_input_length_ = tf.to_int32(tf.ceil(encoder_input_length_ / stride))
| tensorflow.concat | 1,051 |
import tensorflow as tf
tf.less_equal(x0, max_x) & tf.greater_equal(x0, 0))
x1_valid = tf.to_float(
tf.less_equal(x1, max_x) & tf.greater_equal(x1, 0))
y0_valid = tf.to_float(
tf.less_equal(y0, max_y) & tf.greater_equal(y0, 0))
y1_valid = tf.to_float(
tf.less_equal(y1, max_y) & tf.greater_equal(y1, 0))
z0_valid = tf.to_float(
tf.less_equal(z0, max_z) & tf.greater_equal(z0, 0))
z1_valid = tf.to_float(
tf.less_equal(z1, max_z) & tf.greater_equal(z1, 0))
w_z0_y0_x0 = tf.expand_dims(((x1_f - x) * (y1_f - y) *
(z1_f - z) * x1_valid * y1_valid * z1_valid),
1)
w_z0_y0_x1 = tf.expand_dims(((x - x0_f) * (y1_f - y) *
(z1_f - z) * x0_valid * y1_valid * z1_valid),
1)
w_z0_y1_x0 = tf.expand_dims(((x1_f - x) * (y - y0_f) *
(z1_f - z) * x1_valid * y0_valid * z1_valid),
| tensorflow.less_equal | 1,052 |
import tensorflow as tf
inputs = tf.transpose(inputs, [0, 3, 1, 2])
inputs = conv2d_fixed_padding(
inputs=inputs, filters=self.num_filters, kernel_size=self.kernel_size,
strides=self.conv_stride, data_format=self.data_format)
inputs = tf.identity(inputs, 'initial_conv')
# We do not include batch normalization or activation functions in V2
# for the initial conv1 because the first ResNet unit will perform these
# for both the shortcut and non-shortcut paths as part of the first
| tensorflow.identity | 1,053 |
import tensorflow as tf
detections_in_img = self.drawer.draw_boxes_with_categories_and_scores(
img_batch=img,
boxes=outputs[0],
scores=outputs[1],
labels=outputs[2],
method=1)
tf.summary.image('Compare/final_detection_gpu:%d' % i, detections_in_img)
loss_dict = outputs[-1]
total_loss_dict, total_losses = self.loss_dict(loss_dict, num_gpu)
if i == num_gpu - 1:
regularization_losses = tf.get_collection(
tf.GraphKeys.REGULARIZATION_LOSSES)
# weight_decay_loss = tf.add_n(slim.losses.get_regularization_losses())
total_losses = total_losses + tf.add_n(regularization_losses)
tf.get_variable_scope().reuse_variables()
grads = optimizer.compute_gradients(total_losses)
if cfgs.GRADIENT_CLIPPING_BY_NORM is not None:
grads = slim.learning.clip_gradient_norms(grads, cfgs.GRADIENT_CLIPPING_BY_NORM)
tower_grads.append(grads)
self.log_printer(r3det_gwd, optimizer, global_step, tower_grads, total_loss_dict, num_gpu, graph)
| tensorflow.get_collection | 1,054 |
import tensorflow as tf
output_line = "\t".join(
str(class_probability)
for class_probability in probabilities) + "\n"
writer.write(output_line)
num_written_lines += 1
assert num_written_lines == num_actual_predict_examples
if __name__ == "__main__":
flags.mark_flag_as_required("data_dir")
flags.mark_flag_as_required("task_name")
flags.mark_flag_as_required("model_file")
flags.mark_flag_as_required("vocab_file")
flags.mark_flag_as_required("output_dir")
tf.app.run()
| tensorflow.app.run | 1,055 |
import tensorflow as tf
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
if is_training:
d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files))
if use_hvd:
d = d.shard(hvd.size(), hvd.rank()) #TODO only for Horovod, shard to mimic single_GPU = False
| tensorflow.constant | 1,056 |
import tensorflow as tf
saver0_ckpt = os.path.join(test_dir, "saver0.ckpt")
with self.test_session(graph=tf.Graph()) as sess:
# Creates an inference graph.
# Hidden 1
images = tf.constant(1.2, tf.float32, shape=[100, 28])
with tf.name_scope("hidden1"):
weights = tf.Variable(
tf.truncated_normal([28, 128],
stddev=1.0 / math.sqrt(float(28))),
name="weights")
biases = tf.Variable(tf.zeros([128]),
name="biases")
hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases)
# Hidden 2
with tf.name_scope("hidden2"):
weights = tf.Variable(
tf.truncated_normal([128, 32],
stddev=1.0 / math.sqrt(float(128))),
name="weights")
biases = tf.Variable(tf.zeros([32]),
name="biases")
hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases)
# Linear
with tf.name_scope("softmax_linear"):
| tensorflow.matmul | 1,057 |
import tensorflow as tf
return total_loss, per_example_loss, logits
def get_qa_outputs(FLAGS, features, is_training):
"""Loss for downstream span-extraction QA tasks such as SQuAD."""
inp = tf.transpose(features["input_ids"], [1, 0])
seg_id = tf.transpose(features["segment_ids"], [1, 0])
inp_mask = tf.transpose(features["input_mask"], [1, 0])
cls_index = tf.reshape(features["cls_index"], [-1])
seq_len = tf.shape(inp)[0]
| tensorflow.transpose | 1,058 |
import tensorflow as tf
# Inverse of a softplus function, so that the value of the standard deviation
# will be equal to what the user specifies, but we can still enforce positivity
# by wrapping the standard deviation in the softplus function.
# standard_dev = tf.log(tf.exp(standard_dev) - 1.0) * tf.ones(shape)
# it's important to initialize variances with care, otherwise the model takes too long to converge
sigma_min = 1-1/10
sigma_max = 1+1/10
rho_max_init = tf.log(tf.exp(sigma_max) - 1.0)
rho_min_init = tf.log(tf.exp(sigma_min) - 1.0)
std_init = tf.random_uniform_initializer(rho_min_init, rho_max_init)
# Initialize the mean
mean = tf.get_variable(name + "_mean", shape, dtype=dtype)
# Initialize the standard deviation
pre_sigma = tf.get_variable(name + "_standard_deviation",
shape,
initializer=std_init,
dtype=dtype)
standard_deviation = tf.nn.softplus(pre_sigma) + 1e-5
# The famous reparametrization formula for the factorized Gaussian
noise = tf.random_normal([num_samples] + shape, 0.0, 1.0, dtype)
weights = mean + standard_deviation * noise
return weights, mean, standard_deviation, pre_sigma, noise | tensorflow.get_variable | 1,059 |
import tensorflow as tf
activation=modeling.get_activation(bert_config.hidden_act),
kernel_initializer=modeling.create_initializer(
bert_config.initializer_range))
input_tensor = modeling.layer_norm(input_tensor)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
output_bias = tf.get_variable(
"output_bias",
shape=[bert_config.vocab_size],
initializer=tf.zeros_initializer())
logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
log_probs = tf.nn.log_softmax(logits, axis=-1)
label_ids = tf.reshape(label_ids, [-1])
label_weights = tf.reshape(label_weights, [-1])
one_hot_labels = tf.one_hot(
label_ids, depth=bert_config.vocab_size, dtype=tf.float32)
# The `positions` tensor might be zero-padded (if the sequence is too
# short to have the maximum number of predictions). The `label_weights`
# tensor has a value of 1.0 for every real prediction and 0.0 for the
| tensorflow.nn.bias_add | 1,060 |
import tensorflow as tf
filter_regex = get_vocab_newline_characters_regex(x.dtype, file_format)
if vocab_ordering_type == _VocabOrderingType.WEIGHTED_MUTUAL_INFORMATION:
labels = tf.reshape(labels, [-1])
reduced_batch = tf_utils.reduce_batch_weighted_cooccurrences(
x, labels, weights, filter_regex=filter_regex)
return [
reduced_batch.unique_x, reduced_batch.summed_weights_per_x,
reduced_batch.summed_positive_per_x_and_y, reduced_batch.counts_per_x
]
elif vocab_ordering_type == _VocabOrderingType.MUTUAL_INFORMATION:
labels = tf.reshape(labels, [-1])
reduced_batch = tf_utils.reduce_batch_weighted_cooccurrences(
x, labels, weights, filter_regex=filter_regex)
return [
reduced_batch.unique_x, reduced_batch.summed_positive_per_x_and_y,
reduced_batch.counts_per_x
]
elif vocab_ordering_type == _VocabOrderingType.WEIGHTED_FREQUENCY:
reduced_batch = tf_utils.reduce_batch_weighted_counts(
x, weights, filter_regex=filter_regex)
| tensorflow.reshape | 1,061 |
import tensorflow as tf
Returns:
cost -- cost function
"""
L= len(activation) #number of layers
m = Y.shape[1] #number of training examples
last = activation[L-1]
labels= tf.transpose(Y)
if last == 'sigmoid' or last == 'softmax': #use cross entropy loss function
logits= tf.transpose(betan*zn[1])
cost = tf.reduce_mean(tf.losses.sigmoid_cross_entropy(logits = logits, multi_class_labels=labels))
elif last == 'esp' or last == 'relu': #use minimum squared error (L2 loss)
out = tf.transpose(zn[0])
cost = tf.reduce_mean(tf.squared_difference(out, labels))/2
return cost
#------------Hessian-------------------
def flatten(tensor):
'''
| tensorflow.transpose | 1,062 |
import tensorflow as tf
image_width = static_shape.get_width(image_shape)
if image_height is None or image_width is None:
shape_assert = tf.Assert(
tf.logical_and(tf.greater_equal(tf.shape(image_tensor)[1], min_dim),
tf.greater_equal(tf.shape(image_tensor)[2], min_dim)),
['image size must be >= {} in both height and width.'.format(min_dim)])
with tf.control_dependencies([shape_assert]):
return tf.identity(image_tensor)
| tensorflow.shape | 1,063 |
import tensorflow as tf
@registry.register_model
class DenseBitwiseCategoricalPolicy(PolicyBase):
"""Dense network with bitwise input and categorical output."""
def body(self, features):
observations = features["inputs"]
flat_x = tf.layers.flatten(observations)
with tf.variable_scope("dense_bitwise"):
flat_x = discretization.int_to_bit_embed(flat_x, 8, 32)
x = tf.layers.dense(flat_x, 256, activation=tf.nn.relu)
x = tf.layers.dense(flat_x, 128, activation=tf.nn.relu)
logits = tf.layers.dense(x, self.hparams.problem.num_actions)
value = tf.layers.dense(x, 1)[..., 0]
return {"target_policy": logits, "target_value": value}
@registry.register_model
class RandomPolicy(PolicyBase):
"""Random policy with categorical output."""
def body(self, features):
observations = features["inputs"]
| tensorflow.layers.dense | 1,064 |
from tensorflow.python.ops import math_ops
mean_distance: A tensor representing the current mean, the value of `total`
divided by `count`.
update_op: An operation that increments the `total` and `count` variables
appropriately.
Raises:
ValueError: If `predictions` and `labels` have mismatched shapes, or if
`weights` is not `None` and its shape doesn't match `predictions`, or if
either `metrics_collections` or `updates_collections` are not a list or
tuple.
"""
predictions, labels = tensor_util.remove_squeezable_dimensions(
predictions, labels)
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
radial_diffs = math_ops.mul(predictions, labels)
radial_diffs = math_ops.reduce_sum(radial_diffs,
reduction_indices=[dim,],
keep_dims=True)
mean_distance, update_op = streaming_mean(radial_diffs, weights,
None,
None,
name or 'mean_cosine_distance')
mean_distance = math_ops.sub(1.0, mean_distance)
update_op = math_ops.sub(1.0, update_op)
if metrics_collections:
ops.add_to_collections(metrics_collections, mean_distance)
| tensorflow.python.ops.math_ops.mul | 1,065 |
from tensorflow.python.framework import ops
clipped_grads.append(None)
elif isinstance(grad, ops.IndexedSlices):
clipped_grads.append(
ops.IndexedSlices(grad.values * factor, grad.indices,
grad.dense_shape))
else:
| tensorflow.python.framework.ops.IndexedSlices | 1,066 |
import tensorflow as tf
num_sam = tools.shape(batch)[0]
index = tf.range(num_sam)
tgt1 = tf.slice(batch, [0, 1], [num_sam, 1])
pred1 = tf.slice(batch, [0, 0], [num_sam, 1])
def uniform():
| tensorflow.slice | 1,067 |
import tensorflow as tf
scope.reuse_variables()
truthoutput_z_ = lrelu(linear(tgtimg_z, self.gf_dim*8*s_h16*s_w16, 'd_h0_lin'))
truthoutput_h0 = tf.reshape(truthoutput_z_, [-1, s_h16, s_w16, self.gf_dim * 8])
truthoutput_h1 = lrelu(deconv2d(tf.concat([truthoutput_h0, tgtctx_h3], 3),
[self.batch_size, s_h8, s_w8, self.gf_dim*4], name='d_h1'))
truthoutput_h2 = lrelu(deconv2d(tf.concat([truthoutput_h1, tgtctx_h2], 3),
| tensorflow.reshape | 1,068 |
import tensorflow as tf
out[1].numpy())
def testReducer(self):
with tf.device(self._test_device):
batch_size = 3
size = 10
| tensorflow.device | 1,069 |
import tensorflow as tf
with tf.variable_scope("Context_to_Query_Attention_Layer"):
C = tf.tile(tf.expand_dims(self.c_embed_encoding, 2), [1, 1, self.max_q_len, 1])
Q = tf.tile(tf.expand_dims(self.q_embed_encoding, 1), [1, self.max_p_len, 1, 1])
S = trilinear([C, Q, C * Q], input_keep_prob=1.0 - self.dropout)
mask_q = tf.expand_dims(self.q_mask, 1)
S_ = tf.nn.softmax(mask_logits(S, mask=mask_q))
mask_c = tf.expand_dims(self.c_mask, 2)
S_T = tf.transpose(tf.nn.softmax(mask_logits(S, mask=mask_c), dim=1), (0, 2, 1))
self.c2q = tf.matmul(S_, self.q_embed_encoding)
self.q2c = tf.matmul(tf.matmul(S_, S_T), self.c_embed_encoding)
self.attention_outputs = [self.c_embed_encoding, self.c2q, self.c_embed_encoding * self.c2q,
self.c_embed_encoding * self.q2c]
| tensorflow.expand_dims | 1,070 |
import tensorflow as tf
# Add regularization loss
reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
reg_loss = reg_decay * tf.add_n(reg_losses)
self._mark_for_monitoring('reg_loss', reg_loss)
# Add loss from auxiliary logits
aux_loss = tf.constant(0, dtype=tf.float32)
for aux_logits in aux_logits_list:
log_probs = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=aux_logits, labels=classes)
aux_loss += aux_loss_mul * tf.reduce_mean(log_probs)
total_loss = loss + reg_loss + aux_loss
return total_loss
def _add_global_avg_pool(self, X, in_w, in_h, in_ch):
X = tf.nn.relu(X)
X = tf.reduce_mean(X, (1, 2))
X = tf.reshape(X, (-1, in_ch)) # Sanity shape check
| tensorflow.reduce_mean | 1,071 |
import tensorflow as tf
ksize_list,
strides,
'VALID',
is_training,
data_format=data_format,
no_activation=no_activation)
if use_var:
y = sbnet_module.sparse_scatter_var(
q,
indices.bin_counts,
indices.active_block_indices,
x,
dynamic_bsize=tf.constant(block_params.bsize_out, dtype=tf.int32),
dynamic_bstride=tf.constant(block_params.bsize_out, dtype=tf.int32),
dynamic_boffset=tf.constant([0, 0], dtype=tf.int32),
add=True,
transpose=transpose)
else:
y = sbnet_module.sparse_scatter(
q,
indices.bin_counts,
indices.active_block_indices,
x,
dynamic_bsize=tf.constant(block_params.bsize_out, dtype=tf.int32),
dynamic_bstride=tf.constant(block_params.bsize_out, dtype=tf.int32),
dynamic_boffset=tf.constant([0, 0], dtype=tf.int32),
add=True,
| tensorflow.constant | 1,072 |
import tensorflow as tf
return [train]+ops
def mgpu_predict(*xs):
gpu_ops = []
xs = (tf.split(x, n_gpu, 0) for x in xs)
for i, xs in enumerate(zip(*xs)):
with tf.device(assign_to_gpu(i, "/gpu:0")), tf.variable_scope(tf.get_variable_scope(), reuse=True):
clf_logits, clf_losses, lm_losses = model(*xs, train=False, reuse=True)
gpu_ops.append([clf_logits, clf_losses, lm_losses])
ops = [tf.concat(op, 0) for op in zip(*gpu_ops)]
return ops
def transform_roc(X1, X2, X3):
n_batch = len(X1)
xmb = np.zeros((n_batch, 2, n_ctx, 2), dtype=np.int32)
mmb = np.zeros((n_batch, 2, n_ctx), dtype=np.float32)
start = encoder['_start_']
delimiter = encoder['_delimiter_']
| tensorflow.concat | 1,073 |
import tensorflow as tf
import tensorflow as tf
#add_layer 函数里面所有的with都是为了tensorboard添加上去的
def add_layer(inputs, in_size, out_size, activation_function=None,nameScope="layer"):
# add one more layer and return the output of this layer
with tf.name_scope(nameScope):
with tf.name_scope('weights'):
Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W')
with tf.name_scope('biases'):
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b')
with tf.name_scope('Wx_plus_b'):
Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
if activation_function is None:
outputs = Wx_plus_b
| tensorflow.random_normal | 1,074 |
import tensorflow as tf
if time_major:
# (T,B,D) => (B,T,D)
facts = tf.array_ops.transpose(facts, [1, 0, 2])
mask = tf.equal(mask, tf.ones_like(mask))
hidden_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer
input_size = query.get_shape().as_list()[-1]
| tensorflow.ones_like | 1,075 |
import tensorflow as tf
'Number of mini-batches to train on. (default: %(default)d)')
tf.app.flags.DEFINE_integer('log-frequency', 10,
'Number of steps between logging results to the console and saving summaries (default: %(default)d)')
tf.app.flags.DEFINE_integer('save-model', 1000,
'Number of steps between model saves (default: %(default)d)')
# Optimisation hyperparameters
tf.app.flags.DEFINE_integer('batch-size', 256, 'Number of examples per mini-batch (default: %(default)d)')
tf.app.flags.DEFINE_float('learning-rate', 1e-4, 'Learning rate (default: %(default)d)')
tf.app.flags.DEFINE_integer('img-width', 32, 'Image width (default: %(default)d)')
tf.app.flags.DEFINE_integer('img-height', 32, 'Image height (default: %(default)d)')
tf.app.flags.DEFINE_integer('img-channels', 3, 'Image channels (default: %(default)d)')
tf.app.flags.DEFINE_integer('num-classes', 10, 'Number of classes (default: %(default)d)')
tf.app.flags.DEFINE_string('log-dir', '{cwd}/logs/'.format(cwd=os.getcwd()),
'Directory where to write event logs and checkpoint. (default: %(default)s)')
run_log_dir = os.path.join(FLAGS.log_dir,
'exp_BN_bs_{bs}_lr_{lr}_aug_flip_brightness'.format(bs=FLAGS.batch_size,
lr=FLAGS.learning_rate))
def weight_variable(shape):
| tensorflow.app.flags.DEFINE_integer | 1,076 |
import tensorflow as tf
stn = tf.reshape(tf.transpose(stn, [2, 0, 1]), [3, -1]) # 3 x (bx2)
coor = tf.reshape(tf.matmul(xys, stn),
[WARP_TARGET_SIZE, WARP_TARGET_SIZE, -1, 2])
coor = tf.transpose(coor, [2, 0, 1, 3], 'sampled_coords') # b h w 2
sampled = ImageSample('warp', [image, coor], borderMode='constant')
return sampled
with argscope([Conv2D, FullyConnected], nl=tf.nn.relu):
with tf.variable_scope('STN1'):
sampled1 = get_stn(image)
with tf.variable_scope('STN2'):
sampled2 = get_stn(image)
# For visualization in tensorboard
with tf.name_scope('visualization'):
padded1 = tf.pad(sampled1, [[0, 0], [HALF_DIFF, HALF_DIFF], [HALF_DIFF, HALF_DIFF], [0, 0]])
padded2 = tf.pad(sampled2, [[0, 0], [HALF_DIFF, HALF_DIFF], [HALF_DIFF, HALF_DIFF], [0, 0]])
img_orig = tf.concat([image[:, :, :, 0], image[:, :, :, 1]], 1) # b x 2h x w
transform1 = tf.concat([padded1[:, :, :, 0], padded1[:, :, :, 1]], 1)
transform2 = tf.concat([padded2[:, :, :, 0], padded2[:, :, :, 1]], 1)
| tensorflow.variable_scope | 1,077 |
import tensorflow as tf
import numpy as np
FLAGS = tf.app.flags.FLAGS
# Basic model parameters.
tf.app.flags.DEFINE_float('learning_rate', 0.1, 'Initial learning rate.')
tf.app.flags.DEFINE_string('pm', '66661', 'pooling scheme across scales. Each number specifies the number of scales remaining at each layer. The first number has to be the same as used in --num_scales.')
tf.app.flags.DEFINE_integer('conv_kernel', 5, 'Size of convolutional kernel')
tf.app.flags.DEFINE_integer('pool_kernel', 3, 'Size of spatial pooling kernel')
| tensorflow.app.flags.DEFINE_float | 1,078 |
import tensorflow as tf
init_scale = .01
m_init, v_init = tf.nn.moments(x, [0, 1, 2])
scale_init = init_scale / tf.sqrt(v_init + 1e-10)
with tf.control_dependencies([g.assign(g * scale_init), b.assign_add(-m_init * scale_init)]):
x = tf.reshape(scale_init, [1, 1, 1, num_filters]) * (x - tf.reshape(m_init, [1, 1, 1, num_filters]))
else:
V = maybe_avg(V)
| tensorflow.reshape | 1,079 |
from tensorflow.python.framework import ops
@ops.RegisterShape("MaxPoolWithArgmax")
| tensorflow.python.framework.ops.RegisterShape | 1,080 |
from tensorflow.contrib.learn.python.learn.estimators import test_data
dnn_hidden_units=(3, 3),
dnn_optimizer=adagrad.AdagradOptimizer(learning_rate=0.1))
input_fn = test_data.iris_input_logistic_fn
metrics = classifier.fit(input_fn=input_fn, steps=_ITERS).evaluate(
input_fn=input_fn, steps=100)
self._assertSingleClassMetrics(metrics)
def benchmarkMultiClass(self):
iris = base.load_iris()
cont_feature = feature_column.real_valued_column('feature', dimension=4)
bucketized_feature = feature_column.bucketized_column(
cont_feature, test_data.get_quantile_based_buckets(iris.data, 10))
classifier = dnn_linear_combined.DNNLinearCombinedClassifier(
n_classes=3,
linear_feature_columns=(bucketized_feature,),
dnn_feature_columns=(cont_feature,),
dnn_hidden_units=(3, 3))
input_fn = test_data.iris_input_multiclass_fn
metrics = classifier.fit(input_fn=input_fn, steps=_ITERS).evaluate(
input_fn=input_fn, steps=100)
self._assertCommonMetrics(metrics)
| tensorflow.contrib.learn.python.learn.estimators.test_data.get_quantile_based_buckets | 1,081 |
from tensorflow.python.ops import array_ops
ValueError: If `weights` is not `None` and its shape doesn't match `values`,
or if either `metrics_collections` or `updates_collections` are not a list
or tuple.
"""
with variable_scope.variable_scope(name, 'mean', [values, weights]):
total = _create_local('total_tensor', shape=values.get_shape())
count = _create_local('count_tensor', shape=values.get_shape())
num_values = array_ops.ones_like(values)
if weights is not None:
weights = math_ops.to_float(weights)
values = math_ops.mul(values, weights)
num_values = math_ops.mul(num_values, weights)
total_compute_op = state_ops.assign_add(total, values)
count_compute_op = state_ops.assign_add(count, num_values)
| tensorflow.python.ops.array_ops.ones_like | 1,082 |
import tensorflow as tf
active_mining_triplet_ratio = (
tf.cast(num_active_mining_triplets, dtype=tf.float32) /
num_total_triplets)
active_loss = (
loss / tf.math.maximum(1e-12, tf.stop_gradient(active_triplet_ratio)))
active_mining_loss = (
mining_loss /
tf.math.maximum(1e-12, tf.stop_gradient(active_mining_triplet_ratio)))
tag = 'SemiHardNegative' if use_semi_hard else 'HardNegative'
summaries = {
# Summaries related to triplet loss computation.
'triplet_loss/Anchor/%s/Distance/Mean' % tag:
tf.math.reduce_mean(negative_distances),
'triplet_loss/%s/Loss/All' % tag:
loss,
'triplet_loss/%s/Loss/Active' % tag:
active_loss,
'triplet_loss/%s/ActiveTripletNum' % tag:
num_active_triplets,
'triplet_loss/%s/ActiveTripletRatio' % tag:
active_triplet_ratio,
# Summaries related to triplet mining.
'triplet_mining/Anchor/%s/Distance/Mean' % tag:
tf.math.reduce_mean(negative_mining_distances),
'triplet_mining/%s/Loss/All' % tag:
| tensorflow.math.reduce_mean | 1,083 |
import tensorflow as tf
self.rgb_channels = rgb_channels
self.on_gpu = on_gpu
def post_init(self):
import tensorflow as tf
from i3d_cores.i3d import InceptionI3d
import os
os.environ['CUDA_VISIBLE_DEVICES'] = str(get_first_available_gpu())
with tf.Graph().as_default():
self.rgb_images_placeholder = tf.placeholder(dtype=tf.float32, shape=(None,
self.num_frame_per_clib,
self.frame_size_x,
self.frame_size_y,
self.rgb_channels))
is_training = False
with tf.variable_scope('RGB'):
self.feature, _ = InceptionI3d(
num_classes=self.num_classes,
spatial_squeeze=True,
| tensorflow.placeholder | 1,084 |
import tensorflow as tf
out=tf.matmul(l3, self.w4)+self.b4
return out
def test_inference(self,images):
images=tf.cast(images,tf.float32)/255.0
l1 = tf.matmul(images, self.w1)+self.b1
l1=tf.nn.relu(l1)
l2 = tf.matmul(l1, self.w2)+self.b2
l2=tf.nn.relu(l2)
l3=tf.matmul(l2, self.w3)+self.b3
l3=tf.nn.relu(l3)
out=tf.matmul(l3, self.w4)+self.b4
return out
def valid_inference(self,images):
images=tf.cast(images,tf.float32)/255.0
| tensorflow.nn.relu | 1,085 |
import tensorflow as tf
"input_ids":
tf.constant(
all_input_ids, shape=[num_examples, seq_length],
dtype=tf.int32),
"input_mask":
tf.constant(
all_input_mask,
shape=[num_examples, seq_length],
dtype=tf.int32),
"segment_ids":
tf.constant(
all_segment_ids,
shape=[num_examples, seq_length],
dtype=tf.int32),
"label_ids":
tf.constant(all_label_ids, shape=[num_examples], dtype=tf.int32),
})
if is_training:
d = d.repeat()
d = d.shuffle(buffer_size=100)
d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder)
return d
return input_fn
# This function is not used by this file but is still used by the Colab and
# people who depend on it.
| tensorflow.constant | 1,086 |
import tensorflow as tf
global_step = slim.get_or_create_global_step()
lr = self.warmup_lr(cfgs.LR, global_step, cfgs.WARM_SETP, num_gpu*cfgs.BATCH_SIZE)
tf.summary.scalar('lr', lr)
optimizer = tf.train.MomentumOptimizer(lr, momentum=cfgs.MOMENTUM)
fcos = build_whole_network_batch_quad.DetectionNetworkFCOS(cfgs=self.cfgs,
is_training=True)
with tf.name_scope('get_batch'):
if cfgs.IMAGE_PYRAMID:
shortside_len_list = tf.constant(cfgs.IMG_SHORT_SIDE_LEN)
shortside_len = tf.random_shuffle(shortside_len_list)[0]
else:
shortside_len = cfgs.IMG_SHORT_SIDE_LEN
img_name_batch, img_batch, gtboxes_and_label_batch, num_objects_batch, img_h_batch, img_w_batch = \
self.reader.next_batch(dataset_name=cfgs.DATASET_NAME,
batch_size=cfgs.BATCH_SIZE * num_gpu,
shortside_len=shortside_len,
is_training=True)
| tensorflow.random_shuffle | 1,087 |
import tensorflow as tf
var = var[:FLAGS.visualiza_max]
var = tf.concat(tf.unstack(var), axis=0)
var = tf.expand_dims(var, dim=0)
color_s = tf.summary.image(name, var[..., :3], max_outputs=FLAGS.visualiza_max)
var = tf.expand_dims(var[..., 3], dim=3)
bw_s = tf.summary.image('depth_' + name, var, max_outputs=FLAGS.visualiza_max)
return tf.summary.merge([color_s, bw_s])
# TRAINING PROGRESS EVENTS
def _on_training_start(self, sess):
# Writers and savers
self.summary_writer = tf.summary.FileWriter(FLAGS.logdir, sess.graph)
self.saver = tf.train.Saver()
self._build_embedding_saver(sess)
self._restore_model(sess)
# Loss summaries
self._build_summaries()
self.epoch_stats = get_stats_template()
self.stats = Bunch(
epoch_accuracy=[],
epoch_reconstructions=[],
permutation=None
)
# if FLAGS.dev:
| tensorflow.summary.FileWriter | 1,088 |
import tensorflow as tf
tf.summary.scalar('Learning rate', m.lr)
latest_ckpt = tf.train.latest_checkpoint(FLAGS.save_path)
with train_graph.as_default():
sv = tf.train.Supervisor(logdir=FLAGS.save_path)
config_proto = tf.ConfigProto(log_device_placement=False,
allow_soft_placement=True)
with sv.managed_session(config=config_proto) as train_sess:
#with tf.Session(config=config_proto) as train_sess:
train_sess.run(tf.global_variables_initializer())
for i in range(config.max_max_epoch):
lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.)
m.assign_lr(train_sess, config.learning_rate * lr_decay)
train_perplexity = run_epoch(train_sess, m, #eval_op=m.train_op,
verbose=True)
print('Epoch {} Train Perplexity: {:.3f}'.format(i + 1,
train_perplexity))
if i % 5 == 0:
sv.saver.save(train_sess, FLAGS.save_path,
| tensorflow.global_variables_initializer | 1,089 |
import tensorflow as tf
# Calculate loss, which includes softmax cross entropy and L2 regularization.
cross_entropy = tf.cond(n_positives > 0., lambda: tf.losses.sparse_softmax_cross_entropy(labels=glabels, logits=cls_pred), lambda: 0.)
#cross_entropy = tf.losses.sparse_softmax_cross_entropy(labels=glabels, logits=cls_pred)
# Create a tensor named cross_entropy for logging purposes.
tf.identity(cross_entropy, name='cross_entropy_loss')
tf.summary.scalar('cross_entropy_loss', cross_entropy)
loc_loss = tf.cond(n_positives > 0., lambda: modified_smooth_l1(location_pred, tf.stop_gradient(gtargets), sigma=1.), lambda: tf.zeros_like(location_pred))
#loc_loss = modified_smooth_l1(location_pred, tf.stop_gradient(gtargets))
loc_loss = tf.reduce_mean(tf.reduce_sum(loc_loss, axis=-1))
loc_loss = tf.identity(loc_loss, name='location_loss')
tf.summary.scalar('location_loss', loc_loss)
tf.losses.add_loss(loc_loss)
# Add weight decay to the loss. We exclude the batch norm variables because
# doing so leads to a small improvement in accuracy.
| tensorflow.zeros_like | 1,090 |
from tensorflow.python.ops import array_ops
def _move_tensors(tensors, device):
"""Moves a list of tensors to a device by concatenating/splitting them."""
# Reset the device setting to avoid weird interactions with device merging
# logic.
with ops.device(None):
if all(tensor.shape == tensor_shape.scalar() for tensor in tensors):
with ops.device(tensors[0].device):
values = array_ops.stack(tensors)
with ops.device(device):
return array_ops.unstack(values)
else:
with ops.device(tensors[0].device):
sizes = array_ops.stack(
[array_ops.shape(tensor)[0] for tensor in tensors])
values = array_ops.concat(tensors, axis=0)
with ops.device(device):
sizes = array_ops.unstack(sizes)
return list(array_ops.split(values, sizes, axis=0))
| tensorflow.python.ops.array_ops.unstack | 1,091 |
import tensorflow as tf
label=tf.cast(features['label'],tf.int32)
image=tf.reshape(image,[4096,1])
| tensorflow.reshape | 1,092 |
import tensorflow as tf
loss=work.softmax_loss(inf,batch_label)
opti=work.optimer(loss,learnrate)
test_image_batch,test_label_batch=get_test_batch(test_image,test_label,testnum)
test_inf=work.test_inference(test_image_batch)
test_labels=tf.one_hot(test_label_batch,classnum)
test_pre = tf.reshape(test_inf, [testnum, classnum])
correct_prediction=tf.equal(tf.argmax(test_inf,1),tf.argmax(test_labels,1))
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
test_pre = tf.argmax(test_pre, 1)
| tensorflow.one_hot | 1,093 |
import tensorflow as tf
feature = InputFeatures(
input_ids=input_ids_new,
input_mask=input_mask,
segment_ids=segment_ids,
masked_lm_positions=masked_lm_positions,
masked_lm_ids=masked_lm_labels)
features.append(feature)
i += mask_count
return features
def parse_result(result, all_tokens, output_file=None):
with tf.gfile.GFile(output_file, "w") as writer:
tf.logging.info("***** Predict results *****")
i = 0
sentences = []
for word_loss in result:
# start of a sentence
if all_tokens[i] == "[CLS]":
sentence = {}
tokens = []
sentence_loss = 0.0
word_count_per_sent = 0
i += 1
# add token
tokens.append({"token": tokenization.printable_text(all_tokens[i]),
| tensorflow.logging.info | 1,094 |
import tensorflow as tf
print('Epoch {} Train Perplexity: {:.3f}'.format(i + 1,
train_perplexity))
if i % 5 == 0:
sv.saver.save(train_sess, FLAGS.save_path,
global_step=sv.global_step)
if __name__ == '__main__':
tf.app.run()
| tensorflow.app.run | 1,095 |
import tensorflow as tf
estimator=entropy_bottleneck)
status = checkpoint.restore(tf.train.latest_checkpoint(ckpt_dir))
x = tf.convert_to_tensor(x_color, "float32")
x_coori = tf.convert_to_tensor(x_coori, "float32")
def loop_analysis(element):
x = tf.expand_dims(element[0], 0)
x_coori = tf.expand_dims(element[1], 0)
y = analysis_transform(x_coori,x)
return tf.squeeze(y,axis=0)
element = [x,x_coori]
ys = tf.map_fn(loop_analysis, element, dtype=tf.float32, parallel_iterations=1, back_prop=False)
| tensorflow.expand_dims | 1,096 |
import tensorflow as tf
# Policy Gradient loss, with truncated importance sampling & bias correction
value = strip(value, self.n_envs, self.n_steps, True)
# check_shape([qret, value, rho_i, f_i], [[self.n_envs * self.n_steps]] * 4)
# check_shape([rho, distribution_f, q_value], [[self.n_envs * self.n_steps, self.n_act]] * 2)
# Truncated importance sampling
adv = qret - value
log_f = tf.log(f_i + eps)
# [n_envs * n_steps]
gain_f = log_f * tf.stop_gradient(adv * tf.minimum(self.correction_term, rho_i))
loss_f = -tf.reduce_mean(gain_f)
# Bias correction for the truncation
adv_bc = (q_value - tf.reshape(value, [self.n_envs * self.n_steps, 1])) # [n_envs * n_steps, n_act]
| tensorflow.log | 1,097 |
from tensorflow.python.framework import constant_op
self._assert_sparse_tensor_equals(expected_out, sess.run(op))
def test_integer_sparse_input(self):
"""Tests mixed type sparse and dense inputs."""
op = sparse_feature_cross_op.sparse_feature_cross([
self._sparse_tensor([[11], [333, 5555]]),
constant_op.constant([['batch1-FC2-F1', 'batch1-FC2-F2'],
['batch2-FC2-F1', 'batch2-FC2-F2']],
dtypes.string),
])
expected_out = self._sparse_tensor(
[['11_X_batch1-FC2-F1', '11_X_batch1-FC2-F2'], [
| tensorflow.python.framework.constant_op.constant | 1,098 |
import tensorflow as tf
"""
label_smoothing = 0.
def inputs(self):
return [tf.TensorSpec([None, self.image_shape, self.image_shape, 3], self.image_dtype, 'input'),
tf.TensorSpec([None], tf.int32, 'label')]
def build_graph(self, image, label):
image = self.image_preprocess(image)
assert self.data_format in ['NCHW', 'NHWC']
| tensorflow.TensorSpec | 1,099 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.