filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_31051
""" mbed CMSIS-DAP debugger Copyright (c) 2006-2015 ARM Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from ..core.target import Target import logging from struct import unpack from time import time from .flash_builder import FlashBuilder DEFAULT_PAGE_PROGRAM_WEIGHT = 0.130 DEFAULT_PAGE_ERASE_WEIGHT = 0.048 DEFAULT_CHIP_ERASE_WEIGHT = 0.174 # Program to compute the CRC of sectors. This works on cortex-m processors. # Code is relocatable and only needs to be on a 4 byte boundary. # 200 bytes of executable data below + 1024 byte crc table = 1224 bytes # Usage requirements: # -In memory reserve 0x600 for code & table # -Make sure data buffer is big enough to hold 4 bytes for each page that could be checked (ie. >= num pages * 4) analyzer = ( 0x2780b5f0, 0x25004684, 0x4e2b2401, 0x447e4a2b, 0x0023007f, 0x425b402b, 0x40130868, 0x08584043, 0x425b4023, 0x40584013, 0x40200843, 0x40104240, 0x08434058, 0x42404020, 0x40584010, 0x40200843, 0x40104240, 0x08434058, 0x42404020, 0x40584010, 0x40200843, 0x40104240, 0x08584043, 0x425b4023, 0x40434013, 0xc6083501, 0xd1d242bd, 0xd01f2900, 0x46602301, 0x469c25ff, 0x00894e11, 0x447e1841, 0x88034667, 0x409f8844, 0x2f00409c, 0x2201d012, 0x4252193f, 0x34017823, 0x402b4053, 0x599b009b, 0x405a0a12, 0xd1f542bc, 0xc00443d2, 0xd1e74281, 0xbdf02000, 0xe7f82200, 0x000000b2, 0xedb88320, 0x00000042, ) def _msb(n): ndx = 0 while (1 < n): n = (n >> 1) ndx += 1 return ndx def _same(d1, d2): if len(d1) != len(d2): return False for i in range(len(d1)): if d1[i] != d2[i]: return False return True class PageInfo(object): def __init__(self): self.base_addr = None # Start address of this page self.erase_weight = None # Time it takes to erase a page self.program_weight = None # Time it takes to program a page (Not including data transfer time) self.size = None # Size of page def __repr__(self): return "<PageInfo@0x%x base=0x%x size=0x%x erswt=%g prgwt=%g>" \ % (id(self), self.base_addr, self.size, self.erase_weight, self.program_weight) class FlashInfo(object): def __init__(self): self.rom_start = None # Starting address of ROM self.erase_weight = None # Time it takes to perform a chip erase self.crc_supported = None # Is the function computeCrcs supported? def __repr__(self): return "<FlashInfo@0x%x start=0x%x erswt=%g crc=%s>" \ % (id(self), self.rom_start, self._erase_weight, self.crc_supported) class Flash(object): """ This class is responsible to flash a new binary in a target """ def __init__(self, target, flash_algo): self.target = target self.flash_algo = flash_algo self.flash_algo_debug = False if flash_algo is not None: self.is_valid = True self.use_analyzer = flash_algo['analyzer_supported'] self.end_flash_algo = flash_algo['load_address'] + len(flash_algo) * 4 self.begin_stack = flash_algo['begin_stack'] self.begin_data = flash_algo['begin_data'] self.static_base = flash_algo['static_base'] self.min_program_length = flash_algo.get('min_program_length', 0) # Check for double buffering support. if 'page_buffers' in flash_algo: self.page_buffers = flash_algo['page_buffers'] else: self.page_buffers = [self.begin_data] self.double_buffer_supported = len(self.page_buffers) > 1 else: self.is_valid = False self.use_analyzer = False self.end_flash_algo = None self.begin_stack = None self.begin_data = None self.static_base = None self.min_program_length = 0 self.page_buffers = [] self.double_buffer_supported = False @property def minimumProgramLength(self): return self.min_program_length def init(self, reset=True): """ Download the flash algorithm in RAM """ self.target.halt() if reset: self.target.setTargetState("PROGRAM") # update core register to execute the init subroutine result = self.callFunctionAndWait(self.flash_algo['pc_init'], init=True) # check the return code if result != 0: logging.error('init error: %i', result) def cleanup(self): pass def computeCrcs(self, sectors): data = [] # Convert address, size pairs into commands # for the crc computation algorithm to preform for addr, size in sectors: size_val = _msb(size) addr_val = addr // size # Size must be a power of 2 assert (1 << size_val) == size # Address must be a multiple of size assert (addr % size) == 0 val = (size_val << 0) | (addr_val << 16) data.append(val) self.target.writeBlockMemoryAligned32(self.begin_data, data) # update core register to execute the subroutine result = self.callFunctionAndWait(self.flash_algo['analyzer_address'], self.begin_data, len(data)) # Read back the CRCs for each section data = self.target.readBlockMemoryAligned32(self.begin_data, len(data)) return data def eraseAll(self): """ Erase all the flash """ # update core register to execute the eraseAll subroutine result = self.callFunctionAndWait(self.flash_algo['pc_eraseAll']) # check the return code if result != 0: logging.error('eraseAll error: %i', result) def erasePage(self, flashPtr): """ Erase one page """ # update core register to execute the erasePage subroutine result = self.callFunctionAndWait(self.flash_algo['pc_erase_sector'], flashPtr) # check the return code if result != 0: logging.error('erasePage(0x%x) error: %i', flashPtr, result) def programPage(self, flashPtr, bytes): """ Flash one page """ # prevent security settings from locking the device bytes = self.overrideSecurityBits(flashPtr, bytes) # first transfer in RAM self.target.writeBlockMemoryUnaligned8(self.begin_data, bytes) # get info about this page page_info = self.getPageInfo(flashPtr) # update core register to execute the program_page subroutine result = self.callFunctionAndWait(self.flash_algo['pc_program_page'], flashPtr, len(bytes), self.begin_data) # check the return code if result != 0: logging.error('programPage(0x%x) error: %i', flashPtr, result) def getPageBufferCount(self): return len(self.page_buffers) def isDoubleBufferingSupported(self): return self.double_buffer_supported def startProgramPageWithBuffer(self, bufferNumber, flashPtr): """ Flash one page """ assert bufferNumber < len(self.page_buffers), "Invalid buffer number" # get info about this page page_info = self.getPageInfo(flashPtr) # update core register to execute the program_page subroutine result = self.callFunction(self.flash_algo['pc_program_page'], flashPtr, page_info.size, self.page_buffers[bufferNumber]) def loadPageBuffer(self, bufferNumber, flashPtr, bytes): assert bufferNumber < len(self.page_buffers), "Invalid buffer number" # prevent security settings from locking the device bytes = self.overrideSecurityBits(flashPtr, bytes) # transfer the buffer to device RAM self.target.writeBlockMemoryUnaligned8(self.page_buffers[bufferNumber], bytes) def programPhrase(self, flashPtr, bytes): """ Flash a portion of a page. """ # Get min programming length. If one was not specified, use the page size. if self.min_program_length: min_len = self.min_program_length else: min_len = self.getPageInfo(flashPtr).size # Require write address and length to be aligned to min write size. if flashPtr % min_len: raise RuntimeError("unaligned flash write address") if len(bytes) % min_len: raise RuntimeError("phrase length is unaligned or too small") # prevent security settings from locking the device bytes = self.overrideSecurityBits(flashPtr, bytes) # first transfer in RAM self.target.writeBlockMemoryUnaligned8(self.begin_data, bytes) # update core register to execute the program_page subroutine result = self.callFunctionAndWait(self.flash_algo['pc_program_page'], flashPtr, len(bytes), self.begin_data) # check the return code if result != 0: logging.error('programPhrase(0x%x) error: %i', flashPtr, result) def getPageInfo(self, addr): """ Get info about the page that contains this address Override this function if variable page sizes are supported """ region = self.target.getMemoryMap().getRegionForAddress(addr) if not region or not region.isFlash: return None info = PageInfo() info.erase_weight = DEFAULT_PAGE_ERASE_WEIGHT info.program_weight = DEFAULT_PAGE_PROGRAM_WEIGHT info.size = region.blocksize info.base_addr = addr - (addr % info.size) return info def getFlashInfo(self): """ Get info about the flash Override this function to return differnt values """ boot_region = self.target.getMemoryMap().getBootMemory() info = FlashInfo() info.rom_start = boot_region.start if boot_region else 0 info.erase_weight = DEFAULT_CHIP_ERASE_WEIGHT info.crc_supported = self.use_analyzer return info def getFlashBuilder(self): return FlashBuilder(self, self.getFlashInfo().rom_start) def flashBlock(self, addr, data, smart_flash=True, chip_erase=None, progress_cb=None, fast_verify=False): """ Flash a block of data """ flash_start = self.getFlashInfo().rom_start fb = FlashBuilder(self, flash_start) fb.addData(addr, data) info = fb.program(chip_erase, progress_cb, smart_flash, fast_verify) return info def flashBinary(self, path_file, flashPtr=None, smart_flash=True, chip_erase=None, progress_cb=None, fast_verify=False): """ Flash a binary """ if flashPtr is None: flashPtr = self.getFlashInfo().rom_start f = open(path_file, "rb") with open(path_file, "rb") as f: data = f.read() data = unpack(str(len(data)) + 'B', data) self.flashBlock(flashPtr, data, smart_flash, chip_erase, progress_cb, fast_verify) def callFunction(self, pc, r0=None, r1=None, r2=None, r3=None, init=False): reg_list = [] data_list = [] if self.flash_algo_debug: # Save vector catch state for use in waitForCompletion() self._saved_vector_catch = self.target.getVectorCatch() self.target.setVectorCatch(Target.CATCH_ALL) if init: # download flash algo in RAM self.target.writeBlockMemoryAligned32(self.flash_algo['load_address'], self.flash_algo['instructions']) if self.use_analyzer: self.target.writeBlockMemoryAligned32(self.flash_algo['analyzer_address'], analyzer) reg_list.append('pc') data_list.append(pc) if r0 is not None: reg_list.append('r0') data_list.append(r0) if r1 is not None: reg_list.append('r1') data_list.append(r1) if r2 is not None: reg_list.append('r2') data_list.append(r2) if r3 is not None: reg_list.append('r3') data_list.append(r3) if init: reg_list.append('r9') data_list.append(self.static_base) if init: reg_list.append('sp') data_list.append(self.begin_stack) reg_list.append('lr') data_list.append(self.flash_algo['load_address'] + 1) self.target.writeCoreRegistersRaw(reg_list, data_list) # resume target self.target.resume() ## @brief Wait until the breakpoint is hit. def waitForCompletion(self): while(self.target.getState() == Target.TARGET_RUNNING): pass if self.flash_algo_debug: regs = self.target.readCoreRegistersRaw(list(range(19)) + [20]) logging.debug("Registers after flash algo: [%s]", " ".join("%08x" % r for r in regs)) expected_fp = self.flash_algo['static_base'] expected_sp = self.flash_algo['begin_stack'] expected_pc = self.flash_algo['load_address'] expected_flash_algo = self.flash_algo['instructions'] if self.use_analyzer: expected_analyzer = analyzer final_ipsr = self.target.readCoreRegister('xpsr') & 0xff final_fp = self.target.readCoreRegister('r9') final_sp = self.target.readCoreRegister('sp') final_pc = self.target.readCoreRegister('pc') #TODO - uncomment if Read/write and zero init sections can be moved into a separate flash algo section #final_flash_algo = self.target.readBlockMemoryAligned32(self.flash_algo['load_address'], len(self.flash_algo['instructions'])) #if self.use_analyzer: # final_analyzer = self.target.readBlockMemoryAligned32(self.flash_algo['analyzer_address'], len(analyzer)) error = False if final_ipsr != 0: logging.error("IPSR should be 0 but is 0x%02x", final_ipsr) error = True if final_fp != expected_fp: # Frame pointer should not change logging.error("Frame pointer should be 0x%x but is 0x%x" % (expected_fp, final_fp)) error = True if final_sp != expected_sp: # Stack pointer should return to original value after function call logging.error("Stack pointer should be 0x%x but is 0x%x" % (expected_sp, final_sp)) error = True if final_pc != expected_pc: # PC should be pointing to breakpoint address logging.error("PC should be 0x%x but is 0x%x" % (expected_pc, final_pc)) error = True #TODO - uncomment if Read/write and zero init sections can be moved into a separate flash algo section #if not _same(expected_flash_algo, final_flash_algo): # logging.error("Flash algorithm overwritten!") # error = True #if self.use_analyzer and not _same(expected_analyzer, final_analyzer): # logging.error("Analyzer overwritten!") # error = True assert error == False self.target.setVectorCatch(self._saved_vector_catch) return self.target.readCoreRegister('r0') def callFunctionAndWait(self, pc, r0=None, r1=None, r2=None, r3=None, init=False): self.callFunction(pc, r0, r1, r2, r3, init) return self.waitForCompletion() def setFlashAlgoDebug(self, enable): """ Turn on extra flash algorithm checking When set this will greatly slow down flash algo performance """ self.flash_algo_debug = enable def overrideSecurityBits(self, address, data): return data
the-stack_106_31052
# coding: utf-8 # # Copyright © 2012-2015 Ejwa Software. All rights reserved. # # This file is part of gitinspector. # # gitinspector is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # gitinspector is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with gitinspector. If not, see <http://www.gnu.org/licenses/>. from __future__ import print_function from __future__ import unicode_literals import json import sys import textwrap from ..localization import N_ from .. import format, gravatar, terminal from ..blame import Blame from .outputable import Outputable BLAME_INFO_TEXT = N_("Below are the number of rows from each author that have survived and are still " "intact in the current revision") class BlameOutput(Outputable): def __init__(self, changes, blame): if format.is_interactive_format(): print("") self.changes = changes self.blame = blame Outputable.__init__(self) def output_html(self): blame_xml = "<div><div class=\"box\">" blame_xml += "<p>" + _(BLAME_INFO_TEXT) + ".</p><div><table id=\"blame\" class=\"git\">" blame_xml += "<thead><tr> <th>{0}</th> <th>{1}</th> <th>{2}</th> <th>{3}</th> <th>{4}</th> </tr></thead>".format( _("Author"), _("Rows"), _("Stability"), _("Age"), _("% in comments")) blame_xml += "<tbody>" chart_data = "" blames = sorted(self.blame.get_summed_blames().items()) total_blames = 0 for i in blames: total_blames += i[1].rows for i, entry in enumerate(blames): work_percentage = str("{0:.2f}".format(100.0 * entry[1].rows / total_blames)) blame_xml += "<tr " + ("class=\"odd\">" if i % 2 == 1 else ">") if format.get_selected() == "html": author_email = self.changes.get_latest_email_by_author(entry[0]) blame_xml += "<td><img src=\"{0}\"/>{1}</td>".format(gravatar.get_url(author_email), entry[0]) else: blame_xml += "<td>" + entry[0] + "</td>" blame_xml += "<td>" + str(entry[1].rows) + "</td>" blame_xml += "<td>" + ("{0:.1f}".format(Blame.get_stability(entry[0], entry[1].rows, self.changes)) + "</td>") blame_xml += "<td>" + "{0:.1f}".format(float(entry[1].skew) / entry[1].rows) + "</td>" blame_xml += "<td>" + "{0:.2f}".format(100.0 * entry[1].comments / entry[1].rows) + "</td>" blame_xml += "<td style=\"display: none\">" + work_percentage + "</td>" blame_xml += "</tr>" chart_data += "{{label: {0}, data: {1}}}".format(json.dumps(entry[0]), work_percentage) if blames[-1] != entry: chart_data += ", " blame_xml += "<tfoot><tr> <td colspan=\"5\">&nbsp;</td> </tr></tfoot></tbody></table>" blame_xml += "<div class=\"chart\" id=\"blame_chart\"></div></div>" blame_xml += "<script type=\"text/javascript\">" blame_xml += " blame_plot = $.plot($(\"#blame_chart\"), [{0}], {{".format(chart_data) blame_xml += " series: {" blame_xml += " pie: {" blame_xml += " innerRadius: 0.4," blame_xml += " show: true," blame_xml += " combine: {" blame_xml += " threshold: 0.01," blame_xml += " label: \"" + _("Minor Authors") + "\"" blame_xml += " }" blame_xml += " }" blame_xml += " }, grid: {" blame_xml += " hoverable: true" blame_xml += " }" blame_xml += " });" blame_xml += "</script></div></div>" print(blame_xml) def output_json(self): message_json = "\t\t\t\"message\": \"" + _(BLAME_INFO_TEXT) + "\",\n" blame_json = "" for i in sorted(self.blame.get_summed_blames().items()): author_email = self.changes.get_latest_email_by_author(i[0]) name_json = "\t\t\t\t\"name\": \"" + i[0] + "\",\n" email_json = "\t\t\t\t\"email\": \"" + author_email + "\",\n" gravatar_json = "\t\t\t\t\"gravatar\": \"" + gravatar.get_url(author_email) + "\",\n" rows_json = "\t\t\t\t\"rows\": " + str(i[1].rows) + ",\n" stability_json = ("\t\t\t\t\"stability\": " + "{0:.1f}".format(Blame.get_stability(i[0], i[1].rows, self.changes)) + ",\n") age_json = ("\t\t\t\t\"age\": " + "{0:.1f}".format(float(i[1].skew) / i[1].rows) + ",\n") percentage_in_comments_json = ("\t\t\t\t\"percentage_in_comments\": " + "{0:.2f}".format(100.0 * i[1].comments / i[1].rows) + "\n") blame_json += ("{\n" + name_json + email_json + gravatar_json + rows_json + stability_json + age_json + percentage_in_comments_json + "\t\t\t},") else: blame_json = blame_json[:-1] print(",\n\t\t\"blame\": {\n" + message_json + "\t\t\t\"authors\": [\n\t\t\t" + blame_json + "]\n\t\t}", end="") def output_text(self): if sys.stdout.isatty() and format.is_interactive_format(): terminal.clear_row() print(textwrap.fill(_(BLAME_INFO_TEXT) + ":", width=terminal.get_size()[0]) + "\n") terminal.printb(terminal.ljust(_("Author"), 21) + terminal.rjust(_("Rows"), 10) + terminal.rjust(_("Stability"), 15) + terminal.rjust(_("Age"), 13) + terminal.rjust(_("% in comments"), 20)) for i in sorted(self.blame.get_summed_blames().items()): print(terminal.ljust(i[0], 20)[0:20 - terminal.get_excess_column_count(i[0])], end=" ") print(str(i[1].rows).rjust(10), end=" ") print("{0:.1f}".format(Blame.get_stability(i[0], i[1].rows, self.changes)).rjust(14), end=" ") print("{0:.1f}".format(float(i[1].skew) / i[1].rows).rjust(12), end=" ") print("{0:.2f}".format(100.0 * i[1].comments / i[1].rows).rjust(19)) def output_xml(self): message_xml = "\t\t<message>" + _(BLAME_INFO_TEXT) + "</message>\n" blame_xml = "" for i in sorted(self.blame.get_summed_blames().items()): author_email = self.changes.get_latest_email_by_author(i[0]) name_xml = "\t\t\t\t<name>" + i[0] + "</name>\n" email_xml = "\t\t\t\t<email>" + author_email + "</email>\n" gravatar_xml = "\t\t\t\t<gravatar>" + gravatar.get_url(author_email) + "</gravatar>\n" rows_xml = "\t\t\t\t<rows>" + str(i[1].rows) + "</rows>\n" stability_xml = ("\t\t\t\t<stability>" + "{0:.1f}".format(Blame.get_stability(i[0], i[1].rows, self.changes)) + "</stability>\n") age_xml = ("\t\t\t\t<age>" + "{0:.1f}".format(float(i[1].skew) / i[1].rows) + "</age>\n") percentage_in_comments_xml = ("\t\t\t\t<percentage-in-comments>" + "{0:.2f}".format(100.0 * i[1].comments / i[1].rows) + "</percentage-in-comments>\n") blame_xml += ("\t\t\t<author>\n" + name_xml + email_xml + gravatar_xml + rows_xml + stability_xml + age_xml + percentage_in_comments_xml + "\t\t\t</author>\n") print("\t<blame>\n" + message_xml + "\t\t<authors>\n" + blame_xml + "\t\t</authors>\n\t</blame>")
the-stack_106_31053
import unittest import pickle from common import MTurkCommon class TestHITPersistence(MTurkCommon): def create_hit_result(self): return self.conn.create_hit( question=self.get_question(), **self.get_hit_params() ) def test_pickle_hit_result(self): result = self.create_hit_result() new_result = pickle.loads(pickle.dumps(result)) def test_pickle_deserialized_version(self): """ It seems the technique used to store and reload the object must result in an equivalent object, or subsequent pickles may fail. This tests a double-pickle to elicit that error. """ result = self.create_hit_result() new_result = pickle.loads(pickle.dumps(result)) pickle.dumps(new_result) if __name__ == '__main__': unittest.main()
the-stack_106_31054
import os import sys from math import gcd from functools import reduce # # Complete the getTotalX function below. # def lcm(a, b): a = int(a) b = int(b) return a * b / gcd(a,b) def lcms(numbers): return reduce(lcm, numbers) def dividedByB(b, factor): for i in b: if i % factor != 0: return False return True def getTotalX(a, b): # Getting the LCM for a LCM = lcms(a) bmax = max(b) # print(type(LCM)) counter = 0 multiplier = 1 while LCM * multiplier <= bmax: if dividedByB(b, LCM*multiplier): counter += 1 multiplier += 1 return counter if __name__ == '__main__': # f = open(os.environ['OUTPUT_PATH'], 'w') nm = input().split() n = int(nm[0]) m = int(nm[1]) a = list(map(int, input().rstrip().split())) b = list(map(int, input().rstrip().split())) total = getTotalX(a, b) print(total) # f.write(str(total) + '\n') # f.close()
the-stack_106_31057
from shu.kanunu import KanunuScraper from shu.base import Node class MyScraper(KanunuScraper): def get_title_and_links(self, doc): table = doc('dl') for anchor in table('dd a'): yield ( anchor.text_content(), str(self.base_url / anchor.get('href'))) def get_content_tree(self, doc): root = Node(title='root') for title, link in self.get_title_and_links(doc): doc = self.get_doc(link) chapter = Node(title=title) paras = (p.text_content().strip() for p in doc('div.text p:not([align])')) chapter.content = '\n\n'.join(paras) root.append(chapter) return root index_url='https://www.kanunu8.com/book2/11011/index.html' title='半生缘' author='张爱玲' output_file='books/ban_sheng_yuan' formats=['.md', '.mobi'] scraper = MyScraper(index_url=index_url, title=title, author=author) scraper.download() scraper.build_ebook(output_file, formats=formats)
the-stack_106_31058
import sys import time from typing import Optional import click from chia.rpc.full_node_rpc_client import FullNodeRpcClient from chia.rpc.wallet_rpc_client import WalletRpcClient from chia.util.byte_types import hexstr_to_bytes from chia.util.config import load_config from chia.util.default_root import DEFAULT_ROOT_PATH from chia.util.ints import uint16 from chia.util.bech32m import decode_puzzle_hash @click.group("wallet", short_help="Manage your wallet") def wallet_cmd() -> None: pass @wallet_cmd.command("get_transaction", short_help="Get a transaction") @click.option( "-wp", "--wallet-rpc-port", help="Set the port where the Wallet is hosting the RPC interface. See the rpc_port under wallet in config.yaml", type=int, default=None, ) @click.option("-f", "--fingerprint", help="Set the fingerprint to specify which wallet to use", type=int) @click.option("-i", "--id", help="Id of the wallet to use", type=int, default=1, show_default=True, required=True) @click.option("-tx", "--tx_id", help="transaction id to search for", type=str, required=True) @click.option("--verbose", "-v", count=True, type=int) def get_transaction_cmd(wallet_rpc_port: Optional[int], fingerprint: int, id: int, tx_id: str, verbose: int) -> None: extra_params = {"id": id, "tx_id": tx_id, "verbose": verbose} import asyncio from .wallet_funcs import execute_with_wallet, get_transaction asyncio.run(execute_with_wallet(wallet_rpc_port, fingerprint, extra_params, get_transaction)) @wallet_cmd.command("get_transactions", short_help="Get all transactions") @click.option( "-wp", "--wallet-rpc-port", help="Set the port where the Wallet is hosting the RPC interface. See the rpc_port under wallet in config.yaml", type=int, default=None, ) @click.option("-f", "--fingerprint", help="Set the fingerprint to specify which wallet to use", type=int) @click.option("-i", "--id", help="Id of the wallet to use", type=int, default=1, show_default=True, required=True) @click.option( "-o", "--offset", help="Skip transactions from the beginning of the list", type=int, default=0, show_default=True, required=True, ) @click.option("--verbose", "-v", count=True, type=int) @click.option( "--paginate/--no-paginate", default=None, help="Prompt for each page of data. Defaults to true for interactive consoles, otherwise false.", ) def get_transactions_cmd( wallet_rpc_port: Optional[int], fingerprint: int, id: int, offset: int, verbose: bool, paginate: Optional[bool], ) -> None: extra_params = {"id": id, "verbose": verbose, "offset": offset, "paginate": paginate} import asyncio from .wallet_funcs import execute_with_wallet, get_transactions asyncio.run(execute_with_wallet(wallet_rpc_port, fingerprint, extra_params, get_transactions)) # The flush/close avoids output like below when piping through `head -n 1` # which will close stdout. # # Exception ignored in: <_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'> # BrokenPipeError: [Errno 32] Broken pipe sys.stdout.flush() sys.stdout.close() @wallet_cmd.command("send", short_help="Send sit to another wallet") @click.option( "-wp", "--wallet-rpc-port", help="Set the port where the Wallet is hosting the RPC interface. See the rpc_port under wallet in config.yaml", type=int, default=None, ) @click.option("-f", "--fingerprint", help="Set the fingerprint to specify which wallet to use", type=int) @click.option("-i", "--id", help="Id of the wallet to use", type=int, default=1, show_default=True, required=True) @click.option("-a", "--amount", help="How much sit to send, in XCH", type=str, required=True) @click.option( "-m", "--fee", help="Set the fees for the transaction, in XCH", type=str, default="0", show_default=True, required=True, ) @click.option("-t", "--address", help="Address to send the XCH", type=str, required=True) @click.option( "-o", "--override", help="Submits transaction without checking for unusual values", is_flag=True, default=False ) def send_cmd( wallet_rpc_port: Optional[int], fingerprint: int, id: int, amount: str, fee: str, address: str, override: bool ) -> None: extra_params = {"id": id, "amount": amount, "fee": fee, "address": address, "override": override} import asyncio from .wallet_funcs import execute_with_wallet, send asyncio.run(execute_with_wallet(wallet_rpc_port, fingerprint, extra_params, send)) @wallet_cmd.command("send_from", short_help="Transfer all sit away from a specific puzzle hash") @click.option( "-p", "--rpc-port", help=( "Set the port where the Full Node is hosting the RPC interface. " "See the rpc_port under full_node in config.yaml" ), type=int, default=None, show_default=True, ) @click.option( "-wp", "--wallet-rpc-port", help="Set the port where the Wallet is hosting the RPC interface. See the rpc_port under wallet in config.yaml", type=int, default=None, ) @click.option("-f", "--fingerprint", help="Set the fingerprint to specify which wallet to use", type=int) @click.option("-i", "--id", help="Id of the wallet to use", type=int, default=1, show_default=True, required=True) @click.option("-s", "--source", help="Address to send the XCH from", type=str, required=True) @click.option("-t", "--address", help="Address to send the XCH", type=str, required=True) def send_from_cmd( rpc_port: Optional[int], wallet_rpc_port: Optional[int], fingerprint: int, id: int, source: str, address: str, ) -> None: import asyncio from .wallet_funcs import execute_with_wallet, send_from extra_params = {"id": id, "source": source, "address": address, "rpc_port": rpc_port} asyncio.run(execute_with_wallet(wallet_rpc_port, fingerprint, extra_params, send_from)) @wallet_cmd.command("show", short_help="Show wallet information") @click.option( "-wp", "--wallet-rpc-port", help="Set the port where the Wallet is hosting the RPC interface. See the rpc_port under wallet in config.yaml", type=int, default=None, ) @click.option("-f", "--fingerprint", help="Set the fingerprint to specify which wallet to use", type=int) def show_cmd(wallet_rpc_port: Optional[int], fingerprint: int) -> None: import asyncio from .wallet_funcs import execute_with_wallet, print_balances asyncio.run(execute_with_wallet(wallet_rpc_port, fingerprint, {}, print_balances)) @wallet_cmd.command("get_address", short_help="Get a wallet receive address") @click.option( "-wp", "--wallet-rpc-port", help="Set the port where the Wallet is hosting the RPC interface. See the rpc_port under wallet in config.yaml", type=int, default=None, ) @click.option("-i", "--id", help="Id of the wallet to use", type=int, default=1, show_default=True, required=True) @click.option("-f", "--fingerprint", help="Set the fingerprint to specify which wallet to use", type=int) def get_address_cmd(wallet_rpc_port: Optional[int], id, fingerprint: int) -> None: extra_params = {"id": id} import asyncio from .wallet_funcs import execute_with_wallet, get_address asyncio.run(execute_with_wallet(wallet_rpc_port, fingerprint, extra_params, get_address)) @wallet_cmd.command( "delete_unconfirmed_transactions", short_help="Deletes all unconfirmed transactions for this wallet ID" ) @click.option( "-wp", "--wallet-rpc-port", help="Set the port where the Wallet is hosting the RPC interface. See the rpc_port under wallet in config.yaml", type=int, default=None, ) @click.option("-i", "--id", help="Id of the wallet to use", type=int, default=1, show_default=True, required=True) @click.option("-f", "--fingerprint", help="Set the fingerprint to specify which wallet to use", type=int) def delete_unconfirmed_transactions_cmd(wallet_rpc_port: Optional[int], id, fingerprint: int) -> None: extra_params = {"id": id} import asyncio from .wallet_funcs import delete_unconfirmed_transactions, execute_with_wallet asyncio.run(execute_with_wallet(wallet_rpc_port, fingerprint, extra_params, delete_unconfirmed_transactions)) async def do_recover_pool_nft(contract_hash: str, launcher_hash: str, fingerprint: int): from .wallet_funcs import get_wallet contract_hash_bytes32 = hexstr_to_bytes(contract_hash) delay = 604800 config = load_config(DEFAULT_ROOT_PATH, "config.yaml") self_hostname = config["self_hostname"] rpc_port = config["full_node"]["rpc_port"] wallet_rpc_port = config["wallet"]["rpc_port"] node_client = await FullNodeRpcClient.create(self_hostname, uint16(rpc_port), DEFAULT_ROOT_PATH, config) wallet_client = await WalletRpcClient.create(self_hostname, uint16(wallet_rpc_port), DEFAULT_ROOT_PATH, config) coin_records = await node_client.get_coin_records_by_puzzle_hash(contract_hash_bytes32, False) # expired coins coins = [coin_record.coin for coin_record in coin_records if coin_record.timestamp <= int(time.time()) - delay] if not coins: print("no expired coins") return print("found", len(coins), "expired coins, total amount:", sum(coin.amount for coin in coins)) wallet_client_f = await get_wallet(wallet_client, fingerprint=fingerprint) tx = await wallet_client_f.recover_pool_nft(launcher_hash, contract_hash, coins) await node_client.push_tx(tx) print("tx pushed") @wallet_cmd.command("recover_pool_nft", short_help="Recover coins in pool nft contract") @click.option( "--contract-hash", help="Set the nft contract hash", type=str, default=None, ) @click.option( "--launcher-hash", help="Set the launcher hash, you should get it from silicoin wallet", type=str, default=None, ) @click.option("-f", "--fingerprint", help="Set the fingerprint to specify which wallet to use", type=int) def recover_pool_nft(contract_hash: str, launcher_hash: str, fingerprint: int): import asyncio # Convert contract_hash to puzzle_hash contract_puzzle_hash = decode_puzzle_hash(contract_hash).hex() asyncio.run(do_recover_pool_nft(contract_puzzle_hash, launcher_hash, fingerprint))
the-stack_106_31059
import sys if sys.version_info.major == 2: # the `flatten` function can be found in compiler library: # `from compiler.ast import flatten` from collections import Iterable def flatten(iterable): for i in iterable: # if type(t) is list or type(t) is tuple: # strict check # if isinstance(i, list) or isinstance(i, tuple): # with instances of lists or tuples if isinstance(i, Iterable) and not isinstance(i, str): # non strict check for j in flatten(i): yield j else: yield i elif sys.version_info.major == 3: def flatten(iterable): for i in iterable: try: iter(i) except TypeError: is_iterable = False else: is_iterable = True if is_iterable and not isinstance(i, str): yield from flatten(i) else: yield i if __name__ == '__main__': import unittest class TC(unittest.TestCase): def test_flatten(self): iterable = [1, '2', [3, 4], [5, [('6', ), (('76', ), )]]] expected_result = [1, '2', 3, 4, 5, '6', '76'] result = list(flatten(iterable)) self.assertEqual(result, expected_result) unittest.main()
the-stack_106_31060
#!/usr/bin/env python ################################################################################# # Copyright 2016-2019 ARM Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################# import json import os import logging import sys import re import subprocess import stat import tarfile import zipfile from string import Template import shutil import platform import tempfile from contextlib import contextmanager import requests import click logger = logging.getLogger('pal-platform') SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__)) PAL_PLATFORM_ROOT = SCRIPT_DIR PROG_NAME = os.path.basename(sys.argv[0]) CONTEXT_SETTINGS = dict(help_option_names=['-h', '--help']) PATCH_UTIL = 'patch.exe' if platform.system() == 'Windows' else 'patch' AVAILABLE_TARGETS = [] BUILD_SYS_MIN_VER = 2 PLAT_CMAKE_TEMPLATE = ''' ################################################################################# # # # THIS IS AN AUTO GENERATED FILE # # # ################################################################################# set (MBED_CLOUD_CLIENT_SDK $mbed_cloud_client_sdk) set (MBED_CLOUD_CLIENT_OS $mbed_cloud_client_os) set (MBED_CLOUD_CLIENT_DEVICE $mbed_cloud_client_device) set (MBED_CLOUD_CLIENT_MIDDLEWARE $mbed_cloud_client_mw_list) set (MBED_CLOUD_CLIENT_TOOLCHAIN $mbed_cloud_client_toolchain) set (MBED_CLOUD_CLIENT_BUILD_SYS_MIN_VER $mbed_cloud_client_build_sys_min_ver) ''' # for 2.7 compatibility: # http://stackoverflow.com/questions/1713038/super-fails-with-error-typeerror-argument-1-must-be-type-not-classobj __metaclass__ = type class Config(object): def __init__(self): self.verbose = False pass_config = click.make_pass_decorator(Config, ensure=True) class DynamicChoice(click.Choice): name = 'DynamicChoice' def __init__(self, func, **kwargs): self.choices = [] self.func = func self.kwargs = kwargs def get_metavar(self, param): self.choices = self.func(**self.kwargs) return super(DynamicChoice, self).get_metavar(param) def get_missing_message(self, param): self.choices = self.func(**self.kwargs) return super(DynamicChoice, self).get_missing_message(param) def convert(self, value, param, ctx): self.choices = self.func(**self.kwargs) return super(DynamicChoice, self).convert(value, param, ctx) def __repr__(self): self.choices = self.func(**self.kwargs) return super(DynamicChoice, self).__repr__() @contextmanager def TemporaryDirectory(): name = tempfile.mkdtemp() try: yield name finally: shutil.rmtree(name, onerror=del_rw) def del_rw(action, path, exc): """ Callback function for error handling in shutil.rmtree. Will be called whenever shutil.rmtree catches an exception. :param action: The internal action used inside shutil.rmtree (os.listdir, os.remove, or os.rmdir) :param path: The path of the file/directory :param exc: The Exception info """ if not os.access(path, os.W_OK): # Is the error an access error ? os.chmod(path, stat.S_IWUSR) action(path) else: raise def is_git_pull_required(repo_dir, branch, **stream_kwargs): """ Check if git pull is required - in case sources are modified, pull will fail, so we check whether pull is required before failing the script. http://stackoverflow.com/questions/3258243/check-if-pull-needed-in-git :param repo_dir: Directory to check :param branch: Branch name / hash tag :param stream_kwargs: * *stdout* -- Standard output handle * *stderr* -- Standard error handle :return: True/False """ logger.debug('Check if git pull required for %s', repo_dir) active_branch = check_output(['git', 'rev-parse', '--abbrev-ref', 'HEAD'], cwd=repo_dir).strip() if active_branch.decode(encoding='utf-8') == 'HEAD': return False local_hash = check_output(['git', 'rev-parse', '@'], cwd=repo_dir, **stream_kwargs) remote_hash = check_output(['git', 'rev-parse', '@{upstream}'], cwd=repo_dir, **stream_kwargs) base_hash = check_output(['git', 'merge-base', '@', '@{upstream}'], cwd=repo_dir, **stream_kwargs) if local_hash == remote_hash: logger.info('%s is up-to-date with %s', repo_dir, branch) return False elif local_hash == base_hash: return True elif remote_hash == base_hash: logger.warning('There are local commits - do not forget to push %s', repo_dir) return False else: raise Exception('Local and remote repositories of %s have diverged', repo_dir) def is_git_dir(_dir): return os.path.isdir(_dir) and os.path.isdir(os.path.join(_dir, '.git')) def extract_repo_name(url): """ Extract repository remote and name from a git URL, ignoring protocol and .git endings """ regex_git_url = r'^(git\://|ssh\://|https?\://|)(([^/:@]+)(\:([^/:@]+))?@)?([^/:]+)[:/](.+?)(\.git|\/?)$' m = re.match(regex_git_url, url) return m.group(7) or url def git_fetch(git_url, tree_ref, dest_dir, **stream_kwargs): """ Fetch sources from a git url to a local directory :param git_url: Url of git repository :param tree_ref: Branch name / hash tag :param dest_dir: Destination directory :param stream_kwargs: * *stdout* -- Standard output handle * *stderr* -- Standard error handle """ is_hash = re.search('[a-fA-F0-9]{40}', tree_ref) if not is_git_dir(dest_dir): logger.info('Cloning from %s at %s to %s', git_url, tree_ref, dest_dir) cmd = ['git', 'clone'] + (['--no-checkout'] if is_hash else ['-b', tree_ref]) check_cmd(cmd + [git_url, dest_dir], **stream_kwargs) check_cmd(['git', 'config', 'core.longpaths', 'true'], cwd=dest_dir, **stream_kwargs) if is_hash: check_cmd(['git', 'config', 'advice.detachedHead', 'false'], cwd=dest_dir, **stream_kwargs) check_cmd(['git', 'checkout', tree_ref], cwd=dest_dir, **stream_kwargs) else: logger.info('%s already exists, updating from %s', dest_dir, git_url) remote_url = check_output(['git', 'ls-remote', '--get-url'], cwd=dest_dir).decode(encoding='utf-8').strip() assert extract_repo_name(git_url) == extract_repo_name(remote_url), 'Trying to update %s from different remote (%s)' % (dest_dir, git_url) check_cmd(['git', 'fetch', '--all'], cwd=dest_dir, **stream_kwargs) if not is_hash: active_branch = check_output(['git', 'rev-parse', '--abbrev-ref', 'HEAD'], cwd=dest_dir).strip() if active_branch.decode(encoding='utf-8') == tree_ref: if is_git_pull_required(dest_dir, tree_ref, **stream_kwargs): check_cmd(['git', 'pull', '--rebase', '--tags', '--all'], cwd=dest_dir, **stream_kwargs) else: return logger.info('Checking out from %s at %s', git_url, tree_ref) check_cmd(['git', 'checkout', tree_ref], cwd=dest_dir, **stream_kwargs) if not is_hash and is_git_pull_required(dest_dir, tree_ref, **stream_kwargs): check_cmd(['git', 'pull', '--rebase', '--tags', '--all'], cwd=dest_dir, **stream_kwargs) def download_file(url, dest_dir, file_name=None): """ Download a file from a url to a local directory :param url: Url of the remote file :param dest_dir: Destination directory :param file_name: Local file name (Optional, if missing than a temporary name is given) :return: Full path of the downloaded file """ assert (os.path.isdir(dest_dir)), '%s does not exist or not a directory' % dest_dir r = requests.get(url, stream=True) r.raise_for_status() try: if file_name: fh = open(os.path.join(dest_dir, file_name), 'wb') else: fh = tempfile.NamedTemporaryFile(dir=dest_dir, delete=False) name = fh.name shutil.copyfileobj(r.raw, fh) finally: fh.close() return name def extract_file(path, to_directory): """ Extract an archive file (ZIP/TAR) to a local directory :param path: Full path of the archive :param to_directory: Destination directory """ if zipfile.is_zipfile(path): archive_type, opener = 'ZIP', zipfile.ZipFile elif tarfile.is_tarfile(path): archive_type, opener = 'TAR', tarfile.open else: raise Exception('%s has unknown archive type' % path) with opener(path) as archive: if archive_type == 'ZIP': root = archive.infolist()[0] root_dir = root.filename nested = root.filename.endswith('/') elif archive_type == 'TAR': root = archive.getmembers()[0] root_dir = root.name nested = root.isdir() if nested: with TemporaryDirectory() as temp_dir: archive.extractall(path=temp_dir) if os.path.isdir(to_directory): shutil.rmtree(to_directory, onerror=del_rw) shutil.copytree(os.path.join(temp_dir, root_dir), to_directory) else: archive.extractall(path=to_directory) def apply_patch(patch_file, reverse=False, **stream_kwargs): """ Apply patch on a directory :param patch_file: Patch file to apply :param reverse: True if un-applying an already patched directory :param stream_kwargs: * *stdout* -- Standard output handle * *stderr* -- Standard error handle :return: True if the directory is already integrated, otherwise False """ logger.info('%s %s', 'Reverting' if reverse else 'Applying', patch_file) _dir, filename = os.path.split(patch_file) with open(patch_file, 'rt') as fh: patch_source = fh.read() match = re.search(r'^--- (\S+)', patch_source, re.MULTILINE) if not match: raise Exception('malformed patch file') path_list = match.group(1).split('/') strip_num = path_list.index(os.path.splitext(filename)[0]) logger.debug('patch file relative strip is %s', strip_num) cmd = [PATCH_UTIL, '-p', str(strip_num), '-i', patch_file, '--binary'] cmd += ['--verbose'] if logger.isEnabledFor(logging.DEBUG) else ['--quiet'] is_integrated = False try: check_cmd_and_raise(cmd + ['--reverse', '--dry-run', '--force'], cwd=_dir, **stream_kwargs) is_integrated = True logger.info('%s already integrated, %s', patch_file, 'reverting' if reverse else 'no need to patch') except subprocess.CalledProcessError: pass else: # exception was not raised if reverse: check_cmd(cmd + ['--reverse', '--force'], cwd=_dir, **stream_kwargs) is_integrated = False logger.info('Successfully un-applied %s to %s', patch_file, _dir) if not is_integrated and not reverse: try: check_cmd_and_raise(cmd + ['--dry-run'], cwd=_dir, **stream_kwargs) check_cmd_and_raise(cmd, cwd=_dir, **stream_kwargs) except subprocess.CalledProcessError: click.echo('Applying %s on %s failed, check target directory is clean' % (patch_file, _dir)) raise click.Abort logger.info('Successfully applied %s to %s', patch_file, _dir) return is_integrated def generate_plat_cmake(target): """ Generate target-dependent cmake files :param target: The target to generate files to :return: Full path of target-dependent output directory """ _os = target.os.name if target.os.version: _os += '_' + target.os.version _device = target.device.name _mw_list = [mw.name for mw in target.middleware] _sdk = ' ' if target.name == 'K64F_FreeRTOS_mbedtls': _os, _device = (' ', ' ') _mw_list = [] _sdk = 'K64F_FreeRTOS' out_dir_name = '__' + target.name parent_dir = os.path.normpath(os.path.join(PAL_PLATFORM_ROOT, os.pardir)) out_dir = os.path.join(parent_dir, out_dir_name) if os.path.exists(out_dir): shutil.rmtree(out_dir, onerror=del_rw) os.makedirs(out_dir) autogen_file = os.path.join(out_dir, 'autogen.cmake') cmake_template = Template(PLAT_CMAKE_TEMPLATE) with open(autogen_file, 'wt') as fh: fh.write( cmake_template.safe_substitute( mbed_cloud_client_sdk=_sdk, mbed_cloud_client_os=_os, mbed_cloud_client_device=_device, mbed_cloud_client_mw_list=' '.join(_mw_list), mbed_cloud_client_toolchain=' ', mbed_cloud_client_build_sys_min_ver=BUILD_SYS_MIN_VER, ) ) logger.info('Generated %s', autogen_file) parent_cmake = os.path.join(parent_dir, 'CMakeLists.txt') if not os.path.isfile(os.path.join(parent_cmake)): with open(parent_cmake, 'wt') as fh: fh.write('ADDSUBDIRS()\n') logger.info('Generated %s', parent_cmake) return out_dir def check_cmd_and_raise(cmd, **kwargs): """ Wrapper function for subprocess.check_call :param cmd: The command to execute :param kwargs: See `https://docs.python.org/2/library/subprocess.html#subprocess.Popen`_ """ logger.debug(" ".join(cmd)) subprocess.check_call(cmd, **kwargs) def check_cmd(cmd, **kwargs): """ Wrapper function for subprocess.check_call :param cmd: The command to execute :param kwargs: See `https://docs.python.org/2/library/subprocess.html#subprocess.Popen`_ """ logger.debug(" ".join(cmd)) try: subprocess.check_call(cmd, **kwargs) except Exception as e: logger.error(e) logger.error("** failed to run command %s **", cmd) sys.exit() def check_output(cmd, **kwargs): """ Wrapper function for subprocess.check_output :param cmd: The command to execute :param kwargs: See `https://docs.python.org/2/library/subprocess.html#subprocess.Popen`_ :return: Output of subprocess.check_output """ kwargs.pop('stdout', None) logger.debug(" ".join(cmd)) try: output = subprocess.check_output(cmd, **kwargs) except Exception as e: logger.error(e) logger.error("** failed to run command %s **", cmd) sys.exit() return output def check_output_and_raise(cmd, **kwargs): """ Wrapper function for subprocess.check_output :param cmd: The command to execute :param kwargs: See `https://docs.python.org/2/library/subprocess.html#subprocess.Popen`_ :return: Output of subprocess.check_output """ kwargs.pop('stdout', None) logger.debug(" ".join(cmd)) return subprocess.check_output(cmd, **kwargs) class Source: def __init__(self, src, stream_kwargs): self.location = src['location'] self.stream_kwargs = stream_kwargs class GitSource(Source): def __init__(self, src, stream_kwargs): super(GitSource, self).__init__(src, stream_kwargs) self.tag = src.get('tag', 'master') def write(self, dst, out=sys.stdout): out.write('- Clone %s at %s to %s' % (self.location, self.tag, dst)) def fetch(self, dst, name): logger.info('Getting %s from git', name) try: git_fetch(self.location, self.tag, dst, **self.stream_kwargs) except Exception as e: logger.error(e) logger.error("** failed to fetch %s from git - please check that remote is correct and avialable **", name) sys.exit() class LocalSource(Source): def __init__(self, src, stream_kwargs): super(LocalSource, self).__init__(src, stream_kwargs) def write(self, dst, out=sys.stdout): out.write('- Copy %s to %s' % (self.location, dst)) def fetch(self, dst, name): assert os.path.isdir(self.location) logger.info('Copying %s from local folder %s to %s', name, self.location, dst) if os.path.isdir(dst): logger.warning('%s already exists, overriding it..', dst) shutil.rmtree(dst, onerror=del_rw) shutil.copytree(self.location, dst) class RemoteArchiveSource(Source): def __init__(self, src, stream_kwargs): super(RemoteArchiveSource, self).__init__(src, stream_kwargs) def write(self, dst, out=sys.stdout): out.write('- Download %s and extract to %s' % (self.location, dst)) def fetch(self, dst, name): with TemporaryDirectory() as temp_dir: logger.info('Downloading %s from %s to %s', name, self.location, temp_dir) _file = download_file(self.location, temp_dir) logger.info('Extracting %s to %s', _file, dst) extract_file(_file, dst) class RemoteFilesSource(Source): def __init__(self, src, stream_kwargs): super(RemoteFilesSource, self).__init__(src, stream_kwargs) def write(self, dst, out=sys.stdout): for location in self.location: out.write('- Download %s to %s' % (location, dst)) def fetch(self, dst, name): if not os.path.isdir(dst): os.makedirs(dst) logger.info('Getting %s files', name) for location in self.location: logger.info('Downloading %s to %s', location, dst) download_file(location, dst, location.split('/')[-1]) class SourceFactory(object): @staticmethod def get_source(src, stream_kwargs): sources = { 'git': GitSource, 'local': LocalSource, 'remote-archive': RemoteArchiveSource, 'remote-files': RemoteFilesSource } protocol = src['protocol'] assert protocol in sources.keys(), \ '%s is not a valid protocol, valid protocols are %s' % (protocol, sources.keys()) return sources[protocol](src, stream_kwargs) class Element: def __init__(self, data, stream_kwargs, name=None): self.name = data.get('name', name) self.version = data.get('version', None) self.comment = data.get('comment', None) patch_file = data.get('patch_file', None) if patch_file: patch_file = os.path.join(PAL_PLATFORM_ROOT, patch_file) patch_file = patch_file.replace("/", "\\") if platform.system() == 'Windows' else patch_file self.patch_file = patch_file self.source = SourceFactory.get_source(data['from'], stream_kwargs) if 'from' in data else None dst = data.get('to', None) if dst: assert self.source, 'missing "from" field in %s' % self.name dst = os.path.join(PAL_PLATFORM_ROOT, dst) dst = dst.replace("/", "\\") if platform.system() == 'Windows' else dst else: assert not self.source, 'missing "to" field in %s' % self.name self.destination = dst self.stream_kwargs = stream_kwargs def is_fetch_needed(self): return self.destination and not os.path.isdir(self.destination) def write(self, out=sys.stdout): if self.source: out.write('\n') name = self.name if self.name else '' version = self.version if self.version else '' out.write('%s\n' % ('#' * (len(name) + len(version) + 5))) out.write('# %s %s\n' % (name, version)) out.write('%s\n' % ('#' * (len(name) + len(version) + 5))) if self.comment: out.write(self.comment + '\n\n') self.source.write(self.destination, out) if self.patch_file: out.write('- Apply patch %s\n' % self.patch_file) def fetch(self): if self.source: self.source.fetch(self.destination, self.name) def delete(self): if self.destination and os.path.isdir(self.destination): logger.info('Deleting %s', self.destination) shutil.rmtree(self.destination, onerror=del_rw) def apply_patch(self): if self.patch_file: is_integrated = apply_patch(self.patch_file, **self.stream_kwargs) if not is_integrated and self.source.__class__.__name__ == 'GitSource': check_cmd(['git', 'config', 'user.name', 'pal-platform'], cwd=self.destination, **self.stream_kwargs) check_cmd(['git', 'config', 'user.email', '<>'], cwd=self.destination, **self.stream_kwargs) check_cmd(['git', 'add', '--all'], cwd=self.destination, **self.stream_kwargs) message = 'applied patch: %s' % self.patch_file check_cmd(['git', 'commit', '-m', message], cwd=self.destination, **self.stream_kwargs) class Target(Element): """ Class which describes an mbed-cloud-client supported target and it's operations. For supported targets run:: pal-platform deploy -h Target's operations are * Writing deployment instructions to stdout/file. * Fetching the required target-dependent sources according to pal-platform.json. * Deleting fetched target-dependent sources according to pal-platform.json. * Apply patches if needed on the deployed sources according to pal-platform.json. :param name: Target name :param data: Dictionary describing the target (read from pal-platform.json) :param stream_kwargs: * *stdout* -- Standard output handle * *stderr* -- Standard error handle """ def __init__(self, name, data, stream_kwargs): super(Target, self).__init__(data, stream_kwargs, name) self.os = Element(data['os'], stream_kwargs) self.device = Element(data['device'], stream_kwargs) mw = data.get('middleware', {}) self.middleware = [] for k in mw: self.middleware.append(Element(mw[k], stream_kwargs, k)) def is_fetch_needed(self): fetch_needed = super(Target, self).is_fetch_needed() or \ self.os.is_fetch_needed() or \ self.device.is_fetch_needed() for mw in self.middleware: fetch_needed = fetch_needed or mw.is_fetch_needed() return fetch_needed def write_elements(self, out): """ Write instructions on how to deploy the elements of the target :param out: Where to write the instructions to (stdout / file) """ out.write('%s %s %s\n' % ('~' * 30, self.name, '~' * (80 - (22 + len(self.name))))) self.write(out) self.os.write(out) self.device.write(out) for mw in self.middleware: mw.write(out) out.write('\n') def fetch_elements(self): """ Fetch the required target-dependent sources for the target according to pal-platform.json """ self.fetch() self.os.fetch() self.device.fetch() for mw in self.middleware: mw.fetch() def delete_elements(self): """ Delete the required target-dependent sources of the target according to pal-platform.json """ self.os.delete() self.device.delete() for mw in self.middleware: mw.delete() self.delete() def patch_elements(self): """ Apply patches if needed on the deployed sources of the target according to pal-platform.json """ self.apply_patch() self.os.apply_patch() self.device.apply_patch() for mw in self.middleware: mw.apply_patch() def json_read(file_name): """ Helper function that loads JSON file with all string values and keys represented as string objects :param file_name: JSON file to read :return: Dictionary representation of the JSON file """ with open(file_name, 'rt') as fh: try: return json.load(fh) except ValueError as config_parse_exception: raise Exception( 'Malformed %s - %s' % (file_name, config_parse_exception) ) def get_available_targets(): return AVAILABLE_TARGETS def get_available_toolchains(): return AVAILABLE_TOOLCHAINS @click.group(context_settings=CONTEXT_SETTINGS, chain=True) @click.option('-v', '--verbose', is_flag=True, help='Turn ON verbose mode') @click.option( '--from-file', type=click.Path(exists=True, file_okay=True, readable=True, resolve_path=True), default=os.path.join(SCRIPT_DIR, 'pal-platform.json'), help='Path to a .json file containing the supported targets configuration.\n' 'Default is %s' % os.path.normpath(os.path.join(SCRIPT_DIR, 'pal-platform.json')) ) @click.version_option(version='1.2') @pass_config def cli(config, verbose, from_file): config.verbose = verbose config.stream_kwargs = {'stdout': open(os.devnull, 'w'), 'stderr': subprocess.STDOUT} config.targets = json_read(from_file) global AVAILABLE_TARGETS AVAILABLE_TARGETS = config.targets.keys() parent_dir = os.path.normpath(os.path.join(from_file, os.pardir)) toolchain_dir = os.path.join(parent_dir, "Toolchain") list = os.listdir(toolchain_dir) global AVAILABLE_TOOLCHAINS AVAILABLE_TOOLCHAINS = list logging.basicConfig( level=logging.DEBUG if verbose else logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', stream=sys.stdout ) if logger.isEnabledFor(logging.DEBUG): config.stream_kwargs = {} @cli.command( context_settings=CONTEXT_SETTINGS, short_help='Deploy mbed-cloud-client files (run "%s deploy -h" for help)' % PROG_NAME ) @click.option( '--target', 'target_name', help='The target to deploy platform-dependent files for', required=True, type=DynamicChoice(get_available_targets) ) @click.option('--skip-update', is_flag=True, help='Skip Git Repositories update') @click.option('-i', '--instructions', is_flag=True, help='Show deployment instructions for a given target and exit.') @pass_config def deploy(config, target_name, skip_update, instructions): """Deploy target-dependent files""" config.target_name = target_name config.skip_update = skip_update target = Target(config.target_name, config.targets[target_name], config.stream_kwargs) if instructions: target.write_elements(sys.stdout) click.get_current_context().exit() if not config.skip_update: target.fetch_elements() target.patch_elements() instructions_file = os.path.join(PAL_PLATFORM_ROOT, target.name + '.txt') with open(instructions_file, 'wt') as fh: target.write_elements(fh) click.echo(click.style('Deployment for %s is successful.' % config.target_name, fg='green')) click.echo(click.style('Deployment instructions are in %s.' % instructions_file, fg='green')) @cli.command( context_settings=CONTEXT_SETTINGS, short_help='Generate platform-dependent files (run "%s generate -h" for help)' % PROG_NAME ) @click.option( '--target', 'target_name', help='The target to generate platform-dependent files for', type=DynamicChoice(get_available_targets) ) @pass_config def generate(config, target_name): """Generate files to be used by build-system""" if target_name: config.target_name = target_name if not hasattr(config, 'target_name'): ctx = click.get_current_context() raise click.MissingParameter(ctx=ctx, param=ctx.command.params[0]) else: target = Target(config.target_name, config.targets[config.target_name], config.stream_kwargs) if target.is_fetch_needed(): click.echo( 'Target %s is not deployed, please run "%s deploy --target %s" first.' % (config.target_name, PROG_NAME, config.target_name) ) raise click.Abort out_dir = generate_plat_cmake(target) shutil.copy( os.path.join(PAL_PLATFORM_ROOT, 'mbedCloudClientCmake.txt'), os.path.join(out_dir, 'CMakeLists.txt') ) click.echo( click.style( 'Generation for %s is successful, please run cmake & make from %s' % (config.target_name, out_dir), fg='green' ) ) @cli.command( context_settings=CONTEXT_SETTINGS, short_help='Clean platform-dependent files (run "%s clean -h" for help)' % PROG_NAME ) @click.option( '--target', 'target_name', help='The target to clean', required=True, type=DynamicChoice(get_available_targets) ) @click.option( '-k', '--keep-sources', is_flag=True, help='Keep the deployed platform-dependent files (clean only generated files)' ) @pass_config def clean(config, target_name, keep_sources): """Clean target-dependent files""" config.target_name = target_name target = Target(config.target_name, config.targets[target_name], config.stream_kwargs) out_dir_name = '__' + target.name parent_dir = os.path.normpath(os.path.join(PAL_PLATFORM_ROOT, os.pardir)) out_dir = os.path.join(parent_dir, out_dir_name) if os.path.isdir(out_dir): logger.info('Deleting %s', out_dir) shutil.rmtree(out_dir, onerror=del_rw) if not keep_sources: target.delete_elements() def runCmakeAndMake(folder, debug, toolchain, outdir, envPair, external, name, numOfBuildThreads): logger.info('running cmake') #"""cmake -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Debug -DCMAKE_TOOLCHAIN_FILE=../pal-platform/Toolchain/ARMGCC/ARMGCC.cmake -DEXTARNAL_DEFINE_FILE=../mbed-client-pal/Examples/PlatformBSP/mbedTLS/mbedTLS_cmake_config.txt""" command = "cmake" make_params = "-j1" argument1 = "-G" argument2 = "Unix Makefiles" if debug == 1: argument3 = "-DCMAKE_BUILD_TYPE=Debug" else: argument3 = "-DCMAKE_BUILD_TYPE=Release" argument4 = "-DCMAKE_TOOLCHAIN_FILE=../pal-platform/Toolchain/"+toolchain+"/"+toolchain+".cmake" if external != None: argument5 = "-DEXTARNAL_DEFINE_FILE="+external else: argument5 = "-DEXTARNAL_DEFINE_FILE=../mbed-client-pal/Configs/pal_ext_configs.cmake" if envPair != None: logger.info('setting environment: %s = %s', envPair[0], envPair[1]) os.environ[envPair[0]] = envPair[1] if numOfBuildThreads != None: make_params = "-j" + str(numOfBuildThreads) p = subprocess.Popen([command, argument1, argument2, argument3, argument4, argument5], cwd=folder) returnCode = p.wait() if returnCode == 0: if name != None: p = subprocess.Popen(["make", make_params, name], cwd=folder) else: p = subprocess.Popen(["make", make_params], cwd=folder) returnCode = p.wait() if returnCode == 0: if debug == 1: copyFrom = os.path.join(folder, "Debug") else: copyFrom = os.path.join(folder, "Release") if not os.path.exists(outdir): os.makedirs(outdir) shutil.move(copyFrom, outdir) else: logger.error("** build failed **") else: logger.error("** CMAKE failed **") def getPathForToolChainInPath(toolchain): output = None realname = toolchain if platform.system() == 'Windows': #widnows type OS realname = toolchain + ".exe" try: found = check_output_and_raise(['where', realname]).strip() except Exception as e: logger.error(e) logger.error("** Toolchain %s not found in path - make sure toolchain executable [%s] is in the path **", toolchain, realname) return None separator = "\\" double_separator = "\\\\" else: # assume linux type OS try: found = check_output_and_raise(['which', realname]).strip() except Exception as e: logger.error(e) logger.error("** Toolchain %s not found in path - make sure toolchain executable [%s] is in the path **", toolchain, realname) return None separator = "/" double_separator = "//" if found != None: parent_dir = found #os.path.normpath(os.path.join(PAL_PLATFORM_ROOT, os.pardir)) while parent_dir.endswith(separator+realname) or parent_dir.endswith(separator+realname) or parent_dir.endswith(separator+"bin") or parent_dir.endswith(separator+"bin"+separator) or parent_dir.endswith(double_separator+"bin"+separator) or parent_dir.endswith(separator+"bin"+double_separator) or parent_dir.endswith(double_separator+"bin"+double_separator): parent_dir = os.path.normpath(os.path.join(parent_dir, os.pardir)) output = parent_dir return output def checkToolchainEnv(toolchain): logger.info('Checking Environment for Toolchain - %s', toolchain) #toolchain_env stucture: key == toolchain name , value is a tupple with two elements: #1. a tuple of relevant environment variables for the toolchain - Note : the first value is the one we want (we will export it if any of the values are found) #2. a string with the expected name of compiler binary for path seach toolchainEnv = {"ARMCC":(("ARMCC_DIR", "ARM_PATH", "MBED_ARM_PATH"), "armcc"), "ARMGCC":(("ARMGCC_DIR", "GCC_ARM_PATH", "MBED_GCC_ARM_PATH"), "arm-none-eabi-gcc"), "GCC": (("GCC_DIR",), "gcc"), "GCC-OPENWRT": (("TOOLCHAIN_DIR",), "arm-openwrt-linux-gcc")} toolchainInfo = toolchainEnv.get(toolchain, None) if None == toolchainInfo: logger.warning('toolchain environment not found for toolchain selected [%s] - please make sure toolchain is present and the correct environment variable is set', toolchain) return None for envVariable in toolchainInfo[0]: path = os.getenv(envVariable, None) if path != None: logger.debug("env variable %s found", envVariable) return (toolchainInfo[0][0], path) path = getPathForToolChainInPath(toolchainInfo[1]) if path != None: return (toolchainInfo[0][0], path) logger.warning('toolchain environment not found for toolchain selected [%s] - please make sure toolchain is present and correct environment variable is set [%s]', toolchain, toolchainInfo[0][0]) return None @cli.command( context_settings=CONTEXT_SETTINGS, short_help='[DEPRECATED] fullBuild deploy and build the project (run "%s fullBuild -h" for help)' % PROG_NAME) @click.option( '--target', 'target_name', help='The target to deploy and build', required=True, type=DynamicChoice(get_available_targets) ) @click.option( '--toolchain', 'toolchain', help='The toolchain to use for the build', required=True, type=DynamicChoice(get_available_toolchains) ) @click.option( '--external', 'external', help='The path of the eternal define CMAKE file to include', required=False, type=click.Path() ) @click.option( '--name', 'name', help='name of the build target passed to the make command', required=False, type=click.Path() ) @click.option( '-k', '--keep-sources', is_flag=True, help='Keep the deployed platform-dependent files (clean only generated files)' ) @click.option( '-j', 'numOfBuildThreads', help='-j parallel make parameter (Example: -j4)', required=False, type=int ) @pass_config def fullbuild(config, target_name, toolchain, external, name, keep_sources, numOfBuildThreads): """deploy and build target files""" config.target_name = target_name logger.info('fullBuild option has been DEPRECATED and will be removed in future release.') logger.info('fullBuild running for target = %s with toolchain = %s', target_name, toolchain) ctx = click.get_current_context() ctx.invoke(deploy, target_name=target_name, skip_update=None, instructions=None) ctx.invoke(generate, target_name=target_name) envPair = checkToolchainEnv(toolchain) if (None == envPair): logger.error("** Toolchain not found - exiting **") return target = Target(config.target_name, config.targets[target_name], config.stream_kwargs) out_dir_name = '__' + target.name parent_dir = os.path.normpath(os.path.join(PAL_PLATFORM_ROOT, os.pardir)) out_dir = os.path.join(parent_dir, out_dir_name) isDebug = 1 # build debug version output = os.path.join(parent_dir, "out") if os.path.exists(output): shutil.rmtree(output) runCmakeAndMake(out_dir, isDebug, toolchain, output, envPair, external, name, numOfBuildThreads) # CMAKE + build debug version isDebug = 0 # generate and build release version if os.path.exists(out_dir): shutil.rmtree(out_dir) ctx.invoke(generate, target_name=target_name) runCmakeAndMake(out_dir, isDebug, toolchain, output, envPair, external, name, numOfBuildThreads) # CMAKE + build release version logger.info('fullBuild option has been DEPRECATED and will be removed in future release.') logger.info('\nCompleted fullBuild running for target = %s\nWith toolchain = %s.\nOutput directory: %s\n', target_name, toolchain, output) if __name__ == '__main__': cli(sys.argv[1:])
the-stack_106_31062
""" # Copyright 2022 Red Hat # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ # pylint: disable=no-member, protected-access import os import shutil from unittest import TestCase from unittest.mock import Mock, patch from cibyl.models.attribute import AttributeDictValue from cibyl.models.ci.base.job import Job from cibyl.sources.jenkins_job_builder import JenkinsJobBuilder def remove_fake_files(): """Remove the fake xml files.""" shutil.rmtree("out_jjb_test") def fake_xml_files(): """Create two fake xml files to test the get_jobs method.""" path1 = "out_jjb_test/out-xml/fake_job1" path2 = "out_jjb_test/out-xml/fake_job2" os.makedirs(path1, exist_ok=True) os.makedirs(path2, exist_ok=True) file_name = os.path.join(path1, "config.xml") with open(file_name, "w", encoding="utf-8") as fake1: fake1.write('<?xml version="1.0" encoding="utf-8"?>\n') fake1.write('<com.folder.Folder plugin="cloudbees-folder">\n') fake1.write(' <icon class="com.folder.icons.StockFolderIcon"/>\n') fake1.write(' <views/>\n') fake1.write(' <scm class="hudson.scm.NullSCM"/>\n') fake1.write(' <publishers/>\n') fake1.write(' <buildWrappers/>\n') fake1.write('</com.folder.Folder>\n') file_name = os.path.join(path2, "config.xml") with open(file_name, "w", encoding="utf-8") as fake2: fake2.write('<?xml version="1.0" encoding="utf-8"?>\n') fake2.write('<flow-definition plugin="workflow-job">\n') fake2.write(' <definition plugin="workflow-cps" class="org.j">\n') fake2.write(' </definition>\n') fake2.write('</flow-definition> \n') @patch('cibyl.sources.jenkins_job_builder.JenkinsJobBuilder.get_repo') class TestJenkinsJobBuilderSource(TestCase): """Tests for :class:`JenkinsJobBuilder`.""" def setUp(self): fake_xml_files() def tearDown(self): remove_fake_files() # second argument is necessary to support patching of mock get_repo method def test_with_all_args(self, _): """Checks that the object is built correctly when all arguments are provided. """ url = 'url/to/repo' dest = 'dest_folder' branch = 'master' repos = [{'url': url, 'dest': dest, 'branch': branch}] jenkins = JenkinsJobBuilder(repos=repos) self.assertEqual(dest, jenkins.repos[-1].get('dest')) self.assertEqual(url, jenkins.repos[-1].get('url')) self.assertEqual(branch, jenkins.repos[-1].get('branch')) def test_with_no_dest(self, _): """Checks that object is built correctly when the dest is not provided. """ url = 'url/to/repo/' branch = 'master' repos = [{'url': url, 'branch': branch}] jenkins = JenkinsJobBuilder(repos=repos) self.assertIsNone(jenkins.repos[-1].get('dest')) jenkins.setup() self.assertEqual(url, jenkins.repos[-1].get('url')) self.assertEqual(branch, jenkins.repos[-1].get('branch')) self.assertIsNotNone(jenkins.repos[-1].get('dest')) self.assertTrue(os.path.isdir(jenkins.repos[-1].get('dest'))) def test_with_no_branch(self, _): """Checks that object is built correctly when the branch is not provided. """ url = 'url/to/repo/' dest = 'dest' repos = [{'url': url, 'dest': dest}] jenkins = JenkinsJobBuilder(repos) self.assertEqual(url, jenkins.repos[-1].get('url')) self.assertIsNone(jenkins.repos[-1].get('branch')) self.assertEqual(dest, jenkins.repos[-1].get('dest')) def test_get_jobs(self, _): """ Tests that the internal logic of :meth:`JenkinsJobBuilder.get_jobs` is correct. The jenkins API method that should do the query is mocked so that it returns the query itself. """ repos = [{'dest': 'out_jjb_test'}] jenkins = JenkinsJobBuilder(repos=repos) jenkins._generate_xml = Mock() jobs = jenkins.get_jobs() job = Job(name="fake_job2") result = AttributeDictValue("jobs", attr_type=Job, value={"fake_job2": job}) self.assertEqual(jobs, result)
the-stack_106_31063
""" flask_excel ~~~~~~~~~~~~~~~~~~~ A flask extension that provides one application programming interface to read and write data in different excel file formats :copyright: (c) 2015-2017 by Onni Software Ltd and its contributors :license: New BSD License """ try: # if in py2 from urllib import quote _PY_VERSION = 2 except ImportError: # else (aka in py3) from urllib.parse import quote _PY_VERSION = 3 from flask import Request, Response import pyexcel_webio as webio class ExcelRequest(webio.ExcelInputInMultiDict, Request): """ Mix in pyexcel's webio function signatures to Flask request """ def get_file_tuple(self, field_name): """ Implement Flask specific way of getting uploaded files """ filehandle = self.files[field_name] filename = filehandle.filename extension = filename.split(".")[-1] if extension == filename: raise IOError("Failed to find out file extension") return extension, filehandle def _make_response(content, content_type, status, file_name=None): """ Custom response function that is called by pyexcel-webio """ response = Response(content, content_type=content_type, status=status) if file_name: if _PY_VERSION == 2 and isinstance(file_name, unicode): file_name = file_name.encode('utf-8') url_encoded_file_name = quote(file_name) response.headers["Content-Disposition"] = ( "attachment; filename=%s;filename*=utf-8''%s" % (url_encoded_file_name, url_encoded_file_name) ) return response from pyexcel_webio import ( # noqa make_response, make_response_from_array, make_response_from_dict, make_response_from_records, make_response_from_book_dict, make_response_from_a_table, make_response_from_query_sets, make_response_from_tables ) def init_excel(app): app.request_class = ExcelRequest webio.init_webio(_make_response) return app
the-stack_106_31064
import math import os import pickle import shutil import tempfile from contextlib import contextmanager from itertools import permutations import pytest from numpy.testing import assert_almost_equal from pyproj import Geod try: from shapely.geometry import ( LinearRing, LineString, MultiLineString, MultiPoint, MultiPolygon, Point, Polygon, ) from shapely.geometry.polygon import orient SHAPELY_LOADED = True except ImportError: SHAPELY_LOADED = False skip_shapely = pytest.mark.skipif(not SHAPELY_LOADED, reason="Missing shapely") @contextmanager def temporary_directory(): """ Get a temporary directory """ temp_dir = tempfile.mkdtemp() try: yield temp_dir finally: shutil.rmtree(temp_dir) def test_geod_inverse_transform(): gg = Geod(ellps="clrk66") lat1pt = 42.0 + (15.0 / 60.0) lon1pt = -71.0 - (7.0 / 60.0) lat2pt = 45.0 + (31.0 / 60.0) lon2pt = -123.0 - (41.0 / 60.0) """ distance between boston and portland, clrk66: -66.531 75.654 4164192.708 distance between boston and portland, WGS84: -66.530 75.654 4164074.239 testing pickling of Geod instance distance between boston and portland, clrk66 (from pickle): -66.531 75.654 4164192.708 distance between boston and portland, WGS84 (from pickle): -66.530 75.654 4164074.239 inverse transform from proj.4 invgeod: b'-66.531\t75.654\t4164192.708\n' """ print("from pyproj.Geod.inv:") az12, az21, dist = gg.inv(lon1pt, lat1pt, lon2pt, lat2pt) assert_almost_equal((az12, az21, dist), (-66.531, 75.654, 4164192.708), decimal=3) print("forward transform") print("from proj.4 geod:") endlon, endlat, backaz = gg.fwd(lon1pt, lat1pt, az12, dist) assert_almost_equal((endlon, endlat, backaz), (-123.683, 45.517, 75.654), decimal=3) print("intermediate points:") print("from geod with +lat_1,+lon_1,+lat_2,+lon_2,+n_S:") npts = 4 lonlats = gg.npts(lon1pt, lat1pt, lon2pt, lat2pt, npts) lonprev = lon1pt latprev = lat1pt print(dist / (npts + 1)) print("%6.3f %7.3f" % (lat1pt, lon1pt)) result_dists = ( (-66.53059478766238, 106.79071710136431, 832838.5416198927), (-73.20928289863558, 99.32289055927389, 832838.5416198935), (-80.67710944072617, 91.36325611787134, 832838.5416198947), (-88.63674388212858, 83.32809401477382, 832838.5416198922), ) for (lon, lat), (res12, res21, resdist) in zip(lonlats, result_dists): az12, az21, dist = gg.inv(lonprev, latprev, lon, lat) assert_almost_equal((az12, az21, dist), (res12, res21, resdist)) latprev = lat lonprev = lon az12, az21, dist = gg.inv(lonprev, latprev, lon2pt, lat2pt) assert_almost_equal( (lat2pt, lon2pt, dist), (45.517, -123.683, 832838.542), decimal=3 ) def test_geod_cities(): # specify the lat/lons of some cities. boston_lat = 42.0 + (15.0 / 60.0) boston_lon = -71.0 - (7.0 / 60.0) portland_lat = 45.0 + (31.0 / 60.0) portland_lon = -123.0 - (41.0 / 60.0) g1 = Geod(ellps="clrk66") g2 = Geod(ellps="WGS84") az12, az21, dist = g1.inv(boston_lon, boston_lat, portland_lon, portland_lat) print("distance between boston and portland, clrk66:") print("%7.3f %6.3f %12.3f" % (az12, az21, dist)) assert_almost_equal((az12, az21, dist), (-66.531, 75.654, 4164192.708), decimal=3) print("distance between boston and portland, WGS84:") az12, az21, dist = g2.inv(boston_lon, boston_lat, portland_lon, portland_lat) assert_almost_equal((az12, az21, dist), (-66.530, 75.654, 4164074.239), decimal=3) print("%7.3f %6.3f %12.3f" % (az12, az21, dist)) print("testing pickling of Geod instance") with temporary_directory() as tmpdir: with open(os.path.join(tmpdir, "geod1.pickle"), "wb") as gp1w: pickle.dump(g1, gp1w, -1) with open(os.path.join(tmpdir, "geod2.pickle"), "wb") as gp2w: pickle.dump(g2, gp2w, -1) with open(os.path.join(tmpdir, "geod1.pickle"), "rb") as gp1: g3 = pickle.load(gp1) with open(os.path.join(tmpdir, "geod2.pickle"), "rb") as gp2: g4 = pickle.load(gp2) az12, az21, dist = g3.inv(boston_lon, boston_lat, portland_lon, portland_lat) assert_almost_equal((az12, az21, dist), (-66.531, 75.654, 4164192.708), decimal=3) print("distance between boston and portland, clrk66 (from pickle):") print("%7.3f %6.3f %12.3f" % (az12, az21, dist)) az12, az21, dist = g4.inv(boston_lon, boston_lat, portland_lon, portland_lat) print("distance between boston and portland, WGS84 (from pickle):") print("%7.3f %6.3f %12.3f" % (az12, az21, dist)) assert_almost_equal((az12, az21, dist), (-66.530, 75.654, 4164074.239), decimal=3) g3 = Geod("+ellps=clrk66") # proj4 style init string print("inverse transform") lat1pt = 42.0 + (15.0 / 60.0) lon1pt = -71.0 - (7.0 / 60.0) lat2pt = 45.0 + (31.0 / 60.0) lon2pt = -123.0 - (41.0 / 60.0) az12, az21, dist = g3.inv(lon1pt, lat1pt, lon2pt, lat2pt) print("%7.3f %6.3f %12.3f" % (az12, az21, dist)) assert_almost_equal((az12, az21, dist), (-66.531, 75.654, 4164192.708), decimal=3) def test_line_length__single_point(): geod = Geod(ellps="WGS84") assert geod.line_length(1, 1) == 0 def test_line_length__radians(): geod = Geod(ellps="WGS84") total_length = geod.line_length([1, 2], [0.5, 1], radians=True) assert_almost_equal(total_length, 5426061.32197463, decimal=3) def test_line_lengths__single_point(): geod = Geod(ellps="WGS84") assert geod.line_lengths(1, 1) == 0 def test_line_lengths__radians(): geod = Geod(ellps="WGS84") line_lengths = geod.line_lengths([1, 2], [0.5, 1], radians=True) assert_almost_equal(line_lengths, [5426061.32197463], decimal=3) def test_polygon_area_perimeter__single_point(): geod = Geod(ellps="WGS84") area, perimeter = geod.polygon_area_perimeter(1, 1) assert area == 0 assert perimeter == 0 @skip_shapely def test_geometry_length__point(): geod = Geod(ellps="WGS84") assert geod.geometry_length(Point(1, 2)) == 0 @skip_shapely def test_geometry_length__linestring(): geod = Geod(ellps="WGS84") assert_almost_equal( geod.geometry_length(LineString([Point(1, 2), Point(3, 4)])), 313588.39721259556, decimal=2, ) @skip_shapely def test_geometry_length__linestring__radians(): geod = Geod(ellps="WGS84") assert_almost_equal( geod.geometry_length( LineString( [ Point(math.radians(1), math.radians(2)), Point(math.radians(3), math.radians(4)), ] ), radians=True, ), 313588.39721259556, decimal=2, ) @skip_shapely def test_geometry_length__linearring(): geod = Geod(ellps="WGS84") assert_almost_equal( geod.geometry_length( LinearRing(LineString([Point(1, 2), Point(3, 4), Point(5, 2)])) ), 1072185.2103813463, decimal=2, ) @skip_shapely def test_geometry_length__polygon(): geod = Geod(ellps="WGS84") assert_almost_equal( geod.geometry_length( Polygon(LineString([Point(1, 2), Point(3, 4), Point(5, 2)])) ), 1072185.2103813463, decimal=2, ) @skip_shapely def test_geometry_length__polygon__radians(): geod = Geod(ellps="WGS84") assert_almost_equal( geod.geometry_length( Polygon( LineString( [ Point(math.radians(1), math.radians(2)), Point(math.radians(3), math.radians(4)), Point(math.radians(5), math.radians(2)), ] ) ), radians=True, ), 1072185.2103813463, decimal=2, ) @skip_shapely def test_geometry_length__multipolygon(): geod = Geod(ellps="WGS84") polygon = Polygon(LineString([Point(1, 2), Point(3, 4), Point(5, 2)])) assert_almost_equal( geod.geometry_length(MultiPolygon([polygon, polygon])), 2 * 1072185.2103813463, decimal=2, ) @skip_shapely def test_geometry_length__multipolygon__radians(): geod = Geod(ellps="WGS84") polygon = Polygon( LineString( [ Point(math.radians(1), math.radians(2)), Point(math.radians(3), math.radians(4)), Point(math.radians(5), math.radians(2)), ] ) ) assert_almost_equal( geod.geometry_length(MultiPolygon([polygon, polygon]), radians=True), 2 * 1072185.2103813463, decimal=2, ) @skip_shapely def test_geometry_length__multilinestring(): geod = Geod(ellps="WGS84") line_string = LineString([Point(1, 2), Point(3, 4), Point(5, 2)]) assert_almost_equal( geod.geometry_length(MultiLineString([line_string, line_string])), 1254353.5888503822, decimal=2, ) @skip_shapely def test_geometry_length__multipoint(): geod = Geod(ellps="WGS84") assert ( geod.geometry_length(MultiPoint([Point(1, 2), Point(3, 4), Point(5, 2)])) == 0 ) @skip_shapely def test_geometry_area_perimeter__point(): geod = Geod(ellps="WGS84") assert geod.geometry_area_perimeter(Point(1, 2)) == (0, 0) @skip_shapely def test_geometry_area_perimeter__linestring(): geod = Geod(ellps="WGS84") assert_almost_equal( geod.geometry_area_perimeter(LineString([Point(1, 2), Point(3, 4)])), (0.0, 627176.7944251911), decimal=2, ) @skip_shapely def test_geometry_area_perimeter__linestring__radians(): geod = Geod(ellps="WGS84") assert_almost_equal( geod.geometry_area_perimeter( LineString( [ Point(math.radians(1), math.radians(2)), Point(math.radians(3), math.radians(4)), ] ), radians=True, ), (0.0, 627176.7944251911), decimal=2, ) @skip_shapely def test_geometry_area_perimeter__linearring(): geod = Geod(ellps="WGS84") assert_almost_equal( geod.geometry_area_perimeter( LinearRing(LineString([Point(1, 2), Point(3, 4), Point(5, 2)])) ), (-49187690467.58623, 1072185.2103813463), decimal=2, ) @skip_shapely def test_geometry_area_perimeter__polygon(): geod = Geod(ellps="WGS84") assert_almost_equal( geod.geometry_area_perimeter( Polygon(LineString([Point(1, 2), Point(3, 4), Point(5, 2)])) ), (-49187690467.58623, 1072185.2103813463), decimal=2, ) @skip_shapely def test_geometry_area_perimeter__polygon__radians(): geod = Geod(ellps="WGS84") assert_almost_equal( geod.geometry_area_perimeter( Polygon( LineString( [ Point(math.radians(1), math.radians(2)), Point(math.radians(3), math.radians(4)), Point(math.radians(5), math.radians(2)), ] ) ), radians=True, ), (-49187690467.58623, 1072185.2103813463), decimal=2, ) @skip_shapely def test_geometry_area_perimeter__polygon__holes(): geod = Geod(ellps="WGS84") polygon = Polygon( LineString([Point(1, 1), Point(1, 10), Point(10, 10), Point(10, 1)]), holes=[LineString([Point(1, 2), Point(3, 4), Point(5, 2)])], ) assert_almost_equal( geod.geometry_area_perimeter(orient(polygon, 1)), (944373881400.3394, 3979008.0359657984), decimal=2, ) assert_almost_equal( geod.geometry_area_perimeter(orient(polygon, -1)), (-944373881400.3394, 3979008.0359657984), decimal=2, ) @skip_shapely def test_geometry_area_perimeter__multipolygon(): geod = Geod(ellps="WGS84") polygon = Polygon(LineString([Point(1, 2), Point(3, 4), Point(5, 2)])) assert_almost_equal( geod.geometry_area_perimeter(MultiPolygon([polygon, polygon])), (-98375380935.17245, 2144370.4207626926), decimal=2, ) @skip_shapely def test_geometry_area_perimeter__multipolygon__radians(): geod = Geod(ellps="WGS84") polygon = Polygon( LineString( [ Point(math.radians(1), math.radians(2)), Point(math.radians(3), math.radians(4)), Point(math.radians(5), math.radians(2)), ] ) ) assert_almost_equal( geod.geometry_area_perimeter(MultiPolygon([polygon, polygon]), radians=True), (-98375380935.17245, 2144370.4207626926), decimal=2, ) @skip_shapely def test_geometry_area_perimeter__multilinestring(): geod = Geod(ellps="WGS84") line_string = LineString([Point(1, 2), Point(3, 4), Point(5, 2)]) assert_almost_equal( geod.geometry_area_perimeter(MultiLineString([line_string, line_string])), (-98375380935.17245, 2144370.4207626926), decimal=2, ) @skip_shapely def test_geometry_area_perimeter__multipoint(): geod = Geod(ellps="WGS84") assert geod.geometry_area_perimeter( MultiPoint([Point(1, 2), Point(3, 4), Point(5, 2)]) ) == (0, 0) @pytest.mark.parametrize( "lon,lat,az", permutations([10.0, [10.0], (10.0,)]) ) # 6 test cases def test_geod_fwd_honours_input_types(lon, lat, az): # 622 gg = Geod(ellps="clrk66") outx, outy, outz = gg.fwd(lons=lon, lats=lat, az=az, dist=0) assert isinstance(outx, type(lon)) assert isinstance(outy, type(lat)) assert isinstance(outz, type(az)) @pytest.mark.parametrize( "lons1,lats1,lons2", permutations([10.0, [10.0], (10.0,)]) ) # 6 test cases def test_geod_inv_honours_input_types(lons1, lats1, lons2): # 622 gg = Geod(ellps="clrk66") outx, outy, outz = gg.inv(lons1=lons1, lats1=lats1, lons2=lons2, lats2=0) assert isinstance(outx, type(lons1)) assert isinstance(outy, type(lats1)) assert isinstance(outz, type(lons2))
the-stack_106_31065
import logging import numpy as np import re logger = logging.getLogger(__name__) def strike_symbol(strike): R = np.zeros((2, 2)) R[0, 0] = np.cos(np.deg2rad(-strike)) R[0, 1] = -np.sin(np.deg2rad(-strike)) R[1, 0] = np.sin(np.deg2rad(-strike)) R[1, 1] = np.cos(np.deg2rad(-strike)) R = np.zeros((2, 2)) R[0, 0] = np.cos(np.deg2rad(-strike)) R[0, 1] = -np.sin(np.deg2rad(-strike)) R[1, 0] = np.sin(np.deg2rad(-strike)) R[1, 1] = np.cos(np.deg2rad(-strike)) vec = np.array([0, 1]) rotated = R @ vec vec2 = np.array([-0.5, 0]) r2 = R @ vec2 return rotated, r2 def get_levels(): """dict for converting to logger levels from string Returns ------- dict contains all strings with corresponding logging levels. """ return {'info':logging.INFO,'warning':logging.WARNING,'error':logging.ERROR,'debug':logging.DEBUG} def log_to_file(filename,level='info'): """Set the logging parameters for log file Parameters ---------- filename : string name of file or path to file level : str, optional 'info', 'warning', 'error', 'debug' mapped to logging levels, by default 'info' """ levels = get_levels() level = levels.get(level,logging.WARNING) logging.basicConfig(level=level, format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s', datefmt='%m-%d %H:%M', filename=filename, filemode='w') def log_to_console(level='warning'): """Set the level of logging to the console Parameters ---------- level : str, optional 'info', 'warning', 'error', 'debug' mapped to logging levels, by default 'info' """ levels = get_levels() level = levels.get(level,logging.WARNING) changed_level = False for h in logging.getLogger().handlers: if type(h) is logging.StreamHandler: h.setLevel(level) changed_level = True if not changed_level: console = logging.StreamHandler() console.setLevel(level) # add the handler to the root logger logging.getLogger().addHandler(console) def read_voxet(voxetname,propertyfile): """ Read a gocad property file and the geometry information from the .vo file voxetname - is the path to the voxet file propertyfile is the path to the binary file Returns origin numpy array voxet_extent - is the length of each axis of the voxet N is the number of steps in the voxet array is the property values steps is the size of the step vector for the voxet """ array = np.fromfile(propertyfile,dtype='float32') array = array.astype('<f4') # little endian with open(voxetname,'r') as file: for l in file: if 'AXIS_O ' in l: origin = np.array(re.findall(r"[-+]?\d*\.?\d+|[-+]?\d+",l)).astype(float) if 'AXIS_U ' in l: U = float(re.findall(r'[\d\.\d]+',l)[0]) if 'AXIS_V ' in l: V = float(re.findall(r'[\d\.\d]+',l)[1]) if 'AXIS_W ' in l: W = float(re.findall(r'[\d\.\d]+',l)[2]) if 'AXIS_N ' in l: N = np.array(re.findall(r'[\d\.\d]+',l)).astype(int) voxet_extent = np.array([U,V,W]) steps = (voxet_extent ) / (N-1) return origin, voxet_extent, N, array, steps def write_property_to_gocad_voxet(propertyfilename, propertyvalues): """ This function writes a numpy array into the right format for a gocad voxet property file. This assumet there is a property already added to the .vo file, and is just updating the file. propertyfile - string giving the path to the file to write propertyvalues - numpy array nz,ny,nx ordering and in float format """ propertyvalues = propertyvalues.astype('>f4') #big endian # array = propertyvalues.newbyteorder() propertyvalues.tofile(propertyfilename)
the-stack_106_31068
import json.encoder as json_encoder import types from json import JSONEncoder from typing import Final # noinspection PyUnresolvedReferences ENCODE_BASESTRING_ASCII: Final = json_encoder.encode_basestring_ascii # noinspection PyUnresolvedReferences ENCODE_BASESTRING: Final = json_encoder.encode_basestring # noinspection PyUnresolvedReferences INFINITY: Final = json_encoder.INFINITY class GeneratorAwareJSONEncoder(JSONEncoder): def iterencode(self, o, _one_shot=False): """Encode the given object and yield each string representation as available. For example:: for chunk in JSONEncoder().iterencode(bigobject): mysocket.write(chunk) """ if self.check_circular: markers = {} else: markers = None if self.ensure_ascii: _encoder = ENCODE_BASESTRING_ASCII else: _encoder = ENCODE_BASESTRING # noinspection PyShadowingNames def floatstr(o, allow_nan=self.allow_nan, _repr=float.__repr__, _inf=INFINITY, _neginf=-INFINITY): # Check for specials. Note that this type of test is processor # and/or platform-specific, so do tests which don't depend on the # internals. if o != o: text = 'NaN' elif o == _inf: text = 'Infinity' elif o == _neginf: text = '-Infinity' else: # noinspection PyArgumentList return _repr(o) if not allow_nan: raise ValueError( "Out of range float values are not JSON compliant: " + repr(o)) return text _iterencode = _make_iterencode( markers, self.default, _encoder, self.indent, floatstr, self.key_separator, self.item_separator, self.sort_keys, self.skipkeys, _one_shot) return _iterencode(o, 0) # noinspection PyPep8Naming,PyShadowingBuiltins def _make_iterencode( markers, _default, _encoder, _indent, _floatstr, _key_separator, _item_separator, _sort_keys, _skipkeys, _one_shot, # HACK: hand-optimized bytecode; turn globals into locals ValueError=ValueError, dict=dict, float=float, id=id, int=int, isinstance=isinstance, list=list, str=str, tuple=tuple, _intstr=int.__repr__, ): if _indent is not None and not isinstance(_indent, str): _indent = ' ' * _indent def _iterencode_list(lst, _current_indent_level): if not lst: yield '[]' return if markers is not None: markerid = id(lst) if markerid in markers: raise ValueError("Circular reference detected") markers[markerid] = lst buf = '[' if _indent is not None: _current_indent_level += 1 newline_indent = '\n' + _indent * _current_indent_level separator = _item_separator + newline_indent buf += newline_indent else: newline_indent = None separator = _item_separator first = True for value in lst: if first: first = False else: buf = separator if isinstance(value, str): yield buf + _encoder(value) elif value is None: yield buf + 'null' elif value is True: yield buf + 'true' elif value is False: yield buf + 'false' elif isinstance(value, int): # Subclasses of int/float may override __repr__, but we still # want to encode them as integers/floats in JSON. One example # within the standard library is IntEnum. # noinspection PyArgumentList yield buf + _intstr(value) elif isinstance(value, float): # see comment above for int yield buf + _floatstr(value) else: yield buf if isinstance(value, (list, tuple)): chunks = _iterencode_list(value, _current_indent_level) elif isinstance(value, dict): chunks = _iterencode_dict(value, _current_indent_level) else: chunks = _iterencode(value, _current_indent_level) yield from chunks if newline_indent is not None: _current_indent_level -= 1 yield '\n' + _indent * _current_indent_level yield ']' if markers is not None: # noinspection PyUnboundLocalVariable del markers[markerid] def _iterencode_dict(dct, _current_indent_level): if not dct: yield '{}' return if markers is not None: markerid = id(dct) if markerid in markers: raise ValueError("Circular reference detected") markers[markerid] = dct yield '{' if _indent is not None: _current_indent_level += 1 newline_indent = '\n' + _indent * _current_indent_level item_separator = _item_separator + newline_indent yield newline_indent else: newline_indent = None item_separator = _item_separator first = True if _sort_keys: items = sorted(dct.items()) else: items = dct.items() for key, value in items: if isinstance(key, str): pass # JavaScript is weakly typed for these, so it makes sense to # also allow them. Many encoders seem to do something like this. elif isinstance(key, float): # see comment for int/float in _make_iterencode key = _floatstr(key) elif key is True: key = 'true' elif key is False: key = 'false' elif key is None: key = 'null' elif isinstance(key, int): # see comment for int/float in _make_iterencode key = _intstr(key) elif _skipkeys: continue else: raise TypeError(f'keys must be str, int, float, bool or None, ' f'not {key.__class__.__name__}') if first: first = False else: yield item_separator yield _encoder(key) yield _key_separator if isinstance(value, str): yield _encoder(value) elif value is None: yield 'null' elif value is True: yield 'true' elif value is False: yield 'false' elif isinstance(value, int): # see comment for int/float in _make_iterencode yield _intstr(value) elif isinstance(value, float): # see comment for int/float in _make_iterencode yield _floatstr(value) elif isinstance(value, types.GeneratorType): for o in value: yield from _iterencode(o, _current_indent_level) else: if isinstance(value, (list, tuple)): chunks = _iterencode_list(value, _current_indent_level) elif isinstance(value, dict): chunks = _iterencode_dict(value, _current_indent_level) else: chunks = _iterencode(value, _current_indent_level) yield from chunks if newline_indent is not None: _current_indent_level -= 1 yield '\n' + _indent * _current_indent_level yield '}' if markers is not None: # noinspection PyUnboundLocalVariable del markers[markerid] def _iterencode(o, _current_indent_level): if isinstance(o, str): yield _encoder(o) elif o is None: yield 'null' elif o is True: yield 'true' elif o is False: yield 'false' elif isinstance(o, int): # see comment for int/float in _make_iterencode yield _intstr(o) elif isinstance(o, float): # see comment for int/float in _make_iterencode yield _floatstr(o) elif isinstance(o, (list, tuple)): yield from _iterencode_list(o, _current_indent_level) elif isinstance(o, dict): yield from _iterencode_dict(o, _current_indent_level) elif isinstance(o, types.GeneratorType): for it in o: yield from _iterencode(it, _current_indent_level) else: if markers is not None: markerid = id(o) if markerid in markers: raise ValueError("Circular reference detected") markers[markerid] = o o = _default(o) yield from _iterencode(o, _current_indent_level) if markers is not None: # noinspection PyUnboundLocalVariable del markers[markerid] return _iterencode
the-stack_106_31069
import pytest from dataclasses import dataclass from uuid import uuid4 from tests.utils import ( do_rpc_call as do_rpc_call_fixture ) from asyncio_rpc.models import RPCCall, RPCStack from asyncio_rpc.client import WrappedException from asyncio_rpc.server import DefaultExecutor do_rpc_call = do_rpc_call_fixture @dataclass class CustomDataModel: x: int y: int def multiply(self): return self.x * self.y class CustomException(Exception): pass class Service(object): """ Testing service that is register via the TestExecutor on the RPCServer """ def __init__(self): self._data = {'foo': 'bar'} def multiply(self, x, y=1): return x * y @property def data(self): return self._data def get_item(self, key): return self._data[key] def custom_error(self): raise CustomException("Foobar") def multiply_with_dataclass(self, x: CustomDataModel): assert isinstance(x, CustomDataModel) return x.multiply() class ServiceClient(object): """ TestService client, exposing (rpc) functions that can be called on the TestService instance. """ def __init__(self, client): self.client = client @property async def data(self): rpc_func_call = RPCCall('data', [], {}) rpc_func_stack = RPCStack( uuid4().hex, 'TEST', 300, [rpc_func_call]) return await self.client.rpc_call(rpc_func_stack) async def multiply(self, x, y=100): rpc_func_call = RPCCall('multiply', [x], {'y': y}) rpc_func_stack = RPCStack( uuid4().hex, 'TEST', 300, [rpc_func_call]) return await self.client.rpc_call(rpc_func_stack) async def get_item(self, key): rpc_func_call = RPCCall('get_item', [key], {}) rpc_func_stack = RPCStack( uuid4().hex, 'TEST', 300, [rpc_func_call]) return await self.client.rpc_call(rpc_func_stack) async def custom_error(self): rpc_func_call = RPCCall('custom_error', [], {}) rpc_func_stack = RPCStack( uuid4().hex, 'TEST', 300, [rpc_func_call]) return await self.client.rpc_call(rpc_func_stack) async def multiply_with_dataclass(self, x: CustomDataModel): assert isinstance(x, CustomDataModel) rpc_func_call = RPCCall('multiply_with_dataclass', [x], {}) rpc_func_stack = RPCStack( uuid4().hex, 'TEST', 300, [rpc_func_call]) return await self.client.rpc_call(rpc_func_stack) @pytest.mark.asyncio async def test_simple_call(do_rpc_call): test_service_client = ServiceClient(None) result = await do_rpc_call( test_service_client, DefaultExecutor("TEST", Service()), test_service_client.multiply(100, 100)) assert result == 100 * 100 @pytest.mark.asyncio async def test_simple_call_with_client_processing(do_rpc_call): test_service_client = ServiceClient(None) result = await do_rpc_call( test_service_client, DefaultExecutor("TEST", Service()), test_service_client.multiply(100, 100), client_processing=True) assert result == 100 * 100 @pytest.mark.asyncio async def test_simple_call2(do_rpc_call): test_service_client = ServiceClient(None) result = await do_rpc_call( test_service_client, DefaultExecutor("TEST", Service()), test_service_client.get_item('foo')) assert result == 'bar' @pytest.mark.asyncio async def test_property(do_rpc_call): test_service_client = ServiceClient(None) result = await do_rpc_call( test_service_client, DefaultExecutor("TEST", Service()), test_service_client.data) assert result == {'foo': 'bar'} @pytest.mark.asyncio async def test_key_error(do_rpc_call): test_service_client = ServiceClient(None) with pytest.raises(KeyError): await do_rpc_call( test_service_client, DefaultExecutor("TEST", Service()), test_service_client.get_item('bar')) @pytest.mark.asyncio async def test_not_builtin_exception(do_rpc_call): test_service_client = ServiceClient(None) with pytest.raises(WrappedException): await do_rpc_call( test_service_client, DefaultExecutor("TEST", Service()), test_service_client.custom_error()) @pytest.mark.asyncio async def test_custom_data_model(do_rpc_call): test_service_client = ServiceClient(None) value = CustomDataModel(100, 100) result = await do_rpc_call( test_service_client, DefaultExecutor("TEST", Service()), test_service_client.multiply_with_dataclass(value), custom_dataclasses=[CustomDataModel]) assert result == value.multiply()
the-stack_106_31070
import torch import torch.nn.functional as F import torch.optim as optim from torchvision.models import vgg16 import time import os import psutil import numpy as np from exp_config import random_input_generator, MONITOR_INTERVAL, NUM_ITERS, BATCH_SIZE, LERANING_RATE # set gpu_id 0 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # system monitor info = psutil.virtual_memory() monitor_interval = MONITOR_INTERVAL avg_mem_usage = 0 max_mem_usage = 0 count = 0 total_time = 0 # get the whole model vgg = vgg16() start_time = time.time() vgg = vgg.to(device) total_time += time.time() - start_time # training setting num_iter = NUM_ITERS batch_size = BATCH_SIZE optimizer = optim.Adam(vgg.parameters(), lr=LERANING_RATE) # data generator gen = random_input_generator(num_iter, batch_size, format='NCHW') # begin training for idx, data in enumerate(gen): x_batch = torch.Tensor(data[0]) y_batch = torch.Tensor(data[1]).long() start_time = time.time() x_batch = x_batch.to(device) y_batch = y_batch.to(device) # forward + backward outputs = vgg(x_batch) loss = F.cross_entropy(outputs, y_batch) optimizer.zero_grad() loss.backward() optimizer.step() end_time = time.time() consume_time = end_time - start_time total_time += consume_time if idx % monitor_interval == 0: cur_usage = psutil.Process(os.getpid()).memory_info().rss max_mem_usage = max(cur_usage, max_mem_usage) avg_mem_usage += cur_usage count += 1 print("[*] {} iteration: memory usage {:.2f}MB, consume time {:.4f}s".format( idx, cur_usage / (1024 * 1024), consume_time)) print('consumed time:', total_time) avg_mem_usage = avg_mem_usage / count / (1024 * 1024) max_mem_usage = max_mem_usage / (1024 * 1024) print('average memory usage: {:.2f}MB'.format(avg_mem_usage)) print('maximum memory usage: {:.2f}MB'.format(max_mem_usage))
the-stack_106_31072
#-*- coding: UTF-8 -*- import theano import theano.tensor as T import numpy import cPickle class UsrEmbLayer(object): def __init__(self, rng, n_usr, dim, name, prefix=None): self.name = name if prefix == None: U_values = numpy.zeros((n_usr+1,dim),dtype=numpy.float32) U = theano.shared(value=U_values, name='U', borrow=True) else: f = file(prefix + name + '.save', 'rb') U = cPickle.load(f) f.close() self.U = U self.output = self.U self.params = [self.U] def save(self, prefix): f = file(prefix + self.name + '.save', 'wb') for obj in self.params: cPickle.dump(obj, f, protocol=cPickle.HIGHEST_PROTOCOL) f.close()
the-stack_106_31073
import Logs import Options import Utils class CompilerTraits(object): def get_warnings_flags(self, level): """get_warnings_flags(level) -> list of cflags""" raise NotImplementedError def get_optimization_flags(self, level): """get_optimization_flags(level) -> list of cflags""" raise NotImplementedError def get_debug_flags(self, level): """get_debug_flags(level) -> (list of cflags, list of cppdefines)""" raise NotImplementedError class GccTraits(CompilerTraits): def __init__(self): super(GccTraits, self).__init__() # cumulative list of warnings per level self.warnings_flags = [['-Wall'], ['-Werror'], ['-Wextra']] def get_warnings_flags(self, level): warnings = [] for l in range(level): if l < len(self.warnings_flags): warnings.extend(self.warnings_flags[l]) else: break return warnings def get_optimization_flags(self, level): if level == 0: return ['-O0'] elif level == 1: return ['-O'] elif level == 2: return ['-O2'] elif level == 3: return ['-O3'] def get_debug_flags(self, level): if level == 0: return (['-g0'], ['NDEBUG']) elif level == 1: return (['-g'], []) elif level >= 2: return (['-ggdb', '-g3'], ['_DEBUG']) class IccTraits(CompilerTraits): def __init__(self): super(IccTraits, self).__init__() # cumulative list of warnings per level # icc is _very_ verbose with -Wall, -Werror is barely achievable self.warnings_flags = [[], [], ['-Wall']] def get_warnings_flags(self, level): warnings = [] for l in range(level): if l < len(self.warnings_flags): warnings.extend(self.warnings_flags[l]) else: break return warnings def get_optimization_flags(self, level): if level == 0: return ['-O0'] elif level == 1: return ['-O'] elif level == 2: return ['-O2'] elif level == 3: return ['-O3'] def get_debug_flags(self, level): if level == 0: return (['-g0'], ['NDEBUG']) elif level == 1: return (['-g'], []) elif level >= 2: return (['-ggdb', '-g3'], ['_DEBUG']) class MsvcTraits(CompilerTraits): def __init__(self): super(MsvcTraits, self).__init__() # cumulative list of warnings per level self.warnings_flags = [['/W2'], ['/WX'], ['/Wall']] def get_warnings_flags(self, level): warnings = [] for l in range(level): if l < len(self.warnings_flags): warnings.extend(self.warnings_flags[l]) else: break return warnings def get_optimization_flags(self, level): if level == 0: return ['/Od'] elif level == 1: return [] elif level == 2: return ['/O2'] elif level == 3: return ['/Ox'] def get_debug_flags(self, level): if level == 0: return ([], ['NDEBUG']) elif level == 1: return (['/ZI', '/RTC1'], []) elif level >= 2: return (['/ZI', '/RTC1'], ['_DEBUG']) gcc = GccTraits() icc = IccTraits() msvc = MsvcTraits() # how to map env['COMPILER_CC'] or env['COMPILER_CXX'] into a traits object compiler_mapping = { 'gcc': gcc, 'g++': gcc, 'msvc': msvc, 'icc': icc, 'icpc': icc, } profiles = { # profile name: [optimization_level, warnings_level, debug_level] 'default': [2, 1, 1], 'debug': [0, 2, 3], 'release': [3, 1, 0], } default_profile = 'default' def options(opt): assert default_profile in profiles opt.add_option('-d', '--build-profile', action='store', default=default_profile, help=("Specify the build profile. " "Build profiles control the default compilation flags" " used for C/C++ programs, if CCFLAGS/CXXFLAGS are not" " set set in the environment. [Allowed Values: %s]" % ", ".join([repr(p) for p in profiles.keys()])), choices=profiles.keys(), dest='build_profile') def configure(conf): cc = conf.env['COMPILER_CC'] or None cxx = conf.env['COMPILER_CXX'] or None if not (cc or cxx): raise Utils.WafError("neither COMPILER_CC nor COMPILER_CXX are defined; " "maybe the compiler_cc or compiler_cxx tool has not been configured yet?") try: compiler = compiler_mapping[cc] except KeyError: try: compiler = compiler_mapping[cxx] except KeyError: Logs.warn("No compiler flags support for compiler %r or %r" % (cc, cxx)) return opt_level, warn_level, dbg_level = profiles[Options.options.build_profile] optimizations = compiler.get_optimization_flags(opt_level) debug, debug_defs = compiler.get_debug_flags(dbg_level) warnings = compiler.get_warnings_flags(warn_level) conf.env.append_value('CXXFLAGS', "-Wno-write-strings") if cc and not conf.env['CCFLAGS']: conf.env.append_value('CCFLAGS', optimizations) conf.env.append_value('CCFLAGS', debug) conf.env.append_value('CCFLAGS', warnings) conf.env.append_value('CCDEFINES', debug_defs) if cxx and not conf.env['CXXFLAGS']: conf.env.append_value('CXXFLAGS', optimizations) conf.env.append_value('CXXFLAGS', debug) conf.env.append_value('CXXFLAGS', warnings) conf.env.append_value('CXXDEFINES', debug_defs)
the-stack_106_31075
# Copyright 2013-2014, Simon Kennedy, [email protected] # # Part of 'hiss' the asynchronous notification library """ Currently the following schemes are supported ========= ================================ ``gtnp`` Growl Network Transfer Protocol ``pb`` Pushbullet ``po`` Pushover ``prowl`` Prowl ``snp`` Snarl Network Protocol ``kodi`` KODI ========= ================================ For the ``snp``, ``gntp`` and ``kodi`` schemes, targets are specified using a URL like string of the form :: scheme://[username:[password@]]host[:port] If no port number is specified then the default port for the target type will be used. For the Prowl, Pushbullet and Pushover schemes, targets are specified using an API Key with an optional filter to target specific devices :: scheme://apikey[:filter] """ try: import urllib.parse as urlparse except ImportError: import urlparse SNP_SCHEME = 'snp' GNTP_SCHEME = 'gntp' KODI_SCHEME = 'kodi' PROWL_SCHEME = 'prowl' PUSHBULLET_SCHEME = 'pb' PUSHOVER_SCHEME = 'po' DEFAULT_SCHEME = SNP_SCHEME URL_SCHEMES = [SNP_SCHEME, GNTP_SCHEME, KODI_SCHEME] TOKEN_SCHEMES = [PROWL_SCHEME, PUSHOVER_SCHEME, PUSHBULLET_SCHEME] ALL_SCHEMES = URL_SCHEMES + TOKEN_SCHEMES def add_urlparse_schemes(): """Allow urlparse to understand our protocol schemes""" for s in ALL_SCHEMES: if s not in urlparse.uses_relative: urlparse.uses_relative.append(s) if s not in urlparse.uses_netloc: urlparse.uses_netloc.append(s) if s not in urlparse.uses_params: urlparse.uses_params.append(s) if s not in urlparse.uses_query: urlparse.uses_query.append(s)
the-stack_106_31076
import unittest from hstest.check_result import correct from hstest.dynamic.dynamic_test import dynamic_test from hstest.dynamic.output.infinite_loop_detector import loop_detector from hstest.stage_test import StageTest from hstest.testing.tested_program import TestedProgram class InfiniteLoopTestNotWorking(StageTest): @dynamic_test def test(self): main = TestedProgram('main') main.start() return correct() class Test(unittest.TestCase): def test(self): prev = loop_detector.working loop_detector.working = False try: status, feedback = InfiniteLoopTestNotWorking().run_tests() self.assertEqual( "test OK", feedback) self.assertEqual(status, 0) finally: loop_detector.working = prev if __name__ == '__main__': Test().test()
the-stack_106_31077
''' Dshell external file class/utils for use in rippers, dumpers, etc. @author: amm ''' import os from dshell import Blob from shutil import move from hashlib import md5 ''' Mode Constants ''' FILEONDISK = 1 # Object refers to file already written to disk FILEINMEMORY = 2 # Object contains file contents in data member ''' dfile -- Dshell file class. Extends blob for offset based file chunk (segment) reassembly. Removes time and directionality from segments. Decoders can instantiate this class and pass it to output modules or other decoders. Decoders can choose to pass a file in memory or already written to disk. A dfile object can have one of the following modes: FILEONDISK FILEINMEMORY ''' class dfile(Blob): def __init__(self,mode=FILEINMEMORY,name=None,data=None,**kwargs): # Initialize Segments # Only really used in memory mode self.segments={} self.startoffset=0 self.endoffset=0 # Initialize consistent info members self.mode=mode self.name=name self.diskpath=None self.info_keys = ['mode','name','diskpath','startoffset','endoffset'] #update with additional info self.info(**kwargs) #update data if data != None: self.update(data) def __iter__(self): ''' Undefined ''' pass def __str__(self): ''' Returns filename (string) ''' return self.name def __repr__(self): ''' Returns filename (string) ''' return self.name def md5(self): ''' Returns md5 of file Calculate based on reassembly from FILEINMEMORY or loads from FILEONDISK ''' if self.mode == FILEINMEMORY: return md5(self.data()).hexdigest() elif self.mode == FILEONDISK: m = md5() fh = open(self.diskpath, 'r') m.update(fh.read()) fh.close() return m.hexdigest() else: return None def load(self): ''' Load file from disk. Converts object to mode FILEINMEMORY ''' if not self.mode == FILEONDISK: return False try: fh = open(self.diskpath, 'r') self.update(fh.read()) fh.close() self.mode = FILEINMEMORY except: return False def write(self,path='.',name=None,clobber=False,errorHandler=None,padding=None,overlap=True): ''' Write file contents at location relative to path. Name on disk will be based on internal name unless one is provided. For mode FILEINMEMORY, file will data() will be called for reconstruction. After writing to disk, mode will be changed to FILEONDISK. If mode is already FILEONDISK, file will be moved to new location. ''' olddiskpath = self.diskpath if name == None: name=self.name self.diskpath = self.__localfilename(name, path, clobber) if self.mode == FILEINMEMORY: fh = open(self.diskpath, 'w') fh.write(self.data()) fh.close() self.segments={} self.startoffset=0 self.endoffset=0 return self.diskpath elif self.mode == FILEONDISK: move(olddiskpath, self.diskpath) return self.diskpath def update(self,data,offset=None): if self.mode != FILEINMEMORY: return #if offsets are not being provided, just keep packets in wire order if offset==None: offset=self.endoffset #don't buffer duplicate packets if offset not in self.segments: self.segments[offset]=data #update the end offset if this packet goes at the end if offset >= self.endoffset: self.endoffset=offset+len(data) # # Generate a local (extracted) filename based on the original # def __localfilename(self, origname, path = '.', clobber = False): tmp = origname.replace("\\", "_") tmp = tmp.replace("/", "_") tmp = tmp.replace(":", "_") tmp = tmp.replace("?", "_") tmp = tmp.lstrip('_') localname = '' for c in tmp: if ord(c) > 32 and ord(c) < 127: localname += c else: localname += "%%%02X" % ord(c) # Truncate (from left) to max filename length on filesystem (-3 in case we need to add a suffix) localname = localname[os.statvfs(path).f_namemax*-1:] # Empty filename not allowed if localname == '': localname = 'blank' localname = os.path.realpath(os.path.join(path,localname)) if clobber: return localname # No Clobber mode, check to see if file exists suffix = '' i = 0 while os.path.exists(localname+suffix): i += 1 suffix = "_%02d" % i return localname+suffix
the-stack_106_31080
# qubit number=4 # total number=32 import pyquil from pyquil.api import local_forest_runtime, QVMConnection from pyquil import Program, get_qc from pyquil.gates import * import numpy as np conn = QVMConnection() def make_circuit()-> Program: prog = Program() # circuit begin prog += CNOT(0,3) # number=29 prog += X(3) # number=30 prog += CNOT(0,3) # number=31 prog += RX(-1.9352210746113125,3) # number=14 prog += CNOT(1,2) # number=22 prog += H(1) # number=2 prog += H(2) # number=3 prog += H(3) # number=4 prog += Y(2) # number=13 prog += Y(2) # number=28 prog += RX(0.13823007675795101,2) # number=24 prog += H(0) # number=5 prog += H(1) # number=6 prog += H(2) # number=7 prog += H(3) # number=8 prog += H(0) # number=9 prog += RX(-1.9069467407290044,2) # number=20 prog += H(3) # number=21 prog += H(3) # number=27 prog += Y(2) # number=10 prog += H(1) # number=17 prog += CZ(3,1) # number=18 prog += H(1) # number=19 prog += Y(2) # number=11 prog += CNOT(1,0) # number=15 prog += CNOT(1,0) # number=16 prog += Z(3) # number=23 prog += Y(1) # number=25 prog += Y(1) # number=26 # circuit end return prog def summrise_results(bitstrings) -> dict: d = {} for l in bitstrings: if d.get(l) is None: d[l] = 1 else: d[l] = d[l] + 1 return d if __name__ == '__main__': prog = make_circuit() qvm = get_qc('4q-qvm') results = qvm.run_and_measure(prog,1024) bitstrings = np.vstack([results[i] for i in qvm.qubits()]).T bitstrings = [''.join(map(str, l)) for l in bitstrings] writefile = open("../data/startPyquil2996.csv","w") print(summrise_results(bitstrings),file=writefile) writefile.close()
the-stack_106_31083
import sys from sklearn.linear_model import Ridge import numpy as np from modules.utils import overlap_ratio class BBRegressor(): def __init__(self, img_size, alpha=1000, overlap=[0.6, 1], scale=[1, 2]): self.img_size = img_size self.alpha = alpha self.overlap_range = overlap self.scale_range = scale self.model = Ridge(alpha=self.alpha) def train(self, X, bbox, gt): X = X.cpu().numpy() bbox = np.copy(bbox) gt = np.copy(gt) if gt.ndim==1: gt = gt[None,:] r = overlap_ratio(bbox, gt) s = np.prod(bbox[:,2:], axis=1) / np.prod(gt[0,2:]) idx = (r >= self.overlap_range[0]) * (r <= self.overlap_range[1]) * \ (s >= self.scale_range[0]) * (s <= self.scale_range[1]) X = X[idx] bbox = bbox[idx] Y = self.get_examples(bbox, gt) self.model.fit(X, Y) def predict(self, X, bbox): X = X.cpu().numpy() bbox_ = np.copy(bbox) Y = self.model.predict(X) bbox_[:,:2] = bbox_[:,:2] + bbox_[:,2:]/2 bbox_[:,:2] = Y[:,:2] * bbox_[:,2:] + bbox_[:,:2] bbox_[:,2:] = np.exp(Y[:,2:]) * bbox_[:,2:] bbox_[:,:2] = bbox_[:,:2] - bbox_[:,2:]/2 bbox_[:,:2] = np.maximum(bbox_[:,:2], 0) bbox_[:,2:] = np.minimum(bbox_[:,2:], self.img_size - bbox[:,:2]) return bbox_ def get_examples(self, bbox, gt): bbox[:,:2] = bbox[:,:2] + bbox[:,2:]/2 gt[:,:2] = gt[:,:2] + gt[:,2:]/2 dst_xy = (gt[:,:2] - bbox[:,:2]) / bbox[:,2:] dst_wh = np.log(gt[:,2:] / bbox[:,2:]) Y = np.concatenate((dst_xy, dst_wh), axis=1) return Y
the-stack_106_31085
import tkinter as tk import tkinter.ttk as ttk import logging from cep_price_console.utils.log_utils import CustomAdapter, debug class CntrUploadTab (object): logger = CustomAdapter(logging.getLogger(str(__name__)), None) @debug(lvl=logging.NOTSET, prefix='') def __init__(self, master, tab_text, tab_state='normal'): self.master = master self.cont = self.master.vc self.nbook = self.master.nb self.tab_text = tab_text self.__tab_id = self.master.tab_id_assignment() self.tab_state = tab_state self.frame_base = ttk.Frame(self.nbook) self.frame_cmd = ttk.Frame(self.frame_base) self.frame_main = ttk.Frame(self.frame_base) self.btn_next = ttk.Button(self.frame_cmd) self.btn_prev = ttk.Button(self.frame_cmd) self.widgets = [] self.manager = BusyManager(self.frame_main) # region tab_text @property @debug(lvl=logging.NOTSET, prefix='') def tab_text(self): return self.__tab_text @tab_text.setter @debug(lvl=logging.NOTSET, prefix='') def tab_text(self, value): if isinstance(value, str): self.__tab_text = value else: CntrUploadTab.logger.error("CntrUploadTab: tab_text not string: {0}".format(str(type(value)))) # endregion # region tab_id @property @debug(lvl=logging.NOTSET, prefix='') def tab_id(self): return self.__tab_id @tab_id.setter @debug(lvl=logging.DEBUG, prefix='') def tab_id(self, value): if isinstance(value, int): self.__tab_id = value else: CntrUploadTab.logger.error("CntrUploadTab: tab_id not integer: {0}".format(str(type(value)))) # endregion # region tab_state @property @debug(lvl=logging.NOTSET, prefix='') def tab_state(self): return self.__tab_state @tab_state.setter @debug(lvl=logging.NOTSET, prefix='') def tab_state(self, value): states = ('normal', 'disabled', 'hidden') if value in states: self.__tab_state = value else: CntrUploadTab.logger.error("Tab State ({0}) not a valid value: {1}".format(value, states)) # endregion @debug(lvl=logging.NOTSET, prefix='') def nbook_add(self): CntrUploadTab.logger.log(logging.NOTSET, "Tab ID: {0}".format(str(self.tab_id))) self.nbook.add(self.frame_base, text=self.tab_text, state=self.tab_state) self.frame_base.columnconfigure(0, weight=1) self.frame_base.rowconfigure(0, weight=1) self.frame_main.grid(row=0, column=0, sticky=tk.NSEW) self.frame_cmd.grid(row=1, column=0, sticky=tk.SE) if self.tab_id != self.master.max_tab_id: self.btn_next.config(text="Proceed") self.btn_next.state(['disabled']) self.btn_next.grid(row=0, column=2) if self.tab_id != 0: self.btn_prev.config(text="Previous", command=lambda: self.master.tab_switcher(self.tab_id - 1)) self.btn_prev.grid(row=0, column=1) @debug(lvl=logging.DEBUG, prefix='') def add_widget(self, widget: object): self.widgets.append(widget) @debug(lvl=logging.NOTSET, prefix='') def toggle_tab(self, tab_state: str): self.tab_state = tab_state self.nbook.tab(self.tab_id, state=self.tab_state) class BusyManager: def __init__(self, widget): self.toplevel = widget.winfo_toplevel() self.widgets = {} def busy(self, widget=None): # attach busy cursor to toplevel, plus all windows # that define their own cursor. if widget is None: w = self.toplevel # myself else: w = widget if not self.widgets.get(str(w)): try: # attach cursor to this widget cursor = w.cget("cursor") if cursor != "watch": self.widgets[str(w)] = (w, cursor) w.config(cursor="watch") else: pass except tk.TclError: pass else: pass for w in w.children.values(): self.busy(w) def not_busy(self): # restore cursors for w, cursor in self.widgets.values(): try: w.config(cursor=cursor) except tk.TclError: pass self.widgets = {}
the-stack_106_31087
import pathlib from setuptools import setup VERSION = '0.1.10' HERE = pathlib.Path(__file__).parent README = (HERE / "README.md").read_text() setup(name='google_nest_sdm_jm', version=VERSION, description='Library for the Google Nest SDM API', long_description=README, long_description_content_type="text/markdown", keywords='google nest sdm camera therostat security doorbell', author='Allen Porter, Jonathan Melcher', author_email='[email protected]', url='https://github.com/allenporter/python-google-nest-sdm', packages=['google_nest_sdm_jm'], include_package_data=True, install_requires=[ 'aiohttp>=3.6.2', 'google-auth>=1.22.0', 'google-auth-oauthlib>=0.4.1', 'google-cloud-pubsub>=2.1.0', 'requests-oauthlib>=1.3.0', ], entry_points = { 'console_scripts': [ 'google_nest=google_nest_sdm_jm.google_nest:main', ], }, tests_require=[ 'pytest_aiohttp>=0.3.0', ])
the-stack_106_31088
import sys from typing import List, Any from argparse import ArgumentParser, Namespace, _SubParsersAction from pathlib import Path from os.path import join from utils import shellcode_encoder from cli.enums import SHELLCODE_HELP from inject import Injector def run(args: List[Any]): options = { "should_restore": not args["no_restore"], "enter": args["enter"], "cave": args["cave"], "nop_restore_data": args["nop_restore_data"], } manager = Injector(args["shellcode"], args["file"], args["output"], options) return manager.inject() def apply(subparser: _SubParsersAction) -> ArgumentParser: parser = subparser.add_parser("build", help="build injected binary") parser.add_argument( "-s", "--shellcode", type=str, help=SHELLCODE_HELP, required=True, ) parser.add_argument( "-f", "--file", type=str, help="path to source pe file", required=True ) parser.add_argument( "-o", "--output", type=str, help="path to newly created pe file" ) parser.add_argument( "-F", "--force", action="store_true", help="force overwrite output", default=False, ) parser.add_argument( "--no-restore", action="store_true", help="do not fix the payload with popa and pusha", default=False, ) parser.add_argument( "--nop-restore-data", action="store_true", help="fill replaced/removed original instructions with NOPs instead of appending them to shellcode", default=False, ) parser.add_argument( "-c", "--cave", action="store", choices=["auto", "cave", "new-section"], default="auto", help="where to write the shellcode. defaults to auto", ) parser.add_argument( "-e", "--enter", action="store", choices=["jump", "new-section"], default="jump", help="how to handle the entrypoing. defaults to 'jump' where the executable uses 'jmp' to move to new section", ) return parser def normalize(args: Namespace) -> dict: items = vars(args) items["shellcode"] = shellcode_encoder(items["shellcode"]) p_file = Path(items["file"]) if not p_file.is_file(): print(f"[!] File not found at {items['file']}") sys.exit(1) items["file"] = p_file if not args.output or Path(args.output).is_dir(): if Path(args.output).is_dir(): parent = args.output else: parent = p_file.parent parts = p_file.name.split(".") if len(parts) > 1: output = ( "".join(parts[: len(parts) - 1]) + "-injected." + parts[len(parts) - 1] ) else: output = p_file.name + "-injected" items["output"] = join(parent, output) if items["output"] in ["stdout", "/proc/self/fd/1"]: print("[!] Writing to stdout not supported") sys.exit(1) p_output = Path(items["output"]) if p_output.is_file() and not items["force"]: print("[!] Output file already exists. Delete it or use '--force' to overwrite") sys.exit(1) items["output"] = p_output return items
the-stack_106_31089
""" This sample demonstrates a simple skill built with the Amazon Alexa Skills Kit. The Intent Schema, Custom Slots, and Sample Utterances for this skill, as well as testing instructions are located at http://amzn.to/1LzFrj6 For additional samples, visit the Alexa Skills Kit Getting Started guide at http://amzn.to/1LGWsLG """ from __future__ import print_function import urllib.request # --------------- Helpers that build all of the responses ---------------------- def build_speechlet_response(title, output, reprompt_text, should_end_session, debug): return { 'outputSpeech': { 'type': 'PlainText', 'text': output }, 'card': { 'type': 'Simple', 'title': "SessionSpeechlet - " + title, 'content': "SessionSpeechlet - " + output }, 'reprompt': { 'outputSpeech': { 'type': 'PlainText', 'text': reprompt_text } }, 'shouldEndSession': should_end_session, 'debug': debug } def build_response(session_attributes, speechlet_response): return { 'version': '1.0', 'sessionAttributes': session_attributes, 'response': speechlet_response } # --------------- Functions that control the skill's behavior ------------------ def get_welcome_response(): """ If we wanted to initialize the session to have some attributes we could add those here """ session_attributes = {} card_title = "Welcome" speech_output = "I will " + \ "stop transcribing" reprompt_text = "You can ask me to start or stop transcribing by saying, " \ "start transcribing or stop transcribing." debug = "stoping reading" captioning = urllib.request.urlopen("https://1d496ef7.ngrok.io/stop").read() #print(captioning) print(speech_output) should_end_session = True return build_response(session_attributes, build_speechlet_response( card_title, speech_output, reprompt_text, should_end_session, debug)) def handle_session_end_request(): card_title = "Session Ended" speech_output = "Thank you for trying the Alexa Skills for transcribing. " \ "Bye! " # Setting this to true ends the session and exits the skill. should_end_session = True debug = " " return build_response({}, build_speechlet_response( card_title, speech_output, None, should_end_session, debug)) def create_transcribe_attribute(stopTrans): return {"stopTrans": stopTrans} def set_transcribe_in_session(intent, session): card_title = intent['name'] session_attributes = {} should_end_session = False speech_output = "I will " + \ "stop transcribing" + \ ". You can ask me to start transcribing anytime. " reprompt_text = "You can ask me to start or stop transcribing by saying, " \ "start transcribing or stop transcribing." debug = "stoping reading" captioning = urllib.request.urlopen("https://1d496ef7.ngrok.io/stop").read() #print(captioning) print(speech_output) should_end_session = True return build_response(session_attributes, build_speechlet_response( card_title, speech_output, reprompt_text, should_end_session, debug)) def get_transcribe_from_session(intent, session): session_attributes = {} reprompt_text = None if session.get('attributes', {}) and "stopTrans" in session.get('attributes', {}): stopTrans = session['attributes']['stopTrans'] speech_output = "You can " + stopTrans + \ ". Goodbye." should_end_session = True else: speech_output = "I'm not sure what you mean. " \ "Please try again." should_end_session = False debug = " " # Setting reprompt_text to None signifies that we do not want to reprompt # the user. If the user does not respond or says something that is not # understood, the session will end. return build_response(session_attributes, build_speechlet_response( intent['name'], speech_output, reprompt_text, should_end_session, debug)) # --------------- Events ------------------ (Alexa is called) def on_session_started(session_started_request, session): """ Called when the session starts """ print("on_session_started requestId=" + session_started_request['requestId'] + ", sessionId=" + session['sessionId']) def on_launch(launch_request, session): """ Called when the user launches the skill without specifying what they want """ print("on_launch requestId=" + launch_request['requestId'] + ", sessionId=" + session['sessionId']) # Dispatch to your skill's launch return get_welcome_response() def on_intent(intent_request, session): """ Called when the user specifies an intent for this skill """ print("on_intent requestId=" + intent_request['requestId'] + ", sessionId=" + session['sessionId']) intent = intent_request['intent'] intent_name = intent_request['intent']['name'] # Dispatch to your skill's intent handlers if intent_name == "stopTransIsIntent": return set_transcribe_in_session(intent, session) elif intent_name == "AMAZON.HelpIntent": return get_welcome_response() elif intent_name == "AMAZON.CancelIntent" or intent_name == "AMAZON.StopIntent": return handle_session_end_request() else: raise ValueError("Invalid intent") def on_session_ended(session_ended_request, session): """ Called when the user ends the session. Is not called when the skill returns should_end_session=true """ print("on_session_ended requestId=" + session_ended_request['requestId'] + ", sessionId=" + session['sessionId']) # add cleanup logic here # --------------- Main handler ------------------ def lambda_handler(event, context): """ Route the incoming request based on type (LaunchRequest, IntentRequest, etc.) The JSON body of the request is provided in the event parameter. """ print("event.session.application.applicationId=" + event['session']['application']['applicationId']) """ Uncomment this if statement and populate with your skill's application ID to prevent someone else from configuring a skill that sends requests to this function. """ # if (event['session']['application']['applicationId'] != # "amzn1.echo-sdk-ams.app.[unique-value-here]"): # raise ValueError("Invalid Application ID") if event['session']['new']: on_session_started({'requestId': event['request']['requestId']}, event['session']) if event['request']['type'] == "LaunchRequest": return on_launch(event['request'], event['session']) elif event['request']['type'] == "IntentRequest": return on_intent(event['request'], event['session']) elif event['request']['type'] == "SessionEndedRequest": return on_session_ended(event['request'], event['session'])
the-stack_106_31090
#!/usr/bin/env python import io import os # Imports the Google Cloud client library from google.cloud import vision from google.cloud.vision import types # get Image out of pillow from PIL import Image # Instantiates a client client = vision.ImageAnnotatorClient() if __name__ == "__main__": # The name of the image file to annotate file_name = os.path.join( os.path.dirname(__file__), 'resources/f_one.jpg') # Loads the image into memory with io.open(file_name, 'rb') as image_file: content = image_file.read() image_one = types.Image(content=content) im_one = Image.open(file_name) ### Performs label detection on the image file response_one = client.label_detection(image=image_one) labels_one = response_one.label_annotations # print('Labels:') for label in labels_one: print(label.description) # Performs label detection on the image file face_response_one = client.face_detection(image=image_one) print("face_re") print(dir(face_response_one)) print(face_response_one.face_annotations) face_one_box = face_response_one.face_annotations[0].fd_bounding_poly.vertices faceone_box = ( face_one_box[0].x, face_one_box[0].y, face_one_box[1].x, face_one_box[2].y ) im_one_box = im_one.crop(faceone_box) file_two = os.path.join( os.path.dirname(__file__), 'resources/f_two.jpg') # Loads the image into memory with io.open(file_two, 'rb') as image_file: content_two = image_file.read() image_two = types.Image(content=content_two) im_two = Image.open(file_two) # Performs face detection on the image file face_response_two = client.face_detection(image=image_two) print("face_re_two") print(face_response_two.face_annotations) face_box = face_response_two.face_annotations[0].fd_bounding_poly.vertices facetwo_box = ( face_box[0].x, face_box[0].y, face_box[1].x, face_box[2].y ) im_two_box = im_two.crop(facetwo_box) # Write out the new image Image.blend(im_one_box, im_two_box.resize(im_one_box.size), 0.5 ).save("/tmp/comp_2.jpg")
the-stack_106_31094
import sys import py2app __all__ = ['infoPlistDict'] def infoPlistDict(CFBundleExecutable, plist={}): CFBundleExecutable = CFBundleExecutable NSPrincipalClass = ''.join(CFBundleExecutable.split()) version = sys.version[:3] pdict = dict( CFBundleDevelopmentRegion='English', CFBundleDisplayName=plist.get('CFBundleName', CFBundleExecutable), CFBundleExecutable=CFBundleExecutable, CFBundleIconFile=CFBundleExecutable, CFBundleIdentifier='org.pythonmac.unspecified.%s' % (NSPrincipalClass,), CFBundleInfoDictionaryVersion='6.0', CFBundleName=CFBundleExecutable, CFBundlePackageType='BNDL', CFBundleShortVersionString=plist.get('CFBundleVersion', '0.0'), CFBundleSignature='????', CFBundleVersion='0.0', LSHasLocalizedDisplayName=False, NSAppleScriptEnabled=False, NSHumanReadableCopyright='Copyright not specified', NSMainNibFile='MainMen', NSPrincipalClass=NSPrincipalClass, PyMainFileNames=['__boot__'], PyResourcePackages=[ (s % version) for s in [ 'lib/python%s', 'lib/python%s/lib-dynload', 'lib/python%s/site-packages.zip', ]] + [ 'lib/python%s.zip' % version.replace('.', '') ], PyRuntimeLocations=[(s % version) for s in [ '@executable_path/../Frameworks/Python.framework/Versions/%s/Python', '~/Library/Frameworks/Python.framework/Versions/%s/Python', '/Library/Frameworks/Python.framework/Versions/%s/Python', '/Network/Library/Frameworks/Python.framework/Versions/%s/Python', '/System/Library/Frameworks/Python.framework/Versions/%s/Python', ]], ) pdict.update(plist) pythonInfo = pdict.setdefault('PythonInfoDict', {}) pythonInfo.update(dict( PythonLongVersion=sys.version, PythonShortVersion=sys.version[:3], PythonExecutable=sys.executable, )) py2appInfo = pythonInfo.setdefault('py2app', {}).update(dict( version=py2app.__version__, template='bundle', )) return pdict
the-stack_106_31096
import re import sqlite3 from datetime import datetime class GamePipeline: @classmethod def from_crawler(cls, crawler): settings = crawler.settings db = settings.get('DATABASE') drop = settings.getbool('DROP') return cls(db, drop) def __init__(self, db, drop): self.db = db self.drop = drop self.con = None self.cur = None def open_spider(self, spider): if spider.name == 'games' and self.db is not None: self.con = sqlite3.connect(self.db) self.cur = self.con.cursor() if self.drop: self.cur.executescript(''' DROP TABLE IF EXISTS betting; CREATE TABLE betting(GAME_ID TEXT, HOME_SPREAD REAL, HOME_SPREAD_WL TEXT, OVER_UNDER REAL, OU_RESULT TEXT); ''') def close_spider(self, spider): if spider.name == 'games' and self.db is not None: self.cur.execute('VACUUM') self.con.close() def process_item(self, item, spider): if spider.name == 'games' and self.db is not None: self.store_item(item) return item def store_item(self, item): # only store home games to avoid duplicating data if item['home']: # map team abbreviations to those in the database team_abbr = { 'BK': 'BKN', 'CHAR': 'CHA', 'GS': 'GSW', 'NETS': 'BKN', 'NJ': 'BKN', 'NO': 'NOP', 'NY': 'NYK', 'PHO': 'PHX', 'SA': 'SAS' } opponent = item['opponent'].upper() if opponent in team_abbr: opponent = team_abbr[opponent] # find opponent ID by abbreviation self.cur.execute(f'SELECT ID FROM teams WHERE ABBREVIATION IS "{opponent}"') opp_id = self.cur.fetchone()[0] # format game date to match games table response = item['response_url'] start_year, end_year = re.search(r'(\d+)-(\d+)', response).group(1, 2) start_months = ['Oct', 'Nov', 'Dec'] date = item['date'] year = start_year if date.split()[0] in start_months else end_year date = datetime.strptime(f'{date} {year}', '%b %d %Y') date = date.strftime('%Y-%m-%d') # find game by opponent and date self.cur.execute(f'SELECT ID FROM games WHERE AWAY_TEAM_ID == {opp_id} AND GAME_DATE IS "{date}"') game_id = self.cur.fetchone() # raise exception if no matching game found if game_id is None: raise ValueError('No game found') # insert row into database values = (game_id[0], item['spread'], item['spread_result'], item['over_under'], item['over_under_result']) self.cur.execute('''INSERT INTO betting(GAME_ID, HOME_SPREAD, HOME_SPREAD_WL, OVER_UNDER, OU_RESULT) VALUES(?, ?, ?, ?, ?)''', values) self.con.commit()
the-stack_106_31098
# Process html tags from .state_inline import StateInline from ..common.html_re import HTML_TAG_RE from ..common.utils import charCodeAt def isLetter(ch: int): lc = ch | 0x20 # to lower case # /* a */ and /* z */ return (lc >= 0x61) and (lc <= 0x7A) def html_inline(state: StateInline, silent: bool): pos = state.pos if not state.md.options.get("html", None): return False # Check start maximum = state.posMax if charCodeAt(state.src, pos) != 0x3C or pos + 2 >= maximum: # /* < */ return False # Quick fail on second char ch = charCodeAt(state.src, pos + 1) if ( ch != 0x21 and ch != 0x3F # /* ! */ and ch != 0x2F # /* ? */ and not isLetter(ch) # /* / */ ): return False match = HTML_TAG_RE.search(state.src[pos:]) if not match: return False if not silent: token = state.push("html_inline", "", 0) token.content = state.src[pos : pos + len(match.group(0))] state.pos += len(match.group(0)) return True
the-stack_106_31099
import googleMapApiAdapter as gMapApi from loc import loc from RVGraph import RVGraph from RTVGraph import RTVGraph from assignTrips import AssignTrips class DynamicTripVehicleAssignmentMatcher: def __init__(self, constraints_param, useGridWorld=False): ''' constraints_param: { # max distance between driver's location and request's start point allowed to be matched "maxMatchDistance": number } useGridWorld: True or False, indicate whether use grid world to do testing ''' #self.maxMatchDistance = constraints_param['maxMatchDistance'] self.constraints_param = constraints_param self.useGridWorld = useGridWorld def match(self, requests, drivers, currentTime=None, showDetails=False): ''' Input requests format: [{ "id": string, "userId": string, "startLocation": { "latitude": number, "longitude": number }, "endLocation": { "latitude": number, "longitude": number } "timestamp": number, "isOnCar": False, ] drivers format: [{ "userId": string, "location": { "latitude": number, "longitude": number }, "ongoingRide": [ { "id": string, "userId": string, "startLocation": { "latitude": number, "longitude": number }, "endLocation": { "latitude": number, "longitude": number } "timestamp": number, "isOnCar": boolean, <---- if passenger on the car } ], "capacity": number, "timestamp": number }] ''' # print('entered RV') g = RVGraph(self.constraints_param, self.useGridWorld) g.RVGraphPairwiseRequests(requests) if showDetails: print("rrGraph: ", g.requestsGraph) g.RVGraphPairwiseDriverRequest(requests, drivers) if showDetails: print("rvGraph: ",g.rvGraph) # print('entered rtv') driversInRV = [] for d,_,_ in g.rvGraph: if d not in driversInRV: driversInRV.append(d) g2 = RTVGraph(self.constraints_param, self.useGridWorld) g2.RTVGraphFindFeasibleTrips(g, driversInRV) if showDetails: print("rtvGraph: ",g2.rtvGraph) # print('entered assignment') g3=AssignTrips(self.constraints_param["maxCost"], self.useGridWorld) #g3.assignment_ilp(g2.rtvGraph, showDetails=showDetails) g3.assignment(g2.rtvGraph, showDetails=showDetails) if showDetails: print("assignment: ",g3.assignList) print("assigned V: ",g3. assignedV) print("assigned R: ",g3. assignedR) for r,d in g3.assignList: d["ongoingRide"].append(r) remainingReq = [ r for r in requests if r not in g3.assignedR ] return (g3.assignList, remainingReq) def Test(): requests = [ { "id": '1', "userId": 'eric', "startLocation": loc['city_one'], "endLocation": loc['sai_ying_pun_station'], "timestamp": 1553701760965, "isOnCar": False }, { "id": '2', "userId": 'tony', "startLocation": loc['cu'], "endLocation": loc['hku'], "timestamp": 1553701760965, "isOnCar": False }, { "id": '3', "userId": 'alex', "startLocation": loc['cu'], "endLocation": loc['city_one'], "timestamp": 1553701760965, "isOnCar": False }, ] onGoingReq1 = { "id": '4', "userId": 'David', "startLocation": loc['cu'], "endLocation": loc['hku'], "timestamp": 1553701060965, "isOnCar": False } drivers = [ { "userId": 'Antony', "location": loc['cu'], "ongoingRide": [], "capacity": 2 }, { "userId": 'Elven', "location": loc['science_park'], "ongoingRide": [], "capacity": 2 } ] dMatcher = DynamicTripVehicleAssignmentMatcher({ 'maxMatchDistance': 5000, 'maxCost': 5000 }) M, R = dMatcher.match(requests, drivers) for r, d in M: print(r["userId"], '->', d["userId"]) print('remaining request: ', len(R)) if __name__ == "__main__": Test()
the-stack_106_31100
# Import import numpy as np import time import json import torch import argparse from torch import nn from torch import optim import torch.nn.functional as F from torch.autograd import Variable from torchvision import datasets, transforms, models from PIL import Image device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # input def get_input_args(): # options parser = argparse.ArgumentParser(description='Predict flower') parser.add_argument('--img', type=str, default='flowers/test/1/image_06760.jpg', help='Choose image ') parser.add_argument('--check_point', type=str, default='checkpoint.pth', help='Choose the checkpoint') parser.add_argument('--gpu', type=bool, default=False, help='train with gpu') parser.add_argument('--topK', type=int, default=5, help='Print the top K classes ') parser.add_argument('--category_to_name', type=str, default='cat_to_name.json', help='Load the JSON file to find names') return parser.parse_args() # checkpoint def load_checkpoint(filepath): checkpoint = torch.load(filepath) model = models.vgg19(pretrained=True) if checkpoint['arch'] == 'VGG' else models.densenet161(pretrained=True) model.to(device) model.classifier = checkpoint['classifier'] model.load_state_dict(checkpoint['state_dict']) model.class_to_idx = checkpoint['class_to_idx'] return model def process_image(image): ''' Scales, crops, and normalizes a PIL image for a PyTorch model, returns an Numpy array ''' im=Image.open(image) width=im.size[0] height=im.size[1] AspectRatio=width/height if width <= height: im=im.resize((256,int(256/AspectRatio))) else: im=im.resize((int(256*AspectRatio),256)) midWidth=im.size[0]/2 midHeight=im.size[1]/2 cropped_im=im.crop((midWidth-112, midHeight-112, midWidth+112, midHeight+112)) np_image=np.asarray(cropped_im)/255 means=np.array([0.485, 0.456, 0.406]) std=np.array([0.229, 0.224, 0.225]) normalized_image=(np_image-means)/std final_image=normalized_image.transpose((2, 0, 1)) return torch.from_numpy(final_image) def predict(image_path, model, topk=5): ''' Predict the class of image using the trained model. ''' device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # predict the class from the image file image = process_image(image_path) image = image.unsqueeze(0).float() image = image.to(device) model = load_checkpoint(model) model.eval() with torch.no_grad(): output = model.forward(image) ps = torch.exp(output) probs, indices = torch.topk(ps, topk) Probs = np.array(probs.data[0]) Indices = np.array(indices.data[0]) with open(args.category_to_name, 'r') as f: cat_to_name = json.load(f) # convert the class_to_idx idx_to_class = {idx:Class for Class,idx in model.class_to_idx.items()} classes = [idx_to_class[i] for i in Indices] labels = [cat_to_name[Class] for Class in classes] return Probs,labels # Print the top K classes args = get_input_args() probs,classes = predict(args.img, args.check_point, args.topK) print('Left: Possible Type Right: Probability') for prob, Class in zip(probs, classes): print("%20s: %f" % (Class, prob))
the-stack_106_31101
import os for dirs in os.listdir(os.curdir): if os.path.isfile(dirs): continue count = 0 file1 = open(dirs + "/protection_curve.csv") for line in file1: count+=1 if count == 11: trident_11 = float(line) if count == 22: trident_22 = float(line) print(dirs + "," +str(trident_11) + "," +str(trident_22))
the-stack_106_31103
import pathlib import setuptools # The directory containing this file HERE = pathlib.Path(__file__).parent # The text of the README file README = (HERE / "README.md").read_text() # This call to setup() does all the work setuptools.setup( name="rx-scheduler", version="0.0.1", description="Function interval runner based on rxpy and asyncio", long_description=README, long_description_content_type="text/markdown", url="https://github.com/ryazantseff/rxpy-scheduler", author="Maxim Ryazantsev", author_email="[email protected]", license="MIT", keywords = ['Scheduler', 'rxpy', 'async'], install_requires=[ 'asyncio', 'rx', ], packages=setuptools.find_packages(), classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', ], )
the-stack_106_31105
#!coding: utf-8 import os import shutil import textwrap from . import engines from . import provision from .. import util from ..script import Script from ..script import ScriptDirectory from ..util.compat import get_current_bytecode_suffixes from ..util.compat import has_pep3147 from ..util.compat import u def _get_staging_directory(): if provision.FOLLOWER_IDENT: return "scratch_%s" % provision.FOLLOWER_IDENT else: return "scratch" def staging_env(create=True, template="generic", sourceless=False): from alembic import command, script cfg = _testing_config() if create: path = os.path.join(_get_staging_directory(), "scripts") if os.path.exists(path): shutil.rmtree(path) command.init(cfg, path, template=template) if sourceless: try: # do an import so that a .pyc/.pyo is generated. util.load_python_file(path, "env.py") except AttributeError: # we don't have the migration context set up yet # so running the .env py throws this exception. # theoretically we could be using py_compiler here to # generate .pyc/.pyo without importing but not really # worth it. pass assert sourceless in ( "pep3147_envonly", "simple", "pep3147_everything", ), sourceless make_sourceless( os.path.join(path, "env.py"), "pep3147" if "pep3147" in sourceless else "simple", ) sc = script.ScriptDirectory.from_config(cfg) return sc def clear_staging_env(): shutil.rmtree(_get_staging_directory(), True) def script_file_fixture(txt): dir_ = os.path.join(_get_staging_directory(), "scripts") path = os.path.join(dir_, "script.py.mako") with open(path, "w") as f: f.write(txt) def env_file_fixture(txt): dir_ = os.path.join(_get_staging_directory(), "scripts") txt = ( """ from alembic import context config = context.config """ + txt ) path = os.path.join(dir_, "env.py") pyc_path = util.pyc_file_from_path(path) if pyc_path: os.unlink(pyc_path) with open(path, "w") as f: f.write(txt) def _sqlite_file_db(tempname="foo.db"): dir_ = os.path.join(_get_staging_directory(), "scripts") url = "sqlite:///%s/%s" % (dir_, tempname) return engines.testing_engine(url=url) def _sqlite_testing_config(sourceless=False): dir_ = os.path.join(_get_staging_directory(), "scripts") url = "sqlite:///%s/foo.db" % dir_ return _write_config_file( """ [alembic] script_location = %s sqlalchemy.url = %s sourceless = %s [loggers] keys = root [handlers] keys = console [logger_root] level = WARN handlers = console qualname = [handler_console] class = StreamHandler args = (sys.stderr,) level = NOTSET formatter = generic [formatters] keys = generic [formatter_generic] format = %%(levelname)-5.5s [%%(name)s] %%(message)s datefmt = %%H:%%M:%%S """ % (dir_, url, "true" if sourceless else "false") ) def _multi_dir_testing_config(sourceless=False, extra_version_location=""): dir_ = os.path.join(_get_staging_directory(), "scripts") url = "sqlite:///%s/foo.db" % dir_ return _write_config_file( """ [alembic] script_location = %s sqlalchemy.url = %s sourceless = %s version_locations = %%(here)s/model1/ %%(here)s/model2/ %%(here)s/model3/ %s [loggers] keys = root [handlers] keys = console [logger_root] level = WARN handlers = console qualname = [handler_console] class = StreamHandler args = (sys.stderr,) level = NOTSET formatter = generic [formatters] keys = generic [formatter_generic] format = %%(levelname)-5.5s [%%(name)s] %%(message)s datefmt = %%H:%%M:%%S """ % ( dir_, url, "true" if sourceless else "false", extra_version_location, ) ) def _no_sql_testing_config(dialect="postgresql", directives=""): """use a postgresql url with no host so that connections guaranteed to fail""" dir_ = os.path.join(_get_staging_directory(), "scripts") return _write_config_file( """ [alembic] script_location = %s sqlalchemy.url = %s:// %s [loggers] keys = root [handlers] keys = console [logger_root] level = WARN handlers = console qualname = [handler_console] class = StreamHandler args = (sys.stderr,) level = NOTSET formatter = generic [formatters] keys = generic [formatter_generic] format = %%(levelname)-5.5s [%%(name)s] %%(message)s datefmt = %%H:%%M:%%S """ % (dir_, dialect, directives) ) def _write_config_file(text): cfg = _testing_config() with open(cfg.config_file_name, "w") as f: f.write(text) return cfg def _testing_config(): from alembic.config import Config if not os.access(_get_staging_directory(), os.F_OK): os.mkdir(_get_staging_directory()) return Config(os.path.join(_get_staging_directory(), "test_alembic.ini")) def write_script( scriptdir, rev_id, content, encoding="ascii", sourceless=False ): old = scriptdir.revision_map.get_revision(rev_id) path = old.path content = textwrap.dedent(content) if encoding: content = content.encode(encoding) with open(path, "wb") as fp: fp.write(content) pyc_path = util.pyc_file_from_path(path) if pyc_path: os.unlink(pyc_path) script = Script._from_path(scriptdir, path) old = scriptdir.revision_map.get_revision(script.revision) if old.down_revision != script.down_revision: raise Exception( "Can't change down_revision " "on a refresh operation." ) scriptdir.revision_map.add_revision(script, _replace=True) if sourceless: make_sourceless( path, "pep3147" if sourceless == "pep3147_everything" else "simple" ) def make_sourceless(path, style): import py_compile py_compile.compile(path) if style == "simple" and has_pep3147(): pyc_path = util.pyc_file_from_path(path) suffix = get_current_bytecode_suffixes()[0] filepath, ext = os.path.splitext(path) simple_pyc_path = filepath + suffix shutil.move(pyc_path, simple_pyc_path) pyc_path = simple_pyc_path elif style == "pep3147" and not has_pep3147(): raise NotImplementedError() else: assert style in ("pep3147", "simple") pyc_path = util.pyc_file_from_path(path) assert os.access(pyc_path, os.F_OK) os.unlink(path) def three_rev_fixture(cfg): a = util.rev_id() b = util.rev_id() c = util.rev_id() script = ScriptDirectory.from_config(cfg) script.generate_revision(a, "revision a", refresh=True) write_script( script, a, """\ "Rev A" revision = '%s' down_revision = None from alembic import op def upgrade(): op.execute("CREATE STEP 1") def downgrade(): op.execute("DROP STEP 1") """ % a, ) script.generate_revision(b, "revision b", refresh=True) write_script( script, b, u( """# coding: utf-8 "Rev B, méil, %3" revision = '{}' down_revision = '{}' from alembic import op def upgrade(): op.execute("CREATE STEP 2") def downgrade(): op.execute("DROP STEP 2") """ ).format(b, a), encoding="utf-8", ) script.generate_revision(c, "revision c", refresh=True) write_script( script, c, """\ "Rev C" revision = '%s' down_revision = '%s' from alembic import op def upgrade(): op.execute("CREATE STEP 3") def downgrade(): op.execute("DROP STEP 3") """ % (c, b), ) return a, b, c def multi_heads_fixture(cfg, a, b, c): """Create a multiple head fixture from the three-revs fixture""" d = util.rev_id() e = util.rev_id() f = util.rev_id() script = ScriptDirectory.from_config(cfg) script.generate_revision( d, "revision d from b", head=b, splice=True, refresh=True ) write_script( script, d, """\ "Rev D" revision = '%s' down_revision = '%s' from alembic import op def upgrade(): op.execute("CREATE STEP 4") def downgrade(): op.execute("DROP STEP 4") """ % (d, b), ) script.generate_revision( e, "revision e from d", head=d, splice=True, refresh=True ) write_script( script, e, """\ "Rev E" revision = '%s' down_revision = '%s' from alembic import op def upgrade(): op.execute("CREATE STEP 5") def downgrade(): op.execute("DROP STEP 5") """ % (e, d), ) script.generate_revision( f, "revision f from b", head=b, splice=True, refresh=True ) write_script( script, f, """\ "Rev F" revision = '%s' down_revision = '%s' from alembic import op def upgrade(): op.execute("CREATE STEP 6") def downgrade(): op.execute("DROP STEP 6") """ % (f, b), ) return d, e, f def _multidb_testing_config(engines): """alembic.ini fixture to work exactly with the 'multidb' template""" dir_ = os.path.join(_get_staging_directory(), "scripts") databases = ", ".join(engines.keys()) engines = "\n\n".join( "[%s]\n" "sqlalchemy.url = %s" % (key, value.url) for key, value in engines.items() ) return _write_config_file( """ [alembic] script_location = %s sourceless = false databases = %s %s [loggers] keys = root [handlers] keys = console [logger_root] level = WARN handlers = console qualname = [handler_console] class = StreamHandler args = (sys.stderr,) level = NOTSET formatter = generic [formatters] keys = generic [formatter_generic] format = %%(levelname)-5.5s [%%(name)s] %%(message)s datefmt = %%H:%%M:%%S """ % (dir_, databases, engines) )
the-stack_106_31107
#runas solve(500) #pythran export solve(int) def solve(nfact): prime_list = [2, 3, 5, 7, 11, 13, 17, 19, 23] # Ensure that this is initialised with at least 1 prime prime_dict = dict.fromkeys(prime_list, 1) def _isprime(n): ''' Raw check to see if n is prime. Assumes that prime_list is already populated ''' isprime = n >= 2 and 1 or 0 for prime in prime_list: # Check for factors with all primes if prime * prime > n: break # ... up to sqrt(n) if not n % prime: isprime = 0 break if isprime: prime_dict[n] = 1 # Maintain a dictionary for fast lookup return isprime def prime(x): ''' Returns the xth prime ''' lastn = prime_list[-1] while len(prime_list) <= x: # Keep working until we've got the xth prime lastn = lastn + 1 # Check the next number if _isprime(lastn): prime_list.append(lastn) # Maintain a list for sequential access return prime_list[x] def num_factors(n): ''' Returns the number of factors of n, including 1 and n ''' div = 1 x = 0 while n > 1: c = 1 while not n % prime(x): c = c + 1 n = n // prime(x) x = x + 1 div = div * c return div for i in range(1, 1000000000): n = i * (i+1) // 2 if num_factors(n) > nfact: return n break
the-stack_106_31108
# Search for lines that contain 'New Revision: ' followed by a number # Then turn the number into a float and append it to nums # Finally print the length and the average of nums import re fname = input('Enter file:') hand = open(fname) nums = list() for line in hand: line = line.rstrip() x = re.findall('New Revision: ([0-9]+)', line) if len(x) == 1: val = float(x[0]) nums.append(val) print(len(nums)) print(int(sum(nums)/len(nums)))
the-stack_106_31110
#@+leo-ver=5-thin #@+node:mork.20041010095009: * @file ../plugins/xsltWithNodes.py #@+<< docstring >> #@+node:ekr.20050226120104: ** << docstring >> """ Adds the Outline:XSLT menu containing XSLT-related commands. This menu contains the following items: - Set StyleSheet Node: - Selects the current node as the xsl stylesheet the plugin will use. - Process Node with Stylesheet Node: - Processes the current node as an xml document, resolving section references and Leo directives. - Creates a sibling containing the results. Requires 4Suite 1.0a3 or better, downloadable from http://4Suite.org. """ #@-<< docstring >> #@@language python #@@tabwidth -4 #@+<< imports >> #@+node:mork.20041025113509: ** << imports >> import leo.core.leoGlobals as g from xml.dom import minidom import io StringIO = io.StringIO try: import Ft from Ft.Xml import InputSource from Ft.Xml.Xslt.Processor import Processor except ImportError: g.cantImport("Ft",__name__) Ft = None import weakref #@-<< imports >> #@+<<parser problems>> #@+node:mork.20041024091024: ** <<parser problems>> #@@killcolor #@+at # 1. Having space before the start of the document caused it not to work. I fixed # this by striping the whitespace from the start and end of the data at xslt # time. # # 2. having a @ right before a tag causes it to not process. # It appears to be safe to follow this pattern: # @ </end> # but not: # @</end> # # I dont know at this point if its just illegal xml, or its a problem in the parser. ?? #@-<<parser problems>> #@+<<future directions>> #@+node:mork.20041025101943: ** <<future directions>> #@+at # 1. Add more XSLT boilerplate insertions.( done in .3 ) # 2. Maybe add a well-formedness check. (done in .3, test with minidom ) #@-<<future directions>> __version__ = '0.6' #@+<< version history >> #@+node:mork.20041025113211: ** << version history >> #@@killcolor #@+at # # 0.1: Original code. # # 0.2 EKR: Converted to outline. # # 0.3: Added more XSLT boilerplate. Added Test with Minidom Discovered parser problem(?). # # 0.4 EKR: # - Added init function. # 0.5 EKR: # - Remove 'start2' hook & haveseen dict. # - Use keywords.get('c') instead of g.top(). # 0.6 EKR: # - Removed g.top from example code. #@-<< version history >> #@+others #@+node:ekr.20050226120104.1: ** init def init(): '''Return True if the plugin has loaded successfully.''' ok = Ft if ok: g.registerHandler(('menu2',"new"),addMenu) g.plugin_signon(__name__) return ok #@+node:mork.20041025115037: ** xslt elements #This dict contains elements that go into a stylesheet xslt = { 'apply-imports': '<xsl:apply-imports/>', 'apply-templates': "<xsl:apply-templates select ='' mode='' />", 'attribute': "<xsl:attribute name=''> </xsl:attribute>", 'attribute-set': "<xsl:attribute-set name=''> </xsl:attribute-set>", 'call-template': "<xsl:call-template name=''> </xsl:call-template>", 'choose': "<xsl:choose> </xsl:choose>", 'comment': "<xsl:comment> </xsl:comment>", 'copy': "<xsl:copy> </xsl:copy>", 'copy-of': "<xsl:copy-of select='' />", 'decimal-format' : "<xsl:decimal-format />", 'element': "<xsl:element name='' > </xsl:element>", 'fallback': "<xsl:fallback> </xsl:fallback>", 'for-each': "<xsl:for-each select='' > </xsl:for-each>", 'if': "<xsl:if test=''> </xsl:if>", 'import': "<xsl:import href='' />", 'include': "<xsl:include href='' />", 'key': "<xsl:key name='' match='' use='' />", 'message': "<xsl:message> </xsl:message>", 'namespace-alias': "<xsl:namespace-alias stylesheet-prefix='' result-prefix='' />", 'number': "<xsl:number />", 'otherwise': "<xsl:otherwise> </xsl:otherwise>", 'output': "<xsl:output />", 'param': "<xsl:param name='' > </xsl:param>", 'preserve-space': "<xsl:preserve-space elements='' />", 'processing-instruction': "<xsl:processing-instruction name='' > </xsl:processing-instruction>", 'sort': "<xsl:sort />", 'strip-space': "<xsl:strip-space elements='' />", 'stylesheet': "<xsl:stylesheet xmlns:xsl='' version='' > </xsl:stylesheet>", 'template': "<xsl:template > </xsl:template>", 'text': "<xsl:text > </xsl:text>", 'transform': "<xsl:transform > </xsl:transform>", 'value-of': "<xsl:value-of select='' />", 'variable': "<xsl:variable name=''> </xsl:variable>", 'when': "<xsl:when text='' > </xsl:when>", 'with-param': "<xsl:with-param name=''> </xsl:with-param>", } #@+node:mork.20041010095202: ** setStyleNode stylenodes = weakref.WeakKeyDictionary() def setStyleNode( c ): '''this command sets what the current style node is''' position = c.p stylenodes[ c ] = position #@+node:mork.20041010095202.1: ** processDocumentNode def processDocumentNode( c ): '''this executes the stylesheet node against the current node''' try: if not styleNodeSelected( c ): return proc = Processor() stylenode = stylenodes[ c ] pos = c.p c.selectPosition( stylenode ) sIO = getString( c ) mdom1 = minidom.parseString( sIO ) sIO = str( mdom1.toxml() ) hstring = str( stylenode.h ) if hstring == "": hstring = "no headline" stylesource = InputSource.DefaultFactory.fromString( sIO, uri = hstring) proc.appendStylesheet( stylesource ) c.selectPosition( pos ) xmlnode = pos.v xIO = getString( c ) mdom2 = minidom.parseString( xIO ) xIO = str( mdom2.toxml()) xhead = str( xmlnode.headString ) if xhead == "": xhead = "no headline" xmlsource = InputSource.DefaultFactory.fromString( xIO, uri = xhead ) result = proc.run( xmlsource ) nhline = "xsl:transform of " + str( xmlnode.headString ) p2 = pos.insertAfter() # tnode ) p2.setBodyString(result) p2.setHeadString(nhline) c.redraw() except Exception as x: g.es( 'exception ' + str( x )) c.redraw() #@+node:mork.20041025121608: ** addXSLTNode def addXSLTNode (c): '''creates a node and inserts some xslt boilerplate''' pos = c.p #body = '''<?xml version="1.0"?>''' # body = '''<?xml version="1.0"?> #<xsl:transform xmlns:xsl="http:///www.w3.org/1999/XSL/Transform" version="1.0">''' body = '''<?xml version="1.0"?> <xsl:transform xmlns:xsl="http:///www.w3.org/1999/XSL/Transform" version="1.0"> </xsl:transform>''' p2 = pos.insertAfter() # tnode) p2.setBodyString(body) p2.setHeadString("xslt stylesheet") c.redraw() #@+node:mork.20041010110121: ** addXSLTElement def addXSLTElement( c , element): '''adds some xslt to the text node''' w = c.frame.body.wrapper w.insert( 'insert', element ) #@+node:mork.20041025113021: ** getString (xsltWithNodes.py) def getString (c): ''' This def turns a node into a string using Leo's file-nosent write logic. ''' at = c.atFileCommands # EKR: 2017/04/10: needs testing. at.toString = True at.writeOpenFile(c.p, sentinels=False) return cleanString(at.stringOutput) #@+node:mork.20041025120706: ** doMinidomTest def doMinidomTest( c ): ''' This def performs a simple test on a node. Can the data be successfully parsed by minidom or not? Results are output to the log. ''' s = getString( c ) try: minidom.parseString( s ) except Exception as x: g.error("Minidom could not parse node because of:\n %s" % x) return g.blue("Minidom could parse the node") #@+node:mork.20041025090303: ** cleanString def cleanString( data ): '''This method cleans a string up for the processor. It currently just removes leading and trailing whitespace''' val = data.strip() return val #@+node:mork.20041010125444: ** jumpToStyleNode def jumpToStyleNode( c ): '''Simple method that jumps us to the current XSLT node''' if not styleNodeSelected( c ): return pos = stylenodes[ c ] c.selectPosition( pos ) c.redraw() #@+node:mork.20041010125444.1: ** styleNodeSelected def styleNodeSelected( c ): '''Determines if a XSLT Style node has not been selected''' if c not in stylenodes: g.es( "No Style Node selected" ) return False return True #@+node:mork.20041010100633: ** addMenu def addMenu( tag, keywords ): # pylint: disable=undefined-variable # c *is* defined. c = keywords.get('c') if not c: return mc = c.frame.menu # men = men.getMenu( 'Outline' ) # xmen = Tk.Menu(men,tearoff = False) xmen = mc.createNewMenu ('XSLT',"Outline") c.add_command(xmen, label = "Set Stylesheet Node", command = lambda c = c : setStyleNode(c)) c.add_command(xmen, label = "Jump To Style Node", command = lambda c = c: jumpToStyleNode(c)) c.add_command(xmen, label = "Process Node with Stylesheet Node", command = lambda c=c : processDocumentNode(c)) xmen.add_separator(xmen) c.add_command(xmen, label = "Create Stylesheet Node", command = lambda c = c : addXSLTNode(c)) # elmen= Tk.Menu( xmen, tearoff = False ) # xmen.add_cascade( label = "Insert XSL Element", menu = elmen ) m2 = mc.createNewMenu ('Insert XSL Element','XSLT') xsltkeys = list(xslt.keys()) xsltkeys.sort() for z in xsltkeys: # pylint: disable=cell-var-from-loop c.add_command(m2, label = z, command = lambda c=c,element=xslt[ z ]: addXSLTElement(c,element)) # men.add_cascade(menu = xmen, label = "XSLT-Node Commands") m3 = mc.createNewMenu('XSLT-Node Commands','XSLT') c.add_command(m3, label = 'Test Node with Minidom', command = lambda c=c: doMinidomTest(c)) #@+node:mork.20041025100716: ** examples/tests #@+at # table.leo contains the xml. xslt is in the other node. # # To test this plugin, set the xslt node to be the xslt node. # # Process it against the table.leo node. #@@c # pylint: disable=pointless-string-statement r''' #@+others #@+node:ekr.20140906065955.18786: *3* table.leo #@@path /boboo/leo-4.2-final/plugins #@+node:ekr.20140906065955.18787: *4* @@nosent table.py import io StringIO = io.StringIO import Tkinter as Tk import tktable as tktab import leo.core.leoGlobals as g import csv import weakref import Pmw class CSVVisualizer: arrays = [] #@+others #@+node:ekr.20140906065955.18788: *5* init def __init__( self, c ): self.c = c self.arr = tktab.ArrayVar() CSVVisualizer.arrays.append( self.arr ) self.rows = 0 self.columns = 0 self.type = 'excel' #@+node:ekr.20140906065955.18789: *5* addData def addData( self ): arr = self.arr reader = self.readData() hc = False for n, d in enumerate( reader ): for n1, d2 in enumerate( d ): arr.set( "%s,%s" %( n, n1 ), str(d2) ) self.columns = n1 + 1 self.rows = n + 1 return self.columns, self.rows #@+node:ekr.20140906065955.18790: *5* readData def readData( self ): c = self.c pos = c.p data = pos.b cS = StringIO() cS.write( data ) cS.seek( 0 ) sniff = csv.Sniffer() self.type = sniff.sniff( data ) reader = csv.reader( cS, self.type ) return reader #@+node:ekr.20140906065955.18791: *5* writeData def writeData( self, save ): pos = self.c.p n2 = self.rows n = self.columns data = [] for z in range( n2 ): ndata = [] for z2 in range( n ): ndata.append( self.arr.get( "%s,%s" % ( z, z2 ) ) ) data.append( ndata ) cS = StringIO() csv_write = csv.writer( cS, self.type ) for z in data: csv_write.writerow( z ) cS.seek( 0 ) if not save: p2 = pos.insertAfter() # tnd ) p2.setBodyString(cS.getvalue()) p2.setHeadString("Save of Edited " + str( pos.h)) else: # pos.setTnodeText( cS.getvalue() ) pos.setBodyString(cS.getvalue()) self.c.redraw() #@+node:ekr.20140906065955.18792: *5* addColumn def addColumn( self, tab ): self.columns = self.columns + 1 tab.configure( cols = self.columns ) for z in range( self.rows ): self.arr.set( '%s,%s' %( z , self.columns -1 ), "" ) #@+node:ekr.20140906065955.18793: *5* deleteColumn def deleteColumn( self, tab ): i = tab.index( 'active' ) if i: tab.delete_cols( i[ 1 ], 1 ) self.columns = self.columns - 1 #@+node:ekr.20140906065955.18794: *5* addRow def addRow( self , tab ): self.rows = self.rows + 1 tab.configure( rows = self.rows ) rc = '%s,0' % (self.rows -1 ) for z in range( self.columns ): self.arr.set( '%s,%s' %( self.rows - 1, z ), "" ) tab.activate( rc ) tab.focus_set() #@+node:ekr.20140906065955.18795: *5* deleteRow def deleteRow( self, tab ): i = tab.index( 'active' ) if i: tab.delete_rows( i[ 0 ], 1 ) self.rows = self.rows - 1 #@+node:ekr.20140906065955.18796: *5* createDefaultRecord def createDefaultRecord( self, rows, columns ): self.rows = rows self.columns = columns for z in range( rows ): for z1 in range( columns ): self.arr.set( '%s,%s' %( z, z1 ), "" ) #@+node:ekr.20140906065955.18797: *5* newTable def newTable( c ): pos = c.p npos = pos.insertAfter() # tnd ) npos.setHeadString('New Table') c.redraw() c.selectPosition( npos ) viewTable( c , True ) #@+node:ekr.20140906065955.18798: *5* viewTable def viewTable( c, new = False ): pos = c.p dialog = createDialog( pos ) csvv = CSVVisualizer( c ) sframe = Pmw.ScrolledFrame( dialog.interior() ) sframe.pack() tab = createTable( sframe.interior(), csvv.arr ) createBBox( dialog.interior(), csvv, tab ) if not new: n = csvv.addData() else: n = ( 4, 1 ) csvv.createDefaultRecord( n[ 1 ], n[ 0 ] ) tab.configure( cols = n[ 0 ], rows = n[ 1 ] ) dialog.configure( command = lambda name, d = dialog, csvv = csvv: fireButton( name, d, csvv ) ) dialog.activate() #@+node:ekr.20140906065955.18799: *5* fireButton def fireButton( name, dialog, csvv ): if name == "Close": dialog.deactivate() dialog.destroy() elif name == "Write To New": csvv.writeData( False ) elif name == "Save To Current": csvv.writeData( True ) #@+node:ekr.20140906065955.18800: *5* createDialog def createDialog( pos ): dialog = Pmw.Dialog( title = "Table Editor for " + str( pos.h), buttons = [ 'Save To Current', 'Write To New', 'Close' ] ) dbbox = dialog.component( 'buttonbox' ) for z in range( dbbox.numbuttons() ): dbbox.button( z ).configure( background = 'white', foreground = 'blue' ) return dialog #@+node:ekr.20140906065955.18801: *5* createTable def createTable( parent , arr ): tab = tktab.Table( parent , rows = 0, cols = 0, variable = arr, sparsearray=1, background = 'white', foreground = 'blue', selecttype = 'row' ) tab.tag_configure( 'active', background = '#FFE7C6', foreground = 'blue' ) tab.tag_configure( 'sel', background = '#FFE7C6', foreground = 'blue', bd =2 ) tab.pack() return tab #@+node:ekr.20140906065955.18802: *5* createBBox def createBBox( parent, csvv, tab ): bbox = Pmw.ButtonBox( parent ) bconfig = ( ( "Add Row", lambda tab = tab : csvv.addRow( tab ) ), ( "Delete Row", lambda tab = tab: csvv.deleteRow( tab ) ), ( "Add Column", lambda tab = tab: csvv.addColumn( tab ) ), ( "Delete Column", lambda tab = tab: csvv.deleteColumn( tab ) ) ) for z in bconfig: bbox.add( z[ 0 ], command = z[ 1 ], background = 'white', foreground = 'blue' ) bbox.pack() #@+node:ekr.20140906065955.18803: *5* addMenu haveseen = weakref.WeakKeyDictionary() def addMenu( tag, keywords ): c = keywords.get('c') or keywords.get('new_c') if c in haveseen: return haveseen[ c ] = None men = c.frame.menu men = men.getMenu( 'Outline' ) tmen = Tk.Menu( men, tearoff = 0 ) men.add_cascade( menu = tmen, label = "Table Commands" ) c.add_command(tmen, label = "Edit Node With Table", command = lambda c = c: viewTable( c ) ) c.add_command(tmen, label = "Create New Table", command = lambda c = c: newTable( c ) ) #@+node:ekr.20140906065955.18804: *5* if 1: if 1: registerHandler( ('start2' , 'open2', "new") , addMenu ) __version__ = ".125" g.plugin_signon( __name__ ) #@-others #@+node:mork.20041025100851.1: *3* xslt to turn leo file into html <?xml version="1.0"?> <xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"> <xsl:output method = 'xml' /> <xsl:preserve-space elements='leo_file/tnodes/t'/> <xsl:template match='v'> <ul type='square'> <xsl:variable name ='t' select ='@t' /> <h1><xsl:value-of select='vh'/></h1> <xsl:for-each select='ancestor::leo_file/tnodes/t'> <xsl:if test="./attribute::tx=$t"> <li> <pre> <xsl:value-of select='.' /> </pre> </li> </xsl:if> </xsl:for-each> <xsl:if test ='./v' > <xsl:apply-templates select = 'v'/> </xsl:if> </ul> </xsl:template> <xsl:template match ='leo_file'> <html><head> <style> ul{ position:relative;right=25; border:thin ridge blue} li{ position:relative;right=25} pre{ background:#FFE7C6 } </style> </head> <body> <xsl:apply-templates select='vnodes'/> </body> </html> </xsl:template> <xsl:template match = 'vnodes'> <xsl:for-each select = 'v'> <frame> <xsl:apply-templates select ='.'/> </frame> </xsl:for-each> </xsl:template> </xsl:transform> #@-others ''' #@-others #@-leo
the-stack_106_31111
#!/usr/bin/env python # -*- coding: utf-8 -*- # vim:ts=4:sw=4:softtabstop=4:smarttab:expandtab from __future__ import unicode_literals, division, absolute_import, print_function from .compatibility_utils import PY2, bstr, utf8_str if PY2: range = xrange import os import struct # note: struct pack, unpack, unpack_from all require bytestring format # data all the way up to at least python 2.7.5, python 3 okay with bytestring import re # note: re requites the pattern to be the exact same type as the data to be searched in python3 # but u"" is not allowed for the pattern itself only b"" from .mobi_index import MobiIndex from .mobi_utils import fromBase32 from .unipath import pathof _guide_types = [b'cover',b'title-page',b'toc',b'index',b'glossary',b'acknowledgements', b'bibliography',b'colophon',b'copyright-page',b'dedication', b'epigraph',b'foreward',b'loi',b'lot',b'notes',b'preface',b'text'] # locate beginning and ending positions of tag with specific aid attribute def locate_beg_end_of_tag(ml, aid): pattern = utf8_str(r'''<[^>]*\said\s*=\s*['"]%s['"][^>]*>''' % aid) aid_pattern = re.compile(pattern,re.IGNORECASE) for m in re.finditer(aid_pattern, ml): plt = m.start() pgt = ml.find(b'>',plt+1) return plt, pgt return 0, 0 # iterate over all tags in block in reverse order, i.e. last ta to first tag def reverse_tag_iter(block): end = len(block) while True: pgt = block.rfind(b'>', 0, end) if pgt == -1: break plt = block.rfind(b'<', 0, pgt) if plt == -1: break yield block[plt:pgt+1] end = plt class K8Processor: def __init__(self, mh, sect, files, debug=False): self.sect = sect self.files = files self.mi = MobiIndex(sect) self.mh = mh self.skelidx = mh.skelidx self.fragidx = mh.fragidx self.guideidx = mh.guideidx self.fdst = mh.fdst self.flowmap = {} self.flows = None self.flowinfo = [] self.parts = None self.partinfo = [] self.linked_aids = set() self.fdsttbl= [0,0xffffffff] self.DEBUG = debug # read in and parse the FDST info which is very similar in format to the Palm DB section # parsing except it provides offsets into rawML file and not the Palm DB file # this is needed to split up the final css, svg, etc flow section # that can exist at the end of the rawML file if self.fdst != 0xffffffff: header = self.sect.loadSection(self.fdst) if header[0:4] == b"FDST": num_sections, = struct.unpack_from(b'>L', header, 0x08) self.fdsttbl = struct.unpack_from(bstr('>%dL' % (num_sections*2)), header, 12)[::2] + (mh.rawSize, ) sect.setsectiondescription(self.fdst,"KF8 FDST INDX") if self.DEBUG: print("\nFDST Section Map: %d sections" % num_sections) for j in range(num_sections): print("Section %d: 0x%08X - 0x%08X" % (j, self.fdsttbl[j],self.fdsttbl[j+1])) else: print("\nError: K8 Mobi with Missing FDST info") # read/process skeleton index info to create the skeleton table skeltbl = [] if self.skelidx != 0xffffffff: # for i in range(2): # fname = 'skel%04d.dat' % i # data = self.sect.loadSection(self.skelidx + i) # with open(pathof(fname), 'wb') as f: # f.write(data) outtbl, ctoc_text = self.mi.getIndexData(self.skelidx, "KF8 Skeleton") fileptr = 0 for [text, tagMap] in outtbl: # file number, skeleton name, fragtbl record count, start position, length skeltbl.append([fileptr, text, tagMap[1][0], tagMap[6][0], tagMap[6][1]]) fileptr += 1 self.skeltbl = skeltbl if self.DEBUG: print("\nSkel Table: %d entries" % len(self.skeltbl)) print("table: filenum, skeleton name, frag tbl record count, start position, length") for j in range(len(self.skeltbl)): print(self.skeltbl[j]) # read/process the fragment index to create the fragment table fragtbl = [] if self.fragidx != 0xffffffff: # for i in range(3): # fname = 'frag%04d.dat' % i # data = self.sect.loadSection(self.fragidx + i) # with open(pathof(fname), 'wb') as f: # f.write(data) outtbl, ctoc_text = self.mi.getIndexData(self.fragidx, "KF8 Fragment") for [text, tagMap] in outtbl: # insert position, ctoc offset (aidtext), file number, sequence number, start position, length ctocoffset = tagMap[2][0] ctocdata = ctoc_text[ctocoffset] fragtbl.append([int(text), ctocdata, tagMap[3][0], tagMap[4][0], tagMap[6][0], tagMap[6][1]]) self.fragtbl = fragtbl if self.DEBUG: print("\nFragment Table: %d entries" % len(self.fragtbl)) print("table: file position, link id text, file num, sequence number, start position, length") for j in range(len(self.fragtbl)): print(self.fragtbl[j]) # read / process guide index for guide elements of opf guidetbl = [] if self.guideidx != 0xffffffff: # for i in range(3): # fname = 'guide%04d.dat' % i # data = self.sect.loadSection(self.guideidx + i) # with open(pathof(fname), 'wb') as f: # f.write(data) outtbl, ctoc_text = self.mi.getIndexData(self.guideidx, "KF8 Guide elements)") for [text, tagMap] in outtbl: # ref_type, ref_title, frag number ctocoffset = tagMap[1][0] ref_title = ctoc_text[ctocoffset] ref_type = text fileno = None if 3 in tagMap: fileno = tagMap[3][0] if 6 in tagMap: fileno = tagMap[6][0] guidetbl.append([ref_type, ref_title, fileno]) self.guidetbl = guidetbl if self.DEBUG: print("\nGuide Table: %d entries" % len(self.guidetbl)) print("table: ref_type, ref_title, fragtbl entry number") for j in range(len(self.guidetbl)): print(self.guidetbl[j]) def buildParts(self, rawML): # now split the rawML into its flow pieces self.flows = [] for j in range(0, len(self.fdsttbl)-1): start = self.fdsttbl[j] end = self.fdsttbl[j+1] self.flows.append(rawML[start:end]) # the first piece represents the xhtml text text = self.flows[0] self.flows[0] = b'' # walk the <skeleton> and fragment tables to build original source xhtml files # *without* destroying any file position information needed for later href processing # and create final list of file separation start: stop points and etc in partinfo if self.DEBUG: print("\nRebuilding flow piece 0: the main body of the ebook") self.parts = [] self.partinfo = [] fragptr = 0 baseptr = 0 cnt = 0 for [skelnum, skelname, fragcnt, skelpos, skellen] in self.skeltbl: baseptr = skelpos + skellen skeleton = text[skelpos: baseptr] for i in range(fragcnt): [insertpos, idtext, filenum, seqnum, startpos, length] = self.fragtbl[fragptr] aidtext = idtext[12:-2] if i == 0: filename = 'part%04d.xhtml' % filenum slice = text[baseptr: baseptr + length] insertpos = insertpos - skelpos head = skeleton[:insertpos] tail = skeleton[insertpos:] actual_inspos = insertpos if (tail.find(b'>') < tail.find(b'<') or head.rfind(b'>') < head.rfind(b'<')): # There is an incomplete tag in either the head or tail. # This can happen for some badly formed KF8 files print('The fragment table for %s has incorrect insert position. Calculating manually.' % skelname) bp, ep = locate_beg_end_of_tag(skeleton, aidtext) if bp != ep: actual_inspos = ep + 1 + startpos if insertpos != actual_inspos: print("fixed corrupt fragment table insert position", insertpos+skelpos, actual_inspos+skelpos) insertpos = actual_inspos self.fragtbl[fragptr][0] = actual_inspos + skelpos skeleton = skeleton[0:insertpos] + slice + skeleton[insertpos:] baseptr = baseptr + length fragptr += 1 cnt += 1 self.parts.append(skeleton) self.partinfo.append([skelnum, 'Text', filename, skelpos, baseptr, aidtext]) assembled_text = b''.join(self.parts) if self.DEBUG: outassembled = os.path.join(self.files.k8dir, 'assembled_text.dat') with open(pathof(outassembled),'wb') as f: f.write(assembled_text) # The primary css style sheet is typically stored next followed by any # snippets of code that were previously inlined in the # original xhtml but have been stripped out and placed here. # This can include local CDATA snippets and and svg sections. # The problem is that for most browsers and ereaders, you can not # use <img src="imageXXXX.svg" /> to import any svg image that itself # properly uses an <image/> tag to import some raster image - it # should work according to the spec but does not for almost all browsers # and ereaders and causes epub validation issues because those raster # images are in manifest but not in xhtml text - since they only # referenced from an svg image # So we need to check the remaining flow pieces to see if they are css # or svg images. if svg images, we must check if they have an <image /> # and if so inline them into the xhtml text pieces. # there may be other sorts of pieces stored here but until we see one # in the wild to reverse engineer we won't be able to tell self.flowinfo.append([None, None, None, None]) svg_tag_pattern = re.compile(br'''(<svg[^>]*>)''', re.IGNORECASE) image_tag_pattern = re.compile(br'''(<image[^>]*>)''', re.IGNORECASE) for j in range(1,len(self.flows)): flowpart = self.flows[j] nstr = '%04d' % j m = re.search(svg_tag_pattern, flowpart) if m is not None: # svg ptype = b'svg' start = m.start() m2 = re.search(image_tag_pattern, flowpart) if m2 is not None: pformat = b'inline' pdir = None fname = None # strip off anything before <svg if inlining flowpart = flowpart[start:] else: pformat = b'file' pdir = "Images" fname = 'svgimg' + nstr + '.svg' else: # search for CDATA and if exists inline it if flowpart.find(b'[CDATA[') >= 0: ptype = b'css' flowpart = b'<style type="text/css">\n' + flowpart + b'\n</style>\n' pformat = b'inline' pdir = None fname = None else: # css - assume as standalone css file ptype = b'css' pformat = b'file' pdir = "Styles" fname = 'style' + nstr + '.css' self.flows[j] = flowpart self.flowinfo.append([ptype, pformat, pdir, fname]) if self.DEBUG: print("\nFlow Map: %d entries" % len(self.flowinfo)) for fi in self.flowinfo: print(fi) print("\n") print("\nXHTML File Part Position Information: %d entries" % len(self.partinfo)) for pi in self.partinfo: print(pi) if False: # self.Debug: # dump all of the locations of the aid tags used in TEXT # find id links only inside of tags # inside any < > pair find all "aid=' and return whatever is inside the quotes # [^>]* means match any amount of chars except for '>' char # [^'"] match any amount of chars except for the quote character # \s* means match any amount of whitespace print("\npositions of all aid= pieces") id_pattern = re.compile(br'''<[^>]*\said\s*=\s*['"]([^'"]*)['"][^>]*>''',re.IGNORECASE) for m in re.finditer(id_pattern, rawML): [filename, partnum, start, end] = self.getFileInfo(m.start()) [seqnum, idtext] = self.getFragTblInfo(m.start()) value = fromBase32(m.group(1)) print(" aid: %s value: %d at: %d -> part: %d, start: %d, end: %d" % (m.group(1), value, m.start(), partnum, start, end)) print(" %s fragtbl entry %d" % (idtext, seqnum)) return # get information fragment table entry by pos def getFragTblInfo(self, pos): for j in range(len(self.fragtbl)): [insertpos, idtext, filenum, seqnum, startpos, length] = self.fragtbl[j] if pos >= insertpos and pos < (insertpos + length): # why are these "in: and before: added here return seqnum, b'in: ' + idtext if pos < insertpos: return seqnum, b'before: ' + idtext return None, None # get information about the part (file) that exists at pos in original rawML def getFileInfo(self, pos): for [partnum, pdir, filename, start, end, aidtext] in self.partinfo: if pos >= start and pos < end: return filename, partnum, start, end return None, None, None, None # accessor functions to properly protect the internal structure def getNumberOfParts(self): return len(self.parts) def getPart(self,i): if i >= 0 and i < len(self.parts): return self.parts[i] return None def getPartInfo(self, i): if i >= 0 and i < len(self.partinfo): return self.partinfo[i] return None def getNumberOfFlows(self): return len(self.flows) def getFlow(self,i): # note flows[0] is empty - it was all of the original text if i > 0 and i < len(self.flows): return self.flows[i] return None def getFlowInfo(self,i): # note flowinfo[0] is empty - it was all of the original text if i > 0 and i < len(self.flowinfo): return self.flowinfo[i] return None def getIDTagByPosFid(self, posfid, offset): # first convert kindle:pos:fid and offset info to position in file # (fromBase32 can handle both string types on input) row = fromBase32(posfid) off = fromBase32(offset) [insertpos, idtext, filenum, seqnm, startpos, length] = self.fragtbl[row] pos = insertpos + off fname, pn, skelpos, skelend = self.getFileInfo(pos) if fname is None: # pos does not exist # default to skeleton pos instead print("Link To Position", pos, "does not exist, retargeting to top of target") pos = self.skeltbl[filenum][3] fname, pn, skelpos, skelend = self.getFileInfo(pos) # an existing "id=" or "name=" attribute must exist in original xhtml otherwise it would not have worked for linking. # Amazon seems to have added its own additional "aid=" inside tags whose contents seem to represent # some position information encoded into Base32 name. # so find the closest "id=" before position the file by actually searching in that file idtext = self.getIDTag(pos) return fname, idtext def getIDTag(self, pos): # find the first tag with a named anchor (name or id attribute) before pos fname, pn, skelpos, skelend = self.getFileInfo(pos) if pn is None and skelpos is None: print("Error: getIDTag - no file contains ", pos) textblock = self.parts[pn] npos = pos - skelpos # if npos inside a tag then search all text before the its end of tag marker pgt = textblock.find(b'>',npos) plt = textblock.find(b'<',npos) if plt == npos or pgt < plt: npos = pgt + 1 # find id and name attributes only inside of tags # use a reverse tag search since that is faster # inside any < > pair find "id=" and "name=" attributes return it # [^>]* means match any amount of chars except for '>' char # [^'"] match any amount of chars except for the quote character # \s* means match any amount of whitespace textblock = textblock[0:npos] id_pattern = re.compile(br'''<[^>]*\sid\s*=\s*['"]([^'"]*)['"]''',re.IGNORECASE) name_pattern = re.compile(br'''<[^>]*\sname\s*=\s*['"]([^'"]*)['"]''',re.IGNORECASE) aid_pattern = re.compile(br'''<[^>]+\s(?:aid|AID)\s*=\s*['"]([^'"]+)['"]''') for tag in reverse_tag_iter(textblock): # any ids in the body should default to top of file if tag[0:6] == b'<body ': return b'' if tag[0:6] != b'<meta ': m = id_pattern.match(tag) or name_pattern.match(tag) if m is not None: return m.group(1) m = aid_pattern.match(tag) if m is not None: self.linked_aids.add(m.group(1)) return b'aid-' + m.group(1) return b'' # do we need to do deep copying def setParts(self, parts): assert(len(parts) == len(self.parts)) for i in range(len(parts)): self.parts[i] = parts[i] # do we need to do deep copying def setFlows(self, flows): assert(len(flows) == len(self.flows)) for i in range(len(flows)): self.flows[i] = flows[i] # get information about the part (file) that exists at pos in original rawML def getSkelInfo(self, pos): for [partnum, pdir, filename, start, end, aidtext] in self.partinfo: if pos >= start and pos < end: return [partnum, pdir, filename, start, end, aidtext] return [None, None, None, None, None, None] # fileno is actually a reference into fragtbl (a fragment) def getGuideText(self): guidetext = b'' for [ref_type, ref_title, fileno] in self.guidetbl: if ref_type == b'thumbimagestandard': continue if ref_type not in _guide_types and not ref_type.startswith(b'other.'): if ref_type == b'start': ref_type = b'text' else: ref_type = b'other.' + ref_type [pos, idtext, filenum, seqnm, startpos, length] = self.fragtbl[fileno] [pn, pdir, filename, skelpos, skelend, aidtext] = self.getSkelInfo(pos) idtext = self.getIDTag(pos) linktgt = filename.encode('utf-8') if idtext != b'': linktgt += b'#' + idtext guidetext += b'<reference type="'+ref_type+b'" title="'+ref_title+b'" href="'+utf8_str(pdir)+b'/'+linktgt+b'" />\n' # opf is encoded utf-8 so must convert any titles properly guidetext = (guidetext.decode(self.mh.codec)).encode("utf-8") return guidetext def getPageIDTag(self, pos): # find the first tag with a named anchor (name or id attribute) before pos # but page map offsets need to little more leeway so if the offset points # into a tag look for the next ending tag "/>" or "</" and start your search from there. fname, pn, skelpos, skelend = self.getFileInfo(pos) if pn is None and skelpos is None: print("Error: getIDTag - no file contains ", pos) textblock = self.parts[pn] npos = pos - skelpos # if npos inside a tag then search all text before next ending tag pgt = textblock.find(b'>',npos) plt = textblock.find(b'<',npos) if plt == npos or pgt < plt: # we are in a tag # so find first ending tag pend1 = textblock.find(b'/>', npos) pend2 = textblock.find(b'</', npos) if pend1 != -1 and pend2 != -1: pend = min(pend1, pend2) else: pend = max(pend1, pend2) if pend != -1: npos = pend else: npos = pgt + 1 # find id and name attributes only inside of tags # use a reverse tag search since that is faster # inside any < > pair find "id=" and "name=" attributes return it # [^>]* means match any amount of chars except for '>' char # [^'"] match any amount of chars except for the quote character # \s* means match any amount of whitespace textblock = textblock[0:npos] id_pattern = re.compile(br'''<[^>]*\sid\s*=\s*['"]([^'"]*)['"]''',re.IGNORECASE) name_pattern = re.compile(br'''<[^>]*\sname\s*=\s*['"]([^'"]*)['"]''',re.IGNORECASE) for tag in reverse_tag_iter(textblock): # any ids in the body should default to top of file if tag[0:6] == b'<body ': return b'' if tag[0:6] != b'<meta ': m = id_pattern.match(tag) or name_pattern.match(tag) if m is not None: return m.group(1) return b''
the-stack_106_31112
# coding=utf-8 """SQLAlchemy session.""" from contextlib import contextmanager from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker from sqlalchemy.pool import NullPool from kombu.utils.compat import register_after_fork ModelBase = declarative_base() @contextmanager def session_cleanup(session): try: yield except Exception: session.rollback() raise finally: session.close() def _after_fork_cleanup_session(session): session._after_fork() class SessionManager(object): """Manage SQLAlchemy sessions.""" def __init__(self): self._engines = {} self._sessions = {} self.forked = False self.prepared = False if register_after_fork is not None: register_after_fork(self, _after_fork_cleanup_session) def _after_fork(self): self.forked = True def get_engine(self, dburi, **kwargs): if self.forked: try: return self._engines[dburi] except KeyError: engine = self._engines[dburi] = create_engine(dburi, **kwargs) return engine else: return create_engine(dburi, poolclass=NullPool) def create_session(self, dburi, short_lived_sessions=False, **kwargs): engine = self.get_engine(dburi, **kwargs) if self.forked: if short_lived_sessions or dburi not in self._sessions: self._sessions[dburi] = sessionmaker(bind=engine) return engine, self._sessions[dburi] else: return engine, sessionmaker(bind=engine) def prepare_models(self, engine): if not self.prepared: ModelBase.metadata.create_all(engine) self.prepared = True def session_factory(self, dburi, **kwargs): engine, session = self.create_session(dburi, **kwargs) self.prepare_models(engine) return session()
the-stack_106_31115
#!/usr/bin/env python3 # -*-coding:utf-8-*- import os import core.template content = """ Character sheet =============== Name: {name} Name again: {name} Age: {age} """ def test_get_tags(tmpdir): template_file = os.path.join(str(tmpdir.realpath()), 'test_template.md') with open(template_file, 'w') as out: out.write(content) template = core.template.Template(template_file) tags = template.tags assert 'name' in tags assert 'age' in tags assert len(tags) == 2
the-stack_106_31116
#coding=utf-8 # Copyright (c) 2018 Baidu, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import tensorflow as tf import layers.tf_layers as layers from utils.utility import seq_length class LSTM(object): """ mlp cnn init function """ def __init__(self, config): self.vocab_size = int(config['vocabulary_size']) self.emb_size = int(config['embedding_dim']) self.rnn_hidden_size = int(config['rnn_hidden_size']) self.hidden_size = int(config['hidden_size']) self.left_name, self.seq_len1 = config['left_slots'][0] self.right_name, self.seq_len2 = config['right_slots'][0] self.task_mode = config['training_mode'] self.emb_layer = layers.EmbeddingEnhancedLayer(self.vocab_size, self.emb_size, zero_pad=True, scale=False) self.rnn = layers.LSTMLayer(self.rnn_hidden_size) self.extract = layers.ExtractLastLayer() if self.task_mode == "pointwise": self.n_class = int(config['n_class']) self.fc1_layer = layers.FCLayer(self.rnn_hidden_size * 2, self.hidden_size) self.fc2_layer = layers.FCLayer(self.hidden_size, self.n_class) elif self.task_mode == "pairwise": self.fc1_layer = layers.FCLayer(self.rnn_hidden_size * 1, self.hidden_size) self.cos_layer = layers.CosineLayer() else: logging.error("training mode not supported") def predict(self, left_slots, right_slots): """ predict graph of this net """ left = left_slots[self.left_name] right = right_slots[self.right_name] left_emb = self.emb_layer.ops(left) # (N, len, D) right_emb = self.emb_layer.ops(right) # (N, len, D) ## left left_length = seq_length(left) left_encoder = self.rnn.ops(left_emb, left_length) left_rep = self.extract.ops(left_encoder, left_length) right_length = seq_length(right) right_encoder = self.rnn.ops(right_emb, right_length) right_rep = self.extract.ops(right_encoder, right_length) if self.task_mode == "pointwise": rep_concat = tf.concat([left_rep, right_rep], -1) hidden1 = self.fc1_layer.ops(rep_concat) pred = self.fc2_layer.ops(hidden1) elif self.task_mode == "pairwise": left_hidden1 = self.fc1_layer.ops(left_rep) right_hidden1 = self.fc1_layer.ops(right_rep) pred = self.cos_layer.ops(left_hidden1, right_hidden1) return pred
the-stack_106_31118
import sys import pytest import ibis from pandas.util import testing as tm pa = pytest.importorskip('pyarrow') import pyarrow.parquet as pq # noqa: E402 from ibis.file.parquet import ParquetClient, ParquetTable # noqa: E402 from ibis.file.client import ( FileDatabase, execute_and_reset as execute) # noqa: E402 pytestmark = pytest.mark.skipif(sys.platform == 'win32', reason='See ibis issue #1698') @pytest.fixture def transformed(parquet): closes = parquet.pq.close opens = parquet.pq.open t = opens.inner_join(closes, ['time', 'ticker']) t = t[opens, closes.close] t = t.mutate(avg=(t.open + t.close) / 2) t = t[['time', 'ticker', 'avg']] return t def test_creation(parquet): # we have existing files in our dir d = parquet.client.root assert len(list(d.iterdir())) == 1 pqd = d / 'pq' assert len(list(pqd.iterdir())) == 2 assert len(pq.read_table(str(pqd / 'open.parquet'))) == 50 assert len(pq.read_table(str(pqd / 'close.parquet'))) == 50 def test_client(tmpdir, data): # construct with a path to a file d = tmpdir / 'pq' d.mkdir() for k, v in data.items(): f = d / "{}.parquet".format(k) table = pa.Table.from_pandas(v) pq.write_table(table, str(f)) c = ParquetClient(tmpdir) assert c.list_databases() == ['pq'] assert c.database().pq.list_tables() == ['close', 'open'] def test_navigation(parquet): # directory navigation assert isinstance(parquet, FileDatabase) result = dir(parquet) assert result == ['pq'] d = parquet.pq assert isinstance(d, FileDatabase) result = dir(d) assert result == ['close', 'open'] result = d.list_tables() assert result == ['close', 'open'] opens = d.open assert isinstance(opens.op(), ParquetTable) closes = d.close assert isinstance(closes.op(), ParquetTable) def test_read(parquet, data): closes = parquet.pq.close assert str(closes) is not None result = closes.execute() expected = data['close'] tm.assert_frame_equal(result, expected) result = execute(closes) tm.assert_frame_equal(result, expected) def test_write(transformed, tmpdir): t = transformed expected = execute(t) tpath = tmpdir / 'new_dir' tpath.mkdir() path = tpath / 'foo.parquet' assert not path.exists() t = transformed[['time', 'ticker', 'avg']] c = ibis.parquet.connect(tpath) c.insert('foo.parquet', t) execute(t) assert path.exists() # readback c = ParquetClient(str(tpath)).database() result = c.list_databases() assert result == [] result = c.foo.execute() tm.assert_frame_equal(result, expected) path = tpath / 'foo.parquet' assert path.exists()
the-stack_106_31119
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function import sys import click from polyaxon_cli.cli.check import check_polyaxonfile, check_polyaxonfile_kind from polyaxon_cli.cli.project import get_project_or_local from polyaxon_cli.client import PolyaxonClient from polyaxon_cli.client.exceptions import ( PolyaxonClientException, PolyaxonHTTPError, PolyaxonShouldExitError ) from polyaxon_cli.logger import clean_outputs from polyaxon_cli.schemas import kinds from polyaxon_cli.utils import indentation from polyaxon_cli.utils.formatting import Printer def get_tensorboard_url(user, project_name, experiment=None, group=None): if experiment: return "{}/tensorboard/{}/{}/experiments/{}/\n".format( PolyaxonClient().api_config.http_host, user, project_name, experiment) if group: return "{}/tensorboard/{}/{}/groups/{}/\n".format( PolyaxonClient().api_config.http_host, user, project_name, group) return "{}/tensorboard/{}/{}/\n".format(PolyaxonClient().api_config.http_host, user, project_name) @click.group() @click.option('--project', '-p', type=str, help="The project name, e.g. 'mnist' or 'adam/mnist'.") @click.option('--group', '-g', type=int, help="The group id number.") @click.option('--experiment', '-xp', type=int, help="The experiment id number.") @click.pass_context @clean_outputs def tensorboard(ctx, project, group, experiment): ctx.obj = ctx.obj or {} ctx.obj['project'] = project ctx.obj['group'] = group ctx.obj['experiment'] = experiment @tensorboard.command() @click.pass_context @clean_outputs def url(ctx): """Prints the tensorboard url for project/experiment/experiment group. Uses [Caching](/references/polyaxon-cli/#caching) Examples for project tensorboards: \b ```bash $ polyaxon tensorboard url ``` \b ```bash $ polyaxon tensorboard -p mnist url ``` Examples for experiment tensorboards: \b ```bash $ polyaxon tensorboard -xp 1 url ``` Examples for experiment group tensorboards: \b ```bash $ polyaxon tensorboard -g 1 url ``` """ user, project_name = get_project_or_local(ctx.obj.get('project')) group = ctx.obj.get('group') experiment = ctx.obj.get('experiment') if experiment: try: response = PolyaxonClient().experiment.get_experiment( username=user, project_name=project_name, experiment_id=experiment) obj = 'experiment {}'.format(experiment) except (PolyaxonHTTPError, PolyaxonShouldExitError, PolyaxonClientException) as e: Printer.print_error('Could not get experiment `{}`.'.format(experiment)) Printer.print_error('Error message `{}`.'.format(e)) sys.exit(1) elif group: try: response = PolyaxonClient().experiment_group.get_experiment_group( username=user, project_name=project_name, group_id=group) obj = 'group `{}`.'.format(group) except (PolyaxonHTTPError, PolyaxonShouldExitError, PolyaxonClientException) as e: Printer.print_error('Could not get group `{}`.'.format(group)) Printer.print_error('Error message `{}`.'.format(e)) sys.exit(1) else: try: response = PolyaxonClient().project.get_project( username=user, project_name=project_name) obj = 'project `{}`.'.format(project_name) except (PolyaxonHTTPError, PolyaxonShouldExitError, PolyaxonClientException) as e: Printer.print_error('Could not get project `{}`.'.format(project_name)) Printer.print_error('Error message `{}`.'.format(e)) sys.exit(1) if response.has_tensorboard: click.echo(get_tensorboard_url(user=user, project_name=project_name, experiment=experiment, group=group)) else: Printer.print_warning('This `{}` does not have a running tensorboard'.format(obj)) click.echo('You can start tensorboard with this command: polyaxon tensorboard start --help') @tensorboard.command() @click.option('--file', '-f', multiple=True, type=click.Path(exists=True), help='The polyaxon files to run.') @click.pass_context @clean_outputs def start(ctx, file): # pylint:disable=redefined-builtin """Start a tensorboard deployment for project/experiment/experiment group. Project tensorboard will aggregate all experiments under the project. Experiment group tensorboard will aggregate all experiments under the group. Experiment tensorboard will show all metrics for an experiment. Uses [Caching](/references/polyaxon-cli/#caching) Example: using the default tensorflow image 1.4.1. \b ```bash $ polyaxon tensorboard start ``` Example: with custom image and resources \b ```bash $ polyaxon tensorboard start -f file -f file_override ... ``` Example: starting a tensorboard for an experiment group \b ```bash $ polyaxon tensorboard -g 1 start -f file ``` Example: starting a tensorboard for an experiment \b ```bash $ polyaxon tensorboard -xp 112 start -f file ``` """ specification = None job_content = None if file: specification = check_polyaxonfile(file, log=False).specification if specification: # pylint:disable=protected-access check_polyaxonfile_kind(specification=specification, kind=kinds.TENSORBOARD) job_content = specification.raw_data user, project_name = get_project_or_local(ctx.obj.get('project')) group = ctx.obj.get('group') experiment = ctx.obj.get('experiment') if experiment: try: response = PolyaxonClient().experiment.start_tensorboard( username=user, project_name=project_name, experiment_id=experiment, content=job_content, is_managed=True, ) obj = 'experiment `{}`'.format(experiment) except (PolyaxonHTTPError, PolyaxonShouldExitError, PolyaxonClientException) as e: Printer.print_error('Could not start tensorboard experiment `{}`.'.format(experiment)) Printer.print_error('Error message `{}`.'.format(e)) sys.exit(1) elif group: try: response = PolyaxonClient().experiment_group.start_tensorboard( username=user, project_name=project_name, group_id=group, content=job_content, is_managed=True, ) obj = 'group `{}`'.format(group) except (PolyaxonHTTPError, PolyaxonShouldExitError, PolyaxonClientException) as e: Printer.print_error('Could not start tensorboard group `{}`.'.format(group)) Printer.print_error('Error message `{}`.'.format(e)) sys.exit(1) else: try: response = PolyaxonClient().project.start_tensorboard( username=user, project_name=project_name, content=job_content, is_managed=True, ) obj = 'project `{}`'.format(project_name) except (PolyaxonHTTPError, PolyaxonShouldExitError, PolyaxonClientException) as e: Printer.print_error('Could not start tensorboard project `{}`.'.format(project_name)) Printer.print_error('Error message `{}`.'.format(e)) sys.exit(1) if response.status_code == 200: Printer.print_header("A tensorboard for this {} is already running on:".format(obj)) click.echo(get_tensorboard_url(user=user, project_name=project_name, experiment=experiment, group=group)) sys.exit(0) if response.status_code != 201: Printer.print_error('Something went wrong, Tensorboard was not created.') sys.exit(1) Printer.print_success('Tensorboard is being deployed for {}'.format(obj)) indentation.puts("It may take some time before you can access tensorboard.\n") indentation.puts("Your tensorboard will be available on:\n") with indentation.indent(4): indentation.puts(get_tensorboard_url(user, project_name, experiment, group)) @tensorboard.command() @click.option('--yes', '-y', is_flag=True, default=False, help='Automatic yes to prompts. ' 'Assume "yes" as answer to all prompts and run non-interactively.') @click.pass_context @clean_outputs def stop(ctx, yes): """Stops the tensorboard deployment for project/experiment/experiment group if it exists. Uses [Caching](/references/polyaxon-cli/#caching) Examples: stopping project tensorboard \b ```bash $ polyaxon tensorboard stop ``` Examples: stopping experiment group tensorboard \b ```bash $ polyaxon tensorboard -g 1 stop ``` Examples: stopping experiment tensorboard \b ```bash $ polyaxon tensorboard -xp 112 stop ``` """ user, project_name = get_project_or_local(ctx.obj.get('project')) group = ctx.obj.get('group') experiment = ctx.obj.get('experiment') if experiment: obj = 'experiment `{}`'.format(experiment) elif group: obj = 'group `{}`'.format(group) else: obj = 'project `{}/{}`'.format(user, project_name) if not yes and not click.confirm("Are sure you want to stop tensorboard " "for {}".format(obj)): click.echo('Existing without stopping tensorboard.') sys.exit(1) if experiment: try: PolyaxonClient().experiment.stop_tensorboard( username=user, project_name=project_name, experiment_id=experiment) Printer.print_success('Tensorboard is being deleted') except (PolyaxonHTTPError, PolyaxonShouldExitError, PolyaxonClientException) as e: Printer.print_error('Could not stop tensorboard {}.'.format(obj)) Printer.print_error('Error message `{}`.'.format(e)) sys.exit(1) elif group: try: PolyaxonClient().experiment_group.stop_tensorboard( username=user, project_name=project_name, group_id=group) Printer.print_success('Tensorboard is being deleted') except (PolyaxonHTTPError, PolyaxonShouldExitError, PolyaxonClientException) as e: Printer.print_error('Could not stop tensorboard {}.'.format(obj)) Printer.print_error('Error message `{}`.'.format(e)) sys.exit(1) else: try: PolyaxonClient().project.stop_tensorboard( username=user, project_name=project_name) Printer.print_success('Tensorboard is being deleted') except (PolyaxonHTTPError, PolyaxonShouldExitError, PolyaxonClientException) as e: Printer.print_error('Could not stop tensorboard {}.'.format(obj)) Printer.print_error('Error message `{}`.'.format(e)) sys.exit(1)
the-stack_106_31123
""" Postgresql workload class """ import logging import random from prettytable import PrettyTable from ocs_ci.ocs.ripsaw import RipSaw from ocs_ci.utility.utils import TimeoutSampler, run_cmd from ocs_ci.ocs.utils import get_pod_name_by_pattern from ocs_ci.utility import utils, templating from ocs_ci.ocs.exceptions import UnexpectedBehaviour, CommandFailed, ResourceWrongStatusException from ocs_ci.ocs.resources.ocs import OCS from ocs_ci.ocs import constants from subprocess import CalledProcessError from ocs_ci.ocs.resources.pod import get_all_pods, get_pod_obj, get_operator_pods from tests.helpers import wait_for_resource_state from ocs_ci.ocs.constants import RIPSAW_NAMESPACE, RIPSAW_CRD from ocs_ci.utility.spreadsheet.spreadsheet_api import GoogleSpreadSheetAPI log = logging.getLogger(__name__) class Postgresql(RipSaw): """ Postgresql workload operation """ def __init__(self, **kwargs): """ Initializer function """ super().__init__(**kwargs) self._apply_crd(crd=RIPSAW_CRD) def _apply_crd(self, crd): """ Apply the CRD Args: crd (str): yaml to apply """ RipSaw.apply_crd(self, crd=crd) def setup_postgresql(self, replicas): """ Deploy postgres sql server Args: replicas (int): Number of postgresql pods to be deployed Raises: CommandFailed: If PostgreSQL server setup fails """ log.info("Deploying postgres database") try: pgsql_service = templating.load_yaml( constants.PGSQL_SERVICE_YAML ) pgsql_cmap = templating.load_yaml( constants.PGSQL_CONFIGMAP_YAML ) pgsql_sset = templating.load_yaml( constants.PGSQL_STATEFULSET_YAML ) pgsql_sset['spec']['replicas'] = replicas self.pgsql_service = OCS(**pgsql_service) self.pgsql_service.create() self.pgsql_cmap = OCS(**pgsql_cmap) self.pgsql_cmap.create() self.pgsql_sset = OCS(**pgsql_sset) self.pgsql_sset.create() self.pod_obj.wait_for_resource( condition='Running', selector='app=postgres', resource_count=replicas, timeout=3600 ) except (CommandFailed, CalledProcessError) as cf: log.error('Failed during setup of PostgreSQL server') raise cf self.pgsql_is_setup = True log.info("Successfully deployed postgres database") def create_pgbench_benchmark( self, replicas, clients=None, threads=None, transactions=None, scaling_factor=None, timeout=None ): """ Create pgbench benchmark pods Args: replicas (int): Number of pgbench pods to be deployed clients (int): Number of clients threads (int): Number of threads transactions (int): Number of transactions scaling_factor (int): scaling factor timeout (int): Time in seconds to wait Returns: List: pgbench pod objects list """ pg_obj_list = [] for i in range(replicas): log.info("Create resource file for pgbench workload") pg_data = templating.load_yaml(constants.PGSQL_BENCHMARK_YAML) pg_data['metadata']['name'] = 'pgbench-benchmark' + f"{i}" pg_data['spec']['workload']['args']['databases'][0][ 'host' ] = "postgres-" + f"{i}" + ".postgres" if clients is not None: pg_data['spec']['workload']['args']['clients'][0] = clients if threads is not None: pg_data['spec']['workload']['args']['threads'] = threads if transactions is not None: pg_data[ 'spec' ]['workload']['args']['transactions'] = transactions if scaling_factor is not None: pg_data[ 'spec' ]['workload']['args']['scaling_factor'] = scaling_factor pg_obj = OCS(**pg_data) pg_obj_list.append(pg_obj) pg_obj.create() # Confirm that expected pgbench pods are spinned log.info("Searching the pgbench pods by its name pattern") timeout = timeout if timeout else 300 for pgbench_pods in TimeoutSampler( timeout, replicas, get_pod_name_by_pattern, 'pgbench-1-dbs-client', RIPSAW_NAMESPACE ): try: if len(pgbench_pods) == replicas: log.info( f"Expected number of pgbench pods are " f"found: {replicas}" ) break except IndexError: log.info( f'Expected number of pgbench pods are {replicas} ' f'but only found {len(pgbench_pods)}' ) return pg_obj_list def get_postgres_pods(self): """ Get all postgres pods Returns: List: postgres pod objects list """ return get_all_pods( namespace=RIPSAW_NAMESPACE, selector=['postgres'] ) def get_pgbench_pods(self): """ Get all pgbench pods Returns: List: pgbench pod objects list """ return [ get_pod_obj( pod, RIPSAW_NAMESPACE ) for pod in get_pod_name_by_pattern('pgbench', RIPSAW_NAMESPACE) ] def delete_pgbench_pods(self, pg_obj_list): """ Delete all pgbench pods on cluster Returns: bool: True if deleted, False otherwise """ log.info("Delete pgbench Benchmark") for pgbench_pod in pg_obj_list: pgbench_pod.delete(force=True) def is_pgbench_running(self): """ Check if pgbench is running Returns: bool: True if pgbench is running; False otherwise """ pod_objs = self.get_pgbench_pods() for pod in pod_objs: if pod.get().get( 'status' ).get('containerStatuses')[0].get('state') == 'running': log.info("One or more pgbench pods are in running state") return True else: return False break def get_pgbench_status(self, pgbench_pod_name): """ Get pgbench status Args: pgbench_pod_name (str): Name of the pgbench pod Returns: str: state of pgbench pod (running/completed) """ pod_obj = get_pod_obj(pgbench_pod_name, namespace=RIPSAW_NAMESPACE) status = pod_obj.get().get( 'status' ).get('containerStatuses')[0].get('state') return 'running' if list(status.keys())[0] == 'running' else status[ 'terminated' ]['reason'] def wait_for_postgres_status( self, status=constants.STATUS_RUNNING, timeout=300 ): """ Wait for postgres pods status to reach running/completed Args: status (str): status to reach Running or Completed timeout (int): Time in seconds to wait """ log.info(f"Waiting for postgres pods to be reach {status} state") postgres_pod_objs = self.get_postgres_pods() for postgres_pod_obj in postgres_pod_objs: wait_for_resource_state( resource=postgres_pod_obj, state=status, timeout=timeout ) def wait_for_pgbench_status(self, status, timeout=None): """ Wait for pgbench benchmark pods status to reach running/completed Args: status (str): status to reach Running or Completed timeout (int): Time in seconds to wait """ """ Sometimes with the default values in the benchmark yaml the pgbench pod is not getting completed within the specified time and the tests are failing. I think it is varying with the infrastructure. So, for now we set the timeout to 30 mins and will start monitoring each pg bench pods for each run.Based on the results we will define the timeout again """ timeout = timeout if timeout else 1800 # Wait for pg_bench pods to initialized and running log.info(f"Waiting for pgbench pods to be reach {status} state") pgbench_pod_objs = self.get_pgbench_pods() for pgbench_pod_obj in pgbench_pod_objs: try: wait_for_resource_state( resource=pgbench_pod_obj, state=status, timeout=timeout ) except ResourceWrongStatusException: output = run_cmd(f'oc logs {pgbench_pod_obj.name}') error_msg = f'{pgbench_pod_obj.name} did not reach to {status} state after {timeout} sec\n{output}' log.error(error_msg) raise UnexpectedBehaviour(error_msg) def validate_pgbench_run(self, pgbench_pods, print_table=True): """ Validate pgbench run Args: pgbench pods (list): List of pgbench pods Returns: pg_output (list): pgbench outputs in list """ all_pgbench_pods_output = [] for pgbench_pod in pgbench_pods: log.info(f"pgbench_client_pod===={pgbench_pod.name}====") output = run_cmd(f'oc logs {pgbench_pod.name} -n {RIPSAW_NAMESPACE}') pg_output = utils.parse_pgsql_logs(output) log.info( "*******PGBench output log*********\n" f"{pg_output}" ) # for data in all_pgbench_pods_output: for data in pg_output: run_id = list(data.keys()) latency_avg = data[run_id[0]]['latency_avg'] if not latency_avg: raise UnexpectedBehaviour( "PGBench failed to run, " "no data found on latency_avg" ) log.info(f"PGBench on {pgbench_pod.name} completed successfully") all_pgbench_pods_output.append((pg_output, pgbench_pod.name)) if print_table: pgbench_pod_table = PrettyTable() pgbench_pod_table.field_names = [ 'pod_name', 'scaling_factor', 'num_clients', 'num_threads', 'trans_client', 'actually_trans', 'latency_avg', 'lat_stddev', 'tps_incl', 'tps_excl' ] for pgbench_pod_out in all_pgbench_pods_output: for pod_output in pgbench_pod_out[0]: for pod in pod_output.values(): pgbench_pod_table.add_row( [pgbench_pod_out[1], pod['scaling_factor'], pod['num_clients'], pod['num_threads'], pod['number_of_transactions_per_client'], pod['number_of_transactions_actually_processed'], pod['latency_avg'], pod['lat_stddev'], pod['tps_incl'], pod['tps_excl']] ) log.info(f'\n{pgbench_pod_table}\n') return all_pgbench_pods_output def get_pgsql_nodes(self): """ Get nodes that contain a pgsql app pod Returns: list: Cluster node OCP objects """ pgsql_pod_objs = self.pod_obj.get( selector=constants.PGSQL_APP_LABEL, all_namespaces=True ) log.info("Create a list of nodes that contain a pgsql app pod") nodes_set = set() for pod in pgsql_pod_objs['items']: log.info( f"pod {pod['metadata']['name']} located on " f"node {pod['spec']['nodeName']}" ) nodes_set.add(pod['spec']['nodeName']) return list(nodes_set) def respin_pgsql_app_pod(self): """ Respin the pgsql app pod Returns: pod status """ app_pod_list = get_operator_pods( constants.PGSQL_APP_LABEL, constants.RIPSAW_NAMESPACE ) app_pod = app_pod_list[random.randint(0, len(app_pod_list) - 1)] log.info(f"respin pod {app_pod.name}") app_pod.delete(wait=True, force=False) wait_for_resource_state( resource=app_pod, state=constants.STATUS_RUNNING, timeout=300 ) def get_pgbech_pod_status_table(self, pgbench_pods): """ Get pgbench pod data and print results on a table Args: pgbench pods (list): List of pgbench pods """ pgbench_pod_table = PrettyTable() pgbench_pod_table.field_names = [ 'pod_name', 'scaling_factor', 'num_clients', 'num_threads', 'trans_client', 'actually_trans', 'latency_avg', 'lat_stddev', 'tps_incl', 'tps_excl' ] for pgbench_pod in pgbench_pods: output = run_cmd(f'oc logs {pgbench_pod.name}') pg_output = utils.parse_pgsql_logs(output) for pod_output in pg_output: for pod in pod_output.values(): pgbench_pod_table.add_row( [pgbench_pod.name, pod['scaling_factor'], pod['num_clients'], pod['num_threads'], pod['number_of_transactions_per_client'], pod['number_of_transactions_actually_processed'], pod['latency_avg'], pod['lat_stddev'], pod['tps_incl'], pod['tps_excl']] ) log.info(f'\n{pgbench_pod_table}\n') def export_pgoutput_to_googlesheet(self, pg_output, sheet_name, sheet_index): """ Collect pgbench output to google spreadsheet Args: pg_output (list): pgbench outputs in list sheet_name (str): Name of the sheet sheet_index (int): Index of sheet """ # Collect data and export to Google doc spreadsheet g_sheet = GoogleSpreadSheetAPI( sheet_name=sheet_name, sheet_index=sheet_index ) log.info("Exporting pgoutput data to google spreadsheet") for pgbench_pod in range(len(pg_output)): for run in range(len(pg_output[pgbench_pod][0])): run_id = list(pg_output[pgbench_pod][0][run].keys())[0] lat_avg = pg_output[ pgbench_pod ][0][run][run_id]['latency_avg'] lat_stddev = pg_output[ pgbench_pod ][0][run][run_id]['lat_stddev'] tps_incl = pg_output[ pgbench_pod ][0][run][run_id]['lat_stddev'] tps_excl = pg_output[pgbench_pod][0][run][run_id]['tps_excl'] g_sheet.insert_row( [f"Pgbench-pod{pg_output[pgbench_pod][1]}-run-{run_id}", int(lat_avg), int(lat_stddev), int(tps_incl), int(tps_excl)], 2 ) g_sheet.insert_row( ["", "latency_avg", "lat_stddev", "lat_stddev", "tps_excl"], 2 ) # Capturing versions(OCP, OCS and Ceph) and test run name g_sheet.insert_row( [f"ocp_version:{utils.get_cluster_version()}", f"ocs_build_number:{utils.get_ocs_build_number()}", f"ceph_version:{utils.get_ceph_version()}", f"test_run_name:{utils.get_testrun_name()}"], 2 ) def cleanup(self): """ Clean up """ log.info("Deleting postgres pods and configuration") if self.pgsql_is_setup: self.pgsql_sset.delete() self.pgsql_cmap.delete() self.pgsql_service.delete() log.info("Deleting pgbench pods") pods_obj = self.get_pgbench_pods() for pod in pods_obj: pod.delete() pod.ocp.wait_for_delete(pod.name) log.info("Deleting ripsaw configuration") RipSaw.cleanup(self)
the-stack_106_31125
"""Copyright 2020 ETH Zurich, Seonwook Park Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from collections import OrderedDict import logging import math import os import socket import time import traceback import gspread import numpy as np from oauth2client.service_account import ServiceAccountCredentials from ..core import DefaultConfig config = DefaultConfig() logger = logging.getLogger(__name__) class GoogleSheetLogger: """Log selected outputs to a predefined Google Sheet. Many thanks to Emre for the idea and the initial code! """ first_column_name = 'Identifier' def __init__(self, model): self.__model = model to_write = self.fill_in_basic_info() if config.resume_from == '': to_write['Start Time'] = time.strftime('%Y/%m/%d %H:%M:%S') # Write experiment information to create row for future logging try: self.ready = True self.update_or_append_row(to_write) except Exception: self.ready = False traceback.print_exc() return def fill_in_basic_info(self): to_write = OrderedDict() to_write['Identifier'] = self.__model.identifier to_write['Last Updated'] = time.strftime('%Y/%m/%d %H:%M:%S') # Write config parameters config_kv = config.get_all_key_values() config_kv = dict([ (k, v) for k, v in config_kv.items() if not k.startswith('datasrc_') and not k.startswith('gsheet_') ]) for k in sorted(list(config_kv.keys())): to_write[k] = config_kv[k] # Get hostname to_write['hostname'] = socket.getfqdn() # Get LSF job ID if exists if 'LSB_JOBID' in os.environ: to_write['LSF Job ID'] = os.environ['LSB_JOBID'] return to_write def update_or_append_row(self, values): assert isinstance(values, dict) if not self.ready: # Silently skip if init failed return if not os.path.isfile(config.gsheet_secrets_json_file): logger.info('Not logging to Google Sheets due to missing authentication information.') logger.info('> Please set the configuration entry: "gsheet_secrets_json_file".') return if len(config.gsheet_workbook_key) == 0: logger.info('Not logging to Google Sheets due to missing workbook key.') logger.info('> Please set the configuration entry: "gsheet_workbook_key".') return # Add some missing info automatically basic_info = self.fill_in_basic_info() for k, v in basic_info.items(): values[k] = v # Authenticate try: credentials = ServiceAccountCredentials.from_json_keyfile_name( filename=config.gsheet_secrets_json_file, scopes=[ 'https://www.googleapis.com/auth/spreadsheets', ], ) client = gspread.authorize(credentials) except: # noqa logger.debug('Could not authenticate with Drive API.') traceback.print_exc() return # Decide on sheet name to select sheet_name = self.__model.identifier.split('/')[0] # Find a workbook by name. workbook = client.open_by_key(config.gsheet_workbook_key) try: sheet = workbook.worksheet(sheet_name) except: # noqa try: sheet = workbook.add_worksheet(title=sheet_name, rows=1000, cols=20) except: # noqa logger.debug('Could not access/add worksheet.') traceback.print_exc() return try: current_values = sheet.get_all_values() except: # noqa logger.debug('Could not get values from worksheet.') traceback.print_exc() return if len(current_values) == 0: try: sheet.update_cell(1, 1, self.first_column_name) except: # noqa logger.debug('Could not insert first cell.') traceback.print_exc() return header = [self.first_column_name] else: header = current_values[0] identifier = values[self.first_column_name] # Construct new row is_header_changed = False new_row = [None] * len(header) for key, value in values.items(): if key not in header: header.append(key) new_row.append(None) is_header_changed = True index = header.index(key) new_row[index] = value if isinstance(value, float) or isinstance(value, int): if math.isnan(value): new_row[index] = 'NaN' elif isinstance(value, np.generic): if np.any(np.isnan(value)): new_row[index] = 'NaN' elif np.isinf(value): new_row[index] = 'Inf' else: new_row[index] = np.asscalar(value) elif isinstance(value, np.ndarray) and value.ndim == 0: new_row[index] = value.item() elif hasattr(value, '__len__') and len(value) > 0: new_row[index] = str(value) # Update header as necessary cells_to_update = [] if is_header_changed: cells_to_update += [ gspread.models.Cell(1, col+1, value) for col, value in enumerate(header) ] # Either update an existing row or append new row try: row_index = [r[0] for r in current_values].index(identifier) cells_to_update += [ gspread.models.Cell(row_index+1, col_index+1, value=value) for col_index, value in enumerate(new_row) if value is not None # Don't remove existing values ] except: # noqa sheet.append_row(new_row) # Run all necessary update operations if len(cells_to_update) > 0: try: sheet.update_cells(cells_to_update) except: # noqa logger.debug('Error in API call to update cells.') traceback.print_exc() return
the-stack_106_31126
'''Base sequence classes.''' import collections import coral from coral.sequence._sequence import Sequence from coral.constants.molecular_bio import COMPLEMENTS class NucleicAcid(Sequence): '''Abstract sequence container for a single nucleic acid sequence molecule.''' def __init__(self, sequence, material, circular=False, run_checks=True, any_char='N'): ''' :param sequence: Input sequence. :type sequence: str :param material: Material type (dna, rna) :type material: str :param circular: The topology of the sequence - if the ends connect, (a circular sequence), set to True. Otherwise, set to False. Enables operations like .rotate(). :type circular: bool :param run_checks: Check inputs / formats (disabling increases speed): alphabet check case :param any_char: Character representing \'any\', e.g. N for DNA. :type any_char: str :type run_checks: bool :returns: coral.sequence.Sequence instance. ''' super(NucleicAcid, self).__init__(sequence, material, run_checks=run_checks, any_char=any_char) self.circular = circular def copy(self): return type(self)(self.seq, self.material, circular=self.circular, run_checks=False) def circularize(self): '''Circularize the sequence, if linear. :returns: A circularized version of the current sequence. :rtype: coral.sequence._sequence.Sequence ''' copy = self.copy() copy.circular = True return copy def complement(self): copy = self.copy() code = dict(COMPLEMENTS[self.material]) copy.seq = ''.join([code[str(base)] for base in copy]) return copy def gc(self): '''Find the frequency of G and C in the current sequence.''' gc = len([base for base in self.seq if base == 'C' or base == 'G']) return float(gc) / len(self) def is_palindrome(self): seq_len = len(self.seq) if seq_len % 2 == 0: # Sequence has even number of bases, can test non-overlapping seqs wing = seq_len / 2 l_wing = self[0: wing] r_wing = self[wing:] if l_wing == r_wing.reverse_complement(): return True else: return False else: # Sequence has odd number of bases and cannot be a palindrome return False def is_rotation(self, other): '''Determine whether two sequences are the same, just at different rotations. :param other: The sequence to check for rotational equality. :type other: coral.sequence._sequence.Sequence ''' if len(self) != len(other): return False for i in range(len(self)): if self.rotate(i) == other: return True return False def linearize(self, index=0): '''Linearize the Sequence at an index. :param index: index at which to linearize. :type index: int :returns: A linearized version of the current sequence. :rtype: coral.sequence._sequence.Sequence :raises: ValueError if the input is a linear sequence. ''' if not self.circular and index != 0: raise ValueError('Cannot relinearize a linear sequence.') copy = self.copy() # Snip at the index if index: return copy[index:] + copy[:index] copy.circular = False return copy def locate(self, pattern): '''Find sequences matching a pattern. :param pattern: Sequence for which to find matches. :type pattern: str :returns: Indices of pattern matches. :rtype: list of ints ''' if self.circular: if len(pattern) >= 2 * len(self): raise ValueError('Search pattern longer than searchable ' + 'sequence.') seq = self + self[:len(pattern) - 1] return super(NucleicAcid, seq).locate(pattern) else: return super(NucleicAcid, self).locate(pattern) def mw(self): '''Calculate the molecular weight. :returns: The molecular weight of the current sequence in amu. :rtype: float ''' counter = collections.Counter(self.seq.lower()) mw_a = counter['a'] * 313.2 mw_t = counter['t'] * 304.2 mw_g = counter['g'] * 289.2 mw_c = counter['c'] * 329.2 mw_u = counter['u'] * 306.2 if self.material == 'dna': return mw_a + mw_t + mw_g + mw_c + 79.0 else: return mw_a + mw_u + mw_g + mw_c + 159.0 def rotate(self, n): '''Rotate Sequence by n bases. :param n: Number of bases to rotate. :type n: int :returns: The current sequence reoriented at `index`. :rtype: coral.sequence._sequence.Sequence :raises: ValueError if applied to linear sequence or `index` is negative. ''' if not self.circular and n != 0: raise ValueError('Cannot rotate a linear sequence') else: rotated = self[-n:] + self[:-n] return rotated.circularize() def rotate_to(self, index): '''Orient Sequence to index (only applies to circular sequences). :param index: Position at which to re-zero the Sequence. :type index: int :returns: The current sequence reoriented at `index`. :rtype: coral.sequence._sequence.Sequence :raises: ValueError if applied to linear sequence or `index` is negative. ''' return self.rotate(-index) def reverse(self): return self[::-1] def reverse_complement(self): copy = self.copy() copy.seq = str(self.reverse().complement()) return copy def tm(self, parameters='cloning'): '''Find the melting temperature. :param parameters: The tm method to use (cloning, santalucia98, breslauer86) :type parameters: str ''' return coral.analysis.tm(self, parameters=parameters)
the-stack_106_31128
# -*- coding: utf-8 -*- """ pygments.styles.native ~~~~~~~~~~~~~~~~~~~~~~ pygments version of my "native" vim theme. :copyright: Copyright 2006-2020 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ from pygments.style import Style from pygments.token import Keyword, Name, Comment, String, Error, \ Number, Operator, Generic, Token, Whitespace class NativeStyle(Style): """ Pygments version of the "native" vim theme. """ background_color = '#202020' highlight_color = '#404040' styles = { Token: '#d0d0d0', Whitespace: '#666666', Comment: 'italic #999999', Comment.Preproc: 'noitalic bold #cd2828', Comment.Special: 'noitalic bold #e50808 bg:#520000', Keyword: 'bold #6ab825', Keyword.Pseudo: 'nobold', Operator.Word: 'bold #6ab825', String: '#ed9d13', String.Other: '#ffa500', Number: '#3677a9', Name.Builtin: '#24909d', Name.Variable: '#40ffff', Name.Constant: '#40ffff', Name.Class: 'underline #447fcf', Name.Function: '#447fcf', Name.Namespace: 'underline #447fcf', Name.Exception: '#bbbbbb', Name.Tag: 'bold #6ab825', Name.Attribute: '#bbbbbb', Name.Decorator: '#ffa500', Generic.Heading: 'bold #ffffff', Generic.Subheading: 'underline #ffffff', Generic.Deleted: '#d22323', Generic.Inserted: '#589819', Generic.Error: '#d22323', Generic.Emph: 'italic', Generic.Strong: 'bold', Generic.Prompt: '#aaaaaa', Generic.Output: '#cccccc', Generic.Traceback: '#d22323', Error: 'bg:#e3d2d2 #a61717' }
the-stack_106_31130
#!/usr/bin/python # -*- coding: utf-8 -*- # (c) 2014, Brian Coca <[email protected]> # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['stableinterface'], 'supported_by': 'core'} DOCUMENTATION = ''' --- module: getent short_description: a wrapper to the unix getent utility description: - Runs getent against one of it's various databases and returns information into the host's facts, in a getent_<database> prefixed variable version_added: "1.8" options: database: required: True description: - the name of a getent database supported by the target system (passwd, group, hosts, etc). key: required: False default: '' description: - key from which to return values from the specified database, otherwise the full contents are returned. split: required: False default: None description: - "character used to split the database values into lists/arrays such as ':' or '\t', otherwise it will try to pick one depending on the database" fail_key: required: False default: True description: - If a supplied key is missing this will make the task fail if True notes: - "Not all databases support enumeration, check system documentation for details" requirements: [ ] author: "Brian Coca (@bcoca)" ''' EXAMPLES = ''' # get root user info - getent: database: passwd key: root - debug: var: getent_passwd # get all groups - getent: database: group split: ':' - debug: var: getent_group # get all hosts, split by tab - getent: database: hosts - debug: var: getent_hosts # get http service info, no error if missing - getent: database: services key: http fail_key: False - debug: var: getent_services # get user password hash (requires sudo/root) - getent: database: shadow key: www-data split: ':' - debug: var: getent_shadow ''' import traceback from ansible.module_utils.basic import AnsibleModule from ansible.module_utils._text import to_native def main(): module = AnsibleModule( argument_spec = dict( database = dict(required=True), key = dict(required=False, default=None), split = dict(required=False, default=None), fail_key = dict(required=False, type='bool', default=True), ), supports_check_mode = True, ) colon = [ 'passwd', 'shadow', 'group', 'gshadow' ] database = module.params['database'] key = module.params.get('key') split = module.params.get('split') fail_key = module.params.get('fail_key') getent_bin = module.get_bin_path('getent', True) if key is not None: cmd = [ getent_bin, database, key ] else: cmd = [ getent_bin, database ] if split is None and database in colon: split = ':' try: rc, out, err = module.run_command(cmd) except Exception as e: module.fail_json(msg=to_native(e), exception=traceback.format_exc()) msg = "Unexpected failure!" dbtree = 'getent_%s' % database results = { dbtree: {} } if rc == 0: for line in out.splitlines(): record = line.split(split) results[dbtree][record[0]] = record[1:] module.exit_json(ansible_facts=results) elif rc == 1: msg = "Missing arguments, or database unknown." elif rc == 2: msg = "One or more supplied key could not be found in the database." if not fail_key: results[dbtree][key] = None module.exit_json(ansible_facts=results, msg=msg) elif rc == 3: msg = "Enumeration not supported on this database." module.fail_json(msg=msg) if __name__ == '__main__': main()
the-stack_106_31133
# (c) 2012-2018, Ansible by Red Hat # # This file is part of Ansible Galaxy # # Ansible Galaxy is free software: you can redistribute it and/or modify # it under the terms of the Apache License as published by # the Apache Software Foundation, either version 2 of the License, or # (at your option) any later version. # # Ansible Galaxy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # Apache License for more details. # # You should have received a copy of the Apache License # along with Galaxy. If not, see <http://www.apache.org/licenses/>. from .apb import APBLoader from .module import ModuleLoader from .module_utils import ModuleUtilsLoader from .plugin import PluginLoader from .role import RoleLoader ALL_LOADERS = [ APBLoader, ModuleLoader, ModuleUtilsLoader, PluginLoader, RoleLoader, ] def get_loader(content_type): """Returns loader class for specified content type. :type content_type: constants.ContentType :param content_type: Content type. :returns: Loader class for specified content type. :raise ValueError: If no loader found for specified content type. """ for loader_cls in ALL_LOADERS: content_types = loader_cls.content_types if not isinstance(loader_cls.content_types, (list, tuple)): content_types = [content_types] if content_type in content_types: return loader_cls raise ValueError('Loader for content type "{0}" not found' .format(content_type))
the-stack_106_31135
import glob import os import dill import matplotlib.pyplot as plt import mosaiks.config as c import numpy as np import pandas as pd import seaborn as sns from cartopy import crs as ccrs from matplotlib import ticker # plotting variables cs = c.world_app_order c_by_app = [getattr(c, i) for i in cs] applications = [config["application"] for config in c_by_app] variables = [config["variable"] for config in c_by_app] sample_types = [config["sampling"] for config in c_by_app] disp_names = [config["disp_name"] for config in c_by_app] logged = [config["logged"] for config in c_by_app] colorbar_bounds = [config["world_bounds_colorbar"] for config in c_by_app] clip_bounds = [config["world_bounds_pred"] for config in c_by_app] units = [config["units_disp"] for config in c_by_app] c_plotting = getattr(c, "plotting") colors = [config["color"] for config in c_by_app] cmap_fxn = c_plotting["cmap_fxn"] cmaps = [cmap_fxn(color) for color in colors] # matches the order the data is stored in task_to_data_idxs = {"treecover": 0, "elevation": 1, "population": 2, "nightlights": 3} task_to_cfg_idxs = {"treecover": 0, "elevation": 1, "population": 2, "nightlights": 3} # matches each task to the continent it falls into for the continent specific model task_to_continent_idxs = { "treecover": 3, "elevation": 2, "population": 4, "nightlights": 2, } def plot_world_binned( latlons, y_true, y_pred, vmin, vmax, task_name="Title Me!", log_cbar=False, cmap_this="viridis", sub_select=False, show_coasts=True, agg_scale=10.0, units_this="units?", land_mass=None, proj=ccrs.Robinson(central_longitude=0), ): # parse data input if sub_select: sub_ids = np.random.choice(len(latlons), 5000) lls = latlons[sub_ids, :] preds = y_pred[sub_ids] labels = y_true[sub_ids].ravel() else: lls = latlons preds = y_pred labels = y_true.ravel() fig = plt.figure(figsize=(18, 6)) gs = fig.add_gridspec(1, 2, width_ratios=[1, 1], wspace=0.01, hspace=0.05) x0, y0, labels_binned = points_to_bin(lls[:, 1], lls[:, 0], labels, scale=agg_scale) x0, y0, preds_binned = points_to_bin(lls[:, 1], lls[:, 0], preds, scale=agg_scale) ax_truth = fig.add_subplot(gs[0, 0], projection=proj) ax_truth.outline_patch.set_visible(False) ax_truth.background_patch.set_visible(False) ax_colorbar = ax_truth.pcolormesh( x0, y0, labels_binned, transform=ccrs.PlateCarree(), cmap=cmap_this, vmin=vmin, vmax=vmax, edgecolors="none", ) ax_pred = fig.add_subplot(gs[0, 1], projection=proj) ax_pred.outline_patch.set_visible(False) ax_pred.background_patch.set_visible(False) ax_pred.pcolormesh( x0, y0, preds_binned, transform=ccrs.PlateCarree(), cmap=cmap_this, vmin=vmin, vmax=vmax, edgecolors="none", ) if land_mass is not None: ax_pred.add_geometries( [land_mass], crs=ccrs.PlateCarree(), facecolor="grey", edgecolor="none", zorder=-100, ) ax_truth.add_geometries( [land_mass], crs=ccrs.PlateCarree(), facecolor="grey", edgecolor="none", zorder=-100, ) if show_coasts: ax_truth.coastlines(color="grey", linewidth=0.5) ax_pred.coastlines(color="grey", linewidth=0.5) ax_truth.set_title("Labels", fontsize=24) ax_pred.set_title("Predicted", fontsize=24) # colorbar for the first two bb_truth = ax_truth.get_position() bb_pred = ax_pred.get_position() height = bb_truth.height * 0.05 width = (bb_pred.x1 - bb_truth.x0) * 0.95 y0 = bb_truth.y0 - height x0 = bb_truth.x0 + width * 0.025 ax_cbar = fig.add_axes((x0, y0, width, height)) cb = fig.colorbar(ax_colorbar, cax=ax_cbar, orientation="horizontal") cb.locator = ticker.MaxNLocator(nbins=6, integer=True) cb.update_ticks() ax_cbar.set_xlabel(units_this, labelpad=1.0) return fig def points_to_bin(x, y, vals, scale=10.0): """args: x,y: nx1 arrays of locations in 1 dimension each preds: nx1 array of values to be averaged scale: the edge of a bin/box in {x,y} units. returns: x0, y0: kx1, mx1 arrays of the x and y gridpoints vals_grid: (m-1)x(k-1) resulting aggregated values """ x_range = np.max(x) - np.min(x) y_range = np.max(y) - np.min(y) bin_shapes = [int(y_range / scale), int(x_range / scale)] sums_grid, y0, x0 = np.histogram2d(y, x, bins=bin_shapes, weights=vals) counts, y1, x1 = np.histogram2d(y, x, bins=bin_shapes) vals_grid = sums_grid / counts vals_grid = np.ma.masked_invalid(vals_grid) return x0, y0, vals_grid def task_to_world_bin_plot(task, world_data, agg_scale): assert task in task_to_data_idxs.keys(), print( "task name not reconized, options are {0}".format(task_to_data_idxs.keys()) ) # grab data for this task this_idx_data = task_to_data_idxs[task] this_idx_config = task_to_cfg_idxs[task] latlons_this = world_data["latlons_train"] y_this = world_data["y_train"][:, this_idx_data] y_pred_this = world_data["y_pred_train_cross_val"][:, this_idx_data] proj = ccrs.Robinson(central_longitude=0) vmin_this, vmax_this = colorbar_bounds[this_idx_config] disp_name_this = disp_names[this_idx_config] cmap_this = cmaps[this_idx_config] units_this = units[this_idx_config] sns.set( rc={ "axes.facecolor": "lightgrey", "figure.facecolor": "lightgrey", "axes.grid": False, } ) fig = plot_world_binned( latlons_this, y_this, y_pred_this, vmin_this, vmax_this, sub_select=False, task_name=disp_name_this, cmap_this=cmap_this, units_this=units_this, agg_scale=agg_scale, show_coasts=True, land_mass=None, proj=proj, ) return fig def predict_y_dense_sample(task, world_wts, labels_to_run): # get features for each zoom feats = [None] * len(labels_to_run) for tt in labels_to_run: path = os.path.join(c.features_dir, "dense_" + tt + ".pkl") with open(path, "rb") as f: data = dill.load(f) tloc = task_to_data_idxs[tt] feats[tloc] = data["X"].astype("float64") # get weights estimated from continent model (from optimal hyperparameter) idx = task_to_data_idxs[task] # clip predictions for this task mylb = clip_bounds[idx][0] myub = clip_bounds[idx][1] ypreds = [None] * len(labels_to_run) # for each zoom, predict for this task for z in range(len(labels_to_run)): # this is the continent needed for this zoom zcont = task_to_continent_idxs[task] # get the right weights for this zoom and task mywts = world_wts["weights"][zcont][idx] # predictions ypreds[z] = np.dot(feats[z], mywts) ypreds[z][ypreds[z] < mylb] = mylb ypreds[z][ypreds[z] > myub] = myub return ypreds def merge_zoompreds(zoom, labels_to_run, allpreds): fl = glob.glob(os.path.join(c.grid_dir, "*" + zoom + "*")) file = np.load(fl[0]) # Create pandas dataframe from npz sampdf = pd.DataFrame(file["ID"]) sampdf["lon"] = file["lon"] sampdf["lat"] = file["lat"] sampdf.columns = ["ID", "lon", "lat"] # which entry in allpreds[][] is this zoom? idz = task_to_data_idxs[zoom] for task in labels_to_run: # where is this task located in the task vector idx = task_to_data_idxs[task] # pull the predictions for this task and zoom sampdf[task] = allpreds[idx][idz] return sampdf
the-stack_106_31136
# -*- coding: utf-8 -*- __doc__="将Rhino中的Mesh 导入 Revit 中" from rpw.extras.rhino import Rhino as rc from pyrevit import forms ,DB,UI,_HostApplication,revit from RhinoToRevit import RhinoToRevit as RhToRe import rpw from rpw import db from rpw.ui.forms import FlexForm, Label, ComboBox, TextBox, TextBox,Separator, Button,SelectFromList from Helper import * uidoc = __revit__.ActiveUIDocument doc = __revit__.ActiveUIDocument.Document hostapp = _HostApplication(__revit__) print(hostapp.app.Language) if hostapp.app.Language.ToString()=="English_USA": ParameterName=LG_EUN() elif hostapp.app.Language.ToString()=="Chinese_Simplified": ParameterName = LG_CHS() #RhToRe.rhMeshToMesh(1) #Read Rhino File finlename=forms.pick_file(file_ext='3dm', files_filter='', init_dir='', restore_dir=True, multi_file=False, unc_paths=False) Materials = rpw.db.Collector(of_category='OST_Materials', is_type=False).get_elements(wrapped=False) Materials_options = {t.Name: t for t in Materials} CategoryID_options={ "常规模型":DB.BuiltInCategory.OST_GenericModel, "墙":DB.BuiltInCategory.OST_Walls} #信息输入部分 components = [ Label('材质'), ComboBox('Material', Materials_options), Label('类型'), ComboBox('Category', CategoryID_options), Label('Rhino图层'), TextBox('Layer', Text="Default"), Button('确定') ] form = FlexForm('结构', components) form.show() Value=form.values Mat=Value['Material'].Id Category=Value['Category'] RhinoFile=rc.FileIO.File3dm.Read(finlename) def GetOBjectByLayer(RehinoFile,LayerName): Objects=RehinoFile.Objects.FindByLayer(LayerName) return Objects RhinoOBject=GetOBjectByLayer(RhinoFile,Value['Layer']) Mesh=[i.Geometry for i in RhinoOBject] #NewLine=[RhToRe.rhLineToLine(i.Geometry) for i in RhinoOBject] @rpw.db.Transaction.ensure('Create Mesh From Rhino') def CreateMesh(GeometricalObjects): ds = DB.DirectShape.CreateElement(doc, DB.ElementId(Category)) ds.ApplicationId = "Application id" ds.ApplicationDataId = "Geometry object id" ds.SetShape(GeometricalObjects) print("Id:{id} 创建成功".format(id=ds.Id)) for i in Mesh: try: CreateMesh(RhToRe.rhMeshToMesh(i,Mat)) except: pass
the-stack_106_31137
#!/usr/bin/python """ (C) Copyright 2020 Intel Corporation. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. GOVERNMENT LICENSE RIGHTS-OPEN SOURCE SOFTWARE The Government's rights to use, modify, reproduce, release, perform, display, or disclose this software are subject to the terms of the Apache License as provided in Contract No. B609815. Any reproduction of computer software, computer software documentation, or portions thereof marked with this legend must also reproduce the markings. """ import time import threading import uuid from itertools import product from apricot import TestWithServers from write_host_file import write_host_file from test_utils_pool import TestPool from test_utils_container import TestContainer from ior_utils import IorCommand from job_manager_utils import Mpirun from command_utils_base import CommandFailure from mpio_utils import MpioUtils try: # python 3.x import queue as queue except ImportError: # python 2.7 import Queue as queue class NvmePoolCapacity(TestWithServers): # pylfloat: disable=too-many-ancestors """Test class Description: Verify NOSPC condition is reported when accessing data beyond pool size. :avocado: recursive """ def setUp(self): """Set up for test case.""" super(NvmePoolCapacity, self).setUp() self.ior_flags = self.params.get("ior_flags", '/run/ior/iorflags/*') self.ior_apis = self.params.get("ior_api", '/run/ior/iorflags/*') self.ior_test_sequence = self.params.get( "ior_test_sequence", '/run/ior/iorflags/*') self.ior_dfs_oclass = self.params.get( "obj_class", '/run/ior/iorflags/*') # Recreate the client hostfile without slots defined self.hostfile_clients = write_host_file( self.hostlist_clients, self.workdir, None) self.pool = None self.out_queue = queue.Queue() def ior_thread(self, pool, oclass, api, test, flags, results): """Start threads and wait until all threads are finished. Args: pool (object): pool handle oclass (str): IOR object class API (str): IOR API test (list): IOR test sequence flags (str): IOR flags results (queue): queue for returning thread results Returns: None """ processes = self.params.get("slots", "/run/ior/clientslots/*") container_info = {} mpio_util = MpioUtils() if mpio_util.mpich_installed(self.hostlist_clients) is False: self.fail("Exiting Test: Mpich not installed") self.pool = pool # Define the arguments for the ior_runner_thread method ior_cmd = IorCommand() ior_cmd.get_params(self) ior_cmd.set_daos_params(self.server_group, self.pool) ior_cmd.dfs_oclass.update(oclass) ior_cmd.api.update(api) ior_cmd.transfer_size.update(test[2]) ior_cmd.block_size.update(test[3]) ior_cmd.flags.update(flags) container_info["{}{}{}" .format(oclass, api, test[2])] = str(uuid.uuid4()) # Define the job manager for the IOR command self.job_manager = Mpirun(ior_cmd, mpitype="mpich") key = "{}{}{}".format(oclass, api, test[2]) self.job_manager.job.dfs_cont.update(container_info[key]) env = ior_cmd.get_default_env(str(self.job_manager)) self.job_manager.assign_hosts(self.hostlist_clients, self.workdir, None) self.job_manager.assign_processes(processes) self.job_manager.assign_environment(env, True) # run IOR Command try: self.job_manager.run() except CommandFailure as _error: results.put("FAIL") def test_create_delete(self, num_pool=2, num_cont=5, total_count=100, scm_size=100000000000, nvme_size=300000000000): """ Test Description: This method is used to create/delete pools for a long run. It verifies the NVME free space during this process. Args: num_pool (int): Total pools for running test num_cont (int): Total containers created on each pool total_count (int): Total times the test is run in a loop scm_size (int): SCM size used in the testing nvme_size (int): NVME size used in the testing Returns: None """ pool = {} cont = {} for loop_count in range(0, total_count): self.log.info("Running test %s", loop_count) for val in range(0, num_pool): pool[val] = TestPool(self.context, self.get_dmg_command()) pool[val].get_params(self) # Split total SCM and NVME size for creating multiple pools. temp = int(scm_size) / num_pool pool[val].scm_size.update(str(temp)) temp = int(nvme_size) / num_pool pool[val].nvme_size.update(str(temp)) pool[val].create() self.pool = pool[val] display_string = "pool{} space at the Beginning".format(val) self.pool.display_pool_daos_space(display_string) nvme_size_begin = self.pool.get_pool_free_space("NVME") for cont_val in range(0, num_cont): cont[cont_val] = TestContainer(pool[val]) m_leak = 0 for val in range(0, num_pool): display_string = "Pool{} space at the End".format(val) self.pool = pool[val] self.pool.display_pool_daos_space(display_string) nvme_size_end = self.pool.get_pool_free_space("NVME") pool[val].destroy() if (nvme_size_begin != nvme_size_end) and (m_leak == 0): m_leak = val + 1 # After destroying pools, check memory leak for each test loop. if m_leak != 0: self.fail("Memory leak : iteration {0} \n".format(m_leak)) def test_run(self, num_pool=1): """ Method Description: This method is called with different test_cases. Args: num_pool (int): Total pools for running a test. Returns: None """ num_jobs = self.params.get("no_parallel_job", '/run/ior/*') # Create a pool pool = {} # Iterate through IOR different ior test sequence for oclass, api, test, flags in product(self.ior_dfs_oclass, self.ior_apis, self.ior_test_sequence, self.ior_flags): # Create the IOR threads threads = [] for val in range(0, num_pool): pool[val] = TestPool(self.context, self.get_dmg_command()) pool[val].get_params(self) # Split total SCM and NVME size for creating multiple pools. pool[val].scm_size.value = int(test[0]) / num_pool pool[val].nvme_size.value = int(test[1]) / num_pool pool[val].create() display_string = "pool{} space at the Beginning".format(val) self.pool = pool[val] self.pool.display_pool_daos_space(display_string) for thrd in range(0, num_jobs): # Add a thread for these IOR arguments threads.append(threading.Thread(target=self.ior_thread, kwargs={"pool": pool[val], "oclass": oclass, "api": api, "test": test, "flags": flags, "results": self.out_queue})) # Launch the IOR threads for thrd in threads: self.log.info("Thread : %s", thrd) thrd.start() time.sleep(5) # Wait to finish the threads for thrd in threads: thrd.join() # Verify the queue and make sure no FAIL for any IOR run # Test should fail with ENOSPC. while not self.out_queue.empty(): if (self.out_queue.get() == "FAIL" and test[4] == "PASS") \ or (self.out_queue.get() != "FAIL" and test[4] == "FAIL"): self.fail("FAIL") for val in range(0, num_pool): display_string = "Pool{} space at the End".format(val) self.pool = pool[val] self.pool.display_pool_daos_space(display_string) self.pool.destroy() def test_nvme_pool_capacity(self): """Jira ID: DAOS-2085. Test Description: Purpose of this test is to verify whether DAOS stack report NOSPC when accessing data beyond pool size. Use Cases Test Case 1 or 2: 1. Perform IO less than entire SSD disk space. 2. Perform IO beyond entire SSD disk space. Test Case 3: 3. Create Pool/Container and destroy them several times. Use case: :avocado: tags=all,hw,medium,ib2,nvme,full_regression :avocado: tags=nvme_pool_capacity """ # Run test with one pool. self.log.info("Running Test Case 1 with one Pool") self.test_run(1) time.sleep(5) # Run test with two pools. self.log.info("Running Test Case 1 with two Pools") self.test_run(2) time.sleep(5) # Run Create/delete pool/container self.log.info("Running Test Case 3: Pool/Cont Create/Destroy") self.test_create_delete(10, 50, 100)
the-stack_106_31138
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # ----------------------------------------------------------------------------------- import json import asyncio from azure.eventprocessorhost.lease import Lease class AzureBlobLease(Lease): """ Azure Blob Lease """ def __init__(self): """ Init Azure Blob Lease. """ super() Lease.__init__(self) self.offset = None self.state = lambda: None def serializable(self): """ Returns Serialiazble instance of `__dict__`. """ serial = self.__dict__.copy() del serial['state'] return serial def with_lease(self, lease): """ Init with exisiting lease. """ super().with_source(lease) def with_blob(self, blob): """ Init Azure Blob Lease with existing blob. """ content = json.loads(blob.content) self.partition_id = content["partition_id"] self.owner = content["owner"] self.token = content["token"] self.epoch = content["epoch"] self.offset = content["offset"] self.sequence_number = content["sequence_number"] def with_source(self, lease): """ Init Azure Blob Lease from existing. """ super().with_source(lease) self.offset = lease.offset self.sequence_number = lease.sequence_number async def is_expired(self): """ Check and return Azure Blob Lease state using Storage API. """ if asyncio.iscoroutinefunction(self.state): current_state = await self.state() else: current_state = self.state() if current_state: return current_state != "leased" return False
the-stack_106_31143
import logging import sys import urllib.request import urllib.parse import urllib.error import requests from requests.auth import HTTPBasicAuth from six import string_types, text_type from redash.query_runner import * from redash.utils import json_dumps, json_loads try: import http.client as http_client except ImportError: # Python 2 import http.client as http_client logger = logging.getLogger(__name__) ELASTICSEARCH_TYPES_MAPPING = { "integer": TYPE_INTEGER, "long": TYPE_INTEGER, "float": TYPE_FLOAT, "double": TYPE_FLOAT, "boolean": TYPE_BOOLEAN, "string": TYPE_STRING, "date": TYPE_DATE, "object": TYPE_STRING, # "geo_point" TODO: Need to split to 2 fields somehow } ELASTICSEARCH_BUILTIN_FIELDS_MAPPING = {"_id": "Id", "_score": "Score"} PYTHON_TYPES_MAPPING = { str: TYPE_STRING, text_type: TYPE_STRING, bool: TYPE_BOOLEAN, int: TYPE_INTEGER, float: TYPE_FLOAT, } class BaseElasticSearch(BaseQueryRunner): should_annotate_query = False DEBUG_ENABLED = False @classmethod def configuration_schema(cls): return { "type": "object", "properties": { "server": {"type": "string", "title": "Base URL"}, "basic_auth_user": {"type": "string", "title": "Basic Auth User"}, "basic_auth_password": { "type": "string", "title": "Basic Auth Password", }, }, "order": ["server", "basic_auth_user", "basic_auth_password"], "secret": ["basic_auth_password"], "required": ["server"], } @classmethod def enabled(cls): return False def __init__(self, configuration): super(BaseElasticSearch, self).__init__(configuration) self.syntax = "json" if self.DEBUG_ENABLED: http_client.HTTPConnection.debuglevel = 1 # you need to initialize logging, otherwise you will not see anything from requests logging.basicConfig() logging.getLogger().setLevel(logging.DEBUG) requests_log = logging.getLogger("requests.packages.urllib3") requests_log.setLevel(logging.DEBUG) requests_log.propagate = True logger.setLevel(logging.DEBUG) self.server_url = self.configuration["server"] if self.server_url[-1] == "/": self.server_url = self.server_url[:-1] basic_auth_user = self.configuration.get("basic_auth_user", None) basic_auth_password = self.configuration.get("basic_auth_password", None) self.auth = None if basic_auth_user and basic_auth_password: self.auth = HTTPBasicAuth(basic_auth_user, basic_auth_password) def _get_mappings(self, url): mappings = {} error = None try: r = requests.get(url, auth=self.auth) r.raise_for_status() mappings = r.json() except requests.HTTPError as e: logger.exception(e) error = "Failed to execute query. Return Code: {0} Reason: {1}".format( r.status_code, r.text ) mappings = None except requests.exceptions.RequestException as e: logger.exception(e) error = "Connection refused" mappings = None return mappings, error def _get_query_mappings(self, url): mappings_data, error = self._get_mappings(url) if error: return mappings_data, error mappings = {} for index_name in mappings_data: index_mappings = mappings_data[index_name] for m in index_mappings.get("mappings", {}): if "properties" not in index_mappings["mappings"][m]: continue for property_name in index_mappings["mappings"][m]["properties"]: property_data = index_mappings["mappings"][m]["properties"][ property_name ] if property_name not in mappings: property_type = property_data.get("type", None) if property_type: if property_type in ELASTICSEARCH_TYPES_MAPPING: mappings[property_name] = ELASTICSEARCH_TYPES_MAPPING[ property_type ] else: mappings[property_name] = TYPE_STRING # raise Exception("Unknown property type: {0}".format(property_type)) return mappings, error def get_schema(self, *args, **kwargs): def parse_doc(doc, path=None): """Recursively parse a doc type dictionary """ path = path or [] result = [] for field, description in doc["properties"].items(): if "properties" in description: result.extend(parse_doc(description, path + [field])) else: result.append(".".join(path + [field])) return result schema = {} url = "{0}/_mappings".format(self.server_url) mappings, error = self._get_mappings(url) if mappings: # make a schema for each index # the index contains a mappings dict with documents # in a hierarchical format for name, index in mappings.items(): columns = [] schema[name] = {"name": name} for doc, items in index["mappings"].items(): columns.extend(parse_doc(items)) # remove duplicates # sort alphabetically schema[name]["columns"] = sorted(set(columns)) return list(schema.values()) def _parse_results( self, mappings, result_fields, raw_result, result_columns, result_rows ): def add_column_if_needed( mappings, column_name, friendly_name, result_columns, result_columns_index ): if friendly_name not in result_columns_index: result_columns.append( { "name": friendly_name, "friendly_name": friendly_name, "type": mappings.get(column_name, "string"), } ) result_columns_index[friendly_name] = result_columns[-1] def get_row(rows, row): if row is None: row = {} rows.append(row) return row def collect_value(mappings, row, key, value, type): if result_fields and key not in result_fields_index: return mappings[key] = type add_column_if_needed( mappings, key, key, result_columns, result_columns_index ) row[key] = value def collect_aggregations( mappings, rows, parent_key, data, row, result_columns, result_columns_index ): if isinstance(data, dict): for key, value in data.items(): val = collect_aggregations( mappings, rows, parent_key if key == "buckets" else key, value, row, result_columns, result_columns_index, ) if val: row = get_row(rows, row) collect_value(mappings, row, key, val, "long") for data_key in ["value", "doc_count"]: if data_key not in data: continue if "key" in data and len(list(data.keys())) == 2: key_is_string = "key_as_string" in data collect_value( mappings, row, data["key"] if not key_is_string else data["key_as_string"], data[data_key], "long" if not key_is_string else "string", ) else: return data[data_key] elif isinstance(data, list): for value in data: result_row = get_row(rows, row) collect_aggregations( mappings, rows, parent_key, value, result_row, result_columns, result_columns_index, ) if "doc_count" in value: collect_value( mappings, result_row, "doc_count", value["doc_count"], "integer", ) if "key" in value: if "key_as_string" in value: collect_value( mappings, result_row, parent_key, value["key_as_string"], "string", ) else: collect_value( mappings, result_row, parent_key, value["key"], "string" ) return None result_columns_index = {c["name"]: c for c in result_columns} result_fields_index = {} if result_fields: for r in result_fields: result_fields_index[r] = None if "error" in raw_result: error = raw_result["error"] if len(error) > 10240: error = error[:10240] + "... continues" raise Exception(error) elif "aggregations" in raw_result: if result_fields: for field in result_fields: add_column_if_needed( mappings, field, field, result_columns, result_columns_index ) for key, data in raw_result["aggregations"].items(): collect_aggregations( mappings, result_rows, key, data, None, result_columns, result_columns_index, ) logger.debug("result_rows %s", str(result_rows)) logger.debug("result_columns %s", str(result_columns)) elif "hits" in raw_result and "hits" in raw_result["hits"]: if result_fields: for field in result_fields: add_column_if_needed( mappings, field, field, result_columns, result_columns_index ) for h in raw_result["hits"]["hits"]: row = {} column_name = "_source" if "_source" in h else "fields" for column in h[column_name]: if result_fields and column not in result_fields_index: continue add_column_if_needed( mappings, column, column, result_columns, result_columns_index ) value = h[column_name][column] row[column] = ( value[0] if isinstance(value, list) and len(value) == 1 else value ) result_rows.append(row) else: raise Exception( "Redash failed to parse the results it got from Elasticsearch." ) def test_connection(self): try: r = requests.get( "{0}/_cluster/health".format(self.server_url), auth=self.auth ) r.raise_for_status() except requests.HTTPError as e: logger.exception(e) raise Exception( "Failed to execute query. Return Code: {0} Reason: {1}".format( r.status_code, r.text ) ) except requests.exceptions.RequestException as e: logger.exception(e) raise Exception("Connection refused") class Kibana(BaseElasticSearch): @classmethod def enabled(cls): return True def _execute_simple_query( self, url, auth, _from, mappings, result_fields, result_columns, result_rows ): url += "&from={0}".format(_from) r = requests.get(url, auth=self.auth) r.raise_for_status() raw_result = r.json() self._parse_results( mappings, result_fields, raw_result, result_columns, result_rows ) total = raw_result["hits"]["total"] result_size = len(raw_result["hits"]["hits"]) logger.debug("Result Size: {0} Total: {1}".format(result_size, total)) return raw_result["hits"]["total"] def run_query(self, query, user): try: error = None logger.debug(query) query_params = json_loads(query) index_name = query_params["index"] query_data = query_params["query"] size = int(query_params.get("size", 500)) limit = int(query_params.get("limit", 500)) result_fields = query_params.get("fields", None) sort = query_params.get("sort", None) if not self.server_url: error = "Missing configuration key 'server'" return None, error url = "{0}/{1}/_search?".format(self.server_url, index_name) mapping_url = "{0}/{1}/_mapping".format(self.server_url, index_name) mappings, error = self._get_query_mappings(mapping_url) if error: return None, error if sort: url += "&sort={0}".format(urllib.parse.quote_plus(sort)) url += "&q={0}".format(urllib.parse.quote_plus(query_data)) logger.debug("Using URL: {0}".format(url)) logger.debug("Using Query: {0}".format(query_data)) result_columns = [] result_rows = [] if isinstance(query_data, string_types): _from = 0 while True: query_size = size if limit >= (_from + size) else (limit - _from) total = self._execute_simple_query( url + "&size={0}".format(query_size), self.auth, _from, mappings, result_fields, result_columns, result_rows, ) _from += size if _from >= limit: break else: # TODO: Handle complete ElasticSearch queries (JSON based sent over HTTP POST) raise Exception("Advanced queries are not supported") json_data = json_dumps({"columns": result_columns, "rows": result_rows}) except KeyboardInterrupt: error = "Query cancelled by user." json_data = None except requests.HTTPError as e: logger.exception(e) error = "Failed to execute query. Return Code: {0} Reason: {1}".format( r.status_code, r.text ) json_data = None except requests.exceptions.RequestException as e: logger.exception(e) error = "Connection refused" json_data = None return json_data, error class ElasticSearch(BaseElasticSearch): @classmethod def enabled(cls): return True @classmethod def name(cls): return "Elasticsearch" def run_query(self, query, user): try: error = None logger.debug(query) query_dict = json_loads(query) index_name = query_dict.pop("index", "") result_fields = query_dict.pop("result_fields", None) if not self.server_url: error = "Missing configuration key 'server'" return None, error url = "{0}/{1}/_search".format(self.server_url, index_name) mapping_url = "{0}/{1}/_mapping".format(self.server_url, index_name) mappings, error = self._get_query_mappings(mapping_url) if error: return None, error logger.debug("Using URL: %s", url) logger.debug("Using query: %s", query_dict) r = requests.get(url, json=query_dict, auth=self.auth) r.raise_for_status() logger.debug("Result: %s", r.json()) result_columns = [] result_rows = [] self._parse_results( mappings, result_fields, r.json(), result_columns, result_rows ) json_data = json_dumps({"columns": result_columns, "rows": result_rows}) except KeyboardInterrupt: logger.exception(e) error = "Query cancelled by user." json_data = None except requests.HTTPError as e: logger.exception(e) error = "Failed to execute query. Return Code: {0} Reason: {1}".format( r.status_code, r.text ) json_data = None except requests.exceptions.RequestException as e: logger.exception(e) error = "Connection refused" json_data = None return json_data, error register(Kibana) register(ElasticSearch)
the-stack_106_31145
import argparse import json def validate_parallel_run_config(parallel_run_config): max_concurrency = 20 if (parallel_run_config.process_count_per_node * parallel_run_config.node_count) > max_concurrency: print("Please decrease concurrency to maximum of 20 as currently AutoML does not support it.") raise ValueError("node_count*process_count_per_node must be between 1 and max_concurrency {}" .format(max_concurrency)) def get_automl_environment(): from azureml.core import Environment from azureml.core.conda_dependencies import CondaDependencies from azureml.core.runconfig import DEFAULT_CPU_IMAGE train_env = Environment(name="many_models_environment_automl") train_conda_deps = CondaDependencies.create(pip_packages=['azureml-sdk[automl]', 'joblib', 'pyarrow==0.14']) train_conda_deps.add_conda_package('pandas==0.23.4') train_conda_deps.add_conda_package('numpy==1.16.2') train_conda_deps.add_conda_package('fbprophet==0.5') train_conda_deps.add_conda_package('py-xgboost==0.90') train_env.python.conda_dependencies = train_conda_deps train_env.docker.enabled = True train_env.docker.base_image = DEFAULT_CPU_IMAGE return train_env
the-stack_106_31147
import argparse def parse_args(): parser = argparse.ArgumentParser( description='Mimic image or video in your terminal') parser.add_argument( 'path', type=str, help=('the path of the picture/video use "{0}" like "frame{0}.jpg" if ' 'the images name is frame1.jpg, frame2.jpg, ...')) parser.add_argument('--ascii', help='whether using ascii characters or ansi escape code', action='store_true') parser.add_argument( '--char', help=('pass a character to get fixed character instead of some ' 'random text (must be used it with "--ascii" opt)'), type=str, default=None) parser.add_argument('--fps', type=int,help='maximum fps', default=60) parser.add_argument('--start-frame', type=int, default=1, metavar='NUMBER', help='set the first frame played') parser.add_argument('--last-frame', type=int, default=None, metavar='NUMBER', help='set the last frame played (not work for video)') parser.add_argument('-v', '--verbose', help='show some information', action='store_true') dim_group = parser.add_mutually_exclusive_group() dim_group.add_argument( '--dim', help='fixed dimension to display in terminal (example: 480x360)', metavar='WIDTHxHEIGHT', type=str, default=None) dim_group.add_argument( '--aspect-ratio', help= ('preferred aspect ratio to fix stretched image while printing in terminal, ' 'result will change dynamically based on terminal size (usage: 16:9, 4:3, 10:5, ...). ' 'Try increasing the height value if the image stretched vertically and ' 'vice versa if streched horizontally.'), metavar='RATIO', type=str, default=None) return parser.parse_args()
the-stack_106_31150
#!/usr/bin/env python # -*- coding: utf-8 -*- # 06/13/2021 # Author: Sian Xiao & Hao Tian """ Two examples for function atomCount 1PJ3: fileDirection = '../data/pockets/1PJ3_out/pockets/pocket1_atm.pdb' info = 'Chain A:GLN64,ARG67,ILE88,ARG91,LEU95; Chain B:PHE1127,ARG1128' return = 10 1AO0: fileDirection = '../data/pockets/1AO0_out/pockets/pocket1_atm.pdb' info = 'Chain A:HIS25,TYR242,SER244,ARG245,PRO246,ARG259,PRO281,ASP282,SER283,LYS305,LYS328; \ Chain B:ILE304,LYS305,ASN306,ARG307' return = 31 """ def atomCount(fileDirection: str, info: str) -> int: """compare how many matched heavy atoms Args: fileDirection (str): file location '../data/pockets/{pdb}_out/pockets/*.pdb' info (str): correspoding allosteric info from ASD Returns: int: how many matched heavy atoms """ # collect allosteric info atomTarget = dict() info = info.split("\t")[-1].strip().split(";") # 'allosteric_site_residue' for chains in info: chains = chains.strip() chainID = chains[6] atoms = chains[8:].split(",") # map atoms to chain ID for atom in atoms: atomTarget[atom] = chainID # count matched atoms pocket = open(fileDirection, "r").readlines() count = 0 for line in pocket: if line.startswith("ATOM"): # Chain identifier chainID = line[21] # Residue name and Residue sequence number atom = line[17:20] + line[22:26].strip() # same atom and same chain ID if atom in atomTarget and atomTarget[atom] == chainID: count += 1 return count
the-stack_106_31151
""" @author: magician @file: card_demo.py @date: 2020/9/28 """ import collections import random Card = collections.namedtuple('Card', ['rank', 'suit']) class FrenchDeck: """ FrenchDeck """ ranks = [str(n) for n in range(2, 11)] + list('JQKA') suits = 'spades diamonds clubs hearts'.split() def __init__(self): self._cards = [Card(rank, suit) for suit in self.suits for rank in self.ranks] def __len__(self): return len(self._cards) def __getitem__(self, position): return self._cards[position] suit_values = dict(spades=3, hearts=2, diamonds=1, clubs=0) def spades_high(card): """ spades_high @param card: @return: """ rank_value = FrenchDeck.ranks.index(card.rank) return rank_value * len(suit_values) + suit_values[card.suit] if __name__ == '__main__': beer_card = Card('7', 'diamonds') print(beer_card) deck = FrenchDeck() print(len(deck)) print(deck[0]) print(deck[-1]) # random print(random.choice(deck)) print(random.choice(deck)) print(random.choice(deck)) # slice print(deck[:3]) print(deck[12::13]) # iterator for card in deck: print(card) for card in reversed(deck): print(card) # in print(Card('Q', 'hearts') in deck) print(Card('Q', 'beasts') in deck) # sort for card in sorted(deck, key=spades_high): print(card)
the-stack_106_31152
from concurrent.futures import ThreadPoolExecutor, as_completed from datetime import datetime from urllib import request from urllib.parse import urljoin, urlparse, quote from lxml import html import logging import redis import sys import os import re __r = redis.StrictRedis(host='localhost', port=6379, db=0) __pool = ThreadPoolExecutor(os.cpu_count() * 2) __future_callback = {} # logger = multiprocessing.log_to_stderr() # logger.setLevel(multiprocessing.SUBDEBUG) SITE_CONFIGS = [ { "name": "Thanh Nien", "id": "TN", "url_xpath": "//*[contains(@class, 'zone--timeline') or contains(@class, 'timeline')]//article//h2/a/@href", "content_xpath": "//*[contains(@id, 'main_detail')]//div/text()", "next_page_pattern": "trang-{}.html", "page_regex": r"trang-(\d+)\.html", "categories": [ { "name": "Pháp luật", "id": "PL", "urls": ["https://thanhnien.vn/thoi-su/phap-luat/"] }, { "name": "Kinh Doanh", "id": "KD", "urls": ["https://thanhnien.vn/tai-chinh-kinh-doanh/"] }, { "name": "Thể Thao", "id": "TT", "urls": ["http://thethao.thanhnien.vn/bong-da-viet-nam/", "http://thethao.thanhnien.vn/bong-da-quoc-te/", "http://thethao.thanhnien.vn/binh-luan/", "http://thethao.thanhnien.vn/quan-vot/", "http://thethao.thanhnien.vn/hau-truong/", "http://thethao.thanhnien.vn/toan-canh-the-thao/", "https://thethao.thanhnien.vn/world-cup-2018/"] }, { "name": "Công Nghệ", "id": "CN", "urls": ["https://thanhnien.vn/cong-nghe/"] }, { "name": "Sức Khoẻ", "id": "SK", "urls": ["https://thanhnien.vn/suc-khoe/"] }, { "name": "Văn Hoá", "id": "VH", "urls": ["https://thanhnien.vn/van-hoa/"] }, ] }, { "name": "Dan Tri", "id": "DT", "url_xpath": "//*[contains(@id, 'listcheckepl')]/div//h2/a/@href", "content_xpath": "//*[contains(@id, 'divNewsContent')]//p/text()", "next_page_pattern": "trang-{}.htm", "page_regex": r"trang-(\d+)\.htm", "categories": [ { "name": "Pháp luật", "id": "PL", "urls": ["http://dantri.com.vn/phap-luat.htm"] }, { "name": "Kinh Doanh", "id": "KD", "urls": ["http://dantri.com.vn/kinh-doanh.htm"] }, { "name": "Thể Thao", "id": "TT", "urls": ["http://dantri.com.vn/the-thao.htm"] }, { "name": "Công Nghệ", "id": "CN", "urls": ["http://dantri.com.vn/suc-manh-so.htm"] }, { "name": "Sức Khoẻ", "id": "SK", "urls": ["http://dantri.com.vn/suc-khoe.htm"] }, { "name": "Văn Hoá", "id": "VH", "urls": ["http://dantri.com.vn/van-hoa.htm"] }, ] }, { "name": "VNExpress", "id": "VNE", "url_xpath": "//article[contains(@class, 'list_news')]/h4/a[1]/@href", "content_xpath": "//article[contains(@class, 'content_detail')]/p//text()", "next_page_pattern": "p{}", "page_regex": r"p(\d+)", "categories": [ { "name": "Pháp luật", "id": "PL", "urls": ["https://vnexpress.net/phap-luat-"] }, { "name": "Kinh Doanh", "id": "KD", "urls": ["https://vnexpress.net/kinh-doanh/"]}, { "name": "Thể Thao", "id": "TT", "urls": ["https://vnexpress.net/the-thao/"] }, { "name": "Công Nghệ", "id": "CN", "urls": ["https://vnexpress.net/so-hoa/"] }, { "name": "Sức Khoẻ", "id": "SK", "urls": ["https://vnexpress.net/suc-khoe/"] }, { "name": "Văn Hoá", "id": "VH", "urls": ["https://vnexpress.net/giai-tri/"] }, ] }, { "name": "Vietnamnet", "id": "VNN", "url_xpath": "//*[contains(@class, 'd-ib')]/h3/a/@href", "content_xpath": "//*[contains(@id, 'ArticleContent')]/p//text()", "next_page_pattern": "trang{}/index.html", "page_regex": r"trang(\d+)/index\.html", "categories": [ { "name": "Pháp luật", "id": "PL", "urls": ["http://vietnamnet.vn/vn/phap-luat/"] }, { "name": "Kinh Doanh", "id": "KD", "urls": ["http://vietnamnet.vn/vn/kinh-doanh/"] }, { "name": "Thể Thao", "id": "TT", "urls": ["http://vietnamnet.vn/vn/the-thao/"] }, { "name": "Công Nghệ", "id": "CN", "urls": ["http://vietnamnet.vn/vn/cong-nghe/"] }, { "name": "Sức Khoẻ", "id": "SK", "urls": ["http://vietnamnet.vn/vn/suc-khoe/"] }, { "name": "Văn Hoá", "id": "VH", "urls": ["http://vietnamnet.vn/vn/giai-tri/"] }, ] } ] REDIS_VISITED_SET = "visited_urls" FILE_NAME_PATTERN = "{cate_id}_{site_id}_{post_id}" CURRENT_DIR = os.getcwd() DATA_DIR = os.path.join(CURRENT_DIR, "data") LOG_FILE = os.path.join(CURRENT_DIR, "log.txt") def write_log(content): t = str(datetime.now()) with open(LOG_FILE, "a") as f: log_content = "{} - {}\n".format(t, content) f.write(log_content) def push_task(func, args=(), callback=None): try: future = __pool.submit(func, *args) # concurrent.futures.Future __future_callback[future] = callback except: print("[ERROR]: {}".format(sys.exec_info()[0])) def extract_urls(root_url, doc, url_xpath): """ Arguments: :param root_url: :param doc: HTML content extracted from page. :param url_xpath: Identity of post urls in doc. :type root_url: str :type doc: lxml.html.HtmlElement :type url_xpath: str Returns: :return: List of extracted urls. :rtype: list[str] """ urls = doc.xpath(url_xpath) filtered_urls = [] for url in urls: url = "{}{}".format(root_url, urlparse(url).path) url = quote(url) if not __r.sismember(REDIS_VISITED_SET, url): filtered_urls.append(url) return filtered_urls def init_page_url(page_url, next_page_pattern): pattern = re.compile(r".*\.html|.*\.htm") if len(pattern.findall(page_url)) > 0: if len(page_url.rsplit(".html", 1)) > 1: page_url = page_url.rsplit(".html", 1)[0] elif len(page_url.rsplit(".htm", 1)) > 1: page_url = page_url.rsplit(".htm", 1)[0] + "/" if page_url[-1] == "-": page_url = page_url + next_page_pattern.format(1) else: page_url = urljoin(page_url, next_page_pattern.format(1)) return page_url def get_next_page_url(current_url, page_regex, next_page_pattern): pattern = re.compile(page_regex) next_page = None if len(pattern.findall(current_url)) > 0: next_page = int(pattern.findall(current_url)[0]) + 1 else: next_page = 2 next_page_url = re.sub(page_regex, next_page_pattern.format(next_page), current_url) print("Next page of {}: {}".format(current_url, next_page_url)) return next_page_url def extract_content(doc, content_xpath): """ Arguments: :param doc: HTML content from the page. :param content_xpath: Identity of content in doc. :type doc: lxml.html.HtmlElement :type content_xpath: str Returns: :return: The news content. :rtype: str """ content = doc.xpath(content_xpath) content = " ".join(content) content = re.sub("\s\s+", " ", content).strip() return content def persist_content(site_id, cate_id, post_id, content): """ Arguments: :type site_id: str :type cate_id: str :type post_id: str :type content: str Return: :rtype: bool """ try: if not os.path.isdir(DATA_DIR): os.makedirs(DATA_DIR) cate_dir = os.path.join(DATA_DIR, cate_id) if not os.path.isdir(cate_dir): os.makedirs(cate_dir) file_name = FILE_NAME_PATTERN.format(site_id=site_id, cate_id=cate_id, post_id=post_id) file_path = os.path.join(cate_dir, file_name) with open(file_path, "w") as f: f.write(content) except OSError as e: print("OS error: {}".format(e)) return False except: print("Unexpected error: {}".format(sys.exc_info()[0])) return False return True def process_post_content(post_url, content_xpath, site_id, cate_id): """ Arguments: :type post_url: str :type content_xpath: str :type site_id: str :type cate_id: str Returns: :rtype: dict """ print("Processing: {}".format(post_url)) result = { "post_url": post_url, "is_success": False, "error": None } try: post_id_pattern = re.compile(r"-(.\d+)\.htm") post_id = post_id_pattern.findall(post_url)[0] page = request.urlopen(post_url, timeout=5) doc = html.fromstring(page.read()) content = extract_content(doc, content_xpath) success = persist_content(site_id, cate_id, post_id, content) if not success: result["is_success"] = False result["error"] = "Could not store content." return result url_elements = urlparse(post_url) __r.sadd(REDIS_VISITED_SET, url_elements.netloc + url_elements.path) except Exception as e: print("Error: {}".format(str(e))) print("Error from url: {}".format(post_url)) result["is_success"] = False result["error"] = str(e) return result result["is_success"] = True return result def process_post_callback(result): print("Logging: {}".format(result["post_url"])) content = "[INFO]" if result["is_success"] else "[ERROR]" if not result["is_success"]: content += " - {}".format(result["error"]) content += " - {}".format(result["post_url"]) write_log(content) def process_page(site_id, cate_id, page_url, url_xpath, content_xpath, page_regex, next_page_pattern): """ Arguments: :type site_id: str :type cate_id: str :type page_url: str :type url_xpath: str :type content_xpath: str :type page_regex: str :type next_page_pattern: str """ print("Processing page: {}".format(page_url)) post_args = [] url_elements = urlparse(page_url) page = request.urlopen(page_url, timeout=5) doc = html.fromstring(page.read()) next_page_url = get_next_page_url(page_url, page_regex, next_page_pattern) urls = extract_urls(url_elements.netloc, doc, url_xpath) for url in urls: url = "{}://{}".format(url_elements.scheme, url) push_task(process_post_content, (url, content_xpath, site_id, cate_id), callback=process_post_callback) push_task(process_page, (site_id, cate_id, next_page_url, url_xpath, content_xpath, page_regex, next_page_pattern)) if __name__ == "__main__": for config in SITE_CONFIGS: site_id = config["id"] url_xpath = config["url_xpath"] content_xpath = config["content_xpath"] page_regex = config["page_regex"] next_page_pattern = config["next_page_pattern"] for category in config["categories"]: cate_id = category["id"] for url in category["urls"]: url = init_page_url(url, next_page_pattern) args = (site_id, cate_id, url, url_xpath, content_xpath, page_regex, next_page_pattern) push_task(process_page, args) while True: for future in as_completed(__future_callback): func = __future_callback[future] if func is not None: f_result = future.result() push_task(func, (f_result, )) del __future_callback[future]
the-stack_106_31153
"""Adding new operation types Revision ID: 1cf750b30c08 Revises: e35c7cf01cb4 Create Date: 2021-11-02 23:51:07.308510 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '1cf750b30c08' down_revision = 'e35c7cf01cb4' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.execute("INSERT INTO operation_type VALUES (20, 'Mascota'), (21, 'Salud'), (22, 'Inversión')") # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.execute("DELETE FROM operation_type WHERE id in (20,21,22)") # ### end Alembic commands ###
the-stack_106_31155
# -*- coding: utf-8 -*- """ Created on Wed Apr 17 10:34:50 2019 @author: GAllison This script performs the overall task of creating a FracFocus database from the raw excel collection and creating the tables used to make data sets. Change the file handles at the top of core.Data_set_constructor to point to appropriate directories. Within Open-FF, there are three "working" FracFocus raw files. When new data is downloaded from FracFocus, we put it in a file named "test_data.zip" (If we are performing a tripwire scan, we move the previous "test_data.zip" into "test_data_last.zip""). These two files are handled in the script: "get_new_raw_file.py" and is performed frequently to document new disclosures. That script also saves a copy of test_data.zip into an archive directory once a week - usually the same day that the weekly blog post is generated. The third working raw file in Open-FF is "curentData.zip". This is simply a copy of "test_data.zip" made once I'm ready to start a curation process. This separation of files allows Open-FF to continue to download data into test_data.zip while I am working on the curation and repository process (which can take several days). The currentData.zip file is typically what is used in this script to build a file eventually ready for a repository. # 3/2022 - separating Skytruth archive from main data # 3/2022 - adding FFV1_scrape as an additional separate data set """ ## For standard processing, set the following to 'bulk' data_source = 'SkyTruth' # can be 'bulk', 'FFV1_scrape' or 'SkyTruth' # or 'NM_scrape_2022_05' bulk_fn = 'currentData' # name of raw bulk archive file construct_from_scratch = True # normally True do_end_tests = True # normally True, only for 'bulk' set, ignore otherwise make_output_files = False # True for final bulk runs, adds lots of compile time do_abbrev = False # normally False, for some testing purposes # used to control files to read from the bulk download. If less than full # set, this process is performed in "test" mode. startfile = 0 # 0 for full set endfile = None # None for no upper limit if (startfile!=0) | (endfile!=None) : # test mode does not overwrite production mode pickles mode = 'TEST' print('\n'+30*'-'+ 'Performing in TEST mode!'+30*'-'+'\n') else: mode = 'PRODUCTION' import core.Data_set_constructor as set_const import core.Analysis_set as ana_set def run_build(bulk_fn = bulk_fn, mode=mode, data_source=data_source, make_output_files=make_output_files, startfile=startfile, endfile=endfile, do_abbrev=do_abbrev, do_end_tests=do_end_tests, construct_from_scratch=construct_from_scratch): if construct_from_scratch: # this can be skipped when testing if pickles already made t = set_const.Data_set_constructor(bulk_fn=bulk_fn, const_mode=mode, make_files=make_output_files, startfile=startfile, endfile=endfile, data_source=data_source, abbreviated=do_abbrev)\ .create_full_set() if do_end_tests&(mode=='PRODUCTION')&(data_source=='bulk'): import core.Tests_of_final as tests print('\nStarting tests of final product') print(' Creating test set of FULL data') df = ana_set.Full_set(bulk_fn=bulk_fn, pkl_when_creating=False).get_set() tests.final_test(df).run_all_tests() if (make_output_files == True) &(data_source=='bulk'): print('\n\n -- Generating output data sets\n') ana_set.Standard_data_set(bulk_fn=bulk_fn, pkl_when_creating=False).save_compressed() ana_set.Full_set(bulk_fn=bulk_fn, pkl_when_creating=False).save_compressed() print('\nBuild completed\n') try: return t except: print('No data set constructor to return.') if __name__ == '__main__': t = run_build() # build using the defaults at the top.
the-stack_106_31156
from corehq.apps.reports.filters.dates import DatespanFilter from corehq.apps.reports.standard import CustomProjectReport, ProjectReportParametersMixin, DatespanMixin from custom.intrahealth.filters import FicheLocationFilter2 from custom.intrahealth.reports.utils import IntraHealthLocationMixin, IntraHealthReportConfigMixin from custom.intrahealth.sqldata import FicheData2 from memoized import memoized from corehq.apps.locations.models import SQLLocation class MultiReport(CustomProjectReport, IntraHealthLocationMixin, IntraHealthReportConfigMixin, ProjectReportParametersMixin, DatespanMixin): title = '' base_template_path = "intrahealth/base_multi_report.html" report_template_path = "intrahealth/multi_report.html" flush_layout = True export_format_override = 'csv' @property @memoized def rendered_report_title(self): return self.title @property @memoized def data_providers(self): return [] @property def report_context(self): context = { 'reports': [self.get_report_context(dp) for dp in self.data_providers], 'title': self.title } return context def get_report_context(self, data_provider): total_row = [] self.data_source = data_provider if self.needs_filters: headers = [] rows = [] else: rows = data_provider.rows headers = data_provider.headers total_row = data_provider.total_row context = dict( report_table=dict( title=data_provider.title, slug=data_provider.slug, headers=headers, rows=rows, total_row=total_row, default_rows=self.default_rows, datatables=data_provider.datatables, fix_column=data_provider.fix_left_col ) ) return context @property def export_table(self): reports = [r['report_table'] for r in self.report_context['reports']] return [self._export_table(r['title'], r['headers'], r['rows'], total_row=r['total_row']) for r in reports] def _export_table(self, export_sheet_name, headers, formatted_rows, total_row=None): def _unformat_row(row): return [col.get("sort_key", col) if isinstance(col, dict) else col for col in row] table = headers.as_export_table rows = [_unformat_row(row) for row in formatted_rows] replace = '' #make headers and subheaders consistent for k, v in enumerate(table[0]): if v != ' ': replace = v else: table[0][k] = replace table.extend(rows) if total_row: table.append(_unformat_row(total_row)) return [export_sheet_name, table] class FicheConsommationReport2(MultiReport): name = "Fiche Consommation NEW" slug = 'fiche_consommation2' title = "Fiche Consommation NEW" fields = [DatespanFilter, FicheLocationFilter2] export_format_override = 'csv' default_rows = 10 exportable = True @property @memoized def data_providers(self): config = self.report_config locations = [] if 'region_id' in config: locations = tuple(SQLLocation.objects.get( location_id=config['region_id'] ).archived_descendants().values_list('location_id', flat=True)) elif 'district_id' in config: locations = tuple(SQLLocation.objects.get( location_id=config['district_id'] ).archived_descendants().values_list('location_id', flat=True)) if locations: config.update({'archived_locations': locations}) return [ FicheData2(config=config), ]
the-stack_106_31157
"""Parallel coordinates plot showing posterior points with and without divergences marked.""" import numpy as np from scipy.stats import rankdata from ..data import convert_to_dataset from ..labels import BaseLabeller from ..sel_utils import xarray_to_ndarray from ..rcparams import rcParams from ..stats.stats_utils import stats_variance_2d as svar from ..utils import _numba_var, _var_names, get_coords from .plot_utils import get_plotting_function def plot_parallel( data, var_names=None, filter_vars=None, coords=None, figsize=None, textsize=None, legend=True, colornd="k", colord="C1", shadend=0.025, labeller=None, ax=None, norm_method=None, backend=None, backend_config=None, backend_kwargs=None, show=None, ): """ Plot parallel coordinates plot showing posterior points with and without divergences. Described by https://arxiv.org/abs/1709.01449 Parameters ---------- data: obj Any object that can be converted to an :class:`arviz.InferenceData` object refer to documentation of :func:`arviz.convert_to_dataset` for details var_names: list of variable names Variables to be plotted, if `None` all variables are plotted. Can be used to change the order of the plotted variables. Prefix the variables by ``~`` when you want to exclude them from the plot. filter_vars: {None, "like", "regex"}, optional, default=None If `None` (default), interpret var_names as the real variables names. If "like", interpret var_names as substrings of the real variables names. If "regex", interpret var_names as regular expressions on the real variables names. A la ``pandas.filter``. coords: mapping, optional Coordinates of ``var_names`` to be plotted. Passed to :meth:`xarray.Dataset.sel`. figsize: tuple Figure size. If None it will be defined automatically. textsize: float Text size scaling factor for labels, titles and lines. If None it will be autoscaled based on ``figsize``. legend: bool Flag for plotting legend (defaults to True) colornd: valid matplotlib color color for non-divergent points. Defaults to 'k' colord: valid matplotlib color color for divergent points. Defaults to 'C1' shadend: float Alpha blending value for non-divergent points, between 0 (invisible) and 1 (opaque). Defaults to .025 labeller : labeller instance, optional Class providing the method ``make_label_vert`` to generate the labels in the plot. Read the :ref:`label_guide` for more details and usage examples. ax: axes, optional Matplotlib axes or bokeh figures. norm_method: str Method for normalizing the data. Methods include normal, minmax and rank. Defaults to none. backend: str, optional Select plotting backend {"matplotlib","bokeh"}. Default "matplotlib". backend_config: dict, optional Currently specifies the bounds to use for bokeh axes. Defaults to value set in ``rcParams``. backend_kwargs: bool, optional These are kwargs specific to the backend being used, passed to :func:`matplotlib.pyplot.subplots` or :func:`bokeh.plotting.figure`. show: bool, optional Call backend show function. Returns ------- axes: matplotlib axes or bokeh figures See Also -------- plot_pair : Plot a scatter, kde and/or hexbin matrix with (optional) marginals on the diagonal. plot_trace : Plot distribution (histogram or kernel density estimates) and sampled values or rank plot Examples -------- Plot default parallel plot .. plot:: :context: close-figs >>> import arviz as az >>> data = az.load_arviz_data('centered_eight') >>> az.plot_parallel(data, var_names=["mu", "tau"]) Plot parallel plot with normalization .. plot:: :context: close-figs >>> az.plot_parallel(data, var_names=["mu", "tau"], norm_method='normal') """ if coords is None: coords = {} if labeller is None: labeller = BaseLabeller() # Get diverging draws and combine chains divergent_data = convert_to_dataset(data, group="sample_stats") _, diverging_mask = xarray_to_ndarray( divergent_data, var_names=("diverging",), combined=True, ) diverging_mask = np.squeeze(diverging_mask) # Get posterior draws and combine chains posterior_data = convert_to_dataset(data, group="posterior") var_names = _var_names(var_names, posterior_data, filter_vars) var_names, _posterior = xarray_to_ndarray( get_coords(posterior_data, coords), var_names=var_names, combined=True, label_fun=labeller.make_label_vert, ) if len(var_names) < 2: raise ValueError("Number of variables to be plotted must be 2 or greater.") if norm_method is not None: if norm_method == "normal": mean = np.mean(_posterior, axis=1) if _posterior.ndim <= 2: standard_deviation = np.sqrt(_numba_var(svar, np.var, _posterior, axis=1)) else: standard_deviation = np.std(_posterior, axis=1) for i in range(0, np.shape(mean)[0]): _posterior[i, :] = (_posterior[i, :] - mean[i]) / standard_deviation[i] elif norm_method == "minmax": min_elem = np.min(_posterior, axis=1) max_elem = np.max(_posterior, axis=1) for i in range(0, np.shape(min_elem)[0]): _posterior[i, :] = ((_posterior[i, :]) - min_elem[i]) / (max_elem[i] - min_elem[i]) elif norm_method == "rank": _posterior = rankdata(_posterior, axis=1, method="average") else: raise ValueError(f"{norm_method} is not supported. Use normal, minmax or rank.") parallel_kwargs = dict( ax=ax, colornd=colornd, colord=colord, shadend=shadend, diverging_mask=diverging_mask, posterior=_posterior, textsize=textsize, var_names=var_names, legend=legend, figsize=figsize, backend_kwargs=backend_kwargs, backend_config=backend_config, show=show, ) if backend is None: backend = rcParams["plot.backend"] backend = backend.lower() # TODO: Add backend kwargs plot = get_plotting_function("plot_parallel", "parallelplot", backend) ax = plot(**parallel_kwargs) return ax
the-stack_106_31161
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Nekozilla is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Nekozilla is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Nekozilla. If not, see <https://www.gnu.org/licenses/>. """ Modules to load internally. """ import importlib import inspect import pkgutil import typing from neko3 import algorithms from neko3 import logging_utils from neko3 import properties from neko3 import singleton DEFAULT_START = "neko3.features" class ModuleDetectionService(logging_utils.Loggable, metaclass=singleton.SingletonMeta): @properties.cached_property() def extension_candidates(self) -> typing.List[str]: queue = [importlib.import_module(DEFAULT_START)] successful_candidates = [] while queue: module = queue.pop(0) if inspect.isfunction(getattr(module, "setup", None)): successful_candidates.append(module.__name__) self.logger.debug("%s is a valid extension", module.__name__) else: self.logger.debug("%s is not a valid extension", module.__name__) if hasattr(module, "__path__"): for _, fqn, is_package in pkgutil.walk_packages(module.__path__, prefix=f"{module.__name__}."): try: queue.append(importlib.import_module(fqn)) except Exception as ex: self.logger.exception("Failed to import %s", fqn, exc_info=ex) return successful_candidates def auto_load_modules(self, bot) -> typing.List[typing.Tuple[BaseException, str]]: """ Auto-loads any modules into the given bot. If any extensions fail to load, then we do not halt. A traceback is printed and we continue. Any errors are returned in a collection of 2-tuples paired with the name of the corresponding extension that caused the error. """ errors = [] modules = self.extension_candidates if not modules: self.logger.warning("No modules were discovered.") else: with algorithms.TimeIt() as overall_timer: for module in modules: try: with algorithms.TimeIt() as timer: bot.load_extension(module) except KeyboardInterrupt as ex: raise ex from None except Exception as ex: self.logger.exception(f"Failed to load extension {module}", exc_info=ex) errors.append((ex, module)) else: self.logger.info(f"Loaded module {module} in {timer.time_taken * 1000:,.2f}ms") self.logger.info( f"Loaded {len(modules) - len(errors)}/{len(modules)} " f"modules successfully in {overall_timer.time_taken * 1000:,.2f}ms. Bot now has {len(bot.extensions)} " f"extensions loaded, with a total of {len(bot.cogs)} cogs and {len(bot.all_commands)} commands! " f"Will now start bot." ) return errors
the-stack_106_31162
""" # SOURCE https://github.com/parzival-roethlein/prmaya # DESCRIPTION Temporarily sets (Panel > Show > types) while: - dragging the translate/rotate/scale tools - timeline dragging - timeline playback The purpose is to have a clear view of the deforming geometry Technical: Creates a scriptJob (SelectionChanged) and OpenMaya.MConditionMessage (playingBack) # INSTALLATION Copy this file ("prPanelCtx.py") into your ".../maya/scripts" folder. # USAGE (It's recommended to run it in your userSetup file, so you don't have to think about it and treat it like a Maya setting) import prPanelCtx # AND EITHER prPanelCtx.enable(manipulators=False) # prPanelCtx.disable() # OR prPanelCtx.toggle(manipulators=False) # USAGE EXAMPLE: ANIMATION import prPanelCtx prPanelCtx.enable(manipulators=False, nurbsCurves=False, locators=False, controllers=False) # USAGE EXAMPLE: RIGGING / if you want different settings for manipulator and playback import prPanelCtx prPanelCtx.enable(manipCtxKwargs={'manipulators': False}, playbackCtxKwargs={'nurbsCurves': False, 'locators': False, 'controllers': False}) # TODO - UI - shadingCtx (xray joints, default material, ...) - LightingCtx - switch scriptJob creation to onFileOpen and delete onFileClose? so playbackId does not get lost / multiple playback scriptjobs created - (could not find a event for this) timeline context to start on mousedown, not only after time changes - compare and maybe switch to MEvent version of manipScriptjob # TODO (impossible without custom Maya API plugin as far as I know) - camera orbit ctx (orbitCtx, draggerContext, panZoomCtx) - manipCtx component selection support - channelBox attribute drag support: mc.draggerContext doesn't seem to trigger from channelBox drag - Universal Manipulator support: Doesn't seem to have a command, als tried mc.draggerContext('xformManipContext', ..) """ from collections import defaultdict from functools import wraps import logging import maya.api.OpenMaya as om import maya.cmds as mc import maya.mel as mm logging.basicConfig() logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) SCENE_PANEL_VALUES = defaultdict(dict) MANIP_NODE_TYPE = None MANIP_CTX_ID = None PLAYBACK_CTX_ID = None TOGGLE_STATUS = False def enable(manipCtxKwargs=None, playbackCtxKwargs=None, **allCtxKwargs): """ :param manipCtxKwargs: settings for only the manipulators (translate, rotate, scale tools) :param playbackCtxKwargs: settings for only the timeline interaction (drag, playback) :param allCtxKwargs: settings for both: manipulators / timeline interaction :return: """ global TOGGLE_STATUS TOGGLE_STATUS = True manipCtxKwargs = dict(allCtxKwargs.items() + (manipCtxKwargs or {}).items()) playbackCtxKwargs = dict(allCtxKwargs.items() + (playbackCtxKwargs or {}).items()) createManipCtx(**manipCtxKwargs) createPlaybackCtx(**playbackCtxKwargs) def disable(): global TOGGLE_STATUS TOGGLE_STATUS = False deleteManipCtx() deletePlaybackCtx() def toggle(displayInfo=True, **enableKwargs): """ :param displayInfo: display toggle status :param enableKwargs: see def enable(..) :return: """ global TOGGLE_STATUS if not TOGGLE_STATUS: enable(**enableKwargs) if displayInfo: om.MGlobal.displayInfo('ENABLED prPanelCtx') else: disable() if displayInfo: om.MGlobal.displayInfo('DISABLED prPanelCtx') def preCommand(withFocus=False, **flags): """ :param withFocus: only affect panel with focus: cmds.getPanel(withFocus=...) :param flags: see cmds.modelEditor() documentation :return: list of affected panels """ global SCENE_PANEL_VALUES SCENE_PANEL_VALUES.clear() panels = mc.getPanel(type='modelPanel') if withFocus: focusedPanel = mc.getPanel(withFocus=True) if focusedPanel not in panels: # is this even possible? logger.debug('focusedPanel: "{0}" not a modelPanel: [{1}]'.format(focusedPanel, panels)) return [] panels = [focusedPanel] for panel in panels: for flag, value in flags.iteritems(): sceneValue = mc.modelEditor(panel, q=True, **{flag: True}) if sceneValue != value: mc.modelEditor(panel, e=True, **{flag: value}) SCENE_PANEL_VALUES[panel][flag] = sceneValue return panels def postCommand(): for panel, flags in SCENE_PANEL_VALUES.iteritems(): for flag, value in flags.iteritems(): mc.modelEditor(panel, e=True, **{flag: value}) def log(func): @wraps(func) def wrapper(*args, **kwargs): logger.debug('{0}(args: {1}, kwargs: {2})'.format(func.__name__, args, kwargs)) result = func(*args, **kwargs) logger.debug(' {0} output = {1}'.format(func.__name__, result)) return result return wrapper def setManipCommands(nodeType='transform', preFunc=str, postFunc=str): mc.manipMoveContext('Move', e=True, preDragCommand=[preFunc, nodeType]) mc.manipMoveContext('Move', e=True, postDragCommand=[postFunc, nodeType]) mc.manipRotateContext('Rotate', e=True, preDragCommand=[preFunc, nodeType]) mc.manipRotateContext('Rotate', e=True, postDragCommand=[postFunc, nodeType]) mc.manipScaleContext('Scale', e=True, preDragCommand=[preFunc, nodeType]) mc.manipScaleContext('Scale', e=True, postDragCommand=[postFunc, nodeType]) # the drag commands are only active on reentering the context currentCtx = mc.currentCtx() if currentCtx in ['moveSuperContext', 'RotateSuperContext', 'scaleSuperContext']: # only set context if needed mc.setToolTo(currentCtx) def manipCtxNodeTypeChange(): global MANIP_NODE_TYPE selectedNodeTypes = mc.ls(sl=True, showType=True, type='transform')[1::2] if not selectedNodeTypes or MANIP_NODE_TYPE in selectedNodeTypes: return False MANIP_NODE_TYPE = selectedNodeTypes[0] return True @log def createManipCtx(**preCommandKwargs): def createManipCtxDeferred(): deleteManipCtx() def prPanelCtxManipScriptJob(): if manipCtxNodeTypeChange(): global MANIP_NODE_TYPE setManipCommands(nodeType=MANIP_NODE_TYPE, preFunc=lambda: preCommand(**preCommandKwargs), postFunc=postCommand) prPanelCtxManipScriptJob() global MANIP_CTX_ID MANIP_CTX_ID = mc.scriptJob(event=["SelectionChanged", prPanelCtxManipScriptJob]) # evalDeferred to be able to run in Maya userSetup file mc.evalDeferred(createManipCtxDeferred) @log def getManipCtx(): scriptJob_ids = [] for scriptJob in mc.scriptJob(listJobs=True) or []: if 'prPanelCtxManipScriptJob' in scriptJob: scriptJobId = int(scriptJob[:scriptJob.find(':')]) scriptJob_ids.append(scriptJobId) return scriptJob_ids @log def deleteManipCtx(): global MANIP_CTX_ID if MANIP_CTX_ID: mc.scriptJob(kill=MANIP_CTX_ID, force=True) MANIP_CTX_ID = None global MANIP_NODE_TYPE MANIP_NODE_TYPE = None setManipCommands() invalid_ids = getManipCtx() if invalid_ids: for id_ in invalid_ids: mc.scriptJob(kill=id_, force=True) mm.eval('warning "Deleted manipCtx ids that should not have existed : {}"'.format(invalid_ids)) @log def createPlaybackCtx(**preCommandKwargs): def createPlaybackCtxDeferred(): deletePlaybackCtx() def prPanelCtxCondition(state, **preCommandKwargs): if state: preCommand(**preCommandKwargs) else: postCommand() global PLAYBACK_CTX_ID PLAYBACK_CTX_ID = om.MConditionMessage.addConditionCallback('playingBack', lambda state, *args: prPanelCtxCondition(state, **preCommandKwargs)) # evalDeferred to be able to run in Maya userSetup file mc.evalDeferred(createPlaybackCtxDeferred) @log def deletePlaybackCtx(): global PLAYBACK_CTX_ID if PLAYBACK_CTX_ID: om.MMessage.removeCallback(PLAYBACK_CTX_ID) PLAYBACK_CTX_ID = None
the-stack_106_31163
''' Переставить min и max ''' def exchangeMinMax(a): minEl = float('inf') minId = -1 maxEl = float('-inf') maxId = -1 for i in range(len(a)): if (a[i] > maxEl): maxEl = a[i] maxId = i if (a[i] < minEl): minEl = a[i] minId = i (a[minId], a[maxId]) = (a[maxId], a[minId]) a = list(map(int, input().split())) exchangeMinMax(a) print(*a)
the-stack_106_31164
#!/usr/bin/env python # # DRAGONS # gempy.scripts # showpars.py # ----------------------------------------------------------------------------- import sys import textwrap from argparse import ArgumentParser from importlib import import_module import astrodata import gemini_instruments # noqa from gempy import __version__ from recipe_system.mappers import primitiveMapper # ----------------------------------------------------------------------------- def main(args=None): parser = ArgumentParser( description=f"Primitive parameter display, v{__version__}") parser.add_argument("-v", "--version", action="version", version=f"v{__version__}") parser.add_argument('filename', help="filename") parser.add_argument('primitive', help="primitive name") parser.add_argument("-d", "--doc", action="store_true", help="show the full docstring") parser.add_argument('--adpkg', help='Name of the astrodata instrument ' 'package to use if not gemini_instruments') parser.add_argument('--drpkg', help='Name of the DRAGONS instrument ' 'package to use if not geminidr') args = parser.parse_args(args) pobj, tags = get_pars(args.filename, adpkg=args.adpkg, drpkg=args.drpkg) return showpars(pobj, args.primitive, tags, args.doc) def get_pars(filename, adpkg=None, drpkg=None): if adpkg is not None: import_module(adpkg) ad = astrodata.open(filename) dtags = set(list(ad.tags)[:]) instpkg = ad.instrument(generic=True).lower() if drpkg is None: pm = primitiveMapper.PrimitiveMapper(dtags, instpkg) else: pm = primitiveMapper.PrimitiveMapper(dtags, instpkg, drpkg=drpkg) pclass = pm.get_applicable_primitives() pobj = pclass([ad]) return pobj, dtags def showpars(pobj, primname, tags, show_docstring): print(f"Dataset tagged as {tags}") print(f"\nSettable parameters on '{primname}':") print("=" * 40) print(f"{'Name':20s} {'Current setting':20s} Description\n") params = pobj.params[primname] for k, v in params.items(): if not k.startswith("debug"): print(f"{k:20s} {v!r:20s} {params.doc(k)}") if show_docstring: print(f"\nDocstring for '{primname}':") print("=" * 40) print(textwrap.dedent(getattr(pobj, primname).__doc__)) if __name__ == '__main__': sys.exit(main())
the-stack_106_31165
from typing import TYPE_CHECKING, Dict, List, Union from modules.base import K8sServiceModuleProcessor, LocalK8sModuleProcessor from modules.linker_helper import LinkerHelper from opta.core.kubernetes import create_namespace_if_not_exists, list_namespaces from opta.exceptions import UserErrors if TYPE_CHECKING: from opta.layer import Layer from opta.module import Module class LocalK8sServiceProcessor(LocalK8sModuleProcessor, K8sServiceModuleProcessor): def __init__(self, module: "Module", layer: "Layer"): if (module.aliased_type or module.type) != "local-k8s-service": raise Exception( f"The module {module.name} was expected to be of type local k8s service" ) super(LocalK8sServiceProcessor, self).__init__(module, layer) def pre_hook(self, module_idx: int) -> None: list_namespaces() create_namespace_if_not_exists(self.layer.name) super(LocalK8sServiceProcessor, self).pre_hook(module_idx) def process(self, module_idx: int) -> None: # Update the secrets self.module.data["link_secrets"] = self.module.data.get("link_secrets", []) if isinstance(self.module.data.get("public_uri"), str): self.module.data["public_uri"] = [self.module.data["public_uri"]] current_envars: Union[List, Dict[str, str]] = self.module.data.get("env_vars", []) if isinstance(current_envars, dict): self.module.data["env_vars"] = [ {"name": x, "value": y} for x, y in current_envars.items() ] # Handle links for link_data in self.module.data.get("links", []): if type(link_data) is str: target_module_name = link_data link_permissions = [] elif type(link_data) is dict: target_module_name = list(link_data.keys())[0] link_permissions = list(link_data.values())[0] else: raise UserErrors( f"Link data {link_data} must be a string or map holding the permissions" ) module = self.layer.get_module(target_module_name, module_idx) if module is None: raise Exception( f"Did not find the desired module {target_module_name} " "make sure that the module you're referencing is listed before the k8s " "app one" ) module_type = module.aliased_type or module.type if module_type == "local-postgres": LinkerHelper.handle_link( module=self.module, linked_module=module, link_permissions=link_permissions, required_vars=["db_user", "db_name", "db_password", "db_host"], ) elif module_type == "local-redis": LinkerHelper.handle_link( module=self.module, linked_module=module, link_permissions=link_permissions, required_vars=["cache_host"], ) elif module_type == "local-mongodb": LinkerHelper.handle_link( module=self.module, linked_module=module, link_permissions=link_permissions, required_vars=["db_user", "db_name", "db_password", "db_host"], ) elif module_type == "local-mysql": LinkerHelper.handle_link( module=self.module, linked_module=module, link_permissions=link_permissions, required_vars=["db_user", "db_name", "db_password", "db_host"], ) elif module_type == "mongodb-atlas": LinkerHelper.handle_link( module=self.module, linked_module=module, link_permissions=link_permissions, required_vars=[ "db_password", "db_user", "mongodb_atlas_connection_string", ], ) else: raise Exception( f"Unsupported module type for k8s service link: {module_type}" ) if "image_tag" in self.layer.variables: self.module.data["tag"] = self.layer.variables["image_tag"] if "image_digest" in self.layer.variables: self.module.data["digest"] = self.layer.variables["image_digest"] seen = set() self.module.data["link_secrets"] = [ seen.add(obj["name"]) or obj # type: ignore for obj in self.module.data["link_secrets"] if obj["name"] not in seen ] super(LocalK8sServiceProcessor, self).process(module_idx)
the-stack_106_31166
"""The type file for image collection.""" from snovault import ( collection, load_schema, ) from .base import ( Item, # lab_award_attribution_embed_list ) from snovault.attachment import ItemWithAttachment @collection( name='images', unique_key='image:filename', properties={ 'title': 'Image', 'description': 'Listing of portal images', }) class Image(ItemWithAttachment, Item): """Class image,defines accepted file types.""" item_type = 'image' schema = load_schema('encoded:schemas/image.json') schema['properties']['attachment']['properties']['type']['enum'] = [ 'image/png', 'image/jpeg', 'image/gif', ] embedded_list = Item.embedded_list # + lab_award_attribution_embed_list def unique_keys(self, properties): """smth.""" keys = super(Image, self).unique_keys(properties) value = properties['attachment']['download'] keys.setdefault('image:filename', []).append(value) return keys
the-stack_106_31171
# -*- coding: utf-8 -*- # Copyright (c) 2015, Frappe Technologies and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe, json from frappe.model.document import Document from frappe import _ class DeletedDocument(Document): pass @frappe.whitelist() def restore(name): deleted = frappe.get_doc('Deleted Document', name) doc = frappe.get_doc(json.loads(deleted.data)) try: doc.insert() except frappe.DocstatusTransitionError: frappe.msgprint(_("Cancelled Document restored as Draft")) doc.docstatus = 0 doc.insert() doc.add_comment('Edit', _('restored {0} as {1}').format(deleted.deleted_name, doc.name)) deleted.new_name = doc.name deleted.restored = 1 deleted.db_update() frappe.msgprint(_('Document Restored'))
the-stack_106_31172
"""Functions to rescale data depending on the user's needs""" import numpy as np import pandas as pd from sklearn.preprocessing import scale ################################################################################ # Functions for pandas objects ################################################################################ def standardize_dataframe(dataframe: pd.DataFrame) -> pd.DataFrame: """Return a copy of the original dataframe where all the numerical columns have been individually standardized.""" new_cols = [ standardize_series(dataframe[col]) if pd.api.types.is_numeric_dtype(dataframe[col]) else dataframe[col] for col in dataframe.columns ] return pd.concat(new_cols, axis=1) def standardize_columns(dataframe: pd.DataFrame, columns: list[str]) -> pd.DataFrame: """Return a copy of the original dataframe where the columns passed in the columns argument have been individually standardized.""" new_cols = [ standardize_series(dataframe[col]) if col in columns else dataframe[col] for col in dataframe.columns ] return pd.concat(new_cols, axis=1) def standardize_series(series: pd.Series) -> pd.Series: """Return the standardized version of the passed pandas series. If the series is constant, a 0-filled series is returned.""" try: sd = 1 if series.std() == 0 else series.std() return (series - series.mean()) / sd except TypeError as e: raise TypeError( "Cannot standardize a non-numerical series." f"Series {series.name} is of type {series.dtype}" ) from e def normalize_dataframe(dataframe: pd.DataFrame) -> pd.DataFrame: """Return a copy of the original dataframe where all the numerical columns have been individually normalized. Normalization happens by diving each element of the series by the maximum value of the series itself.""" new_cols = [ normalize_series(dataframe[col]) if pd.api.types.is_numeric_dtype(dataframe[col]) else dataframe[col] for col in dataframe.columns ] return pd.DataFrame(new_cols) ################################################################################ # Functions for array objects ################################################################################ def standardize_array(array: np.ndarray, axis: int = 0) -> np.ndarray: """Return the standardized version of the passed numpy array. Parameters ---------- array : np.ndarray The array to be standardized. axis : int, optional If array is unidimensional - array.ndim == 1 - this parameter is ignored. Otherwise, axis = 0 should be used if standardization is to happen by column, 1 otherwise. For general use, axis=0 is used when row represent the observations and columns represent the variables. Returns ------- np.ndarray The standardized version of the array. """ axis = 0 if array.ndim == 1 else axis return scale(array, axis=axis)
the-stack_106_31175
# encoding='utf-8' ''' /** * This is the solution of No.79 problem in the LeetCode, * the website of the problem is as follow: * https://leetcode-cn.com/problems/word-search * <p> * The description of problem is as follow: * ========================================================================================================== * 给定一个二维网格和一个单词,找出该单词是否存在于网格中。 * <p> * 单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母不允许被重复使用。 * <p> * 示例: * <p> * board = * [ * ['A','B','C','E'], * ['S','F','C','S'], * ['A','D','E','E'] * ] * <p> * 来源:力扣(LeetCode) * 链接:https://leetcode-cn.com/problems/word-search * 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 * ========================================================================================================== * * @author zhangyu ([email protected]) */ ''' from typing import List class Solution: def word_search(self, board: List[List[str]], word: str) -> bool: ''' 单词查找 Args: board: 字符串数组 word: 字符串单词 Returns: 布尔值 ''' if not word or len(word) < 1: return True m, n = len(board), len(board[0]) visited = [[False for i in range(n)] for j in range(m)] for i in range(m): for j in range(n): if board[i][j] == word[0] and self.dfs(board, word, i, j, 0, visited): return True return False def dfs(self, board, word, i, j, index, visited): ''' 深度优先遍历 Args: board: 二维字符串 word: 单词 i: 下标i j: 下标j index: 下标 visited: 是否访问过 Returns: 布尔值 ''' if index == len(word): return True if i >= len(board) or i < 0 or j >= len(board[0]) or j < 0 or board[i][j] != word[index] or visited[i][j]: return False visited[i][j] = True if self.dfs(board, word, i - 1, j, index + 1, visited) or \ self.dfs(board, word, i + 1, j, index + 1, visited) or \ self.dfs(board, word, i, j - 1, index + 1, visited) or \ self.dfs(board, word, i, j + 1, index + 1, visited): \ return True visited[i][j] = False return False if __name__ == '__main__': board = [ ['a', 'b'], ['c', 'd'] ] word = "abdc" solution = Solution() result = solution.word_search(board, word) print(result) assert result == True
the-stack_106_31176
"""`Domain models` setup script.""" import os import re from setuptools import setup from setuptools import Command # Getting description: with open('README.rst') as readme_file: description = readme_file.read() # Getting requirements: with open('requirements.txt') as version: requirements = version.readlines() # Getting version: with open('domain_models/__init__.py') as init_file: version = re.search('VERSION = \'(.*?)\'', init_file.read()).group(1) class PublishCommand(Command): """Setuptools `publish` command.""" description = "Publish current distribution to PyPi and create tag" user_options = [] def initialize_options(self): """Init options.""" def finalize_options(self): """Finalize options.""" def run(self): """Command execution.""" self.run_command('sdist') self.run_command('upload') os.system('git tag -a {0} -m \'version {0}\''.format(version)) os.system('git push --tags') setup(name='domain-models', version=version, description='Domain models framework for Python projects', long_description=description, author='ETS Labs', author_email='[email protected]', maintainer='ETS Labs', maintainer_email='[email protected]', url='https://github.com/ets-labs/python-domain-models', bugtrack_url='https://github.com/ets-labs/python-domain-models/issues', download_url='https://pypi.python.org/pypi/domain_models', license='BSD New', packages=['domain_models'], platforms=['any'], zip_safe=True, install_requires=requirements, cmdclass={ 'publish': PublishCommand, }, keywords=[ 'Domain models', 'Domain modelling', 'Domain driven design', 'Domain driven development', 'DDD', 'Models', ], classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ])
the-stack_106_31179
import numpy as np import cv2 from enum import Enum class Models(Enum): ssd_lite = 'ssd_lite' tiny_yolo = 'tiny_yolo' tf_lite = 'tf_lite' def __str__(self): return self.value @staticmethod def from_string(s): try: return Models[s] except KeyError: raise ValueError() MAX_AREA = 0.019 # max area from train set RATIO_MEAN = 4.17 RATIO_STD = 1.06 def load_image_into_numpy_array(image_path): image = cv2.imread(image_path) return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) def affine_tile_corners(x0, y0, theta, wp, hp): """ Find corners of tile defined by affine transformation. Find corners in original image for tile defined by affine transformation, i.e. a rotation and translation, given (x0, y0) the upper left corner of the tile, theta, the rotation angle of the tile in degrees, and the tile width wp, and height hp. Args: x0 Horizontal coordinate of tile upper left corner (pixels) y0 Vertical coordinate of tile upper left corner (pixels) theta Rotation angle (degrees clockwise from vertical) wp Tile width (pixels) hp Tile height (pixels) Returns: corners Corner points, in clockwise order starting from upper left corner, ndarray size (4, 2) """ rot_angle = np.radians(theta) corners = np.array( [[x0, y0], [x0 + wp * np.cos(rot_angle), y0 + wp * np.sin(rot_angle)], [x0 + wp * np.cos(rot_angle) - hp * np.sin(rot_angle), y0 + wp * np.sin(rot_angle) + hp * np.cos(rot_angle)], [x0 - hp * np.sin(rot_angle), y0 + hp * np.cos(rot_angle)]]) return corners def tile_images(tiling_params, img): res = [] original_sizes = [] offset = [] for cur_pt, cur_theta, cur_multiplier in zip( tiling_params["upper_left_pts"], tiling_params["thetas"], tiling_params["multipliers"]): cur_x0, cur_y0 = cur_pt corners = affine_tile_corners( cur_x0, cur_y0, cur_theta, int(cur_multiplier * tiling_params["wp"]), int(cur_multiplier * tiling_params["hp"])).astype(int) top = min(corners[:, 1]) left = min(corners[:, 0]) bottom = max(corners[:, 1]) right = max(corners[:, 0]) h = bottom - top w = right - left tile = np.zeros((h, w, 3)).astype(np.uint8) # crop tile from image tmp = img[top: bottom, left: right] tile[:tmp.shape[0], :tmp.shape[1], :3] = tmp # resize the tile tile = cv2.resize(tile, (tiling_params["wp"], tiling_params["hp"]), interpolation=cv2.INTER_NEAREST) # rotate the tile image_center = tuple(np.array(tile.shape[1::-1]) / 2) rot_mat = cv2.getRotationMatrix2D(image_center, cur_theta, 1.0) tmp = cv2.warpAffine(tile, rot_mat, (tile.shape[1::-1]), flags=cv2.INTER_LINEAR) original_sizes.append((bottom - top, right - left)) offset.append((top, left)) res.append(tmp) return res, original_sizes, offset def rotate_points(points, rotation_matrix): # add ones points_ones = np.append(points, 1) # transform points transformed_points = rotation_matrix.dot(points_ones) return transformed_points# [:,::-1] def split_img(img, m, n): h, w, _ = img.shape tile_h = h // m tile_w = w // n padding_h = tile_h // 10 padding_w = int(tile_w * 0.15) res = [] original_sizes = [] offset = [] for i in range(0, m): top = i * tile_h bottom = min(h, (i + 1) * tile_h + padding_h) for j in range(0, n): left = j * tile_w right = min(w, (j + 1) * tile_w + padding_w) original_sizes.append((bottom - top, right - left)) offset.append((top, left)) res.append(cv2.resize(img[top: bottom, left: right, :], (tile_w, tile_h), interpolation=cv2.INTER_NEAREST)) return res, original_sizes, offset def get_global_coord(point, img_size, original_size, offset): return [int(point[0] / img_size[1] * original_size[1] + offset[1]), \ int(point[1] / img_size[0] * original_size[0] + offset[0])] def non_max_suppression_fast(boxes, labels, overlap_thresh=0.5): # if there are no boxes, return an empty list boxes = np.array(boxes) if len(boxes) == 0: return [], [] # initialize the list of picked indexes pick = [] # grab the coordinates of the bounding boxes x1 = boxes[:, 0] y1 = boxes[:, 1] x2 = boxes[:, 2] y2 = boxes[:, 3] # compute the area of the bounding boxes and sort the bounding # boxes by the bottom-right y-coordinate of the bounding box area = (x2 - x1 + 1) * (y2 - y1 + 1) idxs = np.argsort(y2) # keep looping while some indexes still remain in the indexes # list while len(idxs) > 0: # grab the last index in the indexes list and add the # index value to the list of picked indexes last = len(idxs) - 1 i = idxs[last] pick.append(i) # find the largest (x, y) coordinates for the start of # the bounding box and the smallest (x, y) coordinates # for the end of the bounding box xx1 = np.maximum(x1[i], x1[idxs[:last]]) yy1 = np.maximum(y1[i], y1[idxs[:last]]) xx2 = np.minimum(x2[i], x2[idxs[:last]]) yy2 = np.minimum(y2[i], y2[idxs[:last]]) # compute the width and height of the bounding box w = np.maximum(0, xx2 - xx1 + 1) h = np.maximum(0, yy2 - yy1 + 1) # compute the ratio of overlap overlap = 1. * (w * h) / area[idxs[:last]] # delete all indexes from the index list that have idxs = np.delete(idxs, np.concatenate( ([last], np.where(overlap > overlap_thresh)[0]))) # return only the bounding boxes that were picked using the # integer data type return boxes[pick], [labels[i] for i in pick] def filter_bb_by_size(bbs, labels, img_area): res_bbs = [] res_labels = [] for bb, l in zip(bbs, labels): s = (bb[2] - bb[0]) * (bb[3] - bb[1]) / img_area r = (bb[3] - bb[1]) / (bb[2] - bb[0]) if s < MAX_AREA * 1.1 and RATIO_MEAN - 3 * RATIO_MEAN < r < RATIO_MEAN + 3 * RATIO_MEAN: res_bbs.append(bb) res_labels.append(l) return res_bbs, res_labels
the-stack_106_31180
# -*- coding: utf-8 -*- """Functions for loading STARS and ACCACIA datasets of PMCs.""" from octant.core import OctantTrack import pandas as pd import mypaths def read_stars_file(fname=mypaths.starsdir / "PolarLow_tracks_North_2002_2011"): """Read data into a `pandas.DataFrame` from the standard file.""" def _date_parser(*x): return pd.datetime.strptime(" ".join(x), "%Y %m %d %H %M") dtype_tuple = (int,) + 5 * (str,) + 4 * (float,) dtypes = {k: v for k, v in enumerate(dtype_tuple)} df = pd.read_csv( fname, dtype=dtypes, sep=r"\s+", skiprows=5, date_parser=_date_parser, parse_dates={"time": [1, 2, 3, 4, 5]}, ) return df def read_all_stars(): """Read both North and South subsets of STARS.""" df_n = read_stars_file(fname=mypaths.starsdir / "PolarLow_tracks_North_2002_2011") df_s = read_stars_file(fname=mypaths.starsdir / "PolarLow_tracks_South_2002_2011") df_s.N += df_n.N.values[-1] return df_n.append(df_s).reset_index(drop=True) def read_all_accacia(): """Load ACCACIA tracks as `pandas.DataFrame`""" def _date_parser(x): return pd.datetime.strptime(x, "%Y%m%d%H%M") df = pd.read_csv( mypaths.acctracks, delimiter="\t", names=["N", "time", "lon", "lat"], parse_dates=["time"], date_parser=_date_parser, ) return df def prepare_tracks(obs_df, filter_funcs=[]): """Make a list of those tracks that satisfy the list of conditions.""" selected = [] for i, df in obs_df.groupby("N"): ot = OctantTrack.from_df(df) flag = True for func in filter_funcs: flag &= func(ot) if flag: selected.append(ot) return selected
the-stack_106_31181
""" !!!!!!!!!!!!!!!!!!!!!!!!!!! DEPRECATED! DON'T USE THIS !!!!!!!!!!!!!!!!!!!!!!!!!!! This example is just here for aiding in migration to v0.2.0. see examples/napari_image_arithmetic.py instead """ from enum import Enum import numpy from napari import Viewer, gui_qt from napari.layers import Image from magicgui import magicgui class Operation(Enum): """A set of valid arithmetic operations for image_arithmetic. To create nice dropdown menus with magicgui, it's best (but not required) to use Enums. Here we make an Enum class for all of the image math operations we want to allow. """ add = numpy.add subtract = numpy.subtract multiply = numpy.multiply divide = numpy.divide with gui_qt(): # create a viewer and add a couple image layers viewer = Viewer() viewer.add_image(numpy.random.rand(20, 20), name="Layer 1") viewer.add_image(numpy.random.rand(20, 20), name="Layer 2") # use the magic decorator! This takes a function, generates a custom Widget class # using the function signature, and adds that class as an attribute named "Gui" on # the function. @magicgui(call_button="execute") def image_arithmetic(layerA: Image, operation: Operation, layerB: Image) -> Image: """Add, subtracts, multiplies, or divides to image layers with equal shape.""" return operation.value(layerA.data, layerB.data) # Gui() is DEPRECATED # you should now just add the decorated function directly: # viewer.window.add_dock_widget(image_arithmetic) gui = image_arithmetic.Gui() viewer.window.add_dock_widget(gui.native) # NOTE: gui.native will not be necessary after # https://github.com/napari/napari/pull/1994 # Use `reset_choices` instead now: # viewer.layers.events.inserted.connect(image_arithmetic.reset_choices) # viewer.layers.events.removed.connect(image_arithmetic.reset_choices) viewer.layers.events.inserted.connect(gui.refresh_choices) viewer.layers.events.removed.connect(gui.refresh_choices)
the-stack_106_31183
from __future__ import print_function, absolute_import from future.standard_library import hooks import os import copy from shutil import rmtree from tempfile import mkdtemp from datetime import datetime from numpy import empty, float32, datetime64, timedelta64, argmin, abs, array from rasterio import open as rasopen from rasterio.crs import CRS from rasterio.transform import Affine from rasterio.mask import mask from rasterio.warp import reproject, Resampling from rasterio.warp import calculate_default_transform as cdt from xlrd.xldate import xldate_from_date_tuple from xarray import open_dataset from pandas import date_range, DataFrame from bounds import GeoBounds with hooks(): from urllib.parse import urlunparse class Thredds(object): """ Unidata's Thematic Real-time Environmental Distributed Data Services (THREDDS) """ def __init__(self, start=None, end=None, date=None, bounds=None, target_profile=None, lat=None, lon=None ): self.start = start self.end = end self.date = date self.src_bounds_wsen = None self.target_profile = target_profile self.bbox = bounds self.lat = lat self.lon = lon def conform(self, subset, out_file=None): if subset.dtype != float32: subset = array(subset, dtype=float32) self._project(subset) self._reproject() self._mask() result = self._resample() if out_file: self.save_raster(result, self.target_profile, output_filename=out_file) return result def _project(self, subset): proj_path = os.path.join(self.temp_dir, 'tiled_proj.tif') setattr(self, 'projection', proj_path) profile = copy.deepcopy(self.target_profile) profile['dtype'] = float32 bb = self.bbox.as_tuple() if self.src_bounds_wsen: bounds = self.src_bounds_wsen else: bounds = (bb[0], bb[1], bb[2], bb[3]) dst_affine, dst_width, dst_height = cdt(CRS({'init': 'epsg:4326'}), CRS({'init': 'epsg:4326'}), subset.shape[1], subset.shape[2], *bounds, ) profile.update({'crs': CRS({'init': 'epsg:4326'}), 'transform': dst_affine, 'width': dst_width, 'height': dst_height}) with rasopen(proj_path, 'w', **profile) as dst: dst.write(subset) def _reproject(self): reproj_path = os.path.join(self.temp_dir, 'reproj.tif') setattr(self, 'reprojection', reproj_path) with rasopen(self.projection, 'r') as src: src_profile = src.profile src_bounds = src.bounds src_array = src.read(1) dst_profile = copy.deepcopy(self.target_profile) dst_profile['dtype'] = float32 bounds = src_bounds dst_affine, dst_width, dst_height = cdt(src_profile['crs'], dst_profile['crs'], src_profile['width'], src_profile['height'], *bounds) dst_profile.update({'crs': dst_profile['crs'], 'transform': dst_affine, 'width': dst_width, 'height': dst_height}) with rasopen(reproj_path, 'w', **dst_profile) as dst: dst_array = empty((1, dst_height, dst_width), dtype=float32) reproject(src_array, dst_array, src_transform=src_profile['transform'], src_crs=src_profile['crs'], dst_crs=self.target_profile['crs'], dst_transform=dst_affine, resampling=Resampling.nearest, num_threads=2) dst.write(dst_array.reshape(1, dst_array.shape[1], dst_array.shape[2])) def _mask(self): mask_path = os.path.join(self.temp_dir, 'masked.tif') with rasopen(self.reprojection) as src: out_arr, out_trans = mask(src, self.clip_feature, crop=True, all_touched=True) out_meta = src.meta.copy() out_meta.update({'driver': 'GTiff', 'height': out_arr.shape[1], 'width': out_arr.shape[2], 'transform': out_trans}) with rasopen(mask_path, 'w', **out_meta) as dst: dst.write(out_arr) setattr(self, 'mask', mask_path) delattr(self, 'reprojection') def _resample(self): # home = os.path.expanduser('~') # resample_path = os.path.join(home, 'images', 'sandbox', 'thredds', 'resamp_twx_{}.tif'.format(var)) resample_path = os.path.join(self.temp_dir, 'resample.tif') with rasopen(self.mask, 'r') as src: array = src.read(1) profile = src.profile res = src.res try: target_affine = self.target_profile['affine'] except KeyError: target_affine = self.target_profile['transform'] target_res = target_affine.a res_coeff = res[0] / target_res new_array = empty(shape=(1, round(array.shape[0] * res_coeff), round(array.shape[1] * res_coeff)), dtype=float32) aff = src.affine new_affine = Affine(aff.a / res_coeff, aff.b, aff.c, aff.d, aff.e / res_coeff, aff.f) profile['transform'] = self.target_profile['transform'] profile['width'] = self.target_profile['width'] profile['height'] = self.target_profile['height'] profile['dtype'] = str(new_array.dtype) delattr(self, 'mask') with rasopen(resample_path, 'w', **profile) as dst: reproject(array, new_array, src_transform=aff, dst_transform=new_affine, src_crs=src.crs, dst_crs=src.crs, resampling=Resampling.nearest) dst.write(new_array) with rasopen(resample_path, 'r') as src: arr = src.read() return arr def _date_index(self): date_ind = date_range(self.start, self.end, freq='d') return date_ind @staticmethod def _dtime_to_dtime64(dtime): dtnumpy = datetime64(dtime).astype(datetime64) return dtnumpy @staticmethod def save_raster(arr, geometry, output_filename): try: arr = arr.reshape(1, arr.shape[1], arr.shape[2]) except IndexError: arr = arr.reshape(1, arr.shape[0], arr.shape[1]) geometry['dtype'] = str(arr.dtype) with rasopen(output_filename, 'w', **geometry) as dst: dst.write(arr) return None class TopoWX(Thredds): """ Twix TopoWX Surface Temperature, return as numpy array in daily stack unless modified. Available variables: [ 'tmmn', 'tmmx'] ---------- Observation elements to access. Currently available elements: - 'tmmn' : daily minimum air temperature [K] - 'tmmx' : daily maximum air temperature [K] :param start: datetime object start of period of data :param end: datetime object end of period of data :param variables: List of available variables. At lease one. :param date: single-day datetime date object :param bounds: met.misc.BBox object representing spatial bounds, default to conterminous US :return: numpy.ndarray """ def __init__(self, **kwargs): Thredds.__init__(self) self.temp_dir = mkdtemp() for key, val in kwargs.items(): setattr(self, key, val) self.service = 'cida.usgs.gov' self.scheme = 'https' self.variables = ['tmin', 'tmax'] if self.date: self.start = self.date self.end = self.date self.year = self.start.year def get_data_subset(self, grid_conform=False, var='tmax', out_file=None, temp_units_out='C'): if var not in self.variables: raise TypeError('Must choose from "tmax" or "tmin"..') url = self._build_url(var) xray = open_dataset(url) start = self._dtime_to_dtime64(self.start) end = self._dtime_to_dtime64(self.end) if self.date: end = end + timedelta64(1, 'D') # find index and value of bounds # 1/100 degree adds a small buffer for this 800 m res data north_ind = argmin(abs(xray.lat.values - (self.bbox.north + 1.))) south_ind = argmin(abs(xray.lat.values - (self.bbox.south - 1.))) west_ind = argmin(abs(xray.lon.values - (self.bbox.west - 1.))) east_ind = argmin(abs(xray.lon.values - (self.bbox.east + 1.))) north_val = xray.lat.values[north_ind] south_val = xray.lat.values[south_ind] west_val = xray.lon.values[west_ind] east_val = xray.lon.values[east_ind] setattr(self, 'src_bounds_wsen', (west_val, south_val, east_val, north_val)) subset = xray.loc[dict(time=slice(start, end), lat=slice(north_val, south_val), lon=slice(west_val, east_val))] date_ind = self._date_index() subset['time'] = date_ind if not grid_conform: setattr(self, var, subset) else: if var == 'tmin': arr = subset.tmin.values elif var == 'tmax': arr = subset.tmax.values else: arr = None if temp_units_out == 'K': arr += 273.15 conformed_array = self.conform(arr, out_file=out_file) return conformed_array def _build_url(self, var): # ParseResult('scheme', 'netloc', 'path', 'params', 'query', 'fragment') url = urlunparse([self.scheme, self.service, '/thredds/dodsC/topowx?crs,lat[0:1:3249],lon[0:1:6999],{},' 'time'.format(var), '', '', '']) return url class GridMet(Thredds): """ U of I Gridmet Return as numpy array per met variable in daily stack unless modified. Available variables: ['bi', 'elev', 'erc', 'fm100', fm1000', 'pdsi', 'pet', 'pr', 'rmax', 'rmin', 'sph', 'srad', 'th', 'tmmn', 'tmmx', 'vs'] ---------- Observation elements to access. Currently available elements: - 'bi' : burning index [-] - 'elev' : elevation above sea level [m] - 'erc' : energy release component [-] - 'fm100' : 100-hour dead fuel moisture [%] - 'fm1000' : 1000-hour dead fuel moisture [%] - 'pdsi' : Palmer Drough Severity Index [-] - 'pet' : daily reference potential evapotranspiration [mm] - 'pr' : daily accumulated precipitation [mm] - 'rmax' : daily maximum relative humidity [%] - 'rmin' : daily minimum relative humidity [%] - 'sph' : daily mean specific humidity [kg/kg] - 'prcp' : daily total precipitation [mm] - 'srad' : daily mean downward shortwave radiation at surface [W m-2] - 'th' : daily mean wind direction clockwise from North [degrees] - 'tmmn' : daily minimum air temperature [K] - 'tmmx' : daily maximum air temperature [K] - 'vs' : daily mean wind speed [m -s] :param start: datetime object start of period of data :param end: datetime object end of period of data :param variables: List of available variables. At lease one. :param date: single-day datetime date object :param bbox: met.misc.BBox object representing spatial bounds, default to conterminous US :return: numpy.ndarray Must have either start and end, or date. Must have at least one valid variable. Invalid variables will be excluded gracefully. note: NetCDF dates are in xl '1900' format, i.e., number of days since 1899-12-31 23:59 xlrd.xldate handles this for the time being """ def __init__(self, variable=None, date=None, start=None, end=None, bbox=None, target_profile=None, clip_feature=None): Thredds.__init__(self) self.date = date self.start = start self.end = end self.bbox = bbox self.target_profile = target_profile self.service = 'thredds.northwestknowledge.net:8080' self.scheme = 'http' self.temp_dir = mkdtemp() self.variable = variable self.available = ['elev', 'pr', 'rmax', 'rmin', 'sph', 'srad', 'th', 'tmmn', 'tmmx', 'pet', 'vs', 'erc', 'bi', 'fm100', 'pdsi'] if self.variable not in self.available: Warning('Variable {} is not available'. format(self.variable)) self.kwords = {'bi': 'burning_index_g', 'elev': '', 'erc': 'energy_release_component-g', 'fm100': 'dead_fuel_moisture_100hr', 'fm1000': 'dead_fuel_moisture_1000hr', 'pdsi': 'palmer_drought_severity_index', 'etr': 'potential_evapotranspiration', 'pet': 'potential_evapotranspiration', 'pr': 'precipitation_amount', 'rmax': 'relative_humidity', 'rmin': 'relative_humidity', 'sph': 'specific_humidity', 'srad': 'surface_downwelling_shortwave_flux_in_air', 'th': 'wind_from_direction', 'tmmn': 'air_temperature', 'tmmx': 'air_temperature', 'vs': 'wind_speed', } if self.date: self.start = self.date self.end = self.date self.year = self.start.year if not self.bbox and not self.lat: self.bbox = GeoBounds() def subset_daily_tif(self, out_filename=None): url = self._build_url() url = url + '#fillmismatch' xray = open_dataset(url) north_ind = argmin(abs(xray.lat.values - (self.bbox.north + 1.))) south_ind = argmin(abs(xray.lat.values - (self.bbox.south - 1.))) west_ind = argmin(abs(xray.lon.values - (self.bbox.west - 1.))) east_ind = argmin(abs(xray.lon.values - (self.bbox.east + 1.))) north_val = xray.lat.values[north_ind] south_val = xray.lat.values[south_ind] west_val = xray.lon.values[west_ind] east_val = xray.lon.values[east_ind] setattr(self, 'src_bounds_wsen', (west_val, south_val, east_val, north_val)) if self.variable != 'elev': xray = xray.rename({'day': 'time'}) subset = xray.loc[dict(time=slice(self.start, self.end), lat=slice(north_val, south_val), lon=slice(west_val, east_val))] date_ind = self._date_index() subset['time'] = date_ind setattr(self, 'width', subset.dims['lon']) setattr(self, 'height', subset.dims['lat']) arr = subset[self.kwords[self.variable]].values arr = arr.reshape(arr.shape[1], arr.shape[2]).transpose() arr = arr.reshape(1, arr.shape[0], arr.shape[1]) arr = self.conform(arr, out_file=out_filename) rmtree(self.temp_dir) return arr else: subset = xray.loc[dict(lat=slice((self.bbox.north + 1), (self.bbox.south - 1)), lon=slice((self.bbox.west - 1), (self.bbox.east + 1)))] setattr(self, 'width', subset.dims['lon']) setattr(self, 'height', subset.dims['lat']) arr = subset.elevation.values arr = self.conform(arr, out_file=out_filename) return arr def subset_nc(self, out_filename=None, return_array=False): url = self._build_url() url = url + '#fillmismatch' xray = open_dataset(url) north_ind = argmin(abs(xray.lat.values - (self.bbox.north + 1.))) south_ind = argmin(abs(xray.lat.values - (self.bbox.south - 1.))) west_ind = argmin(abs(xray.lon.values - (self.bbox.west - 1.))) east_ind = argmin(abs(xray.lon.values - (self.bbox.east + 1.))) north_val = xray.lat.values[north_ind] south_val = xray.lat.values[south_ind] west_val = xray.lon.values[west_ind] east_val = xray.lon.values[east_ind] setattr(self, 'src_bounds_wsen', (west_val, south_val, east_val, north_val)) if self.variable != 'elev': xray = xray.rename({'day': 'time'}) subset = xray.loc[dict(time=slice(self.start, self.end), lat=slice(north_val, south_val), lon=slice(west_val, east_val))] date_ind = self._date_index() subset['time'] = date_ind if out_filename: subset.to_netcdf(out_filename) if return_array: return subset else: subset = xray.loc[dict(lat=slice((self.bbox.north + 1), (self.bbox.south - 1)), lon=slice((self.bbox.west - 1), (self.bbox.east + 1)))] if out_filename: subset.to_netcdf(out_filename) if return_array: return subset def get_point_timeseries(self): url = self._build_url() xray = open_dataset(url) subset = xray.sel(lon=self.lon, lat=self.lat, method='nearest') subset = subset.loc[dict(day=slice(self.start, self.end))] subset.rename({'day': 'time'}, inplace=True) date_ind = self._date_index() subset['time'] = date_ind time = subset['time'].values series = subset[self.kwords[self.variable]].values df = DataFrame(data=series, index=time) df.columns = [self.variable] return df def _build_url(self): # ParseResult('scheme', 'netloc', 'path', 'params', 'query', 'fragment') if self.variable == 'elev': url = urlunparse([self.scheme, self.service, '/thredds/dodsC/MET/{0}/metdata_elevationdata.nc'.format(self.variable), '', '', '']) else: url = urlunparse([self.scheme, self.service, '/thredds/dodsC/MET/{0}/{0}_{1}.nc'.format(self.variable, self.year), '', '', '']) return url def write_netcdf(self, outputroot): url = self._build_url() xray = open_dataset(url) if self.variable != 'elev': subset = xray.loc[dict(day=slice(self.start, self.end))] subset.rename({'day': 'time'}, inplace=True) else: subset = xray subset.to_netcdf(path=outputroot, engine='netcdf4') # ========================= EOF ====================================================================
the-stack_106_31184
################################################################################ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ import abc import time from functools import reduce from itertools import chain from typing import List, Tuple, Any, Dict from apache_beam.coders import PickleCoder from pyflink.datastream.state import ValueStateDescriptor, ValueState, ListStateDescriptor, \ ListState, MapStateDescriptor, MapState, ReducingStateDescriptor, ReducingState, \ AggregatingStateDescriptor, AggregatingState from pyflink.datastream import TimeDomain, TimerService from pyflink.datastream.functions import RuntimeContext, ProcessFunction, KeyedProcessFunction from pyflink.fn_execution import flink_fn_execution_pb2, operation_utils from pyflink.fn_execution.state_data_view import extract_data_view_specs from pyflink.fn_execution.beam.beam_coders import DataViewFilterCoder from pyflink.fn_execution.operation_utils import extract_user_defined_aggregate_function from pyflink.fn_execution.state_impl import RemoteKeyedStateBackend try: from pyflink.fn_execution.aggregate_fast import RowKeySelector, SimpleAggsHandleFunction, \ GroupAggFunction, DistinctViewDescriptor, SimpleTableAggsHandleFunction, \ GroupTableAggFunction except ImportError: from pyflink.fn_execution.aggregate_slow import RowKeySelector, SimpleAggsHandleFunction, \ GroupAggFunction, DistinctViewDescriptor, SimpleTableAggsHandleFunction,\ GroupTableAggFunction from pyflink.metrics.metricbase import GenericMetricGroup from pyflink.table import FunctionContext, Row # table operations SCALAR_FUNCTION_URN = "flink:transform:scalar_function:v1" TABLE_FUNCTION_URN = "flink:transform:table_function:v1" STREAM_GROUP_AGGREGATE_URN = "flink:transform:stream_group_aggregate:v1" STREAM_GROUP_TABLE_AGGREGATE_URN = "flink:transform:stream_group_table_aggregate:v1" PANDAS_AGGREGATE_FUNCTION_URN = "flink:transform:aggregate_function:arrow:v1" PANDAS_BATCH_OVER_WINDOW_AGGREGATE_FUNCTION_URN = \ "flink:transform:batch_over_window_aggregate_function:arrow:v1" # datastream operations DATA_STREAM_STATELESS_FUNCTION_URN = "flink:transform:datastream_stateless_function:v1" PROCESS_FUNCTION_URN = "flink:transform:process_function:v1" KEYED_PROCESS_FUNCTION_URN = "flink:transform:keyed_process_function:v1" class Operation(abc.ABC): def __init__(self, spec): super(Operation, self).__init__() self.spec = spec self.func, self.user_defined_funcs = self.generate_func(self.spec.serialized_fn) if self.spec.serialized_fn.metric_enabled: self.base_metric_group = GenericMetricGroup(None, None) else: self.base_metric_group = None def open(self): for user_defined_func in self.user_defined_funcs: if hasattr(user_defined_func, 'open'): user_defined_func.open(FunctionContext(self.base_metric_group)) def close(self): for user_defined_func in self.user_defined_funcs: if hasattr(user_defined_func, 'close'): user_defined_func.close() def finish(self): self._update_gauge(self.base_metric_group) def _update_gauge(self, base_metric_group): if base_metric_group is not None: for name in base_metric_group._flink_gauge: flink_gauge = base_metric_group._flink_gauge[name] beam_gauge = base_metric_group._beam_gauge[name] beam_gauge.set(flink_gauge()) for sub_group in base_metric_group._sub_groups: self._update_gauge(sub_group) @abc.abstractmethod def generate_func(self, serialized_fn) -> Tuple: pass class ScalarFunctionOperation(Operation): def __init__(self, spec): super(ScalarFunctionOperation, self).__init__(spec) def generate_func(self, serialized_fn): """ Generates a lambda function based on udfs. :param serialized_fn: serialized function which contains a list of the proto representation of the Python :class:`ScalarFunction` :return: the generated lambda function """ scalar_functions, variable_dict, user_defined_funcs = reduce( lambda x, y: ( ','.join([x[0], y[0]]), dict(chain(x[1].items(), y[1].items())), x[2] + y[2]), [operation_utils.extract_user_defined_function(udf) for udf in serialized_fn.udfs]) generate_func = eval('lambda value: [%s]' % scalar_functions, variable_dict) return generate_func, user_defined_funcs class TableFunctionOperation(Operation): def __init__(self, spec): super(TableFunctionOperation, self).__init__(spec) def generate_func(self, serialized_fn): """ Generates a lambda function based on udtfs. :param serialized_fn: serialized function which contains the proto representation of the Python :class:`TableFunction` :return: the generated lambda function """ table_function, variable_dict, user_defined_funcs = \ operation_utils.extract_user_defined_function(serialized_fn.udfs[0]) generate_func = eval('lambda value: %s' % table_function, variable_dict) return generate_func, user_defined_funcs class PandasAggregateFunctionOperation(Operation): def __init__(self, spec): super(PandasAggregateFunctionOperation, self).__init__(spec) def generate_func(self, serialized_fn): pandas_functions, variable_dict, user_defined_funcs = reduce( lambda x, y: ( ','.join([x[0], y[0]]), dict(chain(x[1].items(), y[1].items())), x[2] + y[2]), [operation_utils.extract_user_defined_function(udf, True) for udf in serialized_fn.udfs]) variable_dict['wrap_pandas_result'] = operation_utils.wrap_pandas_result generate_func = eval('lambda value: wrap_pandas_result([%s])' % pandas_functions, variable_dict) return generate_func, user_defined_funcs class PandasBatchOverWindowAggregateFunctionOperation(Operation): def __init__(self, spec): super(PandasBatchOverWindowAggregateFunctionOperation, self).__init__(spec) self.windows = [window for window in self.spec.serialized_fn.windows] # the index among all the bounded range over window self.bounded_range_window_index = [-1 for _ in range(len(self.windows))] # Whether the specified position window is a bounded range window. self.is_bounded_range_window = [] window_types = flink_fn_execution_pb2.OverWindow bounded_range_window_nums = 0 for i, window in enumerate(self.windows): window_type = window.window_type if (window_type is window_types.RANGE_UNBOUNDED_PRECEDING) or ( window_type is window_types.RANGE_UNBOUNDED_FOLLOWING) or ( window_type is window_types.RANGE_SLIDING): self.bounded_range_window_index[i] = bounded_range_window_nums self.is_bounded_range_window.append(True) bounded_range_window_nums += 1 else: self.is_bounded_range_window.append(False) def generate_func(self, serialized_fn): user_defined_funcs = [] self.window_indexes = [] self.mapper = [] for udf in serialized_fn.udfs: pandas_agg_function, variable_dict, user_defined_func, window_index = \ operation_utils.extract_over_window_user_defined_function(udf) user_defined_funcs.extend(user_defined_func) self.window_indexes.append(window_index) self.mapper.append(eval('lambda value: %s' % pandas_agg_function, variable_dict)) return self.wrapped_over_window_function, user_defined_funcs def wrapped_over_window_function(self, boundaries_series): import pandas as pd OverWindow = flink_fn_execution_pb2.OverWindow input_series = boundaries_series[-1] # the row number of the arrow format data input_cnt = len(input_series[0]) results = [] # loop every agg func for i in range(len(self.window_indexes)): window_index = self.window_indexes[i] # the over window which the agg function belongs to window = self.windows[window_index] window_type = window.window_type func = self.mapper[i] result = [] if self.is_bounded_range_window[window_index]: window_boundaries = boundaries_series[ self.bounded_range_window_index[window_index]] if window_type is OverWindow.RANGE_UNBOUNDED_PRECEDING: # range unbounded preceding window for j in range(input_cnt): end = window_boundaries[j] series_slices = [s.iloc[:end] for s in input_series] result.append(func(series_slices)) elif window_type is OverWindow.RANGE_UNBOUNDED_FOLLOWING: # range unbounded following window for j in range(input_cnt): start = window_boundaries[j] series_slices = [s.iloc[start:] for s in input_series] result.append(func(series_slices)) else: # range sliding window for j in range(input_cnt): start = window_boundaries[j * 2] end = window_boundaries[j * 2 + 1] series_slices = [s.iloc[start:end] for s in input_series] result.append(func(series_slices)) else: # unbounded range window or unbounded row window if (window_type is OverWindow.RANGE_UNBOUNDED) or ( window_type is OverWindow.ROW_UNBOUNDED): series_slices = [s.iloc[:] for s in input_series] func_result = func(series_slices) result = [func_result for _ in range(input_cnt)] elif window_type is OverWindow.ROW_UNBOUNDED_PRECEDING: # row unbounded preceding window window_end = window.upper_boundary for j in range(input_cnt): end = min(j + window_end + 1, input_cnt) series_slices = [s.iloc[: end] for s in input_series] result.append(func(series_slices)) elif window_type is OverWindow.ROW_UNBOUNDED_FOLLOWING: # row unbounded following window window_start = window.lower_boundary for j in range(input_cnt): start = max(j + window_start, 0) series_slices = [s.iloc[start: input_cnt] for s in input_series] result.append(func(series_slices)) else: # row sliding window window_start = window.lower_boundary window_end = window.upper_boundary for j in range(input_cnt): start = max(j + window_start, 0) end = min(j + window_end + 1, input_cnt) series_slices = [s.iloc[start: end] for s in input_series] result.append(func(series_slices)) results.append(pd.Series(result)) return results class StatefulFunctionOperation(Operation): def __init__(self, spec, keyed_state_backend): self.keyed_state_backend = keyed_state_backend super(StatefulFunctionOperation, self).__init__(spec) def finish(self): super().finish() if self.keyed_state_backend: self.keyed_state_backend.commit() TRIGGER_TIMER = 1 class AbstractStreamGroupAggregateOperation(StatefulFunctionOperation): def __init__(self, spec, keyed_state_backend): self.generate_update_before = spec.serialized_fn.generate_update_before self.grouping = [i for i in spec.serialized_fn.grouping] self.group_agg_function = None # If the upstream generates retract message, we need to add an additional count1() agg # to track current accumulated messages count. If all the messages are retracted, we need # to send a DELETE message to downstream. self.index_of_count_star = spec.serialized_fn.index_of_count_star self.count_star_inserted = spec.serialized_fn.count_star_inserted self.state_cache_size = spec.serialized_fn.state_cache_size self.state_cleaning_enabled = spec.serialized_fn.state_cleaning_enabled self.data_view_specs = extract_data_view_specs(spec.serialized_fn.udfs) super(AbstractStreamGroupAggregateOperation, self).__init__(spec, keyed_state_backend) def open(self): self.group_agg_function.open(FunctionContext(self.base_metric_group)) def close(self): self.group_agg_function.close() def generate_func(self, serialized_fn): user_defined_aggs = [] input_extractors = [] filter_args = [] # stores the indexes of the distinct views which the agg functions used distinct_indexes = [] # stores the indexes of the functions which share the same distinct view # and the filter args of them distinct_info_dict = {} for i in range(len(serialized_fn.udfs)): user_defined_agg, input_extractor, filter_arg, distinct_index = \ extract_user_defined_aggregate_function( i, serialized_fn.udfs[i], distinct_info_dict) user_defined_aggs.append(user_defined_agg) input_extractors.append(input_extractor) filter_args.append(filter_arg) distinct_indexes.append(distinct_index) distinct_view_descriptors = {} for agg_index_list, filter_arg_list in distinct_info_dict.values(): if -1 in filter_arg_list: # If there is a non-filter call, we don't need to check filter or not before # writing the distinct data view. filter_arg_list = [] # use the agg index of the first function as the key of shared distinct view distinct_view_descriptors[agg_index_list[0]] = DistinctViewDescriptor( input_extractors[agg_index_list[0]], filter_arg_list) key_selector = RowKeySelector(self.grouping) if len(self.data_view_specs) > 0: state_value_coder = DataViewFilterCoder(self.data_view_specs) else: state_value_coder = PickleCoder() self.group_agg_function = self.create_process_function( user_defined_aggs, input_extractors, filter_args, distinct_indexes, distinct_view_descriptors, key_selector, state_value_coder) return self.process_element_or_timer, [] def process_element_or_timer(self, input_datas: List[Tuple[int, Row, int, Row]]): # the structure of the input data: # [element_type, element(for process_element), timestamp(for timer), key(for timer)] # all the fields are nullable except the "element_type" for input_data in input_datas: if input_data[0] != TRIGGER_TIMER: self.group_agg_function.process_element(input_data[1]) else: self.group_agg_function.on_timer(input_data[3]) return self.group_agg_function.finish_bundle() @abc.abstractmethod def create_process_function(self, user_defined_aggs, input_extractors, filter_args, distinct_indexes, distinct_view_descriptors, key_selector, state_value_coder): pass class StreamGroupAggregateOperation(AbstractStreamGroupAggregateOperation): def __init__(self, spec, keyed_state_backend): super(StreamGroupAggregateOperation, self).__init__(spec, keyed_state_backend) def create_process_function(self, user_defined_aggs, input_extractors, filter_args, distinct_indexes, distinct_view_descriptors, key_selector, state_value_coder): aggs_handler_function = SimpleAggsHandleFunction( user_defined_aggs, input_extractors, self.index_of_count_star, self.count_star_inserted, self.data_view_specs, filter_args, distinct_indexes, distinct_view_descriptors) return GroupAggFunction( aggs_handler_function, key_selector, self.keyed_state_backend, state_value_coder, self.generate_update_before, self.state_cleaning_enabled, self.index_of_count_star) class StreamGroupTableAggregateOperation(AbstractStreamGroupAggregateOperation): def __init__(self, spec, keyed_state_backend): super(StreamGroupTableAggregateOperation, self).__init__(spec, keyed_state_backend) def create_process_function(self, user_defined_aggs, input_extractors, filter_args, distinct_indexes, distinct_view_descriptors, key_selector, state_value_coder): aggs_handler_function = SimpleTableAggsHandleFunction( user_defined_aggs, input_extractors, self.data_view_specs, filter_args, distinct_indexes, distinct_view_descriptors) return GroupTableAggFunction( aggs_handler_function, key_selector, self.keyed_state_backend, state_value_coder, self.generate_update_before, self.state_cleaning_enabled, self.index_of_count_star) class DataStreamStatelessFunctionOperation(Operation): def __init__(self, spec): super(DataStreamStatelessFunctionOperation, self).__init__(spec) def open(self): for user_defined_func in self.user_defined_funcs: if hasattr(user_defined_func, 'open'): runtime_context = RuntimeContext( self.spec.serialized_fn.runtime_context.task_name, self.spec.serialized_fn.runtime_context.task_name_with_subtasks, self.spec.serialized_fn.runtime_context.number_of_parallel_subtasks, self.spec.serialized_fn.runtime_context.max_number_of_parallel_subtasks, self.spec.serialized_fn.runtime_context.index_of_this_subtask, self.spec.serialized_fn.runtime_context.attempt_number, {p.key: p.value for p in self.spec.serialized_fn.runtime_context.job_parameters} ) user_defined_func.open(runtime_context) def generate_func(self, serialized_fn): func, user_defined_func = operation_utils.extract_data_stream_stateless_function( serialized_fn) return func, [user_defined_func] class InternalRuntimeContext(RuntimeContext): def __init__(self, task_name: str, task_name_with_subtasks: str, number_of_parallel_subtasks: int, max_number_of_parallel_subtasks: int, index_of_this_subtask: int, attempt_number: int, job_parameters: Dict[str, str], keyed_state_backend: RemoteKeyedStateBackend): super(InternalRuntimeContext, self).__init__( task_name, task_name_with_subtasks, number_of_parallel_subtasks, max_number_of_parallel_subtasks, index_of_this_subtask, attempt_number, job_parameters) self._keyed_state_backend = keyed_state_backend def get_state(self, state_descriptor: ValueStateDescriptor) -> ValueState: return self._keyed_state_backend.get_value_state(state_descriptor.name, PickleCoder()) def get_list_state(self, state_descriptor: ListStateDescriptor) -> ListState: return self._keyed_state_backend.get_list_state(state_descriptor.name, PickleCoder()) def get_map_state(self, state_descriptor: MapStateDescriptor) -> MapState: return self._keyed_state_backend.get_map_state(state_descriptor.name, PickleCoder(), PickleCoder()) def get_reducing_state(self, state_descriptor: ReducingStateDescriptor) -> ReducingState: return self._keyed_state_backend.get_reducing_state( state_descriptor.get_name(), PickleCoder(), state_descriptor.get_reduce_function()) def get_aggregating_state( self, state_descriptor: AggregatingStateDescriptor) -> AggregatingState: return self._keyed_state_backend.get_aggregating_state( state_descriptor.get_name(), PickleCoder(), state_descriptor.get_agg_function()) class ProcessFunctionOperation(DataStreamStatelessFunctionOperation): def __init__(self, spec): self.timer_service = ProcessFunctionOperation.InternalTimerService() self.function_context = ProcessFunctionOperation.InternalProcessFunctionContext( self.timer_service) super(ProcessFunctionOperation, self).__init__(spec) def generate_func(self, serialized_fn) -> tuple: func, proc_func = operation_utils.extract_process_function( serialized_fn, self.function_context) return func, [proc_func] class InternalProcessFunctionContext(ProcessFunction.Context): """ Internal implementation of ProcessFunction.Context. """ def __init__(self, timer_service: TimerService): self._timer_service = timer_service self._timestamp = None def timer_service(self): return self._timer_service def timestamp(self) -> int: return self._timestamp def set_timestamp(self, ts: int): self._timestamp = ts class InternalTimerService(TimerService): """ Internal implementation of TimerService. """ def __init__(self): self._current_watermark = None def current_processing_time(self) -> int: return int(time.time() * 1000) def current_watermark(self): return self._current_watermark def set_current_watermark(self, wm): self._current_watermark = wm def register_processing_time_timer(self, t: int): raise Exception("Register timers is only supported on a keyed stream.") def register_event_time_timer(self, t: int): raise Exception("Register timers is only supported on a keyed stream.") class KeyedProcessFunctionOperation(StatefulFunctionOperation): def __init__(self, spec, keyed_state_backend): self._collector = KeyedProcessFunctionOperation.InternalCollector() internal_timer_service = KeyedProcessFunctionOperation.InternalTimerService( self._collector, keyed_state_backend) self.function_context = KeyedProcessFunctionOperation.InternalKeyedProcessFunctionContext( internal_timer_service) self.on_timer_ctx = KeyedProcessFunctionOperation\ .InternalKeyedProcessFunctionOnTimerContext(internal_timer_service) super(KeyedProcessFunctionOperation, self).__init__(spec, keyed_state_backend) def generate_func(self, serialized_fn) -> Tuple: func, proc_func = operation_utils.extract_keyed_process_function( serialized_fn, self.function_context, self.on_timer_ctx, self._collector, self.keyed_state_backend) return func, [proc_func] def open(self): for user_defined_func in self.user_defined_funcs: if hasattr(user_defined_func, 'open'): runtime_context = InternalRuntimeContext( self.spec.serialized_fn.runtime_context.task_name, self.spec.serialized_fn.runtime_context.task_name_with_subtasks, self.spec.serialized_fn.runtime_context.number_of_parallel_subtasks, self.spec.serialized_fn.runtime_context.max_number_of_parallel_subtasks, self.spec.serialized_fn.runtime_context.index_of_this_subtask, self.spec.serialized_fn.runtime_context.attempt_number, {p.key: p.value for p in self.spec.serialized_fn.runtime_context.job_parameters}, self.keyed_state_backend) user_defined_func.open(runtime_context) class InternalCollector(object): """ Internal implementation of the Collector. It uses a buffer list to store data to be emitted. There will be a header flag for each data type. 0 means it is a proc time timer registering request, while 1 means it is an event time timer and 2 means it is a normal data. When registering a timer, it must take along with the corresponding key for it. """ def __init__(self): self.buf = [] def collect_reg_proc_timer(self, a: Any, key: Any): self.buf.append( (operation_utils.KeyedProcessFunctionOutputFlag.REGISTER_PROC_TIMER.value, a, key, None)) def collect_reg_event_timer(self, a: Any, key: Any): self.buf.append( (operation_utils.KeyedProcessFunctionOutputFlag.REGISTER_EVENT_TIMER.value, a, key, None)) def collect_del_proc_timer(self, a: Any, key: Any): self.buf.append( (operation_utils.KeyedProcessFunctionOutputFlag.DEL_PROC_TIMER.value, a, key, None)) def collect_del_event_timer(self, a: Any, key: Any): self.buf.append( (operation_utils.KeyedProcessFunctionOutputFlag.DEL_EVENT_TIMER.value, a, key, None)) def collect(self, a: Any): self.buf.append((operation_utils.KeyedProcessFunctionOutputFlag.NORMAL_DATA.value, a)) def clear(self): self.buf.clear() class InternalKeyedProcessFunctionOnTimerContext(KeyedProcessFunction.OnTimerContext): """ Internal implementation of ProcessFunction.OnTimerContext. """ def __init__(self, timer_service: TimerService): self._timer_service = timer_service self._time_domain = None self._timestamp = None self._current_key = None def get_current_key(self): return self._current_key def set_current_key(self, current_key): self._current_key = current_key def timer_service(self) -> TimerService: return self._timer_service def timestamp(self) -> int: return self._timestamp def set_timestamp(self, ts: int): self._timestamp = ts def time_domain(self) -> TimeDomain: return self._time_domain def set_time_domain(self, td: TimeDomain): self._time_domain = td class InternalKeyedProcessFunctionContext(KeyedProcessFunction.Context): """ Internal implementation of KeyedProcessFunction.Context. """ def __init__(self, timer_service: TimerService): self._timer_service = timer_service self._timestamp = None self._current_key = None def get_current_key(self): return self._current_key def set_current_key(self, current_key): self._current_key = current_key def timer_service(self) -> TimerService: return self._timer_service def timestamp(self) -> int: return self._timestamp def set_timestamp(self, ts: int): self._timestamp = ts class InternalTimerService(TimerService): """ Internal implementation of TimerService. """ def __init__(self, collector, keyed_state_backend): self._collector = collector self._keyed_state_backend = keyed_state_backend self._current_watermark = None def current_processing_time(self) -> int: return int(time.time() * 1000) def current_watermark(self) -> int: return self._current_watermark def set_current_watermark(self, wm): self._current_watermark = wm def register_processing_time_timer(self, t: int): current_key = self._keyed_state_backend.get_current_key() self._collector.collect_reg_proc_timer(t, current_key) def register_event_time_timer(self, t: int): current_key = self._keyed_state_backend.get_current_key() self._collector.collect_reg_event_timer(t, current_key) def delete_processing_time_timer(self, t: int): current_key = self._keyed_state_backend.get_current_key() self._collector.collect_del_proc_timer(t, current_key) def delete_event_time_timer(self, t: int): current_key = self._keyed_state_backend.get_current_key() self._collector.collect_del_event_timer(t, current_key)
the-stack_106_31185
import time import torch from transformer.transformer import Transformer if __name__ == '__main__': checkpoint = 'BEST_checkpoint.tar' print('loading {}...'.format(checkpoint)) start = time.time() checkpoint = torch.load(checkpoint) print('elapsed {} sec'.format(time.time() - start)) model = checkpoint['model'] print(type(model)) filename = 'chatbot-v2.pt' print('saving {}...'.format(filename)) start = time.time() torch.save(model.state_dict(), filename) print('elapsed {} sec'.format(time.time() - start)) print('loading {}...'.format(filename)) start = time.time() model = Transformer() model.load_state_dict(torch.load(filename)) print('elapsed {} sec'.format(time.time() - start))
the-stack_106_31186
import os import multiprocessing from ConfigParser import SafeConfigParser class Config(object): """ An object to load and represent the configuration of the current scraper. This loads scraper configuration from the environment and a per-user configuration file (``~/.scraperkit.ini``). """ def __init__(self, scraper, config): self.scraper = scraper self.config = self._get_defaults() self.config = self._get_file(self.config) self.config = self._get_env(self.config) if config is not None: self.config.update(config) def _get_defaults(self): name = self.scraper.name return { 'cache_policy': 'http', 'threads': multiprocessing.cpu_count() * 2, 'data_path': os.path.join(os.getcwd(), 'data', name), 'reports_path': None } def _get_env(self, config): """ Read environment variables based on the settings defined in the defaults. These are expected to be upper-case versions of the actual setting names, prefixed by ``SCRAPEKIT_``. """ for option, value in config.items(): env_name = 'SCRAPEKIT_%s' % option.upper() value = os.environ.get(env_name, value) config[option] = value return config def _get_file(self, config): """ Read a per-user .ini file, which is expected to have either a ``[scraperkit]`` or a ``[$SCRAPER_NAME]`` section. """ config_file = SafeConfigParser() config_file.read([os.path.expanduser('~/.scrapekit.ini')]) if config_file.has_section('scrapekit'): config.update(dict(config_file.items('scrapekit'))) if config_file.has_section(self.scraper.name): config.update(dict(config_file.items(self.scraper.name))) return config def items(self): return self.config.items() def __getattr__(self, name): if name != 'config' and name in self.config: return self.config.get(name) try: return object.__getattribute__(self, name) except AttributeError: return None
the-stack_106_31187
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utility functions for internal use.""" # pylint: disable=g-direct-tensorflow-import from __future__ import absolute_import from __future__ import division from __future__ import print_function import inspect import numpy as np from tensorflow.python.framework import dtypes from tensorflow.python.framework import indexed_slices from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.numpy_ops import np_arrays from tensorflow.python.ops.numpy_ops import np_dtypes from tensorflow.python.util import nest tensor_to_ndarray = np_arrays.tensor_to_ndarray def _canonicalize_axis(axis, rank): return _canonicalize_axes([axis], rank)[0] def _canonicalize_axes(axes, rank): rank = _maybe_static(rank) if isinstance(rank, ops.Tensor): canonicalizer = ( lambda axis: cond(axis < 0, lambda: axis + rank, lambda: axis)) else: canonicalizer = lambda axis: axis + rank if axis < 0 else axis return [canonicalizer(axis) for axis in axes] def _supports_signature(): return hasattr(inspect, 'signature') def _to_tf_type(dtype): """Converts a native python or numpy type to TF DType. Args: dtype: Could be a python type, a numpy type or a TF DType. Returns: A tensorflow `DType`. """ return dtypes.as_dtype(dtype) def _to_numpy_type(dtype): """Converts a native python or TF DType to numpy type. Args: dtype: Could be a python type, a numpy type or a TF DType. Returns: A NumPy `dtype`. """ if isinstance(dtype, dtypes.DType): return dtype.as_numpy_dtype return np.dtype(dtype) def finfo(dtype): """Returns properties of floating point types. Note that currently it just forwards to the numpy namesake, while tensorflow and numpy dtypes may have different properties. Args: dtype: Could be a python type, a numpy type or a TF DType. Returns: A class describing properties of `dtype`, as described by https://docs.scipy.org/doc/numpy/reference/generated/numpy.finfo.html """ return np.finfo(_to_numpy_type(dtype)) def isscalar(val): """Returns whether `val` is a scalar value or scalar Tensor.""" if isinstance(val, np_arrays.ndarray): val = val.data if isinstance(val, ops.Tensor): ndims = val.shape.ndims if ndims is not None: return ndims == 0 else: return math_ops.equal(array_ops.rank(val), 0) else: return np.isscalar(val) # Can't use np_doc because np.result_type is a builtin function. def result_type(*arrays_and_dtypes): """Returns the type resulting from applying NumPy type promotion to arguments. Args: *arrays_and_dtypes: A list of array_like objects or dtypes. Returns: A numpy dtype. """ def maybe_get_dtype(x): # Don't put np.ndarray in this list, because np.result_type looks at the # value (not just dtype) of np.ndarray to decide the result type. if isinstance( x, (np_arrays.ndarray, ops.Tensor, indexed_slices.IndexedSlices)): return _to_numpy_type(x.dtype) elif isinstance(x, dtypes.DType): return _to_numpy_type(x) return x arrays_and_dtypes = [ maybe_get_dtype(x) for x in nest.flatten(arrays_and_dtypes) ] if not arrays_and_dtypes: # If arrays_and_dtypes is an empty list, let numpy decide what the dtype is. arrays_and_dtypes = [np.asarray([])] return np_dtypes._result_type(*arrays_and_dtypes) # pylint: disable=protected-access def promote_types(type1, type2): """Returns the type resulting from applying NumPy type promotion. Args: type1: A numpy type. type2: A numpy type. Returns: A numpy type. """ type1 = _to_numpy_type(type1) type2 = _to_numpy_type(type2) return np_dtypes.canonicalize_dtype(np.promote_types(type1, type2)) def _has_docstring(f): return (f and hasattr(f, '__doc__') and isinstance(f.__doc__, str) and f.__doc__) def _add_blank_line(s): if s.endswith('\n'): return s + '\n' else: return s + '\n\n' def _np_signature(f): """An enhanced inspect.signature that can handle numpy.ufunc.""" # TODO(wangpeng): consider migrating away from inspect.signature. # inspect.signature is supported in Python 3.3. if not hasattr(inspect, 'signature'): return None if f is None: return None if not isinstance(f, np.ufunc): try: return inspect.signature(f) except ValueError: return None def names_from_num(prefix, n): if n <= 0: return [] elif n == 1: return [prefix] else: return [prefix + str(i + 1) for i in range(n)] input_names = names_from_num('x', f.nin) output_names = names_from_num('out', f.nout) keyword_only_params = [('where', True), ('casting', 'same_kind'), ('order', 'K'), ('dtype', None), ('subok', True), ('signature', None), ('extobj', None)] params = [] params += [ inspect.Parameter(name, inspect.Parameter.POSITIONAL_ONLY) for name in input_names ] if f.nout > 1: params += [ inspect.Parameter( name, inspect.Parameter.POSITIONAL_ONLY, default=None) for name in output_names ] params += [ inspect.Parameter( 'out', inspect.Parameter.POSITIONAL_OR_KEYWORD, default=None if f.nout == 1 else (None,) * f.nout) ] params += [ inspect.Parameter(name, inspect.Parameter.KEYWORD_ONLY, default=default) for name, default in keyword_only_params ] return inspect.Signature(params) # Python 2 doesn't allow keyword-only argument. Python prior to 3.8 doesn't # allow positional-only argument. So we conflate positional-only, keyword-only # and positional-or-keyword arguments here. def _is_compatible_param_kind(a, b): def relax(k): if k in (inspect.Parameter.POSITIONAL_ONLY, inspect.Parameter.KEYWORD_ONLY): return inspect.Parameter.POSITIONAL_OR_KEYWORD return k return relax(a) == relax(b) def _prepare_np_fun_name_and_fun(np_fun_name, np_fun): """Mutually propagates information between `np_fun_name` and `np_fun`. If one is None and the other is not, we'll try to make the former not None in a best effort. Args: np_fun_name: name for the np_fun symbol. At least one of np_fun or np_fun_name shoud be set. np_fun: the numpy function whose docstring will be used. Returns: Processed `np_fun_name` and `np_fun`. """ if np_fun_name is not None: assert isinstance(np_fun_name, str) if np_fun is not None: assert not isinstance(np_fun, str) if np_fun is None: assert np_fun_name is not None try: np_fun = getattr(np, str(np_fun_name)) except AttributeError: np_fun = None if np_fun_name is None: assert np_fun is not None np_fun_name = np_fun.__name__ return np_fun_name, np_fun def _np_doc_helper(f, np_f, np_fun_name=None, unsupported_params=None): """Helper to get docs.""" assert np_f or np_fun_name if not np_fun_name: np_fun_name = np_f.__name__ doc = 'TensorFlow variant of `numpy.%s`.\n\n' % np_fun_name if unsupported_params: doc += 'Unsupported arguments: ' + ', '.join( '`' + name + '`' for name in unsupported_params) + '.\n\n' if _has_docstring(f): doc += f.__doc__ doc = _add_blank_line(doc) if _has_docstring(np_f): doc += 'Documentation for `numpy.%s`:\n\n' % np_f.__name__ # TODO(wangpeng): It looks like code snippets in numpy doc don't work # correctly with doctest. Fix that and remove the reformatting of the np_f # comment. doc += np_f.__doc__.replace('>>>', '>') return doc def np_doc(np_fun_name, np_fun=None): """Attachs numpy docstring to a function. Args: np_fun_name: name for the np_fun symbol. At least one of np_fun or np_fun_name shoud be set. np_fun: (optional) the numpy function whose docstring will be used. Returns: A function decorator that attaches the docstring from `np_fun` to the decorated function. """ np_fun_name, np_fun = _prepare_np_fun_name_and_fun(np_fun_name, np_fun) np_sig = _np_signature(np_fun) def decorator(f): """The decorator.""" unsupported_params = [] if hasattr(inspect, 'signature') and np_sig is not None: try: sig = inspect.signature(f) except ValueError: sig = None # TODO(wangpeng): Enable this. # Looks like this may not work with different versions of numpy. # if sig is not None: # for name, param in sig.parameters.items(): # np_param = np_sig.parameters.get(name) # if np_param is None: # raise TypeError('Cannot find parameter "%s" in the numpy # function\'s ' 'signature' % name) # if not _is_compatible_param_kind(param.kind, np_param.kind): # raise TypeError( # 'Parameter "%s" is of kind %s while in numpy it is of ' # 'kind %s' % (name, param.kind, np_param.kind)) # has_default = (param.default != inspect.Parameter.empty) # np_has_default = (np_param.default != inspect.Parameter.empty) # if has_default != np_has_default: # raise TypeError('Parameter "%s" should%s have a default value' % # (name, '' if np_has_default else ' not')) # for name in np_sig.parameters: # if name not in sig.parameters: # unsupported_params.append(name) f.__doc__ = _np_doc_helper( f, np_fun, np_fun_name=np_fun_name, unsupported_params=unsupported_params) return f return decorator def np_doc_only(np_fun_name, np_fun=None): """Attachs numpy docstring to a function. This differs from np_doc in that it doesn't check for a match in signature. Args: np_fun_name: name for the np_fun symbol. At least one of np_fun or np_fun_name shoud be set. np_fun: (optional) the numpy function whose docstring will be used. Returns: A function decorator that attaches the docstring from `np_fun` to the decorated function. """ np_fun_name, np_fun = _prepare_np_fun_name_and_fun(np_fun_name, np_fun) def decorator(f): f.__doc__ = _np_doc_helper(f, np_fun, np_fun_name=np_fun_name) return f return decorator def tf_broadcast(*args): """Broadcast tensors. Args: *args: a list of tensors whose shapes are broadcastable against each other. Returns: Tensors broadcasted to the common shape. """ if len(args) <= 1: return args sh = array_ops.shape(args[0]) for arg in args[1:]: sh = array_ops.broadcast_dynamic_shape(sh, array_ops.shape(arg)) return [array_ops.broadcast_to(arg, sh) for arg in args] # TODO(wangpeng): Move the following functions to a separate file and check for # float dtypes in each of them. def get_static_value(x): """A version of tf.get_static_value that returns None on float dtypes. It returns None on float dtypes in order to avoid breaking gradients. Args: x: a tensor. Returns: Same as `tf.get_static_value`, except that it returns None when `x` has a float dtype. """ if isinstance(x, ops.Tensor) and (x.dtype.is_floating or x.dtype.is_complex): return None return tensor_util.constant_value(x) def _maybe_static(x): value = get_static_value(x) if value is None: return x else: return value # All the following functions exist becaues get_static_value can't handle # their TF counterparts. def cond(pred, true_fn, false_fn): """A version of tf.cond that tries to evaluate the condition.""" v = get_static_value(pred) if v is None: return control_flow_ops.cond(pred, true_fn, false_fn) if v: return true_fn() else: return false_fn() def add(a, b): """A version of tf.add that eagerly evaluates if possible.""" return _maybe_static(a) + _maybe_static(b) def subtract(a, b): """A version of tf.subtract that eagerly evaluates if possible.""" return _maybe_static(a) - _maybe_static(b) def greater(a, b): """A version of tf.greater that eagerly evaluates if possible.""" return _maybe_static(a) > _maybe_static(b) def greater_equal(a, b): """A version of tf.greater_equal that eagerly evaluates if possible.""" return _maybe_static(a) >= _maybe_static(b) def less_equal(a, b): """A version of tf.less_equal that eagerly evaluates if possible.""" return _maybe_static(a) <= _maybe_static(b) def logical_and(a, b): """A version of tf.logical_and that eagerly evaluates if possible.""" a_value = get_static_value(a) if a_value is not None: if np.isscalar(a_value): if a_value: return _maybe_static(b) else: return a_value else: return a_value & _maybe_static(b) else: return a & _maybe_static(b) def logical_or(a, b): """A version of tf.logical_or that eagerly evaluates if possible.""" a_value = get_static_value(a) if a_value is not None: if np.isscalar(a_value): if a_value: return a_value else: return _maybe_static(b) else: return a_value | _maybe_static(b) else: return a | _maybe_static(b) def getitem(a, slice_spec): """A version of __getitem__ that eagerly evaluates if possible.""" return _maybe_static(a)[slice_spec] def reduce_all(input_tensor, axis=None, keepdims=False): """A version of tf.reduce_all that eagerly evaluates if possible.""" v = get_static_value(input_tensor) if v is None: return math_ops.reduce_all(input_tensor, axis=axis, keepdims=keepdims) else: return v.all(axis=axis, keepdims=keepdims) def reduce_any(input_tensor, axis=None, keepdims=False): """A version of tf.reduce_any that eagerly evaluates if possible.""" v = get_static_value(input_tensor) if v is None: return math_ops.reduce_any(input_tensor, axis=axis, keepdims=keepdims) else: return v.any(axis=axis, keepdims=keepdims)
the-stack_106_31189
import numpy as np import pandas as pd import re def stack_chunks(dat_list): ''' For preserving categories instead of converting to objects. If you concat categories w/ different levels (or even the same in a different order), it silently converts to object ''' columns, dtypes = dat_list[0].columns, dat_list[0].dtypes # preserve categories levels = {col: set() for col in columns} for col, dt in zip(columns, dtypes): if str(dt) == 'category': for d in dat_list: levels[col] = set.union(levels[col], d[col].cat.categories) for d in dat_list: _newlevels = list(levels[col] - set(d[col].cat.categories)) d[col] = d[col].cat.add_categories(_newlevels) d[col] = d[col].cat.reorder_categories(levels[col]) # recombine the chunks and return the result return pd.concat(dat_list) def read_hcup(data_file, sas_script, chunksize=500000, combine_chunks=True, return_meta=False, strings_to_categorical=True, **kwargs): ''' Arguments: data_file (str): Path of fixed-width text data file sas_script (str): Path of the accompanying SAS load file chunksize (int, default 500K): Break data into chunks of size chunksize and read/process each chunk separately (for lower memory usage) combine_chunks (bool, default True): Return single DataFrame with all chunks combined (True), or return list of DataFrame chunks (False) return_meta (bool, default False): Return the data + a DataFrame of column metadata (True), or just return the processed data (False) strings_to_categorical (bool, default True): Convert variables defined as CHAR in SAS script to pd.Categorical upon import kwargs: passed on to pandas.read_fwf() Returns: Default: a single pandas DataFrame If combine_chunks=False: Generator of pandas DataFrames If return_meta=True: Return metadata (widths, dtypes, etc. ) *instead of* the data ''' # what dtype to use for text columns text = 'category' if strings_to_categorical else 'object' # read in the sas script with open(sas_script) as f: sas = f.readlines() # grab the lines that define the fields. returns three match groups: # 0 = starting position, 1 = field name, 2 = variable type fields = [re.search(r'@\s*(\d+)\s+(\S+)\s+(\S+)\s?', x) for x in sas] fields = [x.groups() for x in fields if x] # from those, grab the names and starting positions, and infer the dtypes starts = [int(x[0]) for x in fields] names = [x[1] for x in fields] # use different dtypes based on whether user requests metadata or data. # in the latter case we just make everything a category for max compression # for numerics, must use floats since int columns can't have missing values # but it's okay because floats hardly use more space than ints if return_meta: dtype = [text if re.search(r'CHAR', x[2]) else float for x in fields] else: # keep KEY_NIS as numeric so it can be safely sorted on dtype = [text if col != 'KEY_NIS' else float for col in names] # convert dtype list into dictionary (for pd.read_fwf) dtypes = dict(zip(names, dtypes)) # compute the variable widths maxcols = int(re.search(r'LRECL = (.+);', ''.join(sas)).group(1)) widths = np.diff(starts + [maxcols+1]) # grab all the missing value codes na_vals = re.findall(r'\'(.+)\' = \S+', ''.join(sas)) na_vals += ['.'] # return meta-data if requested if return_meta: return {'names': names, 'starts': starts, 'widths': widths, 'dtypes': dtype, 'na_values': na_vals} # get a generator that reads the data in chunks dat = pd.read_fwf(data_file, header=None, names=names, widths=widths, dtype=dtype, na_values=na_vals, chunksize=chunksize, **kwargs) # return generator if requested if not combine_chunks: return dat # convert generator to list and stack the dataframes if applicable dat = list(dat) if len(dat) > 1: dat = stack_chunks(dat) else: dat = dat[0] return dat def read_mhos(sas_script, data_file=None, chunksize=500000, combine_chunks=True, return_meta=False, strings_to_categorical=True, **kwargs): ''' Arguments: data_file (str): Path of fixed-width text data file sas_script (str): Path of the accompanying SAS load file chunksize (int, default 500K): Break data into chunks of size chunksize and read/process each chunk separately (for lower memory usage) combine_chunks (bool, default True): Return single DataFrame with all chunks combined (True), or return list of DataFrame chunks (False) return_meta (bool, default False): Return the data + a DataFrame of column metadata (True), or just return the processed data (False) strings_to_categorical (bool, default True): Convert variables defined as CHAR in SAS script to pd.Categorical upon import kwargs: passed on to pandas.read_fwf() Returns: Default: a single pandas DataFrame If combine_chunks=False: Generator of pandas DataFrames If return_meta=True: Return metadata (colspecs, dtypes, etc. ) *instead of* the data ''' if data_file is None: return_meta = True # what dtype to use for text columns text = 'category' if strings_to_categorical else 'object' # read in the sas script with open(sas_script) as f: sas = f.readlines() # match groups (indexed from 1, not 0) # 1 = prefix, 2 = field name, 3 = string, 4 = start position, # 5 = end position, 6 = field number, 7 = field description regex = r'^\s+(&[c|C].|&[r|R].|&[p|P].)?(\S+)\s+(\$)?\s*(\d{1,3})-?(\d{1,3})?\S*\s*/\*\s+(\d{1,3})(.*)\*/' fields = [re.search(regex, x) for x in sas if re.search(regex, x)] # check that we matched all and only the the right field numbers assert [int(x.group(6)) for x in fields if x] \ == list(range(1, len(fields)+1)) # extract the meta-data prefix = [x.group(1) for x in fields] names = [x.group(2).lower() for x in fields] dtypes = [str if x.group(2)=='CASE_ID' else text if x.group(3) else float for x in fields] starts = [int(x.group(4))-1 for x in fields] ends = [int(x.group(5)) if x.group(5) else int(x.group(4)) for x in fields] descriptions = [x.group(7).strip() for x in fields] # handle duplicate names vc = pd.Series(names).value_counts() dupes = list(vc.index[vc > 1]) dupes = [x in dupes for x in names] names = [prefix+name if dupe else name for prefix, name, dupe in zip(prefix, names, dupes)] # convert dtype list into dictionary (for pd.read_fwf) dtypes = dict(zip(names, dtypes)) # return meta-data if requested if return_meta: return {'names': names, 'starts': starts, 'ends': ends, 'dtypes': dtypes, 'descriptions': descriptions} # get a generator that reads the data in chunks dat = pd.read_fwf(data_file, header=None, names=names, colspecs=list(zip(starts, ends)), dtype=dtypes, chunksize=chunksize, **kwargs) # return generator if requested if not combine_chunks: return dat # convert generator to list and stack the dataframes if applicable dat = list(dat) if len(dat) > 1: dat = stack_chunks(dat) else: dat = dat[0] return dat
the-stack_106_31190
""" Pairwise sequence alignment of Avidin with Streptavidin ======================================================= This script performs a pairwise sequence alignment of avidin (*Gallus gallus*) with streptavidin (*Streptomyces lavendulae*). """ # Code source: Patrick Kunzmann # License: BSD 3 clause import matplotlib.pyplot as plt import biotite.sequence as seq import biotite.sequence.align as align import biotite.sequence.io.fasta as fasta import biotite.database.entrez as entrez import biotite.sequence.graphics as graphics # Download and parse protein sequences of avidin and streptavidin fasta_file = fasta.FastaFile.read(entrez.fetch_single_file( ["CAC34569", "ACL82594"], None, "protein", "fasta" )) for name, sequence in fasta_file.items(): if "CAC34569" in name: avidin_seq = seq.ProteinSequence(sequence) elif "ACL82594" in name: streptavidin_seq = seq.ProteinSequence(sequence) # Get BLOSUM62 matrix matrix = align.SubstitutionMatrix.std_protein_matrix() # Perform pairwise sequence alignment with affine gap penalty # Terminal gaps are not penalized alignments = align.align_optimal(avidin_seq, streptavidin_seq, matrix, gap_penalty=(-10, -1), terminal_penalty=False) # Draw first and only alignment # The color intensity indicates the similiarity fig = plt.figure(figsize=(8.0, 2.5)) ax = fig.add_subplot(111) graphics.plot_alignment_similarity_based( ax, alignments[0], matrix=matrix, labels=["Avidin", "Streptavidin"], show_numbers=True, show_line_position=True ) fig.tight_layout() plt.show()
the-stack_106_31192
#!/usr/bin/env python # -*- coding: utf-8 -*- """The setup script.""" from setuptools import setup, find_packages with open('README.rst') as readme_file: readme = readme_file.read() with open('HISTORY.rst') as history_file: history = history_file.read() requirements = [ 'altgraph==0.17', 'asn1crypto==1.3.0', 'certifi==2019.11.28', 'cffi==1.13.2', 'chardet==3.0.4', 'cryptography==2.8', 'dis3==0.1.3', 'future==0.18.2', 'idna==2.8', 'ipaddress==1.0.23', 'macholib==1.14', 'pefile==2019.4.18', 'pycparser==2.19', 'PyInstaller==3.6', 'pyOpenSSL==19.1.0', 'requests>=2.22.0', 'urllib3>=1.25.8', ] setup_requirements = ['pytest-runner', ] test_requirements = ['pytest', ] setup( author="Aidas Bendoraitis", author_email='[email protected]', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], description="Search in API is a script that allows you to search among multiple pages of an API endpoint.", entry_points={ 'console_scripts': [ 'search_in_api=search_in_api.search_in_api:main', ], }, install_requires=requirements, license="MIT license", long_description=readme + '\n\n' + history, include_package_data=True, keywords='search_in_api', name='search_in_api', packages=find_packages(include=['search_in_api']), setup_requires=setup_requirements, test_suite='tests', tests_require=test_requirements, url='https://github.com/archatas/search_in_api', version='1.0.1', zip_safe=False, )
the-stack_106_31193
class Animal: def __init__(self, kind, color, name): # constructor method/a new instance of animal # slef is like this from JS self.kind = kind self.name = name self.color = color def description(self): print("%s is a %s with color %s" % (self.name, self.kind, self.color)) # or f"{self.name} is a {self.kind} with a color {self.color}" cat = Animal("cat", "orange", "CAty") dog = Animal("dog", "black", "HIM") print(cat.kind) print(dog.color) cat.description()
the-stack_106_31194
"""Tests using pytest_resilient_circuits""" # -*- coding: utf-8 -*- # Copyright © IBM Corporation 2010, 2019 from __future__ import print_function, unicode_literals import pytest from resilient_circuits.util import get_config_data, get_function_definition from resilient_circuits import SubmitTestFunction, FunctionResult from test_helper import TasksResilientMock PACKAGE_NAME = "fn_task_utils" FUNCTION_NAME = "task_utils_create" # Read the default configuration-data section from the package config_data = get_config_data(PACKAGE_NAME) # Provide a simulation of the Resilient REST API (uncomment to connect to a real appliance) resilient_mock = TasksResilientMock def call_task_utils_create_function(circuits, function_params, timeout=10): # Fire a message to the function evt = SubmitTestFunction("task_utils_create", function_params) circuits.manager.fire(evt) # circuits will fire an "exception" event if an exception is raised in the FunctionComponent # return this exception if it is raised exception_event = circuits.watcher.wait("exception", parent=None) if exception_event is not False: exception = exception_event.args[1].args[1] raise exception # else return the FunctionComponent's results else: event = circuits.watcher.wait("task_utils_create_result", parent=evt, timeout=timeout) assert event assert isinstance(event.kwargs["result"], FunctionResult) pytest.wait_for(event, "complete", True) return event.kwargs["result"].value class TestTskUtilsCreate: """ Tests for the tsk_utils_create function""" def test_function_definition(self): """ Test that the package provides customization_data that defines the function """ func = get_function_definition(PACKAGE_NAME, FUNCTION_NAME) assert func is not None @pytest.mark.parametrize("incident_id, task_name, task_utils_payload", [ (123, "New Task Name", {"type": "text", "content": '{\n"required": false\n}'}), (123, "My New Task", {"type": "text", "content": '{\n"required": false\n}'}) ]) def test_success(self, circuits_app, incident_id, task_name, task_utils_payload): """ Test calling with sample values for the parameters """ function_params = { "incident_id": incident_id, "task_name": task_name, "task_utils_payload": task_utils_payload } results = call_task_utils_create_function(circuits_app, function_params) assert(results["content"]["task"]) @pytest.mark.parametrize("incident_id, task_name, task_utils_payload", [ (123, "Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ", {"type": "text", "content": '{\n"required": false\n}'}), (123, " Й К Л М Н О П Р С Т ", {"type": "text", "content": '{\n"required": false\n}'}) ]) def test_success_unicode(self, circuits_app, incident_id, task_name, task_utils_payload): """ Test calling with sample values for the parameters """ function_params = { "incident_id": incident_id, "task_name": task_name, "task_utils_payload": task_utils_payload } results = call_task_utils_create_function(circuits_app, function_params) assert (results["content"]["task"]) assert function_params["task_name"] == results["content"]["task"]["name"] @pytest.mark.parametrize("incident_id, task_name, task_utils_payload", [ (123, "text", {"type": "text", "content": '{\n"required": false\n}'}), ]) def test_owner_as_email_user(self, circuits_app, incident_id, task_name, task_utils_payload): """ Test calling with sample values for the parameters """ function_params = { "incident_id": incident_id, "task_name": task_name, "task_utils_payload": task_utils_payload } results = call_task_utils_create_function(circuits_app, function_params) assert (results["content"]["task"]) @pytest.mark.parametrize("incident_id, task_name, task_utils_payload", [ (123, "text", {"type": "text", "content": '{\n"required": false\n}'}), (123, "text", {"type": "text", "content": '{\n"required": false\n}'}) ]) def test_owner_as_user_id(self, circuits_app, incident_id, task_name, task_utils_payload): """ Test calling with sample values for the parameters """ function_params = { "incident_id": incident_id, "task_name": task_name, "task_utils_payload": task_utils_payload } results = call_task_utils_create_function(circuits_app, function_params) assert results["content"]["task"]
the-stack_106_31195
#!/usr/bin/env python import vtk from vtk.util.misc import vtkGetDataRoot VTK_DATA_ROOT = vtkGetDataRoot() # In this example, an image is centered at (0,0,0) before a # rotation is applied to ensure that the rotation occurs about # the center of the image. reader = vtk.vtkPNGReader() reader.SetDataSpacing(0.8,0.8,1.5) reader.SetFileName("" + str(VTK_DATA_ROOT) + "/Data/fullhead15.png") reader.Update() # first center the image at (0,0,0) reslice = vtk.vtkImageReslice() reslice.SetResliceAxesDirectionCosines([0,1,0,-1,0,0,0,0,1]) reslice.SetInputConnection(reader.GetOutputPort()) reslice.SetInformationInput(reader.GetOutput()) # reset the image back to the way it was (you don't have # to do this, it is just put in as an example) information2 = vtk.vtkImageChangeInformation() information2.SetInputConnection(reslice.GetOutputPort()) information2.SetInformationInputData(reader.GetOutput()) viewer = vtk.vtkImageViewer() viewer.SetInputConnection(information2.GetOutputPort()) viewer.SetColorWindow(2000) viewer.SetColorLevel(1000) viewer.Render() # --- end of script --
the-stack_106_31196
import json import logging from hashlib import sha1 from .score_cache import ScoreCache logger = logging.getLogger("ores.score_caches.redis") TTL = 60 * 60 * 24 * 365 * 16 # 16 years PREFIX = "ores" class Redis(ScoreCache): def __init__(self, redis, ttl=None, prefix=None): self.redis = redis self.ttl = int(ttl or TTL) self.prefix = str(prefix or PREFIX) def lookup(self, wiki, model, rev_id, version=None, cache=None): key = self._generate_key(wiki, model, rev_id, version=version, cache=cache) logger.debug("Looking up score at {0}".format(key)) value = self.redis.get(key) if value is None: raise KeyError(key) else: return json.loads(str(value, 'utf-8')) def store(self, wiki, model, rev_id, score, version=None, cache=None): key = self._generate_key(wiki, model, rev_id, version=version, cache=cache) logger.debug("Storing score at {0}".format(key)) self.redis.setex(key, self.ttl, bytes(json.dumps(score), 'utf-8')) def _generate_key(self, wiki, model, rev_id, version=None, cache=None): if cache is None or len(cache) == 0: key_values = [self.prefix, wiki, model, rev_id, version] else: cache_hash = self.hash_cache(cache) key_values = [self.prefix, wiki, model, rev_id, version, cache_hash] return ":".join(str(v) for v in key_values) @classmethod def from_parameters(cls, *args, ttl=None, prefix=None, **kwargs): try: import redis except ImportError: raise ImportError("Could not find redis-py. This packages is " + "required when using ores.score_caches.Redis.") return cls(redis.StrictRedis(*args, **kwargs), ttl=ttl, prefix=prefix) @classmethod def from_config(cls, config, name, section_key="score_caches"): """ score_caches: redis_cache: class: ores.score_caches.Redis host: localhost prefix: ores-derp ttl: 9001 """ logger.info("Loading Redis '{0}' from config.".format(name)) section = config[section_key][name] kwargs = {k: v for k, v in section.items() if k != "class"} return cls.from_parameters(**kwargs) @classmethod def hash_cache(cls, cache): sorted_tuple = tuple(sorted(cache.items())) return sha1(bytes(str(sorted_tuple), 'utf8')).hexdigest()
the-stack_106_31200
from xml.etree import ElementTree root = ElementTree.fromstring(input()) colors = {"red": 0, "green": 0, "blue": 0} def getcubes(root, value): colors[root.attrib['color']] += value for child in root: getcubes(child, value+1) getcubes(root,1) print(colors["red"], colors["green"], colors["blue"])
the-stack_106_31201
import re from asteval import Interpreter import astropy.units as u from astropy.modeling import models from qtpy.QtCore import QSortFilterProxyModel, Qt, Signal from qtpy.QtGui import QStandardItem, QStandardItemModel, QValidator class ModelFittingModel(QStandardItemModel): """ Internel Qt model containing all instanes of the :class:`astropy.modeling.FittableModel` classes in use in the model editor. Each item in the model is a :class:`specviz.plugins.model_editor.items.ModelDataItem` instance. Attributes ---------- status_changed : :class:`qtpy.QtCore.Signal` Signal raised when the validator state changes. """ status_changed = Signal(QValidator.State, str) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._equation = "" self.setHorizontalHeaderLabels(["Name", "Value", "Unit", "Fixed"]) @property def items(self): """ The list of all :class:`specviz.plugins.model_editor.items.ModelDataItem` instances associated with this model. """ return [self.item(idx) for idx in range(self.rowCount())] @property def equation(self): """ The equation used when parsing the set of models into a single compound model. """ return self._equation @equation.setter def equation(self, value): self._equation = value self.evaluate() def compose_fittable_models(self): """ Generate the set of models with parameters updated by what the user has inputted in the gui. Returns ------- fittable_models : dict Collection of models with updated parameters where each key is the model name displayed in the gui, and the value is the model. """ # Recompose the model objects with the current values in each of its # parameter rows. fittable_models = {} for model_item in self.items: model = model_item.data() model_name = model_item.text() model_kwargs = {'name': model_name, 'fixed': {}} if isinstance(model, models.PolynomialModel): model_args = [model.degree] else: model_args = [] # For each of the children `StandardItem`s, parse out their # individual stored values for cidx in range(model_item.rowCount()): param_name = model_item.child(cidx, 0).data() param_value = model_item.child(cidx, 1).data() param_unit = model_item.child(cidx, 2).data() param_fixed = model_item.child(cidx, 3).checkState() == Qt.Checked model_kwargs[param_name] = (u.Quantity(param_value, param_unit) if param_unit is not None else param_value) model_kwargs.get('fixed').setdefault(param_name, param_fixed) new_model = model.__class__(*model_args, **model_kwargs) fittable_models[model_name] = new_model return fittable_models @property def fittable_models(self): """ Dictionary mapping displayed model name to the model instance with parameters updated by parsing the user input in the ui. """ return self.compose_fittable_models() def add_model(self, model): """ Adds a model to the internal Qt model. Parameters ---------- model : :class:`astropy.modeling.FittableModel` The model instance to add. Returns ------- :class:`qtpy.QtCore.QModelIndex` The index in the Qt model where the new model been added. """ model_name = model.__class__.name model_count = len([self.item(idx) for idx in range(self.rowCount()) if model.__class__.name in self.item(idx).text()]) model_name = model_name + str(model_count) if model_count > 0 else model_name model_item = QStandardItem(model_name) model_item.setData(model, Qt.UserRole + 1) for para_name in model.param_names: # Retrieve the parameter object from the model parameter = getattr(model, para_name) # Store the name value param_name = QStandardItem(parameter.name) param_name.setData(parameter.name, Qt.UserRole + 1) param_name.setEditable(False) # Store the data value of the parameter param_value = QStandardItem("{:.5g}".format(parameter.value)) param_value.setData(parameter.value, Qt.UserRole + 1) # Store the unit information # param_unit = QStandardItem("{}".format(parameter.unit)) param_unit = QStandardItem("Plot Units") param_unit.setData(parameter.unit, Qt.UserRole + 1) param_unit.setEditable(False) # Store the fixed state of the unit param_fixed = QStandardItem() param_fixed.setData(parameter.fixed, Qt.UserRole + 1) param_fixed.setCheckable(True) param_fixed.setEditable(False) model_item.appendRow([param_name, param_value, param_unit, param_fixed]) self.appendRow([model_item, None, None, None]) # Add this model to the model equation string. By default, all models # are simply added together self._equation += " + {}".format(model_name) \ if len(self._equation) > 0 else "{}".format(model_name) return model_item.index() def remove_model(self, row): """ Remove an astropy model from the internal qt data model. Parameters ---------- row : int The row in the qt model that is to be removed. """ # Get the model first so that we can re-parse the equation model_item = self.item(row, 0) # Remove the model name from the equation self.equation = re.sub( "(\+|-|\*|\/|=|>|<|>=|<=|&|\||%|!|\^|\(|\))*\s*?({})".format( model_item.text()), "", self._equation) # Remove the model item from the internal qt model self.removeRow(row) def reset_equation(self): """ Resets and reconstructs the equation used when parsing the set of models into a single model. """ self._equation = "" for item in self.items: self._equation += " + {}".format(item.text()) \ if len(self._equation) > 0 else "{}".format(item.text()) def evaluate(self): """ Validate the input to the equation editor. Parameters ---------- string : str Plain text representation of the current equation text edit box. fittable_models : dict Mapping of tree view model variables names to their model instances. """ fittable_models = self.compose_fittable_models() # Create an evaluation namespace for use in parsing the string namespace = {} namespace.update(fittable_models) # Create a quick class to dump err output instead of piping to the # user's terminal. Seems this cannot be None, and must be an object # that has a `write` method. aeval = Interpreter(usersyms=namespace, err_writer=type("FileDump", (object,), {'write': lambda x: None})) result = aeval(self.equation) if len(aeval.error) > 0 or not any((self.equation.find(x) >= 0 for x in fittable_models.keys())): if len(aeval.error) > 0: status_text = "<font color='red'>Invalid input: {}</font>".format( str(aeval.error[0].get_error()[1]).split('\n')[-1]) else: status_text = "<font color='red'>Invalid input: at least one model must be " \ "used in the equation.</font>" state = QValidator.Invalid else: status_text = "<font color='green'>Valid input.</font>" state = QValidator.Acceptable self.status_changed.emit(state, status_text) return result
the-stack_106_31203
# Copyright (c) 2017 Yubico AB # All rights reserved. # # Redistribution and use in source and binary forms, with or # without modification, are permitted provided that the following # conditions are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from __future__ import absolute_import from enum import IntEnum, unique from .device import YubiKey from .driver_ccid import APDUError, SW from .util import ( AID, Tlv, parse_tlvs, is_cve201715361_vulnerable_firmware_version, ensure_not_cve201715361_vulnerable_firmware_version) from cryptography import x509 from cryptography.exceptions import InvalidSignature from cryptography.utils import int_to_bytes, int_from_bytes from cryptography.hazmat.primitives import hashes from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes from cryptography.hazmat.primitives.constant_time import bytes_eq from cryptography.hazmat.primitives.asymmetric import rsa, ec, padding from cryptography.hazmat.primitives.serialization import Encoding, PublicFormat from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC from cryptography.hazmat.backends import default_backend from cryptography.x509.oid import NameOID from collections import OrderedDict from threading import Timer import logging import struct import six import os logger = logging.getLogger(__name__) @unique class INS(IntEnum): VERIFY = 0x20 CHANGE_REFERENCE = 0x24 RESET_RETRY = 0x2c GENERATE_ASYMMETRIC = 0x47 AUTHENTICATE = 0x87 SEND_REMAINING = 0xc0 GET_DATA = 0xcb PUT_DATA = 0xdb SET_MGMKEY = 0xff IMPORT_KEY = 0xfe GET_VERSION = 0xfd RESET = 0xfb SET_PIN_RETRIES = 0xfa ATTEST = 0xf9 @unique class ALGO(IntEnum): TDES = 0x03 RSA1024 = 0x06 RSA2048 = 0x07 ECCP256 = 0x11 ECCP384 = 0x14 @classmethod def from_public_key(cls, key): if isinstance(key, rsa.RSAPublicKey): return getattr(cls, 'RSA%d' % key.key_size) elif isinstance(key, ec.EllipticCurvePublicKey): curve_name = key.curve.name if curve_name == 'secp256r1': return cls.ECCP256 elif curve_name == 'secp384r1': return cls.ECCP384 raise UnsupportedAlgorithm( 'Unsupported key type: %s' % type(key), key=key) @classmethod def is_rsa(cls, algorithm_int): # Implemented as "not not RSA" to reduce risk of false negatives if # more algorithms are added return not ( algorithm_int == cls.TDES or algorithm_int == cls.ECCP256 or algorithm_int == cls.ECCP384 ) @unique class SLOT(IntEnum): AUTHENTICATION = 0x9a CARD_MANAGEMENT = 0x9b SIGNATURE = 0x9c KEY_MANAGEMENT = 0x9d CARD_AUTH = 0x9e RETIRED1 = 0x82 RETIRED2 = 0x83 RETIRED3 = 0x84 RETIRED4 = 0x85 RETIRED5 = 0x86 RETIRED6 = 0x87 RETIRED7 = 0x88 RETIRED8 = 0x89 RETIRED9 = 0x8a RETIRED10 = 0x8b RETIRED11 = 0x8c RETIRED12 = 0x8d RETIRED13 = 0x8e RETIRED14 = 0x8f RETIRED15 = 0x90 RETIRED16 = 0x91 RETIRED17 = 0x92 RETIRED18 = 0x93 RETIRED19 = 0x94 RETIRED20 = 0x95 ATTESTATION = 0xf9 @unique class OBJ(IntEnum): CAPABILITY = 0x5fc107 CHUID = 0x5fc102 AUTHENTICATION = 0x5fc105 # cert for 9a key FINGERPRINTS = 0x5fc103 SECURITY = 0x5fc106 FACIAL = 0x5fc108 SIGNATURE = 0x5fc10a # cert for 9c key KEY_MANAGEMENT = 0x5fc10b # cert for 9d key CARD_AUTH = 0x5fc101 # cert for 9e key DISCOVERY = 0x7e KEY_HISTORY = 0x5fc10c IRIS = 0x5fc121 RETIRED1 = 0x5fc10d RETIRED2 = 0x5fc10e RETIRED3 = 0x5fc10f RETIRED4 = 0x5fc110 RETIRED5 = 0x5fc111 RETIRED6 = 0x5fc112 RETIRED7 = 0x5fc113 RETIRED8 = 0x5fc114 RETIRED9 = 0x5fc115 RETIRED10 = 0x5fc116 RETIRED11 = 0x5fc117 RETIRED12 = 0x5fc118 RETIRED13 = 0x5fc119 RETIRED14 = 0x5fc11a RETIRED15 = 0x5fc11b RETIRED16 = 0x5fc11c RETIRED17 = 0x5fc11d RETIRED18 = 0x5fc11e RETIRED19 = 0x5fc11f RETIRED20 = 0x5fc120 PIVMAN_DATA = 0x5fff00 PIVMAN_PROTECTED_DATA = 0x5fc109 # Use slot for printed information. ATTESTATION = 0x5fff01 @classmethod def from_slot(cls, slot): return getattr(cls, SLOT(slot).name) @unique class TAG(IntEnum): DYN_AUTH = 0x7c OBJ_ID = 0x5c OBJ_DATA = 0x53 CERTIFICATE = 0x70 CERT_INFO = 0x71 ALGO = 0x80 PIN_POLICY = 0xaa TOUCH_POLICY = 0xab LRC = 0xfe @unique class PIN_POLICY(IntEnum): DEFAULT = 0x0 NEVER = 0x1 ONCE = 0x2 ALWAYS = 0x3 @unique class TOUCH_POLICY(IntEnum): DEFAULT = 0x0 NEVER = 0x1 ALWAYS = 0x2 CACHED = 0x3 class AuthenticationFailed(Exception): def __init__(self, message, sw, applet_version): super(AuthenticationFailed, self).__init__(message) self.tries_left = ( tries_left(sw, applet_version) if is_verify_fail(sw, applet_version) else None) class AuthenticationBlocked(AuthenticationFailed): def __init__(self, message, sw): # Dummy applet_version since sw will always be "authentication blocked" super(AuthenticationBlocked, self).__init__(message, sw, ()) class BadFormat(Exception): def __init__(self, message, bad_value): super(BadFormat, self).__init__(message) self.bad_value = bad_value class KeypairMismatch(Exception): def __init__(self, slot, cert): super(KeypairMismatch, self).__init__( 'The certificate does not match the private key in slot %s.' % slot) self.slot = slot self.cert = cert class UnsupportedAlgorithm(Exception): def __init__(self, message, algorithm_id=None, key=None, ): super(UnsupportedAlgorithm, self).__init__(message) if algorithm_id is None and key is None: raise ValueError( 'At least one of algorithm_id and key must be given.') self.algorithm_id = algorithm_id self.key = key class WrongPin(AuthenticationFailed): def __init__(self, sw, applet_version): super(WrongPin, self).__init__( 'Incorrect PIN', sw, applet_version) class WrongPuk(AuthenticationFailed): def __init__(self, sw, applet_version): super(WrongPuk, self).__init__( 'Incorrect PUK', sw, applet_version) PIN = 0x80 PUK = 0x81 # 010203040506070801020304050607080102030405060708 DEFAULT_MANAGEMENT_KEY = b'\x01\x02\x03\x04\x05\x06\x07\x08' \ + b'\x01\x02\x03\x04\x05\x06\x07\x08' \ + b'\x01\x02\x03\x04\x05\x06\x07\x08' def _parse_tlv_dict(data): return dict((tlv.tag, tlv.value) for tlv in parse_tlvs(data)) def _pack_pin(pin): if isinstance(pin, six.text_type): pin = pin.encode('utf8') if len(pin) > 8: raise BadFormat( 'PIN/PUK too large (max 8 bytes, was %d)' % len(pin), pin) return pin.ljust(8, b'\xff') def _get_key_data(key): if isinstance(key, rsa.RSAPrivateKey): if key.public_key().public_numbers().e != 65537: raise UnsupportedAlgorithm( 'Unsupported RSA exponent: %d' % key.public_key().public_numbers().e, key=key) if key.key_size == 1024: algo = ALGO.RSA1024 ln = 64 elif key.key_size == 2048: algo = ALGO.RSA2048 ln = 128 else: raise UnsupportedAlgorithm( 'Unsupported RSA key size: %d' % key.key_size, key=key) priv = key.private_numbers() data = Tlv(0x01, int_to_bytes(priv.p, ln)) + \ Tlv(0x02, int_to_bytes(priv.q, ln)) + \ Tlv(0x03, int_to_bytes(priv.dmp1, ln)) + \ Tlv(0x04, int_to_bytes(priv.dmq1, ln)) + \ Tlv(0x05, int_to_bytes(priv.iqmp, ln)) elif isinstance(key, ec.EllipticCurvePrivateKey): if isinstance(key.curve, ec.SECP256R1): algo = ALGO.ECCP256 ln = 32 elif isinstance(key.curve, ec.SECP384R1): algo = ALGO.ECCP384 ln = 48 else: raise UnsupportedAlgorithm( 'Unsupported elliptic curve: %s', key.curve, key=key) priv = key.private_numbers() data = Tlv(0x06, int_to_bytes(priv.private_value, ln)) else: raise UnsupportedAlgorithm('Unsupported key type!', key=key) return algo, data def _dummy_key(algorithm): if algorithm == ALGO.RSA1024: return rsa.generate_private_key(65537, 1024, default_backend()) if algorithm == ALGO.RSA2048: return rsa.generate_private_key(65537, 2048, default_backend()) if algorithm == ALGO.ECCP256: return ec.generate_private_key(ec.SECP256R1(), default_backend()) if algorithm == ALGO.ECCP384: return ec.generate_private_key(ec.SECP384R1(), default_backend()) raise UnsupportedAlgorithm( 'Unsupported algorithm: %s' % algorithm, algorithm_id=algorithm) def _pkcs1_15_pad(algorithm, message): h = hashes.Hash(hashes.SHA256(), default_backend()) h.update(message) t = b'\x30\x31\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x01\x05' + \ b'\x00\x04\x20' + h.finalize() em_len = 128 if algorithm == ALGO.RSA1024 else 256 f_len = em_len - len(t) - 3 return b'\0\1' + b'\xff' * f_len + b'\0' + t _sign_len_conditions = { ALGO.RSA1024: lambda ln: ln == 128, ALGO.RSA2048: lambda ln: ln == 256, ALGO.ECCP256: lambda ln: ln <= 32, ALGO.ECCP384: lambda ln: ln <= 48 } _decrypt_len_conditions = { ALGO.RSA1024: lambda ln: ln == 128, ALGO.RSA2048: lambda ln: ln == 256, ALGO.ECCP256: lambda ln: ln == 65, ALGO.ECCP384: lambda ln: ln == 97 } def _derive_key(pin, salt): kdf = PBKDF2HMAC(hashes.SHA1(), 24, salt, 10000, default_backend()) return kdf.derive(pin.encode('utf-8')) def generate_random_management_key(): return os.urandom(24) def is_verify_fail(sw, applet_version): if applet_version < (1, 0, 4): return 0x6300 <= sw <= 0x63ff else: return SW.is_verify_fail(sw) def tries_left(sw, applet_version): if applet_version < (1, 0, 4): if sw == SW.AUTH_METHOD_BLOCKED: return 0 if not is_verify_fail(sw, applet_version): raise ValueError( 'Cannot read remaining tries from status word: %x' % sw) return sw & 0xff else: return SW.tries_left(sw) class PivmanData(object): def __init__(self, raw_data=Tlv(0x80)): data = _parse_tlv_dict(Tlv(raw_data).value) self._flags = struct.unpack( '>B', data[0x81])[0] if 0x81 in data else None self.salt = data.get(0x82) self.pin_timestamp = struct.unpack('>I', data[0x83]) \ if 0x83 in data else None def _get_flag(self, mask): return bool((self._flags or 0) & mask) def _set_flag(self, mask, value): if value: self._flags = (self._flags or 0) | mask elif self._flags is not None: self._flags &= ~mask @property def puk_blocked(self): return self._get_flag(0x01) @puk_blocked.setter def puk_blocked(self, value): self._set_flag(0x01, value) @property def mgm_key_protected(self): return self._get_flag(0x02) @mgm_key_protected.setter def mgm_key_protected(self, value): self._set_flag(0x02, value) def get_bytes(self): data = b'' if self._flags is not None: data += Tlv(0x81, struct.pack('>B', self._flags)) if self.salt is not None: data += Tlv(0x82, self.salt) if self.pin_timestamp is not None: data += Tlv(0x83, struct.pack('>I', self.pin_timestamp)) return Tlv(0x80, data) class PivmanProtectedData(object): def __init__(self, raw_data=Tlv(0x88)): data = _parse_tlv_dict(Tlv(raw_data).value) self.key = data.get(0x89) def get_bytes(self): data = b'' if self.key is not None: data += Tlv(0x89, self.key) return Tlv(0x88, data) class PivController(object): def __init__(self, driver): driver.select(AID.PIV) self._authenticated = False self._driver = driver self._version = self._read_version() self._update_pivman_data() def _update_pivman_data(self): try: self._pivman_data = PivmanData(self.get_data(OBJ.PIVMAN_DATA)) except APDUError: self._pivman_data = PivmanData() @property def version(self): return self._version @property def has_protected_key(self): return self.has_derived_key or self.has_stored_key @property def has_derived_key(self): return self._pivman_data.salt is not None @property def has_stored_key(self): return self._pivman_data.mgm_key_protected @property def puk_blocked(self): return self._pivman_data.puk_blocked def send_cmd(self, ins, p1=0, p2=0, data=b'', check=SW.OK): while len(data) > 0xff: self._driver.send_apdu(0x10, ins, p1, p2, data[:0xff]) data = data[0xff:] resp, sw = self._driver.send_apdu(0, ins, p1, p2, data, check=None) while (sw >> 8) == SW.MORE_DATA: more, sw = self._driver.send_apdu( 0, INS.SEND_REMAINING, 0, 0, b'', check=None) resp += more if check is None: return resp, sw elif sw != check: raise APDUError(resp, sw) return resp def _read_version(self): return tuple(six.iterbytes(self.send_cmd(INS.GET_VERSION))) def _init_pivman_protected(self): try: self._pivman_protected_data = PivmanProtectedData( self.get_data(OBJ.PIVMAN_PROTECTED_DATA)) except APDUError as e: if e.sw == SW.NOT_FOUND: # No data there, initialise a new object. self._pivman_protected_data = PivmanProtectedData() else: raise def verify(self, pin, touch_callback=None): try: self.send_cmd(INS.VERIFY, 0, PIN, _pack_pin(pin)) except APDUError as e: if e.sw == SW.AUTH_METHOD_BLOCKED: raise AuthenticationBlocked('PIN is blocked.', e.sw) elif is_verify_fail(e.sw, self.version): raise WrongPin(e.sw, self.version) raise if self.has_derived_key and not self._authenticated: self.authenticate( _derive_key(pin, self._pivman_data.salt), touch_callback) self.verify(pin, touch_callback) if self.has_stored_key and not self._authenticated: self._init_pivman_protected() self.authenticate(self._pivman_protected_data.key, touch_callback) self.verify(pin, touch_callback) def change_pin(self, old_pin, new_pin): try: self.send_cmd(INS.CHANGE_REFERENCE, 0, PIN, _pack_pin(old_pin) + _pack_pin(new_pin)) except APDUError as e: if e.sw == SW.AUTH_METHOD_BLOCKED: raise AuthenticationBlocked('PIN is blocked.', e.sw) elif is_verify_fail(e.sw, self.version): raise WrongPin(e.sw, self.version) raise if self.has_derived_key: if not self._authenticated: self.authenticate(_derive_key(old_pin, self._pivman_data.salt)) self.use_derived_key(new_pin) def change_puk(self, old_puk, new_puk): try: self.send_cmd(INS.CHANGE_REFERENCE, 0, PUK, _pack_pin(old_puk) + _pack_pin(new_puk)) except APDUError as e: if e.sw == SW.AUTH_METHOD_BLOCKED: raise AuthenticationBlocked('PUK is blocked.', e.sw) elif is_verify_fail(e.sw, self.version): raise WrongPuk(e.sw, self.version) raise def unblock_pin(self, puk, new_pin): try: self.send_cmd( INS.RESET_RETRY, 0, PIN, _pack_pin(puk) + _pack_pin(new_pin)) except APDUError as e: if e.sw == SW.AUTH_METHOD_BLOCKED: raise AuthenticationBlocked('PUK is blocked.', e.sw) elif is_verify_fail(e.sw, self.version): raise WrongPuk(e.sw, self.version) raise def set_pin_retries(self, pin_retries, puk_retries): self.send_cmd(INS.SET_PIN_RETRIES, pin_retries, puk_retries) def use_derived_key(self, pin, touch=False): self.verify(pin) if not self.puk_blocked: self._block_puk() self._pivman_data.puk_blocked = True new_salt = os.urandom(16) new_key = _derive_key(pin, new_salt) self.send_cmd(INS.SET_MGMKEY, 0xff, 0xfe if touch else 0xff, six.int2byte(ALGO.TDES) + Tlv(SLOT.CARD_MANAGEMENT, new_key)) self._pivman_data.salt = new_salt self.put_data(OBJ.PIVMAN_DATA, self._pivman_data.get_bytes()) def set_pin_timestamp(self, timestamp): self._pivman_data.pin_timestamp = timestamp self.put_data(OBJ.PIVMAN_DATA, self._pivman_data.get_bytes()) def authenticate(self, key, touch_callback=None): ct1 = self.send_cmd(INS.AUTHENTICATE, ALGO.TDES, SLOT.CARD_MANAGEMENT, Tlv(TAG.DYN_AUTH, Tlv(0x80)))[4:12] backend = default_backend() try: cipher_key = algorithms.TripleDES(key) except ValueError: raise BadFormat('Management key must be exactly 24 bytes long, ' 'was: {}'.format(len(key)), None) cipher = Cipher(cipher_key, modes.ECB(), backend) decryptor = cipher.decryptor() pt1 = decryptor.update(ct1) + decryptor.finalize() ct2 = os.urandom(8) if touch_callback is not None: touch_timer = Timer(0.500, touch_callback) touch_timer.start() try: pt2 = self.send_cmd( INS.AUTHENTICATE, ALGO.TDES, SLOT.CARD_MANAGEMENT, Tlv(TAG.DYN_AUTH, Tlv(0x80, pt1) + Tlv(0x81, ct2)) )[4:12] except APDUError as e: if e.sw == SW.SECURITY_CONDITION_NOT_SATISFIED: raise AuthenticationFailed( 'Incorrect management key', e.sw, self.version) logger.error('Failed to authenticate management key.', exc_info=e) raise except Exception as e: logger.error('Failed to authenticate management key.', exc_info=e) raise finally: if touch_callback is not None: touch_timer.cancel() encryptor = cipher.encryptor() pt2_cmp = encryptor.update(ct2) + encryptor.finalize() if not bytes_eq(pt2, pt2_cmp): raise ValueError('Device challenge did not match!') self._authenticated = True def set_mgm_key(self, new_key, touch=False, store_on_device=False): # If the key should be protected by PIN and no key is given, # we generate a random key. if not new_key: if store_on_device: new_key = generate_random_management_key() else: raise ValueError('new_key was not given and ' 'store_on_device was not True') if len(new_key) != 24: raise BadFormat( 'Management key must be exactly 24 bytes long, was: {}'.format( len(new_key)), new_key) if store_on_device or (not store_on_device and self.has_stored_key): # Ensure we have access to protected data before overwriting key try: self._init_pivman_protected() except Exception as e: logger.debug('Failed to initialize protected pivman data', exc_info=e) if store_on_device: raise # Set the new management key self.send_cmd( INS.SET_MGMKEY, 0xff, 0xfe if touch else 0xff, six.int2byte(ALGO.TDES) + Tlv(SLOT.CARD_MANAGEMENT, new_key)) if self.has_derived_key: # Clear salt for old derived keys. self._pivman_data.salt = None # Set flag for stored or not stored key. self._pivman_data.mgm_key_protected = store_on_device # Update readable pivman data self.put_data(OBJ.PIVMAN_DATA, self._pivman_data.get_bytes()) if store_on_device: # Store key in protected pivman data self._pivman_protected_data.key = new_key self.put_data( OBJ.PIVMAN_PROTECTED_DATA, self._pivman_protected_data.get_bytes()) elif not store_on_device and self.has_stored_key: # If new key should not be stored and there is an old stored key, # try to clear it. try: self._pivman_protected_data.key = None self.put_data( OBJ.PIVMAN_PROTECTED_DATA, self._pivman_protected_data.get_bytes()) except APDUError as e: logger.debug("No PIN provided, can't clear key..", exc_info=e) # Update CHUID and CCC if not set try: self.get_data(OBJ.CAPABILITY) except APDUError as e: if e.sw == SW.NOT_FOUND: self.update_ccc() else: logger.debug('Failed to read CCC...', exc_info=e) try: self.get_data(OBJ.CHUID) except APDUError as e: if e.sw == SW.NOT_FOUND: self.update_chuid() else: logger.debug('Failed to read CHUID...', exc_info=e) def get_pin_tries(self): """ Returns the number of PIN retries left, 0 PIN authentication blocked. Note that 15 is the highest value that will be returned even if remaining tries is higher. """ # Verify without PIN gives number of tries left. _, sw = self.send_cmd(INS.VERIFY, 0, PIN, check=None) return tries_left(sw, self.version) def _get_puk_tries(self): # A failed unblock pin will return number of PUK tries left, # but also uses one try. _, sw = self.send_cmd(INS.RESET_RETRY, 0, PIN, _pack_pin('')*2, check=None) return tries_left(sw, self.version) def _block_pin(self): while self.get_pin_tries() > 0: self.send_cmd(INS.VERIFY, 0, PIN, _pack_pin(''), check=None) def _block_puk(self): while self._get_puk_tries() > 0: self.send_cmd(INS.RESET_RETRY, 0, PIN, _pack_pin('')*2, check=None) def reset(self): self._block_pin() self._block_puk() self.send_cmd(INS.RESET) self._update_pivman_data() def get_data(self, object_id): id_bytes = struct.pack(b'>I', object_id).lstrip(b'\0') tlv = Tlv(self.send_cmd(INS.GET_DATA, 0x3f, 0xff, Tlv(TAG.OBJ_ID, id_bytes))) if tlv.tag not in [TAG.OBJ_DATA, OBJ.DISCOVERY]: raise ValueError('Wrong tag in response data!') return tlv.value def put_data(self, object_id, data): id_bytes = struct.pack(b'>I', object_id).lstrip(b'\0') self.send_cmd(INS.PUT_DATA, 0x3f, 0xff, Tlv(TAG.OBJ_ID, id_bytes) + Tlv(TAG.OBJ_DATA, data)) def generate_key(self, slot, algorithm, pin_policy=PIN_POLICY.DEFAULT, touch_policy=TOUCH_POLICY.DEFAULT): if ALGO.is_rsa(algorithm): ensure_not_cve201715361_vulnerable_firmware_version(self.version) if algorithm not in self.supported_algorithms: raise UnsupportedAlgorithm( 'Algorithm not supported on this YubiKey: {}' .format(algorithm), algorithm_id=algorithm) data = Tlv(TAG.ALGO, six.int2byte(algorithm)) if pin_policy: data += Tlv(TAG.PIN_POLICY, six.int2byte(pin_policy)) if touch_policy: data += Tlv(TAG.TOUCH_POLICY, six.int2byte(touch_policy)) data = Tlv(0xac, data) resp = self.send_cmd(INS.GENERATE_ASYMMETRIC, 0, slot, data) if algorithm in [ALGO.RSA1024, ALGO.RSA2048]: data = _parse_tlv_dict(Tlv(resp[1:]).value) return rsa.RSAPublicNumbers( int_from_bytes(data[0x82], 'big'), int_from_bytes(data[0x81], 'big') ).public_key(default_backend()) elif algorithm in [ALGO.ECCP256, ALGO.ECCP384]: curve = ec.SECP256R1 if algorithm == ALGO.ECCP256 else ec.SECP384R1 try: # Added in cryptography 2.5 return ec.EllipticCurvePublicKey.from_encoded_point( curve(), resp[5:] ) except AttributeError: return ec.EllipticCurvePublicNumbers.from_encoded_point( curve(), resp[5:] ).public_key(default_backend()) raise UnsupportedAlgorithm( 'Invalid algorithm: {}'.format(algorithm), algorithm_id=algorithm) def generate_self_signed_certificate( self, slot, public_key, common_name, valid_from, valid_to, touch_callback=None): algorithm = ALGO.from_public_key(public_key) builder = x509.CertificateBuilder() builder = builder.public_key(public_key) builder = builder.subject_name( x509.Name([x509.NameAttribute(NameOID.COMMON_NAME, common_name), ])) # Same as subject on self-signed certificates. builder = builder.issuer_name( x509.Name([x509.NameAttribute(NameOID.COMMON_NAME, common_name), ])) # x509.random_serial_number added in cryptography 1.6 serial = int_from_bytes(os.urandom(20), 'big') >> 1 builder = builder.serial_number(serial) builder = builder.not_valid_before(valid_from) builder = builder.not_valid_after(valid_to) try: cert = self.sign_cert_builder( slot, algorithm, builder, touch_callback) except APDUError as e: logger.error('Failed to generate certificate for slot %s', slot, exc_info=e) raise self.import_certificate(slot, cert, verify=False) def generate_certificate_signing_request(self, slot, public_key, subject, touch_callback=None): builder = x509.CertificateSigningRequestBuilder() builder = builder.subject_name( x509.Name([x509.NameAttribute(NameOID.COMMON_NAME, subject), ])) try: return self.sign_csr_builder( slot, public_key, builder, touch_callback=touch_callback) except APDUError as e: logger.error( 'Failed to generate Certificate Signing Request for slot %s', slot, exc_info=e) raise def import_key(self, slot, key, pin_policy=PIN_POLICY.DEFAULT, touch_policy=TOUCH_POLICY.DEFAULT): algorithm, data = _get_key_data(key) if pin_policy: data += Tlv(TAG.PIN_POLICY, six.int2byte(pin_policy)) if touch_policy: data += Tlv(TAG.TOUCH_POLICY, six.int2byte(touch_policy)) self.send_cmd(INS.IMPORT_KEY, algorithm, slot, data) return algorithm def import_certificate( self, slot, certificate, verify=False, touch_callback=None): cert_data = certificate.public_bytes(Encoding.DER) if verify: # Verify that the public key used in the certificate # is from the same keypair as the private key. try: public_key = certificate.public_key() test_data = b'test' if touch_callback is not None: touch_timer = Timer(0.500, touch_callback) touch_timer.start() test_sig = self.sign( slot, ALGO.from_public_key(public_key), test_data) if touch_callback is not None: touch_timer.cancel() if isinstance(public_key, rsa.RSAPublicKey): public_key.verify( test_sig, test_data, padding.PKCS1v15(), certificate.signature_hash_algorithm) elif isinstance(public_key, ec.EllipticCurvePublicKey): public_key.verify( test_sig, test_data, ec.ECDSA(hashes.SHA256())) else: raise ValueError('Unknown key type: ' + type(public_key)) except APDUError as e: if e.sw == SW.INCORRECT_PARAMETERS: raise KeypairMismatch(slot, certificate) raise except InvalidSignature: raise KeypairMismatch(slot, certificate) self.put_data(OBJ.from_slot(slot), Tlv(TAG.CERTIFICATE, cert_data) + Tlv(TAG.CERT_INFO, b'\0') + Tlv(TAG.LRC)) self.update_chuid() def read_certificate(self, slot): data = _parse_tlv_dict(self.get_data(OBJ.from_slot(slot))) if TAG.CERT_INFO in data: # Not available in attestation slot if data[TAG.CERT_INFO] != b'\0': raise ValueError('Compressed certificates are not supported!') return x509.load_der_x509_certificate(data[TAG.CERTIFICATE], default_backend()) def delete_certificate(self, slot): self.put_data(OBJ.from_slot(slot), b'') def attest(self, slot): return x509.load_der_x509_certificate(self.send_cmd(INS.ATTEST, slot), default_backend()) def _raw_sign_decrypt(self, slot, algorithm, payload, condition): if not condition(len(payload.value)): raise BadFormat( 'Input has invalid length for algorithm %s' % algorithm, len(payload.value)) data = Tlv(TAG.DYN_AUTH, Tlv(0x82) + payload) resp = self.send_cmd(INS.AUTHENTICATE, algorithm, slot, data) return Tlv(Tlv(resp).value).value def sign_raw(self, slot, algorithm, message): return self._raw_sign_decrypt(slot, algorithm, Tlv(0x81, message), _sign_len_conditions[algorithm]) def sign(self, slot, algorithm, message): if algorithm in (ALGO.RSA1024, ALGO.RSA2048): message = _pkcs1_15_pad(algorithm, message) elif algorithm in (ALGO.ECCP256, ALGO.ECCP384): h = hashes.Hash(hashes.SHA256(), default_backend()) h.update(message) message = h.finalize() return self.sign_raw(slot, algorithm, message) def decrypt_raw(self, slot, algorithm, message): return self._raw_sign_decrypt(slot, algorithm, Tlv(0x85, message), _decrypt_len_conditions[algorithm]) def list_certificates(self): certs = OrderedDict() for slot in set(SLOT) - {SLOT.CARD_MANAGEMENT, SLOT.ATTESTATION}: try: certs[slot] = self.read_certificate(slot) except APDUError: pass return certs def update_chuid(self): # Non-Federal Issuer FASC-N # [9999-9999-999999-0-1-0000000000300001] FASC_N = b'\xd4\xe7\x39\xda\x73\x9c\xed\x39\xce\x73\x9d\x83\x68' + \ b'\x58\x21\x08\x42\x10\x84\x21\xc8\x42\x10\xc3\xeb' # Expires on: 2030-01-01 EXPIRY = b'\x32\x30\x33\x30\x30\x31\x30\x31' self.put_data( OBJ.CHUID, Tlv(0x30, FASC_N) + Tlv(0x34, os.urandom(16)) + Tlv(0x35, EXPIRY) + Tlv(0x3e) + Tlv(TAG.LRC) ) def update_ccc(self): self.put_data( OBJ.CAPABILITY, Tlv(0xf0, b'\xa0\x00\x00\x01\x16\xff\x02' + os.urandom(14)) + Tlv(0xf1, b'\x21') + Tlv(0xf2, b'\x21') + Tlv(0xf3) + Tlv(0xf4, b'\x00') + Tlv(0xf5, b'\x10') + Tlv(0xf6) + Tlv(0xf7) + Tlv(0xfa) + Tlv(0xfb) + Tlv(0xfc) + Tlv(0xfd) + Tlv(TAG.LRC) ) def sign_cert_builder(self, slot, algorithm, builder, touch_callback=None): dummy_key = _dummy_key(algorithm) cert = builder.sign(dummy_key, hashes.SHA256(), default_backend()) if touch_callback is not None: touch_timer = Timer(0.500, touch_callback) touch_timer.start() sig = self.sign(slot, algorithm, cert.tbs_certificate_bytes) if touch_callback is not None: touch_timer.cancel() seq = parse_tlvs(Tlv(cert.public_bytes(Encoding.DER)).value) # Replace signature, add unused bits = 0 seq[2] = Tlv(seq[2].tag, b'\0' + sig) # Re-assemble sequence der = Tlv(0x30, b''.join(seq)) return x509.load_der_x509_certificate(der, default_backend()) def sign_csr_builder(self, slot, public_key, builder, touch_callback=None): algorithm = ALGO.from_public_key(public_key) dummy_key = _dummy_key(algorithm) csr = builder.sign(dummy_key, hashes.SHA256(), default_backend()) seq = parse_tlvs(Tlv(csr.public_bytes(Encoding.DER)).value) # Replace public key pub_format = PublicFormat.PKCS1 if algorithm.name.startswith('RSA') \ else PublicFormat.SubjectPublicKeyInfo dummy_bytes = dummy_key.public_key().public_bytes( Encoding.DER, pub_format) pub_bytes = public_key.public_bytes(Encoding.DER, pub_format) seq[0] = seq[0].replace(dummy_bytes, pub_bytes) if touch_callback is not None: touch_timer = Timer(0.500, touch_callback) touch_timer.start() sig = self.sign(slot, algorithm, seq[0]) if touch_callback is not None: touch_timer.cancel() # Replace signature, add unused bits = 0 seq[2] = Tlv(seq[2].tag, b'\0' + sig) # Re-assemble sequence der = Tlv(0x30, b''.join(seq)) return x509.load_der_x509_csr(der, default_backend()) @property def supports_pin_policies(self): return self.version >= (4, 0, 0) @property def supported_touch_policies(self): if self.version < (4, 0, 0): return [] # Touch policy not supported on NEO. elif self.version < (4, 3, 0): return [TOUCH_POLICY.DEFAULT, TOUCH_POLICY.NEVER, TOUCH_POLICY.ALWAYS] # Cached policy was added in 4.3 else: return [policy for policy in TOUCH_POLICY] @property def supported_algorithms(self): return [ alg for alg in ALGO if not alg == ALGO.TDES if not (ALGO.is_rsa(alg) and is_cve201715361_vulnerable_firmware_version(self.version)) if not (alg == ALGO.ECCP384 and self.version < (4, 0, 0)) if not (alg == ALGO.RSA1024 and YubiKey.is_fips_version(self.version)) ]
the-stack_106_31206
#!/usr/bin/env python # -*- coding:utf-8 -*- """ @author: HJK @file: basic.py @time: 2019-05-07 """ """ Basic song object """ import os import re import datetime import logging import click import requests from . import config from .utils import colorize class BasicSong: """ Define the basic properties and methods of a song. Such as title, name, singer etc. """ def __init__(self): self.idx = 0 self.id = 0 self._title = "" self._singer = "" self.ext = "mp3" self.album = "" self.size = "" self.rate = "" self._duration = "" self.source = "" self._song_url = "" # self.song_file = "" self.cover_url = "" # self.cover_file = "" self.lyrics_url = "" self.lyrics_text = "" # self.lyrics_file = "" self._fullname = "" self.logger = logging.getLogger(__name__) def __repr__(self): """ Abstract of the song """ source = colorize("%s" % self.source.upper(), self.source) return "%s #%s %s-%s-%s \n %s \n" % ( source, self.id, self.title, self.singer, self.album, self.song_url, ) def __str__(self): """ Song details """ source = colorize("%s" % self.source.upper(), self.source) return _( " -> Source: {source} #{id}\n" " -> Title: {title}\n" " -> Singer: {singer}\n" " -> Album: {album}\n" " -> Duration: {duration}\n" " -> Size: {size}MB\n" " -> Bit Rate: {rate}\n" " -> Song URL: {song_url}\n" " -> Lyrics URL: {lyrics_url}\n" " -> Cover URL: {cover_url}\n" ).format( source=source, id=self.id, title=self.title, singer=self.singer, album=self.album, duration=self.duration, size=self.size, rate=self.rate, song_url=self.song_url, lyrics_url=self.lyrics_url, cover_url=self.cover_url, ) @property def available(self) -> bool: """ Not available when url is none or size equal 0 """ return bool(self.song_url and self.size) @property def name(self) -> str: """ Song file name """ return "%s - %s.%s" % (self.singer, self.title, self.ext) @property def duration(self): """ 持续时间 H:M:S """ return self._duration @duration.setter def duration(self, seconds): self._duration = str(datetime.timedelta(seconds=int(seconds))) @property def song_url(self) -> str: return self._song_url @song_url.setter def song_url(self, url): """ Set song url and update size. """ try: r = requests.get( url, stream=True, headers=config.get("wget_headers"), proxies=config.get("proxies"), ) self._song_url = url size = int(r.headers.get("Content-Length", 0)) # 转换成MB并保留两位小数 self.size = round(size / 1048576, 2) # 设置完整的文件名(不含后缀) if not self._fullname: self._set_fullname() except Exception as e: self.logger.info(_("Request failed: {url}").format(url=url)) self.logger.info(e) @property def row(self) -> list: """ Song details in list form """ def highlight(s, k): return s.replace(k, colorize(k, "xiami")).replace( k.title(), colorize(k.title(), "xiami") ) ht_singer = self.singer if len(self.singer) < 30 else self.singer[:30] + "..." ht_title = self.title if len(self.title) < 30 else self.title[:30] + "..." ht_album = self.album if len(self.album) < 20 else self.album[:20] + "..." if config.get("keyword"): keywords = re.split(";|,|\s|\*", config.get("keyword")) for k in keywords: if not k: continue ht_singer = highlight(ht_singer, k) ht_title = highlight(ht_title, k) ht_album = highlight(ht_album, k) size = "%sMB" % self.size ht_size = size if int(self.size) < 8 else colorize(size, "flac") return [ colorize(self.idx, "baidu"), ht_title, ht_singer, ht_size, self.duration, ht_album, self.source.upper(), ] @property def title(self): return self._title @title.setter def title(self, value): value = re.sub(r'[\\/:*?"<>|]', "", value) self._title = value @property def singer(self): return self._singer @singer.setter def singer(self, value): value = re.sub(r'[\\/:*?"<>|]', "", value) self._singer = value def _set_fullname(self): """ Full name without suffix, to resolve file name conflicts""" outdir = config.get("outdir") outfile = os.path.abspath(os.path.join(outdir, self.name)) if os.path.exists(outfile): name, ext = self.name.rsplit(".", 1) names = [ x for x in os.listdir(outdir) if x.startswith(name) and x.endswith(ext) ] names = [x.rsplit(".", 1)[0] for x in names] suffixes = [x.replace(name, "") for x in names] # filter suffixes that match ' (x)' pattern suffixes = [ x[2:-1] for x in suffixes if x.startswith(" (") and x.endswith(")") ] indexes = [int(x) for x in suffixes if set(x) <= set("0123456789")] idx = 1 if indexes: idx += sorted(indexes)[-1] self._fullname = os.path.abspath( os.path.join(outdir, "%s (%d)" % (name, idx)) ) else: self._fullname = outfile.rpartition(".")[0] @property def song_fullname(self): return self._fullname + "." + self.ext @property def lyrics_fullname(self): return self._fullname + ".lrc" @property def cover_fullname(self): return self._fullname + ".jpg" def _download_file(self, url, outfile, stream=False): """ Helper function for download :param url: :param outfile: :param stream: need process bar or not :return: """ if not url: self.logger.error("URL is empty.") return try: r = requests.get( url, stream=stream, headers=config.get("wget_headers"), proxies=config.get("proxies"), ) if stream: total_size = int(r.headers["content-length"]) with click.progressbar( length=total_size, label=_(" :: Downloading ...") ) as bar: with open(outfile, "wb") as f: for chunk in r.iter_content(chunk_size=1024): if chunk: f.write(chunk) bar.update(len(chunk)) else: with open(outfile, "wb") as f: f.write(r.content) click.echo( _(" :: Saved to: {outfile}").format( outfile=colorize(outfile, "highlight") ) ) except Exception as e: click.echo("") self.logger.error(_("Download failed: ") + "\n") self.logger.error(_("URL: {url}").format(url=url) + "\n") self.logger.error( _("File location: {outfile}").format(outfile=outfile) + "\n" ) if config.get("verbose"): self.logger.error(e) def _save_lyrics_text(self): with open(self.lyrics_fullname, "w", encoding="utf-8") as f: f.write(self.lyrics_text) click.echo( _(" :: Saved to: {outfile}").format( outfile=colorize(self.lyrics_fullname, "highlight") ) ) def download_song(self): if self.song_url: self._download_file(self.song_url, self.song_fullname, stream=True) def download_lyrics(self): if self.lyrics_url: self._download_file(self.lyrics_url, self.lyrics_fullname, stream=False) def download_cover(self): if self.cover_url: self._download_file(self.cover_url, self.cover_fullname, stream=False) def download(self): """ Main download function """ click.echo("===============================================================") if config.get("verbose"): click.echo(str(self)) else: click.echo(" | ".join(self.row)) self.download_song() if config.get("lyrics"): self.download_lyrics() if config.get("cover"): self.download_cover() click.echo("===============================================================\n")
the-stack_106_31208
import sys import requests import json from random import randrange def updateMap(num = None): if(num is not None): #is parameter passed dictToSend = num else: dictToSend = str(randrange(1, 9)) #update using random number json.loads(dictToSend) #convert to json output = None try: res = requests.post('http://192.168.1.100:5000/update', json=dictToSend) #flask endpoint output = res.json() #success except requests.ConnectionError as e: output = "Connection error: " + str(e) #connection refused / aborted except Exception as e: output = "Unknown error: " + str(sys.exc_info()[0]) #unexpected finally: print(output) #print result (success or error) if __name__ == "__main__": #if in main module (not imported) if(len(sys.argv) - 1): #if there are script arguments updateMap(sys.argv[1]) #update using script arguments else: updateMap() #default
the-stack_106_31209
from cv2 import flip from scipy.ndimage import rotate import numpy as np rotate_angles = [0, 90, 180, 270] def tta(image): images = [] for rotate_angle in rotate_angles: img = rotate(image, rotate_angle) if rotate_angle != 0 else image images.append(img) return np.array(images) def back_tta(images): backed = [] i = 0 for rotate_angle in rotate_angles: image = images[i] i += 1 img = rotate(image, 360 - rotate_angle) if rotate_angle != 0 else image backed.append(img) return backed
the-stack_106_31211
import os def make_tsv(metadata, save_path): metadata = [str(x) for x in metadata] with open(os.path.join(save_path, 'metadata.tsv'), 'w') as f: for x in metadata: f.write(x + '\n') # https://github.com/tensorflow/tensorboard/issues/44 image label will be squared def make_sprite(label_img, save_path): import math import torch import torchvision # this ensures the sprite image has correct dimension as described in # https://www.tensorflow.org/get_started/embedding_viz nrow = int(math.ceil((label_img.size(0)) ** 0.5)) # augment images so that #images equals nrow*nrow label_img = torch.cat((label_img, torch.randn(nrow ** 2 - label_img.size(0), *label_img.size()[1:]) * 255), 0) # Dirty fix: no pixel are appended by make_grid call in save_image (https://github.com/pytorch/vision/issues/206) xx = torchvision.utils.make_grid(torch.Tensor(1, 3, 32, 32), padding=0) if xx.size(2) == 33: sprite = torchvision.utils.make_grid(label_img, nrow=nrow, padding=0) sprite = sprite[:, 1:, 1:] torchvision.utils.save_image(sprite, os.path.join(save_path, 'sprite.png')) else: torchvision.utils.save_image(label_img, os.path.join(save_path, 'sprite.png'), nrow=nrow, padding=0) def append_pbtxt(metadata, label_img, save_path, global_step, tag): with open(os.path.join(save_path, 'projector_config.pbtxt'), 'a') as f: #step = os.path.split(save_path)[-1] f.write('embeddings {\n') f.write('tensor_name: "{}:{}"\n'.format(tag, global_step)) f.write('tensor_path: "{}"\n'.format(os.path.join(global_step,"tensors.tsv"))) if metadata is not None: f.write('metadata_path: "{}"\n'.format(os.path.join(global_step,"metadata.tsv"))) if label_img is not None: f.write('sprite {\n') f.write('image_path: "{}"\n'.format(os.path.join(global_step,"sprite.png"))) f.write('single_image_dim: {}\n'.format(label_img.size(3))) f.write('single_image_dim: {}\n'.format(label_img.size(2))) f.write('}\n') f.write('}\n') def make_mat(matlist, save_path): with open(os.path.join(save_path, 'tensors.tsv'), 'w') as f: for x in matlist: x = [str(i) for i in x] f.write('\t'.join(x) + '\n')
the-stack_106_31212
from typing import Any, List from fastapi import APIRouter, Depends, HTTPException from app.api import crud, deps, push, schemas from app.db.repository import Repository router = APIRouter() @router.get("/", response_model=List[schemas.BookInDBBase]) def get_books(db: Repository = Depends(deps.get_db)) -> Any: """ Retrieve books list. """ authors = crud.book.get_multi(db=db) return authors @router.get("/{id}", response_model=schemas.BookInDBBase) def get_author_by_id( *, db: Repository = Depends(deps.get_db), id: int, ) -> Any: """ Get book by ID """ result = crud.book.get(db=db, id=id) if not result: raise HTTPException(status_code=404, detail="Author not found") return result @router.post("/", response_model=schemas.BookInDBBase) def create_author( *, db: Repository = Depends(deps.get_db), author_in: schemas.BookCreate, ) -> Any: """ Create new book. """ result = crud.book.create(db=db, obj_in=author_in) push.send_push(result.dict()) return result
the-stack_106_31213
import unittest import i18npy import os class TestModule(unittest.TestCase): def __init__(self, *args, **kwargs): global i18n super().__init__(*args, **kwargs) p = os.path.dirname(__file__) jp_translation_path = os.path.join(p, "translations/jp.json") i18n = i18npy.i18n_load(jp_translation_path) self.lang_en = i18npy.load(os.path.join(p, "translations/en.json")) self.lang_jp = i18npy.load(jp_translation_path) self.lang_pl = i18npy.load(os.path.join(p, "translations/pl.json")) def test_translations_simple(self): KEY = "Cancel" self.assertEqual( i18n(KEY), "キャンセル", "Should use global translator" ) self.assertEqual( self.lang_en.translate(KEY), "Cancel", "Should use English instance of translator" ) self.assertEqual( self.lang_jp.translate(KEY), "キャンセル", "Should use Japanes instance of translator" ) self.assertEqual( self.lang_pl.translate(KEY), "Anuluj", "Should use Polish instance of translator" ) def test_pluralism_simple(self): KEY = "%n comments" self.assertEqual( i18n(KEY, 0), "0 コメント", "Should return proper translation for num=0" ) self.assertEqual( i18n(KEY, 1), "1 コメント", "Should return proper translation for num=1" ) self.assertEqual( i18n(KEY, 2), "2 コメント", "Should return proper translation for num=2" ) self.assertEqual( self.lang_en.translate(KEY, None), "Comments disabled", "Should show fallback translation when num=None" ) self.assertEqual( self.lang_en.translate(KEY, 0), "0 comments", "Should return proper translation for num=0" ) self.assertEqual( self.lang_en.translate(KEY, 1), "1 comment", "Should return proper translation for num=1" ) self.assertEqual( self.lang_en.translate(KEY, 2), "2 comments", "Should return proper translation for num=2" ) def test_pluralism_complex(self): KEY = "Due in %n days" self.assertEqual( self.lang_en.translate(KEY, None), "Expired", "Should show fallback translation when num=None" ) self.assertEqual( self.lang_en.translate(KEY, -2), "Due 2 days ago", "Should return proper translation for num=-2" ) self.assertEqual( self.lang_en.translate(KEY, -1), "Due Yesterday", "Should return proper translation for num=-1" ) self.assertEqual( self.lang_en.translate(KEY, 0), "Due Today", "Should return proper translation for num=0" ) self.assertEqual( self.lang_en.translate(KEY, 1), "Due Tomorrow", "Should return proper translation for num=1" ) self.assertEqual( self.lang_en.translate(KEY, 2), "Due in 2 days", "Should return proper translation for num=2" ) def test_replacements(self): KEY = "Welcome %{name}" self.assertEqual( self.lang_en.translate(KEY, {"name": "John"}), "Welcome John", "Replacement should work even if KEY is not in dictionary" ) def test_short_keys(self): self.assertEqual( i18n("_short_key", "This is a long piece of text"), "This is a long piece of text", "Should use default text" ) self.assertEqual( i18n("_monkeys"), "猿も木から落ちる", "Should work normally" ) def test_contexts_combined(self): KEY = "%{name} uploaded %n photos to their %{album} album" self.assertEqual( i18n(KEY, 1, { "name": "John", "album": "Buck's Night" }, { "gender": "male" }), "Johnは彼のBuck's Nightアルバムに写真1枚をアップロードしました", "Should use context for male gender" ) self.assertEqual( i18n(KEY, 3, { "name": "Jane", "album": "Hen's Night" }, { "gender": "female" }), "Janeは彼女のHen's Nightアルバムに写真3枚をアップロードしました", "Should use context for female gender" ) self.assertEqual( self.lang_en.translate(KEY, 1, { "name": "John", "album": "Buck's Night" }, { "gender": "male" }), "John uploaded 1 photo to his Buck's Night album", "Should use context for male gender" ) self.assertEqual( self.lang_en.translate(KEY, 3, { "name": "Jane", "album": "Hen's Night" }, { "gender": "female" }), "Jane uploaded 3 photos to her Hen's Night album", "Should use context for female gender" ) self.assertEqual( self.lang_pl.translate(KEY, 1, { "name": "John", "album": "Buck's Night" }, { "gender": "male" }), "John przesłał 1 zdjęcie do jego albumu Buck's Night", "Should use context for male gender" ) self.assertEqual( self.lang_pl.translate(KEY, 3, { "name": "Jane", "album": "Hen's Night" }, { "gender": "female" }), "Jane przesłała 3 zdjęcia do jej albumu Hen's Night", "Should use context for female gender" ) self.assertEqual( self.lang_pl.translate(KEY, 5, { "name": "John", "album": "Buck's Night" }, { "gender": "male" }), "John przesłał 5 zdjęć do jego albumu Buck's Night", "Should use context for male gender" ) if __name__ == "__main__": unittest.main()
the-stack_106_31216
import numpy as np import torch import torch.nn.functional as F from torchdistlog import logging from scipy.special import comb # sklearn from sklearn.cluster import KMeans from sklearn.neighbors import NearestNeighbors from sklearn.decomposition import PCA # faiss try: import faiss except ModuleNotFoundError: logging.warning("Faiss Package Not Found! (metrics package)") _USE_FAISS_ = False _NORMALIZE_ = True from ..misc import utils # cluster algorithm def get_knn(ref_embeds, embeds, k, embeds_same_source=False, device_ids=None): d = ref_embeds.shape[1] if device_ids is not None: if _USE_FAISS_: index = faiss.IndexFlatL2(d) index = utils.index_cpu_to_gpu_multiple(index, gpu_ids=device_ids) index.add(ref_embeds) distances, indices = index.search(embeds, k+1) else: # TODO: distributed calculation device = torch.device("cuda:{}".format(device_ids[0])) ref_embeds = torch.tensor(ref_embeds).to(device) embeds = torch.tensor(embeds).to(device) if _NORMALIZE_: ref_embeds = F.normalize(ref_embeds, dim=-1) embeds = F.normalize(embeds, dim=-1) dist_mat = torch.cdist(embeds, ref_embeds, p=2) topk_search = dist_mat.topk(k=k+1, dim=-1, largest=False) distances, indices = topk_search.values.cpu().numpy(), topk_search.indices.cpu().numpy() if embeds_same_source: return indices[:, 1:], distances[:, 1:] else: return indices[:, :k], distances[:, :k] else: neigh = NearestNeighbors(n_neighbors=k) neigh.fit(ref_embeds) distances, indices = neigh.kneighbors(embeds, k + 1) if embeds_same_source: return indices[:, 1:], distances[:, 1:] else: return indices[:, :k], distances[:, :k] def get_knn_from_mat(metric_mat, k, embeds_same_source=False, is_min=True, device_ids=None): device = torch.device("cuda:{}".format(device_ids[0])) metric_mat = torch.from_numpy(metric_mat).to(device) # sort sorted_value, sorted_indices = torch.sort(metric_mat, dim=-1, descending=not is_min) if embeds_same_source: return ( sorted_indices[:, 1:(k+1)].cpu().numpy(), sorted_value[:, 1:(k+1)].cpu().numpy() ) else: return ( sorted_indices[:, :k].cpu().numpy(), sorted_value[:, :k].cpu().numpy() ) def run_kmeans(x, num_clusters, device_ids=None): _, d = x.shape if device_ids is not None: # faiss implementation of k-means clus = faiss.Clustering(d, num_clusters) clus.niter = 20 clus.max_points_per_centroid = 10000000 index = faiss.IndexFlatL2(d) index = utils.index_cpu_to_gpu_multiple(index, gpu_ids=device_ids) # perform the training clus.train(x, index) _, idxs = index.search(x, 1) return np.array([int(n[0]) for n in idxs], dtype=np.int64) else: # k-means kmeans = KMeans(n_clusters=num_clusters, random_state=0).fit(x) return kmeans.labels_ def run_pca(x, out_dim, device_ids=None): if device_ids is not None: mat = faiss.PCAMatrix(x.shape[1], out_dim) mat.train(x) assert mat.is_trained return mat.apply_py(x) else: pca = PCA(n_components=out_dim) data_output = pca.fit_transform(x) return data_output # metrics functions: code from: github: pytorch-metric-learning def get_relevance_mask(shape, gt_labels, embeds_same_source, label_counts): relevance_mask = np.zeros(shape=shape, dtype=np.int) for k, v in label_counts.items(): matching_rows = np.where(gt_labels==k)[0] max_column = v-1 if embeds_same_source else v relevance_mask[matching_rows, :max_column] = 1 return relevance_mask def get_label_counts(ref_labels): unique_labels, label_counts = np.unique(ref_labels, return_counts=True) num_k = min(1023, int(np.max(label_counts))) return {k:v for k, v in zip(unique_labels, label_counts)}, num_k def get_lone_query_labels(query_labels, ref_labels, ref_label_counts, embeds_same_source): if embeds_same_source: return np.array([k for k, v in ref_label_counts.items() if v <= 1]) else: return np.setdiff1d(query_labels, ref_labels) def r_precision(knn_labels, gt_labels, embeds_same_source, label_counts): relevance_mask = get_relevance_mask(knn_labels.shape, gt_labels, embeds_same_source, label_counts) matches_per_row = np.sum((knn_labels == gt_labels) * relevance_mask.astype(bool), axis=1) max_possible_matches_per_row = np.sum(relevance_mask, axis=1) accuracy_per_sample = matches_per_row / max_possible_matches_per_row return np.mean(accuracy_per_sample) def mean_average_precision_at_r(knn_labels, gt_labels, embeds_same_source, label_counts): relevance_mask = get_relevance_mask(knn_labels.shape, gt_labels, embeds_same_source, label_counts) num_samples, num_k = knn_labels.shape equality = (knn_labels == gt_labels) * relevance_mask.astype(bool) cumulative_correct = np.cumsum(equality, axis=1) k_idx = np.tile(np.arange(1, num_k+1), (num_samples, 1)) precision_at_ks = (cumulative_correct * equality) / k_idx summed_precision_pre_row = np.sum(precision_at_ks * relevance_mask, axis=1) max_possible_matches_per_row = np.sum(relevance_mask, axis=1) accuracy_per_sample = summed_precision_pre_row / max_possible_matches_per_row return np.mean(accuracy_per_sample) def precision_at_k(knn_labels, gt_labels, k): curr_knn_labels = knn_labels[:, :k] accuracy_per_sample = np.sum(curr_knn_labels == gt_labels, axis=1) / k return np.mean(accuracy_per_sample) def recall_at_k(knn_labels, gt_labels, k): accuracy_per_sample = np.array([float(gt_label in recalled_predictions[:k]) for gt_label, recalled_predictions in zip(gt_labels, knn_labels)]) return np.mean(accuracy_per_sample) def f1_score(query_labels, cluster_labels): # compute tp_plus_fp qlabels_set, qlabels_counts = np.unique(query_labels, return_counts=True) tp_plut_fp = sum([comb(item, 2) for item in qlabels_counts if item > 1]) # compute tp tp = sum([sum([comb(item, 2) for item in np.unique(cluster_labels[query_labels==query_label], return_counts=True)[1] if item > 1]) for query_label in qlabels_set]) # compute fp fp = tp_plut_fp - tp # compute fn fn = sum([comb(item, 2) for item in np.unique(cluster_labels, return_counts=True)[1] if item > 1]) - tp # compute F1 P, R = tp / (tp+fp), tp / (tp+fn) F1 = 2*P*R / (P+R) return F1
the-stack_106_31217
# -------------------------------------------------------- # SiamMask # Licensed under The MIT License # Written by Qiang Wang (wangqiang2015 at ia.ac.cn) # -------------------------------------------------------- import glob import time import sys sys.path.append("experiments/siammask_sharp") sys.path.append(".") from grasping.sensors import RealsenseSensor from tools.test import * parser = argparse.ArgumentParser(description='PyTorch Tracking Demo') parser.add_argument('--resume', default='', type=str, required=True, metavar='PATH',help='path to latest checkpoint (default: none)') parser.add_argument('--config', dest='config', default='config_davis.json', help='hyper-parameter of SiamMask in json format') parser.add_argument('--base_path', default='../../data/tennis', help='datasets') parser.add_argument('--cpu', action='store_true', help='cpu mode') args = parser.parse_args() if __name__ == '__main__': # Setup device device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') torch.backends.cudnn.benchmark = True # Setup Model cfg = load_config(args) from custom import Custom siammask = Custom(anchors=cfg['anchors']) if args.resume: assert isfile(args.resume), 'Please download {} first.'.format(args.resume) siammask = load_pretrain(siammask, args.resume) siammask.eval().to(device) # Parse Image file img_files = sorted(glob.glob(join(args.base_path, '*.jp*'))) ims = [cv2.imread(imf) for imf in img_files] # Select ROI cv2.namedWindow("SiamMask", cv2.WND_PROP_FULLSCREEN) cam = RealsenseSensor("cfg/sensors/realsense_config.json") # cv2.setWindowProperty("SiamMask", cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN) cam.start() time.sleep(0.5) img, _ = cam.frames() try: init_rect = cv2.selectROI('SiamMask', img, False, False) x, y, w, h = init_rect except: exit() toc = 0 f = 0 while True: tic = cv2.getTickCount() im, _ = cam.frames() if f == 0: # init target_pos = np.array([x + w / 2, y + h / 2]) target_sz = np.array([w, h]) state = siamese_init(im, target_pos, target_sz, siammask, cfg['hp'], device=device) # init tracker elif f > 0: # tracking state = siamese_track(state, im, mask_enable=True, refine_enable=True, device=device) # track location = state['ploygon'].flatten() mask = state['mask'] > state['p'].seg_thr im[:, :, 2] = (mask > 0) * 255 + (mask == 0) * im[:, :, 2] cv2.polylines(im, [np.int0(location).reshape((-1, 1, 2))], True, (0, 255, 0), 3) cv2.imshow('SiamMask', im) key = cv2.waitKey(1) if key > 0: break f += 1 toc += cv2.getTickCount() - tic toc /= cv2.getTickFrequency() fps = f / toc print('SiamMask Time: {:02.1f}s Speed: {:3.1f}fps (with visulization!)'.format(toc, fps))