build-atlas / README.md
davanstrien's picture
davanstrien HF Staff
Update README.md
7a07d47 verified
metadata
viewer: false
tags:
  - uv-script

🗺️ Atlas Export - One-Click Embedding Visualizations

Generate and deploy interactive embedding visualizations to HuggingFace Spaces with a single command.

Quick Start

# Create a Space from any text dataset
uv run atlas-export.py stanfordnlp/imdb --space-name my-imdb-viz

# Your Space will be live at:
# https://huggingface.co/spaces/YOUR_USERNAME/my-imdb-viz

Examples

Image Datasets

# Visualize image datasets with CLIP
uv run atlas-export.py \
    beans \
    --space-name bean-disease-atlas \
    --image-column image \
    --model openai/clip-vit-base-patch32

Custom Embeddings

# Use a specific embedding model
uv run atlas-export.py \
    wikipedia \
    --space-name wiki-viz \
    --model nomic-ai/nomic-embed-text-v1.5 \
    --text-column text \
    --sample 50000

Pre-computed Embeddings

# If you already have embeddings in your dataset
uv run atlas-export.py \
    my-dataset-with-embeddings \
    --space-name my-viz \
    --no-compute-embeddings \
    --x-column umap_x \
    --y-column umap_y

GPU Acceleration (HF Jobs)

# First, get your HF token (if not already set)
python -c "from huggingface_hub import get_token; print(get_token())"

# Run on HF Jobs with GPU using experimental UV support
hf jobs uv run --flavor t4-small \
    -s HF_TOKEN=your-token-here \
    https://huggingface.co/datasets/uv-scripts/build-atlas/raw/main/atlas-export.py \
    stanfordnlp/imdb \
    --space-name imdb-viz \
    --model sentence-transformers/all-mpnet-base-v2 \
    --sample 10000

Note: Replace your-token-here with your actual token. Available GPU flavors: t4-small, t4-medium, l4x1, a10g-small.

Key Options

Option Description Default
dataset_id HuggingFace dataset to visualize Required
--space-name Name for your Space Required
--model Embedding model to use Auto-selected
--text-column Column containing text "text"
--image-column Column containing images None
--sample Number of samples to visualize All
--split Dataset split to use "train"
--local-only Generate locally without deploying False
--output-dir Local output directory Temp dir
--hf-token HuggingFace API token From env/CLI

Run without arguments to see all options and more examples.

How It Works

  1. Loads dataset from HuggingFace Hub
  2. Generates embeddings (or uses pre-computed)
  3. Creates static web app with embedded data
  4. Deploys to HF Space

The resulting visualization runs entirely in the browser using WebGPU acceleration.

Credits

Built on Embedding Atlas by Apple. See the documentation for more details about the underlying technology.


Part of the UV Scripts collection 🚀