|
# π OpenAI GPT OSS Models - Open Source Language Models with Reasoning |
|
|
|
Generate responses with transparent chain-of-thought reasoning using OpenAI's new open source GPT models. Run on cloud GPUs with zero setup! |
|
|
|
## π Quick Setup for HF Jobs (One-time) |
|
|
|
```bash |
|
# Install huggingface-hub CLI using uv |
|
uv tool install huggingface-hub |
|
|
|
# Login to Hugging Face |
|
huggingface-cli login |
|
|
|
# Now you're ready to run jobs! |
|
``` |
|
|
|
Need more help? Check the [HF Jobs documentation](https://huggingface.co/docs/huggingface_hub/guides/job). |
|
|
|
## π Try It Now! Copy & Run This Command: |
|
|
|
```bash |
|
# Generate 50 haiku with reasoning (~5 minutes on A10G) |
|
huggingface-cli job run --gpu-flavor a10g-small \ |
|
uv run https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_vllm.py \ |
|
--input-dataset davanstrien/haiku_dpo \ |
|
--output-dataset haiku-reasoning \ |
|
--prompt-column question \ |
|
--max-samples 50 |
|
``` |
|
|
|
That's it! Your dataset will be generated and pushed to `your-username/haiku-reasoning`. π |
|
|
|
## π‘ What You Get |
|
|
|
The models output structured reasoning in separate channels: |
|
|
|
```json |
|
{ |
|
"prompt": "Write a haiku about mountain serenity", |
|
"think": "I need to create a haiku with 5-7-5 syllable structure. Mountains suggest stillness, permanence. For serenity, I'll use calm imagery like 'silent peaks' (3 syllables)...", |
|
"content": "Silent peaks stand tall\nClouds drift through morning stillness\nPeace in stone and sky", |
|
"reasoning_level": "high", |
|
"model": "openai/gpt-oss-20b" |
|
} |
|
``` |
|
|
|
## π― More Examples |
|
|
|
### Use Your Own Dataset |
|
|
|
```bash |
|
# Process your entire dataset |
|
huggingface-cli job run --gpu-flavor a10g-small \ |
|
uv run https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_vllm.py \ |
|
--input-dataset your-prompts \ |
|
--output-dataset my-responses |
|
|
|
# Use the larger 120B model |
|
huggingface-cli job run --gpu-flavor a100-large \ |
|
uv run https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_vllm.py \ |
|
--input-dataset your-prompts \ |
|
--output-dataset my-responses-120b \ |
|
--model-id openai/gpt-oss-120b |
|
``` |
|
|
|
### Process Different Dataset Types |
|
|
|
```bash |
|
# Math problems with step-by-step reasoning |
|
huggingface-cli job run --gpu-flavor a10g-small \ |
|
uv run https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_vllm.py \ |
|
--input-dataset math-problems \ |
|
--output-dataset math-solutions \ |
|
--reasoning-level high |
|
|
|
# Code generation with explanation |
|
huggingface-cli job run --gpu-flavor a10g-small \ |
|
uv run https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_vllm.py \ |
|
--input-dataset code-prompts \ |
|
--output-dataset code-explained \ |
|
--max-tokens 1024 |
|
|
|
# Test with just 10 samples |
|
huggingface-cli job run --gpu-flavor a10g-small \ |
|
uv run https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_vllm.py \ |
|
--input-dataset your-dataset \ |
|
--output-dataset quick-test \ |
|
--max-samples 10 |
|
``` |
|
|
|
## π¦ Two Script Options |
|
|
|
1. **`gpt_oss_vllm.py`** - High-performance batch generation using vLLM (recommended) |
|
2. **`gpt_oss_transformers.py`** - Standard transformers implementation (fallback) |
|
|
|
### Transformers Fallback (if vLLM has issues) |
|
|
|
```bash |
|
# Same command, different script! |
|
huggingface-cli job run --gpu-flavor a10g-small \ |
|
uv run https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_transformers.py \ |
|
--input-dataset davanstrien/haiku_dpo \ |
|
--output-dataset haiku-reasoning \ |
|
--prompt-column question \ |
|
--max-samples 50 |
|
``` |
|
|
|
## π° GPU Flavors and Costs |
|
|
|
| Model | GPU Flavor | Memory | Cost/Hour | Best For | |
|
|-------|------------|--------|-----------|----------| |
|
| `gpt-oss-20b` | `a10g-large` | 48GB | $2.50 | 20B model (needs ~40GB) | |
|
| `gpt-oss-20b` | `a100-large` | 80GB | $4.34 | 20B with headroom | |
|
| `gpt-oss-120b` | `4xa100` | 320GB | $17.36 | 120B model (needs ~240GB) | |
|
| `gpt-oss-120b` | `8xl40s` | 384GB | $23.50 | 120B maximum speed | |
|
|
|
**Note**: The MXFP4 quantization is dequantized to bf16 during loading, which doubles memory requirements. |
|
|
|
## π Local Execution |
|
|
|
If you have a local GPU: |
|
|
|
```bash |
|
# Using vLLM (recommended) |
|
uv run gpt_oss_vllm.py \ |
|
--input-dataset davanstrien/haiku_dpo \ |
|
--output-dataset haiku-reasoning \ |
|
--prompt-column question \ |
|
--max-samples 50 |
|
|
|
# Using Transformers |
|
uv run gpt_oss_transformers.py \ |
|
--input-dataset davanstrien/haiku_dpo \ |
|
--output-dataset haiku-reasoning \ |
|
--prompt-column question \ |
|
--max-samples 50 |
|
``` |
|
|
|
## π οΈ Parameters |
|
|
|
| Parameter | Description | Default | |
|
|-----------|-------------|---------| |
|
| `--input-dataset` | Source dataset on HF Hub | Required | |
|
| `--output-dataset` | Output dataset name (auto-prefixed with your username) | Required | |
|
| `--prompt-column` | Column containing prompts | `prompt` | |
|
| `--model-id` | Model to use | `openai/gpt-oss-20b` | |
|
| `--reasoning-level` | Reasoning depth (high/medium/low) | `high` | |
|
| `--max-samples` | Limit number of examples | None (all) | |
|
| `--temperature` | Generation temperature | `0.7` | |
|
| `--max-tokens` | Max tokens to generate | `512` | |
|
|
|
## π― Key Features |
|
|
|
- **Open Source Models**: `openai/gpt-oss-20b` and `openai/gpt-oss-120b` |
|
- **Structured Output**: Separate channels for reasoning (`analysis`) and response (`final`) |
|
- **Zero Setup**: Run with a single command on HF Jobs |
|
- **Flexible Input**: Works with any prompt dataset |
|
- **Automatic Upload**: Results pushed directly to your Hub account |
|
|
|
## π― Use Cases |
|
|
|
1. **Training Data**: Create datasets with built-in reasoning explanations |
|
2. **Evaluation**: Generate test sets where each answer includes its rationale |
|
3. **Research**: Study how large models approach different types of problems |
|
4. **Applications**: Build systems that can explain their outputs |
|
|
|
## π€ Which Script to Use? |
|
|
|
- **`gpt_oss_vllm.py`**: First choice for performance and scale |
|
- **`gpt_oss_transformers.py`**: Fallback if vLLM has compatibility issues |
|
|
|
## π§ Requirements |
|
|
|
For HF Jobs: |
|
- Hugging Face account (free) |
|
- `huggingface-hub` CLI tool |
|
|
|
For local execution: |
|
- Python 3.10+ |
|
- GPU with CUDA support |
|
- Hugging Face token |
|
|
|
## π€ Contributing |
|
|
|
This is part of the [uv-scripts](https://huggingface.co/uv-scripts) collection. Contributions and improvements welcome! |
|
|
|
## π License |
|
|
|
Apache 2.0 - Same as the OpenAI GPT OSS models |
|
|
|
--- |
|
|
|
**Ready to generate data with reasoning?** Copy the command at the top and run it! π |