seed
stringlengths 59
2.16k
| seed_api
stringlengths 14
101
| index
int64 0
523
|
---|---|---|
import tensorflow as tf
decoded = tf.sparse.SparseTensor(indices[0], values[0], shape[0])
decoded = tf.cast(tf.sparse.to_dense(decoded), tf.int32)
decoded_u = tf.sparse.SparseTensor(indices_u[0], values_u[0], shape_u[0])
decoded_u = tf.cast(tf.sparse.to_dense(decoded_u), tf.int32)
# Adjust event vals according to representation
decoded = tf.where(tf.not_equal(decoded, 0), decoded+shift, decoded)
decoded_u = tf.where(tf.not_equal(decoded_u, 0), decoded_u+shift, decoded_u)
# Set default vals
decoded = tf.where(tf.equal(decoded, 0), def_val, decoded)
decoded_u = tf.where(tf.equal(decoded_u, 0), def_val, decoded_u)
|
tensorflow.not_equal
| 200 |
import tensorflow as tf
lstm_cell_fw = tf.contrib.rnn.LSTMBlockFusedCell(num_units=num_units, **kwargs)
outputs_fw, (hidden_fw, output_fw) = lstm_cell_fw(t, dtype=tf.float32, sequence_length=nwords)
if bidirectional:
lstm_cell_bw = tf.contrib.rnn.LSTMBlockFusedCell(num_units=num_units, **kwargs)
lstm_cell_bw = tf.contrib.rnn.TimeReversedFusedRNN(lstm_cell_bw)
outputs_bw, (hidden_bw, output_bw) = lstm_cell_bw(t, dtype=tf.float32, sequence_length=nwords)
outputs = tf.concat([outputs_fw, outputs_bw], axis=-1)
hidden = tf.concat([hidden_fw, hidden_bw], axis=-1)
output = tf.concat([output_fw, output_bw], axis=-1)
else:
outputs = outputs_fw
hidden = hidden_fw
output = output_fw
outputs = tf.transpose(outputs, perm=[1, 0, 2])
return (outputs, hidden, output)
|
tensorflow.transpose
| 201 |
import tensorflow as tf
if self.norm_type == 'layer':
norm_net = tf.contrib.layers.layer_norm(net, center=True, scale=True, activation_fn=activation_fn)
elif self.norm_type == 'batch':
|
tensorflow.contrib.layers.layer_norm
| 202 |
import tensorflow as tf
}
placeholders.update({
'adj_mats_%d,%d,%d' % (i, j, k): tf.sparse_placeholder(tf.float32)
for i, j in edge_types for k in range(edge_types[i,j])})
|
tensorflow.sparse_placeholder
| 203 |
from tensorflow.python.ops import variables as vars_
"Got %s." % str(optimizer))
# All trainable variables, if specific variables are not specified.
if variables is None:
variables = vars_.trainable_variables()
# Compute gradients.
gradients = opt.compute_gradients(
|
tensorflow.python.ops.variables.trainable_variables
| 204 |
import tensorflow as tf
self._cost = tf.reduce_sum(loss)
self._final_state = state
if not is_training:
return
self._lr = tf.Variable(0.0, trainable=False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(self._cost, tvars),
config.max_grad_norm)
optimizer = tf.train.GradientDescentOptimizer(self._lr)
self._train_op = optimizer.apply_gradients(
|
tensorflow.Variable
| 205 |
import tensorflow as tf
def directional_attention_with_selections(
rep_tensor, rep_mask, dep_selection, head_selection, direction=None, hn=None, keep_unselected=True,
scope=None, keep_prob=1., is_train=None, wd=0., activation='elu'):
bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape(rep_tensor)[2]
org_ivec = rep_tensor.get_shape().as_list()[2]
ivec = hn or org_ivec
with tf.variable_scope(scope or 'directional_attention_%s' % direction or 'diag'):
# non-linear
rep_map = bn_dense_layer(rep_tensor, ivec, True, 0., 'bn_dense_map', activation,
False, wd, keep_prob, is_train)
# ensure the seletion is right
dep_selection = tf.logical_and(rep_mask, dep_selection)
head_selection = tf.logical_and(rep_mask, head_selection)
rep_dep_tensor, rep_dep_mask, dep_org_idx = reduce_data_rep_max_len(rep_map, dep_selection)
rep_head_tensor,rep_head_mask, head_org_idx = reduce_data_rep_max_len(rep_map, head_selection)
sl_dep, sl_head = tf.shape(rep_dep_tensor)[1], tf.shape(rep_head_tensor)[1]
if keep_unselected:
unhead_selection = tf.logical_and(rep_mask, tf.logical_not(head_selection))
rep_unhead_tensor, rep_unhead_mask, unhead_org_idx = reduce_data_rep_max_len(rep_map, unhead_selection)
sl_unhead = tf.shape(rep_unhead_tensor)[1]
attn_result = tf.cond(
tf.equal(sl_head, 0),
lambda: tf.zeros([bs, 0, hn], tf.float32),
lambda: self_attention_for_selected_head(
|
tensorflow.logical_and
| 206 |
import tensorflow as tf
self.embeddings,
self.inputs,
name='word_embeddings',
)
# Zero out embeddings of pad value
masks = tf.not_equal(self.inputs, pad_value, name='masks')
word_embeddings *= tf.cast(
tf.expand_dims(masks, axis=-1),
# tf.float32,
dtype=LayersConfig.tf_dtype,
)
sum_word_embeddings = tf.reduce_sum(word_embeddings, axis=1)
# Count number of non-padding words in each sentence
sentence_lengths = tf.count_nonzero(
masks,
axis=1,
keep_dims=True,
# dtype=tf.float32,
dtype=LayersConfig.tf_dtype,
name='sentence_lengths',
)
sentence_embeddings = tf.divide(
sum_word_embeddings,
sentence_lengths + 1e-8, # Add epsilon to avoid dividing by 0
name='sentence_embeddings')
|
tensorflow.count_nonzero
| 207 |
from tensorflow.python.ops import math_ops
def get_eval_ops(self, features, logits, targets, metrics=None):
loss = self.loss(logits, targets, features)
result = {"loss": metrics_lib.streaming_mean(loss)}
# Adds default metrics.
if metrics is None:
# TODO(b/29366811): This currently results in both an "accuracy" and an
# "accuracy/threshold_0.500000_mean" metric for binary classification.
metrics = {("accuracy", "classes"): metrics_lib.streaming_accuracy}
predictions = math_ops.sigmoid(logits)
targets_float = math_ops.to_float(targets)
default_metrics = self._default_eval_metrics()
for metric_name, metric_op in default_metrics.items():
result[metric_name] = metric_op(predictions, targets_float)
class_metrics = {}
proba_metrics = {}
for name, metric_op in six.iteritems(metrics):
if isinstance(name, tuple):
|
tensorflow.python.ops.math_ops.sigmoid
| 208 |
import tensorflow as tf
def lstm_network(input, scope='lstm_network'):
with tf.variable_scope(scope):
# tf.nn.rnn_cell
lstm_cell1 = tf.contrib.rnn.BasicLSTMCell(lstm_hidden_size_layer1, forget_bias=1.0)
lstm_cell2 = tf.contrib.rnn.BasicLSTMCell(lstm_hidden_size_layer2, forget_bias=1.0)
lstm_cells = tf.contrib.rnn.MultiRNNCell(cells=[lstm_cell1, lstm_cell2], state_is_tuple=True)
# tf.nn.rnn_cell
# lstm_cell1 = tf.nn.rnn_cell.LSTMCell(lstm_hidden_size_layer1, forget_bias=1.0)
# lstm_cell2 = tf.nn.rnn_cell.LSTMCell(lstm_hidden_size_layer2, forget_bias=1.0)
#lstm_cells = tf.nn.rnn_cell.MultiRNNCell(cells=[lstm_cell1, lstm_cell2], state_is_tuple=True)
|
tensorflow.contrib.rnn.MultiRNNCell
| 209 |
import tensorflow as tf
x_ += x * (1. - diag_mask)
# Finally, gather everything into a lower triangular matrix.
L_ = tf.gather(x_, tril_mask)
return [L_, tf.transpose(L_)]
tmp = tf.scan(fn, L_flat, initializer=init)
if isinstance(tmp, (list, tuple)):
# TensorFlow 0.10 now returns a tuple of tensors.
L, LT = tmp
else:
|
tensorflow.scan
| 210 |
from tensorflow.python.ops import sparse_ops
hash_key=layers.SPARSE_FEATURE_CROSS_DEFAULT_HASH_KEY)
# Check actual hashed output to prevent unintentional hashing changes.
expected_out = self._sparse_tensor([[83]])
with self.test_session() as sess:
self._assert_sparse_tensor_equals(expected_out, sess.run(op))
def test_hashed_output_v1_has_collision(self):
"""Tests the old version of the fingerprint concatenation has collisions.
"""
# The last 10 bits of 359 and 1024+359 are identical.
# As a result, all the crosses collide.
t1 = constant_op.constant([[359], [359 + 1024]])
t2 = constant_op.constant([list(range(10)), list(range(10))])
cross = sparse_feature_cross_op.sparse_feature_cross(
[t2, t1], hashed_output=True, num_buckets=1024)
cross_dense = sparse_ops.sparse_tensor_to_dense(cross)
with session.Session():
values = cross_dense.eval()
self.assertTrue(numpy.equal(values[0], values[1]).all())
def test_hashed_output_v2_has_no_collision(self):
"""Tests the new version of the fingerprint concatenation has no collisions.
"""
# Although the last 10 bits of 359 and 1024+359 are identical.
# As a result, all the crosses shouldn't collide.
t1 = constant_op.constant([[359], [359 + 1024]])
t2 = constant_op.constant([list(range(10)), list(range(10))])
cross = sparse_feature_cross_op.sparse_feature_cross(
[t2, t1],
hashed_output=True,
|
tensorflow.python.ops.sparse_ops.sparse_tensor_to_dense
| 211 |
from tensorflow.python.framework import sparse_tensor
dnn_hidden_units=(3, 3))
input_fn = test_data.iris_input_multiclass_fn
metrics = classifier.fit(input_fn=input_fn, steps=_ITERS).evaluate(
input_fn=input_fn, steps=100)
self._assertCommonMetrics(metrics)
def benchmarkPartitionedVariables(self):
def _input_fn():
features = {
'language':
sparse_tensor.SparseTensor(
values=('en', 'fr', 'zh'),
indices=((0, 0), (0, 1), (2, 0)),
dense_shape=(3, 2))
}
labels = constant_op.constant(((1,), (0,), (0,)))
return features, labels
# The given hash_bucket_size results in variables larger than the
# default min_slice_size attribute, so the variables are partitioned.
sparse_feature = feature_column.sparse_column_with_hash_bucket(
'language', hash_bucket_size=2e7)
|
tensorflow.python.framework.sparse_tensor.SparseTensor
| 212 |
import tensorflow as tf
FLAGS = flags.FLAGS
# augmentation functions
# augment
def random_crop_and_resize(images, ratio=0.8):
b, h, w, c = images.get_shape().as_list()
ch, cw = map(lambda x: int(x * ratio), (h, w))
crop = tf.random_crop(images, size=[b, ch, cw, 3])
crop = tf.image.resize(crop, [h, w])
return crop
def random_apply(fn, image, prob=1.):
b, *_ = image.get_shape().as_list()
chance = tf.less(tf.random_uniform([b], 0, 1.0), prob)
return tf.where(chance, fn(image), tf.identity(image))
|
tensorflow.random_crop
| 213 |
from tensorflow.python.ops import math_ops
mean_average_precision: Scalar `float64` `Tensor` with the mean average
precision values.
update: `Operation` that increments variables appropriately, and whose
value matches `metric`.
"""
default_name = _at_k_name('average_precision', k)
with ops.name_scope(name, default_name, (predictions, labels)) as scope:
# Calculate per-example average precision, and apply weights.
average_precision = sparse_average_precision_at_k(
predictions=predictions, labels=labels, k=k)
if weights is not None:
weights = math_ops.to_double(weights)
average_precision = math_ops.mul(average_precision, weights)
# Create accumulation variables and update ops for max average precision and
# total average precision.
with ops.name_scope(None, 'max', (average_precision,)) as max_scope:
# `max` is the max possible precision. Since max for any row is 1.0:
# - For the unweighted case, this is just the number of rows.
# - For the weighted case, it's the sum of the weights broadcast across
# `average_precision` rows.
max_var = contrib_variables.local_variable(
|
tensorflow.python.ops.math_ops.to_double
| 214 |
from tensorflow.python.framework import ops
if tensor_dtype is None:
if not inputs or not isinstance(inputs, (list, tuple)):
raise ValueError("inputs must be a list of at least one Tensor with the "
"same dtype and shape")
inputs = ops.convert_n_to_tensor_or_indexed_slices(inputs)
if not all(isinstance(x, ops.Tensor) for x in inputs):
raise ValueError("inputs must be a list of at least one Tensor with the "
"same dtype and shape")
|
tensorflow.python.framework.ops.convert_n_to_tensor_or_indexed_slices
| 215 |
from tensorflow.contrib.cudnn_rnn.python.ops import cudnn_rnn_ops
test_configs = self._GetTestConfig()
for config_name, config in test_configs.items():
config = test_configs[config_name]
num_layers = config["num_layers"]
num_units = config["num_units"]
batch_size = config["batch_size"]
seq_length = config["seq_length"]
with ops.Graph().as_default(), ops.device("/device:GPU:0"):
model = cudnn_rnn_ops.CudnnLSTM(num_layers, num_units, num_units)
params_size_t = model.params_size()
input_data = variables.Variable(
array_ops.ones([seq_length, batch_size, num_units]))
input_h = variables.Variable(
array_ops.ones([num_layers, batch_size, num_units]))
input_c = variables.Variable(
array_ops.ones([num_layers, batch_size, num_units]))
params = variables.Variable(
|
tensorflow.contrib.cudnn_rnn.python.ops.cudnn_rnn_ops.CudnnLSTM
| 216 |
import tensorflow as tf
Evaluate the quality of the logits at predicting the label
'''
correct = tf.equal(tf.arg_max(logits,1), tf.arg_max(labels,1))
correct = tf.cast(correct, tf.int32)
|
tensorflow.arg_max
| 217 |
from tensorflow.contrib.learn.python.learn.estimators import dnn_linear_combined
{'TF_CONFIG': json.dumps(tf_config)}):
config = run_config.RunConfig()
# Because we did not start a distributed cluster, we need to pass an
# empty ClusterSpec, otherwise the device_setter will look for
# distributed jobs, such as "/job:ps" which are not present.
config._cluster_spec = server_lib.ClusterSpec({})
classifier = dnn_linear_combined.DNNLinearCombinedClassifier(
linear_feature_columns=(sparse_feature,),
dnn_feature_columns=(embedding_feature,),
dnn_hidden_units=(3, 3),
config=config)
metrics = classifier.fit(input_fn=_input_fn, steps=_ITERS).evaluate(
|
tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined.DNNLinearCombinedClassifier
| 218 |
from tensorflow.python.layers import core as core_layers
def dropout(self, keep_prob=0.5, input_layer=None):
if input_layer is None:
input_layer = self.top_layer
else:
self.top_size = None
name = 'dropout' + str(self.counts['dropout'])
with tf.variable_scope(name):
if not self.phase_train:
keep_prob = 1.0
dropout = core_layers.dropout(input_layer, keep_prob)
self.top_layer = dropout
return dropout
def batch_norm(self, input_layer=None, **kwargs):
"""Adds a Batch Normalization layer."""
if input_layer is None:
input_layer = self.top_layer
else:
|
tensorflow.python.layers.core.dropout
| 219 |
import tensorflow as tf
def build_loss(self):
cutoff_vf_manager = tf.reshape(tf.stop_gradient(self.manager_vf), [-1])
dot = tf.reduce_sum(tf.multiply(self.s_diff, self.g), axis=1)
gcut = tf.stop_gradient(self.g)
mag = tf.norm(self.s_diff, axis=1) * tf.norm(gcut, axis=1) + .0001
dcos = dot / mag
manager_loss = -tf.reduce_sum((self.r - cutoff_vf_manager) * dcos)
|
tensorflow.norm
| 220 |
import tensorflow as tf
ds = ds.apply(
tf.data.experimental.map_and_batch(
lambda fname, label: (mapper(tf.read_file(fname)), label),
batch_size=batch_size,
|
tensorflow.read_file
| 221 |
import tensorflow.contrib.graph_editor as ge
# get all bottlenecks in the graph
bottleneck_ts = []
for t in ts:
b = set(ge.get_backward_walk_ops(t.op, inclusive=True, within_ops=fwd_ops))
f = set(ge.get_forward_walk_ops(t.op, inclusive=False, within_ops=fwd_ops))
# check that there are not shortcuts
b_inp = set([inp for op in b for inp in op.inputs]).intersection(ts_all)
|
tensorflow.contrib.graph_editor.get_backward_walk_ops
| 222 |
from tensorflow.contrib.layers.python.layers import utils
# Only make the ops if we know that `is_training=True`, or the value of
# `is_training` is unknown.
is_training_const = utils.constant_value(is_training)
if is_training_const is None or is_training_const:
update_mean_op, update_variance_op = utils.smart_cond(
is_training,
build_update_ops,
build_no_ops,
|
tensorflow.contrib.layers.python.layers.utils.smart_cond
| 223 |
from tensorflow.python.ops import array_ops
with ops.device(device):
return array_ops.unstack(values)
|
tensorflow.python.ops.array_ops.unstack
| 224 |
import tensorflow.contrib.graph_editor as ge
scope_name = str(micros)
op_list = []
with tf.name_scope(scope_name):
yield op_list
g = tf.get_default_graph()
op_list.extend(ge.select_ops(scope_name+"/.*", graph=g))
def _to_op(tensor_or_op):
if hasattr(tensor_or_op, "op"):
return tensor_or_op.op
return tensor_or_op
|
tensorflow.contrib.graph_editor.select_ops
| 225 |
import tensorflow as tf
def func1():
# execute at training time
batch_mean, batch_var = tf.nn.moments(x, range(len(shape) - 1))
update_mean = tf.assign_sub(pop_mean, (1 - decay)*(pop_mean - batch_mean))
update_var = tf.assign_sub(pop_var, (1 - decay)*(pop_var - batch_var))
with tf.control_dependencies([update_mean, update_var]):
return tf.nn.batch_normalization(x, batch_mean, batch_var, beta, gamma, epsilon)
|
tensorflow.assign_sub
| 226 |
import tensorflow as tf
try:
t_vars = tf.global_variables()
|
tensorflow.global_variables
| 227 |
import tensorflow as tf
#For Imitation Learning Part
# self.bc_loss = 0.5 * tf.reduce_mean(tf.contrib.keras.backend.categorical_crossentropy(self.optimal_actions_onehot,self.policy))
# self.next_loc_loss_il = 0.2 * tf.reduce_sum(tf.sqrt(tf.square(self.next_loc_mean[:-1,:] - self.il_nextloc)))
# self.imitation_loss = self.bc_loss #+ self.next_loc_loss_il
# Get gradients from local network using local losses and
# normalize the gradients using clipping
local_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope+'/qvalues')
self.gradients = tf.gradients(self.loss, local_vars)
self.var_norms = tf.global_norm(local_vars)
grads, self.grad_norms = tf.clip_by_global_norm(self.gradients, GRAD_CLIP)
# Apply local gradients to global network
global_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, GLOBAL_NET_SCOPE+'/qvalues')
self.apply_grads = trainer.apply_gradients(zip(grads, global_vars))
#now the gradients for imitation loss
# self.i_gradients = tf.gradients(self.imitation_loss, local_vars)
# self.i_var_norms = tf.global_norm(local_vars)
|
tensorflow.global_norm
| 228 |
from tensorflow.python.client import device_lib
learning_starts=50000,
learning_freq=4,
frame_history_len=4,
target_update_freq=10000,
grad_norm_clipping=10
)
env.close()
def get_available_gpus():
from tensorflow.python.client import device_lib
local_device_protos = device_lib.list_local_devices()
return [x.physical_device_desc for x in local_device_protos if x.device_type == 'GPU']
def set_global_seeds(i):
try:
import tensorflow as tf
except ImportError:
pass
else:
tf.set_random_seed(i)
|
tensorflow.python.client.device_lib.list_local_devices
| 229 |
from tensorflow.python.ops import array_ops
if labels_rank > 1:
labels = array_ops.reshape(labels, [-1])
|
tensorflow.python.ops.array_ops.reshape
| 230 |
import tensorflow as tf
HAS_MATPLOTLIB = True
except ImportError:
HAS_MATPLOTLIB = False
layers = tf.keras.layers
def parse(line):
"""Parse a line from the colors dataset."""
# Each line of the dataset is comma-separated and formatted as
# color_name, r, g, b
# so `items` is a list [color_name, r, g, b].
items = tf.string_split([line], ",").values
rgb = tf.string_to_number(items[1:], out_type=tf.float32) / 255.
# Represent the color name as a one-hot encoded character sequence.
color_name = items[0]
chars = tf.one_hot(tf.decode_raw(color_name, tf.uint8), depth=256)
# The sequence length is needed by our RNN.
length = tf.cast(tf.shape(chars)[0], dtype=tf.int64)
return rgb, chars, length
def maybe_download(filename, work_directory, source_url):
"""Download the data from source url, unless it's already here.
Args:
filename: string, name of the file in the directory.
|
tensorflow.string_to_number
| 231 |
from tensorflow.python.framework import ops
loss_vec, array_ops.reshape(weight_tensor, shape=(-1,)))
return math_ops.div(
math_ops.reduce_sum(loss_vec),
math_ops.to_float(math_ops.reduce_sum(weight_tensor)),
name="loss")
def _get_linear_vars(self):
if self._get_linear_feature_columns():
return ops.get_collection(self._linear_weight_collection)
return []
def _get_linear_training_ops(self, linear_grads, linear_vars):
if self._get_linear_feature_columns():
self._linear_optimizer = self._get_optimizer(
self._linear_optimizer,
default_optimizer="Ftrl",
|
tensorflow.python.framework.ops.get_collection
| 232 |
import tensorflow as tf
gtboxes_and_label_q, num_objects, img_h, img_w])
tower_grads = []
biases_regularizer = tf.no_regularizer
weights_regularizer = tf.contrib.layers.l2_regularizer(cfgs.WEIGHT_DECAY)
with tf.variable_scope(tf.get_variable_scope()):
for i in range(num_gpu):
with tf.device('/gpu:%d' % i):
with tf.name_scope('tower_%d' % i):
with slim.arg_scope(
[slim.model_variable, slim.variable],
|
tensorflow.get_variable_scope
| 233 |
from tensorflow.contrib.learn.python.learn import ops
def test_softmax_classifier(self):
with self.cached_session() as session:
features = array_ops.placeholder(dtypes.float32, [None, 3])
labels = array_ops.placeholder(dtypes.float32, [None, 2])
weights = constant_op.constant([[0.1, 0.1], [0.1, 0.1], [0.1, 0.1]])
biases = constant_op.constant([0.2, 0.3])
class_weight = constant_op.constant([0.1, 0.9])
prediction, loss = ops.softmax_classifier(features, labels, weights,
biases, class_weight)
self.assertEqual(prediction.get_shape()[1], 2)
self.assertEqual(loss.get_shape(), [])
value = session.run(loss, {features: [[0.2, 0.3, 0.2]], labels: [[0, 1]]})
self.assertAllClose(value, 0.55180627)
def test_embedding_lookup(self):
|
tensorflow.contrib.learn.python.learn.ops.softmax_classifier
| 234 |
from tensorflow.python.framework import op_def_registry
def _get_node_def(op):
return op._node_def # pylint: disable=protected-access
def _get_op_def(op):
# pylint: disable=protected-access
if hasattr(op, "_sig"):
return getattr(op, "_sig")
else:
return op_def_registry.get_registered_ops()[op.type]
# pylint: enable=protected-access
def _is_in_placeholders(op, func_arg_placeholders):
return op.values() and (op.values()[0].name in func_arg_placeholders)
def _create_input_dict(function_graph, func_arg_placeholders):
"""Create a mapping from graph tensor names to function tensor names."""
input_dict = {}
|
tensorflow.python.framework.op_def_registry.get_registered_ops
| 235 |
import tensorflow as tf
break
if not mute:
tf.logging.info('Finished evaluation')
if max_iterations:
pbar.close()
# List of dicts to dict of lists
metrics = dict(zip(metrics[0], zip(*[m.values() for m in metrics])))
metrics = {m: np.nanmean(metrics[m], axis=0) for m in metrics}
return metrics
def _checkpoint_var_search(self, checkpoint_path):
reader = tf.train.NewCheckpointReader(checkpoint_path)
saved_shapes = reader.get_variable_to_shape_map()
model_names = tf.model_variables() # Used by tf.slim layers
if not len(tf.model_variables()):
model_names = tf.global_variables() # Fallback when slim is not used
model_names = set([v.name.split(':')[0] for v in model_names])
checkpoint_names = set(saved_shapes.keys())
found_names = model_names & checkpoint_names
missing_names = model_names - checkpoint_names
shape_conflicts = set()
restored = []
with tf.variable_scope('', reuse=True):
for name in found_names:
# print(tf.global_variables())
# print(name, name in model_names, name in checkpoint_names)
var = tf.get_variable(name)
|
tensorflow.model_variables
| 236 |
from tensorflow.python.ops import math_ops
ops should be added to.
name: An optional variable_scope name.
Returns:
percentage: A tensor representing the current mean, the value of `total`
divided by `count`.
update_op: An operation that increments the `total` and `count` variables
appropriately.
Raises:
ValueError: If `ignore_mask` is not `None` and its shape doesn't match
`values`, or if `weights` is not `None` and its shape doesn't match
`values`, or if either `metrics_collections` or `updates_collections` are
not a list or tuple.
"""
is_below_threshold = math_ops.to_float(math_ops.less(values, threshold))
return streaming_mean(is_below_threshold, _mask_weights(ignore_mask, weights),
metrics_collections,
updates_collections,
name or 'percentage_below_threshold')
@deprecated_args(IGNORE_MASK_DATE, IGNORE_MASK_INSTRUCTIONS, 'ignore_mask')
def streaming_mean_iou(predictions,
labels,
num_classes,
ignore_mask=None,
weights=None,
metrics_collections=None,
updates_collections=None,
|
tensorflow.python.ops.math_ops.less
| 237 |
from tensorflow.python.ops import variable_scope
v = variable_scope.get_variable("v", [options.attention_vec_size])
v = tf.expand_dims(tf.expand_dims(v, axis=0), axis=0)
w_c = None
if options.use_coverage:
with variable_scope.variable_scope("coverage"):
w_c = variable_scope.get_variable("w_c", [options.attention_vec_size])
w_c = tf.expand_dims(tf.expand_dims(w_c, axis=0), axis=0)
# For each step, dec_input => lstm_output => vocab_score
wordidx_t = decoder_inputs[0] # [batch_size] int32
|
tensorflow.python.ops.variable_scope.get_variable
| 238 |
import tensorflow as tf
trainnum = tf.placeholder(tf.int32)
validnum = tf.placeholder(tf.int32)
learnrate = tf.placeholder(tf.float32)
def getinputs(path):
filename_queue=tf.train.string_input_producer([path])
reader=tf.TFRecordReader()
_,serialized_example=reader.read(filename_queue)
features=tf.parse_single_example(serialized_example,
features={
'label':tf.FixedLenFeature([], tf.int64),
'img_raw' : tf.FixedLenFeature([], tf.string),
|
tensorflow.TFRecordReader
| 239 |
from tensorflow.python.training import training as train
* `learning_rate` and `learning_rate_decay_fn` are supplied, but no
`global_step` is available.
* `gradients` is empty.
"""
loss = ops.convert_to_tensor(loss)
contrib_framework.assert_scalar(loss)
if global_step is None:
global_step = train.get_global_step()
else:
train.assert_global_step(global_step)
with vs.variable_scope(name, "OptimizeLoss", [loss, global_step]):
# Update ops take UPDATE_OPS collection if not provided.
if update_ops is None:
update_ops = set(ops.get_collection(ops.GraphKeys.UPDATE_OPS))
# Make sure update ops are ran before computing loss.
if update_ops:
loss = control_flow_ops.with_dependencies(list(update_ops), loss)
|
tensorflow.python.training.training.assert_global_step
| 240 |
from tensorflow.python.ops import nn
which fall into the top `k` predictions.
update_op: An operation that increments the `total` and `count` variables
appropriately and whose value matches `recall_at_k`.
Raises:
ValueError: If `predictions` and `labels` have mismatched shapes, or if
`ignore_mask` is not `None` and its shape doesn't match `predictions`, or
if `weights` is not `None` and its shape doesn't match `predictions`, or
if either `metrics_collections` or `updates_collections` are not a list or
tuple.
"""
in_top_k = math_ops.to_float(nn.in_top_k(predictions, labels, k))
return streaming_mean(in_top_k,
_mask_weights(ignore_mask, weights),
metrics_collections,
updates_collections,
name or _at_k_name('recall', k))
# TODO(ptucker): Validate range of values in labels?
@deprecated_args(IGNORE_MASK_DATE, IGNORE_MASK_INSTRUCTIONS, 'ignore_mask')
def streaming_sparse_recall_at_k(predictions,
|
tensorflow.python.ops.nn.in_top_k
| 241 |
from tensorflow.contrib import framework as contrib_framework
supervisor_is_chief=(self._config.task == 0),
supervisor_master=self._config.master,
feed_fn=feed_fn,
max_steps=steps,
fail_on_nan_loss=fail_on_nan_loss)
def _evaluate_model(self, input_fn, steps, feed_fn=None, metrics=None):
if self._config.execution_mode not in ('all', 'evaluate', 'eval_evalset'):
return
checkpoint_path = saver.latest_checkpoint(self._model_dir)
eval_dir = os.path.join(self._model_dir, 'eval')
with ops.Graph().as_default() as g:
random_seed.set_random_seed(self._config.tf_random_seed)
global_step = contrib_framework.create_global_step(g)
features, targets = input_fn()
self._check_inputs(features, targets)
eval_dict = self._get_eval_ops(features, targets, metrics or
self._get_default_metric_functions())
eval_results, _ = evaluate(
graph=g,
output_dir=eval_dir,
checkpoint_path=checkpoint_path,
eval_dict=eval_dict,
global_step_tensor=global_step,
supervisor_master=self._config.master,
feed_fn=feed_fn,
max_steps=steps)
|
tensorflow.contrib.framework.create_global_step
| 242 |
from tensorflow.python.ops import variable_scope as vs
_FuncGraph overrides ops.Graph's create_op() so that we can keep
track of every inputs into every op created inside the function. If
any input is from other graphs, we keep track of it in self.capture
and substitue the input with a place holder.
Each captured input's corresponding place holder is converted into a
function argument and the caller passes in the captured tensor.
"""
def __init__(self, *args, **kwargs):
super(_FuncGraph, self).__init__(*args, **kwargs)
self._building_function = True
self._outer_graph = ops.get_default_graph()
self._vscope = vs.get_variable_scope()
self._old_custom_getter = self._vscope.custom_getter
self._captured = {}
self.extra_inputs = []
self.extra_args = []
self.extra_vars = []
def getvar(self,
getter,
name,
shape=None,
dtype=None,
initializer=None,
trainable=True,
|
tensorflow.python.ops.variable_scope.get_variable_scope
| 243 |
import tensorflow as tf
tf.summary.image('Compare/final_detection_gpu:%d' % i, detections_in_img)
loss_dict = outputs[-1]
total_loss_dict, total_losses = self.loss_dict(loss_dict, num_gpu)
if i == num_gpu - 1:
regularization_losses = tf.get_collection(
tf.GraphKeys.REGULARIZATION_LOSSES)
# weight_decay_loss = tf.add_n(slim.losses.get_regularization_losses())
total_losses = total_losses + tf.add_n(regularization_losses)
tf.get_variable_scope().reuse_variables()
|
tensorflow.get_collection
| 244 |
from tensorflow.python.platform import googletest
# the `y` value at the input and the `y` value at the baseline.
expected_val = y_input_val[0] - y_baseline_val[0]
# Calculate the integrated gradients attribution of the input.
ig = integrated_gradients.IntegratedGradients(graph, sess, y[0], x)
mask = ig.GetMask(x_value=x_input_val[0], feed_dict={},
x_baseline=x_baseline_val[0], x_steps=1000)
# Verify the result.
self.assertAlmostEqual(expected_val, mask.sum(), places=3)
if __name__ == '__main__':
googletest.main()
|
tensorflow.python.platform.googletest.main
| 245 |
from tensorflow.python.ops import math_ops
thresholds = [0.0 - kepsilon] + thresholds + [1.0 + kepsilon]
(tp, fn, tn, fp, tp_update_op, fn_update_op, tn_update_op,
fp_update_op) = _tp_fn_tn_fp(predictions, labels, thresholds, weights)
assert array_ops.squeeze(fp).get_shape().as_list()[0] == num_thresholds
def compute_sensitivity_at_specificity(name):
specificities = math_ops.div(tn, tn + fp + kepsilon)
tf_index = math_ops.argmin(math_ops.abs(specificities - specificity), 0)
tf_index = math_ops.cast(tf_index, dtypes.int32)
# Now, we have the implicit threshold, so compute the sensitivity:
return math_ops.div(tp[tf_index],
tp[tf_index] + fn[tf_index] + kepsilon,
|
tensorflow.python.ops.math_ops.div
| 246 |
import tensorflow as tf
ignored_matches,
tf.less(
|
tensorflow.less
| 247 |
import tensorflow as tf
sess.run(zero_var.initializer)
sess.run(ones_var.initializer)
print(sess.run(zero_var))
print(sess.run(ones_var))
zero_similar = tf.Variable(tf.zeros_like(zero_var))
ones_similar = tf.Variable(tf.ones_like(ones_var))
sess.run(ones_similar.initializer)
sess.run(zero_similar.initializer)
print(sess.run(ones_similar))
print(sess.run(zero_similar))
fill_var = tf.Variable(tf.fill([row_dim, col_dim], -1))
sess.run(fill_var.initializer)
print(sess.run(fill_var))
const_var = tf.Variable(tf.constant([8, 6, 7, 5, 3, 0, 9]))
const_fill_var = tf.Variable(tf.constant(-1, shape=[row_dim, col_dim]))
sess.run(const_var.initializer)
sess.run(const_fill_var.initializer)
print(sess.run(const_var))
print(sess.run(const_fill_var))
linear_var = tf.Variable(tf.linspace(start=0.0, stop=1.0, num=3)) # Generates [0.0, 0.5, 1.0] includes the end
sequence_var = tf.Variable(tf.range(start=6, limit=15, delta=3)) # Generates [6, 9, 12] doesn't include the end
|
tensorflow.fill
| 248 |
from tensorflow.python.layers import convolutional as conv_layers
strides = [1, d_height, d_width, 1]
if self.data_format == 'NCHW':
strides = [strides[0], strides[3], strides[1], strides[2]]
if mode != 'SAME_RESNET':
conv = conv_layers.conv2d(
input_layer,
num_out_channels, [k_height, k_width],
strides=[d_height, d_width],
|
tensorflow.python.layers.convolutional.conv2d
| 249 |
import tensorflow as tf
# Prediction operation
prediction = tf.sigmoid(model_output)
|
tensorflow.sigmoid
| 250 |
from tensorflow.python.framework import constant_op
class OpsTest(test.TestCase):
"""Ops tests."""
def test_softmax_classifier(self):
with self.cached_session() as session:
features = array_ops.placeholder(dtypes.float32, [None, 3])
labels = array_ops.placeholder(dtypes.float32, [None, 2])
weights = constant_op.constant([[0.1, 0.1], [0.1, 0.1], [0.1, 0.1]])
biases = constant_op.constant([0.2, 0.3])
class_weight = constant_op.constant([0.1, 0.9])
prediction, loss = ops.softmax_classifier(features, labels, weights,
biases, class_weight)
self.assertEqual(prediction.get_shape()[1], 2)
self.assertEqual(loss.get_shape(), [])
value = session.run(loss, {features: [[0.2, 0.3, 0.2]], labels: [[0, 1]]})
self.assertAllClose(value, 0.55180627)
|
tensorflow.python.framework.constant_op.constant
| 251 |
from tensorflow.python.training import training
self._target_column.num_label_columns)],
array_ops.reshape(centered_bias, [-1]))
return centered_bias
def _centered_bias_step(self, targets, features):
centered_bias = ops.get_collection(self._centered_bias_weight_collection)
batch_size = array_ops.shape(targets)[0]
logits = array_ops.reshape(
array_ops.tile(centered_bias[0], [batch_size]),
[batch_size, self._target_column.num_label_columns])
loss = self._target_column.loss(logits, targets, features)
# Learn central bias by an optimizer. 0.1 is a convervative lr for a single
# variable.
return training.AdagradOptimizer(0.1).minimize(loss, var_list=centered_bias)
def _logits(self, features, is_training=False):
linear_feature_columns = self._get_linear_feature_columns()
dnn_feature_columns = self._get_dnn_feature_columns()
if not (linear_feature_columns or dnn_feature_columns):
raise ValueError("Either linear_feature_columns or dnn_feature_columns "
"should be defined.")
if linear_feature_columns and dnn_feature_columns:
logits = (self._linear_logits(features, is_training) +
self._dnn_logits(features, is_training))
elif dnn_feature_columns:
|
tensorflow.python.training.training.AdagradOptimizer
| 252 |
from tensorflow.python.training import training as train
loss = ops.convert_to_tensor(loss)
contrib_framework.assert_scalar(loss)
if global_step is None:
global_step = train.get_global_step()
else:
train.assert_global_step(global_step)
|
tensorflow.python.training.training.get_global_step
| 253 |
from tensorflow.python.ops import math_ops
moving_average_variable, value, decay, zero_debias=False)
# quicker adaptation at the beginning
if global_step is not None:
n = math_ops.cast(global_step, dtypes.float32)
decay = math_ops.minimum(decay, n / (n + 1.))
# update averages
mean = moving_average("mean", log_norm, decay)
sq_mean = moving_average("sq_mean", math_ops.square(log_norm), decay)
|
tensorflow.python.ops.math_ops.minimum
| 254 |
import tensorflow as tf
rnn_inputs = tf.nn.bias_add(tf.matmul(feats_all, rnn_proj_w), rnn_proj_b)
rnn_inputs = tf.reshape(rnn_inputs, [batch_size, rnn_nunroll, rnn_size])
rnn_inputs = tf.split(rnn_inputs, rnn_nunroll, axis=1)
rnn_inputs = [tf.squeeze(input_, [1]) for input_ in rnn_inputs]
if rnn_cell_type == 'rnn':
cell_fn = tf.nn.rnn_cell.BasicRNNCell
|
tensorflow.squeeze
| 255 |
import tensorflow as tf
output, state = update(state, input_, context, input_symbol)
output_ = generate(output, input_, context)
argmax = lambda: tf.argmax(output_, 1)
target = lambda: inputs.read(time + 1)
softmax = lambda: tf.squeeze(tf.multinomial(tf.log(tf.nn.softmax(output_)), num_samples=1),
axis=1)
use_target = tf.logical_and(time < time_steps - 1, tf.random_uniform([]) >= feed_previous)
predicted_symbol = tf.case([
(use_target, target),
(tf.logical_not(feed_argmax), softmax)],
default=argmax) # default case is useful for beam-search
predicted_symbol.set_shape([None])
predicted_symbol = tf.stop_gradient(predicted_symbol)
input_ = embed(predicted_symbol)
pos = update_pos(pos, predicted_symbol, encoder_input_length[align_encoder_id])
samples = samples.write(time, predicted_symbol)
attns = attns.write(time, context)
weights = weights.write(time, new_weights)
|
tensorflow.logical_not
| 256 |
from tensorflow.contrib.rnn.python.ops import core_rnn
multi_cell = rnn_cell.MultiRNNCell(
[cell() for _ in range(num_layers)])
outputs, final_state = core_rnn.static_rnn(
multi_cell, inputs, dtype=dtypes.float32)
trainable_variables = ops.get_collection(
|
tensorflow.contrib.rnn.python.ops.core_rnn.static_rnn
| 257 |
import tensorflow as tf
is_dynamic_rnn: Use dynamic_rnn or not.
Returns:
A tuple containing:
- Input tensor of the restored model.
- Prediction tensor of the restored model.
- Output tensor, which is the softwmax result of the prediction tensor.
- new session of the restored model.
"""
model_dir = tempfile.mkdtemp()
saver.save(sess, model_dir)
# Reset the graph.
tf.reset_default_graph()
x, prediction, output_class = self.buildModel(lstm_layer, is_dynamic_rnn)
new_sess = tf.compat.v1.Session(config=CONFIG)
saver = tf.train.Saver()
saver.restore(new_sess, model_dir)
return x, prediction, output_class, new_sess
def getInferenceResult(self, x, output_class, sess):
"""Get inference result given input tensor and output tensor.
Args:
x: The input tensor.
output_class: The output tensor.
sess: Current session.
|
tensorflow.reset_default_graph
| 258 |
import tensorflow as tf
log_timescale_increment = (
math.log(float(max_timescale) / float(min_timescale)) /
(tf.to_float(num_timescales) - 1))
inv_timescales = min_timescale * tf.exp(
tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)
scaled_time = (
tf.expand_dims(tf.to_float(position), 2) * tf.expand_dims(
tf.expand_dims(inv_timescales, 0), 0))
signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=2)
signal = tf.pad(signal, [[0, 0], [0, 0], [0, tf.mod(channels, 2)]])
return signal
def embedding_lookup(input_ids,
vocab_size,
embedding_size=128,
|
tensorflow.cos
| 259 |
from tensorflow.contrib.opt.python.training import variable_clipping_optimizer
with ops.device(device):
yield
else:
yield
def _setupDense(self, is_distributed, dtype):
with self._maybeWithDevice("/job:ps" if is_distributed else None):
var0 = variables.Variable([[0.0, 1.0], [2.0, 3.0]], dtype=dtype)
var1 = variables.Variable([4.0, 5.0], dtype=dtype)
with self._maybeWithDevice("/job:worker" if is_distributed else None):
grads0 = constant_op.constant([[0.1, 0.1], [0.1, 0.1]], dtype=dtype)
grads1 = constant_op.constant([0.01, 0.01], dtype=dtype)
sgd = gradient_descent.GradientDescentOptimizer(3.0)
clip_opt = variable_clipping_optimizer.VariableClippingOptimizer(
sgd, {var0: [1]}, 2.0)
update_op = clip_opt.apply_gradients(
list(zip([grads0, grads1], [var0, var1])))
variables.global_variables_initializer().run()
return var0, var1, update_op
def _assertDenseCorrect(self, var0, var1, update_op):
# Fetch params to validate initial values
self.assertAllCloseAccordingToType([[0.0, 1.0], [2.0, 3.0]], var0.eval())
self.assertAllCloseAccordingToType([4.0, 5.0], var1.eval())
|
tensorflow.contrib.opt.python.training.variable_clipping_optimizer.VariableClippingOptimizer
| 260 |
from tensorflow.python.ops import array_ops
# Check that we got integer for classification.
if not target.dtype.is_integer:
raise ValueError("Target's dtype should be integer "
"Instead got %s." % target.dtype)
# sparse_softmax_cross_entropy_with_logits requires [batch_size] target.
if len(target.get_shape()) == 2:
target = array_ops.squeeze(target, squeeze_dims=[1])
loss_vec = nn.sparse_softmax_cross_entropy_with_logits(
labels=target, logits=logits)
return loss_vec
|
tensorflow.python.ops.array_ops.squeeze
| 261 |
from tensorflow.python.training import saver as saver_lib
def every_n_step_end(self, step, outputs):
super(ValidationMonitor, self).every_n_step_end(step, outputs)
# TODO(mdan): The use of step below is probably misleading.
# The code should probably use the step from the checkpoint, because
# that's what is being evaluated.
if self._estimator is None:
raise ValueError("Missing call to set_estimator.")
# Check that we are not running evaluation on the same checkpoint.
latest_path = saver_lib.latest_checkpoint(self._estimator.model_dir)
if latest_path is None:
logging.debug("Skipping evaluation since model has not been saved yet "
"at step %d.", step)
return False
if latest_path is not None and latest_path == self._latest_path:
logging.debug("Skipping evaluation due to same checkpoint %s for step %d "
"as for step %d.", latest_path, step,
self._latest_path_step)
|
tensorflow.python.training.saver.latest_checkpoint
| 262 |
from tensorflow.python.framework import ops
"""Moves a list of tensors to a device by concatenating/splitting them."""
# Reset the device setting to avoid weird interactions with device merging
# logic.
with ops.device(None):
if all(tensor.shape == tensor_shape.scalar() for tensor in tensors):
with ops.device(tensors[0].device):
values = array_ops.stack(tensors)
with ops.device(device):
return array_ops.unstack(values)
else:
with ops.device(tensors[0].device):
sizes = array_ops.stack(
[array_ops.shape(tensor)[0] for tensor in tensors])
values = array_ops.concat(tensors, axis=0)
with ops.device(device):
sizes = array_ops.unstack(sizes)
return list(array_ops.split(values, sizes, axis=0))
def _scheduled_stamp_resource_op_runner(batch, stamp):
"""Runs a batch operation on a stamped resource."""
if not batch:
return
arg_keys = set(batch[0].args.keys())
grouped_args = collections.OrderedDict()
resource_handles = []
# Check that the set of arguments is the same across all the scheduled ops.
for op in batch:
|
tensorflow.python.framework.ops.device
| 263 |
import tensorflow as tf
trg_len = tf.shape(attention_weights)[1]
src_indices = tf.tile(tf.reshape(tf.range(src_len), shape=[1, 1, src_len]), [batch_size, trg_len, 1])
trg_indices = tf.tile(tf.reshape(tf.range(trg_len), shape=[1, trg_len, 1]), [batch_size, 1, src_len])
source_length = encoder_input_length[0]
|
tensorflow.range
| 264 |
import tensorflow as tf
serialized_example,
# Defaults are not specified since both keys are required.
features={
'image_raw': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.int64),
})
if FLAGS.contrast_norm == 'areafactor':
image = tf.decode_raw(features['image_raw'], tf.float32)
else:
image = tf.decode_raw(features['image_raw'], tf.uint8)
image = tf.cast(image, tf.float32) * (1. / 255)
image.set_shape(np.prod([FLAGS.num_scales, FLAGS.crop_size, FLAGS.crop_size]))
image = tf.reshape(image, [FLAGS.num_scales, FLAGS.crop_size, FLAGS.crop_size, 1])
image = image - 0.5
|
tensorflow.decode_raw
| 265 |
from tensorflow.python.ops import state_ops
lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
mu_t = math_ops.cast(self._mu_t, var.dtype.base_dtype)
vstar = self.get_slot(var, "vstar")
gold = self.get_slot(var, "gold") # glod is not sparse
v_diff = state_ops.assign(vstar, mu_t * (var - vstar), use_locking=self._use_locking)
with ops.control_dependencies([v_diff]): # run v_diff operation before scatter_add
scaled_grad = scatter_add(vstar, indices, grad)
var_update = state_ops.assign_sub(var, lr_t * (scaled_grad + gold))
return control_flow_ops.group(*[var_update, ])
def _apply_sparse(self, grad, var): # sparse grad (only for the shakespeare model)
return self._apply_sparse_shared(
grad.values, var, grad.indices, lambda x, i, v: state_ops.scatter_add(x, i, v))
def set_params(self, cog, avg_gradient, client):
with client.model.graph.as_default():
|
tensorflow.python.ops.state_ops.assign_sub
| 266 |
from tensorflow.python.ops import image_ops
from tensorflow.contrib.slim.python.slim.data import tfexample_decoder
from tensorflow.python.client import session
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import image_ops
from tensorflow.python.ops import io_ops
from tensorflow.python.ops import parsing_ops
from tensorflow.python.platform import gfile
from tensorflow.python.platform import test
def _resize_image(image, height, width):
image = array_ops.expand_dims(image, 0)
image = image_ops.resize_bilinear(image, [height, width])
return array_ops.squeeze(image, [0])
def _create_tfrecord_dataset(tmpdir):
if not gfile.Exists(tmpdir):
gfile.MakeDirs(tmpdir)
data_sources = test_utils.create_tfrecord_files(tmpdir, num_files=1)
keys_to_features = {
'image/encoded':
parsing_ops.FixedLenFeature(
|
tensorflow.python.ops.image_ops.resize_bilinear
| 267 |
from tensorflow.python.ops import state_ops
old_value = array.value()
assign_op = state_ops.assign(array, new_value, validate_shape=False)
|
tensorflow.python.ops.state_ops.assign
| 268 |
from tensorflow.python.ops import random_ops
def validateKolmogorovSmirnov(self,
shape,
mean,
stddev,
minval,
maxval,
seed=1618):
try:
import scipy.stats # pylint: disable=g-import-not-at-top
tf.set_random_seed(seed)
with self.test_session(use_gpu=self._use_gpu):
samples = random_ops.parameterized_truncated_normal(shape, mean, stddev,
minval,
maxval).eval()
assert (~np.isnan(samples)).all()
minval = max(mean - stddev * 10, minval)
maxval = min(mean + stddev * 10, maxval)
dist = scipy.stats.norm(loc=mean, scale=stddev)
cdf_min = dist.cdf(minval)
cdf_max = dist.cdf(maxval)
def truncated_cdf(x):
|
tensorflow.python.ops.random_ops.parameterized_truncated_normal
| 269 |
import tensorflow as tf
encode = tf.placeholder(tf.int32, shape=[None], name="encode")
decode = tf.placeholder(tf.int32, shape=[decode_max_length + 2], name="decode")
weight = tf.placeholder(tf.float32, shape=[decode_max_length + 1], name="weight")
queue = tf.PaddingFIFOQueue(capacity = capacity,
dtypes = [tf.int32, tf.int32, tf.float32],
shapes = [[None], [decode_max_length + 2], [decode_max_length + 1]],
|
tensorflow.PaddingFIFOQueue
| 270 |
from tensorflow.python.ops import logging_ops
Returns:
Numpy array of predicted probabilities.
"""
return self._infer_model(x=x, input_fn=input_fn, batch_size=batch_size)
def _get_train_ops(self, features, targets):
"""See base class."""
global_step = variables.get_global_step()
assert global_step
loss = self._loss(
self._logits(features), targets, self._get_weight_tensor(features))
logging_ops.scalar_summary("loss", loss)
linear_vars = self._get_linear_vars()
dnn_vars = self._get_dnn_vars()
grads = gradients.gradients(loss, dnn_vars + linear_vars)
dnn_grads = grads[0:len(dnn_vars)]
linear_grads = grads[len(dnn_vars):]
train_ops = self._get_linear_training_ops(
linear_grads, linear_vars) + self._get_dnn_training_ops(dnn_grads,
dnn_vars)
|
tensorflow.python.ops.logging_ops.scalar_summary
| 271 |
import tensorflow as tf
self._on_training_finish(sess)
except KeyboardInterrupt:
self._on_training_abort(sess)
def inference(self, max=10^6):
self.fetch_datasets()
self.build_ae_model()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# nut.print_model_info()
# nut.list_checkpoint_vars(self.get_latest_checkpoint().replace(EMB_SUFFIX, ''))
self.saver = tf.train.Saver()
self._restore_model(sess)
# nut.print_model_info()
|
tensorflow.Session
| 272 |
import tensorflow as tf
block_v_size,
block_dim],
initializer=tf.uniform_unit_scaling_initializer())
hparams.bottleneck = functools.partial(
|
tensorflow.uniform_unit_scaling_initializer
| 273 |
import tensorflow as tf
'warmup_constant':warmup_constant,
}
def _norm(x, g=None, b=None, e=1e-5, axis=[1]):
u = tf.reduce_mean(x, axis=axis, keep_dims=True)
s = tf.reduce_mean(tf.square(x-u), axis=axis, keep_dims=True)
x = (x - u) * tf.rsqrt(s + e)
if g is not None and b is not None:
x = x*g + b
return x
def norm(x, scope, axis=[-1]):
|
tensorflow.rsqrt
| 274 |
from tensorflow.python.framework import tensor_util
"""
with self._name_scope(name, values=[x]):
def make_dims(start_sum, size, name):
"""Closure to make dims range."""
start_sum = start_sum if start_sum else (
array_ops.zeros((), dtype=dtypes.int32, name="zero"),)
if self._is_all_constant_helper(size, *start_sum):
start = sum(tensor_util.constant_value(s) for s in start_sum)
stop = start + tensor_util.constant_value(size)
return ops.convert_to_tensor(
list(range(start, stop)), dtype=dtypes.int32, name=name)
else:
start = sum(start_sum)
return math_ops.range(start, start + size)
sample_ndims = self.get_sample_ndims(x, name=name)
return (make_dims((), sample_ndims, name="sample_dims"),
|
tensorflow.python.framework.tensor_util.constant_value
| 275 |
import tensorflow as tf
"mean", [dim], tf.constant_initializer(0.), trainable=False)
step = variable_on_cpu("step", [], tf.constant_initializer(0.), trainable=False)
if scale:
gamma = variable_on_cpu("gamma", [dim], tf.constant_initializer(1.))
beta = variable_on_cpu("beta", [dim], tf.constant_initializer(0.))
# choose the appropriate moments
if train:
used_mean, used_var = tf.nn.moments(input_, axes, name="batch_norm")
cur_mean, cur_var = used_mean, used_var
if bn_lag > 0.:
used_mean -= (1. - bn_lag) * (used_mean - tf.stop_gradient(mean))
used_var -= (1 - bn_lag) * (used_var - tf.stop_gradient(var))
used_mean /= (1. - bn_lag**(step + 1))
used_var /= (1. - bn_lag**(step + 1))
else:
used_mean, used_var = mean, var
cur_mean, cur_var = used_mean, used_var
# normalize
res = (input_ - used_mean) / tf.sqrt(used_var + epsilon)
# de-normalize
if scale:
|
tensorflow.stop_gradient
| 276 |
import tensorflow as tf
TIMESERIES_INPUT_LAYER = 'rawdata'
TIMESERIES_COL = '{}_input'.format(TIMESERIES_INPUT_LAYER)
# In each sequence, column index 0 to N_INPUTS - 1 are features, and column index N_INPUTS to SEQ_LEN are labels
N_OUTPUTS = 1
N_INPUTS = SEQ_LEN - N_OUTPUTS
LSTM_SIZE = 3 # number of hidden layers in each of the LSTM cells
# Read data and convert to needed format
def read_dataset(filename, mode, batch_size):
def _input_fn():
# Provide the ability to decode a CSV
def decode_csv(line):
# all_data is a list of scalar tensors
all_data = tf.decode_csv(line, record_defaults = DEFAULTS)
inputs = all_data[:len(all_data) - N_OUTPUTS] # first N_INPUTS values
labels = all_data[len(all_data) - N_OUTPUTS:] # last N_OUTPUTS values
# Convert each list of rank R tensors to one rank R+1 tensor
inputs = tf.stack(inputs, axis = 0)
labels = tf.stack(labels, axis = 0)
# Convert input R+1 tensor into a feature dictionary of one R+1 tensor
features = {TIMESERIES_COL: inputs}
return features, labels
|
tensorflow.decode_csv
| 277 |
import tensorflow as tf
def conv_3d_op(
self,
data,
weights,
strides,
symmetric_weights=False,
dilations=None):
"""3D convolutions for hgru."""
if dilations is None:
dilations = [1, 1, 1, 1, 1]
w_shape = [int(w) for w in weights.get_shape()]
if len(w_shape) > 1 and int(w_shape[-2]) > 1:
# Full convolutions
if symmetric_weights:
g = tf.get_default_graph()
with g.gradient_override_map({'Conv3D': 'SymmetricConv3D'}):
activities = tf.nn.conv3d(
data,
weights,
strides,
padding=self.padding)
# TODO (jk): removed dilations=dilations to accommodate r1.4
else:
activities = tf.nn.conv3d(
data,
weights,
strides,
padding=self.padding)
# TODO (jk): removed dilations=dilations to accommodate r1.4
|
tensorflow.get_default_graph
| 278 |
import tensorflow as tf
argpar = tf.Variable(argpar_num, name="argpar", dtype=tf.float64)
m0 = tf.constant(m0_num, name="m0", dtype=tf.float64)
vdict['argpar'] = argpar
# RooArgusBG argus("argus","Argus PDF",mes,m0,argpar) ;
def argus_pdf(m, m0, c, p=0.5):
t = m / m0
u = 1 - t * t
argus_t_ge_1 = m * tf.pow(u, p) * tf.exp(c * u)
return tf.maximum(tf.zeros_like(m), argus_t_ge_1, name="argus_pdf")
# // --- Construct signal+background PDF ---
# RooRealVar nsig("nsig","#signal events",200,0.,10000) ;
# RooRealVar nbkg("nbkg","#background events",800,0.,10000) ;
nsig = tf.Variable(200, name="nsig", dtype=tf.float64)
nbkg = tf.Variable(800, name="nbkg", dtype=tf.float64)
|
tensorflow.pow
| 279 |
import tensorflow as tf
return x
assert x.dense_shape is not None, "memory_saving_gradients encountered sparse gradients of unknown shape"
indices = x.indices
while indices.shape.ndims < x.values.shape.ndims:
indices = tf.expand_dims(indices, -1)
return tf.scatter_nd(indices, x.values, x.dense_shape)
# partial derivatives to xs (usually the params of the neural net)
d_xs_new = dv[len(checkpoints_other):]
for j in range(len(xs)):
|
tensorflow.scatter_nd
| 280 |
from tensorflow.contrib.learn.python.learn.estimators import run_config
self._export_dir_base = tempfile.mkdtemp() + "export/"
gfile.MkDir(self._export_dir_base)
def testFitAndEvaluateDontThrowException(self):
learner_config = learner_pb2.LearnerConfig()
learner_config.num_classes = 2
learner_config.constraints.max_tree_depth = 1
model_dir = tempfile.mkdtemp()
config = run_config.RunConfig()
classifier = estimator.GradientBoostedDecisionTreeClassifier(
learner_config=learner_config,
num_trees=1,
examples_per_layer=3,
model_dir=model_dir,
config=config,
|
tensorflow.contrib.learn.python.learn.estimators.run_config.RunConfig
| 281 |
from tensorflow.python.ops import variables
if device is not None:
with ops.device(device):
yield
else:
yield
def _setupDense(self, is_distributed, dtype):
with self._maybeWithDevice("/job:ps" if is_distributed else None):
var0 = variables.Variable([[0.0, 1.0], [2.0, 3.0]], dtype=dtype)
var1 = variables.Variable([4.0, 5.0], dtype=dtype)
with self._maybeWithDevice("/job:worker" if is_distributed else None):
grads0 = constant_op.constant([[0.1, 0.1], [0.1, 0.1]], dtype=dtype)
grads1 = constant_op.constant([0.01, 0.01], dtype=dtype)
sgd = gradient_descent.GradientDescentOptimizer(3.0)
clip_opt = variable_clipping_optimizer.VariableClippingOptimizer(
sgd, {var0: [1]}, 2.0)
|
tensorflow.python.ops.variables.Variable
| 282 |
from tensorflow.contrib.learn.python.learn.estimators import test_data
'dummy_sparse_column', hash_bucket_size=100))
classifier = dnn_linear_combined.DNNLinearCombinedClassifier(
model_dir=tempfile.mkdtemp(),
linear_feature_columns=linear_features,
dnn_feature_columns=cont_features,
dnn_hidden_units=(3, 3))
metrics = classifier.fit(input_fn=_input_fn, steps=_ITERS).evaluate(
input_fn=_input_fn, steps=100)
self._assertSingleClassMetrics(metrics)
def benchmarkCustomOptimizer(self):
iris = test_data.prepare_iris_data_for_logistic_regression()
cont_feature = feature_column.real_valued_column('feature', dimension=4)
bucketized_feature = feature_column.bucketized_column(
cont_feature, test_data.get_quantile_based_buckets(iris.data, 10))
classifier = dnn_linear_combined.DNNLinearCombinedClassifier(
model_dir=tempfile.mkdtemp(),
linear_feature_columns=(bucketized_feature,),
linear_optimizer=ftrl.FtrlOptimizer(learning_rate=0.1),
dnn_feature_columns=(cont_feature,),
dnn_hidden_units=(3, 3),
dnn_optimizer=adagrad.AdagradOptimizer(learning_rate=0.1))
|
tensorflow.contrib.learn.python.learn.estimators.test_data.prepare_iris_data_for_logistic_regression
| 283 |
import tensorflow as tf
for i in range(len(self.grads_and_vars)):
self.grads.append(self.grads_and_vars[i][0]);
self.vars.append(self.grads_and_vars[i][1]);
self.grads=self.grads[-1*NUM_VARS:];
self.vars=self.vars[-1*NUM_VARS:];
self.train_op = self.optimizer.apply_gradients(
self.grads_and_vars, global_step=tf.contrib.framework.get_global_step())
def predict(self, state, sess=None):
sess = sess or tf.get_default_session()
state=featurize_state(state);
return sess.run(self.action, { self.state: [state] })[0]
|
tensorflow.contrib.framework.get_global_step
| 284 |
import tensorflow as tf
scale = tf.constant([2., 3., 4.])
concentration = tf.constant([2.] * batch_size)
pareto = tfd.Pareto(concentration, scale, validate_args=True)
with self.assertRaisesOpError("not in the support"):
x = tf.placeholder_with_default(input=[2., 3., 3.], shape=[3])
log_prob = pareto.log_prob(x)
self.evaluate(log_prob)
with self.assertRaisesOpError("not in the support"):
x = tf.placeholder_with_default(input=[2., 2., 5.], shape=[3])
log_prob = pareto.log_prob(x)
self.evaluate(log_prob)
with self.assertRaisesOpError("not in the support"):
x = tf.placeholder_with_default(input=[1., 3., 5.], shape=[3])
log_prob = pareto.log_prob(x)
self.evaluate(log_prob)
def testParetoLogPdfMultidimensional(self):
|
tensorflow.placeholder_with_default
| 285 |
import tensorflow as tf
# TODO: move to ops
def _rank(x):
return len(x.get_shape())
def _apply_dropout_mask(tensor_shape, keep_prob=1.0, normalize=True):
random_tensor = keep_prob + tf.random_uniform(tensor_shape, dtype=tf.float32)
binary_mask = tf.floor(random_tensor)
if normalize:
binary_mask = tf.reciprocal(keep_prob) * binary_mask
return binary_mask
def _global_keep_prob(keep_prob):
keep_prob = tf.convert_to_tensor(keep_prob, dtype=tf.float32)
keep_prob = tf.cond(_phase, lambda: keep_prob, lambda: keep_prob * 0.0 + 1.0)
return keep_prob
def layer(func):
|
tensorflow.reciprocal
| 286 |
import tensorflow as tf
optimizer = tf.train.GradientDescentOptimizer(self._lr)
self._train_op = optimizer.apply_gradients(
zip(grads, tvars),
global_step=tf.contrib.framework.get_or_create_global_step())
self._new_lr = tf.placeholder(
|
tensorflow.contrib.framework.get_or_create_global_step
| 287 |
import tensorflow as tf
self.mu = tf.layers.dense(l_a, num_action, tf.nn.tanh, kernel_initializer=w_init, name='mu') # estimated action value
self.sigma = tf.layers.dense(l_a, num_action, tf.nn.softplus, kernel_initializer=w_init, name='sigma') # estimated variance
# wrap output
self.mu = self.mu * action_bound[1];
self.sigma = self.sigma + 1e-4
# get action from distribution
self.normal_dist = tf.contrib.distributions.Normal(self.mu, self.sigma)
self.action = tf.squeeze(self.normal_dist.sample(1),axis=0);
self.action = tf.clip_by_value(self.action, action_bound[0], action_bound[1])
# Loss and train op
self.loss = -self.normal_dist.log_prob(self.a_his) * self.target
# Add cross entropy cost to encourage exploration
self.loss -= entropy_beta * self.normal_dist.entropy()
|
tensorflow.contrib.distributions.Normal
| 288 |
import tensorflow as tf
tf.set_random_seed(93820985)
p = self._testParams()
mdl = p.Instantiate()
mdl.FPropDefaultTheta()
decoder_theta = mdl._MakeDecoderTheta(theta=mdl.theta, input_batch=None)
mdl.BProp()
self.assertEqual(decoder_theta, mdl.theta.decoder)
def testFProp(self):
with self.session(use_gpu=False):
tf.set_random_seed(93820985)
p = self._testParams()
mdl = p.Instantiate()
mdl.FPropDefaultTheta()
tf.global_variables_initializer().run()
test_utils.CompareToGoldenSingleFloat(self, 4.472597, mdl.loss.eval())
actual_var_names = [_.name for _ in tf.all_variables()]
print('all vars \n', '\n'.join(actual_var_names))
expected_var_names = [
|
tensorflow.set_random_seed
| 289 |
import tensorflow as tf
#print(np.shape(up1))
up2 = common_deconv2d(up1,self.gf*4,name='up2') # 16x16 -> 32x32
up3 = common_deconv2d(up2,self.gf*2,name='up3') # 32x32 -> 64x64
up4 = common_deconv2d(up3,self.gf,name='up4') # 64x64 -> 128x128
out_img = tf.contrib.layers.conv2d_transpose(up4,self.channels,kernel_size=4,stride=2,padding='SAME',activation_fn=tf.nn.tanh) # 128x128 -> 256x256
#print('out_img',(np.shape(out_img)))
return out_img
|
tensorflow.contrib.layers.conv2d_transpose
| 290 |
from tensorflow.contrib.metrics.python.ops import metric_ops
if weights is None:
return None
return math_ops.to_float(weights)
def _labels_streaming_mean(unused_predictions, labels, weights=None):
return metric_ops.streaming_mean(labels, weights=weights)
def _predictions_streaming_mean(predictions, unused_labels, weights=None):
return metric_ops.streaming_mean(predictions, weights=weights)
def _streaming_auc(predictions, labels, weights=None):
return metric_ops.streaming_auc(
predictions, labels, weights=_float_weights_or_none(weights))
def _accuracy_at_threshold(threshold):
|
tensorflow.contrib.metrics.python.ops.metric_ops.streaming_mean
| 291 |
import tensorflow as tf
pred1, pred2 = tf.split(pred, 2, axis=0)
tgt1, tgt2 = tf.split(tgt, 2, axis=0)
geq = tf.cast((tgt1 - tgt2) > 0, tf.bool)
tgt_larg = tf.where(geq, tgt1, tgt2)
tgt_small = tf.where(geq, tgt2, tgt1)
pred_larg = tf.where(geq, pred1, pred2)
pred_small = tf.where(geq, pred2, pred1)
loss = tf.maximum(0.0, (tgt_larg - tgt_small) - (pred_larg - pred_small))
loss = tf.reduce_mean(loss)
return loss
def contra_step_lossV3(pred, tgt, margin=1.0):
# Step-wise contrastive loss
pred1, pred2 = tf.split(pred, 2, axis=0)
tgt1, tgt2 = tf.split(tgt, 2, axis=0)
geq = tf.cast((tgt1 - tgt2) > 0, tf.bool)
|
tensorflow.reduce_mean
| 292 |
import tensorflow as tf
# Apply the token-preprocessors.
if token_preprocess_fns is not None:
for token_preprocess_fn in token_preprocess_fns:
dataset = token_preprocess_fn(dataset, training)
if debug_print_examples:
def print_examples_and_shapes(x):
if np.random.uniform() < debug_print_examples_rate:
tf.print(
{
'inputs_shape': tf.size(x['inputs']),
'targets_shape': tf.size(x['targets']),
'inputs': x['inputs'],
'targets': x['targets'],
},
output_stream=logging.info)
return x
dataset = dataset.map(print_examples_and_shapes)
return dataset
|
tensorflow.size
| 293 |
from tensorflow.python.layers import pooling as pooling_layers
k_height,
k_width,
d_height=2,
d_width=2,
mode='VALID',
input_layer=None,
num_channels_in=None):
"""Construct an average pooling layer."""
if input_layer is None:
input_layer = self.top_layer
else:
self.top_size = num_channels_in
name = 'apool' + str(self.counts['apool'])
self.counts['apool'] += 1
pool = pooling_layers.average_pooling2d(
input_layer, [k_height, k_width], [d_height, d_width],
padding=mode,
data_format=self.channel_pos,
name=name)
self.top_layer = pool
return pool
def reshape(self, shape, input_layer=None):
if input_layer is None:
input_layer = self.top_layer
self.top_layer = tf.reshape(input_layer, shape)
self.top_size = shape[-1] # HACK This may not always work
return self.top_layer
|
tensorflow.python.layers.pooling.average_pooling2d
| 294 |
import tensorflow as tf
policy = tfp.distributions.MultivariateNormalDiag(mean, tf.exp(logstd))
return NetworkOutput(policy, value, lambda a: tf.clip_by_value(a, -2., 2))
def clip_logits(logits, config):
logits_clip = getattr(config, "logits_clip", 0.)
if logits_clip > 0:
min_logit = tf.reduce_min(logits)
return tf.minimum(logits - min_logit, logits_clip)
else:
return logits
@registry.register_model
class FeedForwardCategoricalPolicy(PolicyBase):
"""Feed-forward categorical."""
|
tensorflow.reduce_min
| 295 |
from tensorflow.python.ops import math_ops
# "accuracy/threshold_0.500000_mean" metric for binary classification.
metrics = {("accuracy", "classes"): metrics_lib.streaming_accuracy}
predictions = math_ops.sigmoid(logits)
targets_float = math_ops.to_float(targets)
default_metrics = self._default_eval_metrics()
for metric_name, metric_op in default_metrics.items():
|
tensorflow.python.ops.math_ops.to_float
| 296 |
import tensorflow as tf
Omega = tf.square(bounded - 1.0)
Omega = tf.reduce_sum(tf.reduce_mean(Omega, axis=1)) / (1.0 * tf.reduce_sum(nelems))
out = tf.gradients(Omega, self.W_rec)
out[0] = tf.Print(out[0], [out[0], self.W_rec, Omega], "omega grads")
out[0] = tf.verify_tensor_all_finite(out[0], "dead omega grad")
return out, test
def sussillo_reg(self):
|
tensorflow.verify_tensor_all_finite
| 297 |
from tensorflow.contrib.learn.python.learn import ops
self.assertEqual(prediction.get_shape()[1], 2)
self.assertEqual(loss.get_shape(), [])
value = session.run(loss, {features: [[0.2, 0.3, 0.2]], labels: [[0, 1]]})
self.assertAllClose(value, 0.55180627)
def test_embedding_lookup(self):
d_embed = 5
n_embed = 10
ids_shape = (2, 3, 4)
embeds = np.random.randn(n_embed, d_embed)
ids = np.random.randint(0, n_embed, ids_shape)
with self.cached_session():
embed_np = embeds[ids]
embed_tf = ops.embedding_lookup(embeds, ids).eval()
self.assertEqual(embed_np.shape, embed_tf.shape)
self.assertAllClose(embed_np, embed_tf)
def test_categorical_variable(self):
random_seed.set_random_seed(42)
with self.cached_session() as sess:
cat_var_idx = array_ops.placeholder(dtypes.int64, [2, 2])
embeddings = ops.categorical_variable(
cat_var_idx, n_classes=5, embedding_size=10, name="my_cat_var")
sess.run(variables.global_variables_initializer())
emb1 = sess.run(embeddings,
feed_dict={cat_var_idx.name: [[0, 1], [2, 3]]})
|
tensorflow.contrib.learn.python.learn.ops.embedding_lookup
| 298 |
from tensorflow.contrib.slim.python.slim import queues
width = 280
with self.cached_session():
provider = dataset_data_provider.DatasetDataProvider(
_create_tfrecord_dataset(dataset_dir))
[image] = provider.get(['image'])
[label] = provider.get(['label'])
image = _resize_image(image, height, width)
with session.Session('') as sess:
with queues.QueueRunners(sess):
image, label = sess.run([image, label])
self.assertListEqual([height, width, 3], list(image.shape))
self.assertListEqual([1], list(label.shape))
def testConflictingRecordKeyItem(self):
dataset_dir = tempfile.mkdtemp(prefix=os.path.join(self.get_temp_dir(),
'tfrecord_dataset'))
with self.cached_session():
|
tensorflow.contrib.slim.python.slim.queues.QueueRunners
| 299 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.