Datasets:
annotations_creators:
- expert-generated
language_creators:
- found
languages:
ady:
- ady
ang:
- ang
ara:
- ar
arn:
- arn
ast:
- ast
aze:
- az
bak:
- ba
bel:
- be
ben:
- bn
bod:
- bo
bre:
- br
bul:
- bg
cat:
- ca
ces:
- cs
chu:
- cu
ckb:
- ckb
cor:
- kw
crh:
- crh
csb:
- csb
cym:
- cy
dan:
- da
deu:
- de
dsb:
- dsb
ell:
- el
eng:
- en
est:
- et
eus:
- eu
fao:
- fo
fas:
- fa
fin:
- fi
fra:
- fr
frm:
- frm
fro:
- fro
frr:
- frr
fry:
- fy
fur:
- fur
gal:
- gal
gla:
- gd
gle:
- ga
glv:
- gv
gmh:
- gmh
gml:
- gml
got:
- got
grc:
- grc
hai:
- hai
hbs:
- sh
heb:
- he
hin:
- hi
hun:
- hu
hye:
- hy
isl:
- is
ita:
- it
izh:
- izh
kal:
- kl
kan:
- kn
kat:
- ka
kaz:
- kk
kbd:
- kbd
kjh:
- kjh
klr:
- klr
kmr:
- kmr
krl:
- krl
lat:
- la
lav:
- lv
lit:
- lt
liv:
- liv
lld:
- lld
lud:
- lud
mkd:
- mk
mlt:
- mt
mwf:
- mwf
nap:
- nap
nav:
- nv
nds:
- nds
nld:
- nl
nno:
- nn
nob:
- nb
oci:
- oc
olo:
- olo
osx:
- osx
pol:
- pl
por:
- pt
pus:
- ps
que:
- qu
ron:
- ro
rus:
- ru
san:
- sa
sga:
- sga
slv:
- sl
sme:
- sme
spa:
- es
sqi:
- sq
swc:
- swc
swe:
- sv
syc:
- syc
tat:
- tt
tel:
- te
tgk:
- tg
tuk:
- tk
tur:
- tr
ukr:
- uk
urd:
- ur
uzb:
- uz
vec:
- vec
vep:
- vep
vot:
- vot
xcl:
- xcl
xno:
- xno
yid:
- yi
zul:
- zu
licenses:
- cc-by-sa-3-0
multilinguality:
- monolingual
size_categories:
ady:
- 1K<n<10K
ang:
- 1K<n<10K
ara:
- 1K<n<10K
arn:
- n<1K
ast:
- n<1K
aze:
- n<1K
bak:
- 1K<n<10K
bel:
- 1K<n<10K
ben:
- n<1K
bod:
- 1K<n<10K
bre:
- n<1K
bul:
- 1K<n<10K
cat:
- 1K<n<10K
ces:
- 1K<n<10K
chu:
- n<1K
ckb:
- n<1K
cor:
- n<1K
crh:
- 1K<n<10K
csb:
- n<1K
cym:
- n<1K
dan:
- 1K<n<10K
deu:
- 10K<n<100K
dsb:
- n<1K
ell:
- 10K<n<100K
eng:
- 10K<n<100K
est:
- n<1K
eus:
- n<1K
fao:
- 1K<n<10K
fas:
- n<1K
fin:
- 10K<n<100K
fra:
- 1K<n<10K
frm:
- n<1K
fro:
- 1K<n<10K
frr:
- n<1K
fry:
- n<1K
fur:
- n<1K
gal:
- n<1K
gla:
- n<1K
gle:
- 1K<n<10K
glv:
- n<1K
gmh:
- n<1K
gml:
- n<1K
got:
- n<1K
grc:
- 1K<n<10K
hai:
- n<1K
hbs:
- 10K<n<100K
heb:
- n<1K
hin:
- n<1K
hun:
- 10K<n<100K
hye:
- 1K<n<10K
isl:
- 1K<n<10K
ita:
- 10K<n<100K
izh:
- n<1K
kal:
- n<1K
kan:
- n<1K
kat:
- 1K<n<10K
kaz:
- n<1K
kbd:
- n<1K
kjh:
- n<1K
klr:
- n<1K
kmr:
- 10K<n<100K
krl:
- n<1K
lat:
- 10K<n<100K
lav:
- 1K<n<10K
lit:
- 1K<n<10K
liv:
- n<1K
lld:
- n<1K
lud:
- n<1K
mkd:
- 10K<n<100K
mlt:
- n<1K
mwf:
- n<1K
nap:
- n<1K
nav:
- n<1K
nds:
- n<1K
nld:
- 1K<n<10K
nno:
- 1K<n<10K
nob:
- 1K<n<10K
oci:
- n<1K
olo:
- 10K<n<100K
osx:
- n<1K
pol:
- 10K<n<100K
por:
- 1K<n<10K
pus:
- n<1K
que:
- 1K<n<10K
ron:
- 1K<n<10K
rus:
- 10K<n<100K
san:
- n<1K
sga:
- n<1K
slv:
- 1K<n<10K
sme:
- 1K<n<10K
spa:
- 1K<n<10K
sqi:
- n<1K
swc:
- n<1K
swe:
- 10K<n<100K
syc:
- n<1K
tat:
- 1K<n<10K
tel:
- n<1K
tgk:
- n<1K
tuk:
- n<1K
tur:
- 1K<n<10K
ukr:
- 1K<n<10K
urd:
- n<1K
uzb:
- n<1K
vec:
- n<1K
vep:
- 1K<n<10K
vot:
- n<1K
xcl:
- 1K<n<10K
xno:
- n<1K
yid:
- n<1K
zul:
- n<1K
source_datasets:
- original
task_categories:
- structure-prediction
- text-classification
task_ids:
- multi-class-classification
- multi-label-classification
- structure-prediction-other-morphology
Dataset Card for [Dataset Name]
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: UniMorph Homepage
- Repository: List of UniMorph repositories
- Paper: The Composition and Use of the Universal Morphological Feature Schema (UniMorph Schema)
- Point of Contact: Arya McCarthy
Dataset Summary
The Universal Morphology (UniMorph) project is a collaborative effort to improve how NLP handles complex morphology in the world’s languages. The goal of UniMorph is to annotate morphological data in a universal schema that allows an inflected word from any language to be defined by its lexical meaning, typically carried by the lemma, and by a rendering of its inflectional form in terms of a bundle of morphological features from our schema. The specification of the schema is described in Sylak-Glassman (2016).
Supported Tasks and Leaderboards
[More Information Needed]
Languages
The current version of the UniMorph dataset covers 110 languages.
Dataset Structure
Data Instances
Each data instance comprises of a lemma and a set of possible realizations with morphological and meaning annotations. For example:
{'forms': {'Aktionsart': [[], [], [], [], []],
'Animacy': [[], [], [], [], []],
...
'Finiteness': [[], [], [], [1], []],
...
'Number': [[], [], [0], [], []],
'Other': [[], [], [], [], []],
'Part_Of_Speech': [[7], [10], [7], [7], [10]],
...
'Tense': [[1], [1], [0], [], [0]],
...
'word': ['ablated', 'ablated', 'ablates', 'ablate', 'ablating']},
'lemma': 'ablate'}
Data Fields
Each instance in the dataset has the following fields:
lemma
: the common lemma for all all_formsforms
: all annotated forms for this lemma, with:word
: the full word form- [
category
]: a categorical variable denoting one or several tags in a category (several to represent composite tags, originally denoted withA+B
). The full list of categories and possible tags for each can be found here
Data Splits
[More Information Needed]
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
[More Information Needed]
Licensing Information
[More Information Needed]
Citation Information
[More Information Needed]
Contributions
Thanks to @yjernite for adding this dataset.