filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_27798
import os from setuptools import find_packages, setup with open(os.path.join(os.path.dirname(__file__), 'README.rst')) as readme: README = readme.read() # allow setup.py to be run from any path os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir))) setup( name='django-polls', version='0.1', packages=find_packages(), include_package_data=True, license='MIT License', description='A simple Django app to construct Web-based polls.', long_description=README, url='https://www.example.com', author='Valentin Ivanov', author_email='[email protected]', classifiers=[ 'Enviroment :: Web Enviroment', 'Framework :: Django', 'Framework :: Django :: 2.2', 'Intended Audience :: Developers', 'Licence :: MIT Licence', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', ], )
the-stack_106_27799
"""Tests for our `watches just_indices_stats` subcommand.""" import json from subprocess import PIPE, Popen as popen from secure_support import TestSecureSupport class TestJustIndicesStats(TestSecureSupport): def test_returns_index_per_line(self): cmd = self.appendSecurityCommands(['watches', 'just_indices_stats', '-l', '--level=indices', '--timestamp']) output = popen(cmd, stdout=PIPE).communicate()[0].decode('ascii') self.assertTrue(len(output) > 0) lines = 0 for line in output.splitlines(): lines += 1 o = json.loads(line) self.assertTrue('index' in o) self.assertTrue('timestamp' in o) self.assertTrue('total' in o) self.assertTrue('primaries' in o) self.assertTrue(lines > 0) def test_returns_index_per_line_just__all(self): cmd = self.appendSecurityCommands(['watches', 'just_indices_stats', '-l']) output = popen(cmd, stdout=PIPE).communicate()[0].decode('ascii') self.assertTrue(len(output) > 0) lines = 0 for line in output.splitlines(): lines += 1 o = json.loads(line) self.assertTrue('index' in o) self.assertTrue(o['index'] == '_all') # Without specifying --level=indices we get only _all index stats self.assertTrue(lines == 1)
the-stack_106_27800
import os import pprint import warnings os.environ['TF_CPP_MIN_LOG_LEVEL']='3' warnings.filterwarnings("ignore",category=FutureWarning) from model import Model import numpy as np import tensorflow as tf tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) flags = tf.app.flags flags.DEFINE_string("arch", "FSRCNN", "Model name [FSRCNN]") flags.DEFINE_boolean("fast", False, "Use the fast model (FSRCNN-s) [False]") flags.DEFINE_integer("epoch", 10, "Number of epochs [10]") flags.DEFINE_integer("batch_size", 32, "The size of batch images [32]") flags.DEFINE_float("learning_rate", 1e-4, "The learning rate of the adam optimizer [1e-4]") flags.DEFINE_integer("scale", 2, "The size of scale factor for preprocessing input image [2]") flags.DEFINE_integer("radius", 1, "Max radius of the deconvolution input tensor [1]") flags.DEFINE_string("checkpoint_dir", "checkpoint", "Name of checkpoint directory [checkpoint]") flags.DEFINE_string("output_dir", "result", "Name of test output directory [result]") flags.DEFINE_string("data_dir", "Train", "Name of data directory to train on [FastTrain]") flags.DEFINE_boolean("train", True, "True for training, false for testing [True]") flags.DEFINE_boolean("distort", False, "Distort some images with JPEG compression artifacts after downscaling [False]") flags.DEFINE_boolean("params", False, "Save weight and bias parameters [False]") FLAGS = flags.FLAGS pp = pprint.PrettyPrinter() def main(_): #pp.pprint(flags.FLAGS.__flags) if FLAGS.fast: FLAGS.checkpoint_dir = 'fast_{}'.format(FLAGS.checkpoint_dir) if not os.path.exists(FLAGS.checkpoint_dir): os.makedirs(FLAGS.checkpoint_dir) if not os.path.exists(FLAGS.output_dir): os.makedirs(FLAGS.output_dir) with tf.Session() as sess: model = Model(sess, config=FLAGS) model.run() if __name__ == '__main__': tf.app.run()
the-stack_106_27801
# -*- coding: utf-8 -*- """ dp for Tornado MVC Web Application Framework with Tornado http://github.com/why2pac/dp-tornado Copyright (c) 2015, why2pac <[email protected]> """ import tornado.web import tornado.ioloop import tornado.httpserver import time import os import multiprocessing import importlib from dp_tornado.engine.engine import EngineSingleton as dpEngineSingleton from dp_tornado.engine.bootstrap import Bootstrap as EngineBootstrap from dp_tornado.engine.scheduler import Scheduler from dp_tornado.engine.testing import Testing from dp_tornado.engine.plugin.static import Compressor from dp_tornado.engine.plugin.static import StaticURL from dp_tornado.engine.plugin.pagination import Pagination from dp_tornado.engine.plugin import ui_methods from dp_tornado.version import __version_info__ engine = dpEngineSingleton() class RestfulApplication(tornado.web.Application): def __init__(self, handlers, kwargs): self.startup_at = int(round(time.time() * 1000)) super(RestfulApplication, self).__init__(handlers, **kwargs) class Bootstrap(object): def run(self, **kwargs): cli = kwargs['as_cli'] if 'as_cli' in kwargs and kwargs['as_cli'] else False dryrun = True if cli and cli.args.dryrun == 'yes' else False custom_scheduler = kwargs['scheduler'] if 'scheduler' in kwargs else None custom_service = kwargs['service'] if 'service' in kwargs else None if cli and cli.args.ini: custom_config_file = cli.args.ini else: custom_config_file = kwargs['config_file'] if 'config_file' in kwargs else 'config.ini' application_path = kwargs['application_path'] if 'application_path' in kwargs else None engine_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'engine') engine_static_path = os.path.join(engine_path, 'static') os.environ['DP_APPLICATION_PATH'] = application_path os.environ['DP_APPLICATION_INI'] = custom_config_file settings = EngineBootstrap.init_ini( application_path=application_path, ini_file=custom_config_file, cli=cli) engine.logger.sys_log('---------------------------------') engine.logger.sys_log('dp for Python v%s' % '.'.join([str(e) for e in __version_info__])) engine.logger.sys_log('---------------------------------') services_raw = [ (r"/dp/scheduler/(.*)", 'dp_tornado.engine.scheduler_handler.SchedulerHandler'), (r"/dp/identifier", 'dp_tornado.engine.dp_identifier_handler.DpIdentifierHandler'), (r"/dp/(.*)", 'dp_tornado.engine.static_handler.StaticHandler', {'path': engine_static_path}), (r"/", None), (r"/(.*)", None), ] if custom_service: services_raw = custom_service + services_raw services = [] default_handler = None for service in services_raw: if len(service) < 2: raise Exception('The specified service is invalid.') if service[1] is not None: s = str.split(service[1], '.') class_name = s.pop() module_path = '.'.join(s) handler_module = importlib.import_module(module_path) handler = getattr(handler_module, class_name) else: if default_handler is None: handler_module = importlib.import_module('dp_tornado.engine.default_handler') default_handler = getattr(handler_module, 'DefaultHandler') module_path = 'controller' handler = default_handler services.append((service[0], handler, dict(prefix=module_path) if len(service) < 3 else service[2])) # Clear combined files Compressor.clear(settings['combined_static_path']) num_processed = engine.ini.server.num_processes if engine.ini.server.num_processes \ else multiprocessing.cpu_count() deploy_mode = 'Production' if not engine.ini.server.debug else 'Debugging' identify_mode = engine.ini.app.mode engine.logger.sys_log('Server Mode : %s (%s)' % (deploy_mode, identify_mode)) engine.logger.sys_log('Server time : %s' % time.strftime('%Y.%m.%d %H:%M:%S')) engine.logger.sys_log('Server Port : %s' % engine.ini.server.port) engine.logger.sys_log('Processors : %s' % num_processed) engine.logger.sys_log('CPU Count : %d' % multiprocessing.cpu_count()) engine.logger.sys_log('---------------------------------') if not Testing('', application_path, doctest=True).traverse() and engine.ini.server.get('assert'): return application = RestfulApplication(services, settings) service = tornado.httpserver.HTTPServer( application, xheaders=True, max_body_size=engine.ini.server.max_body_size) try: service.bind(engine.ini.server.port, '') except Exception as e: engine.logger.error('Failed to service binding. (port %s)' % engine.ini.server.port) engine.logger.error(e) return False if custom_scheduler: scheduler = Scheduler(custom_scheduler) scheduler.start() else: scheduler = None service.start(engine.ini.server.num_processes) import random application.identifier = random.randint(100000, 999999) engine.logger.start_handler() try: instance = tornado.ioloop.IOLoop.instance() instance.__setattr__('startup_at', getattr(application, 'startup_at')) if scheduler: scheduler.prepare() if not dryrun: instance.start() except KeyboardInterrupt: pass if scheduler: scheduler.interrupt() engine.logger.interrupt()
the-stack_106_27802
from collections import OrderedDict from guillotina import routes from guillotina._settings import app_settings from guillotina.configure import component from guillotina.configure.behaviors import BehaviorAdapterFactory from guillotina.configure.behaviors import BehaviorRegistration from guillotina.exceptions import ConfigurationError from guillotina.exceptions import ServiceConfigurationError from guillotina.gtypes import ConfigurationType from guillotina.gtypes import ResolvableType from guillotina.interfaces import DEFAULT_ADD_PERMISSION from guillotina.interfaces import IBehavior from guillotina.interfaces import IBehaviorSchemaAwareFactory from guillotina.interfaces import IDefaultLayer from guillotina.interfaces import IJSONToValue from guillotina.interfaces import ILanguage from guillotina.interfaces import IPermission from guillotina.interfaces import IRenderer from guillotina.interfaces import IRequest from guillotina.interfaces import IResource from guillotina.interfaces import IResourceFactory from guillotina.interfaces import IRole from guillotina.interfaces import IValueToJson from guillotina.interfaces import IView from guillotina.security.permission import Permission from guillotina.utils import get_caller_module from guillotina.utils import get_module_dotted_name from guillotina.utils import resolve_dotted_name from guillotina.utils import resolve_module_path from pprint import pformat from typing import Any from typing import Dict from typing import Optional from typing import Tuple from zope.interface import classImplements from zope.interface import Interface import asyncio import inspect import logging _registered_configurations: ConfigurationType = [] # stored as tuple of (type, configuration) so we get keep it in the order # it is registered even if you mix types of registrations _registered_configuration_handlers = {} logger = logging.getLogger('guillotina') def get_configurations(module_name, type_=None): results = [] for reg_type, registration in _registered_configurations: if type_ is not None and reg_type != type_: continue config = registration['config'] module = config.get('module', registration.get('klass')) if (get_module_dotted_name( resolve_dotted_name(module)) + '.').startswith(module_name + '.'): results.append((reg_type, registration)) return results def register_configuration_handler(type_, handler): _registered_configuration_handlers[type_] = handler def register_configuration(klass: ResolvableType, config: Dict[str, Any], type_: str): value = (type_, { 'klass': klass, 'config': config }) if value not in _registered_configurations: # do not register twice _registered_configurations.append(value) def load_configuration(_context, module_name, _type): if _type not in _registered_configuration_handlers: raise Exception('Configuration handler for {} not registered'.format(_type)) for _type, configuration in get_configurations(module_name, _type): _registered_configuration_handlers[_type](_context, configuration) def load_all_configurations(_context, module_name): for type_, configuration in get_configurations(module_name): try: _registered_configuration_handlers[type_](_context, configuration) except TypeError as e: logger.error('Can not find %s module' % configuration) raise def load_service(_context, service): # prevent circular import from guillotina.security.utils import protect_view service_conf = service['config'] factory = resolve_dotted_name(service['klass']) permission = service_conf.get( 'permission', app_settings.get('default_permission', None)) protect_view(factory, permission) method = service_conf.get('method', 'GET') default_layer = resolve_dotted_name( app_settings.get('default_layer', IDefaultLayer)) layer = service_conf.get('layer', default_layer) name = service_conf.get('name', '') content = service_conf.get('context', Interface) logger.debug('Defining adapter for ' # noqa '{0:s} {1:s} {2:s} to {3:s} name {4:s}'.format( content.__identifier__, app_settings['http_methods'][method].__identifier__, layer.__identifier__, str(factory), name)) if not getattr(factory, '__route__', None): factory.__route__ = routes.Route(name) component.adapter( _context, factory=(factory,), provides=app_settings['http_methods'][method], for_=(content, layer), name=factory.__route__.view_name ) api = app_settings['api_definition'] ct_name = content.__identifier__ if ct_name not in api: api[ct_name] = OrderedDict() ct_api = api[ct_name] if name: if 'endpoints' not in ct_api: ct_api['endpoints'] = OrderedDict() if name not in ct_api['endpoints']: ct_api['endpoints'][name] = OrderedDict() ct_api['endpoints'][name][method] = OrderedDict(service_conf) else: ct_api[method] = OrderedDict(service_conf) register_configuration_handler('service', load_service) # noqa def load_contenttype(_context, contenttype): conf = contenttype['config'] klass = contenttype['klass'] if 'schema' in conf: classImplements(klass, conf['schema']) from guillotina.content import ResourceFactory factory = ResourceFactory( klass, title='', description='', type_name=conf['type_name'], schema=resolve_dotted_name(conf.get('schema', Interface)), behaviors=[resolve_dotted_name(b) for b in conf.get('behaviors', []) or ()], add_permission=conf.get('add_permission') or DEFAULT_ADD_PERMISSION, allowed_types=conf.get('allowed_types', None) ) component.utility( _context, provides=IResourceFactory, component=factory, name=conf['type_name'], ) register_configuration_handler('contenttype', load_contenttype) # noqa def load_behavior(_context, behavior): conf = behavior['config'] klass = resolve_dotted_name(behavior['klass']) factory = conf.get('factory') or klass real_factory = resolve_dotted_name(factory) schema = resolve_dotted_name(conf['provides']) classImplements(real_factory, schema) name = conf.get('name') name_only = conf.get('name_only', False) title = conf.get('title', '') for_ = resolve_dotted_name(conf.get('for_')) marker = resolve_dotted_name(conf.get('marker')) if marker is None and real_factory is None: marker = schema if marker is not None and real_factory is None and marker is not schema: raise ConfigurationError( u"You cannot specify a different 'marker' and 'provides' if " u"there is no adapter factory for the provided interface." ) if name_only and name is None: raise ConfigurationError( u"If you decide to only register by 'name', a name must be given." ) # Instantiate the real factory if it's the schema-aware type. We do # this here so that the for_ interface may take this into account. if factory is not None and IBehaviorSchemaAwareFactory.providedBy(factory): factory = factory(schema) registration = BehaviorRegistration( title=conf.get('title', ''), description=conf.get('description', ''), interface=schema, marker=marker, factory=real_factory, name=name, for_=for_ ) if not name_only: # behavior registration by provides interface identifier component.utility( _context, provides=IBehavior, name=schema.__identifier__, component=registration ) if name is not None: # for convinience we register with a given name component.utility( _context, provides=IBehavior, name=name, component=registration ) if factory is None: if for_ is not None: logger.warning( u"Specifying 'for' in behavior '{0}' if no 'factory' is given " u"has no effect and is superfluous.".format(title) ) # w/o factory we're done here return if for_ is None: # Attempt to guess the factory's adapted interface and use it as # the 'for_'. # Fallback to '*' (=Interface). adapts = getattr(factory, '__component_adapts__', None) or [Interface] if len(adapts) != 1: raise ConfigurationError( u"The factory can not be declared as multi-adapter." ) for_ = adapts[0] adapter_factory = BehaviorAdapterFactory(registration) component.adapter( _context, factory=(adapter_factory,), provides=schema, for_=(for_,) ) register_configuration_handler('behavior', load_behavior) # noqa def load_addon(_context, addon): config = addon['config'] app_settings['available_addons'][config['name']] = { 'title': config['title'], 'handler': addon['klass'] } register_configuration_handler('addon', load_addon) # noqa def _component_conf(conf): if type(conf['for_']) not in (tuple, set, list): conf['for_'] = (conf['for_'],) def load_adapter(_context, adapter): conf = adapter['config'] klass = resolve_dotted_name(adapter['klass']) factory = conf.pop('factory', None) or klass _component_conf(conf) if 'provides' in conf and isinstance(klass, type): # not sure if this is what we want or not for sure but # we are automatically applying the provides interface to # registered class objects classImplements(klass, conf['provides']) component.adapter( _context, factory=(factory,), **conf ) register_configuration_handler('adapter', load_adapter) # noqa def load_subscriber(_context, subscriber): conf = subscriber['config'] conf['handler'] = resolve_dotted_name(conf.get('handler') or subscriber['klass']) _component_conf(conf) component.subscriber( _context, **conf ) register_configuration_handler('subscriber', load_subscriber) # noqa def load_utility(_context, _utility): conf = _utility['config'] if 'factory' in conf: conf['factory'] = resolve_dotted_name(conf['factory']) elif 'component' in conf: conf['component'] = resolve_dotted_name(conf['component']) else: # use provided klass klass = _utility['klass'] if isinstance(klass, type): # is a class type, use factory setting conf['factory'] = klass else: # not a factory conf['component'] = klass component.utility( _context, **conf ) register_configuration_handler('utility', load_utility) # noqa def load_permission(_context, permission_conf): permission = Permission(**permission_conf['config']) component.utility(_context, IPermission, permission, name=permission_conf['config']['id']) register_configuration_handler('permission', load_permission) # noqa def load_role(_context, role): defineRole_directive(_context, **role['config']) register_configuration_handler('role', load_role) # noqa def load_grant(_context, grant): grant_directive(_context, **grant['config']) register_configuration_handler('grant', load_grant) # noqa def load_grant_all(_context, grant_all): grantAll_directive(_context, **grant_all['config']) register_configuration_handler('grant_all', load_grant_all) # noqa def load_json_schema_definition(_context, json_schema): config = json_schema['config'] app_settings['json_schema_definitions'][config['name']] = config['schema'] register_configuration_handler('json_schema_definition', load_json_schema_definition) # noqa # serializers are just adapters register_configuration_handler('value_serializer', load_adapter) register_configuration_handler('value_deserializer', load_adapter) # renderers, languages are just adapters register_configuration_handler('renderer', load_adapter) register_configuration_handler('language', load_adapter) class _base_decorator(object): # noqa: N801 configuration_type: Optional[str] = None def __init__(self, **config): self.config = config def __call__(self, klass): register_configuration(klass, self.config, self.configuration_type) return klass class _factory_decorator(_base_decorator): # noqa: N801 """ behavior that can pass factory to it so it can be used standalone """ def __call__(self, klass=None): if klass is None: if 'factory' not in self.config: raise Exception('Must provide factory configuration when defining ' 'without a class') klass = get_caller_module() return super(_factory_decorator, self).__call__(klass) def _has_parameters(func, number=2): sig = inspect.signature(func) required_params = [p for p in sig.parameters.keys() if sig.parameters[p].default == inspect.Parameter.empty] return len(sig.parameters) >= number and not len(required_params) > number class service(_base_decorator): # noqa: N801 def __call__(self, func): self.config['module'] = func if isinstance(func, type): if not hasattr(func, '__call__'): raise ServiceConfigurationError( f'Service must have async def __call__ method: {func.__call__}\n' f'{pformat(self.config)}' ) if not asyncio.iscoroutinefunction(func.__call__): raise ServiceConfigurationError( f'Service __call__ method must be async: {func.__call__}\n' f'{pformat(self.config)}' ) class _View(func): __allow_access__ = self.config.get( 'allow_access', getattr(func, '__allow_access__', False)) __route__ = routes.Route(self.config.get('name', '')) register_configuration(_View, self.config, 'service') else: if not _has_parameters(func): raise ServiceConfigurationError( f'Service configuration must accept 2 required parameters: {func}\n' f'{pformat(self.config)}') if not asyncio.iscoroutinefunction(func): raise ServiceConfigurationError( f'Service function must be async: {func}\n' f'{pformat(self.config)}' ) # avoid circular imports from guillotina.api.service import Service class _View(self.config.get('base', Service)): __allow_access__ = self.config.get('allow_access', False) __route__ = routes.Route(self.config.get('name', '')) view_func = staticmethod(func) async def __call__(self): return await func(self.context, self.request) register_configuration(_View, self.config, 'service') return func class generic_adapter(_base_decorator): # noqa: N801 provides: Interface = None for_: Optional[Tuple[Interface, ...]] = None multi = False def __init__(self, for_=None, **config): if for_ is not None: config['for_'] = for_ if 'provides' not in config and self.provides is not None: config['provides'] = self.provides if 'for_' not in config and self.for_ is not None: config['for_'] = self.for_ if not self.multi: assert type(config['for_']) not in (list, set, tuple) self.config = config class value_serializer(generic_adapter): # noqa: N801 configuration_type = 'value_serializer' provides = IValueToJson class value_deserializer(generic_adapter): # noqa: N801 configuration_type = 'value_deserializer' provides = IJSONToValue class renderer(generic_adapter): # noqa: N801 configuration_type = 'renderer' provides = IRenderer for_ = (IView, IRequest) multi = True class language(generic_adapter): # noqa: N801 configuration_type = 'language' provides = ILanguage for_ = (IResource, IRequest) multi = True class contenttype(_base_decorator): # noqa: N801 configuration_type = 'contenttype' class behavior(_factory_decorator): # noqa: N801 configuration_type = 'behavior' class addon(_base_decorator): # noqa: N801 configuration_type = 'addon' class adapter(_factory_decorator): # noqa: N801 configuration_type = 'adapter' class subscriber(_factory_decorator): # noqa: N801 configuration_type = 'subscriber' def __call__(self, klass=None): klass.priority = self.config.pop('priority', 100) return super().__call__(klass) class utility(_factory_decorator): # noqa: N801 configuration_type = 'utility' def permission(id, title, description=''): register_configuration( get_caller_module(), dict( id=id, title=title, description=description), 'permission') def role(id, title, description='', local=True): register_configuration( get_caller_module(), dict( id=id, title=title, description=description, local=local), 'role') def grant(principal=None, role=None, permission=None, permissions=None): register_configuration( get_caller_module(), dict( principal=principal, role=role, permission=permission, permissions=permissions), 'grant') def grant_all(principal=None, role=None): register_configuration( get_caller_module(), dict( principal=principal, role=role), 'grant_all') def json_schema_definition(name, schema): register_configuration( get_caller_module(), dict(name=name, schema=schema), 'json_schema_definition') def grant_directive( _context, principal=None, role=None, permission=None, permissions=None): from guillotina.security.security_code import role_permission_manager as role_perm_mgr from guillotina.security.security_code import principal_permission_manager as principal_perm_mgr from guillotina.security.security_code import principal_role_manager as principal_role_mgr nspecified = ( (principal is not None) + (role is not None) + (permission is not None) + (permissions is not None)) permspecified = ( (permission is not None) + (permissions is not None)) if nspecified != 2 or permspecified == 2: raise ConfigurationError( "Exactly two of the principal, role, and permission resp. " "permissions attributes must be specified") if permission: permissions = [permission] if principal and role: _context.action( discriminator=('grantRoleToPrincipal', role, principal), callable=principal_role_mgr.assign_role_to_principal, args=(role, principal), ) elif principal and permissions: for permission in permissions: _context.action( discriminator=('grantPermissionToPrincipal', permission, principal), callable=principal_perm_mgr.grant_permission_to_principal, args=(permission, principal), ) elif role and permissions: for permission in permissions: _context.action( discriminator=('grantPermissionToRole', permission, role), callable=role_perm_mgr.grant_permission_to_role, args=(permission, role), ) def grantAll_directive(_context, principal=None, role=None): # noqa: N802 """Grant all permissions to a role or principal """ from guillotina.security.security_code import role_permission_manager from guillotina.security.security_code import principal_permission_manager nspecified = ( (principal is not None) + (role is not None)) if nspecified != 1: raise ConfigurationError( "Exactly one of the principal and role attributes " "must be specified") if principal: _context.action( discriminator=('grantAllPermissionsToPrincipal', principal), callable=principal_permission_manager.grantAllPermissionsToPrincipal, args=(principal, ), ) else: _context.action( discriminator=('grantAllPermissionsToRole', role), callable=role_permission_manager.grantAllPermissionsToRole, args=(role, ), ) def defineRole_directive(_context, id, title, description='', local=True): # noqa: N802 from guillotina.auth.role import Role role = Role(id, title, description, local) component.utility(_context, IRole, role, name=id) def scan(path): """ pyramid's version of scan has a much more advanced resolver that we can look into supporting eventually... """ path = resolve_module_path(path) __import__(path) def clear(): _registered_configurations[:] = []
the-stack_106_27803
"""Main battle system implementation.""" from random import randint # items from items import antidote from items import cookie from items import echo_screen from items import health_kit from items import power_potion from items import pp_restore # moves from moves import blast from moves import blaze from moves import counter from moves import disable from moves import drain from moves import focus from moves import glare from moves import harden from moves import kick from moves import mimic from moves import poison from moves import sap from moves import sing from moves import tackle from utils import Printer from actions import Action MOVES = [ tackle, poison, counter, sing, harden, sap, blast, focus, disable, kick, blaze, mimic, drain, glare ] ITEMS = [ cookie, health_kit, power_potion, pp_restore, antidote, echo_screen ] ALL_MOVES_COUNT = len(MOVES) ALL_ITEMS_COUNT = len(ITEMS) MOVE_COUNT = 3 MAX_ITEMS = 10 MAX_COST = 500 STAT_POINTS = 100 HP_W, PP_W, STR_W, DEF_W, SPEC_W = 1, 1, 2, 2, 2 def verify(csweekmon, max_cost=MAX_COST, stat_points=STAT_POINTS): """Verify that the players have valid initialisation.""" item_cost = [x.COST for x in ITEMS] stats = csweekmon.stats health = stats['HP'] ppoints = stats['PP'] strength = stats['Strength'] defense = stats['Defense'] special = stats['Special'] moves = stats['Moves'] items = stats['Items'] effects = stats['Effects'] return (all([x >= 0 for x in [ppoints, strength, defense, special]]) and health > 0 and HP_W * health + PP_W * ppoints + STR_W * strength + DEF_W * defense + SPEC_W * special <= stat_points and len(moves) == MOVE_COUNT and all([i in range(ALL_MOVES_COUNT) for i in moves]) and len(items) <= MAX_ITEMS and all([i in range(ALL_ITEMS_COUNT) for i in items]) and sum([item_cost[i] for i in items]) <= max_cost and effects == []) def write_stats(turn_number, agent_fst, agent_snd): """Displays both players' basic stats on the screen.""" Printer.print_ui() Printer.print_ui('----- TURN {} ----------------------'.format(turn_number)) Printer.print_ui('[{}] HP: {} PP: {}'.format(agent_fst.name, agent_fst.stats['HP'], agent_fst.stats['PP'])) Printer.print_ui('[{}] HP: {} PP: {}'.format(agent_snd.name, agent_snd.stats['HP'], agent_snd.stats['PP'])) Printer.print_ui() def process_effects(agent_cur): """Process all status effects that may affect the current player. :param agent_cur: agent (AI instance) that needs to have effects inflicted :return: returns a pair of boolean values (will_die, will_continue), stating whether to KO the the agent or skip turn, respectively""" will_die, will_skip = False, False agent_cur.stats['Defense'] = agent_cur.stats['Base Defense'] if 'Sleep' in agent_cur.stats['Effects']: if 'Focus' in agent_cur.stats['Effects']: agent_cur.stats['Effects'].remove('Focus') if sing.wakeup(): Printer.print_ui(' {} wakes up!'.format(agent_cur.name)) agent_cur.stats['Effects'].remove('Sleep') Printer.delay_ui(1) else: try: Printer.print_ui(' {} is still asleep. 💤'.format(agent_cur.name)) except UnicodeEncodeError: Printer.print_ui(' {} is still asleep. *Zzz*'.format(agent_cur.name)) will_skip = True if 'Poison' in agent_cur.stats['Effects']: damage = poison.latent(agent_cur) try: Printer.print_ui(' {} loses {} HP due to Poison! ☠'.format(agent_cur.name, damage)) except UnicodeEncodeError: Printer.print_ui(' {} loses {} HP due to Poison!'.format(agent_cur.name, damage)) agent_cur.stats['HP'] -= damage Printer.delay_ui(1) if agent_cur.stats['HP'] <= 0: will_die = True if 'Disable' in agent_cur.stats['Effects']: Printer.print_ui(' {} is Disabled.'.format(agent_cur.name)) Printer.delay_ui(1) # Focus not processed here return will_die, will_skip def knock_out(agent_a, agent_b): """Handle KO of first agent in line.""" Printer.print_ui(' {} is knocked out!'.format(agent_a.name)) Printer.delay_ui(2) Printer.print_ui(' {} jumps into battle.'.format(agent_b.name)) agent_b.strategy.set_order_info(True) return agent_b def run_battle(agent_fst_a, agent_snd_a, agent_fst_b, agent_snd_b): """Have two players fight each other.""" Printer.delay_ui(1) Printer.print_ui('============================================================') Printer.print_ui(' {} is walking...'.format(agent_fst_a.name)) Printer.delay_ui(1) Printer.print_ui(' ...a wild {} appears!'.format(agent_snd_a.name)) turn_number = 0 max_turns = 80 current_player = 2 agent_fst, agent_snd = agent_fst_a, agent_snd_a # player turns while turn_number < max_turns: turn_number += 1 # determine who plays now current_player = 3 - current_player if current_player == 1: agent_cur, agent_oth = agent_fst, agent_snd else: agent_cur, agent_oth = agent_snd, agent_fst # UI Printer.delay_ui(1) write_stats(turn_number, agent_fst, agent_snd) Printer.delay_ui(1) # status effects logic will_die, will_continue = process_effects(agent_cur) if will_die: current_player = 3 - current_player if agent_cur == agent_fst_a: agent_fst = knock_out(agent_fst_a, agent_fst_b) continue elif agent_cur == agent_snd_a: agent_snd = knock_out(agent_snd_a, agent_snd_b) continue else: # agent_cur = agent_oth break if will_continue: continue # pass status information to current player agent_cur.give_stats_info(agent_oth.stats) # player makes decision, unless delayed move if 'Focus' in agent_cur.stats['Effects']: focus.finally_perform(agent_cur, agent_oth) if agent_oth.stats['HP'] <= 0: if agent_oth == agent_fst_a: current_player = 3 - current_player agent_fst = knock_out(agent_fst_a, agent_fst_b) continue elif agent_oth == agent_snd_a: current_player = 3 - current_player agent_snd = knock_out(agent_snd_a, agent_snd_b) continue else: continue action, detail = agent_cur.choose_action() # process the player's decision if action == Action.PERFORM_MOVE: # use move if detail < 0 or detail >= MOVE_COUNT: Printer.print_ui( ' {} tries to perform a move, but stumbles!'.format(agent_cur.name)) else: move = MOVES[agent_cur.stats['Moves'][detail]] Printer.print_ui(' {} uses {}.'.format(agent_cur.name, move.NAME)) Printer.delay_ui(1) if agent_cur.stats['PP'] < move.PP_COST: Printer.print_ui(' But {} does not have enough PP!'.format(agent_cur.name)) elif 'Disable' in agent_cur.stats['Effects'] and move.CAN_DISABLE: Printer.print_ui(' But {} is Disabled!'.format(agent_cur.name)) else: agent_cur.stats['PP'] -= move.PP_COST agent_cur.stats['Previous move'] = move move.perform(agent_cur, agent_oth) if agent_oth.stats['HP'] <= 0: if agent_oth == agent_fst_a: agent_fst = knock_out(agent_fst_a, agent_fst_b) current_player = 3 - current_player continue elif agent_oth == agent_snd_a: agent_snd = knock_out(agent_snd_a, agent_snd_b) continue else: break elif action == Action.USE_ITEM: # use item if detail < 0 or detail >= MAX_ITEMS: Printer.print_ui(' {} tries to use an item, but stumbles!'.format(agent_cur.name)) else: item_index = agent_cur.stats['Items'][detail] if item_index == -1: Printer.print_ui(' {} tries to use an item, but it\'s not ' \ 'there!'.format(agent_cur.name)) else: item = ITEMS[item_index] if item.NAME[0] in ['A', 'E', 'I', 'O', 'U']: Printer.print_ui(' {} uses an {}'.format(agent_cur.name, item.NAME)) else: Printer.print_ui(' {} uses a {}.'.format(agent_cur.name, item.NAME)) item.use(agent_cur, agent_oth) agent_cur.stats['Items'][detail] = -1 elif action == Action.BLOCK: # block Printer.print_ui(' {} blocks.'.format(agent_cur.name)) # temporary increase in Defense agent_cur.stats['Defense'] += randint(8, 12) # restore 3 to 5 PP agent_cur.stats['PP'] = min(agent_cur.stats['Max PP'], agent_cur.stats['PP'] + randint(3, 5)) else: Printer.print_ui(' {} stumbles!'.format(agent_cur.name)) Printer.delay_ui(1) Printer.print_ui() Printer.print_ui() Printer.print_ui(' Match over!') if agent_fst.stats['HP'] > 0 and agent_snd.stats['HP'] > 0: current_player = 0 Printer.print_ui('============================================================') # Printer.print_ui() return current_player
the-stack_106_27804
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import boto3 import datetime from ecs_crd.canaryReleaseDeployStep import CanaryReleaseDeployStep from ecs_crd.rollbackChangeRoute53WeightsStep import RollbackChangeRoute53WeightsStep from ecs_crd.destroyBlueStackStep import DestroyBlueStackStep from ecs_crd.sendNotificationBySnsStep import SendNotificationBySnsStep class UpdateCanaryReleaseInfoStep(CanaryReleaseDeployStep): def __init__(self, infos, logger): """initializes a new instance of the class""" super().__init__(infos,'Update CanaryRelease Info (dynamo db)', logger) def _on_execute(self): """operation containing the processing performed by this step""" try: client = boto3.resource('dynamodb', region_name=self.infos.region) table = client.Table('canary_release') if self.infos.action == 'deploy': if self._exist_item(client, table): self._update_item(table) else: self._insert_item(table) if self.infos.action == 'undeploy': self._delete_item(table) return DestroyBlueStackStep(self.infos, self.logger) except Exception as e: self.logger.error('UpdateCanaryReleaseInfoStep', exc_info=True) self.infos.exit_exception = e self.infos.exit_code = 4 return RollbackChangeRoute53WeightsStep(self.infos, self.logger) def _exist_item(self, client, table): """check if exist item in dynamoDB table""" try: response = table.get_item(Key={'id': self.infos.get_hash()}) return True if ('Item' in response and not response['Item']) else False except client.exceptions.ResourceNotFoundException: return False except Exception: raise def _delete_item(self, table): """delete item in dynamo db table """ table.delete_item(Key={'id': self.infos.get_hash()}) def _update_item(self, table): """update item in dynamo db table """ table.update_item( Key={'id': self.infos.get_hash()}, UpdateExpression="set service_version=:v, canary_releaset=:c, alb_arn=:a, deploy_at=:d, stack_name=:s", ExpressionAttributeValues={ ':v': self.infos.service_version, ':c': self.infos.green_infos.stack['Parameters']['CanaryRelease']['Default'], ':a': self.infos.green_infos.stack['Parameters']['LoadBalancer']['Default'], ':d': str(datetime.datetime.now().replace(microsecond=0).isoformat()), ':s': self.infos.green_infos.stack_name }, ReturnValues="UPDATED_NEW" ) def _insert_item(self, table): """insert item in dynamo db table """ item = {} item['id'] = self.infos.get_hash() item['canary_group'] = self.infos.canary_group item['service_name'] = self.infos.service_name item['service_version'] = self.infos.service_version item['environment'] = self.infos.environment item['project'] = self.infos.project item['region'] = self.infos.region item['canary_release'] = self.infos.green_infos.stack['Parameters']['CanaryRelease']['Default'] item['alb_arn'] = self.infos.green_infos.stack['Parameters']['LoadBalancer']['Default'] item['stack_name'] = self.infos.green_infos.stack_name item['deploy_at'] = str(datetime.datetime.now().replace(microsecond=0).isoformat()) item['ecs_crd_version'] = self.infos.ecs_crd_version table.put_item(Item=item)
the-stack_106_27805
from typing import List, Dict, Optional import logging from uuid import UUID from sqlalchemy import select, update, delete from sqlalchemy.exc import IntegrityError from hetdesrun.utils import State, Type from hetdesrun.persistence import SQLAlchemySession from hetdesrun.persistence.dbservice.nesting import ( delete_own_nestings, find_all_nested_transformation_revisions, find_all_nesting_transformation_revisions, update_nesting, ) from hetdesrun.persistence.dbservice.exceptions import ( DBBadRequestError, DBIntegrityError, DBNotFoundError, ) from hetdesrun.persistence import Session from hetdesrun.persistence.models.transformation import TransformationRevision from hetdesrun.persistence.models.workflow import WorkflowContent from hetdesrun.persistence.dbmodels import TransformationRevisionDBModel logger = logging.getLogger(__name__) def add_tr( session: SQLAlchemySession, transformation_revision: TransformationRevision ) -> None: try: db_model = transformation_revision.to_orm_model() session.add(db_model) except IntegrityError as e: msg = ( f"Integrity Error while trying to store transformation revision " f"with id {transformation_revision.id}. Error was:\n{str(e)}" ) logger.error(msg) raise DBIntegrityError(msg) from e def store_single_transformation_revision( transformation_revision: TransformationRevision, ) -> None: with Session() as session, session.begin(): add_tr(session, transformation_revision) if transformation_revision.type == Type.WORKFLOW: assert isinstance( transformation_revision.content, WorkflowContent ) # hint for mypy update_nesting( session, transformation_revision.id, transformation_revision.content ) # pylint: disable=W0622 def select_tr_by_id( session: SQLAlchemySession, id: UUID, log_error: bool = True ) -> TransformationRevision: result = session.execute( select(TransformationRevisionDBModel).where( TransformationRevisionDBModel.id == id ) ).scalar_one_or_none() if result is None: msg = f"Found no transformation revision in database with id {id}" if log_error: logger.error(msg) raise DBNotFoundError(msg) return TransformationRevision.from_orm_model(result) # pylint: disable=W0622 def read_single_transformation_revision( id: UUID, log_error: bool = True ) -> TransformationRevision: with Session() as session, session.begin(): return select_tr_by_id(session, id, log_error) def update_tr( session: SQLAlchemySession, transformation_revision: TransformationRevision ) -> None: try: db_model = transformation_revision.to_orm_model() session.execute( update(TransformationRevisionDBModel) .where(TransformationRevisionDBModel.id == db_model.id) .values( revision_group_id=db_model.revision_group_id, name=db_model.name, description=db_model.description, category=db_model.category, version_tag=db_model.version_tag, state=db_model.state, type=db_model.type, documentation=db_model.documentation, workflow_content=db_model.workflow_content, component_code=db_model.component_code, io_interface=db_model.io_interface, test_wiring=db_model.test_wiring, released_timestamp=db_model.released_timestamp, disabled_timestamp=db_model.disabled_timestamp, ) ) except IntegrityError as e: msg = ( f"Integrity Error while trying to update " f"transformation revision with id {transformation_revision.id}.\n" f"Error was:\n{str(e)}" ) logger.error(msg) raise DBIntegrityError(msg) from e def pass_on_deprecation(session: SQLAlchemySession, transformation_id: UUID) -> None: logger.debug( "pass on deprecation for transformation revision %s", str(transformation_id) ) sup_nestings = find_all_nesting_transformation_revisions(session, transformation_id) for nesting in sup_nestings: transformation_revision = select_tr_by_id(session, nesting.workflow_id) assert isinstance( transformation_revision.content, WorkflowContent ) # hint for mypy for operator in transformation_revision.content.operators: if operator.id == nesting.via_operator_id: operator.state = State.DISABLED update_tr(session, transformation_revision) def update_or_create_single_transformation_revision( transformation_revision: TransformationRevision, ) -> TransformationRevision: with Session() as session, session.begin(): try: select_tr_by_id(session, transformation_revision.id, log_error=False) update_tr(session, transformation_revision) except DBNotFoundError: add_tr(session, transformation_revision) if transformation_revision.state == State.DISABLED: pass_on_deprecation(session, transformation_revision.id) if transformation_revision.type == Type.WORKFLOW: assert isinstance( transformation_revision.content, WorkflowContent ) # hint for mypy update_nesting( session, transformation_revision.id, transformation_revision.content ) return select_tr_by_id(session, transformation_revision.id) # pylint: disable=W0622 def delete_single_transformation_revision( id: UUID, type: Optional[Type] = None ) -> None: with Session() as session, session.begin(): result = select_tr_by_id(session, id) transformation_revision: TransformationRevision = result if type is not None and transformation_revision.type != type: msg = ( f"Transformation revision {id} has type {transformation_revision.type}" f"Delete request with type {type} will not be executed" ) logger.error(msg) raise DBBadRequestError(msg) if transformation_revision.state != State.DRAFT: msg = ( f"Transformation revision {id} cannot be deleted " f"since it is in the state {transformation_revision.state}" ) logger.error(msg) raise DBBadRequestError(msg) delete_own_nestings(session, transformation_revision.id) session.execute( delete(TransformationRevisionDBModel).where( TransformationRevisionDBModel.id == transformation_revision.id ) ) # pylint: disable=W0622 def select_multiple_transformation_revisions( category: Optional[str] = None, revision_group_id: Optional[UUID] = None, type: Optional[Type] = None, state: Optional[State] = None, ) -> List[TransformationRevision]: """Filterable selection of transformation revisions from db""" with Session() as session, session.begin(): selection = select(TransformationRevisionDBModel) if category is not None: selection = selection.where( TransformationRevisionDBModel.category == category ) if revision_group_id is not None: selection = selection.where( TransformationRevisionDBModel.revision_group_id == revision_group_id ) if type is not None: selection = selection.where(TransformationRevisionDBModel.type == type) if state is not None: selection = selection.where(TransformationRevisionDBModel.state == state) results = session.execute(selection).all() return [TransformationRevision.from_orm_model(result[0]) for result in results] def get_all_nested_transformation_revisions( transformation_revision: TransformationRevision, ) -> Dict[UUID, TransformationRevision]: if transformation_revision.type != Type.WORKFLOW: msg = ( f"cannot get operators of transformation revision {transformation_revision.id}" f"because its type is not WORKFLOW" ) logger.error(msg) raise DBBadRequestError(msg) with Session() as session, session.begin(): descendants = find_all_nested_transformation_revisions( session, transformation_revision.id ) nested_transformation_revisions: Dict[UUID, TransformationRevision] = {} for descendant in descendants: nested_transformation_revisions[descendant.operator_id] = select_tr_by_id( session, descendant.transformation_id ) return nested_transformation_revisions
the-stack_106_27806
# -*- coding: UTF-8 -*- # Copyright (c) 2020 Saint Corp. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Archive extraction utilities """ import os import shutil import subprocess import tarfile from pathlib import Path, PurePosixPath from _common import (USE_REGISTRY, PlatformEnum, ExtractorEnum, get_logger, get_running_platform) DEFAULT_EXTRACTORS = { ExtractorEnum.SEVENZIP: USE_REGISTRY, ExtractorEnum.TAR: 'tar', ExtractorEnum.WINRAR: USE_REGISTRY, } class ExtractionError(BaseException): """Exceptions thrown in this module's methods""" def _find_7z_by_registry(): """ Return a string to 7-zip's 7z.exe from the Windows Registry. Raises ExtractionError if it fails. """ import winreg #pylint: disable=import-error sub_key_7zfm = 'SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\App Paths\\7zFM.exe' try: with winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, sub_key_7zfm) as key_handle: sevenzipfm_dir = winreg.QueryValueEx(key_handle, 'Path')[0] except OSError: get_logger().exception('Unable to locate 7-zip from the Windows Registry') raise ExtractionError() sevenzip_path = Path(sevenzipfm_dir, '7z.exe') if not sevenzip_path.is_file(): get_logger().error('7z.exe not found at path from registry: %s', sevenzip_path) return sevenzip_path def _find_winrar_by_registry(): """ Return a string to WinRAR's WinRAR.exe from the Windows Registry. Raises ExtractionError if it fails. """ import winreg #pylint: disable=import-error sub_key_winrar = 'SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\App Paths\\WinRAR.exe' try: with winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, sub_key_winrar) as key_handle: winrar_dir = winreg.QueryValueEx(key_handle, 'Path')[0] except OSError: get_logger().exception('Unable to locale WinRAR from the Windows Registry') raise ExtractionError() winrar_path = Path(winrar_dir, 'WinRAR.exe') if not winrar_path.is_file(): get_logger().error('WinRAR.exe not found at path from registry: %s', winrar_path) return winrar_path def _find_extractor_by_cmd(extractor_cmd): """Returns a string path to the binary; None if it couldn't be found""" if not extractor_cmd: return None if Path(extractor_cmd).is_file(): return extractor_cmd return shutil.which(extractor_cmd) def _process_relative_to(unpack_root, relative_to): """ For an extractor that doesn't support an automatic transform, move the extracted contents from the relative_to/ directory to the unpack_root If relative_to is None, nothing is done. """ if relative_to is None: return relative_root = unpack_root / relative_to if not relative_root.is_dir(): get_logger().error('Could not find relative_to directory in extracted files: %s', relative_to) raise ExtractionError() for src_path in relative_root.iterdir(): dest_path = unpack_root / src_path.name src_path.rename(dest_path) relative_root.rmdir() def _extract_tar_with_7z(binary, archive_path, output_dir, relative_to): get_logger().debug('Using 7-zip extractor') if not relative_to is None and (output_dir / relative_to).exists(): get_logger().error('Temporary unpacking directory already exists: %s', output_dir / relative_to) raise ExtractionError() cmd1 = (binary, 'x', str(archive_path), '-so') cmd2 = (binary, 'x', '-si', '-aoa', '-ttar', '-o{}'.format(str(output_dir))) get_logger().debug('7z command line: %s | %s', ' '.join(cmd1), ' '.join(cmd2)) proc1 = subprocess.Popen(cmd1, stdout=subprocess.PIPE) proc2 = subprocess.Popen(cmd2, stdin=proc1.stdout, stdout=subprocess.PIPE) proc1.stdout.close() (stdout_data, stderr_data) = proc2.communicate() if proc2.returncode != 0: get_logger().error('7z commands returned non-zero status: %s', proc2.returncode) get_logger().debug('stdout: %s', stdout_data) get_logger().debug('stderr: %s', stderr_data) raise ExtractionError() _process_relative_to(output_dir, relative_to) def _extract_tar_with_tar(binary, archive_path, output_dir, relative_to): get_logger().debug('Using BSD or GNU tar extractor') output_dir.mkdir(exist_ok=True) cmd = (binary, '-xf', str(archive_path), '-C', str(output_dir)) get_logger().debug('tar command line: %s', ' '.join(cmd)) result = subprocess.run(cmd) if result.returncode != 0: get_logger().error('tar command returned %s', result.returncode) raise ExtractionError() # for gnu tar, the --transform option could be used. but to keep compatibility with # bsdtar on macos, we just do this ourselves _process_relative_to(output_dir, relative_to) def _extract_tar_with_winrar(binary, archive_path, output_dir, relative_to): get_logger().debug('Using WinRAR extractor') output_dir.mkdir(exist_ok=True) cmd = (binary, 'x', '-o+', str(archive_path), str(output_dir)) get_logger().debug('WinRAR command line: %s', ' '.join(cmd)) result = subprocess.run(cmd) if result.returncode != 0: get_logger().error('WinRAR command returned %s', result.returncode) raise ExtractionError() _process_relative_to(output_dir, relative_to) def _extract_tar_with_python(archive_path, output_dir, relative_to): get_logger().debug('Using pure Python tar extractor') class NoAppendList(list): """Hack to workaround memory issues with large tar files""" def append(self, obj): pass # Simple hack to check if symlinks are supported try: os.symlink('', '') except FileNotFoundError: # Symlinks probably supported symlink_supported = True except OSError: # Symlinks probably not supported get_logger().info('System does not support symlinks. Ignoring them.') symlink_supported = False except BaseException: # Unexpected exception get_logger().exception('Unexpected exception during symlink support check.') raise ExtractionError() with tarfile.open(str(archive_path), 'r|%s' % archive_path.suffix[1:]) as tar_file_obj: tar_file_obj.members = NoAppendList() for tarinfo in tar_file_obj: try: if relative_to is None: destination = output_dir / PurePosixPath(tarinfo.name) else: destination = output_dir / PurePosixPath(tarinfo.name).relative_to(relative_to) if tarinfo.issym() and not symlink_supported: # In this situation, TarFile.makelink() will try to create a copy of the # target. But this fails because TarFile.members is empty # But if symlinks are not supported, it's safe to assume that symlinks # aren't needed. The only situation where this happens is on Windows. continue if tarinfo.islnk(): # Derived from TarFile.extract() new_target = output_dir / PurePosixPath( tarinfo.linkname).relative_to(relative_to) tarinfo._link_target = new_target.as_posix() # pylint: disable=protected-access if destination.is_symlink(): destination.unlink() tar_file_obj._extract_member(tarinfo, str(destination)) # pylint: disable=protected-access except BaseException: get_logger().exception('Exception thrown for tar member: %s', tarinfo.name) raise ExtractionError() def extract_tar_file(archive_path, output_dir, relative_to, extractors=None): """ Extract regular or compressed tar archive into the output directory. archive_path is the pathlib.Path to the archive to unpack output_dir is a pathlib.Path to the directory to unpack. It must already exist. relative_to is a pathlib.Path for directories that should be stripped relative to the root of the archive, or None if no path components should be stripped. extractors is a dictionary of PlatformEnum to a command or path to the extractor binary. Defaults to 'tar' for tar, and '_use_registry' for 7-Zip and WinRAR. Raises ExtractionError if unexpected issues arise during unpacking. """ if extractors is None: extractors = DEFAULT_EXTRACTORS current_platform = get_running_platform() if current_platform == PlatformEnum.WINDOWS: # Try to use 7-zip first sevenzip_cmd = extractors.get(ExtractorEnum.SEVENZIP) if sevenzip_cmd == USE_REGISTRY: sevenzip_cmd = str(_find_7z_by_registry()) sevenzip_bin = _find_extractor_by_cmd(sevenzip_cmd) if sevenzip_bin is not None: _extract_tar_with_7z(sevenzip_bin, archive_path, output_dir, relative_to) return # Use WinRAR if 7-zip is not found winrar_cmd = extractors.get(ExtractorEnum.WINRAR) if winrar_cmd == USE_REGISTRY: winrar_cmd = str(_find_winrar_by_registry()) winrar_bin = _find_extractor_by_cmd(winrar_cmd) if winrar_bin is not None: _extract_tar_with_winrar(winrar_bin, archive_path, output_dir, relative_to) return get_logger().warning( 'Neither 7-zip nor WinRAR were found. Falling back to Python extractor...') elif current_platform == PlatformEnum.UNIX: # NOTE: 7-zip isn't an option because it doesn't preserve file permissions tar_bin = _find_extractor_by_cmd(extractors.get(ExtractorEnum.TAR)) if not tar_bin is None: _extract_tar_with_tar(tar_bin, archive_path, output_dir, relative_to) return else: # This is not a normal code path, so make it clear. raise NotImplementedError(current_platform) # Fallback to Python-based extractor on all platforms _extract_tar_with_python(archive_path, output_dir, relative_to) def extract_with_7z( archive_path, output_dir, relative_to, #pylint: disable=too-many-arguments extractors=None): """ Extract archives with 7-zip into the output directory. Only supports archives with one layer of unpacking, so compressed tar archives don't work. archive_path is the pathlib.Path to the archive to unpack output_dir is a pathlib.Path to the directory to unpack. It must already exist. relative_to is a pathlib.Path for directories that should be stripped relative to the root of the archive. extractors is a dictionary of PlatformEnum to a command or path to the extractor binary. Defaults to 'tar' for tar, and '_use_registry' for 7-Zip. Raises ExtractionError if unexpected issues arise during unpacking. """ # TODO: It would be nice to extend this to support arbitrary standard IO chaining of 7z # instances, so _extract_tar_with_7z and other future formats could use this. if extractors is None: extractors = DEFAULT_EXTRACTORS sevenzip_cmd = extractors.get(ExtractorEnum.SEVENZIP) if sevenzip_cmd == USE_REGISTRY: if not get_running_platform() == PlatformEnum.WINDOWS: get_logger().error('"%s" for 7-zip is only available on Windows', sevenzip_cmd) raise ExtractionError() sevenzip_cmd = str(_find_7z_by_registry()) sevenzip_bin = _find_extractor_by_cmd(sevenzip_cmd) if not relative_to is None and (output_dir / relative_to).exists(): get_logger().error('Temporary unpacking directory already exists: %s', output_dir / relative_to) raise ExtractionError() cmd = (sevenzip_bin, 'x', str(archive_path), '-aoa', '-o{}'.format(str(output_dir))) get_logger().debug('7z command line: %s', ' '.join(cmd)) result = subprocess.run(cmd) if result.returncode != 0: get_logger().error('7z command returned %s', result.returncode) raise ExtractionError() _process_relative_to(output_dir, relative_to) def extract_with_winrar( archive_path, output_dir, relative_to, #pylint: disable=too-many-arguments extractors=None): """ Extract archives with WinRAR into the output directory. Only supports archives with one layer of unpacking, so compressed tar archives don't work. archive_path is the pathlib.Path to the archive to unpack output_dir is a pathlib.Path to the directory to unpack. It must already exist. relative_to is a pathlib.Path for directories that should be stripped relative to the root of the archive. extractors is a dictionary of PlatformEnum to a command or path to the extractor binary. Defaults to 'tar' for tar, and '_use_registry' for WinRAR. Raises ExtractionError if unexpected issues arise during unpacking. """ if extractors is None: extractors = DEFAULT_EXTRACTORS winrar_cmd = extractors.get(ExtractorEnum.WINRAR) if winrar_cmd == USE_REGISTRY: if not get_running_platform() == PlatformEnum.WINDOWS: get_logger().error('"%s" for WinRAR is only available on Windows', winrar_cmd) raise ExtractionError() winrar_cmd = str(_find_winrar_by_registry()) winrar_bin = _find_extractor_by_cmd(winrar_cmd) if not relative_to is None and (output_dir / relative_to).exists(): get_logger().error('Temporary unpacking directory already exists: %s', output_dir / relative_to) raise ExtractionError() cmd = (winrar_bin, 'x', '-o+', str(archive_path), str(output_dir)) get_logger().debug('WinRAR command line: %s', ' '.join(cmd)) result = subprocess.run(cmd) if result.returncode != 0: get_logger().error('WinRAR command returned %s', result.returncode) raise ExtractionError() _process_relative_to(output_dir, relative_to)
the-stack_106_27809
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from copy import deepcopy from typing import Any, Awaitable, Optional, TYPE_CHECKING from azure.core import AsyncPipelineClient from azure.core.rest import AsyncHttpResponse, HttpRequest from msrest import Deserializer, Serializer from ._configuration import AutoRestParameterGroupingTestServiceConfiguration if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Dict class AutoRestParameterGroupingTestService: """Test Infrastructure for AutoRest. :keyword endpoint: Service URL. Default value is 'http://localhost:3000'. :paramtype endpoint: str """ def __init__(self, *, endpoint: str = "http://localhost:3000", **kwargs: Any) -> None: self._config = AutoRestParameterGroupingTestServiceConfiguration(**kwargs) self._client = AsyncPipelineClient(base_url=endpoint, config=self._config, **kwargs) self._serialize = Serializer() self._deserialize = Deserializer() self._serialize.client_side_validation = False def send_request(self, request: HttpRequest, **kwargs: Any) -> Awaitable[AsyncHttpResponse]: """Runs the network request through the client's chained policies. We have helper methods to create requests specific to this service in `azureparametergroupinglowlevel.rest`. Use these helper methods to create the request you pass to this method. >>> from azureparametergroupinglowlevel.rest import parameter_grouping >>> request = parameter_grouping.build_post_required_request(path, json=json, content=content, custom_header=custom_header, query=query, **kwargs) <HttpRequest [POST], url: '/parameterGrouping/postRequired/{path}'> >>> response = await client.send_request(request) <AsyncHttpResponse: 200 OK> For more information on this code flow, see https://aka.ms/azsdk/python/protocol/quickstart :param request: The network request you want to make. Required. :type request: ~azure.core.rest.HttpRequest :keyword bool stream: Whether the response payload will be streamed. Defaults to False. :return: The response of your network call. Does not do error handling on your response. :rtype: ~azure.core.rest.AsyncHttpResponse """ request_copy = deepcopy(request) request_copy.url = self._client.format_url(request_copy.url) return self._client.send_request(request_copy, **kwargs) async def close(self) -> None: await self._client.close() async def __aenter__(self) -> "AutoRestParameterGroupingTestService": await self._client.__aenter__() return self async def __aexit__(self, *exc_details) -> None: await self._client.__aexit__(*exc_details)
the-stack_106_27810
import os import numpy as np import tensorflow as tf import tensorflow_probability as tfp import time tfk = tf.keras tfkl = tf.keras.layers tfpl = tfp.layers tfd = tfp.distributions tfb = tfp.bijectors from softlearning.models.convnet import convnet_model from softlearning.models.feedforward import feedforward_model from softlearning.utils.times import timestamp CURR_PATH = os.path.dirname(os.path.abspath(__file__)) URDF = { "locobot": os.path.join(CURR_PATH, 'urdf/locobot_description.urdf'), "locobot_dual_cam": os.path.join(CURR_PATH, 'urdf/locobot_description_dual_cam.urdf'), "miniblock": os.path.join(CURR_PATH, 'urdf/miniblock.urdf'), "greenbox": os.path.join(CURR_PATH, 'urdf/greenbox.urdf'), "redbox": os.path.join(CURR_PATH, 'urdf/redbox.urdf'), "largerminiblock": os.path.join(CURR_PATH, 'urdf/largerminiblock.urdf'), "greenball": os.path.join(CURR_PATH, 'urdf/greenball.urdf'), "greensquareball": os.path.join(CURR_PATH, 'urdf/greensquareball_v2.urdf'), "bluesquareball": os.path.join(CURR_PATH, 'urdf/bluesquareball_v2.urdf'), "yellowsquareball": os.path.join(CURR_PATH, 'urdf/yellowsquareball_v2.urdf'), "orangesquareball": os.path.join(CURR_PATH, 'urdf/orangesquareball_v2.urdf'), "whitesquareball": os.path.join(CURR_PATH, 'urdf/whitesquareball_v2.urdf'), "blacksquareball": os.path.join(CURR_PATH, 'urdf/blacksquareball_v2.urdf'), "greensquareball_large": os.path.join(CURR_PATH, 'urdf/greensquareball_large.urdf'), "walls": os.path.join(CURR_PATH, 'urdf/walls.urdf'), "plane": os.path.join(CURR_PATH, 'urdf/plane.urdf'), "rectangular_pillar": os.path.join(CURR_PATH, 'urdf/rectangular_pillar.urdf'), "solid_box": os.path.join(CURR_PATH, 'urdf/solid_box.urdf'), "walls_2": os.path.join(CURR_PATH, 'urdf/medium_room/walls.urdf'), "textured_box": os.path.join(CURR_PATH, 'urdf/medium_room/box.urdf'), "floor": os.path.join(CURR_PATH, 'urdf/simple_texture_room/floor.urdf'), "wall_single": os.path.join(CURR_PATH, 'urdf/double_room/wall_single.urdf'), "wall_single_thin": os.path.join(CURR_PATH, 'urdf/double_room/wall_single_thin.urdf'), "floor_patch": os.path.join(CURR_PATH, 'urdf/double_room/floor_patch.urdf'), "cylinder_grey": os.path.join(CURR_PATH, 'urdf/double_room/cylinder_grey.urdf'), "cylinder_black": os.path.join(CURR_PATH, 'urdf/double_room/cylinder_black.urdf'), "box_grey": os.path.join(CURR_PATH, 'urdf/double_room/box_grey.urdf'), "box_dark_grey": os.path.join(CURR_PATH, 'urdf/double_room/box_dark_grey.urdf'), } TEXTURE = { "wood": os.path.join(CURR_PATH, 'urdf/medium_room/wood2.png'), "floor": os.path.join(CURR_PATH, 'urdf/simple_texture_room/floor.png'), "floor2": os.path.join(CURR_PATH, 'urdf/simple_texture_room/floor2.png'), "testfloor": os.path.join(CURR_PATH, 'urdf/simple_texture_room/testfloor.png'), "bluerugs": os.path.join(CURR_PATH, 'urdf/simple_texture_room/bluerugs.png'), "wall": os.path.join(CURR_PATH, 'urdf/medium_room/wall1.png'), "marble": os.path.join(CURR_PATH, 'urdf/medium_room/marble.png'), "crate": os.path.join(CURR_PATH, 'urdf/medium_room/crate.png'), "navy": os.path.join(CURR_PATH, 'urdf/medium_room/navy_cloth.png'), "red": os.path.join(CURR_PATH, 'urdf/medium_room/red_cloth.png'), "floor_carpet_1": os.path.join(CURR_PATH, 'urdf/double_room/floor_carpet_1.png'), "floor_carpet_2": os.path.join(CURR_PATH, 'urdf/double_room/floor_carpet_2.png'), "floor_carpet_3": os.path.join(CURR_PATH, 'urdf/double_room/floor_carpet_3.png'), "floor_carpet_4": os.path.join(CURR_PATH, 'urdf/double_room/floor_carpet_4.png'), "floor_carpet_5": os.path.join(CURR_PATH, 'urdf/double_room/floor_carpet_5.png'), "floor_carpet_6": os.path.join(CURR_PATH, 'urdf/double_room/floor_carpet_6.png'), "floor_carpet_7": os.path.join(CURR_PATH, 'urdf/double_room/floor_carpet_7.png'), "floor_marble_1": os.path.join(CURR_PATH, 'urdf/double_room/floor_marble_1.png'), "floor_marble_2": os.path.join(CURR_PATH, 'urdf/double_room/floor_marble_2.png'), "floor_marble_3": os.path.join(CURR_PATH, 'urdf/double_room/floor_marble_3.png'), "floor_wood_1": os.path.join(CURR_PATH, 'urdf/double_room/floor_wood_1.png'), "floor_wood_2": os.path.join(CURR_PATH, 'urdf/double_room/floor_wood_2.png'), "floor_wood_3": os.path.join(CURR_PATH, 'urdf/double_room/floor_wood_3.png'), } def is_in_rect(x, y, min_x, min_y, max_x, max_y): return min_x < x < max_x and min_y < y < max_y def is_in_circle(x, y, center_x, center_y, radius): return (x - center_x) ** 2 + (y - center_y) ** 2 < radius ** 2 def dprint(*args, **kwargs): # print(timestamp(), *args, **kwargs) return class Discretizer: def __init__(self, sizes, mins, maxs): self._sizes = np.array(sizes) self._mins = np.array(mins) self._maxs = np.array(maxs) self._step_sizes = (self._maxs - self._mins) / self._sizes @property def dimensions(self): return self._sizes def discretize(self, action): centered = action - self._mins indices = np.floor_divide(centered, self._step_sizes) clipped = np.clip(indices, 0, self._sizes) return clipped def undiscretize(self, action): return action * self._step_sizes + self._mins + self._step_sizes * 0.5 def flatten(self, action): return np.ravel_multi_index(action, self._sizes, order='C') def unflatten(self, index): return np.array(np.unravel_index(index, self._sizes, order='C')).squeeze() def build_image_discrete_policy( image_size=100, discrete_hidden_layers=(512, 512), discrete_dimension=15 * 31 ): obs_in = tfk.Input((image_size, image_size, 3)) conv_out = convnet_model( conv_filters=(64, 64, 64), conv_kernel_sizes=(3, 3, 3), conv_strides=(2, 2, 2), activation="relu", )(obs_in) logits_out = feedforward_model( discrete_hidden_layers, [discrete_dimension], activation='relu', output_activation='linear', )(conv_out) logits_model = tfk.Model(obs_in, logits_out) def deterministic_model(obs): logits = logits_model(obs) inds = tf.argmax(logits, axis=-1) return inds return logits_model, deterministic_model def build_discrete_Q_model( image_size=100, discrete_hidden_layers=(512, 512), discrete_dimension=15 * 31 ): obs_in = tfk.Input((image_size, image_size, 3)) conv_out = convnet_model( conv_filters=(64, 64, 64), conv_kernel_sizes=(3, 3, 3), conv_strides=(2, 2, 2), activation="relu", downsampling_type="conv", # kernel_regularizer=tfk.regularizers.l2(l=0.1), )(obs_in) logits_out = feedforward_model( discrete_hidden_layers, [discrete_dimension], activation='relu', output_activation='linear', # kernel_regularizer=tfk.regularizers.l2(l=0.1), )(conv_out) logits_model = tfk.Model(obs_in, logits_out) return logits_model def create_train_discrete_Q_sigmoid(logits_model, optimizer, discrete_dimension): @tf.function(experimental_relax_shapes=True) def train(data): observations = data['observations'] rewards = tf.cast(data['rewards'], tf.float32) actions_discrete = data['actions'] actions_onehot = tf.one_hot(actions_discrete[:, 0], depth=discrete_dimension) with tf.GradientTape() as tape: logits = logits_model(observations) taken_logits = tf.reduce_sum(logits * actions_onehot, axis=-1, keepdims=True) losses = tf.nn.sigmoid_cross_entropy_with_logits(labels=rewards, logits=taken_logits) loss = tf.nn.compute_average_loss(losses) grads = tape.gradient(loss, logits_model.trainable_variables) optimizer.apply_gradients(zip(grads, logits_model.trainable_variables)) return loss return train GRASP_MODEL = { "alpha10min_6Q_stat_stat": os.path.join(CURR_PATH, 'grasp_models/alpha10min_6Q_stat_stat'), "sock_8500": os.path.join(CURR_PATH, 'grasp_models/sock_8500'), "n500": os.path.join(CURR_PATH, 'grasp_models/n500'), "n1000": os.path.join(CURR_PATH, 'grasp_models/n1000'), "n1250": os.path.join(CURR_PATH, 'grasp_models/n1250'), "n1500": os.path.join(CURR_PATH, 'grasp_models/n1500'), "n2000": os.path.join(CURR_PATH, 'grasp_models/n2000'), "n4000": os.path.join(CURR_PATH, 'grasp_models/n4000'), } GRASP_DATA = { "grasp_s500_f500": os.path.join(CURR_PATH, 'grasp_data/grasp_s500_f500.npy'), "real_s1000_f1000": os.path.join(CURR_PATH, 'grasp_data/real_s1000_f1000.npy'), "n500": os.path.join(CURR_PATH, 'grasp_data/n500.npy'), "n1000": os.path.join(CURR_PATH, 'grasp_data/n1000.npy'), "n1250": os.path.join(CURR_PATH, 'grasp_data/n1250.npy'), "n1500": os.path.join(CURR_PATH, 'grasp_data/n1500.npy'), "n2000": os.path.join(CURR_PATH, 'grasp_data/n2000.npy'), "n4000": os.path.join(CURR_PATH, 'grasp_data/n4000.npy'), } class ReplayBuffer: """ Poor man's replay buffer. """ def __init__(self, size, observation_shape, action_dim, observation_dtype=np.uint8, action_dtype=np.int32): self._size = size self._observations = np.zeros((size,) + observation_shape, dtype=observation_dtype) self._actions = np.zeros((size, action_dim), dtype=action_dtype) self._rewards = np.zeros((size, 1), dtype=np.float32) self._num = 0 self._index = 0 @property def num_samples(self): return self._num def store_sample(self, observation, action, reward): self._observations[self._index] = observation self._actions[self._index] = action self._rewards[self._index] = reward self._num = min(self._num + 1, self._size) self._index = (self._index + 1) % self._size def get_all_samples(self): data = { 'observations': self._observations[:self._num], 'actions': self._actions[:self._num], 'rewards': self._rewards[:self._num], } return data def get_all_samples_in_batch(self, batch_size): datas = [] for i in range(0, (self._num // batch_size) * batch_size, batch_size): data = { 'observations': self._observations[i:i+batch_size], 'actions': self._actions[i:i+batch_size], 'rewards': self._rewards[i:i+batch_size], } datas.append(data) if self._num % batch_size != 0: datas.append(self.sample_batch(batch_size)) return datas def get_all_samples_in_batch_random(self, batch_size): inds = np.concatenate([np.arange(self._num), np.arange((batch_size - self._num % batch_size) % batch_size)]) np.random.shuffle(inds) observations = self._observations[inds] actions = self._actions[inds] rewards = self._rewards[inds] datas = [] for i in range(0, self._num, batch_size): data = { 'observations': observations[i:i+batch_size], 'actions': actions[i:i+batch_size], 'rewards': rewards[i:i+batch_size], } datas.append(data) return datas def get_all_success_in_batch_random(self, batch_size): successes = (self._rewards == 1)[:, 0] observations = self._observations[successes] actions = self._actions[successes] rewards = self._rewards[successes] num_success = len(observations) inds = np.concatenate([np.arange(num_success), np.arange((batch_size - num_success % batch_size) % batch_size)]) np.random.shuffle(inds) observations = observations[inds] actions = actions[inds] rewards = rewards[inds] datas = [] for i in range(0, num_success, batch_size): data = { 'observations': observations[i:i+batch_size], 'actions': actions[i:i+batch_size], 'rewards': rewards[i:i+batch_size], } datas.append(data) return datas def sample_batch(self, batch_size): inds = np.random.randint(0, self._num, size=(batch_size,)) data = { 'observations': self._observations[inds], 'actions': self._actions[inds], 'rewards': self._rewards[inds], } return data def save(self, folder_path, file_name='replaybuffer'): os.makedirs(folder_path, exist_ok=True) np.save(os.path.join(folder_path, file_name), self.get_all_samples()) def load(self, path): data = np.load(path, allow_pickle=True)[()] self._num = min(data['observations'].shape[0], self._size) self._index = self._num % self._size self._observations[:self._num] = data['observations'][:self._num] self._actions[:self._num] = data['actions'][:self._num] self._rewards[:self._num] = data['rewards'][:self._num] class Timer: """ A timer... """ def __init__(self): self.total_elapsed_seconds = 0.0 self.started = False def start(self): if not self.started: self.start_time = time.perf_counter() self.started = True def end(self): if self.started: elapsed = time.perf_counter() - self.start_time self.total_elapsed_seconds += elapsed self.started = False @property def total_elapsed_time(self): return self.total_elapsed_seconds
the-stack_106_27811
def calcEquation(self, equations, values, queries): # Step 1: Build the graph graph = collections.defaultdict(dict) # Default dict beacuse if a value DNE it won't throw an expection unlike normal dict for (num, denom), product in zip(equations, values): # zip(equations, values) = [([a, b], 2.0), ([b, c], 3.0)] graph[num][denom] = product ## dict[x][y] implies x is pointing to y. ie {'a': {'b': 2.0}} a is pointing to b. # Set the key as the num, denom and value as the product of the division in the defaultdict graph[denom][num] = 1.0 / product def dfs(numerator, denominator, visited): if numerator not in graph or denominator not in graph: return -1.0 if denominator in graph[numerator]: return graph[numerator][denominator] # Recall that our dict is set up such that the numerator points to the deominator, hence if denominator is in the denominator it # is a key of the numerator so we can return that value. # ie {'a': {'b': 2.0}}, a is the numerator and b is the denominator. If the query was a/b we would ask "is b in a?" we can see it is hence we just return the value which is the product of a/b. for i in graph[numerator]: if i not in visited: visited.add(i) temp = dfs(i, denominator, visited) if temp == -1: continue else: return graph[numerator][i] * temp return -1 result_list = [] for numerator, denominator in queries: result_list.append(dfs(numerator, denominator, set())) # Pass the numerator and denominator of the query division to dfs where we will find the product. return result_list
the-stack_106_27812
from machinetranslation import translator from flask import Flask, render_template, request import json import machinetranslation app = Flask("Web Translator") @app.route("/englishToFrench") def englishToFrench(): textToTranslate = request.args.get('textToTranslate') translatedText = machinetranslation.translator.english_to_french(textToTranslate) return translatedText @app.route("/frenchToEnglish") def frenchToEnglish(): textToTranslate = request.args.get('textToTranslate') translatedText = machinetranslation.translator.french_to_english(textToTranslate) return translatedText @app.route("/") def renderIndexPage(): return render_template('index.html') if __name__ == "__main__": app.run(host="0.0.0.0", port=8080)
the-stack_106_27813
class ControllerView: def __init__(self): pass def final_result(self, name, sum_result): if sum_result > 21: print(f"O Player {name} perdeu a partida!") elif sum_result == 21: print(f"O Player {name} venceu a partida!") else: print(f"O Player {name} continua no jogo!") def remove_winning_players(self, list_result_players): list_winning_players = [] for player in list_result_players: if player[1] == 21: list_winning_players.append(player) return list_winning_players def remove_losing_players(self, list_result_players): list_losing_players = [] for player in list_result_players: if player[1] > 21: list_losing_players.append(player) return list_losing_players def remove_players_finally(self, list_players, list_losing_player, list_winning_players): for player_losing in list_losing_player: for player in list_players: if player_losing[0] == player.name: list_players.remove(player) for player_winning in list_winning_players: for player in list_players: if player_winning[0] == player.name: list_players.remove(player) return list_players def check_last_player(self, list_players, list_winning_players): if len(list_players) == 1: for player in list_players: list_winning_players.append([player.name, player.sum_result]) list_players.remove(player)
the-stack_106_27814
""" Some codes from https://github.com/Newmu/dcgan_code """ from __future__ import division import math import json import random import pprint import scipy.misc import numpy as np from time import gmtime, strftime import tensorflow as tf import tensorflow.contrib.slim as slim pp = pprint.PrettyPrinter() def get_stddev(x, k_h, k_w): return 1/math.sqrt(k_w*k_h*x.get_shape()[-1]) def show_all_variables(): model_vars = tf.trainable_variables() slim.model_analyzer.analyze_vars(model_vars, print_info=True) def get_image(image_path, input_height, input_width, resize_height=64, resize_width=64, crop=True, grayscale=False): image = imread(image_path, grayscale) return transform(image, input_height, input_width, resize_height, resize_width, crop) def save_images(images, size, image_path): return imsave(inverse_transform(images), size, image_path) def imread(path, grayscale=False): if (grayscale): return scipy.misc.imread(path, flatten=True).astype(np.float) else: return scipy.misc.imread(path).astype(np.float) def merge_images(images, size): return inverse_transform(images) def merge(images, size): h, w = images.shape[1], images.shape[2] if (images.shape[3] in (3, 4)): c = images.shape[3] img = np.zeros((h * size[0], w * size[1], c)) for idx, image in enumerate(images): i = idx % size[1] j = idx // size[1] img[j * h:j * h + h, i * w:i * w + w, :] = image return img elif images.shape[3] == 1: img = np.zeros((h * size[0], w * size[1])) for idx, image in enumerate(images): i = idx % size[1] j = idx // size[1] img[j * h:j * h + h, i * w:i * w + w] = image[:, :, 0] return img else: raise ValueError('in merge(images,size) images parameter ' 'must have dimensions: HxW or HxWx3 or HxWx4') def imsave(images, size, path): image = np.squeeze(merge(images, size)) return scipy.misc.imsave(path, image) def center_crop(x, crop_h, crop_w, resize_h=64, resize_w=64): if crop_w is None: crop_w = crop_h h, w = x.shape[:2] j = int(round((h - crop_h)/2.)) i = int(round((w - crop_w)/2.)) return scipy.misc.imresize( x[j:j+crop_h, i:i+crop_w], [resize_h, resize_w]) def transform(image, input_height, input_width, resize_height=64, resize_width=64, crop=True): if crop: cropped_image = center_crop( image, input_height, input_width, resize_height, resize_width) else: cropped_image = scipy.misc.imresize( image, [resize_height, resize_width]) return np.array(cropped_image)/127.5 - 1. def inverse_transform(images): return (images+1.)/2. def to_json(output_path, *layers): with open(output_path, "w") as layer_f: lines = "" for w, b, bn in layers: layer_idx = w.name.split('/')[0].split('h')[1] B = b.eval() if "lin/" in w.name: W = w.eval() depth = W.shape[1] else: W = np.rollaxis(w.eval(), 2, 0) depth = W.shape[0] biases = {"sy": 1, "sx": 1, "depth": depth, "w": ['%.2f' % elem for elem in list(B)]} if bn != None: gamma = bn.gamma.eval() beta = bn.beta.eval() gamma = {"sy": 1, "sx": 1, "depth": depth, "w": [ '%.2f' % elem for elem in list(gamma)]} beta = {"sy": 1, "sx": 1, "depth": depth, "w": [ '%.2f' % elem for elem in list(beta)]} else: gamma = {"sy": 1, "sx": 1, "depth": 0, "w": []} beta = {"sy": 1, "sx": 1, "depth": 0, "w": []} if "lin/" in w.name: fs = [] for w in W.T: fs.append({"sy": 1, "sx": 1, "depth": W.shape[0], "w": [ '%.2f' % elem for elem in list(w)]}) lines += """ var layer_%s = { "layer_type": "fc", "sy": 1, "sx": 1, "out_sx": 1, "out_sy": 1, "stride": 1, "pad": 0, "out_depth": %s, "in_depth": %s, "biases": %s, "gamma": %s, "beta": %s, "filters": %s };""" % (layer_idx.split('_')[0], W.shape[1], W.shape[0], biases, gamma, beta, fs) else: fs = [] for w_ in W: fs.append({"sy": 5, "sx": 5, "depth": W.shape[3], "w": [ '%.2f' % elem for elem in list(w_.flatten())]}) lines += """ var layer_%s = { "layer_type": "deconv", "sy": 5, "sx": 5, "out_sx": %s, "out_sy": %s, "stride": 2, "pad": 1, "out_depth": %s, "in_depth": %s, "biases": %s, "gamma": %s, "beta": %s, "filters": %s };""" % (layer_idx, 2**(int(layer_idx)+2), 2**(int(layer_idx)+2), W.shape[0], W.shape[3], biases, gamma, beta, fs) layer_f.write(" ".join(lines.replace("'", "").split())) def make_gif(images, fname, duration=2, true_image=False): import moviepy.editor as mpy def make_frame(t): try: x = images[int(len(images)/duration*t)] except: x = images[-1] if true_image: return x.astype(np.uint8) else: return ((x+1)/2*255).astype(np.uint8) clip = mpy.VideoClip(make_frame, duration=duration) clip.write_gif(fname, fps=len(images) / duration) def visualize(sess, dcgan, config, option): image_frame_dim = int(math.ceil(config.batch_size**.5)) if option == 0: z_sample = np.random.uniform(-0.5, 0.5, size=(config.batch_size, dcgan.z_dim)) samples = sess.run(dcgan.sampler, feed_dict={dcgan.z: z_sample}) save_images(samples, [image_frame_dim, image_frame_dim], './samples/test_%s.png' % strftime("%Y-%m-%d-%H-%M-%S", gmtime())) elif option == 1: values = np.arange(0, 1, 1./config.batch_size) for idx in range(dcgan.z_dim): print(" [*] %d" % idx) z_sample = np.random.uniform(-1, 1, size=(config.batch_size, dcgan.z_dim)) for kdx, z in enumerate(z_sample): z[idx] = values[kdx] samples = sess.run(dcgan.sampler, feed_dict={dcgan.z: z_sample}) save_images(samples, [image_frame_dim, image_frame_dim], './samples/test_arange_%s.png' % (idx)) elif option == 2: values = np.arange(0, 1, 1./config.batch_size) for idx in [random.randint(0, dcgan.z_dim - 1) for _ in range(dcgan.z_dim)]: print(" [*] %d" % idx) z = np.random.uniform(-0.2, 0.2, size=(dcgan.z_dim)) z_sample = np.tile(z, (config.batch_size, 1)) #z_sample = np.zeros([config.batch_size, dcgan.z_dim]) for kdx, z in enumerate(z_sample): z[idx] = values[kdx] samples = sess.run(dcgan.sampler, feed_dict={dcgan.z: z_sample}) try: make_gif(samples, './samples/test_gif_%s.gif' % (idx)) except: save_images(samples, [image_frame_dim, image_frame_dim], './samples/test_%s.png' % strftime("%Y-%m-%d-%H-%M-%S", gmtime())) elif option == 3: values = np.arange(0, 1, 1./config.batch_size) for idx in range(dcgan.z_dim): print(" [*] %d" % idx) z_sample = np.zeros([config.batch_size, dcgan.z_dim]) for kdx, z in enumerate(z_sample): z[idx] = values[kdx] samples = sess.run(dcgan.sampler, feed_dict={dcgan.z: z_sample}) make_gif(samples, './samples/test_gif_%s.gif' % (idx)) elif option == 4: image_set = [] values = np.arange(0, 1, 1./config.batch_size) for idx in range(dcgan.z_dim): print(" [*] %d" % idx) z_sample = np.zeros([config.batch_size, dcgan.z_dim]) for kdx, z in enumerate(z_sample): z[idx] = values[kdx] image_set.append( sess.run(dcgan.sampler, feed_dict={dcgan.z: z_sample})) make_gif(image_set[-1], './samples/test_gif_%s.gif' % (idx)) new_image_set = [merge(np.array([images[idx] for images in image_set]), [10, 10]) for idx in range(64) + range(63, -1, -1)] make_gif(new_image_set, './samples/test_gif_merged.gif', duration=8) def image_manifold_size(num_images): manifold_h = int(np.floor(np.sqrt(num_images))) manifold_w = int(np.ceil(np.sqrt(num_images))) assert manifold_h * manifold_w == num_images return manifold_h, manifold_w
the-stack_106_27816
# -*- coding: utf-8 -*- """ werkzeug.wsgi ~~~~~~~~~~~~~ This module implements WSGI related helpers. :copyright: (c) 2014 by the Werkzeug Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ import io try: import httplib except ImportError: from http import client as httplib import mimetypes import os import posixpath import re import socket from datetime import datetime from functools import partial, update_wrapper from itertools import chain from time import mktime, time from zlib import adler32 from werkzeug._compat import BytesIO, PY2, implements_iterator, iteritems, \ make_literal_wrapper, string_types, text_type, to_bytes, to_unicode, \ try_coerce_native, wsgi_get_bytes from werkzeug._internal import _encode_idna from werkzeug.filesystem import get_filesystem_encoding from werkzeug.http import http_date, is_resource_modified, \ is_hop_by_hop_header from werkzeug.urls import uri_to_iri, url_join, url_parse, url_quote from werkzeug.datastructures import EnvironHeaders def responder(f): """Marks a function as responder. Decorate a function with it and it will automatically call the return value as WSGI application. Example:: @responder def application(environ, start_response): return Response('Hello World!') """ return update_wrapper(lambda *a: f(*a)(*a[-2:]), f) def get_current_url(environ, root_only=False, strip_querystring=False, host_only=False, trusted_hosts=None): """A handy helper function that recreates the full URL as IRI for the current request or parts of it. Here's an example: >>> from werkzeug.test import create_environ >>> env = create_environ("/?param=foo", "http://localhost/script") >>> get_current_url(env) 'http://localhost/script/?param=foo' >>> get_current_url(env, root_only=True) 'http://localhost/script/' >>> get_current_url(env, host_only=True) 'http://localhost/' >>> get_current_url(env, strip_querystring=True) 'http://localhost/script/' This optionally it verifies that the host is in a list of trusted hosts. If the host is not in there it will raise a :exc:`~werkzeug.exceptions.SecurityError`. Note that the string returned might contain unicode characters as the representation is an IRI not an URI. If you need an ASCII only representation you can use the :func:`~werkzeug.urls.iri_to_uri` function: >>> from werkzeug.urls import iri_to_uri >>> iri_to_uri(get_current_url(env)) 'http://localhost/script/?param=foo' :param environ: the WSGI environment to get the current URL from. :param root_only: set `True` if you only want the root URL. :param strip_querystring: set to `True` if you don't want the querystring. :param host_only: set to `True` if the host URL should be returned. :param trusted_hosts: a list of trusted hosts, see :func:`host_is_trusted` for more information. """ tmp = [environ['wsgi.url_scheme'], '://', get_host(environ, trusted_hosts)] cat = tmp.append if host_only: return uri_to_iri(''.join(tmp) + '/') cat(url_quote(wsgi_get_bytes(environ.get('SCRIPT_NAME', ''))).rstrip('/')) cat('/') if not root_only: cat(url_quote(wsgi_get_bytes(environ.get('PATH_INFO', '')).lstrip(b'/'))) if not strip_querystring: qs = get_query_string(environ) if qs: cat('?' + qs) return uri_to_iri(''.join(tmp)) def host_is_trusted(hostname, trusted_list): """Checks if a host is trusted against a list. This also takes care of port normalization. .. versionadded:: 0.9 :param hostname: the hostname to check :param trusted_list: a list of hostnames to check against. If a hostname starts with a dot it will match against all subdomains as well. """ if not hostname: return False if isinstance(trusted_list, string_types): trusted_list = [trusted_list] def _normalize(hostname): if ':' in hostname: hostname = hostname.rsplit(':', 1)[0] return _encode_idna(hostname) try: hostname = _normalize(hostname) except UnicodeError: return False for ref in trusted_list: if ref.startswith('.'): ref = ref[1:] suffix_match = True else: suffix_match = False try: ref = _normalize(ref) except UnicodeError: return False if ref == hostname: return True if suffix_match and hostname.endswith(b'.' + ref): return True return False def get_host(environ, trusted_hosts=None): """Return the host for the given WSGI environment. This first checks the ``Host`` header. If it's not present, then ``SERVER_NAME`` and ``SERVER_PORT`` are used. The host will only contain the port if it is different than the standard port for the protocol. Optionally, verify that the host is trusted using :func:`host_is_trusted` and raise a :exc:`~werkzeug.exceptions.SecurityError` if it is not. :param environ: The WSGI environment to get the host from. :param trusted_hosts: A list of trusted hosts. :return: Host, with port if necessary. :raise ~werkzeug.exceptions.SecurityError: If the host is not trusted. """ if 'HTTP_HOST' in environ: rv = environ['HTTP_HOST'] if environ['wsgi.url_scheme'] == 'http' and rv.endswith(':80'): rv = rv[:-3] elif environ['wsgi.url_scheme'] == 'https' and rv.endswith(':443'): rv = rv[:-4] else: rv = environ['SERVER_NAME'] if (environ['wsgi.url_scheme'], environ['SERVER_PORT']) not \ in (('https', '443'), ('http', '80')): rv += ':' + environ['SERVER_PORT'] if trusted_hosts is not None: if not host_is_trusted(rv, trusted_hosts): from werkzeug.exceptions import SecurityError raise SecurityError('Host "%s" is not trusted' % rv) return rv def get_content_length(environ): """Returns the content length from the WSGI environment as integer. If it's not available or chunked transfer encoding is used, ``None`` is returned. .. versionadded:: 0.9 :param environ: the WSGI environ to fetch the content length from. """ if environ.get('HTTP_TRANSFER_ENCODING', '') == 'chunked': return None content_length = environ.get('CONTENT_LENGTH') if content_length is not None: try: return max(0, int(content_length)) except (ValueError, TypeError): pass def get_input_stream(environ, safe_fallback=True): """Returns the input stream from the WSGI environment and wraps it in the most sensible way possible. The stream returned is not the raw WSGI stream in most cases but one that is safe to read from without taking into account the content length. If content length is not set, the stream will be empty for safety reasons. If the WSGI server supports chunked or infinite streams, it should set the ``wsgi.input_terminated`` value in the WSGI environ to indicate that. .. versionadded:: 0.9 :param environ: the WSGI environ to fetch the stream from. :param safe_fallback: use an empty stream as a safe fallback when the content length is not set. Disabling this allows infinite streams, which can be a denial-of-service risk. """ stream = environ['wsgi.input'] content_length = get_content_length(environ) # A wsgi extension that tells us if the input is terminated. In # that case we return the stream unchanged as we know we can safely # read it until the end. if environ.get('wsgi.input_terminated'): return stream # If the request doesn't specify a content length, returning the stream is # potentially dangerous because it could be infinite, malicious or not. If # safe_fallback is true, return an empty stream instead for safety. if content_length is None: return safe_fallback and BytesIO() or stream # Otherwise limit the stream to the content length return LimitedStream(stream, content_length) def get_query_string(environ): """Returns the `QUERY_STRING` from the WSGI environment. This also takes care about the WSGI decoding dance on Python 3 environments as a native string. The string returned will be restricted to ASCII characters. .. versionadded:: 0.9 :param environ: the WSGI environment object to get the query string from. """ qs = wsgi_get_bytes(environ.get('QUERY_STRING', '')) # QUERY_STRING really should be ascii safe but some browsers # will send us some unicode stuff (I am looking at you IE). # In that case we want to urllib quote it badly. return try_coerce_native(url_quote(qs, safe=':&%=+$!*\'(),')) def get_path_info(environ, charset='utf-8', errors='replace'): """Returns the `PATH_INFO` from the WSGI environment and properly decodes it. This also takes care about the WSGI decoding dance on Python 3 environments. if the `charset` is set to `None` a bytestring is returned. .. versionadded:: 0.9 :param environ: the WSGI environment object to get the path from. :param charset: the charset for the path info, or `None` if no decoding should be performed. :param errors: the decoding error handling. """ path = wsgi_get_bytes(environ.get('PATH_INFO', '')) return to_unicode(path, charset, errors, allow_none_charset=True) def get_script_name(environ, charset='utf-8', errors='replace'): """Returns the `SCRIPT_NAME` from the WSGI environment and properly decodes it. This also takes care about the WSGI decoding dance on Python 3 environments. if the `charset` is set to `None` a bytestring is returned. .. versionadded:: 0.9 :param environ: the WSGI environment object to get the path from. :param charset: the charset for the path, or `None` if no decoding should be performed. :param errors: the decoding error handling. """ path = wsgi_get_bytes(environ.get('SCRIPT_NAME', '')) return to_unicode(path, charset, errors, allow_none_charset=True) def pop_path_info(environ, charset='utf-8', errors='replace'): """Removes and returns the next segment of `PATH_INFO`, pushing it onto `SCRIPT_NAME`. Returns `None` if there is nothing left on `PATH_INFO`. If the `charset` is set to `None` a bytestring is returned. If there are empty segments (``'/foo//bar``) these are ignored but properly pushed to the `SCRIPT_NAME`: >>> env = {'SCRIPT_NAME': '/foo', 'PATH_INFO': '/a/b'} >>> pop_path_info(env) 'a' >>> env['SCRIPT_NAME'] '/foo/a' >>> pop_path_info(env) 'b' >>> env['SCRIPT_NAME'] '/foo/a/b' .. versionadded:: 0.5 .. versionchanged:: 0.9 The path is now decoded and a charset and encoding parameter can be provided. :param environ: the WSGI environment that is modified. """ path = environ.get('PATH_INFO') if not path: return None script_name = environ.get('SCRIPT_NAME', '') # shift multiple leading slashes over old_path = path path = path.lstrip('/') if path != old_path: script_name += '/' * (len(old_path) - len(path)) if '/' not in path: environ['PATH_INFO'] = '' environ['SCRIPT_NAME'] = script_name + path rv = wsgi_get_bytes(path) else: segment, path = path.split('/', 1) environ['PATH_INFO'] = '/' + path environ['SCRIPT_NAME'] = script_name + segment rv = wsgi_get_bytes(segment) return to_unicode(rv, charset, errors, allow_none_charset=True) def peek_path_info(environ, charset='utf-8', errors='replace'): """Returns the next segment on the `PATH_INFO` or `None` if there is none. Works like :func:`pop_path_info` without modifying the environment: >>> env = {'SCRIPT_NAME': '/foo', 'PATH_INFO': '/a/b'} >>> peek_path_info(env) 'a' >>> peek_path_info(env) 'a' If the `charset` is set to `None` a bytestring is returned. .. versionadded:: 0.5 .. versionchanged:: 0.9 The path is now decoded and a charset and encoding parameter can be provided. :param environ: the WSGI environment that is checked. """ segments = environ.get('PATH_INFO', '').lstrip('/').split('/', 1) if segments: return to_unicode(wsgi_get_bytes(segments[0]), charset, errors, allow_none_charset=True) def extract_path_info(environ_or_baseurl, path_or_url, charset='utf-8', errors='replace', collapse_http_schemes=True): """Extracts the path info from the given URL (or WSGI environment) and path. The path info returned is a unicode string, not a bytestring suitable for a WSGI environment. The URLs might also be IRIs. If the path info could not be determined, `None` is returned. Some examples: >>> extract_path_info('http://example.com/app', '/app/hello') u'/hello' >>> extract_path_info('http://example.com/app', ... 'https://example.com/app/hello') u'/hello' >>> extract_path_info('http://example.com/app', ... 'https://example.com/app/hello', ... collapse_http_schemes=False) is None True Instead of providing a base URL you can also pass a WSGI environment. .. versionadded:: 0.6 :param environ_or_baseurl: a WSGI environment dict, a base URL or base IRI. This is the root of the application. :param path_or_url: an absolute path from the server root, a relative path (in which case it's the path info) or a full URL. Also accepts IRIs and unicode parameters. :param charset: the charset for byte data in URLs :param errors: the error handling on decode :param collapse_http_schemes: if set to `False` the algorithm does not assume that http and https on the same server point to the same resource. """ def _normalize_netloc(scheme, netloc): parts = netloc.split(u'@', 1)[-1].split(u':', 1) if len(parts) == 2: netloc, port = parts if (scheme == u'http' and port == u'80') or \ (scheme == u'https' and port == u'443'): port = None else: netloc = parts[0] port = None if port is not None: netloc += u':' + port return netloc # make sure whatever we are working on is a IRI and parse it path = uri_to_iri(path_or_url, charset, errors) if isinstance(environ_or_baseurl, dict): environ_or_baseurl = get_current_url(environ_or_baseurl, root_only=True) base_iri = uri_to_iri(environ_or_baseurl, charset, errors) base_scheme, base_netloc, base_path = url_parse(base_iri)[:3] cur_scheme, cur_netloc, cur_path, = \ url_parse(url_join(base_iri, path))[:3] # normalize the network location base_netloc = _normalize_netloc(base_scheme, base_netloc) cur_netloc = _normalize_netloc(cur_scheme, cur_netloc) # is that IRI even on a known HTTP scheme? if collapse_http_schemes: for scheme in base_scheme, cur_scheme: if scheme not in (u'http', u'https'): return None else: if not (base_scheme in (u'http', u'https') and base_scheme == cur_scheme): return None # are the netlocs compatible? if base_netloc != cur_netloc: return None # are we below the application path? base_path = base_path.rstrip(u'/') if not cur_path.startswith(base_path): return None return u'/' + cur_path[len(base_path):].lstrip(u'/') class ProxyMiddleware(object): """This middleware routes some requests to the provided WSGI app and proxies some requests to an external server. This is not something that can generally be done on the WSGI layer and some HTTP requests will not tunnel through correctly (for instance websocket requests cannot be proxied through WSGI). As a result this is only really useful for some basic requests that can be forwarded. Example configuration:: app = ProxyMiddleware(app, { '/static/': { 'target': 'http://127.0.0.1:5001/', } }) For each host options can be specified. The following options are supported: ``target``: the target URL to dispatch to ``remove_prefix``: if set to `True` the prefix is chopped off the URL before dispatching it to the server. ``host``: When set to ``'<auto>'`` which is the default the host header is automatically rewritten to the URL of the target. If set to `None` then the host header is unmodified from the client request. Any other value overwrites the host header with that value. ``headers``: An optional dictionary of headers that should be sent with the request to the target host. ``ssl_context``: In case this is an HTTPS target host then an SSL context can be provided here (:class:`ssl.SSLContext`). This can be used for instance to disable SSL verification. In this case everything below ``'/static/'`` is proxied to the server on port 5001. The host header is automatically rewritten and so are request URLs (eg: the leading `/static/` prefix here gets chopped off). .. versionadded:: 0.14 """ def __init__(self, app, targets, chunk_size=2 << 13, timeout=10): def _set_defaults(opts): opts.setdefault('remove_prefix', False) opts.setdefault('host', '<auto>') opts.setdefault('headers', {}) opts.setdefault('ssl_context', None) return opts self.app = app self.targets = dict(('/%s/' % k.strip('/'), _set_defaults(v)) for k, v in iteritems(targets)) self.chunk_size = chunk_size self.timeout = timeout def proxy_to(self, opts, path, prefix): target = url_parse(opts['target']) def application(environ, start_response): headers = list(EnvironHeaders(environ).items()) headers[:] = [(k, v) for k, v in headers if not is_hop_by_hop_header(k) and k.lower() not in ('content-length', 'host')] headers.append(('Connection', 'close')) if opts['host'] == '<auto>': headers.append(('Host', target.ascii_host)) elif opts['host'] is None: headers.append(('Host', environ['HTTP_HOST'])) else: headers.append(('Host', opts['host'])) headers.extend(opts['headers'].items()) remote_path = path if opts['remove_prefix']: remote_path = '%s/%s' % ( target.path.rstrip('/'), remote_path[len(prefix):].lstrip('/') ) content_length = environ.get('CONTENT_LENGTH') chunked = False if content_length not in ('', None): headers.append(('Content-Length', content_length)) elif content_length is not None: headers.append(('Transfer-Encoding', 'chunked')) chunked = True try: if target.scheme == 'http': con = httplib.HTTPConnection( target.ascii_host, target.port or 80, timeout=self.timeout) elif target.scheme == 'https': con = httplib.HTTPSConnection( target.ascii_host, target.port or 443, timeout=self.timeout, context=opts['ssl_context']) con.connect() remote_url = url_quote(remote_path) querystring = environ['QUERY_STRING'] if querystring: remote_url = remote_url + '?' + querystring con.putrequest(environ['REQUEST_METHOD'], remote_url, skip_host=True) for k, v in headers: if k.lower() == 'connection': v = 'close' con.putheader(k, v) con.endheaders() stream = get_input_stream(environ) while 1: data = stream.read(self.chunk_size) if not data: break if chunked: con.send(b'%x\r\n%s\r\n' % (len(data), data)) else: con.send(data) resp = con.getresponse() except socket.error: from werkzeug.exceptions import BadGateway return BadGateway()(environ, start_response) start_response('%d %s' % (resp.status, resp.reason), [(k.title(), v) for k, v in resp.getheaders() if not is_hop_by_hop_header(k)]) def read(): while 1: try: data = resp.read(self.chunk_size) except socket.error: break if not data: break yield data return read() return application def __call__(self, environ, start_response): path = environ['PATH_INFO'] app = self.app for prefix, opts in iteritems(self.targets): if path.startswith(prefix): app = self.proxy_to(opts, path, prefix) break return app(environ, start_response) class SharedDataMiddleware(object): """A WSGI middleware that provides static content for development environments or simple server setups. Usage is quite simple:: import os from werkzeug.wsgi import SharedDataMiddleware app = SharedDataMiddleware(app, { '/shared': os.path.join(os.path.dirname(__file__), 'shared') }) The contents of the folder ``./shared`` will now be available on ``http://example.com/shared/``. This is pretty useful during development because a standalone media server is not required. One can also mount files on the root folder and still continue to use the application because the shared data middleware forwards all unhandled requests to the application, even if the requests are below one of the shared folders. If `pkg_resources` is available you can also tell the middleware to serve files from package data:: app = SharedDataMiddleware(app, { '/shared': ('myapplication', 'shared_files') }) This will then serve the ``shared_files`` folder in the `myapplication` Python package. The optional `disallow` parameter can be a list of :func:`~fnmatch.fnmatch` rules for files that are not accessible from the web. If `cache` is set to `False` no caching headers are sent. Currently the middleware does not support non ASCII filenames. If the encoding on the file system happens to be the encoding of the URI it may work but this could also be by accident. We strongly suggest using ASCII only file names for static files. The middleware will guess the mimetype using the Python `mimetype` module. If it's unable to figure out the charset it will fall back to `fallback_mimetype`. .. versionchanged:: 0.5 The cache timeout is configurable now. .. versionadded:: 0.6 The `fallback_mimetype` parameter was added. :param app: the application to wrap. If you don't want to wrap an application you can pass it :exc:`NotFound`. :param exports: a list or dict of exported files and folders. :param disallow: a list of :func:`~fnmatch.fnmatch` rules. :param fallback_mimetype: the fallback mimetype for unknown files. :param cache: enable or disable caching headers. :param cache_timeout: the cache timeout in seconds for the headers. """ def __init__(self, app, exports, disallow=None, cache=True, cache_timeout=60 * 60 * 12, fallback_mimetype='text/plain'): self.app = app self.exports = [] self.cache = cache self.cache_timeout = cache_timeout if hasattr(exports, 'items'): exports = iteritems(exports) for key, value in exports: if isinstance(value, tuple): loader = self.get_package_loader(*value) elif isinstance(value, string_types): if os.path.isfile(value): loader = self.get_file_loader(value) else: loader = self.get_directory_loader(value) else: raise TypeError('unknown def %r' % value) self.exports.append((key, loader)) if disallow is not None: from fnmatch import fnmatch self.is_allowed = lambda x: not fnmatch(x, disallow) self.fallback_mimetype = fallback_mimetype def is_allowed(self, filename): """Subclasses can override this method to disallow the access to certain files. However by providing `disallow` in the constructor this method is overwritten. """ return True def _opener(self, filename): return lambda: ( open(filename, 'rb'), datetime.utcfromtimestamp(os.path.getmtime(filename)), int(os.path.getsize(filename)) ) def get_file_loader(self, filename): return lambda x: (os.path.basename(filename), self._opener(filename)) def get_package_loader(self, package, package_path): from pkg_resources import DefaultProvider, ResourceManager, \ get_provider loadtime = datetime.utcnow() provider = get_provider(package) manager = ResourceManager() filesystem_bound = isinstance(provider, DefaultProvider) def loader(path): if path is None: return None, None path = posixpath.join(package_path, path) if not provider.has_resource(path): return None, None basename = posixpath.basename(path) if filesystem_bound: return basename, self._opener( provider.get_resource_filename(manager, path)) s = provider.get_resource_string(manager, path) return basename, lambda: ( BytesIO(s), loadtime, len(s) ) return loader def get_directory_loader(self, directory): def loader(path): if path is not None: path = os.path.join(directory, path) else: path = directory if os.path.isfile(path): return os.path.basename(path), self._opener(path) return None, None return loader def generate_etag(self, mtime, file_size, real_filename): if not isinstance(real_filename, bytes): real_filename = real_filename.encode(get_filesystem_encoding()) return 'wzsdm-%d-%s-%s' % ( mktime(mtime.timetuple()), file_size, adler32(real_filename) & 0xffffffff ) def __call__(self, environ, start_response): cleaned_path = get_path_info(environ) if PY2: cleaned_path = cleaned_path.encode(get_filesystem_encoding()) # sanitize the path for non unix systems cleaned_path = cleaned_path.strip('/') for sep in os.sep, os.altsep: if sep and sep != '/': cleaned_path = cleaned_path.replace(sep, '/') path = '/' + '/'.join(x for x in cleaned_path.split('/') if x and x != '..') file_loader = None for search_path, loader in self.exports: if search_path == path: real_filename, file_loader = loader(None) if file_loader is not None: break if not search_path.endswith('/'): search_path += '/' if path.startswith(search_path): real_filename, file_loader = loader(path[len(search_path):]) if file_loader is not None: break if file_loader is None or not self.is_allowed(real_filename): return self.app(environ, start_response) guessed_type = mimetypes.guess_type(real_filename) mime_type = guessed_type[0] or self.fallback_mimetype f, mtime, file_size = file_loader() headers = [('Date', http_date())] if self.cache: timeout = self.cache_timeout etag = self.generate_etag(mtime, file_size, real_filename) headers += [ ('Etag', '"%s"' % etag), ('Cache-Control', 'max-age=%d, public' % timeout) ] if not is_resource_modified(environ, etag, last_modified=mtime): f.close() start_response('304 Not Modified', headers) return [] headers.append(('Expires', http_date(time() + timeout))) else: headers.append(('Cache-Control', 'public')) headers.extend(( ('Content-Type', mime_type), ('Content-Length', str(file_size)), ('Last-Modified', http_date(mtime)) )) start_response('200 OK', headers) return wrap_file(environ, f) class DispatcherMiddleware(object): """Allows one to mount middlewares or applications in a WSGI application. This is useful if you want to combine multiple WSGI applications:: app = DispatcherMiddleware(app, { '/app2': app2, '/app3': app3 }) """ def __init__(self, app, mounts=None): self.app = app self.mounts = mounts or {} def __call__(self, environ, start_response): script = environ.get('PATH_INFO', '') path_info = '' while '/' in script: if script in self.mounts: app = self.mounts[script] break script, last_item = script.rsplit('/', 1) path_info = '/%s%s' % (last_item, path_info) else: app = self.mounts.get(script, self.app) original_script_name = environ.get('SCRIPT_NAME', '') environ['SCRIPT_NAME'] = original_script_name + script environ['PATH_INFO'] = path_info return app(environ, start_response) @implements_iterator class ClosingIterator(object): """The WSGI specification requires that all middlewares and gateways respect the `close` callback of the iterable returned by the application. Because it is useful to add another close action to a returned iterable and adding a custom iterable is a boring task this class can be used for that:: return ClosingIterator(app(environ, start_response), [cleanup_session, cleanup_locals]) If there is just one close function it can be passed instead of the list. A closing iterator is not needed if the application uses response objects and finishes the processing if the response is started:: try: return response(environ, start_response) finally: cleanup_session() cleanup_locals() """ def __init__(self, iterable, callbacks=None): iterator = iter(iterable) self._next = partial(next, iterator) if callbacks is None: callbacks = [] elif callable(callbacks): callbacks = [callbacks] else: callbacks = list(callbacks) iterable_close = getattr(iterable, 'close', None) if iterable_close: callbacks.insert(0, iterable_close) self._callbacks = callbacks def __iter__(self): return self def __next__(self): return self._next() def close(self): for callback in self._callbacks: callback() def wrap_file(environ, file, buffer_size=8192): """Wraps a file. This uses the WSGI server's file wrapper if available or otherwise the generic :class:`FileWrapper`. .. versionadded:: 0.5 If the file wrapper from the WSGI server is used it's important to not iterate over it from inside the application but to pass it through unchanged. If you want to pass out a file wrapper inside a response object you have to set :attr:`~BaseResponse.direct_passthrough` to `True`. More information about file wrappers are available in :pep:`333`. :param file: a :class:`file`-like object with a :meth:`~file.read` method. :param buffer_size: number of bytes for one iteration. """ return environ.get('wsgi.file_wrapper', FileWrapper)(file, buffer_size) @implements_iterator class FileWrapper(object): """This class can be used to convert a :class:`file`-like object into an iterable. It yields `buffer_size` blocks until the file is fully read. You should not use this class directly but rather use the :func:`wrap_file` function that uses the WSGI server's file wrapper support if it's available. .. versionadded:: 0.5 If you're using this object together with a :class:`BaseResponse` you have to use the `direct_passthrough` mode. :param file: a :class:`file`-like object with a :meth:`~file.read` method. :param buffer_size: number of bytes for one iteration. """ def __init__(self, file, buffer_size=8192): self.file = file self.buffer_size = buffer_size def close(self): if hasattr(self.file, 'close'): self.file.close() def seekable(self): if hasattr(self.file, 'seekable'): return self.file.seekable() if hasattr(self.file, 'seek'): return True return False def seek(self, *args): if hasattr(self.file, 'seek'): self.file.seek(*args) def tell(self): if hasattr(self.file, 'tell'): return self.file.tell() return None def __iter__(self): return self def __next__(self): data = self.file.read(self.buffer_size) if data: return data raise StopIteration() @implements_iterator class _RangeWrapper(object): # private for now, but should we make it public in the future ? """This class can be used to convert an iterable object into an iterable that will only yield a piece of the underlying content. It yields blocks until the underlying stream range is fully read. The yielded blocks will have a size that can't exceed the original iterator defined block size, but that can be smaller. If you're using this object together with a :class:`BaseResponse` you have to use the `direct_passthrough` mode. :param iterable: an iterable object with a :meth:`__next__` method. :param start_byte: byte from which read will start. :param byte_range: how many bytes to read. """ def __init__(self, iterable, start_byte=0, byte_range=None): self.iterable = iter(iterable) self.byte_range = byte_range self.start_byte = start_byte self.end_byte = None if byte_range is not None: self.end_byte = self.start_byte + self.byte_range self.read_length = 0 self.seekable = hasattr(iterable, 'seekable') and iterable.seekable() self.end_reached = False def __iter__(self): return self def _next_chunk(self): try: chunk = next(self.iterable) self.read_length += len(chunk) return chunk except StopIteration: self.end_reached = True raise def _first_iteration(self): chunk = None if self.seekable: self.iterable.seek(self.start_byte) self.read_length = self.iterable.tell() contextual_read_length = self.read_length else: while self.read_length <= self.start_byte: chunk = self._next_chunk() if chunk is not None: chunk = chunk[self.start_byte - self.read_length:] contextual_read_length = self.start_byte return chunk, contextual_read_length def _next(self): if self.end_reached: raise StopIteration() chunk = None contextual_read_length = self.read_length if self.read_length == 0: chunk, contextual_read_length = self._first_iteration() if chunk is None: chunk = self._next_chunk() if self.end_byte is not None and self.read_length >= self.end_byte: self.end_reached = True return chunk[:self.end_byte - contextual_read_length] return chunk def __next__(self): chunk = self._next() if chunk: return chunk self.end_reached = True raise StopIteration() def close(self): if hasattr(self.iterable, 'close'): self.iterable.close() def _make_chunk_iter(stream, limit, buffer_size): """Helper for the line and chunk iter functions.""" if isinstance(stream, (bytes, bytearray, text_type)): raise TypeError('Passed a string or byte object instead of ' 'true iterator or stream.') if not hasattr(stream, 'read'): for item in stream: if item: yield item return if not isinstance(stream, LimitedStream) and limit is not None: stream = LimitedStream(stream, limit) _read = stream.read while 1: item = _read(buffer_size) if not item: break yield item def make_line_iter(stream, limit=None, buffer_size=10 * 1024, cap_at_buffer=False): """Safely iterates line-based over an input stream. If the input stream is not a :class:`LimitedStream` the `limit` parameter is mandatory. This uses the stream's :meth:`~file.read` method internally as opposite to the :meth:`~file.readline` method that is unsafe and can only be used in violation of the WSGI specification. The same problem applies to the `__iter__` function of the input stream which calls :meth:`~file.readline` without arguments. If you need line-by-line processing it's strongly recommended to iterate over the input stream using this helper function. .. versionchanged:: 0.8 This function now ensures that the limit was reached. .. versionadded:: 0.9 added support for iterators as input stream. .. versionadded:: 0.11.10 added support for the `cap_at_buffer` parameter. :param stream: the stream or iterate to iterate over. :param limit: the limit in bytes for the stream. (Usually content length. Not necessary if the `stream` is a :class:`LimitedStream`. :param buffer_size: The optional buffer size. :param cap_at_buffer: if this is set chunks are split if they are longer than the buffer size. Internally this is implemented that the buffer size might be exhausted by a factor of two however. """ _iter = _make_chunk_iter(stream, limit, buffer_size) first_item = next(_iter, '') if not first_item: return s = make_literal_wrapper(first_item) empty = s('') cr = s('\r') lf = s('\n') crlf = s('\r\n') _iter = chain((first_item,), _iter) def _iter_basic_lines(): _join = empty.join buffer = [] while 1: new_data = next(_iter, '') if not new_data: break new_buf = [] buf_size = 0 for item in chain(buffer, new_data.splitlines(True)): new_buf.append(item) buf_size += len(item) if item and item[-1:] in crlf: yield _join(new_buf) new_buf = [] elif cap_at_buffer and buf_size >= buffer_size: rv = _join(new_buf) while len(rv) >= buffer_size: yield rv[:buffer_size] rv = rv[buffer_size:] new_buf = [rv] buffer = new_buf if buffer: yield _join(buffer) # This hackery is necessary to merge 'foo\r' and '\n' into one item # of 'foo\r\n' if we were unlucky and we hit a chunk boundary. previous = empty for item in _iter_basic_lines(): if item == lf and previous[-1:] == cr: previous += item item = empty if previous: yield previous previous = item if previous: yield previous def make_chunk_iter(stream, separator, limit=None, buffer_size=10 * 1024, cap_at_buffer=False): """Works like :func:`make_line_iter` but accepts a separator which divides chunks. If you want newline based processing you should use :func:`make_line_iter` instead as it supports arbitrary newline markers. .. versionadded:: 0.8 .. versionadded:: 0.9 added support for iterators as input stream. .. versionadded:: 0.11.10 added support for the `cap_at_buffer` parameter. :param stream: the stream or iterate to iterate over. :param separator: the separator that divides chunks. :param limit: the limit in bytes for the stream. (Usually content length. Not necessary if the `stream` is otherwise already limited). :param buffer_size: The optional buffer size. :param cap_at_buffer: if this is set chunks are split if they are longer than the buffer size. Internally this is implemented that the buffer size might be exhausted by a factor of two however. """ _iter = _make_chunk_iter(stream, limit, buffer_size) first_item = next(_iter, '') if not first_item: return _iter = chain((first_item,), _iter) if isinstance(first_item, text_type): separator = to_unicode(separator) _split = re.compile(r'(%s)' % re.escape(separator)).split _join = u''.join else: separator = to_bytes(separator) _split = re.compile(b'(' + re.escape(separator) + b')').split _join = b''.join buffer = [] while 1: new_data = next(_iter, '') if not new_data: break chunks = _split(new_data) new_buf = [] buf_size = 0 for item in chain(buffer, chunks): if item == separator: yield _join(new_buf) new_buf = [] buf_size = 0 else: buf_size += len(item) new_buf.append(item) if cap_at_buffer and buf_size >= buffer_size: rv = _join(new_buf) while len(rv) >= buffer_size: yield rv[:buffer_size] rv = rv[buffer_size:] new_buf = [rv] buf_size = len(rv) buffer = new_buf if buffer: yield _join(buffer) @implements_iterator class LimitedStream(io.IOBase): """Wraps a stream so that it doesn't read more than n bytes. If the stream is exhausted and the caller tries to get more bytes from it :func:`on_exhausted` is called which by default returns an empty string. The return value of that function is forwarded to the reader function. So if it returns an empty string :meth:`read` will return an empty string as well. The limit however must never be higher than what the stream can output. Otherwise :meth:`readlines` will try to read past the limit. .. admonition:: Note on WSGI compliance calls to :meth:`readline` and :meth:`readlines` are not WSGI compliant because it passes a size argument to the readline methods. Unfortunately the WSGI PEP is not safely implementable without a size argument to :meth:`readline` because there is no EOF marker in the stream. As a result of that the use of :meth:`readline` is discouraged. For the same reason iterating over the :class:`LimitedStream` is not portable. It internally calls :meth:`readline`. We strongly suggest using :meth:`read` only or using the :func:`make_line_iter` which safely iterates line-based over a WSGI input stream. :param stream: the stream to wrap. :param limit: the limit for the stream, must not be longer than what the string can provide if the stream does not end with `EOF` (like `wsgi.input`) """ def __init__(self, stream, limit): self._read = stream.read self._readline = stream.readline self._pos = 0 self.limit = limit def __iter__(self): return self @property def is_exhausted(self): """If the stream is exhausted this attribute is `True`.""" return self._pos >= self.limit def on_exhausted(self): """This is called when the stream tries to read past the limit. The return value of this function is returned from the reading function. """ # Read null bytes from the stream so that we get the # correct end of stream marker. return self._read(0) def on_disconnect(self): """What should happen if a disconnect is detected? The return value of this function is returned from read functions in case the client went away. By default a :exc:`~werkzeug.exceptions.ClientDisconnected` exception is raised. """ from werkzeug.exceptions import ClientDisconnected raise ClientDisconnected() def exhaust(self, chunk_size=1024 * 64): """Exhaust the stream. This consumes all the data left until the limit is reached. :param chunk_size: the size for a chunk. It will read the chunk until the stream is exhausted and throw away the results. """ to_read = self.limit - self._pos chunk = chunk_size while to_read > 0: chunk = min(to_read, chunk) self.read(chunk) to_read -= chunk def read(self, size=None): """Read `size` bytes or if size is not provided everything is read. :param size: the number of bytes read. """ if self._pos >= self.limit: return self.on_exhausted() if size is None or size == -1: # -1 is for consistence with file size = self.limit to_read = min(self.limit - self._pos, size) try: read = self._read(to_read) except (IOError, ValueError): return self.on_disconnect() if to_read and len(read) != to_read: return self.on_disconnect() self._pos += len(read) return read def readline(self, size=None): """Reads one line from the stream.""" if self._pos >= self.limit: return self.on_exhausted() if size is None: size = self.limit - self._pos else: size = min(size, self.limit - self._pos) try: line = self._readline(size) except (ValueError, IOError): return self.on_disconnect() if size and not line: return self.on_disconnect() self._pos += len(line) return line def readlines(self, size=None): """Reads a file into a list of strings. It calls :meth:`readline` until the file is read to the end. It does support the optional `size` argument if the underlaying stream supports it for `readline`. """ last_pos = self._pos result = [] if size is not None: end = min(self.limit, last_pos + size) else: end = self.limit while 1: if size is not None: size -= last_pos - self._pos if self._pos >= end: break result.append(self.readline(size)) if size is not None: last_pos = self._pos return result def tell(self): """Returns the position of the stream. .. versionadded:: 0.9 """ return self._pos def __next__(self): line = self.readline() if not line: raise StopIteration() return line def readable(self): return True
the-stack_106_27817
from struct import pack, unpack import hashlib import sys import traceback from typing import Optional, Tuple from electrum_zcash import constants from electrum_zcash import ecc from electrum_zcash import bip32 from electrum_zcash.crypto import hash_160 from electrum_zcash.bitcoin import (int_to_hex, var_int, b58_address_to_hash160, hash160_to_b58_address, is_b58_address) from electrum_zcash.bip32 import BIP32Node, convert_bip32_intpath_to_strpath from electrum_zcash.i18n import _ from electrum_zcash.keystore import Hardware_KeyStore from electrum_zcash.transaction import Transaction, PartialTransaction, PartialTxInput, PartialTxOutput from electrum_zcash.wallet import Standard_Wallet from electrum_zcash.util import bfh, bh2u, versiontuple, UserFacingException from electrum_zcash.base_wizard import ScriptTypeNotSupported from electrum_zcash.logging import get_logger from electrum_zcash.plugin import runs_in_hwd_thread, Device from ..hw_wallet import HW_PluginBase, HardwareClientBase from ..hw_wallet.plugin import is_any_tx_output_on_change_branch, validate_op_return_output, LibraryFoundButUnusable _logger = get_logger(__name__) def setAlternateCoinVersions(self, regular, p2sh): apdu = [self.BTCHIP_CLA, 0x14, 0x00, 0x00, 0x02, regular, p2sh] self.dongle.exchange(bytearray(apdu)) try: import hid from btchip.btchipComm import HIDDongleHIDAPI, DongleWait from btchip.btchip import btchip from btchip.btchipUtils import compress_public_key,format_transaction, get_regular_input_script, get_p2sh_input_script from btchip.btchipFirmwareWizard import checkFirmware, updateFirmware from btchip.btchipException import BTChipException from .btchip_zcash import btchip_zcash, zcashTransaction btchip.setAlternateCoinVersions = setAlternateCoinVersions BTCHIP = True BTCHIP_DEBUG = False except ImportError as e: if not (isinstance(e, ModuleNotFoundError) and e.name == 'btchip'): _logger.exception('error importing ledger plugin deps') BTCHIP = False btchip = object # to test whithout btchip modules (see btchip_zcash class) MSG_NEEDS_FW_UPDATE_GENERIC = _('Firmware version too old. Please update at') + \ ' https://www.ledgerwallet.com' MSG_NEEDS_FW_UPDATE_OVERWINTER = (_('Firmware version too old for ' 'Overwinter/Sapling support. ' 'Please update at') + ' https://www.ledgerwallet.com') MULTI_OUTPUT_SUPPORT = '1.1.4' ALTERNATIVE_COIN_VERSION = '1.0.1' OVERWINTER_SUPPORT = '1.3.3' def test_pin_unlocked(func): """Function decorator to test the Ledger for being unlocked, and if not, raise a human-readable exception. """ def catch_exception(self, *args, **kwargs): try: return func(self, *args, **kwargs) except BTChipException as e: if e.sw == 0x6982: raise UserFacingException(_('Your Ledger is locked. Please unlock it.')) else: raise return catch_exception class Ledger_Client(HardwareClientBase): def __init__(self, hidDevice, *, product_key: Tuple[int, int], plugin: HW_PluginBase): HardwareClientBase.__init__(self, plugin=plugin) self.dongleObject = btchip_zcash(hidDevice) self.preflightDone = False self._product_key = product_key self._soft_device_id = None def is_pairable(self): return True @runs_in_hwd_thread def close(self): self.dongleObject.dongle.close() def is_initialized(self): return True @runs_in_hwd_thread def get_soft_device_id(self): if self._soft_device_id is None: # modern ledger can provide xpub without user interaction # (hw1 would prompt for PIN) if not self.is_hw1(): self._soft_device_id = self.request_root_fingerprint_from_device() return self._soft_device_id def is_hw1(self) -> bool: return self._product_key[0] == 0x2581 def device_model_name(self): return LedgerPlugin.device_name_from_product_key(self._product_key) @runs_in_hwd_thread def has_usable_connection_with_device(self): try: self.dongleObject.getFirmwareVersion() except BaseException: return False return True @runs_in_hwd_thread @test_pin_unlocked def get_xpub(self, bip32_path, xtype): self.checkDevice() # bip32_path is of the form 44'/133'/1' # S-L-O-W - we don't handle the fingerprint directly, so compute # it manually from the previous node # This only happens once so it's bearable #self.get_client() # prompt for the PIN before displaying the dialog if necessary #self.handler.show_message("Computing master public key") bip32_path = bip32.normalize_bip32_derivation(bip32_path) bip32_intpath = bip32.convert_bip32_path_to_list_of_uint32(bip32_path) bip32_path = bip32_path[2:] # cut off "m/" if len(bip32_intpath) >= 1: prevPath = bip32.convert_bip32_intpath_to_strpath(bip32_intpath[:-1])[2:] nodeData = self.dongleObject.getWalletPublicKey(prevPath) publicKey = compress_public_key(nodeData['publicKey']) fingerprint_bytes = hash_160(publicKey)[0:4] childnum_bytes = bip32_intpath[-1].to_bytes(length=4, byteorder="big") else: fingerprint_bytes = bytes(4) childnum_bytes = bytes(4) nodeData = self.dongleObject.getWalletPublicKey(bip32_path) publicKey = compress_public_key(nodeData['publicKey']) depth = len(bip32_intpath) return BIP32Node(xtype=xtype, eckey=ecc.ECPubkey(bytes(publicKey)), chaincode=nodeData['chainCode'], depth=depth, fingerprint=fingerprint_bytes, child_number=childnum_bytes).to_xpub() def has_detached_pin_support(self, client): try: client.getVerifyPinRemainingAttempts() return True except BTChipException as e: if e.sw == 0x6d00: return False raise e def is_pin_validated(self, client): try: # Invalid SET OPERATION MODE to verify the PIN status client.dongle.exchange(bytearray([0xe0, 0x26, 0x00, 0x00, 0x01, 0xAB])) except BTChipException as e: if (e.sw == 0x6982): return False if (e.sw == 0x6A80): return True raise e def supports_multi_output(self): return self.multiOutputSupported def supports_overwinter(self): return self.overwinterSupported @runs_in_hwd_thread def perform_hw1_preflight(self): try: firmwareInfo = self.dongleObject.getFirmwareVersion() firmware = firmwareInfo['version'] self.multiOutputSupported = versiontuple(firmware) >= versiontuple(MULTI_OUTPUT_SUPPORT) self.overwinterSupported = versiontuple(firmware) >= versiontuple(OVERWINTER_SUPPORT) self.canAlternateCoinVersions = (versiontuple(firmware) >= versiontuple(ALTERNATIVE_COIN_VERSION) and firmwareInfo['specialVersion'] >= 0x20) if not checkFirmware(firmwareInfo): self.close() raise UserFacingException(MSG_NEEDS_FW_UPDATE_GENERIC) try: self.dongleObject.getOperationMode() except BTChipException as e: if (e.sw == 0x6985): self.close() self.handler.get_setup() # Acquire the new client on the next run else: raise e if self.has_detached_pin_support(self.dongleObject) and not self.is_pin_validated(self.dongleObject): assert self.handler, "no handler for client" remaining_attempts = self.dongleObject.getVerifyPinRemainingAttempts() if remaining_attempts != 1: msg = "Enter your Ledger PIN - remaining attempts : " + str(remaining_attempts) else: msg = "Enter your Ledger PIN - WARNING : LAST ATTEMPT. If the PIN is not correct, the dongle will be wiped." confirmed, p, pin = self.password_dialog(msg) if not confirmed: raise UserFacingException('Aborted by user - please unplug the dongle and plug it again before retrying') pin = pin.encode() self.dongleObject.verifyPin(pin) if self.canAlternateCoinVersions: self.dongleObject.setAlternateCoinVersions(constants.net.ADDRTYPE_P2PKH, constants.net.ADDRTYPE_P2SH) except BTChipException as e: if (e.sw == 0x6faa): raise UserFacingException("Dongle is temporarily locked - please unplug it and replug it again") if ((e.sw & 0xFFF0) == 0x63c0): raise UserFacingException("Invalid PIN - please unplug the dongle and plug it again before retrying") if e.sw == 0x6f00 and e.message == 'Invalid channel': # based on docs 0x6f00 might be a more general error, hence we also compare message to be sure raise UserFacingException("Invalid channel.\n" "Please make sure that 'Browser support' is disabled on your device.") raise e @runs_in_hwd_thread def checkDevice(self): if not self.preflightDone: try: self.perform_hw1_preflight() except BTChipException as e: if (e.sw == 0x6d00 or e.sw == 0x6700): raise UserFacingException(_("Device not in Zcash mode")) from e raise e self.preflightDone = True def password_dialog(self, msg=None): response = self.handler.get_word(msg) if response is None: return False, None, None return True, response, response class Ledger_KeyStore(Hardware_KeyStore): hw_type = 'ledger' device = 'Ledger' plugin: 'LedgerPlugin' def __init__(self, d): Hardware_KeyStore.__init__(self, d) # Errors and other user interaction is done through the wallet's # handler. The handler is per-window and preserved across # device reconnects self.force_watching_only = False self.signing = False self.cfg = d.get('cfg', {'mode': 0}) def dump(self): obj = Hardware_KeyStore.dump(self) obj['cfg'] = self.cfg return obj def get_client(self): return self.plugin.get_client(self).dongleObject def get_client_electrum(self) -> Optional[Ledger_Client]: return self.plugin.get_client(self) def give_error(self, message, clear_client = False): _logger.info(message) if not self.signing: self.handler.show_error(message) else: self.signing = False if clear_client: self.client = None raise UserFacingException(message) def set_and_unset_signing(func): """Function decorator to set and unset self.signing.""" def wrapper(self, *args, **kwargs): try: self.signing = True return func(self, *args, **kwargs) finally: self.signing = False return wrapper def decrypt_message(self, pubkey, message, password): raise UserFacingException(_('Encryption and decryption are currently not supported for {}').format(self.device)) @runs_in_hwd_thread @test_pin_unlocked @set_and_unset_signing def sign_message(self, sequence, message, password): message = message.encode('utf8') message_hash = hashlib.sha256(message).hexdigest().upper() # prompt for the PIN before displaying the dialog if necessary client_ledger = self.get_client() client_electrum = self.get_client_electrum() address_path = self.get_derivation_prefix()[2:] + "/%d/%d"%sequence self.handler.show_message("Signing message ...\r\nMessage hash: "+message_hash) try: info = client_ledger.signMessagePrepare(address_path, message) pin = "" if info['confirmationNeeded']: # do the authenticate dialog and get pin: pin = self.handler.get_auth(info, client=client_electrum) if not pin: raise UserWarning(_('Cancelled by user')) pin = str(pin).encode() signature = client_ledger.signMessageSign(pin) except BTChipException as e: if e.sw == 0x6a80: self.give_error("Unfortunately, this message cannot be signed by the Ledger wallet. Only alphanumerical messages shorter than 140 characters are supported. Please remove any extra characters (tab, carriage return) and retry.") elif e.sw == 0x6985: # cancelled by user return b'' elif e.sw == 0x6982: raise # pin lock. decorator will catch it else: self.give_error(e, True) except UserWarning: self.handler.show_error(_('Cancelled by user')) return b'' except Exception as e: self.give_error(e, True) finally: self.handler.finished() # Parse the ASN.1 signature rLength = signature[3] r = signature[4 : 4 + rLength] sLength = signature[4 + rLength + 1] s = signature[4 + rLength + 2:] if rLength == 33: r = r[1:] if sLength == 33: s = s[1:] # And convert it # Pad r and s points with 0x00 bytes when the point is small to get valid signature. r_padded = bytes([0x00]) * (32 - len(r)) + r s_padded = bytes([0x00]) * (32 - len(s)) + s return bytes([27 + 4 + (signature[0] & 0x01)]) + r_padded + s_padded @runs_in_hwd_thread @test_pin_unlocked @set_and_unset_signing def sign_transaction(self, tx, password): if tx.is_complete(): return inputs = [] inputsPaths = [] chipInputs = [] redeemScripts = [] changePath = "" output = None p2shTransaction = False pin = "" client_ledger = self.get_client() # prompt for the PIN before displaying the dialog if necessary client_electrum = self.get_client_electrum() assert client_electrum if tx.overwintered: if not client_electrum.supports_overwinter(): self.give_error(MSG_NEEDS_FW_UPDATE_OVERWINTER) # Fetch inputs of the transaction to sign for txin in tx.inputs(): if txin.is_coinbase_input(): self.give_error("Coinbase not supported") # should never happen if txin.script_type in ['p2sh']: p2shTransaction = True my_pubkey, full_path = self.find_my_pubkey_in_txinout(txin) if not full_path: self.give_error("No matching pubkey for sign_transaction") # should never happen full_path = convert_bip32_intpath_to_strpath(full_path)[2:] redeemScript = Transaction.get_preimage_script(txin) txin_prev_tx = txin.utxo if txin_prev_tx is None: raise UserFacingException(_('Missing previous tx for legacy input.')) txin_prev_tx_raw = txin_prev_tx.serialize() if txin_prev_tx else None inputs.append([txin_prev_tx_raw, txin.prevout.out_idx, redeemScript, txin.prevout.txid.hex(), my_pubkey, txin.nsequence, txin.value_sats()]) inputsPaths.append(full_path) # Sanity check if p2shTransaction: for txin in tx.inputs(): if txin.script_type != 'p2sh': self.give_error("P2SH / regular input mixed in same transaction not supported") # should never happen txOutput = var_int(len(tx.outputs())) for o in tx.outputs(): txOutput += int_to_hex(o.value, 8) script = o.scriptpubkey.hex() txOutput += var_int(len(script)//2) txOutput += script txOutput = bfh(txOutput) if not client_electrum.supports_multi_output(): if len(tx.outputs()) > 2: self.give_error("Transaction with more than 2 outputs not supported") for txout in tx.outputs(): if client_electrum.is_hw1() and txout.address and not is_b58_address(txout.address): self.give_error(_("This {} device can only send to base58 addresses.").format(self.device)) if not txout.address: if client_electrum.is_hw1(): self.give_error(_("Only address outputs are supported by {}").format(self.device)) # note: max_size based on https://github.com/LedgerHQ/ledger-app-btc/commit/3a78dee9c0484821df58975803e40d58fbfc2c38#diff-c61ccd96a6d8b54d48f54a3bc4dfa7e2R26 validate_op_return_output(txout, max_size=190) # Output "change" detection # - only one output and one change is authorized (for hw.1 and nano) # - at most one output can bypass confirmation (~change) (for all) if not p2shTransaction: has_change = False any_output_on_change_branch = is_any_tx_output_on_change_branch(tx) for txout in tx.outputs(): if txout.is_mine and len(tx.outputs()) > 1 \ and not has_change: # prioritise hiding outputs on the 'change' branch from user # because no more than one change address allowed if txout.is_change == any_output_on_change_branch: my_pubkey, changePath = self.find_my_pubkey_in_txinout(txout) assert changePath changePath = convert_bip32_intpath_to_strpath(changePath)[2:] has_change = True else: output = txout.address else: output = txout.address if not self.get_client_electrum().canAlternateCoinVersions: v, h = b58_address_to_hash160(output) if v == constants.net.ADDRTYPE_P2PKH: output = hash160_to_b58_address(h, 0) self.handler.show_message(_("Confirm Transaction on your Ledger device...")) try: # Get trusted inputs from the original transactions for utxo in inputs: sequence = int_to_hex(utxo[5], 4) if tx.overwintered: txtmp = zcashTransaction(bfh(utxo[0])) tmp = bfh(utxo[3])[::-1] tmp += bfh(int_to_hex(utxo[1], 4)) tmp += txtmp.outputs[utxo[1]].amount chipInputs.append({'value' : tmp, 'sequence' : sequence}) redeemScripts.append(bfh(utxo[2])) elif (not p2shTransaction) or client_electrum.supports_multi_output(): txtmp = zcashTransaction(bfh(utxo[0])) trustedInput = client_ledger.getTrustedInput(txtmp, utxo[1]) trustedInput['sequence'] = sequence chipInputs.append(trustedInput) if p2shTransaction: redeemScripts.append(bfh(utxo[2])) else: redeemScripts.append(txtmp.outputs[utxo[1]].script) else: tmp = bfh(utxo[3])[::-1] tmp += bfh(int_to_hex(utxo[1], 4)) chipInputs.append({'value' : tmp, 'sequence' : sequence}) redeemScripts.append(bfh(utxo[2])) # Sign all inputs firstTransaction = True inputIndex = 0 rawTx = tx.serialize_to_network() client_ledger.enableAlternate2fa(False) if tx.overwintered: self.get_client().startUntrustedTransaction(True, inputIndex, chipInputs, redeemScripts[inputIndex], version=tx.version, overwintered=tx.overwintered) # we don't set meaningful outputAddress, amount and fees # as we only care about the alternateEncoding==True branch if tx.overwintered: inputSignature = client_ledger.untrustedHashSign('', pin, lockTime=tx.locktime, overwintered=tx.overwintered) outputData = client_ledger.finalizeInput(b'', 0, 0, changePath, bfh(rawTx)) outputData['outputData'] = txOutput if outputData['confirmationNeeded']: outputData['address'] = output self.handler.finished() # do the authenticate dialog and get pin: pin = self.handler.get_auth(outputData, client=client_electrum) if not pin: raise UserWarning() self.handler.show_message(_("Confirmed. Signing Transaction...")) while inputIndex < len(inputs): singleInput = [chipInputs[inputIndex]] client_ledger.startUntrustedTransaction(False, 0, singleInput, redeemScripts[inputIndex], version=tx.version, overwintered=tx.overwintered) inputSignature = client_ledger.untrustedHashSign(inputsPaths[inputIndex], pin, lockTime=tx.locktime, overwintered=tx.overwintered) inputSignature[0] = 0x30 # force for 1.4.9+ my_pubkey = inputs[inputIndex][4] tx.add_signature_to_txin(txin_idx=inputIndex, signing_pubkey=my_pubkey.hex(), sig=inputSignature.hex()) inputIndex = inputIndex + 1 else: while inputIndex < len(inputs): client_ledger.startUntrustedTransaction(firstTransaction, inputIndex, chipInputs, redeemScripts[inputIndex], version=tx.version) # we don't set meaningful outputAddress, amount and fees # as we only care about the alternateEncoding==True branch outputData = client_ledger.finalizeInput(b'', 0, 0, changePath, bfh(rawTx)) outputData['outputData'] = txOutput if outputData['confirmationNeeded']: outputData['address'] = output self.handler.finished() # do the authenticate dialog and get pin: pin = self.handler.get_auth(outputData, client=client_electrum) if not pin: raise UserWarning() self.handler.show_message(_("Confirmed. Signing Transaction...")) else: # Sign input with the provided PIN inputSignature = client_ledger.untrustedHashSign(inputsPaths[inputIndex], pin, lockTime=tx.locktime) inputSignature[0] = 0x30 # force for 1.4.9+ my_pubkey = inputs[inputIndex][4] tx.add_signature_to_txin(txin_idx=inputIndex, signing_pubkey=my_pubkey.hex(), sig=inputSignature.hex()) inputIndex = inputIndex + 1 firstTransaction = False except UserWarning: self.handler.show_error(_('Cancelled by user')) return except BTChipException as e: if e.sw in (0x6985, 0x6d00): # cancelled by user return elif e.sw == 0x6982: raise # pin lock. decorator will catch it else: self.logger.exception('') self.give_error(e, True) except BaseException as e: self.logger.exception('') self.give_error(e, True) finally: self.handler.finished() @runs_in_hwd_thread @test_pin_unlocked @set_and_unset_signing def show_address(self, sequence, txin_type): client = self.get_client() address_path = self.get_derivation_prefix()[2:] + "/%d/%d"%sequence self.handler.show_message(_("Showing address ...")) try: client.getWalletPublicKey(address_path, showOnScreen=True) except BTChipException as e: if e.sw == 0x6985: # cancelled by user pass elif e.sw == 0x6982: raise # pin lock. decorator will catch it elif e.sw == 0x6b00: # hw.1 raises this self.handler.show_error('{}\n{}\n{}'.format( _('Error showing address') + ':', e, _('Your device might not have support for this functionality.'))) else: self.logger.exception('') self.handler.show_error(e) except BaseException as e: self.logger.exception('') self.handler.show_error(e) finally: self.handler.finished() class LedgerPlugin(HW_PluginBase): keystore_class = Ledger_KeyStore minimum_library = (0, 1, 32) client = None DEVICE_IDS = [ (0x2581, 0x1807), # HW.1 legacy btchip (0x2581, 0x2b7c), # HW.1 transitional production (0x2581, 0x3b7c), # HW.1 ledger production (0x2581, 0x4b7c), # HW.1 ledger test (0x2c97, 0x0000), # Blue (0x2c97, 0x0001), # Nano-S (0x2c97, 0x0004), # Nano-X (0x2c97, 0x0005), # RFU (0x2c97, 0x0006), # RFU (0x2c97, 0x0007), # RFU (0x2c97, 0x0008), # RFU (0x2c97, 0x0009), # RFU (0x2c97, 0x000a) # RFU ] VENDOR_IDS = (0x2c97,) LEDGER_MODEL_IDS = { 0x10: "Ledger Nano S", 0x40: "Ledger Nano X", } SUPPORTED_XTYPES = ('standard', ) def __init__(self, parent, config, name): HW_PluginBase.__init__(self, parent, config, name) self.libraries_available = self.check_libraries_available() if not self.libraries_available: return # to support legacy devices and legacy firmwares self.device_manager().register_devices(self.DEVICE_IDS, plugin=self) # to support modern firmware self.device_manager().register_vendor_ids(self.VENDOR_IDS, plugin=self) def get_library_version(self): try: import btchip version = btchip.__version__ except ImportError: raise except: version = "unknown" if BTCHIP: return version else: raise LibraryFoundButUnusable(library_version=version) @classmethod def _recognize_device(cls, product_key) -> Tuple[bool, Optional[str]]: """Returns (can_recognize, model_name) tuple.""" # legacy product_keys if product_key in cls.DEVICE_IDS: if product_key[0] == 0x2581: return True, "Ledger HW.1" if product_key == (0x2c97, 0x0000): return True, "Ledger Blue" if product_key == (0x2c97, 0x0001): return True, "Ledger Nano S" if product_key == (0x2c97, 0x0004): return True, "Ledger Nano X" return True, None # modern product_keys if product_key[0] == 0x2c97: product_id = product_key[1] model_id = product_id >> 8 if model_id in cls.LEDGER_MODEL_IDS: model_name = cls.LEDGER_MODEL_IDS[model_id] return True, model_name # give up return False, None def can_recognize_device(self, device: Device) -> bool: return self._recognize_device(device.product_key)[0] @classmethod def device_name_from_product_key(cls, product_key) -> Optional[str]: return cls._recognize_device(product_key)[1] def create_device_from_hid_enumeration(self, d, *, product_key): device = super().create_device_from_hid_enumeration(d, product_key=product_key) if not self.can_recognize_device(device): return None return device @runs_in_hwd_thread def get_btchip_device(self, device): ledger = False if device.product_key[0] == 0x2581 and device.product_key[1] == 0x3b7c: ledger = True if device.product_key[0] == 0x2581 and device.product_key[1] == 0x4b7c: ledger = True if device.product_key[0] == 0x2c97: if device.interface_number == 0 or device.usage_page == 0xffa0: ledger = True else: return None # non-compatible interface of a Nano S or Blue dev = hid.device() dev.open_path(device.path) dev.set_nonblocking(True) return HIDDongleHIDAPI(dev, ledger, BTCHIP_DEBUG) @runs_in_hwd_thread def create_client(self, device, handler): if handler: self.handler = handler client = self.get_btchip_device(device) if client is not None: client = Ledger_Client(client, product_key=device.product_key, plugin=self) return client def setup_device(self, device_info, wizard, purpose): device_id = device_info.device.id_ client = self.scan_and_create_client_for_device(device_id=device_id, wizard=wizard) wizard.run_task_without_blocking_gui( task=lambda: client.get_xpub("m/0'", 'standard')) # TODO replace by direct derivation once Nano S > 1.1 return client def get_xpub(self, device_id, derivation, xtype, wizard): if xtype not in self.SUPPORTED_XTYPES: raise ScriptTypeNotSupported(_('This type of script is not supported with {}.').format(self.device)) client = self.scan_and_create_client_for_device(device_id=device_id, wizard=wizard) client.checkDevice() xpub = client.get_xpub(derivation, xtype) return xpub @runs_in_hwd_thread def get_client(self, keystore, force_pair=True, *, devices=None, allow_user_interaction=True): # All client interaction should not be in the main GUI thread client = super().get_client(keystore, force_pair, devices=devices, allow_user_interaction=allow_user_interaction) # returns the client for a given keystore. can use xpub #if client: # client.used() if client is not None: client.checkDevice() return client @runs_in_hwd_thread def show_address(self, wallet, address, keystore=None): if keystore is None: keystore = wallet.get_keystore() if not self.show_address_helper(wallet, address, keystore): return if type(wallet) is not Standard_Wallet: keystore.handler.show_error(_('This function is only available for standard wallets when using {}.').format(self.device)) return sequence = wallet.get_address_index(address) txin_type = wallet.get_txin_type(address) keystore.show_address(sequence, txin_type)
the-stack_106_27818
# -*- coding: utf-8 -*- ''' Functions for working with files ''' from __future__ import absolute_import # Import Python libs import contextlib import errno import logging import os import re import shutil import stat import subprocess import tempfile import time import urllib # Import Salt libs import salt.utils.validate.path import salt.utils.platform import salt.utils.stringutils import salt.modules.selinux from salt.exceptions import CommandExecutionError, FileLockError, MinionError from salt.utils.decorators.jinja import jinja_filter # Import 3rd-party libs from salt.ext import six from salt.ext.six.moves import range try: import fcntl HAS_FCNTL = True except ImportError: # fcntl is not available on windows HAS_FCNTL = False log = logging.getLogger(__name__) LOCAL_PROTOS = ('', 'file') REMOTE_PROTOS = ('http', 'https', 'ftp', 'swift', 's3') VALID_PROTOS = ('salt', 'file') + REMOTE_PROTOS TEMPFILE_PREFIX = '__salt.tmp.' HASHES = { 'sha512': 128, 'sha384': 96, 'sha256': 64, 'sha224': 56, 'sha1': 40, 'md5': 32, } HASHES_REVMAP = dict([(y, x) for x, y in six.iteritems(HASHES)]) def guess_archive_type(name): ''' Guess an archive type (tar, zip, or rar) by its file extension ''' name = name.lower() for ending in ('tar', 'tar.gz', 'tgz', 'tar.bz2', 'tbz2', 'tbz', 'tar.xz', 'txz', 'tar.lzma', 'tlz'): if name.endswith('.' + ending): return 'tar' for ending in ('zip', 'rar'): if name.endswith('.' + ending): return ending return None def mkstemp(*args, **kwargs): ''' Helper function which does exactly what ``tempfile.mkstemp()`` does but accepts another argument, ``close_fd``, which, by default, is true and closes the fd before returning the file path. Something commonly done throughout Salt's code. ''' if 'prefix' not in kwargs: kwargs['prefix'] = '__salt.tmp.' close_fd = kwargs.pop('close_fd', True) fd_, f_path = tempfile.mkstemp(*args, **kwargs) if close_fd is False: return fd_, f_path os.close(fd_) del fd_ return f_path def recursive_copy(source, dest): ''' Recursively copy the source directory to the destination, leaving files with the source does not explicitly overwrite. (identical to cp -r on a unix machine) ''' for root, _, files in os.walk(source): path_from_source = root.replace(source, '').lstrip(os.sep) target_directory = os.path.join(dest, path_from_source) if not os.path.exists(target_directory): os.makedirs(target_directory) for name in files: file_path_from_source = os.path.join(source, path_from_source, name) target_path = os.path.join(target_directory, name) shutil.copyfile(file_path_from_source, target_path) def copyfile(source, dest, backup_mode='', cachedir=''): ''' Copy files from a source to a destination in an atomic way, and if specified cache the file. ''' if not os.path.isfile(source): raise IOError( '[Errno 2] No such file or directory: {0}'.format(source) ) if not os.path.isdir(os.path.dirname(dest)): raise IOError( '[Errno 2] No such file or directory: {0}'.format(dest) ) bname = os.path.basename(dest) dname = os.path.dirname(os.path.abspath(dest)) tgt = mkstemp(prefix=bname, dir=dname) shutil.copyfile(source, tgt) bkroot = '' if cachedir: bkroot = os.path.join(cachedir, 'file_backup') if backup_mode == 'minion' or backup_mode == 'both' and bkroot: if os.path.exists(dest): backup_minion(dest, bkroot) if backup_mode == 'master' or backup_mode == 'both' and bkroot: # TODO, backup to master pass # Get current file stats to they can be replicated after the new file is # moved to the destination path. fstat = None if not salt.utils.platform.is_windows(): try: fstat = os.stat(dest) except OSError: pass shutil.move(tgt, dest) if fstat is not None: os.chown(dest, fstat.st_uid, fstat.st_gid) os.chmod(dest, fstat.st_mode) # If SELINUX is available run a restorecon on the file rcon = salt.utils.path.which('restorecon') if rcon: policy = False try: policy = salt.modules.selinux.getenforce() except (ImportError, CommandExecutionError): pass if policy == 'Enforcing': with fopen(os.devnull, 'w') as dev_null: cmd = [rcon, dest] subprocess.call(cmd, stdout=dev_null, stderr=dev_null) if os.path.isfile(tgt): # The temp file failed to move try: os.remove(tgt) except Exception: pass def rename(src, dst): ''' On Windows, os.rename() will fail with a WindowsError exception if a file exists at the destination path. This function checks for this error and if found, it deletes the destination path first. ''' try: os.rename(src, dst) except OSError as exc: if exc.errno != errno.EEXIST: raise try: os.remove(dst) except OSError as exc: if exc.errno != errno.ENOENT: raise MinionError( 'Error: Unable to remove {0}: {1}'.format( dst, exc.strerror ) ) os.rename(src, dst) def process_read_exception(exc, path): ''' Common code for raising exceptions when reading a file fails ''' if exc.errno == errno.ENOENT: raise CommandExecutionError('{0} does not exist'.format(path)) elif exc.errno == errno.EACCES: raise CommandExecutionError( 'Permission denied reading from {0}'.format(path) ) else: raise CommandExecutionError( 'Error {0} encountered reading from {1}: {2}'.format( exc.errno, path, exc.strerror ) ) @contextlib.contextmanager def wait_lock(path, lock_fn=None, timeout=5, sleep=0.1, time_start=None): ''' Obtain a write lock. If one exists, wait for it to release first ''' if not isinstance(path, six.string_types): raise FileLockError('path must be a string') if lock_fn is None: lock_fn = path + '.w' if time_start is None: time_start = time.time() obtained_lock = False def _raise_error(msg, race=False): ''' Raise a FileLockError ''' raise FileLockError(msg, time_start=time_start) try: if os.path.exists(lock_fn) and not os.path.isfile(lock_fn): _raise_error( 'lock_fn {0} exists and is not a file'.format(lock_fn) ) open_flags = os.O_CREAT | os.O_EXCL | os.O_WRONLY while time.time() - time_start < timeout: try: # Use os.open() to obtain filehandle so that we can force an # exception if the file already exists. Concept found here: # http://stackoverflow.com/a/10979569 fh_ = os.open(lock_fn, open_flags) except (IOError, OSError) as exc: if exc.errno != errno.EEXIST: _raise_error( 'Error {0} encountered obtaining file lock {1}: {2}' .format(exc.errno, lock_fn, exc.strerror) ) log.trace( 'Lock file %s exists, sleeping %f seconds', lock_fn, sleep ) time.sleep(sleep) else: # Write the lock file with os.fdopen(fh_, 'w'): pass # Lock successfully acquired log.trace('Write lock %s obtained', lock_fn) obtained_lock = True # Transfer control back to the code inside the with block yield # Exit the loop break else: _raise_error( 'Timeout of {0} seconds exceeded waiting for lock_fn {1} ' 'to be released'.format(timeout, lock_fn) ) except FileLockError: raise except Exception as exc: _raise_error( 'Error encountered obtaining file lock {0}: {1}'.format( lock_fn, exc ) ) finally: if obtained_lock: os.remove(lock_fn) log.trace('Write lock for %s (%s) released', path, lock_fn) @contextlib.contextmanager def set_umask(mask): ''' Temporarily set the umask and restore once the contextmanager exits ''' if salt.utils.platform.is_windows(): # Don't attempt on Windows yield else: try: orig_mask = os.umask(mask) yield finally: os.umask(orig_mask) def fopen(*args, **kwargs): ''' Wrapper around open() built-in to set CLOEXEC on the fd. This flag specifies that the file descriptor should be closed when an exec function is invoked; When a file descriptor is allocated (as with open or dup), this bit is initially cleared on the new file descriptor, meaning that descriptor will survive into the new program after exec. NB! We still have small race condition between open and fcntl. ''' binary = None # ensure 'binary' mode is always used on Windows in Python 2 if ((six.PY2 and salt.utils.platform.is_windows() and 'binary' not in kwargs) or kwargs.pop('binary', False)): if len(args) > 1: args = list(args) if 'b' not in args[1]: args[1] = args[1].replace('t', 'b') if 'b' not in args[1]: args[1] += 'b' elif kwargs.get('mode'): if 'b' not in kwargs['mode']: kwargs['mode'] = kwargs['mode'].replace('t', 'b') if 'b' not in kwargs['mode']: kwargs['mode'] += 'b' else: # the default is to read kwargs['mode'] = 'rb' elif six.PY3 and 'encoding' not in kwargs: # In Python 3, if text mode is used and the encoding # is not specified, set the encoding to 'utf-8'. binary = False if len(args) > 1: args = list(args) if 'b' in args[1]: binary = True if kwargs.get('mode', None): if 'b' in kwargs['mode']: binary = True if not binary: kwargs['encoding'] = __salt_system_encoding__ if six.PY3 and not binary and not kwargs.get('newline', None): kwargs['newline'] = '' f_handle = open(*args, **kwargs) # pylint: disable=resource-leakage if is_fcntl_available(): # modify the file descriptor on systems with fcntl # unix and unix-like systems only try: FD_CLOEXEC = fcntl.FD_CLOEXEC # pylint: disable=C0103 except AttributeError: FD_CLOEXEC = 1 # pylint: disable=C0103 old_flags = fcntl.fcntl(f_handle.fileno(), fcntl.F_GETFD) fcntl.fcntl(f_handle.fileno(), fcntl.F_SETFD, old_flags | FD_CLOEXEC) return f_handle @contextlib.contextmanager def flopen(*args, **kwargs): ''' Shortcut for fopen with lock and context manager. ''' with fopen(*args, **kwargs) as f_handle: try: if is_fcntl_available(check_sunos=True): fcntl.flock(f_handle.fileno(), fcntl.LOCK_SH) yield f_handle finally: if is_fcntl_available(check_sunos=True): fcntl.flock(f_handle.fileno(), fcntl.LOCK_UN) @contextlib.contextmanager def fpopen(*args, **kwargs): ''' Shortcut for fopen with extra uid, gid, and mode options. Supported optional Keyword Arguments: mode Explicit mode to set. Mode is anything os.chmod would accept as input for mode. Works only on unix/unix-like systems. uid The uid to set, if not set, or it is None or -1 no changes are made. Same applies if the path is already owned by this uid. Must be int. Works only on unix/unix-like systems. gid The gid to set, if not set, or it is None or -1 no changes are made. Same applies if the path is already owned by this gid. Must be int. Works only on unix/unix-like systems. ''' # Remove uid, gid and mode from kwargs if present uid = kwargs.pop('uid', -1) # -1 means no change to current uid gid = kwargs.pop('gid', -1) # -1 means no change to current gid mode = kwargs.pop('mode', None) with fopen(*args, **kwargs) as f_handle: path = args[0] d_stat = os.stat(path) if hasattr(os, 'chown'): # if uid and gid are both -1 then go ahead with # no changes at all if (d_stat.st_uid != uid or d_stat.st_gid != gid) and \ [i for i in (uid, gid) if i != -1]: os.chown(path, uid, gid) if mode is not None: mode_part = stat.S_IMODE(d_stat.st_mode) if mode_part != mode: os.chmod(path, (d_stat.st_mode ^ mode_part) | mode) yield f_handle def safe_walk(top, topdown=True, onerror=None, followlinks=True, _seen=None): ''' A clone of the python os.walk function with some checks for recursive symlinks. Unlike os.walk this follows symlinks by default. ''' if _seen is None: _seen = set() # We may not have read permission for top, in which case we can't # get a list of the files the directory contains. os.path.walk # always suppressed the exception then, rather than blow up for a # minor reason when (say) a thousand readable directories are still # left to visit. That logic is copied here. try: # Note that listdir and error are globals in this module due # to earlier import-*. names = os.listdir(top) except os.error as err: if onerror is not None: onerror(err) return if followlinks: status = os.stat(top) # st_ino is always 0 on some filesystems (FAT, NTFS); ignore them if status.st_ino != 0: node = (status.st_dev, status.st_ino) if node in _seen: return _seen.add(node) dirs, nondirs = [], [] for name in names: full_path = os.path.join(top, name) if os.path.isdir(full_path): dirs.append(name) else: nondirs.append(name) if topdown: yield top, dirs, nondirs for name in dirs: new_path = os.path.join(top, name) if followlinks or not os.path.islink(new_path): for x in safe_walk(new_path, topdown, onerror, followlinks, _seen): yield x if not topdown: yield top, dirs, nondirs def safe_rm(tgt): ''' Safely remove a file ''' try: os.remove(tgt) except (IOError, OSError): pass def rm_rf(path): ''' Platform-independent recursive delete. Includes code from http://stackoverflow.com/a/2656405 ''' def _onerror(func, path, exc_info): ''' Error handler for `shutil.rmtree`. If the error is due to an access error (read only file) it attempts to add write permission and then retries. If the error is for another reason it re-raises the error. Usage : `shutil.rmtree(path, onerror=onerror)` ''' if salt.utils.platform.is_windows() and not os.access(path, os.W_OK): # Is the error an access error ? os.chmod(path, stat.S_IWUSR) func(path) else: raise # pylint: disable=E0704 if os.path.islink(path) or not os.path.isdir(path): os.remove(path) else: shutil.rmtree(path, onerror=_onerror) @jinja_filter('is_empty') def is_empty(filename): ''' Is a file empty? ''' try: return os.stat(filename).st_size == 0 except OSError: # Non-existent file or permission denied to the parent dir return False def is_fcntl_available(check_sunos=False): ''' Simple function to check if the ``fcntl`` module is available or not. If ``check_sunos`` is passed as ``True`` an additional check to see if host is SunOS is also made. For additional information see: http://goo.gl/159FF8 ''' if check_sunos and salt.utils.platform.is_sunos(): return False return HAS_FCNTL def safe_filename_leaf(file_basename): ''' Input the basename of a file, without the directory tree, and returns a safe name to use i.e. only the required characters are converted by urllib.quote If the input is a PY2 String, output a PY2 String. If input is Unicode output Unicode. For consistency all platforms are treated the same. Hard coded to utf8 as its ascii compatible windows is \\ / : * ? " < > | posix is / .. versionadded:: 2017.7.2 :codeauthor: Damon Atkins <https://github.com/damon-atkins> ''' def _replace(re_obj): return urllib.quote(re_obj.group(0), safe='') if not isinstance(file_basename, six.text_type): # the following string is not prefixed with u return re.sub('[\\\\:/*?"<>|]', _replace, six.text_type(file_basename, 'utf8').encode('ascii', 'backslashreplace')) # the following string is prefixed with u return re.sub('[\\\\:/*?"<>|]', _replace, file_basename, flags=re.UNICODE) def safe_filepath(file_path_name, dir_sep=None): ''' Input the full path and filename, splits on directory separator and calls safe_filename_leaf for each part of the path. dir_sep allows coder to force a directory separate to a particular character .. versionadded:: 2017.7.2 :codeauthor: Damon Atkins <https://github.com/damon-atkins> ''' if not dir_sep: dir_sep = os.sep # Normally if file_path_name or dir_sep is Unicode then the output will be Unicode # This code ensure the output type is the same as file_path_name if not isinstance(file_path_name, six.text_type) and isinstance(dir_sep, six.text_type): dir_sep = dir_sep.encode('ascii') # This should not be executed under PY3 # splitdrive only set drive on windows platform (drive, path) = os.path.splitdrive(file_path_name) path = dir_sep.join([safe_filename_leaf(file_section) for file_section in path.rsplit(dir_sep)]) if drive: path = dir_sep.join([drive, path]) return path @jinja_filter('is_text_file') def is_text(fp_, blocksize=512): ''' Uses heuristics to guess whether the given file is text or binary, by reading a single block of bytes from the file. If more than 30% of the chars in the block are non-text, or there are NUL ('\x00') bytes in the block, assume this is a binary file. ''' int2byte = (lambda x: bytes((x,))) if six.PY3 else chr text_characters = ( b''.join(int2byte(i) for i in range(32, 127)) + b'\n\r\t\f\b') try: block = fp_.read(blocksize) except AttributeError: # This wasn't an open filehandle, so treat it as a file path and try to # open the file try: with fopen(fp_, 'rb') as fp2_: block = fp2_.read(blocksize) except IOError: # Unable to open file, bail out and return false return False if b'\x00' in block: # Files with null bytes are binary return False elif not block: # An empty file is considered a valid text file return True try: block.decode('utf-8') return True except UnicodeDecodeError: pass nontext = block.translate(None, text_characters) return float(len(nontext)) / len(block) <= 0.30 @jinja_filter('is_bin_file') def is_binary(path): ''' Detects if the file is a binary, returns bool. Returns True if the file is a bin, False if the file is not and None if the file is not available. ''' if not os.path.isfile(path): return False try: with fopen(path, 'rb') as fp_: try: data = fp_.read(2048) if six.PY3: data = data.decode(__salt_system_encoding__) return salt.utils.stringutils.is_binary(data) except UnicodeDecodeError: return True except os.error: return False def remove(path): ''' Runs os.remove(path) and suppresses the OSError if the file doesn't exist ''' try: os.remove(path) except OSError as exc: if exc.errno != errno.ENOENT: raise @jinja_filter('list_files') def list_files(directory): ''' Return a list of all files found under directory (and its subdirectories) ''' ret = set() ret.add(directory) for root, dirs, files in safe_walk(directory): for name in files: ret.add(os.path.join(root, name)) for name in dirs: ret.add(os.path.join(root, name)) return list(ret) def st_mode_to_octal(mode): ''' Convert the st_mode value from a stat(2) call (as returned from os.stat()) to an octal mode. ''' try: return oct(mode)[-4:] except (TypeError, IndexError): return '' def normalize_mode(mode): ''' Return a mode value, normalized to a string and containing a leading zero if it does not have one. Allow "keep" as a valid mode (used by file state/module to preserve mode from the Salt fileserver in file states). ''' if mode is None: return None if not isinstance(mode, six.string_types): mode = str(mode) if six.PY3: mode = mode.replace('0o', '0') # Strip any quotes any initial zeroes, then though zero-pad it up to 4. # This ensures that somethign like '00644' is normalized to '0644' return mode.strip('"').strip('\'').lstrip('0').zfill(4) def human_size_to_bytes(human_size): ''' Convert human-readable units to bytes ''' size_exp_map = {'K': 1, 'M': 2, 'G': 3, 'T': 4, 'P': 5} human_size_str = str(human_size) match = re.match(r'^(\d+)([KMGTP])?$', human_size_str) if not match: raise ValueError( 'Size must be all digits, with an optional unit type ' '(K, M, G, T, or P)' ) size_num = int(match.group(1)) unit_multiplier = 1024 ** size_exp_map.get(match.group(2), 0) return size_num * unit_multiplier def backup_minion(path, bkroot): ''' Backup a file on the minion ''' dname, bname = os.path.split(path) if salt.utils.platform.is_windows(): src_dir = dname.replace(':', '_') else: src_dir = dname[1:] if not salt.utils.platform.is_windows(): fstat = os.stat(path) msecs = str(int(time.time() * 1000000))[-6:] if salt.utils.platform.is_windows(): # ':' is an illegal filesystem path character on Windows stamp = time.strftime('%a_%b_%d_%H-%M-%S_%Y') else: stamp = time.strftime('%a_%b_%d_%H:%M:%S_%Y') stamp = '{0}{1}_{2}'.format(stamp[:-4], msecs, stamp[-4:]) bkpath = os.path.join(bkroot, src_dir, '{0}_{1}'.format(bname, stamp)) if not os.path.isdir(os.path.dirname(bkpath)): os.makedirs(os.path.dirname(bkpath)) shutil.copyfile(path, bkpath) if not salt.utils.platform.is_windows(): os.chown(bkpath, fstat.st_uid, fstat.st_gid) os.chmod(bkpath, fstat.st_mode)
the-stack_106_27821
import distutils.cmd import os import subprocess from setuptools import find_packages, setup class BaseCommand(distutils.cmd.Command): user_options = [] def initialize_options(self): pass def finalize_options(self): pass def create_command(text, commands): """Creates a custom setup.py command.""" class CustomCommand(BaseCommand): description = text def run(self): for cmd in commands: subprocess.check_call(cmd) return CustomCommand with open( os.path.join(os.path.dirname(__file__), "README.rst"), encoding="utf-8" ) as readme: README = readme.read().split("h1>\n\n", 2)[1] setup( name="django-postgres-extra", version="1.23a1", packages=find_packages(), include_package_data=True, license="MIT License", description="Bringing all of PostgreSQL's awesomeness to Django.", long_description=README, long_description_content_type="text/x-rst", url="https://github.com/SectorLabs/django-postgres-extra", author="Sector Labs", author_email="[email protected]", keywords=["django", "postgres", "extra", "hstore", "ltree"], classifiers=[ "Environment :: Web Environment", "Framework :: Django", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 3.5", "Topic :: Internet :: WWW/HTTP", "Topic :: Internet :: WWW/HTTP :: Dynamic Content", ], cmdclass={ "lint": create_command( "Lints the code", [ ["flake8", "setup.py", "psqlextra", "tests"], ["pycodestyle", "setup.py", "psqlextra", "tests"], ], ), "lint_fix": create_command( "Lints the code", [ [ "autoflake", "--remove-all-unused-imports", "-i", "-r", "setup.py", "psqlextra", "tests", ], ["autopep8", "-i", "-r", "setup.py", "psqlextra", "tests"], ], ), "format": create_command( "Formats the code", [["black", "setup.py", "psqlextra", "tests"]] ), "format_verify": create_command( "Checks if the code is auto-formatted", [["black", "--check", "setup.py", "psqlextra", "tests"]], ), "sort_imports": create_command( "Automatically sorts imports", [ ["isort", "setup.py"], ["isort", "-rc", "psqlextra"], ["isort", "-rc", "tests"], ], ), "sort_imports_verify": create_command( "Verifies all imports are properly sorted.", [ ["isort", "-c", "setup.py"], ["isort", "-c", "-rc", "psqlextra"], ["isort", "-c", "-rc", "tests"], ], ), "fix": create_command( "Automatically format code and fix linting errors", [ ["python", "setup.py", "format"], ["python", "setup.py", "sort_imports"], ["python", "setup.py", "lint_fix"], ], ), "verify": create_command( "Verifies whether the code is auto-formatted and has no linting errors", [ [ ["python", "setup.py", "format_verify"], ["python", "setup.py", "sort_imports_verify"], ["python", "setup.py", "lint"], ] ], ), }, )
the-stack_106_27822
import random import numpy import math from solution import solution import time def HHO(objf, lb, ub, dim, SearchAgents_no, Max_iter): # dim=30 # SearchAgents_no=50 # lb=-100 # ub=100 # Max_iter=500 # initialize the location and Energy of the rabbit Rabbit_Location = numpy.zeros(dim) Rabbit_Energy = float("inf") # change this to -inf for maximization problems if not isinstance(lb, list): lb = [lb for _ in range(dim)] ub = [ub for _ in range(dim)] lb = numpy.asarray(lb) ub = numpy.asarray(ub) # Initialize the locations of Harris' hawks X = numpy.asarray( [x * (ub - lb) + lb for x in numpy.random.uniform(0, 1, (SearchAgents_no, dim))] ) # Initialize convergence convergence_curve = numpy.zeros(Max_iter) ############################ s = solution() print('HHO is now tackling "' + objf.__name__ + '"') timerStart = time.time() s.startTime = time.strftime("%Y-%m-%d-%H-%M-%S") ############################ t = 0 # Loop counter # Main loop while t < Max_iter: for i in range(0, SearchAgents_no): # Check boundries X[i, :] = numpy.clip(X[i, :], lb, ub) # fitness of locations fitness = objf(X[i, :]) # Update the location of Rabbit if fitness < Rabbit_Energy: # Change this to > for maximization problem Rabbit_Energy = fitness Rabbit_Location = X[i, :].copy() E1 = 2 * (1 - (t / Max_iter)) # factor to show the decreaing energy of rabbit # Update the location of Harris' hawks for i in range(0, SearchAgents_no): E0 = 2 * random.random() - 1 # -1<E0<1 Escaping_Energy = E1 * ( E0 ) # escaping energy of rabbit Eq. (3) in the paper # -------- Exploration phase Eq. (1) in paper ------------------- if abs(Escaping_Energy) >= 1: # Harris' hawks perch randomly based on 2 strategy: q = random.random() rand_Hawk_index = math.floor(SearchAgents_no * random.random()) X_rand = X[rand_Hawk_index, :] if q < 0.5: # perch based on other family members X[i, :] = X_rand - random.random() * abs( X_rand - 2 * random.random() * X[i, :] ) elif q >= 0.5: # perch on a random tall tree (random site inside group's home range) X[i, :] = (Rabbit_Location - X.mean(0)) - random.random() * ( (ub - lb) * random.random() + lb ) # -------- Exploitation phase ------------------- elif abs(Escaping_Energy) < 1: # Attacking the rabbit using 4 strategies regarding the behavior of the rabbit # phase 1: ----- surprise pounce (seven kills) ---------- # surprise pounce (seven kills): multiple, short rapid dives by different hawks r = random.random() # probablity of each event if ( r >= 0.5 and abs(Escaping_Energy) < 0.5 ): # Hard besiege Eq. (6) in paper X[i, :] = (Rabbit_Location) - Escaping_Energy * abs( Rabbit_Location - X[i, :] ) if ( r >= 0.5 and abs(Escaping_Energy) >= 0.5 ): # Soft besiege Eq. (4) in paper Jump_strength = 2 * ( 1 - random.random() ) # random jump strength of the rabbit X[i, :] = (Rabbit_Location - X[i, :]) - Escaping_Energy * abs( Jump_strength * Rabbit_Location - X[i, :] ) # phase 2: --------performing team rapid dives (leapfrog movements)---------- if ( r < 0.5 and abs(Escaping_Energy) >= 0.5 ): # Soft besiege Eq. (10) in paper # rabbit try to escape by many zigzag deceptive motions Jump_strength = 2 * (1 - random.random()) X1 = Rabbit_Location - Escaping_Energy * abs( Jump_strength * Rabbit_Location - X[i, :] ) X1 = numpy.clip(X1, lb, ub) if objf(X1) < fitness: # improved move? X[i, :] = X1.copy() else: # hawks perform levy-based short rapid dives around the rabbit X2 = ( Rabbit_Location - Escaping_Energy * abs(Jump_strength * Rabbit_Location - X[i, :]) + numpy.multiply(numpy.random.randn(dim), Levy(dim)) ) X2 = numpy.clip(X2, lb, ub) if objf(X2) < fitness: X[i, :] = X2.copy() if ( r < 0.5 and abs(Escaping_Energy) < 0.5 ): # Hard besiege Eq. (11) in paper Jump_strength = 2 * (1 - random.random()) X1 = Rabbit_Location - Escaping_Energy * abs( Jump_strength * Rabbit_Location - X.mean(0) ) X1 = numpy.clip(X1, lb, ub) if objf(X1) < fitness: # improved move? X[i, :] = X1.copy() else: # Perform levy-based short rapid dives around the rabbit X2 = ( Rabbit_Location - Escaping_Energy * abs(Jump_strength * Rabbit_Location - X.mean(0)) + numpy.multiply(numpy.random.randn(dim), Levy(dim)) ) X2 = numpy.clip(X2, lb, ub) if objf(X2) < fitness: X[i, :] = X2.copy() convergence_curve[t] = Rabbit_Energy if t % 1 == 0: print( [ "At iteration " + str(t) + " the best fitness is " + str(Rabbit_Energy) ] ) t = t + 1 timerEnd = time.time() s.endTime = time.strftime("%Y-%m-%d-%H-%M-%S") s.executionTime = timerEnd - timerStart s.convergence = convergence_curve s.optimizer = "HHO" s.objfname = objf.__name__ s.best = Rabbit_Energy s.bestIndividual = Rabbit_Location return s def Levy(dim): beta = 1.5 sigma = ( math.gamma(1 + beta) * math.sin(math.pi * beta / 2) / (math.gamma((1 + beta) / 2) * beta * 2 ** ((beta - 1) / 2)) ) ** (1 / beta) u = 0.01 * numpy.random.randn(dim) * sigma v = numpy.random.randn(dim) zz = numpy.power(numpy.absolute(v), (1 / beta)) step = numpy.divide(u, zz) return step
the-stack_106_27823
import torch import torch.nn as nn import torch.nn.functional as F from layers import Flatten, Concatenate from torch.nn.utils import spectral_norm # https://github.com/heykeetae/Self-Attention-GAN/blob/master/sagan_models.py def snconv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): return spectral_norm(nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias)) class Self_Attn(nn.Module): """ Self attention Layer""" def __init__(self, in_channels): super(Self_Attn, self).__init__() self.in_channels = in_channels self.snconv1x1_theta = snconv2d(in_channels=in_channels, out_channels=in_channels//8, kernel_size=1, stride=1, padding=0) self.snconv1x1_phi = snconv2d(in_channels=in_channels, out_channels=in_channels//8, kernel_size=1, stride=1, padding=0) self.snconv1x1_g = snconv2d(in_channels=in_channels, out_channels=in_channels//2, kernel_size=1, stride=1, padding=0) self.snconv1x1_attn = snconv2d(in_channels=in_channels//2, out_channels=in_channels, kernel_size=1, stride=1, padding=0) self.maxpool = nn.MaxPool2d(2, stride=2, padding=0) self.softmax = nn.Softmax(dim=-1) self.sigma = nn.Parameter(torch.zeros(1)) def forward(self, x): """ inputs : x : input feature maps(B X C X W X H) returns : out : self attention value + input feature attention: B X N X N (N is Width*Height) """ _, ch, h, w = x.size() # Theta path theta = self.snconv1x1_theta(x) theta = theta.view(-1, ch//8, h*w) # Phi path phi = self.snconv1x1_phi(x) phi = self.maxpool(phi) phi = phi.view(-1, ch//8, h*w//4) # Attn map attn = torch.bmm(theta.permute(0, 2, 1), phi) attn = self.softmax(attn) # g path g = self.snconv1x1_g(x) g = self.maxpool(g) g = g.view(-1, ch//2, h*w//4) # Attn_g attn_g = torch.bmm(g, attn.permute(0, 2, 1)) attn_g = attn_g.view(-1, ch//2, h, w) attn_g = self.snconv1x1_attn(attn_g) # Out out = x + self.sigma*attn_g return out class CompletionNetwork(nn.Module): def __init__(self): super(CompletionNetwork, self).__init__() # input_shape: (None, 4, img_h, img_w) self.conv1 = nn.Conv2d(6, 64, kernel_size=5, stride=1, padding=2) self.bn1 = nn.BatchNorm2d(64) self.act1 = nn.ReLU() # input_shape: (None, 64, img_h, img_w) self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1) self.bn2 = nn.BatchNorm2d(128) self.act2 = nn.ReLU() # input_shape: (None, 128, img_h//2, img_w//2) self.conv3 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1) self.bn3 = nn.BatchNorm2d(128) self.act3 = nn.ReLU() # input_shape: (None, 128, img_h//2, img_w//2) self.conv4 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1) self.bn4 = nn.BatchNorm2d(256) self.act4 = nn.ReLU() # input_shape: (None, 256, img_h//4, img_w//4) self.conv5 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.bn5 = nn.BatchNorm2d(256) self.act5 = nn.ReLU() # input_shape: (None, 256, img_h//4, img_w//4) self.conv6 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.bn6 = nn.BatchNorm2d(256) self.act6 = nn.ReLU() # self self.self_attn1 = Self_Attn(256) # input_shape: (None, 256, img_h//4, img_w//4) self.conv7 = nn.Conv2d(256, 256, kernel_size=3, stride=1, dilation=2, padding=2) self.bn7 = nn.BatchNorm2d(256) self.act7 = nn.ReLU() # input_shape: (None, 256, img_h//4, img_w//4) self.conv8 = nn.Conv2d(256, 256, kernel_size=3, stride=1, dilation=4, padding=4) self.bn8 = nn.BatchNorm2d(256) self.act8 = nn.ReLU() # self self.self_attn2 = Self_Attn(256) # input_shape: (None, 256, img_h//4, img_w//4) self.conv9 = nn.Conv2d(256, 256, kernel_size=3, stride=1, dilation=8, padding=8) self.bn9 = nn.BatchNorm2d(256) self.act9 = nn.ReLU() # input_shape: (None, 256, img_h//4, img_w//4) self.conv10 = nn.Conv2d(256, 256, kernel_size=3, stride=1, dilation=16, padding=16) self.bn10 = nn.BatchNorm2d(256) self.act10 = nn.ReLU() # self self.self_attn3 = Self_Attn(256) # input_shape: (None, 256, img_h//4, img_w//4) self.conv11 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.bn11 = nn.BatchNorm2d(256) self.act11 = nn.ReLU() # input_shape: (None, 256, img_h//4, img_w//4) self.conv12 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.bn12 = nn.BatchNorm2d(256) self.act12 = nn.ReLU() # input_shape: (None, 256, img_h//4, img_w//4) self.deconv13 = nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1) self.bn13 = nn.BatchNorm2d(128) self.act13 = nn.ReLU() # input_shape: (None, 128, img_h//2, img_w//2) self.conv14 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1) self.bn14 = nn.BatchNorm2d(128) self.act14 = nn.ReLU() # input_shape: (None, 128, img_h//2, img_w//2) self.deconv15 = nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1) self.bn15 = nn.BatchNorm2d(64) self.act15 = nn.ReLU() # input_shape: (None, 64, img_h, img_w) self.conv16 = nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1) self.bn16 = nn.BatchNorm2d(32) self.act16 = nn.ReLU() # input_shape: (None, 32, img_h, img_w) self.conv17 = nn.Conv2d(32, 3, kernel_size=3, stride=1, padding=1) self.act17 = nn.Sigmoid() # output_shape: (None, 3, img_h. img_w) def forward(self, x): x = self.bn1(self.act1(self.conv1(x))) x = self.bn2(self.act2(self.conv2(x))) x = self.bn3(self.act3(self.conv3(x))) x = self.bn4(self.act4(self.conv4(x))) x = self.bn5(self.act5(self.conv5(x))) x = self.bn6(self.act6(self.conv6(x))) x = self.self_attn1(x) x = self.bn7(self.act7(self.conv7(x))) x = self.bn8(self.act8(self.conv8(x))) x = self.self_attn2(x) x = self.bn9(self.act9(self.conv9(x))) x = self.bn10(self.act10(self.conv10(x))) x = self.self_attn3(x) x = self.bn11(self.act11(self.conv11(x))) x = self.bn12(self.act12(self.conv12(x))) x = self.bn13(self.act13(self.deconv13(x))) x = self.bn14(self.act14(self.conv14(x))) x = self.bn15(self.act15(self.deconv15(x))) x = self.bn16(self.act16(self.conv16(x))) x = self.act17(self.conv17(x)) return x class LocalDiscriminator(nn.Module): def __init__(self, input_shape): super(LocalDiscriminator, self).__init__() self.input_shape = input_shape self.output_shape = (1024,) self.img_c = input_shape[0] self.img_h = input_shape[1] self.img_w = input_shape[2] # input_shape: (None, img_c, img_h, img_w) self.conv1 = nn.Conv2d(self.img_c, 64, kernel_size=5, stride=2, padding=2) self.bn1 = nn.BatchNorm2d(64) self.act1 = nn.ReLU() # input_shape: (None, 64, img_h//2, img_w//2) self.conv2 = nn.Conv2d(64, 128, kernel_size=5, stride=2, padding=2) self.bn2 = nn.BatchNorm2d(128) self.act2 = nn.ReLU() # input_shape: (None, 128, img_h//4, img_w//4) self.conv3 = nn.Conv2d(128, 256, kernel_size=5, stride=2, padding=2) self.bn3 = nn.BatchNorm2d(256) self.act3 = nn.ReLU() # input_shape: (None, 256, img_h//8, img_w//8) self.conv4 = nn.Conv2d(256, 512, kernel_size=5, stride=2, padding=2) self.bn4 = nn.BatchNorm2d(512) self.act4 = nn.ReLU() # input_shape: (None, 512, img_h//16, img_w//16) self.conv5 = nn.Conv2d(512, 512, kernel_size=5, stride=2, padding=2) self.bn5 = nn.BatchNorm2d(512) self.act5 = nn.ReLU() # input_shape: (None, 512, img_h//32, img_w//32) in_features = 512 * (self.img_h//32) * (self.img_w//32) self.flatten6 = Flatten() # input_shape: (None, 512 * img_h//32 * img_w//32) self.linear6 = nn.Linear(in_features, 1024) self.act6 = nn.ReLU() # output_shape: (None, 1024) def forward(self, x): x = self.bn1(self.act1(self.conv1(x))) x = self.bn2(self.act2(self.conv2(x))) x = self.bn3(self.act3(self.conv3(x))) x = self.bn4(self.act4(self.conv4(x))) x = self.bn5(self.act5(self.conv5(x))) x = self.act6(self.linear6(self.flatten6(x))) return x class GlobalDiscriminator(nn.Module): def __init__(self, input_shape, arc='celeba'): super(GlobalDiscriminator, self).__init__() self.arc = arc self.input_shape = input_shape self.output_shape = (1024,) self.img_c = input_shape[0] self.img_h = input_shape[1] self.img_w = input_shape[2] # input_shape: (None, img_c, img_h, img_w) self.conv1 = nn.Conv2d(self.img_c, 64, kernel_size=5, stride=2, padding=2) self.bn1 = nn.BatchNorm2d(64) self.act1 = nn.ReLU() # input_shape: (None, 64, img_h//2, img_w//2) self.conv2 = nn.Conv2d(64, 128, kernel_size=5, stride=2, padding=2) self.bn2 = nn.BatchNorm2d(128) self.act2 = nn.ReLU() # input_shape: (None, 128, img_h//4, img_w//4) self.conv3 = nn.Conv2d(128, 256, kernel_size=5, stride=2, padding=2) self.bn3 = nn.BatchNorm2d(256) self.act3 = nn.ReLU() # input_shape: (None, 256, img_h//8, img_w//8) self.conv4 = nn.Conv2d(256, 512, kernel_size=5, stride=2, padding=2) self.bn4 = nn.BatchNorm2d(512) self.act4 = nn.ReLU() # input_shape: (None, 512, img_h//16, img_w//16) self.conv5 = nn.Conv2d(512, 512, kernel_size=5, stride=2, padding=2) self.bn5 = nn.BatchNorm2d(512) self.act5 = nn.ReLU() # input_shape: (None, 512, img_h//32, img_w//32) if arc == 'celeba': in_features = 512 * (self.img_h//32) * (self.img_w//32) self.flatten6 = Flatten() self.linear6 = nn.Linear(in_features, 1024) self.act6 = nn.ReLU() elif arc == 'places2': self.conv6 = nn.Conv2d(512, 512, kernel_size=5, stride=2, padding=2) self.bn6 = nn.BatchNorm2d(512) self.act6 = nn.ReLU() # input_shape (None, 512, img_h//64, img_w//64) in_features = 512 * (self.img_h//64) * (self.img_w//64) self.flatten7 = Flatten() self.linear7 = nn.Linear(in_features, 1024) self.act7 = nn.ReLU() else: raise ValueError('Unsupported architecture \'%s\'.' % self.arc) # output_shape: (None, 1024) def forward(self, x): x = self.bn1(self.act1(self.conv1(x))) x = self.bn2(self.act2(self.conv2(x))) x = self.bn3(self.act3(self.conv3(x))) x = self.bn4(self.act4(self.conv4(x))) x = self.bn5(self.act5(self.conv5(x))) if self.arc == 'celeba': x = self.act6(self.linear6(self.flatten6(x))) elif self.arc == 'places2': x = self.bn6(self.act6(self.conv6(x))) x = self.act7(self.linear7(self.flatten7(x))) return x class ContextDiscriminator(nn.Module): def __init__(self, local_input_shape, global_input_shape, arc='celeba'): super(ContextDiscriminator, self).__init__() self.arc = arc self.input_shape = [local_input_shape, global_input_shape] self.output_shape = (1,) self.model_ld = LocalDiscriminator(local_input_shape) self.model_gd = GlobalDiscriminator(global_input_shape, arc=arc) # input_shape: [(None, 1024), (None, 1024)] in_features = self.model_ld.output_shape[-1] + self.model_gd.output_shape[-1] self.concat1 = Concatenate(dim=-1) # input_shape: (None, 2048) self.linear1 = nn.Linear(in_features, 1) self.act1 = nn.Sigmoid() # output_shape: (None, 1) def forward(self, x): x_ld, x_gd = x x_ld = self.model_ld(x_ld) x_gd = self.model_gd(x_gd) out = self.act1(self.linear1(self.concat1([x_ld, x_gd]))) return out class SingleDiscriminator(nn.Module): def __init__(self, input_shape): super(LocalDiscriminator, self).__init__() self.input_shape = input_shape self.output_shape = (1024,) self.img_c = input_shape[0] self.img_h = input_shape[1] self.img_w = input_shape[2] # input_shape: (None, img_c, img_h, img_w) self.conv1 = nn.Conv2d(self.img_c, 64, kernel_size=5, stride=2, padding=2) self.bn1 = nn.BatchNorm2d(64) self.act1 = nn.ReLU() # input_shape: (None, 64, img_h//2, img_w//2) self.conv2 = nn.Conv2d(64, 128, kernel_size=5, stride=2, padding=2) self.bn2 = nn.BatchNorm2d(128) self.act2 = nn.ReLU() # input_shape: (None, 128, img_h//4, img_w//4) self.conv3 = nn.Conv2d(128, 256, kernel_size=5, stride=2, padding=2) self.bn3 = nn.BatchNorm2d(256) self.act3 = nn.ReLU() # input_shape: (None, 256, img_h//8, img_w//8) self.conv4 = nn.Conv2d(256, 512, kernel_size=5, stride=2, padding=2) self.bn4 = nn.BatchNorm2d(512) self.act4 = nn.ReLU() # input_shape: (None, 512, img_h//16, img_w//16) self.conv5 = nn.Conv2d(512, 512, kernel_size=5, stride=2, padding=2) self.bn5 = nn.BatchNorm2d(512) self.act5 = nn.ReLU() # input_shape: (None, 512, img_h//32, img_w//32) in_features = 512 * (self.img_h//32) * (self.img_w//32) self.flatten6 = Flatten() # input_shape: (None, 512 * img_h//32 * img_w//32) self.linear6 = nn.Linear(in_features, 1024) self.act6 = nn.ReLU() # output_shape: (None, 1024) def forward(self, x): x = self.bn1(self.act1(self.conv1(x))) x = self.bn2(self.act2(self.conv2(x))) x = self.bn3(self.act3(self.conv3(x))) x = self.bn4(self.act4(self.conv4(x))) x = self.bn5(self.act5(self.conv5(x))) x = self.act6(self.linear6(self.flatten6(x))) return x class GlobalDiscriminator_P(nn.Module): def __init__(self, input_shape): super(GlobalDiscriminator_P, self).__init__() self.input_shape = input_shape self.output_shape = (1024,) self.img_c = input_shape[0] self.img_h = input_shape[1] self.img_w = input_shape[2] # input_shape: (None, img_c, img_h, img_w) self.conv1 = nn.Conv2d(self.img_c, 64, kernel_size=5, stride=2, padding=2) self.bn1 = nn.BatchNorm2d(64) self.act1 = nn.ReLU() # input_shape: (None, 64, img_h//2, img_w//2) self.conv2 = nn.Conv2d(64, 128, kernel_size=5, stride=2, padding=2) self.bn2 = nn.BatchNorm2d(128) self.act2 = nn.ReLU() # self self.self_attn1 = Self_Attn(128) self.self_attn2 = Self_Attn(128) # input_shape: (None, 128, img_h//4, img_w//4) self.conv3 = nn.Conv2d(128, 256, kernel_size=5, stride=2, padding=2) self.bn3 = nn.BatchNorm2d(256) self.act3 = nn.ReLU() # self self.self_attn3 = Self_Attn(256) # input_shape: (None, 256, img_h//8, img_w//8) self.conv4 = nn.Conv2d(256, 512, kernel_size=5, stride=2, padding=2) self.bn4 = nn.BatchNorm2d(512) self.act4 = nn.ReLU() # input_shape: (None, 512, img_h//16, img_w//16) self.conv5 = nn.Conv2d(512, 512, kernel_size=5, stride=2, padding=2) self.bn5 = nn.BatchNorm2d(512) self.act5 = nn.ReLU() # input_shape: (None, 512, img_h//32, img_w//32) in_features = 512 * (self.img_h//32) * (self.img_w//32) self.flatten6 = Flatten() self.linear6 = nn.Linear(in_features, 1024) self.act6 = nn.ReLU() self.linear7 = nn.Linear(1024, 1) self.act7 = nn.Sigmoid() def forward(self, x): x = self.bn1(self.act1(self.conv1(x))) x = self.bn2(self.act2(self.conv2(x))) x = self.self_attn1(x) x = self.self_attn2(x) x = self.bn3(self.act3(self.conv3(x))) #x = self.self_attn2(x) x = self.bn4(self.act4(self.conv4(x))) x = self.bn5(self.act5(self.conv5(x))) x = self.act6(self.linear6(self.flatten6(x))) x = self.act7(self.linear7(x)) return x
the-stack_106_27825
import pytest import numpy as np import transform as tf @pytest.mark.circles @pytest.mark.parametrize('myinput, myref', [(1, np.pi), (0, 0), (1j, 0), (2.1, np.pi * 2.1**2), # (-5, pytest.raises(ValueError)), ]) def test_area_circ(myinput, myref): """Test the area values against a reference for r >= 0.""" print(myinput) assert tf.area_circ(myinput) == myref @pytest.mark.circles def test_values(): """Make sure value errors are recognized for area_circ.""" with pytest.raises(ValueError): tf.area_circ(-5)
the-stack_106_27826
import unittest import tethys_apps.base.handoff as tethys_handoff from types import FunctionType from unittest import mock from tethys_sdk.testing import TethysTestCase def test_function(*args): if args is not None: arg_list = [] for arg in args: arg_list.append(arg) return arg_list else: return '' class TestHandoffManager(unittest.TestCase): def setUp(self): self.hm = tethys_handoff.HandoffManager def tearDown(self): pass def test_init(self): # Mock app app = mock.MagicMock() # Mock handoff_handlers handlers = mock.MagicMock(name='handler_name') app.handoff_handlers.return_value = handlers # mock _get_valid_handlers self.hm._get_valid_handlers = mock.MagicMock(return_value=['valid_handler']) result = tethys_handoff.HandoffManager(app=app) # Check result self.assertEqual(app, result.app) self.assertEqual(handlers, result.handlers) self.assertEqual(['valid_handler'], result.valid_handlers) def test_repr(self): # Mock app app = mock.MagicMock() # Mock handoff_handlers handlers = mock.MagicMock() handlers.name = 'test_handler' app.handoff_handlers.return_value = [handlers] # mock _get_valid_handlers self.hm._get_valid_handlers = mock.MagicMock(return_value=['valid_handler']) result = tethys_handoff.HandoffManager(app=app).__repr__() check_string = "<Handoff Manager: app={}, handlers=['{}']>".format(app, handlers.name) self.assertEqual(check_string, result) def test_get_capabilities(self): # Mock app app = mock.MagicMock() # Mock _get_handoff_manager_for_app manager = mock.MagicMock(valid_handlers='test_handlers') self.hm._get_handoff_manager_for_app = mock.MagicMock(return_value=manager) result = tethys_handoff.HandoffManager(app=app).get_capabilities(app_name='test_app') # Check Result self.assertEqual('test_handlers', result) def test_get_capabilities_external(self): # Mock app app = mock.MagicMock() # Mock _get_handoff_manager_for_app handler1 = mock.MagicMock() handler1.internal = False handler2 = mock.MagicMock() # Do not write out handler2 handler2.internal = True manager = mock.MagicMock(valid_handlers=[handler1, handler2]) self.hm._get_handoff_manager_for_app = mock.MagicMock(return_value=manager) result = tethys_handoff.HandoffManager(app=app).get_capabilities(app_name='test_app', external_only=True) # Check Result self.assertEqual([handler1], result) @mock.patch('tethys_apps.base.handoff.json') def test_get_capabilities_json(self, mock_json): # Mock app app = mock.MagicMock() # Mock HandoffHandler.__json handler1 = mock.MagicMock(name='test_name') manager = mock.MagicMock(valid_handlers=[handler1]) self.hm._get_handoff_manager_for_app = mock.MagicMock(return_value=manager) tethys_handoff.HandoffManager(app=app).get_capabilities(app_name='test_app', jsonify=True) # Check Result rts_call_args = mock_json.dumps.call_args_list self.assertEqual('test_name', rts_call_args[0][0][0][0]['_mock_name']) def test_get_handler(self): app = mock.MagicMock() # Mock _get_handoff_manager_for_app handler1 = mock.MagicMock() handler1.name = 'handler1' manager = mock.MagicMock(valid_handlers=[handler1]) self.hm._get_handoff_manager_for_app = mock.MagicMock(return_value=manager) result = tethys_handoff.HandoffManager(app=app).get_handler(handler_name='handler1') self.assertEqual('handler1', result.name) @mock.patch('tethys_apps.base.handoff.HttpResponseBadRequest') def test_handoff_type_error(self, mock_hrbr): from django.http import HttpRequest request = HttpRequest() # Mock app app = mock.MagicMock() app.name = 'test_app_name' # Mock _get_handoff_manager_for_app handler1 = mock.MagicMock() handler1().internal = False handler1().side_effect = TypeError('test message') manager = mock.MagicMock(get_handler=handler1) self.hm._get_handoff_manager_for_app = mock.MagicMock(return_value=manager) tethys_handoff.HandoffManager(app=app).handoff(request=request, handler_name='test_handler') rts_call_args = mock_hrbr.call_args_list # Check result self.assertIn('HTTP 400 Bad Request: test message.', rts_call_args[0][0][0]) @mock.patch('tethys_apps.base.handoff.HttpResponseBadRequest') def test_handoff_error(self, mock_hrbr): from django.http import HttpRequest request = HttpRequest() # # # Mock app app = mock.MagicMock() app.name = 'test_app_name' # Mock _get_handoff_manager_for_app handler1 = mock.MagicMock() # Ask Nathan is this how the test should be. because internal = True has # nothing to do with the error message. handler1().internal = True handler1().side_effect = TypeError('test message') mapp = mock.MagicMock() mapp.name = 'test manager name' manager = mock.MagicMock(get_handler=handler1, app=mapp) self.hm._get_handoff_manager_for_app = mock.MagicMock(return_value=manager) tethys_handoff.HandoffManager(app=app).handoff(request=request, handler_name='test_handler') rts_call_args = mock_hrbr.call_args_list # Check result check_message = "HTTP 400 Bad Request: No handoff handler '{0}' for app '{1}' found".\ format('test manager name', 'test_handler') self.assertIn(check_message, rts_call_args[0][0][0]) @mock.patch('warnings.warn') def test_get_valid_handlers(self, mock_warn): app = mock.MagicMock(package='test_app') # Mock handoff_handlers handler1 = mock.MagicMock(handler='controllers.home', valid=True) # Cover Import Error Case handler2 = mock.MagicMock(handler='controllers1:home1', valid=False) # Cover Deprecated format handler3 = mock.MagicMock(handler='controllers:home', valid=False) app.handoff_handlers.return_value = [handler1, handler2, handler3] # mock _get_valid_handlers result = tethys_handoff.HandoffManager(app=app)._get_valid_handlers() # Check result self.assertEqual('controllers.home', result[0].handler) self.assertEqual('controllers:home', result[1].handler) check_message = 'The handler attribute of a HandoffHandler should now be in the form:' \ ' "my_first_app.controllers.my_handler". The form "handoff:my_handler" is now deprecated.' mock_warn.assert_called_with(check_message, DeprecationWarning) class TestHandoffHandler(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def test_init(self): result = tethys_handoff.HandoffHandler(name='test_name', handler='test_app.handoff.csv', internal=True) # Check Result self.assertEqual('test_name', result.name) self.assertEqual('test_app.handoff.csv', result.handler) self.assertTrue(result.internal) self.assertIs(type(result.function), FunctionType) def test_repr(self): result = tethys_handoff.HandoffHandler(name='test_name', handler='test_app.handoff.csv', internal=True).__repr__() # Check Result check_string = '<Handoff Handler: name=test_name, handler=test_app.handoff.csv>' self.assertEqual(check_string, result) def test_dict_json_arguments(self): tethys_handoff.HandoffHandler.arguments = ['test_json', 'request'] result = tethys_handoff.HandoffHandler(name='test_name', handler='test_app.handoff.csv', internal=True).__dict__() # Check Result check_dict = {'name': 'test_name', 'arguments': ['test_json']} self.assertIsInstance(result, dict) self.assertEqual(check_dict, result) def test_arguments(self): result = tethys_handoff.HandoffHandler(name='test_name', handler='test_app.handoff.csv', internal=True)\ .arguments self.assertEqual(['request', 'csv_url'], result) class TestGetHandoffManagerFroApp(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def test_not_app_name(self): app = mock.MagicMock() result = tethys_handoff.HandoffManager(app=app)._get_handoff_manager_for_app(app_name=None) self.assertEqual(app, result.app) @mock.patch('tethys_apps.base.handoff.tethys_apps') def test_with_app(self, mock_ta): app = mock.MagicMock(package='test_app') app.get_handoff_manager.return_value = 'test_manager' mock_ta.harvester.SingletonHarvester().apps = [app] result = tethys_handoff.HandoffManager(app=app)._get_handoff_manager_for_app(app_name='test_app') # Check result self.assertEqual('test_manager', result) class TestTestAppHandoff(TethysTestCase): def set_up(self): self.c = self.get_test_client() self.user = self.create_test_user(username="joe", password="secret", email="joe@some_site.com") self.c.force_login(self.user) def tear_down(self): self.user.delete() def test_test_app_handoff(self): response = self.c.get('/handoff/test-app/test_name/?csv_url=""') self.assertEqual(302, response.status_code)
the-stack_106_27827
import numpy as np from vec_io import fvecs_read from sorter import parallel_sort from lsh import SRP from transform import spherical_transform, simple_lsh def intersect(gs, ids): rc = np.mean([ len(np.intersect1d(g, list(id))) for g, id in zip(gs, ids)]) return rc def recalls(index, q_, gt): ks = [20, 100] ts = [16, 128, 1024] print(" Probed \t Items \t", end="") for top_k in ks: print("top-%d\t" % (top_k), end="") print() for t in ts: ids = index.search(q_, t) items = np.mean([len(id) for id in ids]) print("%6d \t %6d \t" % (t, items), end="") for top_k in ks: rc = intersect(gt[:, :top_k], ids) print("%.4f \t" % (rc / float(top_k)), end="") print() def load_data(): dataset = "netflix" base = "/home/xinyan/program/data/" # dataset = "imagenet" # base = "/research/jcheng2/xinyan/data/" x_path = "{}{}/{}_base.fvecs".format(base, dataset, dataset) q_path = "{}{}/{}_query.fvecs".format(base, dataset, dataset) x = fvecs_read(x_path) q = fvecs_read(q_path)[:1000] return x, q def main(): x, q = load_data() n, d = x.shape np.random.seed(808) w = np.random.uniform(size=d) w = w / np.linalg.norm(w) gt = parallel_sort(x, q, w, metric="weighted") ks = 256 print("==================spherical_transform====================") x_, q_ = spherical_transform(x, q, w) n_, d_ = x_.shape np.random.seed(808) index = SRP(k=ks, d=d_) index.add(x_) recalls(index, q_, gt) if __name__ == "__main__": main()
the-stack_106_27828
import torch from torch import nn from torch.nn import functional as F import numpy as np from torch.distributions import Categorical from .layers import * class BiGRULanguageModel(nn.Module): def __init__(self, config, vocab, pad_token=0, device=0): super().__init__() self.hidden_size = config.lm_d_hidden self.embed_size = config.lm_d_embed self.n_vocab = len(vocab) self.gpu = 0 self.device = device # +2 because of <GO> tokens self.encoder = DynamicEncoder(self.n_vocab + 2, self.embed_size, self.hidden_size, self.gpu) self.fw_proj = nn.Linear(self.hidden_size, self.n_vocab + 2) self.bw_proj = nn.Linear(self.hidden_size, self.n_vocab + 2) self.loss = nn.CrossEntropyLoss(ignore_index=pad_token) self.vocab = vocab self.warning_flag = False self.gpu = 0 # <GO> tokens self.fw_start_token = self.n_vocab self.bw_start_token = self.n_vocab + 1 self.pad_token = pad_token def append_start_end_tokens(self, inp, inp_length): batch_size = inp.size(1) start_tokens = torch.LongTensor([self.fw_start_token] * batch_size).view(1, -1).to(inp.device) # [1,B] end_tokens_pad = torch.LongTensor([self.pad_token] * batch_size).view(1, -1).to(inp.device) # [1,B] new_inp = torch.cat([start_tokens, inp, end_tokens_pad], 0) for b in range(batch_size): new_inp[inp_length[b] + 1, b] = self.bw_start_token new_inp_length = inp_length + 2 return new_inp, new_inp_length def forward(self, batch): inp = batch.text inp = inp.to(self.device) # append <GO> token inp, inp_len = self.append_start_end_tokens(inp, batch.length) inp_len_np = inp_len.cpu().numpy() output = self.encoder(inp, inp_len_np) fw_output, bw_output = output[:,:,:self.hidden_size], output[:,:,self.hidden_size:] fw_proj, bw_proj = self.fw_proj(fw_output), self.bw_proj(bw_output) inp_trunc = inp[:output.size(0)] fw_loss = self.loss(fw_proj[:-1].view(-1,fw_proj.size(2)).contiguous(), inp_trunc[1:].view(-1).contiguous()) bw_loss = self.loss(bw_proj[1:].view(-1,bw_proj.size(2)).contiguous(), inp_trunc[:-1].view(-1).contiguous()) return fw_loss, bw_loss def sample_single_sequence(self, method, direction, token_inp, hidden, length): outputs = [] for t in range(length): output, hidden = self.encoder.rollout(token_inp, hidden, direction=direction) if direction == 'fw': proj = self.fw_proj(output[:,:,:self.hidden_size]) elif direction == 'bw': proj = self.bw_proj(output[:,:,self.hidden_size:]) assert(proj.size(0) == 1) proj = proj.squeeze(0) # outputs.append(proj) if method == 'max': _, token_inp = torch.max(proj) outputs.append(token_inp) elif method == 'random': dist = Categorical(F.softmax(proj ,-1)) token_inp = dist.sample() outputs.append(token_inp) token_inp = token_inp.view(1,-1) if direction == 'bw': outputs = list(reversed(outputs)) outputs = torch.stack(outputs) return outputs def sample_n_sequences(self, method, direction, token_inp, hidden, length, sample_num): outputs = [] token_inp = token_inp.repeat(1, sample_num) # [1, N] hidden = hidden.repeat(1, sample_num, 1) # [x, N, H] for t in range(length): output, hidden = self.encoder.rollout(token_inp, hidden, direction=direction) if direction == 'fw': proj = self.fw_proj(output[:, :, :self.hidden_size]) elif direction == 'bw': proj = self.bw_proj(output[:, :, self.hidden_size:]) proj = proj.squeeze(0) if method == 'max': _, token_inp = torch.max(proj,-1) outputs.append(token_inp.view(-1)) elif method == 'random': dist = Categorical(F.softmax(proj, -1)) token_inp = dist.sample() outputs.append(token_inp) token_inp = token_inp.view(1, -1) if direction == 'bw': outputs = list(reversed(outputs)) outputs = torch.stack(outputs) return outputs def sample_n(self, method, batch, max_sample_length, sample_num): """ this function to not assume input have <GO> tokens. :param method: :param batch: :param max_sample_length: :param sample_num: :return: """ inp = batch.text inp_len_np = batch.length.cpu().numpy() pad_inp1 = torch.LongTensor([self.fw_start_token] * inp.size(1)).view(1,-1) pad_inp2 = torch.LongTensor([self.pad_token] * inp.size(1)).view(1,-1) if self.gpu >= 0: inp = inp.to(self.gpu) pad_inp1 = pad_inp1.to(self.gpu) pad_inp2 = pad_inp2.to(self.gpu) padded_inp = torch.cat([pad_inp1, inp, pad_inp2], 0) padded_inp[inp_len_np + 1] = self.bw_start_token assert padded_inp.max().item() < self.n_vocab + 2 assert inp_len_np[0] + 2 <= padded_inp.size(0) padded_enc_out = self.encoder(padded_inp, inp_len_np + 2) # [T+2,B,H] # extract forward hidden state assert 0 <= batch.fw_pos.item() - 1 <= padded_enc_out.size(0) - 1 assert 0 <= batch.fw_pos.item() <= padded_enc_out.size(0) - 1 fw_hidden = padded_enc_out.index_select(0,batch.fw_pos - 1) fw_hidden = torch.cat([fw_hidden[:,:,:self.hidden_size],fw_hidden[:,:,self.hidden_size:]], 0) fw_next_token = padded_inp.index_select(0,batch.fw_pos).view(1,-1) # extract backward hidden state assert 0 <= batch.bw_pos.item() + 3 <= padded_enc_out.size(0) - 1 assert 0 <= batch.bw_pos.item() + 2 <= padded_enc_out.size(0) - 1 bw_hidden = padded_enc_out.index_select(0,batch.bw_pos + 3) bw_hidden = torch.cat([bw_hidden[:,:,:self.hidden_size], bw_hidden[:,:,self.hidden_size:]], 0) bw_next_token = padded_inp.index_select(0,batch.bw_pos + 2).view(1,-1) fw_sample_outputs = self.sample_n_sequences(method, 'fw', fw_next_token, fw_hidden, max_sample_length, sample_num) bw_sample_outputs = self.sample_n_sequences(method, 'bw', bw_next_token, bw_hidden, max_sample_length, sample_num) self.filter_special_tokens(fw_sample_outputs) self.filter_special_tokens(bw_sample_outputs) return fw_sample_outputs, bw_sample_outputs def filter_special_tokens(self, m): for i in range(m.size(0)): for j in range(m.size(1)): if m[i,j] >= self.n_vocab - 2 or m[i,j] == self.vocab.get('[CLS]',0) \ or m[i,j] == self.vocab.get('[SEP]',0): m[i,j] = 0
the-stack_106_27831
from functools import reduce ## Journal of Biomedical And Health Informatics (JBHI) 2020 import pdb import torch import torch.nn.functional as F import torch.nn as nn from torch.autograd import Variable from bis3d_v2.networks.nets.msga_net.attention import ( PAM_Module, CAM_Module, semanticModule, PAM_CAM_Layer, MultiConv ) from bis3d_v2.networks.nets.msga_net.resnext101_regular import ResNeXt101 class DAF_stack(nn.Module): def __init__(self, in_channels, out_channels_end): super(DAF_stack, self).__init__() self.resnext = ResNeXt101(in_channels) self.down4 = nn.Sequential( nn.Conv2d(2048, 64, kernel_size=1), nn.BatchNorm2d(64), nn.PReLU() ) self.down3 = nn.Sequential( nn.Conv2d(1024, 64, kernel_size=1), nn.BatchNorm2d(64), nn.PReLU() ) self.down2 = nn.Sequential( nn.Conv2d(512, 64, kernel_size=1), nn.BatchNorm2d(64), nn.PReLU() ) self.down1 = nn.Sequential( nn.Conv2d(256, 64, kernel_size=1), nn.BatchNorm2d(64), nn.PReLU() ) inter_channels = 64 out_channels=64 self.conv6_1 = nn.Sequential(nn.Dropout2d(0.1, False), nn.Conv2d(64, out_channels, 1)) self.conv6_2 = nn.Sequential(nn.Dropout2d(0.1, False), nn.Conv2d(64, out_channels, 1)) self.conv6_3 = nn.Sequential(nn.Dropout2d(0.1, False), nn.Conv2d(64, out_channels, 1)) self.conv6_4 = nn.Sequential(nn.Dropout2d(0.1, False), nn.Conv2d(64, out_channels, 1)) self.conv7_1 = nn.Sequential(nn.Dropout2d(0.1, False), nn.Conv2d(64, out_channels, 1)) self.conv7_2 = nn.Sequential(nn.Dropout2d(0.1, False), nn.Conv2d(64, out_channels, 1)) self.conv7_3 = nn.Sequential(nn.Dropout2d(0.1, False), nn.Conv2d(64, out_channels, 1)) self.conv7_4 = nn.Sequential(nn.Dropout2d(0.1, False), nn.Conv2d(64, out_channels, 1)) self.conv8_1=nn.Conv2d(64,64,1) self.conv8_2=nn.Conv2d(64,64,1) self.conv8_3=nn.Conv2d(64,64,1) self.conv8_4=nn.Conv2d(64,64,1) self.conv8_11=nn.Conv2d(64,64,1) self.conv8_12=nn.Conv2d(64,64,1) self.conv8_13=nn.Conv2d(64,64,1) self.conv8_14=nn.Conv2d(64,64,1) self.softmax_1 = nn.Softmax(dim=-1) self.pam_attention_1_1= PAM_CAM_Layer(64, True) self.cam_attention_1_1= PAM_CAM_Layer(64, False) self.semanticModule_1_1 = semanticModule(128) self.conv_sem_1_1 = nn.Conv2d(128, 64, kernel_size=3, padding=1) self.conv_sem_1_2 = nn.Conv2d(128, 64, kernel_size=3, padding=1) self.conv_sem_1_3 = nn.Conv2d(128, 64, kernel_size=3, padding=1) self.conv_sem_1_4 = nn.Conv2d(128, 64, kernel_size=3, padding=1) #Dual Attention mechanism self.pam_attention_1_2 = PAM_CAM_Layer(64) self.cam_attention_1_2 = PAM_CAM_Layer(64, False) self.pam_attention_1_3 = PAM_CAM_Layer(64) self.cam_attention_1_3 = PAM_CAM_Layer(64, False) self.pam_attention_1_4 = PAM_CAM_Layer(64) self.cam_attention_1_4 = PAM_CAM_Layer(64, False) self.pam_attention_2_1 = PAM_CAM_Layer(64) self.cam_attention_2_1 = PAM_CAM_Layer(64, False) self.semanticModule_2_1 = semanticModule(128) self.conv_sem_2_1 = nn.Conv2d(128, 64, kernel_size=3, padding=1) self.conv_sem_2_2 = nn.Conv2d(128, 64, kernel_size=3, padding=1) self.conv_sem_2_3 = nn.Conv2d(128, 64, kernel_size=3, padding=1) self.conv_sem_2_4 = nn.Conv2d(128, 64, kernel_size=3, padding=1) self.pam_attention_2_2 = PAM_CAM_Layer(64) self.cam_attention_2_2 = PAM_CAM_Layer(64, False) self.pam_attention_2_3 = PAM_CAM_Layer(64) self.cam_attention_2_3 = PAM_CAM_Layer(64, False) self.pam_attention_2_4 = PAM_CAM_Layer(64) self.cam_attention_2_4 = PAM_CAM_Layer(64, False) self.fuse1 = MultiConv(256, 64, False) self.attention4 = MultiConv(128, 64) self.attention3 = MultiConv(128, 64) self.attention2 = MultiConv(128, 64) self.attention1 = MultiConv(128, 64) self.refine4 = MultiConv(128, 64, False) self.refine3 = MultiConv(128, 64, False) self.refine2 = MultiConv(128, 64, False) self.refine1 = MultiConv(128, 64, False) self.predict4 = nn.Conv2d(64, out_channels_end, kernel_size=1) self.predict3 = nn.Conv2d(64, out_channels_end, kernel_size=1) self.predict2 = nn.Conv2d(64, out_channels_end, kernel_size=1) self.predict1 = nn.Conv2d(64, out_channels_end, kernel_size=1) self.predict4_2 = nn.Conv2d(64, out_channels_end, kernel_size=1) self.predict3_2 = nn.Conv2d(64, out_channels_end, kernel_size=1) self.predict2_2 = nn.Conv2d(64, out_channels_end, kernel_size=1) self.predict1_2 = nn.Conv2d(64, out_channels_end, kernel_size=1) def forward(self, x): layer0 = self.resnext.layer0(x) layer1 = self.resnext.layer1(layer0) layer2 = self.resnext.layer2(layer1) layer3 = self.resnext.layer3(layer2) layer4 = self.resnext.layer4(layer3) down4 = F.upsample(self.down4(layer4), size=layer1.size()[2:], mode='bilinear') down3 = F.upsample(self.down3(layer3), size=layer1.size()[2:], mode='bilinear') down2 = F.upsample(self.down2(layer2), size=layer1.size()[2:], mode='bilinear') down1 = self.down1(layer1) predict4 = self.predict4(down4) predict3 = self.predict3(down3) predict2 = self.predict2(down2) predict1 = self.predict1(down1) fuse1 = self.fuse1(torch.cat((down4, down3, down2, down1), 1)) semVector_1_1,semanticModule_1_1 = self.semanticModule_1_1(torch.cat((down4, fuse1),1)) attn_pam4 = self.pam_attention_1_4(torch.cat((down4, fuse1), 1)) attn_cam4 = self.cam_attention_1_4(torch.cat((down4, fuse1), 1)) attention1_4=self.conv8_1((attn_cam4+attn_pam4)*self.conv_sem_1_1(semanticModule_1_1)) semVector_1_2, semanticModule_1_2 = self.semanticModule_1_1(torch.cat((down3, fuse1), 1)) attn_pam3 = self.pam_attention_1_3(torch.cat((down3, fuse1), 1)) attn_cam3 = self.cam_attention_1_3(torch.cat((down3, fuse1), 1)) attention1_3=self.conv8_2((attn_cam3+attn_pam3)*self.conv_sem_1_2(semanticModule_1_2)) semVector_1_3, semanticModule_1_3 = self.semanticModule_1_1(torch.cat((down2, fuse1), 1)) attn_pam2 = self.pam_attention_1_2(torch.cat((down2, fuse1), 1)) attn_cam2 = self.cam_attention_1_2(torch.cat((down2, fuse1), 1)) attention1_2=self.conv8_3((attn_cam2+attn_pam2)*self.conv_sem_1_3(semanticModule_1_3)) semVector_1_4, semanticModule_1_4 = self.semanticModule_1_1(torch.cat((down1, fuse1), 1)) attn_pam1 = self.pam_attention_1_1(torch.cat((down1, fuse1), 1)) attn_cam1 = self.cam_attention_1_1(torch.cat((down1, fuse1), 1)) attention1_1 = self.conv8_4((attn_cam1+attn_pam1) * self.conv_sem_1_4(semanticModule_1_4)) ##new design with stacked attention semVector_2_1, semanticModule_2_1 = self.semanticModule_2_1(torch.cat((down4, attention1_4 * fuse1), 1)) refine4_1 = self.pam_attention_2_4(torch.cat((down4,attention1_4*fuse1),1)) refine4_2 = self.cam_attention_2_4(torch.cat((down4,attention1_4*fuse1),1)) refine4 = self.conv8_11((refine4_1+refine4_2) * self.conv_sem_2_1(semanticModule_2_1)) semVector_2_2, semanticModule_2_2 = self.semanticModule_2_1(torch.cat((down3, attention1_3 * fuse1), 1)) refine3_1 = self.pam_attention_2_3(torch.cat((down3,attention1_3*fuse1),1)) refine3_2 = self.cam_attention_2_3(torch.cat((down3,attention1_3*fuse1),1)) refine3 = self.conv8_12((refine3_1+refine3_2) * self.conv_sem_2_2(semanticModule_2_2)) semVector_2_3, semanticModule_2_3 = self.semanticModule_2_1(torch.cat((down2, attention1_2 * fuse1), 1)) refine2_1 = self.pam_attention_2_2(torch.cat((down2,attention1_2*fuse1),1)) refine2_2 = self.cam_attention_2_2(torch.cat((down2,attention1_2*fuse1),1)) refine2 = self.conv8_13((refine2_1+refine2_2)*self.conv_sem_2_3(semanticModule_2_3)) semVector_2_4, semanticModule_2_4 = self.semanticModule_2_1(torch.cat((down1, attention1_1 * fuse1), 1)) refine1_1 = self.pam_attention_2_1(torch.cat((down1,attention1_1 * fuse1),1)) refine1_2 = self.cam_attention_2_1(torch.cat((down1,attention1_1 * fuse1),1)) refine1=self.conv8_14((refine1_1+refine1_2) * self.conv_sem_2_4(semanticModule_2_4)) predict4_2 = self.predict4_2(refine4) predict3_2 = self.predict3_2(refine3) predict2_2 = self.predict2_2(refine2) predict1_2 = self.predict1_2(refine1) predict1 = F.upsample(predict1, size=x.size()[2:], mode='bilinear') predict2 = F.upsample(predict2, size=x.size()[2:], mode='bilinear') predict3 = F.upsample(predict3, size=x.size()[2:], mode='bilinear') predict4 = F.upsample(predict4, size=x.size()[2:], mode='bilinear') predict1_2 = F.upsample(predict1_2, size=x.size()[2:], mode='bilinear') predict2_2 = F.upsample(predict2_2, size=x.size()[2:], mode='bilinear') predict3_2 = F.upsample(predict3_2, size=x.size()[2:], mode='bilinear') predict4_2 = F.upsample(predict4_2, size=x.size()[2:], mode='bilinear') # if self.training: # return semVector_1_1,\ # semVector_2_1, \ # semVector_1_2, \ # semVector_2_2, \ # semVector_1_3, \ # semVector_2_3, \ # semVector_1_4, \ # semVector_2_4, \ # torch.cat((down1, fuse1), 1),\ # torch.cat((down2, fuse1), 1),\ # torch.cat((down3, fuse1), 1),\ # torch.cat((down4, fuse1), 1), \ # torch.cat((down1, attention1_1 * fuse1), 1), \ # torch.cat((down2, attention1_2 * fuse1), 1), \ # torch.cat((down3, attention1_3 * fuse1), 1), \ # torch.cat((down4, attention1_4 * fuse1), 1), \ # semanticModule_1_4, \ # semanticModule_1_3, \ # semanticModule_1_2, \ # semanticModule_1_1, \ # semanticModule_2_4, \ # semanticModule_2_3, \ # semanticModule_2_2, \ # semanticModule_2_1, \ # predict1, \ # predict2, \ # predict3, \ # predict4, \ # predict1_2, \ # predict2_2, \ # predict3_2, \ # predict4_2 return predict4_2 # else: # return ((predict1_2 + predict2_2 + predict3_2 + predict4_2) / 4) if __name__ == '__main__': model = DAF_stack(in_channels=2, out_channels_end=2) t1 = torch.rand(1, 2, 256, 256) out = model(t1) print(out.shape)
the-stack_106_27833
import sciunit from sciunit.scores import BooleanScore # import morphounit.capabilities as cap import morphounit.plots as plots import os from subprocess import call import shlex import json from datetime import datetime import matplotlib.backends.backend_pdf from neurom.apps.cut_plane_detection import find_cut_plane from neurom import load_neuron import numpy #============================================================================== class NeuroM_MorphoCheck(sciunit.Test): """ Tests morphologies using NeuroM's `morph_check` feature. Returns `True` if all checks passed successfully; else `False`. """ score_type = BooleanScore def __init__(self, observation=None, name="NeuroM MorphCheck", base_directory=None): description = ("Tests morphologies using NeuroM's `morph_check` feature") # required_capabilities = (cap.HandlesNeuroM,) self.observation = observation if not base_directory: base_directory = "." self.base_directory = base_directory self.figures = [] sciunit.Test.__init__(self, self.observation, name) #---------------------------------------------------------------------- def generate_prediction(self, model, verbose=False): """Implementation of sciunit.Test.generate_prediction.""" self.model_version = model.model_version self.path_test_output = os.path.join(self.base_directory, 'validation_results', 'neuroM_morph_hardChecks', self.model_version, datetime.now().strftime("%Y%m%d-%H%M%S")) if not os.path.exists(self.path_test_output): os.makedirs(self.path_test_output) # note: observation here is either the contents of the config file or a local path # if local path load contents if not isinstance(self.observation, dict): with open(self.observation) as f: self.observation = json.load(f) # save morph_check config as local file morph_check_config_file = os.path.join(self.path_test_output, "morph_check_config.json") with open(morph_check_config_file,'w') as f: json.dump(self.observation["morph_check"], f, indent=4) cut_plane_config = self.observation["cut_plane"] morhpcheck_output_file = os.path.join(self.path_test_output, "morph_check_output.json") call(shlex.split(f"morph_check -C {morph_check_config_file} -o {morhpcheck_output_file} {model.morph_path}")) with open(morhpcheck_output_file) as json_data: prediction = json.load(json_data) cut_plane_output_json = find_cut_plane(load_neuron(model.morph_path), bin_width=cut_plane_config["bin_width"], display=True) cut_plane_figure_list = [] for key in cut_plane_output_json["figures"].keys(): cut_plane_figure_list.append(cut_plane_output_json["figures"][key][0]) cutplane_output_pdf = os.path.join(self.path_test_output, "cut_plane_figures.pdf") cut_plane_pdf = matplotlib.backends.backend_pdf.PdfPages(cutplane_output_pdf) for fig in range(1, len(cut_plane_figure_list)+1): cut_plane_pdf.savefig(fig) cut_plane_pdf.close() cutplane_output_file = os.path.join(self.path_test_output, "cut_plane_output.json") cut_plane_output_json.pop("figures") cut_plane_output_json["cut_leaves"] = cut_plane_output_json["cut_leaves"].tolist() def convert(o): if isinstance(o, numpy.int64): return int(o) raise TypeError with open(cutplane_output_file, "w") as outfile: json.dump(cut_plane_output_json, outfile, indent=4, default=convert) self.figures.append(morhpcheck_output_file) self.figures.append(cutplane_output_file) self.figures.append(cutplane_output_pdf) return prediction #---------------------------------------------------------------------- def compute_score(self, observation, prediction): """Implementation of sciunit.Test.score_prediction.""" score_dict = {"PASS":True, "FAIL":False} self.score = BooleanScore(score_dict[prediction["STATUS"]]) self.score.description = "Boolean: True = Pass / False = Fail" return self.score #---------------------------------------------------------------------- def bind_score(self, score, model, observation, prediction): score.related_data["figures"] = self.figures score.related_data["passed"] = score.score return score
the-stack_106_27834
# coding: utf-8 """ Talon.One API The Talon.One API is used to manage applications and campaigns, as well as to integrate with your application. The operations in the _Integration API_ section are used to integrate with our platform, while the other operations are used to manage applications and campaigns. ### Where is the API? The API is available at the same hostname as these docs. For example, if you are reading this page at `https://mycompany.talon.one/docs/api/`, the URL for the [updateCustomerProfile][] operation is `https://mycompany.talon.one/v1/customer_profiles/id` [updateCustomerProfile]: #operation--v1-customer_profiles--integrationId--put # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from talon_one.configuration import Configuration class ErrorSource(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'pointer': 'str', 'parameter': 'str', 'line': 'str', 'resource': 'str' } attribute_map = { 'pointer': 'pointer', 'parameter': 'parameter', 'line': 'line', 'resource': 'resource' } def __init__(self, pointer=None, parameter=None, line=None, resource=None, local_vars_configuration=None): # noqa: E501 """ErrorSource - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._pointer = None self._parameter = None self._line = None self._resource = None self.discriminator = None if pointer is not None: self.pointer = pointer if parameter is not None: self.parameter = parameter if line is not None: self.line = line if resource is not None: self.resource = resource @property def pointer(self): """Gets the pointer of this ErrorSource. # noqa: E501 Pointer to the path in the payload that caused this error. # noqa: E501 :return: The pointer of this ErrorSource. # noqa: E501 :rtype: str """ return self._pointer @pointer.setter def pointer(self, pointer): """Sets the pointer of this ErrorSource. Pointer to the path in the payload that caused this error. # noqa: E501 :param pointer: The pointer of this ErrorSource. # noqa: E501 :type: str """ self._pointer = pointer @property def parameter(self): """Gets the parameter of this ErrorSource. # noqa: E501 Query parameter that caused this error. # noqa: E501 :return: The parameter of this ErrorSource. # noqa: E501 :rtype: str """ return self._parameter @parameter.setter def parameter(self, parameter): """Sets the parameter of this ErrorSource. Query parameter that caused this error. # noqa: E501 :param parameter: The parameter of this ErrorSource. # noqa: E501 :type: str """ self._parameter = parameter @property def line(self): """Gets the line of this ErrorSource. # noqa: E501 Line number in uploaded multipart file that caused this error. 'N/A' if unknown. # noqa: E501 :return: The line of this ErrorSource. # noqa: E501 :rtype: str """ return self._line @line.setter def line(self, line): """Sets the line of this ErrorSource. Line number in uploaded multipart file that caused this error. 'N/A' if unknown. # noqa: E501 :param line: The line of this ErrorSource. # noqa: E501 :type: str """ self._line = line @property def resource(self): """Gets the resource of this ErrorSource. # noqa: E501 Pointer to the resource that caused this error # noqa: E501 :return: The resource of this ErrorSource. # noqa: E501 :rtype: str """ return self._resource @resource.setter def resource(self, resource): """Sets the resource of this ErrorSource. Pointer to the resource that caused this error # noqa: E501 :param resource: The resource of this ErrorSource. # noqa: E501 :type: str """ self._resource = resource def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ErrorSource): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, ErrorSource): return True return self.to_dict() != other.to_dict()
the-stack_106_27835
from __future__ import unicode_literals import re from setuptools import find_packages, setup def get_version(filename): with open(filename) as fh: metadata = dict(re.findall("__([a-z]+)__ = '([^']+)'", fh.read())) return metadata['version'] setup( name='Mopidy-FrontPanel', version=get_version('mopidy_frontpanel/__init__.py'), url='https://github.com/doubteded/mopidy-frontpanel', license='Apache License, Version 2.0', author='Nick Bulleid', author_email='[email protected]', description='Extension for using a front panel for Mopidy', long_description=open('README.rst').read(), packages=find_packages(exclude=['tests', 'tests.*']), zip_safe=False, include_package_data=True, install_requires=[ 'setuptools', 'Mopidy >= 1.0', 'Pykka >= 1.1', 'luma.oled >= 2.5.1', 'gpiozero >= 1.4.1' ], entry_points={ 'mopidy.ext': [ 'frontpanel = mopidy_frontpanel:Extension', ], }, classifiers=[ 'Environment :: No Input/Output (Daemon)', 'Intended Audience :: End Users/Desktop', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2', 'Topic :: Multimedia :: Sound/Audio :: Players', ], )
the-stack_106_27837
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # michael a.g. aïvázis # orthologue # (c) 1998-2018 all rights reserved # """ Build and test a simple tokenizer """ def test(): import pyre.parsing COMMENT = r"#" SEPARATOR = r":" class Simple(pyre.parsing.scanner): """a simple scanner""" comment = pyre.parsing.token(COMMENT) separator = pyre.parsing.token(SEPARATOR) # access the token base class from pyre.parsing.Token import Token # check that the token descriptors have been turned into subclasses of Token assert issubclass(Simple.comment, Token) assert issubclass(Simple.separator, Token) # check that the tokenizer was built correctly assert Simple.pyre_tokenizer.pattern == '|'.join([ "(?P<comment>#)", "(?P<separator>:)", "(?P<whitespace>\s+)", ]) # and return the class record return Simple # main if __name__ == "__main__": # skip pyre initialization since we don't rely on the executive pyre_noboot = True # do... test() # end of file
the-stack_106_27838
from netapp.netapp_object import NetAppObject class SecurityLoginGetIterKeyTd(NetAppObject): """ Key typedef for table login_rbac_zapis """ _key_3 = None @property def key_3(self): """ Field authmethod """ return self._key_3 @key_3.setter def key_3(self, val): if val != None: self.validate('key_3', val) self._key_3 = val _key_2 = None @property def key_2(self): """ Field application """ return self._key_2 @key_2.setter def key_2(self, val): if val != None: self.validate('key_2', val) self._key_2 = val _key_1 = None @property def key_1(self): """ Field username """ return self._key_1 @key_1.setter def key_1(self, val): if val != None: self.validate('key_1', val) self._key_1 = val _key_0 = None @property def key_0(self): """ Field vserver """ return self._key_0 @key_0.setter def key_0(self, val): if val != None: self.validate('key_0', val) self._key_0 = val @staticmethod def get_api_name(): return "security-login-get-iter-key-td" @staticmethod def get_desired_attrs(): return [ 'key-3', 'key-2', 'key-1', 'key-0', ] def describe_properties(self): return { 'key_3': { 'class': basestring, 'is_list': False, 'required': 'optional' }, 'key_2': { 'class': basestring, 'is_list': False, 'required': 'optional' }, 'key_1': { 'class': basestring, 'is_list': False, 'required': 'optional' }, 'key_0': { 'class': basestring, 'is_list': False, 'required': 'optional' }, }
the-stack_106_27839
# -*- coding: utf-8 -*- from __future__ import unicode_literals """ Created on Fri Aug 9 14:01:22 2019 @author: cherrabi """ from P2N_Lib import GenereListeFichiers # import from P2N_Config import LoadConfig # import os # importation de la bibliothèque os qui sert à from textblob import TextBlob # importation de textblob outil liguistique from nltk.corpus import stopwords import nltk from sematch.semantic.similarity import WordNetSimilarity from nltk.corpus import wordnet as wn import pandas as pd import re import shutil import sys from nltk.corpus import stopwords import numpy as np import pandas as pd import re import umap import matplotlib.pyplot as plt import seaborn as sns from nltk.corpus import stopwords from sklearn.feature_extraction.text import TfidfVectorizer from nltk.tokenize import word_tokenize from nltk.stem.wordnet import WordNetLemmatizer import string import gensim from gensim import corpora from gensim.corpora import Dictionary from sklearn.decomposition import TruncatedSVD import os import re import codecs import logging import time from operator import add from textblob import TextBlob # importation de textblob outil liguistique from nltk.corpus import stopwords from P2N_Lib import LoadBiblioFile from P2N_Lib import GenereListeFichiers from P2N_Config import LoadConfig from nltk.corpus import wordnet import spacy import en_core_web_sm from itertools import product ListeBrevet = [] # The patent List stop_words = set(stopwords.words('english')) configFile = LoadConfig() requete = configFile.requete BiblioPath = configFile.ResultBiblioPath GatherContent = configFile.GatherContent GatherBiblio = configFile.GatherBiblio GatherPatent = configFile.GatherPatent GatherFamilly = configFile.GatherFamilly IsEnableScript = configFile.GatherIramuteq ResultBiblioPath = configFile.ResultBiblioPath ndf = configFile.ndf DataBrevet = LoadBiblioFile(BiblioPath, ndf) InventorList = [] InventorList = DataBrevet['brevets'] # preparing parsing data for indicator scientific publication and inventive production inventor_list = [auth['inventor'] for auth in DataBrevet['brevets']] label_list = [auth['label'] for auth in DataBrevet['brevets']] title_list = [auth['title'] for auth in DataBrevet['brevets']] dict = { 'label' : label_list, 'title' : title_list, 'inventor' : inventor_list } df = pd.DataFrame(dict) df.to_csv("data_inventor.csv", header=False, index=False) temporPath = configFile.temporPath ResultAbstractPath = configFile.ResultAbstractPath #ResultClaimsPath = configFile.ResultClaimsPath #add here templateFlask directory local to the request directory normalize path for windows ResultPathContent= configFile.ResultContentsPath.replace('\\', '/' ) ResultTemplateFlask = os.path.join(ResultPathContent,'Trizifiier').replace('\\','/') bigram_measures = nltk.collocations.BigramAssocMeasures() trigram_measures = nltk.collocations.TrigramAssocMeasures() if not os.path.exists(ResultTemplateFlask): #creation des dossiers templates et dataFormat os.mkdir(ResultTemplateFlask) if not os.path.exists(ResultTemplateFlask+'/templates'): #creation des dossiers templates et dataFormat os.mkdir(ResultTemplateFlask+'/templates') if not os.path.exists(ResultTemplateFlask+'/DataFormat'): #creation des dossiers templates et dataFormat os.mkdir(ResultTemplateFlask+'/DataFormat') #add here tempo dir temporar = configFile.temporPath wns = WordNetSimilarity() i=0 # build file list #direct = os.path.normpath(ResultBiblioPath) #direct = os.path.normpath(ResultClaimsPath) direct = os.path.normpath(ResultAbstractPath) # affiche url de chaque documents txt dans le dossier de la requete inseree , EN tous les url dossier pour en ect... Fr, En, Unk = GenereListeFichiers(direct) def convert_tag(tag): tag_dict = {'N': 'n', 'J': 'a', 'R': 'r', 'V': 'v'} try: return tag_dict[tag[0]] except KeyError: return None CountFile_R = 0 CountFile_W = 0 FichierOrg={} # compter les nombre de caractere de EN #if len(En) PSW = [] # liste de mots vide à compléter au fur et à mesure des recherches # minimalistic HTML for result file in html format dataF = """""" # va contenir tous les abstracts du dossier de la requete import codecs #DejaVus = dict() f=open(ResultTemplateFlask + '/DataFormat/FileDataAnalysisTrizWikiE.csv','w') entetes = [ u'i', u'label', u'classe', u'Action', u'indiceSimAction', u'abstract', u'urlEspacenet' ] ligneEntete=",".join(entetes)+"\n" f.write(ligneEntete) d= pd.read_csv("trizOxfordData.csv",delimiter=";") dnew= pd.read_csv("FileTrizNewList.csv",delimiter=",") classes = pd.DataFrame(dnew,columns=['Ref_classe']) classes_syn = pd.DataFrame(dnew,columns=['syn_classe']) classesUnique = classes.drop_duplicates(keep = False) expansionTriz = classes_syn.drop_duplicates(keep = False) tal = spacy.load('en_core_web_sm') #lecture des fichiers txt en boucle et placement element dans dataF for fic in En: with codecs.open(fic, 'r', 'utf8') as File: dataF = File.readlines() #single File ne pas lire la première ligne de l'abstract # dataF = '\n'.join(dataF) # FichierOrg = dataF abstract = '\n'.join(dataF[1:]) NumberBrevet= fic.split('-')[1] #NumberBrevet=NumberBrevet.replace('*Label_','') NumberBrevet=NumberBrevet.replace('.txt','') #sys.exit(0) # tokenization abstract = re.sub("[^a-zA-Z#]", " ",str(abstract)) brevet = tal(abstract) #Blob = TextBlob(abstract) #wordlist=Blob.words #should give best results@ DR # remove stop-words and words less 3 caracters filtered_sentence = [mot.lemma_ for mot in brevet if mot.pos_ == "NOUN" or mot.pos_ == "VERB"] #for w in wordlist: #if w not in stop_words and len(w) > 3: #filtered_sentence.append(w) #Document-Term Matrix #print(filtered_sentence) #print(resultType) urlEspacenet="https://worldwide.espacenet.com/searchResults?submitted=true&locale=fr_EP&DB=EPODOC&ST=advanced&TI=&AB=&PN="+format(NumberBrevet) matriceListe = [] matricelistePaire = [] matricelistePaireSort=[] matricelistePaireAction = [] matricelistePaireObject = [] for classe in expansionTriz.keys() : ExpansionClasse = expansionTriz[classe] allsyns1 = set(ss for word in ExpansionClasse for ss in wordnet.synsets(word)) allsyns2 = set(ss for word in filtered_sentence for ss in wordnet.synsets(word)) best = max((wordnet.wup_similarity(s1, s2) or 0, s1, s2) for s1, s2 in product(allsyns1, allsyns2)) #print("allsyns1 ========",allsyns1) #print("\n") #print("allsyns2========",allsyns2) print("best: ", best) print("\n") sys.exit() f.close() sys.exit() #open file data semantic classification d= pd.read_csv(ResultTemplateFlask + "/DataFormat/FileDataAnalysisTrizWikiE.csv") df = pd.DataFrame(d,columns=['i','label','Term','Action','indiceSimAction','abstract','urlEspacenet']) df.to_csv(ResultTemplateFlask + '/DataFormat/tableauTriE.csv') sys.exit(0) # je veux le csv généré ici, car a partir de cette ligne je vais changer pour afficher les classes autrement # sorted data by id and term ascending dfmax = df.sort_values(by=['i','Term','indiceSimAction'],ascending=[True,True,False]) dfmax.to_csv(ResultTemplateFlask + '/DataFormat/tableauTri.csv') # selected just top indice similiraty for term / action dresult = dfmax.drop_duplicates(['Term'],keep='first') dresult.to_csv(ResultTemplateFlask + '/DataFormat/tableauDrop.csv') dresultmaxI=dresult.sort_values(by='indiceSimAction') # create file formated datas to use in tabulator html dresultmaxI.to_csv(ResultTemplateFlask + '/DataFormat/resultatParserV2.csv') dd=pd.read_csv(ResultTemplateFlask + '/DataFormat/resultatParserV2.csv') dff = pd.DataFrame(dd,columns=['i','label','Action','Term','Patent Tags','indiceSimAction','abstract','urlEspacenet']) dfjson= pd.DataFrame(dd,columns=['label','Action','Term','Patent Tags','abstract','urlEspacenet']) dfjson.to_json(ResultTemplateFlask +'/DataFormat/caraTrizWikisemantic.json', orient='records', lines=False) #shutil.copyfile("templates/sources", ResultTemplateFlask+"/sources") ResFolder = configFile.ResultPath.replace('\\', '//') ResFolder = ResFolder.replace('//','/') shutil.copy("templates/P2N-Trizifyer-semantic.html", ResFolder) #add variable vars json_data datatable src = open(ResultTemplateFlask +'/DataFormat/caraTrizWikisemantic.json','r') lineadd = " var json_data = " online=src.readlines() online.insert(0,lineadd) src.close src = open(ResultTemplateFlask +'/DataFormat/caraTrizWikisemantic.json','w') src.writelines(online) src.close
the-stack_106_27840
#!/usr/bin/env python # --coding:utf-8-- # Copyright (c) 2020 vesoft inc. All rights reserved. # # This source code is licensed under Apache 2.0 License, # attached with Common Clause Condition 1.0, found in the LICENSES directory. import sys import os from datetime import date current_dir = os.path.dirname(os.path.abspath(__file__)) root_dir = os.path.join(current_dir, '..') sys.path.insert(0, root_dir) from nebula2.Exception import InvalidKeyException from nebula2.common.ttypes import ( Value, NullType, Time, DateTime, NSet, Date, NList, NMap, ErrorCode ) from nebula2.common import ttypes from nebula2.graph import ttypes as graphTtype from unittest import TestCase from nebula2.data.ResultSet import ResultSet from nebula2.data.DataObject import ( ValueWrapper, Node, Relationship, PathWrapper, TimeWrapper, DateTimeWrapper, DateWrapper, Null, Segment, DataSetWrapper ) class TestBaseCase(TestCase): @classmethod def get_vertex_value(self, vid): vertex = ttypes.Vertex() vertex.vid = ttypes.Value(sVal=vid) vertex.tags = list() for i in range(0, 3): tag = ttypes.Tag() tag.name = ('tag{}'.format(i)).encode('utf-8') tag.props = dict() for j in range(0, 5): value = ttypes.Value() value.set_iVal(j) tag.props[('prop{}'.format(j)).encode('utf-8')] = value vertex.tags.append(tag) return vertex @classmethod def get_edge_value(self, src_id, dst_id, is_reverse=False): edge = ttypes.Edge() if not is_reverse: edge.src = ttypes.Value(sVal=src_id) edge.dst = ttypes.Value(sVal=dst_id) else: edge.src = ttypes.Value(sVal=dst_id) edge.dst = ttypes.Value(sVal=src_id) edge.type = 1 edge.name = b'classmate' edge.ranking = 100 edge.props = dict() for i in range(0, 5): value = ttypes.Value() value.set_iVal(i) edge.props[('prop{}'.format(i)).encode('utf-8')] = value return edge @classmethod def get_path_value(self, start_id, steps=5): path = ttypes.Path() path.src = self.get_vertex_value(start_id) path.steps = list() for i in range(0, steps): step = ttypes.Step() step.dst = self.get_vertex_value(('vertex{}'.format(i)).encode('utf-8')) step.type = 1 if i % 2 == 0 else -1 step.name = b'classmate' step.ranking = 100 step.props = dict() for i in range(0, 5): value = ttypes.Value() value.set_iVal(i) step.props[('prop{}'.format(i)).encode('utf-8')] = value path.steps.append(step) return path @classmethod def get_data_set(self): data_set = ttypes.DataSet() data_set.column_names = [b"col1_empty", b"col2_null", b"col3_bool", b"col4_int", b"col5_double", b"col6_string", b"col7_list", b"col8_set", b"col9_map", b"col10_time", b"col11_date", b"col12_datetime", b"col13_vertex", b"col14_edge", b"col15_path"] row = ttypes.Row() row.values = [] value1 = ttypes.Value() row.values.append(value1) value2 = ttypes.Value() value2.set_nVal(NullType.BAD_DATA) row.values.append(value2) value3 = ttypes.Value() value3.set_bVal(False) row.values.append(value3) value4 = ttypes.Value() value4.set_iVal(100) row.values.append(value4) value5 = ttypes.Value() value5.set_fVal(10.01) row.values.append(value5) value6 = ttypes.Value() value6.set_sVal(b"hello world") row.values.append(value6) value7 = ttypes.Value() str_val1 = ttypes.Value() str_val1.set_sVal(b"word") str_val2 = ttypes.Value() str_val2.set_sVal(b"car") list_val = NList() list_val.values = [str_val1, str_val2] value7.set_lVal(list_val) row.values.append(value7) value8 = ttypes.Value() set_val = NSet() set_val.values = set() set_val.values.add(str_val1) set_val.values.add(str_val2) value8.set_uVal(set_val) row.values.append(value8) value9 = ttypes.Value() map = NMap() map.kvs = {b"a": str_val1, b"b": str_val2} value9.set_mVal(map) row.values.append(value9) value10 = ttypes.Value() value10.set_tVal(Time(10, 10, 10, 10000)) row.values.append(value10) value11 = ttypes.Value() value11.set_dVal(date(2020, 10, 1)) row.values.append(value11) value12 = ttypes.Value() value12.set_dtVal(DateTime(2020, 10, 1, 10, 10, 10, 10000)) row.values.append(value12) value13 = ttypes.Value() value13.set_vVal(self.get_vertex_value(b"Tom")) row.values.append(value13) value14 = ttypes.Value() value14.set_eVal(self.get_edge_value(b"Tom", b"Lily")) row.values.append(value14) value15 = ttypes.Value() value15.set_pVal(self.get_path_value(b"Tom", 3)) row.values.append(value15) data_set.rows = [] data_set.rows.append(row) data_set.rows.append(row) return data_set @classmethod def get_result_set(self): resp = graphTtype.ExecutionResponse() resp.error_code = ErrorCode.E_BAD_PERMISSION resp.error_msg = b"Permission" resp.comment = b"Permission" resp.space_name = b"test" resp.latency_in_us = 100 resp.data = self.get_data_set() return ResultSet(resp, 100) class TesValueWrapper(TestBaseCase): def test_as_bool(self): value = ttypes.Value() value.set_bVal(False) value_wrapper = ValueWrapper(value) assert value_wrapper.is_bool() node = value_wrapper.as_bool() assert isinstance(node, bool) def test_as_int(self): value = ttypes.Value() value.set_iVal(100) value_wrapper = ValueWrapper(value) assert value_wrapper.is_int() node = value_wrapper.as_int() assert isinstance(node, int) def test_as_double(self): value = ttypes.Value() value.set_fVal(10.10) value_wrapper = ValueWrapper(value) assert value_wrapper.is_double() node = value_wrapper.as_double() assert isinstance(node, float) def test_as_string(self): value = ttypes.Value() value.set_sVal(b'Tom') value_wrapper = ValueWrapper(value) assert value_wrapper.is_string() str_val = value_wrapper.as_string() assert isinstance(str_val, str) def test_as_list(self): value = ttypes.Value() str_val1 = ttypes.Value() str_val1.set_sVal(b"word") str_val2 = ttypes.Value() str_val2.set_sVal(b"car") val_list = NList() val_list.values = [str_val1, str_val2] value.set_lVal(val_list) value_wrapper = ValueWrapper(value) assert value_wrapper.is_list() list_val = value_wrapper.as_list() assert isinstance(list_val, list) expect_result = [ValueWrapper(ttypes.Value(sVal=b"word")), ValueWrapper(ttypes.Value(sVal=b"car"))] assert list_val == expect_result def test_as_set(self): value = ttypes.Value() str_val1 = ttypes.Value() str_val1.set_sVal(b"word") str_val2 = ttypes.Value() str_val2.set_sVal(b"car") set_val = NSet() set_val.values = set() set_val.values.add(str_val1) set_val.values.add(str_val2) value.set_uVal(set_val) value_wrapper = ValueWrapper(value) assert value_wrapper.is_set() set_val = value_wrapper.as_set() assert isinstance(set_val, set) expect_result = set() expect_result.add(ValueWrapper(ttypes.Value(sVal=b"word"))) expect_result.add(ValueWrapper(ttypes.Value(sVal=b"car"))) assert set_val == expect_result def test_as_map(self): value = ttypes.Value() str_val1 = ttypes.Value() str_val1.set_sVal(b"word") str_val2 = ttypes.Value() str_val2.set_sVal(b"car") map_val = NMap() map_val.kvs = {b"a": str_val1, b"b": str_val2} value.set_mVal(map_val) value_wrapper = ValueWrapper(value) assert value_wrapper.is_map() map_val = value_wrapper.as_map() assert isinstance(map_val, dict) expect_result = dict() expect_result["a"] = ValueWrapper(ttypes.Value(sVal=b"word")) expect_result["b"] = ValueWrapper(ttypes.Value(sVal=b"car")) assert map_val == expect_result def test_as_time(self): time = Time() time.hour = 10 time.minute = 20 time.sec = 10 time.microsec = 100 value = ttypes.Value(tVal = time) value_wrapper = ValueWrapper(value) assert value_wrapper.is_time() time_val = value_wrapper.as_time() assert isinstance(time_val, TimeWrapper) assert time_val.get_hour() == 10 assert time_val.get_minute() == 20 assert time_val.get_sec() == 10 assert time_val.get_microsec() == 100 assert '10:20:10.000100' == str(time_val) def test_as_date(self): date = Date() date.year = 220 date.month = 2 date.day = 10 value = ttypes.Value(dVal=date) value_wrapper = ValueWrapper(value) assert value_wrapper.is_date() date_val = value_wrapper.as_date() assert isinstance(date_val, DateWrapper) assert date_val.get_year() == 220 assert date_val.get_month() == 2 assert date_val.get_day() == 10 assert '220-02-10' == str(date_val) def test_as_datetime(self): datetime = DateTime() datetime.year = 123 datetime.month = 2 datetime.day = 1 datetime.hour = 10 datetime.minute = 20 datetime.sec = 10 datetime.microsec = 100 value = ttypes.Value(dtVal=datetime) value_wrapper = ValueWrapper(value) assert value_wrapper.is_datetime() datetime_val = value_wrapper.as_datetime() assert isinstance(datetime_val, DateTimeWrapper) assert datetime_val.get_hour() == 10 assert datetime_val.get_minute() == 20 assert datetime_val.get_sec() == 10 assert datetime_val.get_microsec() == 100 assert '123-02-01T10:20:10.000100' == str(datetime_val) def test_as_node(self): value = ttypes.Value() value.set_vVal(self.get_vertex_value(b'Tom')) value_wrapper = ValueWrapper(value) assert value_wrapper.is_vertex() node = value_wrapper.as_node() assert isinstance(node, Node) def test_as_relationship(self): value = ttypes.Value(eVal=self.get_edge_value(b'Tom', b'Lily')) value_wrapper = ValueWrapper(value) assert value_wrapper.is_edge() relationship = value_wrapper.as_relationship() assert isinstance(relationship, Relationship) # test with reversely reversely_value = ttypes.Value(eVal=self.get_edge_value(b'Lily', b'Tom', True)) reversely_value_wrapper = ValueWrapper(reversely_value) reversely_relationship = reversely_value_wrapper.as_relationship() assert isinstance(reversely_relationship, Relationship) assert reversely_relationship == relationship # test with reversely no equal reversely_value = ttypes.Value(eVal=self.get_edge_value(b'Tom', b'Lily', True)) reversely_value_wrapper = ValueWrapper(reversely_value) reversely_relationship = reversely_value_wrapper.as_relationship() assert isinstance(reversely_relationship, Relationship) assert reversely_relationship != relationship def test_as_path(self): value = ttypes.Value() value.set_pVal(self.get_path_value(b'Tom')) vaue_wrapper = ValueWrapper(value) assert vaue_wrapper.is_path() node = vaue_wrapper.as_path() assert isinstance(node, PathWrapper) class TestNode(TestBaseCase): def test_node_api(self): test_set = set() test_set.add(Value()) node = Node(self.get_vertex_value(b'Tom')) assert 'Tom' == node.get_id().as_string() assert node.has_tag('tag2') assert ['prop0', 'prop1', 'prop2', 'prop3', 'prop4'] == node.prop_names('tag2') assert [0, 1, 2, 3, 4] == [(value.as_int()) for value in node.prop_values('tag2')] assert ['tag0', 'tag1', 'tag2'] == node.tags() expect_propertys = {} for key in node.propertys('tag2').keys(): expect_propertys[key] = node.propertys('tag2')[key].as_int() assert {'prop0': 0, 'prop1': 1, 'prop2': 2, 'prop3': 3, 'prop4': 4} == expect_propertys class TestRelationship(TestBaseCase): def test_relationship_api(self): relationship = Relationship(self.get_edge_value(b'Tom', b'Lily')) assert 'Tom' == relationship.start_vertex_id().as_string() assert 'Lily' == relationship.end_vertex_id().as_string() assert 100 == relationship.ranking() assert 100 == relationship.ranking() assert 'classmate' == relationship.edge_name() assert ['prop0', 'prop1', 'prop2', 'prop3', 'prop4'] == relationship.keys() expect_propertys = {} for key in relationship.propertys().keys(): expect_propertys[key] = relationship.propertys()[key].as_int() assert {'prop0': 0, 'prop1': 1, 'prop2': 2, 'prop3': 3, 'prop4': 4} == expect_propertys class TestPath(TestBaseCase): def test_path_api(self): path = PathWrapper(self.get_path_value(b'Tom')) assert Node(self.get_vertex_value(b'Tom')) == path.start_node() assert 5 == path.length() assert path.contain_node(Node(self.get_vertex_value(b'vertex3'))) assert path.contain_relationship(Relationship(self.get_edge_value(b'vertex3', b'vertex2'))) nodes = list() nodes.append(path.start_node()) for i in range(0, 5): nodes.append(Node(self.get_vertex_value(('vertex'.format(i)).encode('utf-8')))) relationships = list() relationships.append(Relationship(self.get_edge_value(b'Tom', b'vertex0'))) for i in range(0, 4): if i % 2 == 0: relationships.append(Relationship( self.get_edge_value(('vertex{}'.format(i + 1)).encode('utf-8'), ('vertex{}'.format(i)).encode('utf-8')))) else: relationships.append(Relationship( self.get_edge_value(('vertex{}'.format(i)).encode('utf-8'), ('vertex{}'.format(i + 1)).encode('utf-8')))) assert relationships == path.relationships() class TestDatesetWrapper(TestBaseCase): def test_all(self): data_set_warpper1 = DataSetWrapper(self.get_data_set()) data_set_warpper2 = DataSetWrapper(self.get_data_set()) # test iterator and compare row_count = 0 for i in range(data_set_warpper1.get_row_size()): row_count = row_count + 1 assert data_set_warpper1.row_values(i)[0] == data_set_warpper2.row_values(i)[0] assert data_set_warpper1.row_values(i)[1] == data_set_warpper2.row_values(i)[1] assert data_set_warpper1.row_values(i)[2] == data_set_warpper2.row_values(i)[2] assert data_set_warpper1.row_values(i)[3] == data_set_warpper2.row_values(i)[3] assert data_set_warpper1.row_values(i)[4] == data_set_warpper2.row_values(i)[4] assert data_set_warpper1.row_values(i)[5] == data_set_warpper2.row_values(i)[5] assert data_set_warpper1.row_values(i)[6] == data_set_warpper2.row_values(i)[6] assert data_set_warpper1.row_values(i)[7] == data_set_warpper2.row_values(i)[7] assert data_set_warpper1.row_values(i)[8] == data_set_warpper2.row_values(i)[8] assert data_set_warpper1.row_values(i)[9] == data_set_warpper2.row_values(i)[9] assert data_set_warpper1.row_values(i)[10] == data_set_warpper2.row_values(i)[10] assert data_set_warpper1.row_values(i)[11] == data_set_warpper2.row_values(i)[11] assert data_set_warpper1.row_values(i)[12] == data_set_warpper2.row_values(i)[12] assert data_set_warpper1.row_values(i)[13] == data_set_warpper2.row_values(i)[13] assert data_set_warpper1.row_values(i)[14] == data_set_warpper2.row_values(i)[14] assert data_set_warpper1.row_values(i)[9] != data_set_warpper2.row_values(i)[8] assert 2 == row_count assert 2 == data_set_warpper1.get_row_size() assert len(data_set_warpper1.column_values("col6_string")) == 2 assert data_set_warpper1.column_values("col6_string")[0].is_string() assert data_set_warpper1.column_values("col6_string")[0].as_string() == 'hello world' assert data_set_warpper1.column_values("col6_string")[1].as_string() == 'hello world' assert data_set_warpper1.row_values(0)[5].is_string() assert data_set_warpper1.row_values(1)[5].is_string() assert data_set_warpper1.row_values(0)[5].as_string() == 'hello world' assert data_set_warpper1.row_values(1)[5].as_string() == 'hello world' class TestResultset(TestBaseCase): def test_all_interface(self): result = self.get_result_set() assert result.space_name() == "test" assert result.comment() == "Permission" assert result.error_msg() == "Permission" assert result.error_code() == ErrorCode.E_BAD_PERMISSION assert result.plan_desc() is None assert result.latency() == 100 assert not result.is_empty() assert not result.is_succeeded() expect_keys = ["col1_empty", "col2_null", "col3_bool", "col4_int", "col5_double", "col6_string", "col7_list", "col8_set", "col9_map", "col10_time", "col11_date", "col12_datetime", "col13_vertex", "col14_edge", "col15_path"] assert result.keys() == expect_keys assert result.col_size() == 15 assert result.row_size() == 2 # test column_values assert len(result.column_values("col6_string")) == 2 assert result.column_values("col6_string")[0].is_string() assert result.column_values("col6_string")[0].as_string() == "hello world" # test row_values assert len(result.row_values(0)) == 15 assert result.row_values(0)[5].is_string() assert result.row_values(0)[5].as_string() == "hello world" # test rows assert len(result.rows()) == 2 assert len(result.rows()[0].values) == 15 assert isinstance(result.rows()[0].values[0], Value) assert isinstance(result.get_row_types(), list) # test get_row_types assert result.get_row_types() == [ttypes.Value.__EMPTY__, ttypes.Value.NVAL, ttypes.Value.BVAL, ttypes.Value.IVAL, ttypes.Value.FVAL, ttypes.Value.SVAL, ttypes.Value.LVAL, ttypes.Value.UVAL, ttypes.Value.MVAL, ttypes.Value.TVAL, ttypes.Value.DVAL, ttypes.Value.DTVAL, ttypes.Value.VVAL, ttypes.Value.EVAL, ttypes.Value.PVAL] # test record in_use = False for record in result: in_use = True record.size() == 15 # test keys() assert record.keys() == expect_keys # test values() values = record.values() assert len(record.values()) == 15 assert record.values()[0].is_empty() assert record.values()[5].is_string() assert record.values()[5].is_string() assert record.values()[5].as_string() == "hello world" # test get_value() assert record.get_value(0).is_empty() assert values[0].is_empty() assert record.get_value(1).is_null() assert record.get_value(1).as_null() == Null(Null.BAD_DATA) null_value = Value(nVal=Null.BAD_DATA) assert record.get_value(1) == ValueWrapper(null_value) assert str(record.get_value(1).as_null()) == 'BAD_DATA' # test get_value_by_key() assert record.get_value_by_key('col2_null').is_null() assert record.get_value_by_key('col3_bool').is_bool() assert not record.get_value_by_key('col3_bool').as_bool() # get_value_by_key with not exited key try: record.get_value_by_key('not existed') assert False, 'Not expect here' except InvalidKeyException as e: assert True assert e.message == "KeyError: `not existed'" assert values[1].is_null() assert record.get_value(2).is_bool() assert not record.get_value(2).as_bool() assert record.get_value(2).is_bool() assert record.get_value(3).is_int() assert record.get_value(3).as_int() == 100 assert record.get_value(4).is_double() assert record.get_value(4).as_double() == 10.01 assert record.get_value(5).is_string() assert record.get_value(5).as_string() == "hello world" assert record.get_value(6).is_list() assert record.get_value(7).is_set() assert record.get_value(8).is_map() assert record.get_value(9).is_time() assert record.get_value(10).is_date() assert record.get_value(11).is_datetime() assert record.get_value(12).is_vertex() assert record.get_value(13).is_edge() assert record.get_value(14).is_path() assert in_use # test use iterator again in_use = False for record in result: in_use = True record.size() == 15 assert in_use
the-stack_106_27841
#!/usr/bin/python """ IOC Report Configuration File """ # VirusTotal configurations vt_api_key = '' # Hybrid-Analysis configurations ha_api_key = '' ha_secret_key = '' # These settings are used to create the reports. File paths should be entered # as the absolute path. input_file = 'sample_resources.txt' csv_output_file = 'sample_osint_report.csv' txt_output_file = 'sample_osint_report.txt' feed_output_file = 'sample_feed_report.csv' # Web server configurations host = '127.0.0.1' port = 8080
the-stack_106_27843
""" ============ Boxplot Demo ============ Example boxplot code """ import numpy as np import matplotlib.pyplot as plt # Fixing random state for reproducibility np.random.seed(19680801) # fake up some data spread = np.random.rand(50) * 100 center = np.ones(25) * 50 flier_high = np.random.rand(10) * 100 + 100 flier_low = np.random.rand(10) * -100 data = np.concatenate((spread, center, flier_high, flier_low), 0) ############################################################################### fig1, ax1 = plt.subplots() ax1.set_title('Basic Plot') ax1.boxplot(data) ############################################################################### fig2, ax2 = plt.subplots() ax2.set_title('Notched boxes') ax2.boxplot(data, notch=True) ############################################################################### green_diamond = dict(markerfacecolor='g', marker='D') fig3, ax3 = plt.subplots() ax3.set_title('Changed Outlier Symbols') ax3.boxplot(data, flierprops=green_diamond) ############################################################################### fig4, ax4 = plt.subplots() ax4.set_title('Hide Outlier Points') ax4.boxplot(data, showfliers=False) ############################################################################### red_square = dict(markerfacecolor='r', marker='s') fig5, ax5 = plt.subplots() ax5.set_title('Horizontal Boxes') ax5.boxplot(data, vert=False, flierprops=red_square) ############################################################################### fig6, ax6 = plt.subplots() ax6.set_title('Shorter Whisker Length') ax6.boxplot(data, flierprops=red_square, vert=False, whis=0.75) ############################################################################### # Fake up some more data spread = np.random.rand(50) * 100 center = np.ones(25) * 40 flier_high = np.random.rand(10) * 100 + 100 flier_low = np.random.rand(10) * -100 d2 = np.concatenate((spread, center, flier_high, flier_low), 0) data.shape = (-1, 1) d2.shape = (-1, 1) ############################################################################### # Making a 2-D array only works if all the columns are the # same length. If they are not, then use a list instead. # This is actually more efficient because boxplot converts # a 2-D array into a list of vectors internally anyway. data = [data, d2, d2[::2,0]] fig7, ax7 = plt.subplots() ax7.set_title('Multiple Samples with Different sizes') ax7.boxplot(data) plt.show()
the-stack_106_27844
from __future__ import print_function import sys sys.path.append(r"../..") from pymdwizard.gui import fgdc_date def test_single_date_setgetdate(qtbot): widget = fgdc_date.FGDCDate() qtbot.addWidget(widget) widget.ui.fgdc_caldate.setText('1234') assert widget.get_date() == '1234' widget.set_date('4567') assert widget.ui.fgdc_caldate.text() == '4567' def test_single_date_itit(qtbot): widget = fgdc_date.FGDCDate(label='testing', show_format=False) qtbot.addWidget(widget) assert widget.ui.label.text() == 'testing' assert widget.ui.widget_format.isHidden() widget = fgdc_date.FGDCDate(label='testing', show_format=True) qtbot.addWidget(widget) assert not widget.ui.widget_format.isHidden()
the-stack_106_27845
# -*- coding: utf-8 -*- # Author: Your Name <[email protected]> import argparse import os import tensorflow as tf from tensorpack import * """ This is a boiler-plate template. All code is in this file is the most minimalistic way to solve a deep-learning problem with cross-validation. """ BATCH_SIZE = 16 SHAPE = 28 CHANNELS = 3 class Model(ModelDesc): def inputs(self): return [tf.TensorSpec((None, SHAPE, SHAPE, CHANNELS), tf.float32, 'input1'), tf.TensorSpec((None,), tf.int32, 'input2')] def build_graph(self, input1, input2): cost = tf.identity(input1 - input2, name='total_costs') summary.add_moving_summary(cost) return cost def optimizer(self): lr = tf.get_variable('learning_rate', initializer=5e-3, trainable=False) return tf.train.AdamOptimizer(lr) def get_data(subset): # something that yields [[SHAPE, SHAPE, CHANNELS], [1]] ds = FakeData([[SHAPE, SHAPE, CHANNELS], [1]], 1000, random=False, dtype=['float32', 'uint8'], domain=[(0, 255), (0, 10)]) ds = PrefetchDataZMQ(ds, 2) ds = BatchData(ds, BATCH_SIZE) return ds def get_config(): logger.auto_set_dir() ds_train = get_data('train') ds_test = get_data('test') return TrainConfig( model=Model(), data=QueueInput(ds_train), callbacks=[ ModelSaver(), InferenceRunner(ds_test, [ScalarStats('total_costs')]), ], steps_per_epoch=len(ds_train), max_epoch=100, ) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.') parser.add_argument('--load', help='load model') args = parser.parse_args() if args.gpu: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu config = get_config() if args.load: config.session_init = SaverRestore(args.load) launch_train_with_config(config, SimpleTrainer())
the-stack_106_27848
# (c) 2019 Piotr Wojciechowski (@wojciechowskipiotr) <[email protected]> # (c) Thierry Bouvet (@tbouvet) # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type import json from time import sleep try: from docker.errors import APIError, NotFound except ImportError: # missing Docker SDK for Python handled in ansible.module_utils.docker.common pass from ansible.module_utils._text import to_native from ansible_collections.community.docker.plugins.module_utils.common import ( AnsibleDockerClient, LooseVersion, ) class AnsibleDockerSwarmClient(AnsibleDockerClient): def __init__(self, **kwargs): super(AnsibleDockerSwarmClient, self).__init__(**kwargs) def get_swarm_node_id(self): """ Get the 'NodeID' of the Swarm node or 'None' if host is not in Swarm. It returns the NodeID of Docker host the module is executed on :return: NodeID of host or 'None' if not part of Swarm """ try: info = self.info() except APIError as exc: self.fail("Failed to get node information for %s" % to_native(exc)) if info: json_str = json.dumps(info, ensure_ascii=False) swarm_info = json.loads(json_str) if swarm_info['Swarm']['NodeID']: return swarm_info['Swarm']['NodeID'] return None def check_if_swarm_node(self, node_id=None): """ Checking if host is part of Docker Swarm. If 'node_id' is not provided it reads the Docker host system information looking if specific key in output exists. If 'node_id' is provided then it tries to read node information assuming it is run on Swarm manager. The get_node_inspect() method handles exception if it is not executed on Swarm manager :param node_id: Node identifier :return: bool: True if node is part of Swarm, False otherwise """ if node_id is None: try: info = self.info() except APIError: self.fail("Failed to get host information.") if info: json_str = json.dumps(info, ensure_ascii=False) swarm_info = json.loads(json_str) if swarm_info['Swarm']['NodeID']: return True if swarm_info['Swarm']['LocalNodeState'] in ('active', 'pending', 'locked'): return True return False else: try: node_info = self.get_node_inspect(node_id=node_id) except APIError: return if node_info['ID'] is not None: return True return False def check_if_swarm_manager(self): """ Checks if node role is set as Manager in Swarm. The node is the docker host on which module action is performed. The inspect_swarm() will fail if node is not a manager :return: True if node is Swarm Manager, False otherwise """ try: self.inspect_swarm() return True except APIError: return False def fail_task_if_not_swarm_manager(self): """ If host is not a swarm manager then Ansible task on this host should end with 'failed' state """ if not self.check_if_swarm_manager(): self.fail("Error running docker swarm module: must run on swarm manager node") def check_if_swarm_worker(self): """ Checks if node role is set as Worker in Swarm. The node is the docker host on which module action is performed. Will fail if run on host that is not part of Swarm via check_if_swarm_node() :return: True if node is Swarm Worker, False otherwise """ if self.check_if_swarm_node() and not self.check_if_swarm_manager(): return True return False def check_if_swarm_node_is_down(self, node_id=None, repeat_check=1): """ Checks if node status on Swarm manager is 'down'. If node_id is provided it query manager about node specified in parameter, otherwise it query manager itself. If run on Swarm Worker node or host that is not part of Swarm it will fail the playbook :param repeat_check: number of check attempts with 5 seconds delay between them, by default check only once :param node_id: node ID or name, if None then method will try to get node_id of host module run on :return: True if node is part of swarm but its state is down, False otherwise """ if repeat_check < 1: repeat_check = 1 if node_id is None: node_id = self.get_swarm_node_id() for retry in range(0, repeat_check): if retry > 0: sleep(5) node_info = self.get_node_inspect(node_id=node_id) if node_info['Status']['State'] == 'down': return True return False def get_node_inspect(self, node_id=None, skip_missing=False): """ Returns Swarm node info as in 'docker node inspect' command about single node :param skip_missing: if True then function will return None instead of failing the task :param node_id: node ID or name, if None then method will try to get node_id of host module run on :return: Single node information structure """ if node_id is None: node_id = self.get_swarm_node_id() if node_id is None: self.fail("Failed to get node information.") try: node_info = self.inspect_node(node_id=node_id) except APIError as exc: if exc.status_code == 503: self.fail("Cannot inspect node: To inspect node execute module on Swarm Manager") if exc.status_code == 404: if skip_missing: return None self.fail("Error while reading from Swarm manager: %s" % to_native(exc)) except Exception as exc: self.fail("Error inspecting swarm node: %s" % exc) json_str = json.dumps(node_info, ensure_ascii=False) node_info = json.loads(json_str) if 'ManagerStatus' in node_info: if node_info['ManagerStatus'].get('Leader'): # This is workaround of bug in Docker when in some cases the Leader IP is 0.0.0.0 # Check moby/moby#35437 for details count_colons = node_info['ManagerStatus']['Addr'].count(":") if count_colons == 1: swarm_leader_ip = node_info['ManagerStatus']['Addr'].split(":", 1)[0] or node_info['Status']['Addr'] else: swarm_leader_ip = node_info['Status']['Addr'] node_info['Status']['Addr'] = swarm_leader_ip return node_info def get_all_nodes_inspect(self): """ Returns Swarm node info as in 'docker node inspect' command about all registered nodes :return: Structure with information about all nodes """ try: node_info = self.nodes() except APIError as exc: if exc.status_code == 503: self.fail("Cannot inspect node: To inspect node execute module on Swarm Manager") self.fail("Error while reading from Swarm manager: %s" % to_native(exc)) except Exception as exc: self.fail("Error inspecting swarm node: %s" % exc) json_str = json.dumps(node_info, ensure_ascii=False) node_info = json.loads(json_str) return node_info def get_all_nodes_list(self, output='short'): """ Returns list of nodes registered in Swarm :param output: Defines format of returned data :return: If 'output' is 'short' then return data is list of nodes hostnames registered in Swarm, if 'output' is 'long' then returns data is list of dict containing the attributes as in output of command 'docker node ls' """ nodes_list = [] nodes_inspect = self.get_all_nodes_inspect() if nodes_inspect is None: return None if output == 'short': for node in nodes_inspect: nodes_list.append(node['Description']['Hostname']) elif output == 'long': for node in nodes_inspect: node_property = {} node_property.update({'ID': node['ID']}) node_property.update({'Hostname': node['Description']['Hostname']}) node_property.update({'Status': node['Status']['State']}) node_property.update({'Availability': node['Spec']['Availability']}) if 'ManagerStatus' in node: if node['ManagerStatus']['Leader'] is True: node_property.update({'Leader': True}) node_property.update({'ManagerStatus': node['ManagerStatus']['Reachability']}) node_property.update({'EngineVersion': node['Description']['Engine']['EngineVersion']}) nodes_list.append(node_property) else: return None return nodes_list def get_node_name_by_id(self, nodeid): return self.get_node_inspect(nodeid)['Description']['Hostname'] def get_unlock_key(self): if self.docker_py_version < LooseVersion('2.7.0'): return None return super(AnsibleDockerSwarmClient, self).get_unlock_key() def get_service_inspect(self, service_id, skip_missing=False): """ Returns Swarm service info as in 'docker service inspect' command about single service :param service_id: service ID or name :param skip_missing: if True then function will return None instead of failing the task :return: Single service information structure """ try: service_info = self.inspect_service(service_id) except NotFound as exc: if skip_missing is False: self.fail("Error while reading from Swarm manager: %s" % to_native(exc)) else: return None except APIError as exc: if exc.status_code == 503: self.fail("Cannot inspect service: To inspect service execute module on Swarm Manager") self.fail("Error inspecting swarm service: %s" % exc) except Exception as exc: self.fail("Error inspecting swarm service: %s" % exc) json_str = json.dumps(service_info, ensure_ascii=False) service_info = json.loads(json_str) return service_info
the-stack_106_27851
"""Template for the build file used in android_sdk_repository.""" # Copyright 2016 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. def create_config_setting_rule(): """Create config_setting rule for windows. These represent the matching --host_cpu values. """ name = "windows" if not native.existing_rule(name): native.config_setting( name = name, values = {"host_cpu": "x64_" + name}, ) def create_android_sdk_rules( name, build_tools_version, build_tools_directory, api_levels, default_api_level): """Generate android_sdk rules for the API levels in the Android SDK. Args: name: string, the name of the repository being generated. build_tools_version: string, the version of Android's build tools to use. build_tools_directory: string, the directory name of the build tools in sdk's build-tools directory. api_levels: list of ints, the API levels from which to get android.jar et al. and create android_sdk rules. default_api_level: int, the API level to alias the default sdk to if --android_sdk is not specified on the command line. """ create_config_setting_rule() windows_only_files = [ "build-tools/%s/aapt.exe" % build_tools_directory, "build-tools/%s/aidl.exe" % build_tools_directory, "build-tools/%s/zipalign.exe" % build_tools_directory, "platform-tools/adb.exe", ] + native.glob(["build-tools/%s/aapt2.exe" % build_tools_directory]) linux_only_files = [ "build-tools/%s/aapt" % build_tools_directory, "build-tools/%s/aidl" % build_tools_directory, "build-tools/%s/zipalign" % build_tools_directory, "platform-tools/adb", ] + native.glob( ["extras", "build-tools/%s/aapt2" % build_tools_directory], exclude_directories = 0, ) # This filegroup is used to pass the minimal contents of the SDK to the # Android integration tests. Note that in order to work on Windows, we cannot # include directories and must keep the size small. native.filegroup( name = "files", srcs = [ "build-tools/%s/lib/apksigner.jar" % build_tools_directory, "build-tools/%s/lib/dx.jar" % build_tools_directory, "build-tools/%s/mainDexClasses.rules" % build_tools_directory, ] + [ "platforms/android-%d/%s" % (api_level, filename) for api_level in api_levels for filename in ["android.jar", "framework.aidl"] ] + select({ ":windows": windows_only_files, "//conditions:default": linux_only_files, }), ) for api_level in api_levels: if api_level >= 23: # Android 23 removed most of org.apache.http from android.jar and moved it # to a separate jar. native.java_import( name = "org_apache_http_legacy-%d" % api_level, jars = ["platforms/android-%d/optional/org.apache.http.legacy.jar" % api_level], ) if api_level >= 28: # Android 28 removed most of android.test from android.jar and moved it # to separate jars. native.java_import( name = "legacy_test-%d" % api_level, jars = [ "platforms/android-%d/optional/android.test.base.jar" % api_level, "platforms/android-%d/optional/android.test.mock.jar" % api_level, "platforms/android-%d/optional/android.test.runner.jar" % api_level, ], neverlink = 1, ) native.android_sdk( name = "sdk-%d" % api_level, build_tools_version = build_tools_version, proguard = "@bazel_tools//tools/jdk:proguard", aapt = select({ ":windows": "build-tools/%s/aapt.exe" % build_tools_directory, "//conditions:default": ":aapt_binary", }), aapt2 = select({ ":windows": "build-tools/%s/aapt2.exe" % build_tools_directory, "//conditions:default": ":aapt2_binary", }), dx = ":dx_binary", main_dex_list_creator = ":main_dex_list_creator", adb = select({ ":windows": "platform-tools/adb.exe", "//conditions:default": "platform-tools/adb", }), framework_aidl = "platforms/android-%d/framework.aidl" % api_level, aidl = select({ ":windows": "build-tools/%s/aidl.exe" % build_tools_directory, "//conditions:default": ":aidl_binary", }), android_jar = "platforms/android-%d/android.jar" % api_level, shrinked_android_jar = "platforms/android-%d/android.jar" % api_level, main_dex_classes = "build-tools/%s/mainDexClasses.rules" % build_tools_directory, apksigner = ":apksigner", zipalign = select({ ":windows": "build-tools/%s/zipalign.exe" % build_tools_directory, "//conditions:default": ":zipalign_binary", }), ) native.alias( name = "org_apache_http_legacy", actual = ":org_apache_http_legacy-%d" % default_api_level, ) native.alias( name = "sdk", actual = ":sdk-%d" % default_api_level, ) native.java_binary( name = "apksigner", main_class = "com.android.apksigner.ApkSignerTool", runtime_deps = ["build-tools/%s/lib/apksigner.jar" % build_tools_directory], ) native.filegroup( name = "build_tools_libs", srcs = native.glob([ "build-tools/%s/lib/**" % build_tools_directory, # Build tools version 24.0.0 added a lib64 folder. "build-tools/%s/lib64/**" % build_tools_directory, ]), ) for tool in ["aapt", "aapt2", "aidl", "zipalign"]: native.genrule( name = tool + "_runner", outs = [tool + "_runner.sh"], srcs = [], cmd = "\n".join([ "cat > $@ << 'EOF'", "#!/bin/bash", "set -eu", # The tools under build-tools/VERSION require the libraries under # build-tools/VERSION/lib, so we can't simply depend on them as a # file like we do with aapt. # On Windows however we can use these binaries directly because # there's no runfiles support so Bazel just creates a junction to # {SDK}/build-tools. "SDK=$${0}.runfiles/%s" % name, # If $${SDK} is not a directory, it means that this tool is running # from a runfiles directory, in the case of # android_instrumentation_test. Hence, use the androidsdk # that's already present in the runfiles of the current context. "if [[ ! -d $${SDK} ]] ; then", " SDK=$$(pwd)/../%s" % name, "fi", "exec $${SDK}/build-tools/%s/%s $$*" % (build_tools_directory, tool), "EOF\n", ]), ) native.sh_binary( name = tool + "_binary", srcs = [tool + "_runner.sh"], data = [ ":build_tools_libs", "build-tools/%s/%s" % (build_tools_directory, tool), ], ) native.sh_binary( name = "fail", srcs = select({ ":windows": [":generate_fail_cmd"], "//conditions:default": [":generate_fail_sh"], }), ) native.genrule( name = "generate_fail_sh", executable = 1, outs = ["fail.sh"], cmd = "echo -e '#!/bin/bash\\nexit 1' >> $@; chmod +x $@", ) native.genrule( name = "generate_fail_cmd", executable = 1, outs = ["fail.cmd"], cmd = "echo @exit /b 1 > $@", ) native.genrule( name = "main_dex_list_creator_source", srcs = [], outs = ["main_dex_list_creator.sh"], cmd = "\n".join([ "cat > $@ <<'EOF'", "#!/bin/bash", "", "MAIN_DEX_LIST=$$1", "STRIPPED_JAR=$$2", "JAR=$$3", "" + "JAVA_BINARY=$$0.runfiles/%s/main_dex_list_creator_java" % name, "$$JAVA_BINARY $$STRIPPED_JAR $$JAR > $$MAIN_DEX_LIST", "exit $$?", "", "EOF\n", ]), ) native.sh_binary( name = "main_dex_list_creator", srcs = ["main_dex_list_creator.sh"], data = [":main_dex_list_creator_java"], ) native.java_binary( name = "main_dex_list_creator_java", main_class = "com.android.multidex.ClassReferenceListBuilder", runtime_deps = [":dx_jar_import"], ) native.java_binary( name = "dx_binary", main_class = "com.android.dx.command.Main", runtime_deps = [":dx_jar_import"], ) native.java_import( name = "dx_jar_import", jars = ["build-tools/%s/lib/dx.jar" % build_tools_directory], ) TAGDIR_TO_TAG_MAP = { "google_apis": "google", "default": "android", "android-tv": "tv", "android-wear": "wear", } ARCHDIR_TO_ARCH_MAP = { "x86": "x86", "armeabi-v7a": "arm", } def create_system_images_filegroups(system_image_dirs): """Generate filegroups for the system images in the Android SDK. Args: system_image_dirs: list of strings, the directories containing system image files to be used to create android_device rules. """ # These images will need to be updated as Android releases new system images. # We are intentionally not adding future releases because there is no # guarantee that they will work out of the box. Supported system images should # be added here once they have been confirmed to work with the Bazel Android # testing infrastructure. system_images = [ (tag, str(api), arch) for tag in ["android", "google"] for api in [10] + list(range(15, 20)) + list(range(21, 29)) for arch in ("x86", "arm") ] tv_images = [ ("tv", str(api), arch) for api in range(21, 25) for arch in ("x86", "arm") ] wear_images = [ ("wear", str(api), "x86") for api in range(20, 26) ] + [ ("wear", str(api), "arm") for api in range(24, 26) ] supported_system_images = system_images + tv_images + wear_images installed_system_images_dirs = {} for system_image_dir in system_image_dirs: apidir, tagdir, archdir = system_image_dir.split("/")[1:] if "-" not in apidir: continue api = apidir.split("-")[1] # "android-24" --> "24", "android-O" --> "O" if tagdir not in TAGDIR_TO_TAG_MAP: continue tag = TAGDIR_TO_TAG_MAP[tagdir] if archdir not in ARCHDIR_TO_ARCH_MAP: continue arch = ARCHDIR_TO_ARCH_MAP[archdir] if (tag, api, arch) in supported_system_images: name = "emulator_images_%s_%s_%s" % (tag, api, arch) installed_system_images_dirs[name] = system_image_dir else: # TODO(bazel-team): If the user has an unsupported system image installed, # should we print a warning? This includes all 64-bit system-images. pass for (tag, api, arch) in supported_system_images: name = "emulator_images_%s_%s_%s" % (tag, api, arch) if name in installed_system_images_dirs: system_image_dir = installed_system_images_dirs[name] # For supported system images that exist in /sdk/system-images/, we # create a filegroup with their contents. native.filegroup( name = name, srcs = native.glob([ "%s/**" % system_image_dir, ]), ) native.filegroup( name = "%s_qemu2_extra" % name, srcs = native.glob(["%s/kernel-ranchu" % system_image_dir]), ) else: # For supported system images that are not installed in the SDK, we # create a "poison pill" genrule to display a helpful error message to # a user who attempts to run a test against an android_device that # they don't have the system image for installed. native.genrule( name = name, outs = [ # Necessary so that the build doesn't fail in analysis because # android_device expects a file named source.properties. "poison_pill_for_%s/source.properties" % name, ], cmd = """echo \ This rule requires that the Android SDK used by Bazel has the \ following system image installed: %s. Please install this system \ image through the Android SDK Manager and try again. ; \ exit 1 """ % name, ) native.filegroup( name = "%s_qemu2_extra" % name, srcs = [], )
the-stack_106_27852
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from .. import BasicTokenizer, PretrainedTokenizer, WordpieceTokenizer __all__ = ['ElectraTokenizer', ] class ElectraTokenizer(PretrainedTokenizer): """ Constructs a Electra tokenizer. It uses a basic tokenizer to do punctuation splitting, lower casing and so on, and follows a WordPiece tokenizer to tokenize as subwords. Args: vocab_file (str): file path of the vocabulary do_lower_case (bool): Whether the text strips accents and convert to lower case. Default: `True`. Default: True. unk_token (str): The special token for unkown words. Default: "[UNK]". sep_token (str): The special token for separator token . Default: "[SEP]". pad_token (str): The special token for padding. Default: "[PAD]". cls_token (str): The special token for cls. Default: "[CLS]". mask_token (str): The special token for mask. Default: "[MASK]". Examples: .. code-block:: python from paddlenlp.transformers import ElectraTokenizer tokenizer = ElectraTokenizer.from_pretrained('electra-small-discriminator') # the following line get: ['he', 'was', 'a', 'puppet', '##eer'] tokens = tokenizer('He was a puppeteer') # the following line get: 'he was a puppeteer' tokenizer.convert_tokens_to_string(tokens) """ resource_files_names = {"vocab_file": "vocab.txt"} # for save_pretrained pretrained_resource_files_map = { "vocab_file": { "electra-small": "https://paddlenlp.bj.bcebos.com/models/transformers/electra/electra-small-vocab.txt", "electra-base": "https://paddlenlp.bj.bcebos.com/models/transformers/electra/electra-base-vocab.txt", "electra-large": "https://paddlenlp.bj.bcebos.com/models/transformers/electra/electra-large-vocab.txt", "chinese-electra-base": "http://paddlenlp.bj.bcebos.com/models/transformers/chinese-electra-base/vocab.txt", "chinese-electra-small": "http://paddlenlp.bj.bcebos.com/models/transformers/chinese-electra-small/vocab.txt", } } pretrained_init_configuration = { "electra-small": { "do_lower_case": True }, "electra-base": { "do_lower_case": True }, "electra-large": { "do_lower_case": True }, "chinese-electra-base": { "do_lower_case": True }, "chinese-electra-small": { "do_lower_case": True } } def __init__(self, vocab_file, do_lower_case=True, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]"): if not os.path.isfile(vocab_file): raise ValueError( "Can't find a vocabulary file at path '{}'. To load the " "vocabulary from a pretrained model please use " "`tokenizer = ElectraTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" .format(vocab_file)) self.vocab = self.load_vocabulary(vocab_file, unk_token=unk_token) self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case) self.wordpiece_tokenizer = WordpieceTokenizer( vocab=self.vocab, unk_token=unk_token) @property def vocab_size(self): """ return the size of vocabulary. Returns: int: the size of vocabulary. """ return len(self.vocab) def _tokenize(self, text): """ End-to-end tokenization for Electra models. Args: text (str): The text to be tokenized. Returns: list: A list of string representing converted tokens. """ split_tokens = [] for token in self.basic_tokenizer.tokenize(text): for sub_token in self.wordpiece_tokenizer.tokenize(token): split_tokens.append(sub_token) return split_tokens def __call__(self, text): """ End-to-end tokenization for Electra models. Args: text (str): The text to be tokenized. Returns: list: A list of string representing converted tokens. """ return self._tokenize(text) def convert_tokens_to_string(self, tokens): """ Converts a sequence of tokens (list of string) in a single string. Since the usage of WordPiece introducing `##` to concat subwords, also remove `##` when converting. Args: tokens (list): A list of string representing tokens to be converted. Returns: str: Converted string from tokens. """ out_string = " ".join(tokens).replace(" ##", "").strip() return out_string def num_special_tokens_to_add(self, pair=False): """ Returns the number of added tokens when encoding a sequence with special tokens. Note: This encodes inputs and checks the number of added tokens, and is therefore not efficient. Do not put this inside your training loop. Args: pair: Returns the number of added tokens in the case of a sequence pair if set to True, returns the number of added tokens in the case of a single sequence if set to False. Returns: Number of tokens added to sequences """ token_ids_0 = [] token_ids_1 = [] return len( self.build_inputs_with_special_tokens(token_ids_0, token_ids_1 if pair else None)) def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format: :: - single sequence: ``[CLS] X [SEP]`` - pair of sequences: ``[CLS] A [SEP] B [SEP]`` Args: token_ids_0 (:obj:`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: List of input_id with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] _cls = [self.cls_token_id] _sep = [self.sep_token_id] return _cls + token_ids_0 + _sep + token_ids_1 + _sep def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None): """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence pair mask has the following format: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | If :obj:`token_ids_1` is :obj:`None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (:obj:`List[int]`): List of IDs. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: List of token_type_id according to the given sequence(s). """ _sep = [self.sep_token_id] _cls = [self.cls_token_id] if token_ids_1 is None: return len(_cls + token_ids_0 + _sep) * [0] return len(_cls + token_ids_0 + _sep) * [0] + len(token_ids_1 + _sep) * [1] def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False): """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer ``encode`` methods. Args: token_ids_0 (List[int]): List of ids of the first sequence. token_ids_1 (List[int], optinal): List of ids of the second sequence. already_has_special_tokens (bool, optional): Whether or not the token list is already formatted with special tokens for the model. Defaults to None. Returns: results (List[int]): The list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return list( map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0)) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ( [0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def encode(self, text, text_pair=None, max_seq_len=None, pad_to_max_seq_len=True, truncation_strategy="longest_first", return_position_ids=True, return_segment_ids=True, return_input_mask=True, return_length=True, return_overflowing_tokens=False, return_special_tokens_mask=False): """ Returns a dictionary containing the encoded sequence or sequence pair and additional information: the mask for sequence classification and the overflowing elements if a ``max_seq_len`` is specified. Args: text (:obj:`str`, :obj:`List[str]` or :obj:`List[int]`): The first sequence to be encoded. This can be a string, a list of strings (tokenized string using the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` method) text_pair (:obj:`str`, :obj:`List[str]` or :obj:`List[int]`, `optional`, defaults to :obj:`None`): Optional second sequence to be encoded. This can be a string, a list of strings (tokenized string using the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` method) max_seq_len (:obj:`int`, `optional`, defaults to :int:`None`): If set to a number, will limit the total sequence returned so that it has a maximum length. If there are overflowing tokens, those will be added to the returned dictionary pad_to_max_seq_len (:obj:`bool`, `optional`, defaults to :obj:`True`): If set to True, the returned sequences will be padded according to the model's padding side and padding index, up to their max length. If no max length is specified, the padding is done up to the model's max length. truncation_strategy (:obj:`str`, `optional`, defaults to `longest_first`): String selected in the following options: - 'longest_first' (default) Iteratively reduce the inputs sequence until the input is under max_seq_len starting from the longest one at each token (when there is a pair of input sequences) - 'only_first': Only truncate the first sequence - 'only_second': Only truncate the second sequence - 'do_not_truncate': Does not truncate (raise an error if the input sequence is longer than max_seq_len) return_position_ids (:obj:`bool`, `optional`, defaults to :obj:`True`): Set to True to return tokens position ids (default True). return_segment_ids (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to return token type IDs. return_input_mask (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to return the attention mask. return_length (:obj:`int`, defaults to :obj:`True`): If set the resulting dictionary will include the length of each encoded inputs return_overflowing_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): Set to True to return overflowing token information (default False). return_special_tokens_mask (:obj:`bool`, `optional`, defaults to :obj:`False`): Set to True to return special tokens mask information (default False). Return: A Dictionary of shape:: { input_ids: list[int], position_ids: list[int] if return_position_ids is True (default) segment_ids: list[int] if return_segment_ids is True (default) input_mask: list[int] if return_input_mask is True (default) seq_len: int if return_length is True (default) overflowing_tokens: list[int] if a ``max_seq_len`` is specified and return_overflowing_tokens is True num_truncated_tokens: int if a ``max_seq_len`` is specified and return_overflowing_tokens is True special_tokens_mask: list[int] if return_special_tokens_mask is True } With the fields: - ``input_ids``: list of token ids to be fed to a model - ``position_ids``: list of token position ids to be fed to a model - ``segment_ids``: list of token type ids to be fed to a model - ``input_mask``: list of indices specifying which tokens should be attended to by the model - ``length``: the input_ids length - ``overflowing_tokens``: list of overflowing tokens if a max length is specified. - ``num_truncated_tokens``: number of overflowing tokens a ``max_seq_len`` is specified - ``special_tokens_mask``: if adding special tokens, this is a list of [0, 1], with 0 specifying special added tokens and 1 specifying sequence tokens. """ def get_input_ids(text): if isinstance(text, str): tokens = self._tokenize(text) return self.convert_tokens_to_ids(tokens) elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance( text[0], str): return self.convert_tokens_to_ids(text) elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance( text[0], int): return text else: raise ValueError( "Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers." ) ids = get_input_ids(text) pair_ids = get_input_ids(text_pair) if text_pair is not None else None pair = bool(pair_ids is not None) len_ids = len(ids) len_pair_ids = len(pair_ids) if pair else 0 encoded_inputs = {} # Truncation: Handle max sequence length total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add( pair=pair)) if max_seq_len and total_len > max_seq_len: ids, pair_ids, overflowing_tokens = self.truncate_sequences( ids, pair_ids=pair_ids, num_tokens_to_remove=total_len - max_seq_len, truncation_strategy=truncation_strategy, ) if return_overflowing_tokens: encoded_inputs["overflowing_tokens"] = overflowing_tokens encoded_inputs["num_truncated_tokens"] = total_len - max_seq_len # Add special tokens sequence = self.build_inputs_with_special_tokens(ids, pair_ids) segment_ids = self.create_token_type_ids_from_sequences(ids, pair_ids) # Build output dictionnary encoded_inputs["input_ids"] = sequence if return_segment_ids: encoded_inputs["segment_ids"] = segment_ids if return_special_tokens_mask: encoded_inputs[ "special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids) if return_length: encoded_inputs["seq_len"] = len(encoded_inputs["input_ids"]) # Check lengths assert max_seq_len is None or len(encoded_inputs[ "input_ids"]) <= max_seq_len # Padding needs_to_be_padded = pad_to_max_seq_len and \ max_seq_len and len(encoded_inputs["input_ids"]) < max_seq_len if needs_to_be_padded: difference = max_seq_len - len(encoded_inputs["input_ids"]) if return_input_mask: encoded_inputs["input_mask"] = [1] * len(encoded_inputs[ "input_ids"]) + [0] * difference if return_segment_ids: # 0 for padding token mask encoded_inputs["segment_ids"] = ( encoded_inputs["segment_ids"] + [0] * difference) if return_special_tokens_mask: encoded_inputs["special_tokens_mask"] = encoded_inputs[ "special_tokens_mask"] + [1] * difference encoded_inputs["input_ids"] = encoded_inputs["input_ids"] + [ self.pad_token_id ] * difference else: if return_input_mask: encoded_inputs["input_mask"] = [1] * len(encoded_inputs[ "input_ids"]) if return_position_ids: encoded_inputs["position_ids"] = list( range(len(encoded_inputs["input_ids"]))) return encoded_inputs
the-stack_106_27854
"""jase_im URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include from django.conf.urls.static import static from django.conf import settings from blog import views app_name = 'blog' urlpatterns = [ url(r'^$', views.index, name='index'), url(r'^about/$', views.about, name='about'), url(r'^tags/$', views.tag_list_show, name='tag_list_show'), url(r'^tag/(?P<tag_slug>.+)/$', views.tag_show, name='tag_show'), url(r'^post/add/$', views.add_post, name='addpost'), url(r'^post/update/(?P<slug>.+)/$', views.update_post, name='update_post'), url(r'^post/(?P<slug>.+)/$', views.post_detail, name='post_detail'), url(r'^category/$', views.category, name='category'), url(r'^register_profile/$', views.register_profile, name='register_profile'), url(r'^comment_submit/$', views.comment_submit, name='comment_submit'), url(r'^archive/$', views.archive, name='archive'), url(r'^user/(?P<username>.+)/$', views.user_show, name='user_show'), url( r'^mdeditor/', include('mdeditor.urls'), ), # api url(r'^api/v1/posts/$', views.post_collection, name='api_posts'), url(r'^api/v1/posts/(?P<pk>.+)/$', views.post_element, name='api_post_element'), ]
the-stack_106_27855
""" Collection of functions to perform CRUD operations on a database in the background """ from operator import index import yfinance as yf import pandas as pd from flask import Flask import os import sys from models import db from models import (Security, Transaction, Broker, Event, CryptoCurrency, CryptoWallet, Dividend) from tools import get_symbol_to_id_dict, webscrape_tipranks, get_mysql_uri import yaml #================================================= def events_table_updater(db): '''Uses yfinance library to collect split events and stores them in the database''' sec_dict = get_symbol_to_id_dict(db) for symbol in sec_dict: events_df = pd.DataFrame(yf.Ticker(symbol).splits) if len(events_df) < 1: continue #Retrive security from database to link to event SEC_object = db.session.query(Security).filter(Security.symbol==symbol).first() for row in events_df.itertuples(): date = row.Index #should be a datetime object split_factor = row[1] event_type = 'split' #Check that the event is not already in the database existing_match = db.session.query(Event).filter(Event.event_type == event_type, Event.symbol_id == sec_dict[symbol], Event.event_date == date).first() if existing_match is None: EVENT_obj = Event(event_type = event_type, event_date = date, split_factor = split_factor,) #link event to security SEC_object.events.append(EVENT_obj) db.session.add(EVENT_obj) print(f"\nSymbol: {SEC_object.symbol.upper()}\n--> Added:\n{EVENT_obj}") else: print(f"\nSymbol: {SEC_object.symbol.upper()}\n--> <{existing_match}> already exists in database") db.session.commit() def dividends_table_updater(db): sec_dict = get_symbol_to_id_dict(db) for symbol in sec_dict: symbol_id = sec_dict[symbol] #events_df = pd.DataFrame(yf.Ticker(symbol).splits) #Retrive security from database to link to dividend SEC_object = db.session.query(Security).filter(Security.symbol==symbol).first() _, _, div_amount, ex_div_date, div_pay_date, schedule_type, *extras = webscrape_tipranks(symbol) if schedule_type=='monthly': pay_schedule = 0 elif schedule_type=='quarterly': pay_schedule = (div_pay_date.month % 3) + 1 #this will make the value between [1-3] elif schedule_type is None: pay_schedule = -1 else: pay_schedule = -1 DIVIDEND_OBJ = db.session.query(Dividend).filter(Dividend.symbol_id==symbol_id).first() if DIVIDEND_OBJ is None: DIVIDEND_OBJ = Dividend(dividend_amount =div_amount, exdividend_date =ex_div_date, payment_date =div_pay_date, payment_schedule =pay_schedule,) SEC_object.dividends.append(DIVIDEND_OBJ) db.session.add(DIVIDEND_OBJ) else: update_dict = { 'dividend_amount' : div_amount, 'payment_schedule' : pay_schedule, 'exdividend_date' : ex_div_date, 'payment_date' : div_pay_date, } DIVIDEND_OBJ.dividend_amount = div_amount db.session.query(Dividend).filter_by(symbol_id=symbol_id).update(update_dict) db.session.commit() if __name__ == '__main__': #Here we define a database connection try: DB_TYPE = sys.argv[1] except IndexError: DB_TYPE = 'mysql' supported_dbs = ['mysql','sqlite'] #DB_TYPE = 'mysql' if DB_TYPE == 'mysql': database_URI = get_mysql_uri(config_file='mysql_config.yml') elif DB_TYPE == 'sqlite': project_dir = os.path.dirname(os.path.abspath(__file__)) database_dir = os.path.join(project_dir, "asset_portfolio.db") database_URI = f"sqlite:///{database_dir}" else: print(f'--> Database {DB_TYPE} not supported.\n\tDatabase options supported: {supported_dbs}') sys.exit() app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = database_URI try: func_to_run = sys.argv[2] except IndexError: func_to_run = 'splits' db.init_app(app) with app.app_context(): if func_to_run=='splits': events_table_updater(db) elif func_to_run=='dividends': dividends_table_updater(db)
the-stack_106_27860
# standard library from datetime import datetime, date # Django from django.contrib import messages from django.contrib.auth.decorators import login_required, user_passes_test from django.http import JsonResponse, HttpResponseRedirect from django.shortcuts import render, redirect from django.urls import reverse, reverse_lazy # local Django from accounts.models import Profile from apps.misc.models import Initiative from apps.students.models import StudentAttendance from apps.volunteers.models import Volunteer, VolunteerAttendance from .models import Calendar, ClassworkHomework, Schedule, Section # NON-VIEWS FUNCTIONS def has_authenticated_profile(user): """User has a profiles and is authenticated by admin. Necessary to access any page on site bar home page.""" return user.auth is True and Profile.objects.filter(user=user).exists() def is_volunteer(user): """To be used in views accessible to volunteers only.""" return user.desig == 'v' def captures(request): return render(request, 'home/captures.html') # VIEW FUNCTIONS def index(request): if request.user.is_authenticated: return redirect('home:dashboard') return render(request, 'home/index.html') def new_index(request): if request.user.is_authenticated: return redirect('home:dashboard') initiatives = Initiative.objects.all() return render(request, 'new_home/index.html', {'initiatives': initiatives}) @login_required @user_passes_test( has_authenticated_profile, login_url=reverse_lazy('accounts:complete_profile') ) def dashboard(request): # TO BE REMOVED... # Update today's date in Calendar if not already there today_cal = Calendar.objects.filter(date=date.today()) if today_cal.exists(): today_cal = today_cal[0] else: today_cal_new = Calendar(date=date.today()) today_cal_new.save() today_cal = Calendar.objects.get(date=date.today()) # ...TILL HERE # Dashboard Query # HTTP Request is always GET query_date_str = request.GET.get('d', '') query_section = request.GET.get('s', '') if query_date_str and query_section: query_date = datetime.strptime(query_date_str, '%Y-%m-%d').date() query_day = query_date.strftime("%w") calendar = Calendar.objects.filter(date=query_date) # If the section is not taught on selected day # (URL parameters are altered manually) schedule = Schedule.objects.filter( day=query_day, section__section_id=query_section) if schedule.exists(): schedule = schedule[0] else: return redirect('home:dashboard') context = { 'selected_date': query_date, 'selected_section': query_section, } # If calendar instance for that day is not created if not calendar.exists(): context['calendar_not_updated'] = True return render(request, 'home/dashboard.html', context) calendar = calendar[0] # If No Class is Scheduled on that day if not calendar.class_scheduled: context['no_class_scheduled'] = True context['calendar_remark'] = calendar.remark return render(request, 'home/dashboard.html', context) # Classwork/Homework info cw_hw = ClassworkHomework.objects.filter( cal_date=calendar, section__section_id=query_section).first() context['cw_hw'] = cw_hw # Subject Scheduled subject_scheduled = schedule.get_subject_display() context['subject_scheduled'] = subject_scheduled # Students Attendance student_attendance = StudentAttendance.objects.filter( cal_date=calendar, present=True).order_by('student__school_class') context['student_attendance'] = student_attendance if student_attendance.exists(): stu_att_village = {} stu_att_village['G'] = stu_att_village['M'] = stu_att_village['C'] = 0 stu_att_village['A'] = stu_att_village['S'] = 0 for stu_att in student_attendance: stu_att_village[stu_att.student.village] += 1 # Mehgawan Side stu_att_village['MS'] = (stu_att_village['M'] + stu_att_village['C'] + stu_att_village['A'] + stu_att_village['S']) context['stu_att_village'] = stu_att_village # Volunteers Attendance volun_attendance = VolunteerAttendance.objects.filter( cal_date=calendar, present=True).order_by('volun__roll_no') context['volun_attendance'] = volun_attendance return render(request, 'home/dashboard.html', context) elif query_date_str or query_section: # If only one parameter is provided return redirect('home:dashboard') return render(request, 'home/dashboard.html') @login_required @user_passes_test( has_authenticated_profile, redirect_field_name=None, login_url=reverse_lazy('accounts:complete_profile') ) @user_passes_test( is_volunteer, redirect_field_name=None, login_url=reverse_lazy('home:dashboard') ) # @permission_required def update_cwhw(request): if request.method == 'POST': """ This POST Request won't be Generated (because there will be no means to generated it in the template) if 1. Selected Date is not present in Calendar. (Already checked for above) 2. Selected Day (from Date) and Section not present in Schedule. (Already checked for above and submit button will be disabled until AJAX is loaded completely) 3. No Class Scheduled on Selected Date. (Already checked for above) 4. User is not a Volunteer. """ profile = Profile.objects.get(user=request.user) volun = Volunteer.objects.get(profile=profile) # Date and section selected before pressing submit button date_str = request.POST['date'] date = datetime.strptime(date_str, '%Y-%m-%d').date() cal_date = Calendar.objects.get(date=date) section_id = request.POST['section'] section = Section.objects.get(section_id=section_id) # Update CW-HW cw = request.POST['cw'] hw = request.POST['hw'] comment = request.POST['comment'] cw_hw = ClassworkHomework.objects.filter( cal_date=cal_date, section=section) if cw_hw.exists(): cw_hw = cw_hw[0] else: cw_hw = ClassworkHomework( cal_date=cal_date, section=section, cw='', hw='', comment='') if cw: cw_hw.cw += f'{cw}\n - {profile.get_full_name}, {volun.roll_no}\n\n' if hw: cw_hw.hw += f'{hw}\n - {profile.get_full_name}, {volun.roll_no}\n\n' if comment: cw_hw.comment += f'{comment}\n - {profile.get_full_name}, {volun.roll_no}\n\n' cw_hw.save() messages.success(request, 'CW_HW update successful!') redirect_url = reverse('home:dashboard') + f'?d={date}&s={section_id}' return HttpResponseRedirect(redirect_url) return redirect('home:dashboard') @login_required @user_passes_test( has_authenticated_profile, login_url=reverse_lazy('accounts:complete_profile') ) def ajax_dashboard(request): date_str = request.GET.get('class_date', None) date = datetime.strptime(date_str, '%Y-%m-%d').date() day = date.strftime("%w") data = {} schedule = Schedule.objects.filter(day=day).order_by('section__section_id') for sch in schedule: data[sch.section.section_id] = sch.section.name return JsonResponse(data) @login_required @user_passes_test( has_authenticated_profile, login_url=reverse_lazy('accounts:complete_profile') ) @user_passes_test( is_volunteer, redirect_field_name=None, login_url=reverse_lazy('home:dashboard') ) def class_schedule(request): days = Schedule.DAY subjects = Schedule.SUBJECT all_sections = Section.objects.order_by('section_id') active_sections = all_sections.exclude(schedule=None) schedule = Schedule.objects.order_by( 'day', 'section__section_id', 'subject') context = { 'days': days, 'subjects': subjects, 'all_sections': all_sections, 'active_sections': active_sections, 'schedule': schedule, } return render(request, 'home/class_schedule.html', context)
the-stack_106_27861
import math import torch from torch import nn from torch.nn.parameter import Parameter from torch.nn import init from torch.autograd import Function import _torch_ipex as core class IpexMLPHandle: def __init__(self, N, C, K, bn, bc, bk, dtype, fuse_bias, act_type): self.handle = core.mlp_create_handle(N, C, K, bn, bc, bk, 1 if dtype == torch.float32 else 2, fuse_bias, act_type) self.N = N self.C = C self.K = K self.bn = bn self.bc = bc self.bk = bk self.fuse_bias = fuse_bias self.act_type = act_type if act_type == 1: self.relu_mask_tensor = core.mlp_set_relu_mask(self.handle) def __del__(self): if self.handle: core.mlp_release_handle(self.handle) self.handle = None self.relu_mask_tensor = None class IpexMLPFC(Function): @staticmethod def forward(ctx, input, weight, bias, handle): #print("Inside XsmmFCForward") #t1 = time.time() input = input.contiguous() weight = weight.contiguous() bias = bias.contiguous() output = core.mlp_forward(handle.handle, input, weight, bias) #t2 = time.time() #print("XsmmFCFWD: q=%.3f" % ((t2-t1)*1000.0)) ctx.ipex_mlp_handle = handle ctx.save_for_backward(input, weight) return output @staticmethod def backward(ctx, grad_output): #print("Inside XsmmFCBackward") handle = ctx.ipex_mlp_handle del ctx.ipex_mlp_handle input, weight = ctx.saved_variables #t1 = time.time() grad_output = grad_output.contiguous() grad_input, grad_weight, grad_bias = core.mlp_backward(handle.handle, grad_output, input, weight) #t2 = time.time() #print("XsmmFCBWD: q=%.3f w=%.3f" % ((t2-t1)*1000.0, (t3-t2)*1000.0)) return (grad_input, grad_weight, grad_bias, None) class IpexMLPLinear(nn.Module): r"""PCL Linear module for using libxsmm blocked GEMM""" __constants__ = ['bias', 'C', 'K'] def __init__(self, C, K, bias=True, act_type=None, output_stays_blocked=True, default_blocking=None): super(IpexMLPLinear, self).__init__() self.C = C self.K = K self.bc = 0 #self.get_blocking_factor(C, default_blocking) # 64 if C % 64 == 0 else C self.bk = 0 #self.get_blocking_factor(K, default_blocking) # 64 if K % 64 == 0 else K self.nbc = 0 # C // self.bc self.nbk = 0 # K // self.bk self.C_pad = 0 self.padded_C = self.C self.N = 0 self.nbn = 0 self.bn = 0 self.default_blocking = default_blocking self.ipex_mlp_handle = None self.set_activation_type(act_type) self.output_stays_blocked = output_stays_blocked self.weight = Parameter(torch.Tensor(K, C)) if bias: self.bias = Parameter(torch.Tensor(K)) else: self.register_parameter('bias', None) self.reset_parameters() def set_activation_type(self, act_type): if not act_type: self.act_type = 0 elif act_type == 'relu': self.act_type = 1 elif act_type == 'sigmoid': self.act_type = 2 else: raise RuntimeError("XsmmLinear: Unknown activation type %s" % act_type) def get_blocking_factor(self, dim_size, default_blocking=None): blocking_prio_list = [64, 48, 32, 50] if default_blocking: blocking_prio_list = [default_blocking] + blocking_prio_list for bs in blocking_prio_list: if dim_size % bs == 0: #print("Returning block size of %d for dim_size of %d" % ( bs, dim_size)) return bs #print("Returning block size of %d for dim_size of %d" % ( dim_size, dim_size)) return dim_size def is_dtype_supported(self, dtype): if dtype == torch.float32: return True elif dtype == torch.bfloat16 and self.C % 2 == 0: return True else: return False def maybe_pad_input(self, input): if input.dim() == 2 and input.size(1) != self.padded_C: input = torch.cat([input, input.new_zeros([input.size(0), self.C_pad])], dim=1) return input def maybe_pad_weight(self, weight): if weight.dim() == 2 and weight.size(1) != self.padded_C: weight = torch.cat([weight, weight.new_zeros([self.K, self.C_pad])], dim=1) # elif weight.dim() == 4 and weight.size(1) * weight.size(2) != self.padded_C: # raise RuntimeError("Trying to ad 4D weights") # elif weight.dim() == 5 and weight.size(1) * weight.size(2) * weight.size(4) != self.padded_C: # raise RuntimeError("Trying to ad 5D weights") return weight def get_blocked_weight(self, to_dtype=None, block_for_dtype=None): weight = self.weight new_weight = None if to_dtype: weight = weight.to(to_dtype) if not block_for_dtype: block_for_dtype = weight.dtype if self.bc == 0 or self.bk == 0: self.update_blocking(block_for_dtype) weight = self.maybe_pad_weight(weight) if weight.dim() == 2: if block_for_dtype == torch.bfloat16: l_view = [self.nbk, self.bk, self.nbc, self.bc // 2, 2] l_perm = [0, 2, 3, 1, 4] new_weight = weight.view(l_view).permute(l_perm).contiguous() elif block_for_dtype == torch.float32: l_view = [self.nbk, self.bk, self.nbc, self.bc] l_perm = [0, 2, 3, 1] new_weight = weight.view(l_view).permute(l_perm).contiguous() else: raise RuntimeError("Invalid datatype for blocking: %s" % block_for_dtype) elif weight.dim() == 4: if block_for_dtype == torch.bfloat16: l_view = [self.nbk, self.nbc, self.bc // 2, 2, self.bk] l_perm = [0, 1, 2, 4, 3] new_weight = weight.view(l_view).permute(l_perm).contiguous() elif block_for_dtype == torch.float32: # We are already in correct format, do nothing new_weight = weight else: raise RuntimeError("Invalid datatype for blocking: %s" % block_for_dtype) elif weight.dim() == 5: if block_for_dtype == torch.bfloat16: # We are already in correct format, do nothing new_weight = weight elif block_for_dtype == torch.float32: l_view = [self.nbk, self.nbc, self.bc, self.bk] l_perm = [0, 1, 2, 4, 3] new_weight = weight.permute(l_perm).view(l_view).contiguous() else: raise RuntimeError("Invalid datatype for blocking: %s" % block_for_dtype) return new_weight def update_blocking(self, dtype): if dtype == torch.bfloat16 and self.padded_C % 2 != 0: self.C_pad = 1 self.padded_C = self.C + self.C_pad self.bc = self.get_blocking_factor(self.padded_C, self.default_blocking) if dtype == torch.bfloat16 and self.bc % 2 != 0: self.bc *= 2 self.nbc = self.padded_C // self.bc self.bk = self.get_blocking_factor(self.K, self.default_blocking) self.nbk = self.K // self.bk def reset_weight_shape(self, block_for_dtype=None): #if not self.is_dtype_supported(block_for_dtype): # block_for_dtype = torch.float32 #self.update_bc(block_for_dtype) self.weight = Parameter(self.get_blocked_weight(block_for_dtype=block_for_dtype)) def reset_parameters(self): init.kaiming_uniform_(self.weight, a=math.sqrt(5)) if self.bias is not None: bound = 1 / math.sqrt(self.C) init.uniform_(self.bias, -bound, bound) def forward(self, input): input_type = input.dtype #if not self.is_dtype_supported(input_type): # input = input.to(torch.float32) if self.bc == 0 or self.bk == 0: self.update_blocking(input_type) input = self.maybe_pad_input(input) if input.dtype == torch.bfloat16: if self.bc % 2 != 0: raise RuntimeError("Bfloat16 requires even bc") if input.dim() == 2: N = input.size(0) bn = self.get_blocking_factor(N, 48) #64 if N % 64 == 0 else N input = input.view(N//bn, bn, self.nbc, self.bc).permute(0,2,1,3) elif input.dim() == 4: N = input.size(0) * input.size(2) bn = input.size(2) else: print("Invalid Input dimensions (%d)" % input.dim()) input = input.contiguous() if N != self.N or bn != self.bn: # print("Create handle: ", N, self.padded_C, self.K, bn, self.bc, self.bk, input.dtype, 0 if self.bias is None else 1, self.act_type) self.ipex_mlp_handle = IpexMLPHandle(N, self.padded_C, self.K, bn, self.bc, self.bk, input.dtype, 0 if self.bias is None else 1, self.act_type) self.N = N self.bn = bn self.nbn = N // bn wtensor = self.get_blocked_weight(to_dtype=input.dtype) btensor = self.bias.to(input.dtype) output = IpexMLPFC.apply(input, wtensor, btensor, self.ipex_mlp_handle) if not self.output_stays_blocked: #output = output.permute(0, 2, 1, 3).view(self.N, self.K).contiguous() output = output.permute(0, 2, 1, 3).reshape(self.N, self.K).contiguous() output = output.to(input_type) return output def extra_repr(self): return 'C={}, K={}, bias={}'.format( self.C, self.K, self.bias is not None )
the-stack_106_27862
#!/usr/bin/env python # -*- coding: UTF-8 -*- # Copyright (c) 2011-2018, wradlib developers. # Distributed under the MIT License. See LICENSE.txt for more info. import numpy as np import wradlib.ipol as ipol import wradlib.georef as georef import unittest import warnings class InterpolationTest(unittest.TestCase): def setUp(self): # Kriging Variables self.src = np.array([[0., 0.], [4., 0]]) self.trg = np.array([[0., 0.], [2., 0.], [1., 0], [4., 0]]) self.src_d = np.array([0., 1.]) self.trg_d = np.array([0., 1., 2., 3.]) self.vals = np.array([[1., 2., 3.], [3., 2., 1.]]) # Need to use different test data because Linear requires more points # depending on their spatial constellation (in order to create a # convex hull) self.src_lin = np.array([[0., 0.], [4., 0], [1., 1.]]) self.trg_lin = np.array([[0., 0.], [2., 0.], [1., 0], [4., 0]]) self.vals_lin = np.array([[1., 2., 3.], [3., 2., 1.], [1., 1., 1.]]) def test_parse_covariogram(self): cov_model = '1.0 Exp(10.5) + 2.3 Sph(20.4) + 5.0 Nug(0.)' h = 5.0 c = ipol.parse_covariogram(cov_model) ci = sum([ipol.cov_exp(h, 1., 10.5), ipol.cov_sph(h, 2.3, 20.4), ipol.cov_nug(h, 5.0, 0.)]) self.assertTrue(c(h) == ci) def test_cov_lin(self): self.assertTrue( np.allclose(ipol.cov_lin([0., 5., 10.]), np.array([1., 0., 0.]))) self.assertTrue( np.allclose(ipol.cov_lin([0., 5., 10.], sill=2., rng=10.), np.array([2., 1., 0.]))) def test_cov_sph(self): self.assertTrue( np.allclose(ipol.cov_sph([0., 5., 10.]), np.array([1., 0., 0.]))) self.assertTrue( np.allclose(ipol.cov_sph([0., 5., 10.], sill=2., rng=10.), np.array([2., 0.625, 0.]))) def test_cov_exp(self): self.assertTrue(np.allclose(ipol.cov_exp([0., 5., 10.]), np.array( [1., 6.73794700e-03, 4.53999298e-05]))) self.assertTrue( np.allclose(ipol.cov_exp([0., 5., 10.], sill=2., rng=10.), np.array([2., 1.21306132, 0.73575888]))) def test_cov_pow(self): self.assertTrue( np.allclose(ipol.cov_pow([0., 5., 10.]), np.array([1., -4., -9.]))) self.assertTrue( np.allclose(ipol.cov_pow([0., 5., 10.], sill=2., rng=10.), np.array([2.00000000e+00, -9.76562300e+06, -1.00000000e+10]))) def test_cov_mat(self): self.assertTrue(np.allclose(ipol.cov_mat([0., 5., 10.]), np.array([1.00000000e+00, 8.49325705e-04, 7.21354153e-07]))) self.assertTrue( np.allclose(ipol.cov_mat([0., 5., 10.], sill=2., rng=10.), np.array([2., 0.98613738, 0.48623347]))) self.assertTrue(np.allclose( ipol.cov_mat([0., 5., 10.], sill=2., rng=10., shp=0.25), np.array([2., 0.74916629, 0.39961004]))) def test_cov_gau(self): self.assertTrue(np.allclose(ipol.cov_gau([0., 5., 10.]), np.array([1.00000000e+00, 1.38879439e-11, 3.72007598e-44]))) self.assertTrue( np.allclose(ipol.cov_gau([0., 5., 10.], sill=2., rng=10.), np.array([2., 1.55760157, 0.73575888]))) def test_cov_cau(self): self.assertTrue(np.allclose(ipol.cov_cau([0., 5., 10.]), np.array([1., 0.16666667, 0.09090909]))) self.assertTrue( np.allclose(ipol.cov_cau([0., 5., 10.], sill=2., rng=10., ), np.array([2., 1.33333333, 1.]))) self.assertTrue(np.allclose( ipol.cov_cau([0., 5., 10.], sill=2., rng=10., alpha=0.5), np.array([2., 0.6862915, 0.5]))) self.assertTrue(np.allclose( ipol.cov_cau([0., 5., 10.], sill=2., rng=10., alpha=0.5, beta=1.5), np.array([2., 0.40202025, 0.25]))) def test_Nearest_1(self): """testing the basic behaviour of the Idw class""" ip = ipol.Nearest(self.src, self.trg) # input more than one dataset res = ip(self.vals) self.assertTrue( np.allclose(res, np.array([[1., 2., 3.], [1., 2., 3.], [1., 2., 3.], [3., 2., 1.]]))) # input only one flat array res = ip(self.vals[:, 2]) self.assertTrue(np.allclose(res, np.array([3., 3., 3., 1.]))) def test_Idw_1(self): """testing the basic behaviour of the Idw class""" ip = ipol.Idw(self.src, self.trg) # input more than one dataset res = ip(self.vals) self.assertTrue( np.allclose(res, np.array([[1., 2., 3.], [2., 2., 2.], [1.2, 2., 2.8], [3., 2., 1.]]))) # input only one flat array res = ip(self.vals[:, 2]) self.assertTrue(np.allclose(res, np.array([3., 2., 2.8, 1.]))) def test_Linear_1(self): """testing the basic behaviour of the Linear class""" ip = ipol.Linear(self.src_lin, self.trg_lin) # input more than one dataset res = ip(self.vals_lin) self.assertTrue( np.allclose(res, np.array([[1., 2., 3.], [2., 2., 2.], [1.5, 2., 2.5], [3., 2., 1.]]))) # input only one flat array res = ip(self.vals_lin[:, 2]) self.assertTrue(np.allclose(res, np.array([3., 2., 2.5, 1.]))) def test_OrdinaryKriging_1(self): """testing the basic behaviour of the OrdinaryKriging class""" ip = ipol.OrdinaryKriging(self.src, self.trg, '1.0 Lin(2.0)') # input more than one dataset res = ip(self.vals) self.assertTrue(np.all(res == np.array([[1., 2., 3.], [2., 2., 2.], [1.5, 2., 2.5], [3., 2., 1.]]))) # input only one flat array res = ip(self.vals[:, 2]) self.assertTrue(np.allclose(res, np.array([3., 2., 2.5, 1.]))) def test_ExternalDriftKriging_1(self): """testing the basic behaviour of the ExternalDriftKriging class with drift terms constant over multiple fields""" ip = ipol.ExternalDriftKriging(self.src, self.trg, '1.0 Lin(2.0)', src_drift=self.src_d, trg_drift=self.trg_d) # input more than one dataset res = ip(self.vals) self.assertTrue(np.all(res == np.array([[1., 2., 3.], [3., 2., 1.], [5., 2., -1.], [7., 2., -3.]]))) # input only one flat array res = ip(self.vals[:, 2]) self.assertTrue(np.allclose(res, np.array([3., 1., -1., -3.]))) def test_ExternalDriftKriging_2(self): """testing the basic behaviour of the ExternalDriftKriging class with drift terms varying over multiple fields""" src_d = np.array([[0., 0., 0.], [1., 1., 1.]]) trg_d = np.array([[0., 0., 0.], [1., 1., 1.], [2., 2., 2.], [3., 3., 3.]]) ip = ipol.ExternalDriftKriging(self.src, self.trg, '1.0 Lin(2.0)', src_drift=src_d, trg_drift=trg_d) res = ip(self.vals) self.assertTrue(np.all(res == np.array([[1., 2., 3.], [3., 2., 1.], [5., 2., -1.], [7., 2., -3.]]))) # input only one flat array res = ip(self.vals[:, 2], src_drift=src_d[:, 2], trg_drift=trg_d[:, 2]) self.assertTrue(np.allclose(res, np.array([3., 1., -1., -3.]))) def test_ExternalDriftKriging_3(self): """testing the basic behaviour of the ExternalDriftKriging class with missing drift terms""" ip = ipol.ExternalDriftKriging(self.src, self.trg, '1.0 Lin(2.0)', src_drift=None, trg_drift=None) self.assertRaises(ValueError, ip, self.vals) def test_MissingErrors(self): self.assertRaises(ipol.MissingSourcesError, ipol.Nearest, np.array([]), self.trg) self.assertRaises(ipol.MissingTargetsError, ipol.Nearest, self.src, np.array([])) self.assertRaises(ipol.MissingSourcesError, ipol.Idw, np.array([]), self.trg) self.assertRaises(ipol.MissingTargetsError, ipol.Idw, self.src, np.array([])) self.assertRaises(ipol.MissingSourcesError, ipol.Linear, np.array([]), self.trg) self.assertRaises(ipol.MissingTargetsError, ipol.Linear, self.src, np.array([])) self.assertRaises(ipol.MissingSourcesError, ipol.OrdinaryKriging, np.array([]), self.trg) self.assertRaises(ipol.MissingTargetsError, ipol.OrdinaryKriging, self.src, np.array([])) self.assertRaises(ipol.MissingSourcesError, ipol.ExternalDriftKriging, np.array([]), self.trg) self.assertRaises(ipol.MissingTargetsError, ipol.ExternalDriftKriging, self.src, np.array([])) def test_nnearest_warning(self): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") ipol.Idw(self.src, self.trg, nnearest=len(self.src) + 1) ipol.OrdinaryKriging(self.src, self.trg, nnearest=len(self.src) + 1) ipol.ExternalDriftKriging(self.src, self.trg, nnearest=len(self.src) + 1) for item in w: self.assertTrue(issubclass(item.category, UserWarning)) self.assertTrue("nnearest" in str(item.message)) def test_IpolBase(self): """testing the basic behaviour of the base class""" ip = ipol.IpolBase(self.src, self.trg) res = ip(self.vals) self.assertEqual(res, None) # Check behaviour if args are passed as lists src = [self.src[:, 0], self.src[:, 1]] trg = [self.trg[:, 0], self.trg[:, 1]] ip = ipol.IpolBase(src, trg) self.assertEqual(len(self.src), ip.numsources) # Check behaviour if dimension is > 2 ip = ipol.IpolBase(self.src, self.trg) self.assertRaises(Exception, ipol.IpolBase, np.arange(12).reshape((2, 3, 2)), np.arange(20).reshape((2, 2, 5))) class WrapperFunctionTest(unittest.TestCase): def test_interpolate(self): src = np.arange(10)[:, None] trg = np.linspace(0, 20, 40)[:, None] vals = np.hstack((np.sin(src), 10. + np.sin(src))) vals[3:5, 1] = np.nan print(np.any(np.isnan(vals.ravel()))) ipol_result = ipol.interpolate(src, trg, vals, ipol.Idw, nnearest=2) np.testing.assert_allclose(ipol_result[3:5, 1], np.array([10.880571, 10.909137])) ipol_result = ipol.interpolate(src, trg, vals[:, 1], ipol.Idw, nnearest=2) np.testing.assert_allclose(ipol_result[3:5], np.array([10.880571, 10.909137])) vals = np.dstack((np.sin(src), 10. + np.sin(src))) vals[3:5, :, 1] = np.nan self.assertRaises(NotImplementedError, lambda: ipol.interpolate(src, trg, vals, ipol.Idw, nnearest=2)) def test_interpolate_polar(self): data = np.arange(12.).reshape(4, 3) masked_values = (data == 2) | (data == 9) filled_a = ipol.interpolate_polar(data, mask=masked_values, ipclass=ipol.Linear) testfunc = ipol.interpolate_polar self.assertRaises(ipol.MissingTargetsError, lambda: testfunc(data, mask=None, ipclass=ipol.Linear)) mdata = np.ma.array(data, mask=masked_values) filled_b = ipol.interpolate_polar(mdata, ipclass=ipol.Linear) np.testing.assert_allclose(filled_a, filled_b) class RegularToIrregularTest(unittest.TestCase): def setUp(self): NX = 2 nx = np.linspace(-NX + 0.5, NX - 0.5, num=2 * NX, endpoint=True) vx = np.linspace(-NX, NX, num=2 * NX, endpoint=True) meshx, meshy = np.meshgrid(nx, nx) self.cartgrid = np.dstack((meshx, meshy)) self.values = np.repeat(vx[:, np.newaxis], 2 * NX, 1) coord = georef.sweep_centroids(4, 1, NX, 0.) xx = coord[..., 0] yy = np.degrees(coord[..., 1]) xxx = xx * np.cos(np.radians(90. - yy)) x = xx * np.sin(np.radians(90. - yy)) y = xxx self.newgrid = np.dstack((x, y)) self.result = np.array([[0.47140452, 1.41421356], [0.47140452, 1.41421356], [-0.47140452, -1.41421356], [-0.47140452, -1.41421356]]) def test_cart_to_irregular_interp(self): newvalues = ipol.cart_to_irregular_interp(self.cartgrid, self.values, self.newgrid, method='linear') self.assertTrue(np.allclose(newvalues, self.result)) def test_cart_to_irregular_spline(self): newvalues = ipol.cart_to_irregular_spline(self.cartgrid, self.values, self.newgrid, order=1, prefilter=False) self.assertTrue(np.allclose(newvalues, self.result)) def test_cart_to_irregular_equality(self): self.assertTrue( np.allclose(ipol.cart_to_irregular_interp(self.cartgrid, self.values, self.newgrid, method='linear'), ipol.cart_to_irregular_spline(self.cartgrid, self.values, self.newgrid, order=1, prefilter=False))) if __name__ == '__main__': unittest.main()
the-stack_106_27864
"""Store constants.""" import voluptuous as vol import re import homeassistant.util.dt as dt_util from homeassistant.helpers import config_validation as cv from homeassistant.const import ( WEEKDAYS, ATTR_ENTITY_ID, SUN_EVENT_SUNRISE, SUN_EVENT_SUNSET, ATTR_SERVICE, ATTR_SERVICE_DATA, CONF_CONDITIONS, CONF_ATTRIBUTE, ATTR_NAME, ) VERSION = "3.1.1" DOMAIN = "scheduler" SUN_ENTITY = "sun.sun" DAY_TYPE_DAILY = "daily" DAY_TYPE_WORKDAY = "workday" DAY_TYPE_WEEKEND = "weekend" WORKDAY_ENTITY = "binary_sensor.workday_sensor" ATTR_CONDITION_TYPE = "condition_type" CONDITION_TYPE_AND = "and" CONDITION_TYPE_OR = "or" ATTR_MATCH_TYPE = "match_type" MATCH_TYPE_EQUAL = "is" MATCH_TYPE_UNEQUAL = "not" MATCH_TYPE_BELOW = "below" MATCH_TYPE_ABOVE = "above" ATTR_REPEAT_TYPE = "repeat_type" REPEAT_TYPE_REPEAT = "repeat" REPEAT_TYPE_SINGLE = "single" REPEAT_TYPE_PAUSE = "pause" EVENT = "scheduler_updated" SERVICE_REMOVE = "remove" SERVICE_EDIT = "edit" SERVICE_ADD = "add" OffsetTimePattern = re.compile("^([a-z]+)([-|\+]{1})([0-9:]+)$") ATTR_START = "start" ATTR_STOP = "stop" ATTR_TIMESLOTS = "timeslots" ATTR_WEEKDAYS = "weekdays" ATTR_ENABLED = "enabled" ATTR_SCHEDULE_ID = "schedule_id" ATTR_ACTIONS = "actions" ATTR_VALUE = "value" EVENT_TIMER_FINISHED = "scheduler_timer_finished" EVENT_TIMER_UPDATED = "scheduler_timer_updated" EVENT_ITEM_UPDATED = "scheduler_item_updated" EVENT_ITEM_CREATED = "scheduler_item_created" EVENT_STARTED = "scheduler_started" STATE_INIT = "init" STATE_READY = "ready" def validate_time(time): res = OffsetTimePattern.match(time) if not res: if dt_util.parse_time(time): return time else: raise vol.Invalid("Invalid time entered: {}".format(time)) else: if res.group(1) not in [SUN_EVENT_SUNRISE, SUN_EVENT_SUNSET]: raise vol.Invalid("Invalid time entered: {}".format(time)) elif res.group(2) not in ['+', '-']: raise vol.Invalid("Invalid time entered: {}".format(time)) elif not dt_util.parse_time(res.group(3)): raise vol.Invalid("Invalid time entered: {}".format(time)) else: return time CONDITION_SCHEMA = vol.Schema( { vol.Required(ATTR_ENTITY_ID): cv.entity_id, vol.Required(ATTR_VALUE): vol.Any(int, float, str), vol.Optional(CONF_ATTRIBUTE): cv.string, vol.Required(ATTR_MATCH_TYPE): vol.In( [ MATCH_TYPE_EQUAL, MATCH_TYPE_UNEQUAL, MATCH_TYPE_BELOW, MATCH_TYPE_ABOVE ] ), } ) ACTION_SCHEMA = vol.Schema( { vol.Optional(ATTR_ENTITY_ID): cv.entity_id, vol.Required(ATTR_SERVICE): cv.entity_id, vol.Optional(ATTR_SERVICE_DATA): dict, } ) TIMESLOT_SCHEMA = vol.Schema( { vol.Required(ATTR_START): validate_time, vol.Optional(ATTR_STOP): validate_time, vol.Optional(CONF_CONDITIONS): vol.All( cv.ensure_list, vol.Length(min=1), [CONDITION_SCHEMA] ), vol.Optional(ATTR_CONDITION_TYPE): vol.In( [ CONDITION_TYPE_AND, CONDITION_TYPE_OR, ] ), vol.Required(ATTR_ACTIONS): vol.All( cv.ensure_list, vol.Length(min=1), [ACTION_SCHEMA] ), } ) SCHEDULE_SCHEMA = vol.Schema( { vol.Required(ATTR_WEEKDAYS): vol.All( cv.ensure_list, vol.Unique(), vol.Length(min=1), [ vol.In( WEEKDAYS + [ DAY_TYPE_WORKDAY, DAY_TYPE_WEEKEND, DAY_TYPE_DAILY, ] ) ], ), vol.Required(ATTR_TIMESLOTS): vol.All( cv.ensure_list, vol.Length(min=1), [TIMESLOT_SCHEMA] ), vol.Required(ATTR_REPEAT_TYPE): vol.In( [ REPEAT_TYPE_REPEAT, REPEAT_TYPE_SINGLE, REPEAT_TYPE_PAUSE, ] ), vol.Optional(ATTR_NAME): vol.Any(cv.string, None), } )
the-stack_106_27865
""" Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-Identifier: MIT-0 """ from cfnlint.rules import CloudFormationLintRule from cfnlint.rules import RuleMatch class Configuration(CloudFormationLintRule): """Check if Parameters are configured correctly""" id = 'E2001' shortdesc = 'Parameters have appropriate properties' description = 'Making sure the parameters are properly configured' source_url = 'https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html' tags = ['parameters'] valid_keys = { 'AllowedPattern': { 'Type': 'String' }, 'AllowedValues': { 'Type': 'List', 'ItemType': 'String', }, 'ConstraintDescription': { 'Type': 'String' }, 'Default': { 'Type': 'String' }, 'Description': { 'Type': 'String' }, 'MaxLength': { 'Type': 'Integer', 'ValidForTypes': [ 'String', 'AWS::EC2::AvailabilityZone::Name', 'AWS::EC2::Image::Id', 'AWS::EC2::Instance::Id', 'AWS::EC2::KeyPair::KeyName', 'AWS::EC2::SecurityGroup::GroupName', 'AWS::EC2::SecurityGroup::Id', 'AWS::EC2::Subnet::Id', 'AWS::EC2::Volume::Id', 'AWS::EC2::VPC::Id', 'AWS::Route53::HostedZone::Id' ] }, 'MaxValue': { 'Type': 'Integer', 'ValidForTypes': ['Number'] }, 'MinLength': { 'Type': 'Integer', 'ValidForTypes': [ 'String', 'AWS::EC2::AvailabilityZone::Name', 'AWS::EC2::Image::Id', 'AWS::EC2::Instance::Id', 'AWS::EC2::KeyPair::KeyName', 'AWS::EC2::SecurityGroup::GroupName', 'AWS::EC2::SecurityGroup::Id', 'AWS::EC2::Subnet::Id', 'AWS::EC2::Volume::Id', 'AWS::EC2::VPC::Id', 'AWS::Route53::HostedZone::Id' ] }, 'MinValue': { 'Type': 'Integer', 'ValidForTypes': ['Number'] }, 'NoEcho': { 'Type': 'Boolean' }, 'Type': { 'Type': 'String' } } required_keys = [ 'Type' ] def check_type(self, value, path, props): """ Check the type and handle recursion with lists """ results = [] prop_type = props.get('Type') if value is None: message = 'Property %s should be of type %s' % ( '/'.join(map(str, path)), prop_type) results.append(RuleMatch(path, message)) return results try: if prop_type in ['List']: if isinstance(value, list): for i, item in enumerate(value): results.extend(self.check_type(item, path[:] + [i], { 'Type': props.get('ItemType') })) else: message = 'Property %s should be of type %s' % ( '/'.join(map(str, path)), prop_type) results.append(RuleMatch(path, message)) if prop_type in ['String']: if isinstance(value, (dict, list)): message = 'Property %s should be of type %s' % ( '/'.join(map(str, path)), prop_type) results.append(RuleMatch(path, message)) str(value) elif prop_type in ['Boolean']: if not isinstance(value, bool): if value not in ['True', 'true', 'False', 'false']: message = 'Property %s should be of type %s' % ( '/'.join(map(str, path)), prop_type) results.append(RuleMatch(path, message)) elif prop_type in ['Integer']: if isinstance(value, bool): message = 'Property %s should be of type %s' % ( '/'.join(map(str, path)), prop_type) results.append(RuleMatch(path, message)) else: # has to be a Double int(value) except Exception: # pylint: disable=W0703 message = 'Property %s should be of type %s' % ( '/'.join(map(str, path)), prop_type) results.append(RuleMatch(path, message,)) return results def match(self, cfn): matches = [] for paramname, paramvalue in cfn.get_parameters().items(): if isinstance(paramvalue, dict): for propname, propvalue in paramvalue.items(): if propname not in self.valid_keys: message = 'Parameter {0} has invalid property {1}' matches.append(RuleMatch( ['Parameters', paramname, propname], message.format(paramname, propname) )) else: props = self.valid_keys.get(propname) prop_path = ['Parameters', paramname, propname] matches.extend(self.check_type( propvalue, prop_path, props)) # Check that the property is needed for the current type valid_for = props.get('ValidForTypes') if valid_for is not None: if paramvalue.get('Type') not in valid_for: message = 'Parameter {0} has property {1} which is only valid for {2}' matches.append(RuleMatch( ['Parameters', paramname, propname], message.format(paramname, propname, valid_for) )) for reqname in self.required_keys: if reqname not in paramvalue.keys(): message = 'Parameter {0} is missing required property {1}' matches.append(RuleMatch( ['Parameters', paramname], message.format(paramname, reqname) )) else: message = 'Parameter {0} is not an object' matches.append(RuleMatch( ['Parameters', paramname], message.format(paramname, reqname) )) return matches
the-stack_106_27866
## Brian Blaylock ## April 28, 2021 import warnings import configparser from pathlib import Path warnings.warn( "The hrrrb API is deprecated. Use the new Herbie API instead.", DeprecationWarning ) ######################################################################## # Load custom xarray accessors try: import hrrrb.accessors except: warnings.warn("HRRR-B's xarray accessors could not be imported.") pass ######################################################################## # Configure HRRR-B # Configuration file is save in `~/config/hrrrb/config.cfg` # `_default_save_dir` is the default path to save GRIB2 files. config = configparser.ConfigParser() _config_path = Path('~').expanduser() / '.config' / 'hrrrb' / 'config.cfg' user_home_default = str(Path('~').expanduser() / 'data') if not _config_path.exists(): _config_path.parent.mkdir(parents=True) _config_path.touch() config.read(_config_path) config.add_section('download') config.set('download', 'default_save_dir', user_home_default) with open(_config_path, 'w') as configfile: config.write(configfile) print(f'⚙ Created config file [{_config_path}]', f'with default download directory set as [{user_home_default}]') config.read(_config_path) try: _default_save_dir = Path(config.get('download', 'default_save_dir')) except: print(f'🦁🐯🐻 oh my! {_config_path} looks weird,', f'but I will add a new section') config.add_section('download') config.set('download', 'default_save_dir', user_home_default) with open(_config_path, 'w') as configfile: config.write(configfile) _default_save_dir = Path(config.get('download', 'default_save_dir'))
the-stack_106_27868
""" Dataset setting and data loader for MNIST. Adapted from https://github.com/corenel/pytorch-adda/tree/master/datasets """ import torch from torchvision import datasets, transforms import numpy as np def get_mnist_shift(train, batch_size=32, drop_last=True, num_channel=3, image_size=28, total_sample=5000, ratio=[0.3, 0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05], logger=None): """Get MNIST dataset loader.""" # image pre-processing pre_process = transforms.Compose([transforms.Resize(image_size), transforms.Grayscale(num_channel), transforms.ToTensor(), transforms.Normalize( mean=[0.5] * num_channel, std=[0.5] * num_channel)]) # dataset and data loader mnist_dataset = datasets.MNIST(root='../dann_dataset/', train=train, transform=pre_process, download=True) mnist_data_loader = torch.utils.data.DataLoader( dataset=mnist_dataset, batch_size=1, shuffle=True, drop_last=False) data = torch.zeros((len(mnist_data_loader), num_channel, image_size, image_size)) label = torch.zeros(len(mnist_data_loader)) for i, (data_, target) in enumerate(mnist_data_loader): data[i] = data_ label[i] = target # ----------------------Subsampling the dataset --------------------------- c = len(torch.unique(label)) n = label.size(0) ind = [[j for j in range(n) if label[j] == i] for i in range(c)] nb_sample_class = [len(ind[i]) for i in range(c)] logger.info(f'sample per class in data before subsampling: {nb_sample_class} / sum={np.sum(nb_sample_class)}') logger.info(f'ratio*total: {np.array(ratio) * total_sample} / sum={np.sum(np.array(ratio) * total_sample)}') all_index = torch.zeros(0).long() for i in range(c): perm = torch.randperm(nb_sample_class[i]) ind_classe = label.eq(i).nonzero() ind = ind_classe[perm[:int(ratio[i] * total_sample)].long()] all_index = torch.cat((all_index, ind)) label = label[all_index].squeeze() data = data[all_index][:, 0, :, :, :] full_data = torch.utils.data.TensorDataset(data, label.long()) mnist_data_loader = torch.utils.data.DataLoader( dataset=full_data, batch_size=batch_size, shuffle=True, drop_last=drop_last) return mnist_data_loader
the-stack_106_27869
import sqlite3 import os import json import pandas.io.sql as sqlio class MapDb(object): def __init__(self, folder="./db"): self.conn_str = os.path.join(folder, 'dublin-bus.sqlite') def connect(self): return sqlite3.connect(self.conn_str, check_same_thread=False) def disconnect(self): pass def insert_nodes(self, nodes): conn = self.connect() cur = conn.cursor() cur.executemany(''' INSERT INTO node (node_id, version, changeset, timestamp, uid, lat, lon) values (?,?,?,?,?,?,?) ''', nodes) conn.commit() cur.close() conn.close() def insert_node_tags(self, node_tags): conn = self.connect() cur = conn.cursor() cur.executemany(''' INSERT INTO node_tag (node_id, tag_key, tag_value) values (?,?,?) ''', node_tags) conn.commit() cur.close() conn.close() def insert_ways(self, ways): conn = self.connect() cur = conn.cursor() cur.executemany(''' INSERT INTO way (way_id, version, changeset, timestamp, uid) values (?,?,?,?,?) ''', ways) conn.commit() cur.close() conn.close() def insert_way_nodes(self, way_nodes): conn = self.connect() cur = conn.cursor() cur.executemany(''' INSERT INTO way_node (way_id, node_uid) values (?,?) ''', way_nodes) conn.commit() cur.close() conn.close() def insert_way_tagss(self, way_tags): conn = self.connect() cur = conn.cursor() cur.executemany(''' INSERT INTO way_tag (way_id, tag_key, tag_value) values (?,?,?) ''', way_tags) conn.commit() cur.close() conn.close()
the-stack_106_27870
from concurrent.futures import ThreadPoolExecutor from dataclasses import dataclass from queue import Queue from typing import Any, Dict, List, Tuple, Callable, Union import numpy as np import torch import torch.distributed as dist from torch.utils.data.dataset import IterableDataset from transformers import BertTokenizerFast class DatasetForMatching(IterableDataset): def __init__( self, file_path: str, tokenizer: Union[BertTokenizerFast, str] = "bert-base-uncased", ): self.data_file = open(file_path, "r", encoding="utf-8") if isinstance(tokenizer, str): self.tokenizer = BertTokenizerFast.from_pretrained(tokenizer) else: self.tokenizer = tokenizer def process(self, input_line): # Input file format: # Example: # A simple algorithm for Boolean operations on polygons|'|Geometric modelling based on simplicial chains|'|Boolean operations on general planar polygons|'|Reentrant polygon clipping|'|Plane-sweep algorithms for intersecting geometric figures|'|A new algorithm for computing Boolean operations on polygons An analysis and algorithm for polygon clipping|'|Set Membership Classification: A Unified Approach to Geometric Intersection Problems|'|Reentrant polygon clipping|'|Hidden surface removal using polygon area sorting|'|Polygon comparison using a graph representation|'|A New Concept and Method for Line Clipping # Balanced Multifilter Banks for Multiple Description Coding|'|Balanced multiwavelets|'|On minimal lattice factorizations of symmetric-antisymmetric multifilterbanks|'|High-order balanced multiwavelets: theory, factorization, and design|'|Single-Trial Multiwavelet Coherence in Application to Neurophysiological Time Series|'|The application of multiwavelet filterbanks to image processing Armlets and balanced multiwavelets: flipping filter construction|'|Multiwavelet prefilters. II. Optimal orthogonal prefilters|'|Regularity of multiwavelets|'|Balanced GHM-like multiscaling functions|'|A new prefilter design for discrete multiwavelet transforms|'|Balanced multiwavelets with short filters query_and_neighbors, key_and_neighbors = input_line.strip('\n').split('\t')[:2] query_and_neighbors = query_and_neighbors.split('|\'|') key_and_neighbors = key_and_neighbors.split('|\'|') tokens_query_and_neighbors = self.tokenizer.batch_encode_plus(query_and_neighbors, add_special_tokens=False)[ 'input_ids'] tokens_key_and_neighbors = self.tokenizer.batch_encode_plus(key_and_neighbors, add_special_tokens=False)[ 'input_ids'] return tokens_query_and_neighbors, tokens_key_and_neighbors def __iter__(self): for line in self.data_file: yield self.process(line) @dataclass class DataCollatorForMatching: mlm: bool neighbor_num: int token_length: int tokenizer: Union[BertTokenizerFast, str] = "bert-base-uncased" mlm_probability: float = 0.15 random_seed: int = 42 def __post_init__(self): if isinstance(self.tokenizer, str): self.tokenizer = BertTokenizerFast.from_pretrained(self.tokenizer) self.random_state = np.random.RandomState(seed=self.random_seed) def __call__(self, samples: List[List[List[List[int]]]]) -> Dict[str, torch.Tensor]: input_ids_query_and_neighbors_batch = [] attention_mask_query_and_neighbors_batch = [] mask_query_and_neighbors_batch = [] input_ids_key_and_neighbors_batch = [] attention_mask_key_and_neighbors_batch = [] mask_key_and_neighbors_batch = [] for i, sample in (enumerate(samples)): input_ids_query_and_neighbors, attention_mask_query_and_neighbors, mask_query_and_neighbors, \ input_ids_key_and_neighbors, attention_mask_key_and_neighbors, mask_key_and_neighbors = self.create_training_sample( sample) input_ids_query_and_neighbors_batch.append(input_ids_query_and_neighbors) attention_mask_query_and_neighbors_batch.append(attention_mask_query_and_neighbors) mask_query_and_neighbors_batch.append(mask_query_and_neighbors) input_ids_key_and_neighbors_batch.append(input_ids_key_and_neighbors) attention_mask_key_and_neighbors_batch.append(attention_mask_key_and_neighbors) mask_key_and_neighbors_batch.append(mask_key_and_neighbors) if self.mlm: input_ids_query_and_neighbors_batch, mlm_labels_query_batch = self.mask_tokens( self._tensorize_batch(input_ids_query_and_neighbors_batch, self.tokenizer.pad_token_id), self.tokenizer.mask_token_id) input_ids_key_and_neighbors_batch, mlm_labels_key_batch = self.mask_tokens( self._tensorize_batch(input_ids_key_and_neighbors_batch, self.tokenizer.pad_token_id), self.tokenizer.mask_token_id) else: input_ids_query_and_neighbors_batch = self._tensorize_batch(input_ids_query_and_neighbors_batch, self.tokenizer.pad_token_id) input_ids_key_and_neighbors_batch = self._tensorize_batch(input_ids_key_and_neighbors_batch, self.tokenizer.pad_token_id) attention_mask_query_and_neighbors_batch = self._tensorize_batch(attention_mask_query_and_neighbors_batch, 0) attention_mask_key_and_neighbors_batch = self._tensorize_batch(attention_mask_key_and_neighbors_batch, 0) mask_query_and_neighbors_batch = self._tensorize_batch(mask_query_and_neighbors_batch, 0) mask_key_and_neighbors_batch = self._tensorize_batch(mask_key_and_neighbors_batch, 0) return { "input_ids_query_and_neighbors_batch": input_ids_query_and_neighbors_batch, "attention_mask_query_and_neighbors_batch": attention_mask_query_and_neighbors_batch, "mlm_labels_query_batch": mlm_labels_query_batch if self.mlm else None, "mask_query_and_neighbors_batch": mask_query_and_neighbors_batch, "input_ids_key_and_neighbors_batch": input_ids_key_and_neighbors_batch, "attention_mask_key_and_neighbors_batch": attention_mask_key_and_neighbors_batch, "mlm_labels_key_batch": mlm_labels_key_batch if self.mlm else None, "mask_key_and_neighbors_batch": mask_key_and_neighbors_batch, } def _tensorize_batch(self, sequences: Union[List[torch.Tensor], List[List[torch.Tensor]]], padding_value) -> torch.Tensor: if len(sequences[0].size()) == 1: max_len_1 = max([s.size(0) for s in sequences]) out_dims = (len(sequences), max_len_1) out_tensor = sequences[0].new_full(out_dims, padding_value) for i, tensor in enumerate(sequences): length_1 = tensor.size(0) out_tensor[i, :length_1] = tensor return out_tensor elif len(sequences[0].size()) == 2: max_len_1 = max([s.size(0) for s in sequences]) max_len_2 = max([s.size(1) for s in sequences]) out_dims = (len(sequences), max_len_1, max_len_2) out_tensor = sequences[0].new_full(out_dims, padding_value) for i, tensor in enumerate(sequences): length_1 = tensor.size(0) length_2 = tensor.size(1) out_tensor[i, :length_1, :length_2] = tensor return out_tensor else: raise def create_training_sample(self, sample: List[List[List[int]]]): def process_node_and_neighbors(tokens_node_and_neighbors): max_num_tokens = self.token_length - self.tokenizer.num_special_tokens_to_add(pair=False) input_ids_node_and_neighbors, attention_mask_node_and_neighbors, mask_node_and_neighbors = [], [], [] for i, tokens in enumerate(tokens_node_and_neighbors): if i > self.neighbor_num: break input_ids_node_and_neighbors.append( torch.tensor(self.tokenizer.build_inputs_with_special_tokens(tokens[:max_num_tokens]))) attention_mask_node_and_neighbors.append(torch.tensor([1] * len(input_ids_node_and_neighbors[-1]))) if len(tokens) == 0: mask_node_and_neighbors.append(torch.tensor(0)) else: mask_node_and_neighbors.append(torch.tensor(1)) input_ids_node_and_neighbors = self._tensorize_batch(input_ids_node_and_neighbors, self.tokenizer.pad_token_id) attention_mask_node_and_neighbors = self._tensorize_batch(attention_mask_node_and_neighbors, 0) mask_node_and_neighbors = torch.stack(mask_node_and_neighbors) return input_ids_node_and_neighbors, attention_mask_node_and_neighbors, mask_node_and_neighbors tokens_query_and_neighbors, tokens_key_and_neighbors = sample input_ids_query_and_neighbors, attention_mask_query_and_neighbors, mask_query_and_neighbors = process_node_and_neighbors( tokens_query_and_neighbors) input_ids_key_and_neighbors, attention_mask_key_and_neighbors, mask_key_and_neighbors = process_node_and_neighbors( tokens_key_and_neighbors) return input_ids_query_and_neighbors, attention_mask_query_and_neighbors, mask_query_and_neighbors, \ input_ids_key_and_neighbors, attention_mask_key_and_neighbors, mask_key_and_neighbors def mask_tokens(self, inputs_origin: torch.Tensor, mask_id: int) -> Tuple[torch.Tensor, torch.Tensor]: """ Prepare masked tokens inputs/labels for masked language modeling. """ inputs = inputs_origin.clone() labels = torch.zeros((inputs.shape[0], inputs.shape[2]), dtype=torch.long) - 100 for i in range(len(inputs_origin)): input_origin = inputs_origin[i][0] input = inputs[i][0] mask_num, valid_length = 0, 0 start_indexes = [] for index, x in enumerate(input_origin): if int(x) not in self.tokenizer.all_special_ids: valid_length += 1 start_indexes.append(index) labels[i][index] = -99 self.random_state.shuffle(start_indexes) if valid_length > 0: while mask_num / valid_length < self.mlm_probability: start_index = start_indexes.pop() span_length = 1e9 while span_length > 10: span_length = np.random.geometric(0.2) for j in range(start_index, min(start_index + span_length, len(input_origin))): if labels[i][j] != -99: continue labels[i][j] = input_origin[j].clone() rand = self.random_state.random() if rand < 0.8: input[j] = mask_id elif rand < 0.9: input[j] = self.random_state.randint(0, self.tokenizer.vocab_size - 1) mask_num += 1 if mask_num / valid_length >= self.mlm_probability: break labels[i] = torch.masked_fill(labels[i], labels[i] < 0, -100) return inputs, labels @dataclass class MultiProcessDataLoader: dataset: IterableDataset batch_size: int collate_fn: Callable local_rank: int world_size: int global_end: Any blocking: bool = False drop_last: bool = True def _start(self): self.local_end = False self.aval_count = 0 self.outputs = Queue(10) self.pool = ThreadPoolExecutor(1) self.pool.submit(self._produce) def _produce(self): for batch in self._generate_batch(): self.outputs.put(batch) self.aval_count += 1 self.pool.shutdown(wait=False) raise def _generate_batch(self): batch = [] for i, sample in enumerate(self.dataset): if i % self.world_size != self.local_rank: continue batch.append(sample) if len(batch) >= self.batch_size: yield self.collate_fn(batch[:self.batch_size]) batch = batch[self.batch_size:] else: if len(batch) > 0 and not self.drop_last: yield self.collate_fn(batch) batch = [] self.local_end = True def __iter__(self): if self.blocking: return self._generate_batch() self._start() return self def __next__(self): dist.barrier() while self.aval_count == 0: if self.local_end or self.global_end.value: self.global_end.value = True break dist.barrier() if self.global_end.value: raise StopIteration next_batch = self.outputs.get() self.aval_count -= 1 return next_batch @dataclass class SingleProcessDataLoader: dataset: IterableDataset batch_size: int collate_fn: Callable blocking: bool = False drop_last: bool = True def _start(self): self.local_end = False self.aval_count = 0 self.outputs = Queue(10) self.pool = ThreadPoolExecutor(1) self.pool.submit(self._produce) def _produce(self): for batch in self._generate_batch(): self.outputs.put(batch) self.aval_count += 1 self.pool.shutdown(wait=False) raise def _generate_batch(self): batch = [] for i, sample in enumerate(self.dataset): batch.append(sample) if len(batch) >= self.batch_size: yield self.collate_fn(batch[:self.batch_size]) batch = batch[self.batch_size:] else: if len(batch) > 0 and not self.drop_last: yield self.collate_fn(batch) batch = [] self.local_end = True def __iter__(self): if self.blocking: return self._generate_batch() self._start() return self def __next__(self): while self.aval_count == 0: if self.local_end: raise StopIteration next_batch = self.outputs.get() self.aval_count -= 1 return next_batch
the-stack_106_27871
import requests import networkx as nx import matplotlib.pyplot as plt from pyvis.network import Network import numpy as np from Graph import * import os import re class Crawler(Graph): # Constructor def __init__(self, template, root_page): self.template = template self.root_page = root_page self.pages = set() self.graph = nx.MultiDiGraph() self.network = Network() # Method to parse url and extract html def parse(self, page): ''' cmd = 'curl https://lomando.com/main.html | grep "\.html"' os.system(cmd) ''' response = requests.get(self.template + page) return re.findall("[a-zA-Z]+\.html", response.text) # Method to create the directed graph (BFS) def crawl(self): # Initializing queue with root queue = [self.root_page] # Going till queue empty while (len(queue) > 0): parent = queue.pop(0) # Adding to pages and queue self.pages.add(parent) children = set(self.parse(parent)) queue = queue + list(children - self.pages) # Adding graph nodes and edges self.graph.add_node(parent) for child in children: self.graph.add_edge(parent, child) # Method to return a sorted list of the visited pages def sorted_pages(self): return sorted(list(self.pages)) if __name__ == "__main__": # Initializing print("Testing initialization:") crawler = Crawler("https://lomando.com/", "main.html") print(crawler.template + crawler.root_page) print() # Test for parse method print("Testing parse function:") print(crawler.parse("main.html")) print(set(crawler.parse("main.html"))) print() # Test for crawl method print("Testing crawl funciton:") crawler.crawl() print(crawler.sorted_pages()) print(crawler.graph) # Testing draw with matplotlib crawler.plot() # Testing draw with pyvis crawler.plot_pretty()
the-stack_106_27872
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """External function interface to MIOpen library.""" # pylint: disable-msg=C0103 import ctypes import numpy as np import tvm import tvm._ffi from tvm import te def _get_np_int32_array_handle(arr): """Return a void_p handle for a numpy array Parameters ---------- arr: numpy.NDArray source numpy array Returns ------- ptr: ctypes.c_void_p pointer to the data """ assert arr.dtype == np.int32 ptr = arr.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)) return ctypes.cast(ptr, ctypes.c_void_p) def conv2d_forward(x, w, stride_h=1, stride_w=1, pad_h=0, pad_w=0, dilation_h=1, dilation_w=1, conv_mode=0, data_type=1, group_count=1): """Create an extern op that compute 2D convolution with MIOpen Parameters ---------- x: Tensor input feature map w: Tensor convolution weight stride_h: int height stride stride_w: int width stride pad_h: int height pad pad_w: int weight pad dilation_h: int height dilation dilation_w: int width dilation conv_mode: int 0: miopenConvolution 1: miopenTranspose data_type: int 0: miopenHalf (fp16) 1: miopenFloat (fp32) group_count: int number of groups Returns ------- y: Tensor The result tensor """ assert (0 <= conv_mode <= 2), "0: miopenConvolution / 1: miopenTranspose / 2: miopenGroupConv" if group_count > 1: conv_mode = 2 oshape = np.zeros((len(x.shape)), dtype=np.int32) xshape = x.shape wshape = w.shape setup_func = tvm._ffi.get_global_func("tvm.contrib.miopen.conv2d.setup") algo = setup_func(conv_mode, data_type, pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w, xshape[0].value, xshape[1].value, xshape[2].value, xshape[3].value, wshape[0].value, wshape[1].value, wshape[2].value, wshape[3].value, group_count, _get_np_int32_array_handle(oshape)) return te.extern( list(oshape), [x, w], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.miopen.conv2d.forward", conv_mode, data_type, pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w, algo, ins[0], ins[1], outs[0]), name="y")
the-stack_106_27874
#!/usr/bin/env python3 # Copyright 2021-2022 Efabless Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys from typing import Dict, List sys.path.append(os.path.dirname(__file__)) import includedyaml as yaml # noqa: E402 class Tool(object): by_name: Dict[str, "Tool"] def __init__( self, name, repo, commit, build_script="make && make install", default_branch=None, in_install=True, in_container=True, dependencies=[], pdk=False, ): self.name = name self.repo = repo self.commit = commit self.build_script = build_script self.default_branch = default_branch self.in_install = in_install self.in_container = in_container self.dependencies = dependencies self.pdk = pdk def __repr__(self) -> str: return f"<Tool {self.name} (using {self.repo_pretty or 'None'}@{self.commit or 'None'})>" @property def repo_pretty(self): gh_prefix = "https://github.com/" repo = self.repo if repo is not None and repo.startswith(gh_prefix): return repo[len(gh_prefix) :] return repo @property def version_string(self) -> str: return f"{self.repo or 'None'}:{self.commit or 'None'}" def get_docker_tag(self, for_os: str) -> str: return f"{self.name}-{self.commit}-{for_os}" @property def docker_args(self) -> List[str]: return [ "--build-arg", f"{self.name.upper()}_REPO={self.repo}", "--build-arg", f"{self.name.upper()}_COMMIT={self.commit}", ] @staticmethod def from_metadata_yaml(metadata_yaml: str) -> Dict[str, "Tool"]: final_dict = {} tool_list = yaml.load(metadata_yaml, Loader=yaml.SafeLoader) for tool in tool_list: final_dict[tool["name"]] = Tool( name=tool["name"], repo=tool["repo"], commit=tool["commit"], build_script=tool.get("build") or "", default_branch=tool.get("default_branch") or None, in_container=tool["in_container"] if tool.get("in_container") is not None else True, in_install=tool["in_install"] if tool.get("in_install") is not None else True, dependencies=tool.get("dependencies") or [], pdk=tool.get("pdk") or False, ) return final_dict Tool.by_name = Tool.from_metadata_yaml( open(os.path.join(os.path.dirname(__file__), "tool_metadata.yml")).read() ) def main(): import os import argparse parser = argparse.ArgumentParser(description="Get Tool Info") parser.add_argument("--containerized", action="store_true") parser.add_argument("--docker-args", action="store_true") parser.add_argument("--no-pdks", action="store_true") parser.add_argument("--docker-tag-for-os", default=None) parser.add_argument("--field", "-f") parser.add_argument("tool") args = parser.parse_args() if args.no_pdks: pdk_keys = [] for key, value in Tool.by_name.items(): if value.pdk: pdk_keys.append(key) for key in pdk_keys: del Tool.by_name[key] if args.containerized: for tool in Tool.by_name.values(): if tool.in_container: print(tool.name, end=" ") exit(0) try: tool = Tool.by_name[args.tool] except Exception: print(f"Unknown tool {args.tool}.", file=sys.stderr) exit(os.EX_DATAERR) if args.docker_tag_for_os: print(tool.get_docker_tag(for_os=args.docker_tag_for_os)) elif args.docker_args: arg_list = tool.docker_args # 1. Dependents dependents = [] for dependent in Tool.by_name.values(): if tool.name in dependent.dependencies: dependents.append(dependent) for dependent in dependents: arg_list += dependent.docker_args # 2. Dependencies for dependency_name in tool.dependencies: dependency = Tool.by_name[dependency_name] arg_list += dependency.docker_args print(" ".join(arg_list), end="") elif args.field: field = tool.__dict__[args.field] print(field, end="") else: parser.print_help(file=sys.stderr) exit(os.EX_USAGE) if __name__ == "__main__": main()
the-stack_106_27877
""" In this code we include a lightweight adaption algorithm for dominating relationships computing. The code is adapted from Networkx Please see the original one at https://networkx.org/documentation/stable/_modules/networkx/algorithms/dominance.html#dominance_frontiers TODO: implement a datastructure such as G from networkx for control flow graph. so that networkx is not required in this library. """ import networkx as nx from functools import reduce def immediate_dominators(G, start): """Returns the immediate dominators of all nodes of a directed graph. Parameters ---------- G : a DiGraph or MultiDiGraph The graph where dominance is to be computed. start : node The start node of dominance computation. Returns ------- idom : dict keyed by nodes A dict containing the immediate dominators of each node reachable from `start`. Raises ------ NetworkXNotImplemented If `G` is undirected. NetworkXError If `start` is not in `G`. Notes ----- Except for `start`, the immediate dominators are the parents of their corresponding nodes in the dominator tree. Examples -------- >>> G = nx.DiGraph([(1, 2), (1, 3), (2, 5), (3, 4), (4, 5)]) >>> sorted(nx.immediate_dominators(G, 1).items()) [(1, 1), (2, 1), (3, 1), (4, 3), (5, 1)] References ---------- .. [1] K. D. Cooper, T. J. Harvey, and K. Kennedy. A simple, fast dominance algorithm. Software Practice & Experience, 4:110, 2001. """ if start not in G: raise nx.NetworkXError("start is not in G") idom = {start: start} order = list(nx.dfs_postorder_nodes(G, start)) dfn = {u: i for i, u in enumerate(order)} order.pop() order.reverse() def intersect(u, v): while u != v: while dfn[u] < dfn[v]: u = idom[u] while dfn[u] > dfn[v]: v = idom[v] return u changed = True while changed: changed = False for u in order: new_idom = reduce(intersect, (v for v in G.pred[u] if v in idom)) if u not in idom or idom[u] != new_idom: idom[u] = new_idom changed = True return idom def dominance_frontiers(G, start): """Returns the dominance frontiers of all nodes of a directed graph. Parameters ---------- G : a DiGraph or MultiDiGraph The graph where dominance is to be computed. start : node The start node of dominance computation. Returns ------- df : dict keyed by nodes A dict containing the dominance frontiers of each node reachable from `start` as lists. Raises ------ NetworkXNotImplemented If `G` is undirected. NetworkXError If `start` is not in `G`. Examples -------- >>> G = nx.DiGraph([(1, 2), (1, 3), (2, 5), (3, 4), (4, 5)]) >>> sorted((u, sorted(df)) for u, df in nx.dominance_frontiers(G, 1).items()) [(1, []), (2, [5]), (3, [5]), (4, [5]), (5, [])] References ---------- .. [1] K. D. Cooper, T. J. Harvey, and K. Kennedy. A simple, fast dominance algorithm. Software Practice & Experience, 4:110, 2001. """ idom = immediate_dominators(G, start) df = {u: set() for u in idom} for u in idom: if len(G.pred[u]) >= 2: for v in G.pred[u]: if v in idom: while v != idom[u]: df[v].add(u) v = idom[v] return df def main(): G = nx.DiGraph([(1, 2), (1, 3), (2, 5), (3, 4), (4, 5)]) res = sorted((u, sorted(df)) for u, df in dominance_frontiers(G, 1).items()) assert res == [(1, []), (2, [5]), (3, [5]), (4, [5]), (5, [])] if __name__ == "__main__": main()
the-stack_106_27878
import random from sklearn.feature_extraction.text import CountVectorizer from sklearn.neighbors import NearestNeighbors from flask import Flask, request, render_template import cloudpickle app = Flask(__name__, template_folder="templates") with open("model.pkl", "rb") as f: model = cloudpickle.load(f) @app.route("/") def index(): repos = model.cv.get_feature_names() random_candy = ", ".join(random.choices(repos, k=5)) return render_template("index.html", random_candy=random_candy) @app.route("/result", methods=["POST"]) def predict(): candy = request.form["candy"] candy = ",".join([c.strip() for c in candy.split(", ")]) suggestions = model.predict([candy])[0] random.shuffle(suggestions) return render_template("result.html", suggestions=suggestions[:5]) if __name__ == "__main__": app.run(debug=True, port=8000)
the-stack_106_27879
# -*- coding: utf-8 -*- # @Time : 2020/6/16 23:51 # @Author : zonas.wang # @Email : [email protected] # @File : inference.py import math import os import os.path as osp import time import tensorflow as tf import cv2 import numpy as np import pyclipper from shapely.geometry import Polygon from tqdm import tqdm from backend.text_detector_service.model import DBNet from backend.text_detector_service.config import DBConfig os.environ["CUDA_VISIBLE_DEVICES"] = "-1" cfg = DBConfig() def resize_image(image, image_short_side=736): height, width, _ = image.shape if height < width: new_height = image_short_side new_width = int(math.ceil(new_height / height * width / 32) * 32) else: new_width = image_short_side new_height = int(math.ceil(new_width / width * height / 32) * 32) resized_img = cv2.resize(image, (new_width, new_height)) return resized_img def box_score_fast(bitmap, _box): h, w = bitmap.shape[:2] box = _box.copy() xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1) xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1) ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1) ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1) mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8) box[:, 0] = box[:, 0] - xmin box[:, 1] = box[:, 1] - ymin cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1) return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0] def unclip(box, unclip_ratio=1.5): poly = Polygon(box) distance = poly.area * unclip_ratio / poly.length offset = pyclipper.PyclipperOffset() offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) expanded = np.array(offset.Execute(distance)) return expanded def get_mini_boxes(contour): if not contour.size: return [], 0 bounding_box = cv2.minAreaRect(contour) points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0]) index_1, index_2, index_3, index_4 = 0, 1, 2, 3 if points[1][1] > points[0][1]: index_1 = 0 index_4 = 1 else: index_1 = 1 index_4 = 0 if points[3][1] > points[2][1]: index_2 = 2 index_3 = 3 else: index_2 = 3 index_3 = 2 box = [points[index_1], points[index_2], points[index_3], points[index_4]] return box, min(bounding_box[1]) def polygons_from_bitmap(pred, bitmap, dest_width, dest_height, max_candidates=500, box_thresh=0.7): pred = pred[..., 0] bitmap = bitmap[..., 0] height, width = bitmap.shape boxes = [] scores = [] contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) for contour in contours[:max_candidates]: epsilon = 0.001 * cv2.arcLength(contour, True) approx = cv2.approxPolyDP(contour, epsilon, True) points = approx.reshape((-1, 2)) if points.shape[0] < 4: continue score = box_score_fast(pred, points.reshape(-1, 2)) if box_thresh > score: continue if points.shape[0] > 2: box = unclip(points, unclip_ratio=2.0) if len(box) > 1: continue else: continue box = box.reshape(-1, 2) _, sside = get_mini_boxes(box.reshape((-1, 1, 2))) if sside < 5: continue box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, dest_width) box[:, 1] = np.clip(np.round(box[:, 1] / height * dest_height), 0, dest_height) boxes.append(box.tolist()) scores.append(score) return boxes, scores def main(): BOX_THRESH = 0.5 mean = np.array([103.939, 116.779, 123.68]) model_path = "checkpoints/2020-07-24/db_83_2.0894_1.9788.h5" img_dir = 'datasets/test/input' img_names = os.listdir(img_dir) model = DBNet(cfg, model='inference') model.load_weights(model_path, by_name=True, skip_mismatch=True) for img_name in tqdm(img_names): img_path = osp.join(img_dir, img_name) image = cv2.imread(img_path) src_image = image.copy() h, w = image.shape[:2] image = resize_image(image) image = image.astype(np.float32) image -= mean image_input = np.expand_dims(image, axis=0) image_input_tensor = tf.convert_to_tensor(image_input) start_time = time.time() p = model.predict(image_input_tensor)[0] end_time = time.time() print("time: ", end_time - start_time) bitmap = p > 0.3 boxes, scores = polygons_from_bitmap(p, bitmap, w, h, box_thresh=BOX_THRESH) for box in boxes: cv2.drawContours(src_image, [np.array(box)], -1, (0, 255, 0), 2) image_fname = osp.split(img_path)[-1] cv2.imwrite('datasets/test/output/' + image_fname, src_image) if __name__ == '__main__': main()
the-stack_106_27880
''' DDS: DDS image loader ''' __all__ = ('ImageLoaderDDS', ) from kivy.lib.ddsfile import DDSFile from kivy.logger import Logger from kivy.core.image import ImageLoaderBase, ImageData, ImageLoader class ImageLoaderDDS(ImageLoaderBase): @staticmethod def extensions(): return ('dds', ) def load(self, filename): try: dds = DDSFile(filename=filename) except: Logger.warning('Image: Unable to load image <%s>' % filename) raise self.filename = filename width, height = dds.size im = ImageData(width, height, dds.dxt, dds.images[0], source=filename, flip_vertical=False) if len(dds.images) > 1: images = dds.images images_size = dds.images_size for index in range(1, len(dds.images)): w, h = images_size[index] data = images[index] im.add_mipmap(index, w, h, data, 0) return [im] # register ImageLoader.register(ImageLoaderDDS)
the-stack_106_27884
"""methods/crf CRF module """ import sys import os import pycrfsuite from kleis.config.config import MODELS_PATH from kleis.resources import dataset as kl def crf_preprocess_candidates(candidates): """Receive annotated candidates and return features and labels list""" features = [] labels = [] for candidate in candidates: candidate_features = [] candidate_labels = [] for token_features, label in candidate: candidate_features.append(token_features) candidate_labels.append(label) features.append(candidate_features) labels.append(candidate_labels) return features, labels def pycrfsuite_train(annotated_candidates, name="candidates-model.pycrfsuite"): """Receive annotated candidates and train model""" if not kl.path_exists(MODELS_PATH): print("Info: Models path not found %s" % MODELS_PATH) os.mkdir(MODELS_PATH) model = MODELS_PATH + name if not kl.path_exists(model): print("Info: Model not found %s" % model) features, labels = [], [] for candidates in annotated_candidates.values(): candidate_features, candidate_labels = crf_preprocess_candidates(candidates) features.extend(candidate_features) labels.extend(candidate_labels) # pycrfsuite trainer = pycrfsuite.Trainer(verbose=False) for xseq, yseq in zip(features, labels): trainer.append(xseq, yseq) trainer.set_params({ 'c1': 1.0, # coefficient for L1 penalty 'c2': 1e-3, # coefficient for L2 penalty # 'max_iterations': 50, # stop earlier # include transitions that are possible, but not observed 'feature.possible_transitions': True }) trainer.params() trainer.train(model) tagger = pycrfsuite.Tagger() tagger.open(model) return tagger def pycrfsuite_label(tagger, pos_sequences, text, context_tokens=1, features_method="simple", tagging_notation="BILOU", generic_label=True): """Receive tagger, pos sequences and text and return labeled text""" tokens, tokens_span = kl.tokenize_en(text) tags = kl.tag_text_en(tokens, tokens_span) dataset_element_fake = {"tags": tags} candidates_spans = kl.filter_pos_sequences( dataset_element_fake, pos_sequences, annotated=False ) candidates = kl.candidates_spans_features_labels_from( candidates_spans, dataset_element_fake, context_tokens=context_tokens, features_method=features_method, tagging_notation=tagging_notation, generic_label=generic_label ) candidates_features, _ = crf_preprocess_candidates(candidates) keyphrases = [] for i, candidate_feaures in enumerate(candidates_features): labeled_candidate = tagger.tag(candidate_feaures) if is_keyphrase((labeled_candidate, candidates_spans[i]), tags, pos_sequences, tagging_notation=tagging_notation): keyphrase_label_span = labeled_keyphrase_span( (labeled_candidate, candidates_spans[i]), tags, tagging_notation=tagging_notation ) keyphrase_label, (keyphrase_span_start, keyphrase_span_end) = keyphrase_label_span keyphrases.append( ("T%d" % (i + 1), (keyphrase_label, (keyphrase_span_start, keyphrase_span_end)), text[keyphrase_span_start:keyphrase_span_end]) ) return keyphrases def is_keyphrase(labeled_candidate, tags, pos_sequences, tagging_notation="BILOU"): """Receive labeled candidate and return true or false""" labels, candidate_spans = labeled_candidate start, end = candidate_spans["span"] expected_tokens = end - start is_valid = False if tagging_notation == "BIO" or tagging_notation == "BILOU": postags = list(map(lambda t: t[1], tags[start:end])) labels_valid = list(map(lambda l: l[2:], filter(lambda l: l != "O" \ and l[-len("NON-KEYPHRASE"):] != "NON-KEYPHRASE", labels))) if len(labels_valid) == expected_tokens \ and postags == pos_sequences[candidate_spans["pos-seq-id"]]["tags"] \ and len(set(labels_valid)) == 1: is_valid = True return is_valid def labeled_keyphrase_span(keyphrase, tags, tagging_notation="BILOU"): """Receive labeled keyphrase and return span""" labeled_candidate, candidate_spans = keyphrase start, end = candidate_spans["span"] label = "KEYPHRASE" if tagging_notation == "BIO" or tagging_notation == "BILOU": label = list(set(list(filter(lambda lc: lc != "O", labeled_candidate))))[0][2:] _, _, token_span_start, _ = tags[start] _, _, token_span_end, _ = tags[end - 1] span = (token_span_start[0], token_span_end[1]) return label, span
the-stack_106_27887
from collections import defaultdict, OrderedDict import csv import logging import os import arff import pandas as pd class AlgorithmSelectionProblem(object): def __init__(self, directory): self.logger = logging.getLogger(__name__) # Create data structures self.dir_ = directory self.algorithm_runs = None self.configurations = None self.metafeatures = None self.read_funcs = { # "description.txt": self._read_description, "algorithm_runs.arff": self._read_algorithm_runs, # "feature_costs.arff": self._read_feature_costs, "feature_values.arff": self._read_feature_values, # "feature_runstatus.arff": self._read_feature_runstatus, # "ground_truth.arff": self._read_ground_truth, # "cv.arff": self._read_cv, "configurations.csv": self._read_configurations } self.found_files = [] # Read ASLib files self._find_files() self._read_files() def _find_files(self): ''' find all expected files in self.dir_ fills self.found_files ''' expected = [ # "description.txt", "algorithm_runs.arff", "feature_values.arff", # "feature_runstatus.arff", ] optional = ["ground_truth.arff", "feature_costs.arff", "citation.bib", "cv.arff", "configurations.csv"] for expected_file in expected: full_path = os.path.join(self.dir_, expected_file) if not os.path.isfile(full_path): self.logger.error( "Not found: %s (has to be added)" % (full_path)) else: self.found_files.append(full_path) for expected_file in optional: full_path = os.path.join(self.dir_, expected_file) if not os.path.isfile(full_path): self.logger.warning( "Not found: %s (maybe you want to add it)" % (full_path)) else: self.found_files.append(full_path) def _read_files(self): ''' iterates over all found files (self.found_files) and calls the corresponding function to validate file ''' for file_ in self.found_files: read_func = self.read_funcs.get(os.path.basename(file_)) if read_func: read_func(file_) def _read_algorithm_runs(self, filename): with open(filename) as fh: arff_dict = arff.load(fh) if arff_dict["attributes"][0][0].upper() != "INSTANCE_ID": self.logger.error( "instance_id as first attribute is missing in %s" % (filename)) if arff_dict["attributes"][1][0].upper() != "REPETITION": self.logger.error( "repetition as second attribute is missing in %s" % (filename)) if arff_dict["attributes"][2][0].upper() != "ALGORITHM": self.logger.error( "algorithm as third attribute is missing in %s" % (filename)) performance_measures = [pm[0] for pm in arff_dict['attributes'][3:-1]] measure_instance_algorithm_triples = defaultdict(lambda: defaultdict(dict)) for data in arff_dict["data"]: inst_name = str(data[0]) # repetition = data[1] algorithm = str(data[2]) perf_list = data[3:-1] # status = data[-1] for i, performance_measure in enumerate(performance_measures): measure_instance_algorithm_triples[performance_measure][ inst_name][algorithm] = perf_list[i] # TODO: this does not support any repetitions! measure_algorithm_matrices = OrderedDict() for pm in performance_measures: measure_algorithm_matrices[pm] = pd.DataFrame( measure_instance_algorithm_triples[pm]).transpose() self.algorithm_runs = measure_algorithm_matrices def _read_feature_values(self, filename): with open(filename) as fh: arff_dict = arff.load(fh) metafeatures = dict() for data in arff_dict["data"]: inst_name = data[0] # repetition = data[1] features = data[2:] metafeatures[inst_name] = {feature[0]: feature_value for feature, feature_value in zip(arff_dict['attributes'][2:], features)} self.metafeatures = pd.DataFrame(metafeatures).transpose() def _read_configurations(self, filename): with open(filename) as fh: csv_reader = csv.DictReader(fh) configurations = dict() for line in csv_reader: configuration = dict() algorithm_id = line['idx'] for hp_name, value in line.items(): if not value or hp_name == 'idx': continue try: value = int(value) except Exception: try: value = float(value) except Exception: pass configuration[hp_name] = value configurations[algorithm_id] = configuration self.configurations = configurations
the-stack_106_27888
from modules.content import * def sort_base_by_number(data_base): data_base = sorted(data_base) return data_base class User: def __init__(self, telegram_id, username, number=None, name=None, sex=None, email=None, phone_number=None, answers=None): self.base_file = USERS_FILE_PATH self.forms_file = FORMS_FILE_PATH self.user_id = telegram_id self.username = username self.name = name self.sex = sex self.phone_number = phone_number self.email = email self.score = 0 if number is None: self.number = int(self._get_last_number_in_base()) + 1 else: self.number = number if answers is None: self.answers = { 'q1': "-", 'q2': "-", 'q3': "-", 'q4': "-", 'q5': "-", 'q6': "-", 'q7': "-", } else: self.answers = answers print(answers) self.answers = self.str_answer_to_dict() def __str__(self): return f"{self.number},{self.user_id},{self.name},{self.sex},{self.username}," \ f"{self.phone_number},{self.email},{self.get_str_answers()}\n" def add_phone_number(self, number: str): self.phone_number = number def add_email(self, email: str): self.email = email def change_base_file(self, filename: str): self.base_file = filename def add_sex(self, sex: str): self.sex = sex def add_name(self, name: str): self.name = name def update_answer(self, pair): question = pair[0:2] answer = pair[-1] self.answers[question] = answer def get_str_answers(self): string = '' for question in self.answers: string += question + ":" + self.answers[question] + " " return string def get_answers_for_form(self) -> str: answers = self._get_str_answers_for_form() answers = answers.split(" ") answers_separated_with_comma = '' for answer in answers: if answer != '': try: if self.sex == 'woman': answers_separated_with_comma += woman_answers[answer].replace(',', '') + "," if self.sex == 'man': answers_separated_with_comma += man_answers[answer].replace(',', '') + "," except ValueError or KeyError as er: print(er) continue return answers_separated_with_comma[0:-1:] def str_answer_to_dict(self): # str = 'q1:- q2:1 q3:- q4:- q5:- q6:-' answers = self.answers tmp_list = answers.split(" ") tmp_list.pop(-1) print(tmp_list) dict_answers = {i.split(":")[0]: i.split(":")[1] for i in tmp_list} print(dict_answers) return dict_answers def show_telegram_id(self): return f"{self.user_id}" def _get_last_number_in_base(self): with open(self.base_file, 'r') as file: for user_line in file: number, telegram_id, name, sex, username, phone_number, email, answers = user_line.split(',') return number def add_user_in_db(self): with open(self.base_file, 'a') as file: data_base_line = f"{self.number},{self.user_id},{self.name},{self.sex},{self.username}," \ f"{self.phone_number},{self.email},{self.get_str_answers()}\n" file.write(data_base_line) def add_user_in_forms(self): with open(self.forms_file, 'a') as file: forms_line = f"{self.name},{self.sex},{self.username}," \ f"{self.phone_number},{self.email},{self.get_answers_for_form()}\n" print(forms_line) file.write(forms_line) def not_in_base(self): with open(self.base_file, 'r') as file: for user_line in file: number, telegram_id, name, sex, username, phone_number, email, answers = user_line.split(',') if str(self.user_id) == telegram_id: print('User already registered') return False return True def not_in_forms(self): with open(self.forms_file, 'r') as file: for user_line in file: name, sex, username, phone_number, email, a1, a2, a3, a4, a5, a6 = user_line.split(',') if str(self.phone_number) == phone_number: print('User already registered') return False return True def rewrite_user_info(self): data_base = [] data_base_line = f"{self.number},{self.user_id},{self.name},{self.sex},{self.username}," \ f"{self.phone_number},{self.email},{self.get_str_answers()}\n" with open(self.base_file, 'r') as file: user_line_number = self.number for user_line in file: number, telegram_id, name, sex, username, phone_number, email, answers = user_line.split(',') if user_line_number == number: data_base.append(data_base_line) else: data_base.append(user_line) data_base = sort_base_by_number(data_base) i = data_base.index(data_base_head) data_base.insert(0, data_base.pop(i)) with open(self.base_file, 'w') as file: for user_line in data_base: file.write(user_line) def get_welcome_message(self): if self.username is not None: message = f'''Привет, {self.username}! Я - чатбот Лёва, твой "второй пилот" в непредсказуемом мире отношений. Знаю много, болтаю мало!😎 А как твои дела? Пройди мой небольшой тест и мы вместе это выясним!''' else: message = f'''Привет! Я - чатбот Лёва, твой "второй пилот" в непредсказуемом мире отношений. Знаю много, болтаю мало!😎 А как твои дела? Пройди мой небольшой тест и мы вместе это выясним!''' return message def form_filled(self): print(self.phone_number, self.email, self.name) return self.phone_number is not None and self.email is not None and self.name is not None \ and self.phone_number != 'None' and self.email != 'None' and self.name != 'None' def _get_man_result(self): result = 0 answers = self.get_str_answers() answers_list = answers.split(" ") for answer in answers_list: try: result += man_points[answer] except KeyError: pass print(result) if result == 100: return result if 99 >= result >= 80: return 80 if 79 >= result >= 60: return 60 if 59 >= result >= 0: return 0 def _get_woman_result(self): result = 0 answers = self.get_str_answers() answers_list = answers.split(" ") for answer in answers_list: try: result += woman_points[answer] except KeyError: pass print(result) if result == 100: return result if 99 >= result >= 80: return 80 if 79 >= result >= 60: return 60 if 59 >= result >= 0: return 0 def get_result_from_answers(self): result = None if self.sex == 'man': result = self._get_man_result() message = man_results[result] return message if self.sex == 'woman': result = self._get_woman_result() message = woman_results[result] return message else: return man_results[result] def get_form_message(self): message = f"{self.name},{self.sex},{self.username}," \ f"{self.phone_number},{self.email},{self.get_answers_for_form()}\n" return message def _get_str_answers_for_form(self): answers = self.get_str_answers() answers = answers.split(" ") answers.pop(0) # q1a1 q2a1 q3a1 q4a1 q5a1 q6a1 answers_for_form = '' for answer in answers: if answer != '': question_n, answer_n = answer.split(":") answers_for_form += f"q{int(question_n[-1]) - 1}a{answer_n} " return answers_for_form
the-stack_106_27891
class Pessoa: def __init__(self, nome=None, idade=35): self.idade = idade self.nome = nome def cumprimentar(self): return f'Ola {id(self)}' if __name__ == '__main__': p = Pessoa('Renato') print(Pessoa.cumprimentar(p)) print(id(p)) print(p.cumprimentar()) print(p.nome) p.nome = 'Josemar' print(p.nome) print(p.idade)
the-stack_106_27893
#!/usr/bin/env python try: from shlex import quote except ImportError: from pipes import quote import subprocess import shlex import datetime from time import sleep # import virtkey import os def run_cmd(cmd, cwd=None, timeout=None, shell=False): if shell: ccmd = cmd else: ccmd = shlex.split(cmd) print('execute command {}'.format(ccmd)) sleep(3) end_time = 0 if timeout: end_time = datetime.datetime.now() + datetime.timedelta(seconds=timeout) sub = subprocess.Popen(ccmd, cwd=cwd, stdin=subprocess.PIPE, shell=shell, bufsize=4096) while sub.poll() is None: sleep(0.5) if timeout: if end_time <= datetime.datetime.now(): raise Exception('Timeout {}'.format(ccmd)) return str(sub.returncode) def open_terminal(): v = virtkey.virtkey() v.press_keysym(65507) v.press_keysym(65505) v.press_unicode(ord('t')) sleep(0.1) v.release_unicode(ord('t')) v.release_keysym(65507) v.release_keysym(65505) def switch_terminal(): v = virtkey.virtkey() v.press_keysym(65507) v.press_keysym(65366) sleep(0.1) v.release_keysym(65507) v.release_keysym(65366) def send_tab_key(): v = virtkey.virtkey() sleep(2) print('click tab key two times') v.press_keysym(65289) v.release_keysym(65289) v.press_keysym(65289) v.release_keysym(65289) print('end to click') def launch_udsserver_terminal(): print('Start to launch udsserver') os.system("gnome-terminal -t udsserver -e 'bash -c \"source ./launch_udsserver_terminal.sh; exec bash\"'") def launch_syncclient_terminal(): print('Start to launch esyncclient') os.system("gnome-terminal -t syncclient -e 'bash -c \"source ./launch_esyncclient_terminal.sh; exec bash\"'") def launch_otamonitor_terminal(): print('Start to launch otamonitor') os.system("gnome-terminal -t otamonitor -e 'bash -c \"source ./launch_otamonitor_terminal.sh; exec bash\"'") def check_env(): if os.environ['ESYNC_HOME_DIR'] == '/home/autotest/Downloads/Excelforepackage/excelfore/esync': print('Set ESYNC HOEM DIR successfully') return True else: print('Failed to set ESYNC HOEM DIR') return False def set_ubuntu_env(): esync_path = '/home/autotest/Downloads/Excelforepackage/excelfore/esync' print('export ESYNC_HOME_DIR={}'.format(quote(esync_path))) sleep(3) if os.environ['ESYNC_HOME_DIR'] == '/home/autotest/Downloads/Excelforepackage/excelfore/esync': print('set ESYNC_HOME successfully') else: print('failed to set ESYNC_HOME') def check_result(campaign_path): # campaign_path = "/home/autotest/Downloads/dm_tree/DevInfo/Ext/Excelfore/CampaignState/CampaignCorrelator" folder_num = 0 current_time = datetime.datetime.now() all_folder = [] if os.path.exists(campaign_path): dirlist = os.listdir(campaign_path) print(dirlist) if dirlist is not None: for x in dirlist: if os.path.isdir((os.path.join(campaign_path,x))): return True else: return False # print(x + ' ' + "is folder") # folder_num += 1 # all_folder.append((os.path.join(campaign_path,x))) # return all_folder def find_newest_folder(path_file): lists = os.listdir(path_file) lists.sort(key=lambda fn: os.path.getmtime(path_file +'/'+fn)) # print(lists) for x in reversed(lists): if os.path.isdir((os.path.join(path_file,x))): # print(x) floder_newest = os.path.join(path_file,x) break return floder_newest def check_update_res(): path_file = "/home/autotest/Downloads/dm_tree/DevInfo/Ext/Excelfore/CampaignState/CampaignCorrelator" state_path = '/State/value' if find_newest_folder(path_file): value_path = find_newest_folder(path_file) + state_path with open(value_path,'r') as f: vaule_data = f.read() # print(vaule_data) if vaule_data == "90": print('---Ota update successfully---') return True else: print('---Failed to update ota---') return False if __name__ == '__main__': # execute_cmd('cat test.py') # set_environment('ESYNC_HOME_DIR','/home/excelfore/Documents/excelfore/esync') # setEnv() # run_cmd('export ESYNC_HOME_DIR=/home/excelfore/Documents/excelfore/esync',cwd='/home/autotest/Downloads', timeout=2, shell=True) # run_cmd('./set_env.sh', timeout=2, shell=True) # run_cmd('eval $(./foo.py) && echo $ESYNC_HOME_DIR', timeout=2, shell=True) # run_cmd('gnome-terminal -e ls', shell=True) # run_cmd('env | grep ESYNC_HOME_DIR',cwd='/home/autotest/Downloads', timeout=2, shell=True) # open_terminal() # sleep(3) # # run_cmd('eval $(./set_ubuntu_env.py) && echo $ESYNC_HOME_DIR', timeout=2, shell=True) # switch_terminal() # sleep(2) # run_cmd('./set_env.sh', shell=True) # set_ubuntu_env() # sleep(2) # check_env() # launch_udsserver_terminal() # sleep(5) # launch_syncclient_terminal() # sleep(1) # # check_result() # get_latest_folder() # dir = "/home/autotest/Downloads/dm_tree/DevInfo/Ext/Excelfore/CampaignState/CampaignCorrelator" # new_report(path) # print(find_newest_folder(dir)) check_update_res()
the-stack_106_27894
import hlir import utils import expr import vmcall import dataflow import addressdispenser ########################################################################### # HLIR REWRITES BELOW # undo the compiler optimization which turns individual returns into jumps to # a common return BB def duplicate_terminating_successors(node): if len(node.get_successors()) == 0: pass elif utils.has_imprecise_successors(node): pass else: return False # it must have more than one predecessor if len(node.get_predecessors()) <= 1: return False changeable = [p for p in node.get_predecessors() if not utils.has_imprecise_successors(p)] # sometimes changeable has a ridiculous size (200+) so avoid splitting in # those cases if len(changeable) > 5: return False changed = False for pred in changeable: # we should make sure that the copy doesn't share the old instruction, # nor its arguments, but uses copies instead, and the copy should have # the same sp-delta new_bb = node.copy() new_bb.address = addressdispenser.get_new_address() new_bb.next_bb = None # it should replace the original.. pred.replace_successor(node, new_bb) if pred.terminator.loc == expr.Lit(node.address): pred.terminator.loc = expr.Lit(new_bb.address) if pred.next_bb == node: pred.next_bb = new_bb changed = True return changed def revert_reconstruct(n): if (n.terminator.type == hlir.ins_types.jump and n.terminator.loc == expr.Lit(0x0)): n.terminator = hlir.make_vmcall(vmcall.vmcalls.revert, [], []) for s in n.get_successors(): n.remove_successor(s) return True return False def make_memseq_assignment(ins1, ins2): if ins1.type != hlir.ins_types.assign: return if ins2.type != hlir.ins_types.assign: return a = ins1.results[0] b = ins2.results[0] if not isinstance(a, expr.Mem): return if not isinstance(b, expr.Mem): return # ensure the lengths are OK if not isinstance(a.length, expr.Lit): return if not isinstance(b.length, expr.Lit): return # ensure that the memories are adjacent if isinstance(a.address, expr.Lit) and isinstance(b.address, expr.Lit): if b.address.literal != a.address.literal + a.length.literal: return elif isinstance(b.address, expr.Add): if (dataflow.exprs_must_be_equal(b.address.operand2, a.address, same_bb=True) and dataflow.exprs_must_be_equal(b.address.operand1, a.length, same_bb=True)): pass elif (dataflow.exprs_must_be_equal(b.address.operand1, a.address, same_bb=True) and dataflow.exprs_must_be_equal(b.address.operand2, a.length, same_bb=True)): pass else: return else: return return hlir.make_assign( expr.Mem(a.address, expr.Add(a.length, b.length)), expr.Sequence([ins1.args[0], ins2.args[0]]) ) def generate_mem_seqs(node): for ins1, ins2 in utils.instruction_pairs(node): new_ins = make_memseq_assignment(ins1, ins2) if not new_ins: new_ins = make_memseq_assignment(ins2, ins1) if not new_ins: continue index = node.get_instructions().index(ins1) node.remove_instruction(ins1) node.remove_instruction(ins2) node.insert_instruction(new_ins, index) return True return False def move_calldataloads_to_params(node): if node.function.address == 0x0: return False changed = False for ins in node.get_instructions() + [node.terminator]: if ins.type != hlir.ins_types.vmcall: continue if ins.loc != vmcall.vmcalls.calldataload: continue if not isinstance(ins.args[0], expr.Lit): continue offset = ins.args[0].literal if offset < 4: continue assert (offset % 0x20 == 4) pn = (offset - 4) / 0x20 f = node.function while f.num_params < pn + 1: f.params.append(expr.Var()) f.num_params += 1 assert (len(f.params) == f.num_params) p = f.params[pn].copy() new_ins = hlir.make_assign(ins.results[0].copy(), p) node.replace_instruction(ins, new_ins) changed = True return changed def jcond_not_not(node): if node.terminator.type != hlir.ins_types.jcond: return False exp = node.terminator.args[0] if not isinstance(exp, expr.Not): return False if not isinstance(exp.operand, expr.Not): return False node.terminator.args[0] = exp.operand.operand return True # if(0){x}else{y} -----> y, if(1){x}else{y} -----> x def simplify_if_lit(node): if node.terminator.type != hlir.ins_types.jcond: return False exp = node.terminator.args[0] if not isinstance(exp, expr.Lit): return False if exp.literal == 0: target = node.next_bb else: target = [n for n in node.get_successors() if n != node.next_bb][0] node.terminator = hlir.make_jump(expr.Lit(target.address)) for s in node.get_successors(): node.remove_successor(s) node.add_successor(target) return True def remove_useless_assignments(node): changed = False for ins in list(node.get_instructions()): if ins.type == hlir.ins_types.assign: if (isinstance(ins.args[0], expr.Id) and isinstance(ins.results[0], expr.Id)): if dataflow.ids_must_be_equal(ins.args[0], ins.results[0], True): node.remove_instruction(ins) changed = True return changed def assert_lit(node): for ins in node.get_instructions(): if (ins.type == hlir.ins_types.assertion and isinstance(ins.args[0], expr.Lit) and ins.args[0].literal != 0): node.remove_instruction(ins) return True return False ############################################################################ # EXPRESSION REWRITES BELOW # turn this: # storage(sha3((param0, 0x0))) # into this: # mapping0[param0] def detect_mapping_access(node): if not isinstance(node, expr.Storage): return addr = node.address if not isinstance(addr, expr.PureFunctionCall): return if addr.name != vmcall.vmcalls.sha3: return if not isinstance(addr.args[0], expr.Sequence): return offset, mapping_num = addr.args[0].expressions if not isinstance(mapping_num, expr.Lit): return return expr.MappingAccess(mapping_num.literal, offset) def do_detect_array_access(op1, op2): if not isinstance(op1, expr.PureFunctionCall): return if op1.name != vmcall.vmcalls.sha3: return if not isinstance(op1.args[0], expr.Lit): return num = op1.args[0].literal offset = op2 result = expr.ArrayAccess(num, offset) return result # turn this: # storage(var0 + sha3(0x0)) # into this: # array0[var0] def detect_array_access(node): if not isinstance(node, expr.Storage): return addr = node.address if not isinstance(addr, expr.Add): return fixed = do_detect_array_access(addr.operand1, addr.operand2) if fixed: return fixed return do_detect_array_access(addr.operand2, addr.operand1) def simplify_eq(node): if (isinstance(node, expr.Eq) and dataflow.exprs_must_be_equal(node.operand1, node.operand2, True)): return expr.Lit(1) def fold_constants(node): if (isinstance(node, expr.BinaryOp) and isinstance(node.operand1, expr.Lit) and isinstance(node.operand2, expr.Lit)): result = expr.Lit(node.evaluate(None).num()) return result if (isinstance(node, expr.UnaryOp) and isinstance(node.operand, expr.Lit)): result = expr.Lit(node.evaluate(None).num()) return result def fold_commutative_constants(node): if not isinstance(node, expr.BinaryOp) or not node.is_commutative: return typ = node.__class__ if isinstance(node.operand1, typ): n = fold_constants(typ(node.operand2, node.operand1.operand1)) if n: return typ(n, node.operand1.operand2) n = fold_constants(typ(node.operand2, node.operand1.operand2)) if n: return typ(n, node.operand1.operand1) if isinstance(node.operand2, typ): n = fold_constants(typ(node.operand1, node.operand2.operand1)) if n: return typ(n, node.operand2.operand2) n = fold_constants(typ(node.operand1, node.operand2.operand2)) if n: return typ(n, node.operand2.operand1) # e.g. ((0x60 + free_mem_ptr) - free_mem_ptr) -----> 0x60 def simplify_plus_minus(node): if not isinstance(node, expr.Sub): return a, b = node.operand1, node.operand2 if not isinstance(a, expr.Add): return if dataflow.exprs_must_be_equal(a.operand2, b, True): return a.operand1 if dataflow.exprs_must_be_equal(a.operand1, b, True): return a.operand2 if isinstance(a.operand1, expr.Lit) and isinstance(b, expr.Lit): return expr.Add(a.operand2, expr.Lit(a.operand1.literal - b.literal)) if isinstance(a.operand2, expr.Lit) and isinstance(b, expr.Lit): return expr.Add(a.operand1, expr.Lit(a.operand2.literal - b.literal)) def simplify_duplicate_and(node): if not isinstance(node, expr.And): return a, b = node.operand1, node.operand2 if isinstance(b, expr.And): if dataflow.exprs_must_be_equal(a, b.operand1, True): return b if dataflow.exprs_must_be_equal(a, b.operand2, True): return b if isinstance(a, expr.And): if dataflow.exprs_must_be_equal(b, a.operand1, True): return a if dataflow.exprs_must_be_equal(b, a.operand2, True): return a def simplify_add(node): if not isinstance(node, expr.Add): return if node.operand1 == expr.Lit(0): return node.operand2 if node.operand2 == expr.Lit(0): return node.operand1 def simplify_div(node): if not isinstance(node, expr.Div): return if node.operand2 == expr.Lit(1): return node.operand1 def simplify_mul(node): if not isinstance(node, expr.Mul): return if node.operand1 == expr.Lit(1): return node.operand2 if node.operand2 == expr.Lit(1): return node.operand1 def simplify_and(node): if not isinstance(node, expr.And): return if node.operand1 == expr.Lit((2**256)-1): return node.operand2 if node.operand2 == expr.Lit((2**256)-1): return node.operand1 def simplify_minus(node): if isinstance(node, expr.Sub): if dataflow.exprs_must_be_equal(node.operand1, node.operand2, same_bb=True): return expr.Lit(0) def simplify_minus_minus(node): if not isinstance(node, expr.Sub): return a, b = node.operand1, node.operand2 if not isinstance(a, expr.Sub): return a1, a2 = a.operand1, a.operand2 if not isinstance(a2, expr.Lit) or not isinstance(b, expr.Lit): return return expr.Sub(a1, expr.Lit(a2.literal + b.literal)) def simplify_expr_seqs(node): if not isinstance(node, expr.Sequence): return if not any(isinstance(e, expr.Sequence) for e in node.expressions): return new_expressions = [] for e in node.expressions: if isinstance(e, expr.Sequence): new_expressions += e.expressions else: new_expressions.append(e) node.expressions = new_expressions return node ############################################################################ # these rewrites work on HLIR node hlir_node_rewrites = [ simplify_if_lit, generate_mem_seqs, assert_lit, remove_useless_assignments, revert_reconstruct, # TODO: this really belongs near CFA..? duplicate_terminating_successors, # TODO: move these to readability module move_calldataloads_to_params, jcond_not_not, ] expr_rewrites = [ fold_constants, fold_commutative_constants, simplify_plus_minus, simplify_duplicate_and, simplify_eq, simplify_and, simplify_mul, simplify_div, simplify_add, simplify_minus, simplify_minus_minus, simplify_expr_seqs, # TODO: move this to readability.. maybe? detect_mapping_access, detect_array_access, ] def rewrite_node(node): assert (isinstance(node, hlir.HLIRNode)) result = False # first rewrite the node itself for rewrite in hlir_node_rewrites: r = rewrite(node) #if r: print(rewrite) result |= r # then rewrite any of its expressions for rewrite in expr_rewrites: r = utils.visit_and_modify_expressions(node, rewrite) #if r: print(rewrite) result |= r return result
the-stack_106_27897
def get_anchor_root(spec, state): anchor_block_header = state.latest_block_header.copy() if anchor_block_header.state_root == spec.Bytes32(): anchor_block_header.state_root = spec.hash_tree_root(state) return spec.hash_tree_root(anchor_block_header) def add_block_to_store(spec, store, signed_block): pre_state = store.block_states[signed_block.message.parent_root] block_time = pre_state.genesis_time + signed_block.message.slot * spec.SECONDS_PER_SLOT if store.time < block_time: spec.on_tick(store, block_time) spec.on_block(store, signed_block) def add_attestation_to_store(spec, store, attestation): parent_block = store.blocks[attestation.data.beacon_block_root] pre_state = store.block_states[spec.hash_tree_root(parent_block)] block_time = pre_state.genesis_time + parent_block.slot * spec.SECONDS_PER_SLOT next_epoch_time = block_time + spec.SLOTS_PER_EPOCH * spec.SECONDS_PER_SLOT if store.time < next_epoch_time: spec.on_tick(store, next_epoch_time) spec.on_attestation(store, attestation)
the-stack_106_27898
""" The molten web framework is automatically traced by ``ddtrace`` when calling ``patch``:: from molten import App, Route from ddtrace import patch_all; patch_all(molten=True) def hello(name: str, age: int) -> str: return f'Hello {age} year old named {name}!' app = App(routes=[Route('/hello/{name}/{age}', hello)]) You may also enable molten tracing automatically via ``ddtrace-run``:: ddtrace-run python app.py Configuration ~~~~~~~~~~~~~ .. py:data:: ddtrace.config.molten['distributed_tracing'] Whether to parse distributed tracing headers from requests received by your Molten app. Default: ``True`` .. py:data:: ddtrace.config.molten['analytics_enabled'] Whether to analyze spans for Molten in App Analytics. Can also be enabled with the ``DD_MOLTEN_ANALYTICS_ENABLED`` environment variable. Default: ``None`` .. py:data:: ddtrace.config.molten['service_name'] The service name reported for your Molten app. Can also be configured via the ``DD_MOLTEN_SERVICE_NAME`` environment variable. Default: ``'molten'`` """ from ...utils.importlib import require_modules required_modules = ['molten'] with require_modules(required_modules) as missing_modules: if not missing_modules: from . import patch as _patch patch = _patch.patch unpatch = _patch.unpatch __all__ = ['patch', 'unpatch']
the-stack_106_27899
"""Run-time calculation of offset into Python string structure Does a scan to find the digits of pi in a string structure in order to produce an offset that can be used to produce data-pointers from Python strings. Porting note: Currently this uses id( str a ) to get the base address of the Python string. Python implementations where id( a ) is *not* the memory address of the string will not work! """ import ctypes from OpenGL._bytes import bytes,unicode PI_DIGITS = '31415926535897931' def calculateOffset( ): """Calculates the data-pointer offset for strings This does a sequential scan for 100 bytes from the id of a string to find special data-value stored in the string (the digits of PI). It produces a dataPointer function which adds that offset to the id of the passed strings. """ finalOffset = None a = PI_DIGITS # XXX NOT portable across Python implmentations!!! initial = id(a) targetType = ctypes.POINTER( ctypes.c_char ) for offset in range( 100 ): vector = ctypes.cast( initial+offset,targetType ) allMatched = True for index,digit in enumerate( a ): if vector[index] != digit: allMatched = False break if allMatched: finalOffset = offset break if finalOffset is not None: def dataPointer( data ): """Return the data-pointer from the array using calculated offset data -- a Python string Returns the raw data-pointer to the internal buffer of the passed string """ if not isinstance( data, bytes ): raise TypeError( """This function can only handle Python strings! Got %s"""%( type(data), ) ) return id(data) + finalOffset # just for later reference... dataPointer.offset = finalOffset return dataPointer raise RuntimeError( """Unable to determine dataPointer offset for strings!""" ) dataPointer = calculateOffset() if __name__ == "__main__": a = 'this' print((id(a), dataPointer( a ), dataPointer(a) - id(a)))
the-stack_106_27901
import tensorflow as tf import common no_such_word = 'NOSUCH' no_such_composite = no_such_word + ',' + no_such_word + ',' + no_such_word class PathContextReader: # 这个类很关键 class_word_table = None class_target_word_table = None class_path_table = None def __init__(self, word_to_index, target_word_to_index, path_to_index, config, is_evaluating=False): self.file_path = config.TEST_PATH if is_evaluating else (config.TRAIN_PATH + '.train.c2v') self.batch_size = config.TEST_BATCH_SIZE if is_evaluating else min(config.BATCH_SIZE, config.NUM_EXAMPLES) self.num_epochs = config.NUM_EPOCHS self.reading_batch_size = config.READING_BATCH_SIZE if is_evaluating else min(config.READING_BATCH_SIZE, config.NUM_EXAMPLES) self.num_batching_threads = config.NUM_BATCHING_THREADS self.batch_queue_size = config.BATCH_QUEUE_SIZE self.data_num_contexts = config.MAX_CONTEXTS self.max_contexts = config.MAX_CONTEXTS self.is_evaluating = is_evaluating self.word_table = PathContextReader.get_word_table(word_to_index) self.target_word_table = PathContextReader.get_target_word_table(target_word_to_index) self.path_table = PathContextReader.get_path_table(path_to_index) self.filtered_output = self.get_filtered_input() @classmethod def get_word_table(cls, word_to_index): if cls.class_word_table is None: cls.class_word_table = cls.initalize_hash_map(word_to_index, 0) return cls.class_word_table @classmethod def get_target_word_table(cls, target_word_to_index): if cls.class_target_word_table is None: cls.class_target_word_table = cls.initalize_hash_map(target_word_to_index, 0) return cls.class_target_word_table @classmethod def get_path_table(cls, path_to_index): if cls.class_path_table is None: cls.class_path_table = cls.initalize_hash_map(path_to_index, 0) return cls.class_path_table @classmethod def initalize_hash_map(cls, word_to_index, default_value): return tf.contrib.lookup.HashTable( tf.contrib.lookup.KeyValueTensorInitializer(list(word_to_index.keys()), list(word_to_index.values()), key_dtype=tf.string, value_dtype=tf.int32), default_value) def get_input_placeholder(self): return self.input_placeholder def start(self, session, data_lines=None): self.coord = tf.train.Coordinator() self.threads = tf.train.start_queue_runners(sess=session, coord=self.coord) return self def read_file(self): row = self.get_row_input() record_defaults = [[no_such_composite]] * (self.data_num_contexts + 1) row_parts = tf.decode_csv(row, record_defaults=record_defaults, field_delim=' ') word = row_parts[0] # (batch, ) contexts = tf.stack(row_parts[1:(self.max_contexts + 1)], axis=1) # (batch, max_contexts) flat_contexts = tf.reshape(contexts, [-1]) # (batch * max_contexts, ) split_contexts = tf.string_split(flat_contexts, delimiter=',') dense_split_contexts = tf.reshape(tf.sparse_tensor_to_dense(split_contexts, default_value=no_such_word), shape=[-1, self.max_contexts, 3]) # (batch, max_contexts, 3) if self.is_evaluating: target_word_label = word # (batch, ) of string else: target_word_label = self.target_word_table.lookup(word) # (batch, ) of int path_source_strings = tf.slice(dense_split_contexts, [0, 0, 0], [-1, self.max_contexts, 1]) path_source_indices = self.word_table.lookup(path_source_strings) # (batch, max_contexts, 1) path_strings = tf.slice(dense_split_contexts, [0, 0, 1], [-1, self.max_contexts, 1]) path_indices = self.path_table.lookup(path_strings) # (batch, max_contexts, 1) path_target_strings = tf.slice(dense_split_contexts, [0, 0, 2], [-1, self.max_contexts, 1]) path_target_indices = self.word_table.lookup(path_target_strings) # (batch, max_contexts, 1) return target_word_label, path_source_indices, path_target_indices, path_indices, \ path_source_strings, path_strings, path_target_strings def get_row_input(self): if self.is_evaluating: # test, read from queue (small data) row = self.input_placeholder = tf.placeholder(tf.string) else: # training, read from file filename_queue = tf.train.string_input_producer([self.file_path], num_epochs=self.num_epochs, shuffle=False) reader = tf.TextLineReader() _, row = reader.read_up_to(filename_queue, num_records=self.reading_batch_size) return row def input_tensors(self): return self.initialize_batch_outputs(self.filtered_output[:-3]) def get_filtered_batches(self): return self.filtered_output def initialize_batch_outputs(self, filtered_input): return tf.train.shuffle_batch(filtered_input, batch_size=self.batch_size, enqueue_many=True, capacity=self.batch_queue_size, min_after_dequeue=int(self.batch_queue_size * 0.85), num_threads=self.num_batching_threads, allow_smaller_final_batch=True) def get_filtered_input(self): word_label, path_source_indices, path_target_indices, path_indices, \ source_strings, path_strings, target_strings = self.read_file() any_contexts_is_valid = tf.logical_or( tf.greater(tf.squeeze(tf.reduce_max(path_source_indices, 1), axis=1), 0), tf.logical_or( tf.greater(tf.squeeze(tf.reduce_max(path_target_indices, 1), axis=1), 0), tf.greater(tf.squeeze(tf.reduce_max(path_indices, 1), axis=1), 0)) ) # (batch, ) if self.is_evaluating: cond = tf.where(any_contexts_is_valid) else: # training word_is_valid = tf.greater(word_label, 0) # (batch, ) cond = tf.where(tf.logical_and(word_is_valid, any_contexts_is_valid)) # (batch, 1) valid_mask = tf.to_float( # (batch, max_contexts, 1) tf.logical_or(tf.logical_or(tf.greater(path_source_indices, 0), tf.greater(path_target_indices, 0)), tf.greater(path_indices, 0)) ) filtered = \ tf.gather(word_label, cond), \ tf.squeeze(tf.gather(path_source_indices, cond), [1, 3]), \ tf.squeeze(tf.gather(path_indices, cond), [1, 3]), \ tf.squeeze(tf.gather(path_target_indices, cond), [1, 3]), \ tf.squeeze(tf.gather(valid_mask, cond), [1, 3]), \ tf.squeeze(tf.gather(source_strings, cond)), \ tf.squeeze(tf.gather(path_strings, cond)), \ tf.squeeze(tf.gather(target_strings, cond)) # (batch, max_contexts) return filtered def __enter__(self): return self def should_stop(self): return self.coord.should_stop() def __exit__(self, type, value, traceback): print('Reader stopping') self.coord.request_stop() self.coord.join(self.threads)
the-stack_106_27904
import sys import click from json import loads import codecs from ocrd import Resolver, Workspace from ocrd.task_sequence import ProcessorTask, validate_tasks from ocrd_utils import initLogging, parse_json_string_or_file from ocrd_validators import ( OcrdToolValidator, OcrdZipValidator, PageValidator, ParameterValidator, WorkspaceValidator, ) def _inform_of_result(report): if not report.is_valid: print(report.to_xml()) sys.exit(1) @click.group("validate") def validate_cli(): """ All the validation in one CLI """ initLogging() @validate_cli.command('tool-json') @click.argument('ocrd_tool', required=False, nargs=1) def validate_ocrd_tool(ocrd_tool): ''' Validate OCRD_TOOL as an ocrd-tool.json file. ''' if not ocrd_tool: ocrd_tool = 'ocrd-tool.json' with codecs.open(ocrd_tool, encoding='utf-8') as f: ocrd_tool = loads(f.read()) _inform_of_result(OcrdToolValidator.validate(ocrd_tool)) @validate_cli.command('parameters') @click.argument('ocrd_tool') @click.argument('executable') @click.argument('param_json') def validate_parameters(ocrd_tool, executable, param_json): ''' Validate PARAM_JSON against parameter definition of EXECUTABLE in OCRD_TOOL ''' with codecs.open(ocrd_tool, encoding='utf-8') as f: ocrd_tool = loads(f.read()) _inform_of_result(ParameterValidator(ocrd_tool['tools'][executable]).validate(parse_json_string_or_file(param_json))) @validate_cli.command('page') @click.argument('page', required=True, nargs=1) @click.option('--page-textequiv-consistency', help="How strict to check PAGE multi-level textequiv consistency", type=click.Choice(['strict', 'lax', 'fix', 'off']), default='strict') @click.option('--page-textequiv-strategy', help="Strategy to determine the correct textequiv", type=click.Choice(['first']), default='first') @click.option('--check-baseline', help="Whether Baseline must be fully within TextLine/Coords", is_flag=True, default=False) @click.option('--check-coords', help="Whether *Region/TextLine/Word/Glyph must each be fully contained within Border/*Region/TextLine/Word, resp.", is_flag=True, default=False) def validate_page(page, **kwargs): ''' Validate PAGE against OCR-D conventions ''' _inform_of_result(PageValidator.validate(filename=page, **kwargs)) # @validate_cli.command('zip') # @click.argument('src', type=click.Path(dir_okay=True, readable=True, resolve_path=True), required=True) # @click.option('-Z', '--skip-unzip', help="Treat SRC as a directory not a ZIP", is_flag=True, default=False) # @click.option('-B', '--skip-bag', help="Whether to skip all checks of manifests and files", is_flag=True, default=False) # @click.option('-C', '--skip-checksums', help="Whether to omit checksum checks but still check basic BagIt conformance", is_flag=True, default=False) # @click.option('-D', '--skip-delete', help="Whether to skip deleting the unpacked OCRD-ZIP dir after valdiation", is_flag=True, default=False) # @click.option('-j', '--processes', help="Number of parallel processes", type=int, default=1) # def validate(src, **kwargs): # """ # Validate OCRD-ZIP # SRC must exist an be an OCRD-ZIP, either a ZIP file or a directory. # """ # _inform_of_result(OcrdZipValidator(Resolver(), src).validate(**kwargs)) # @validate_cli.command('workspace') # @click.option('-a', '--download', is_flag=True, help="Download all files") # @click.option('-s', '--skip', help="Tests to skip", default=[], multiple=True, type=click.Choice(['imagefilename', 'dimension', 'mets_unique_identifier', 'mets_file_group_names', 'mets_files', 'pixel_density', 'page', 'url'])) # @click.option('--page-textequiv-consistency', '--page-strictness', help="How strict to check PAGE multi-level textequiv consistency", type=click.Choice(['strict', 'lax', 'fix', 'off']), default='strict') # @click.option('--page-coordinate-consistency', help="How fierce to check PAGE multi-level coordinate consistency", type=click.Choice(['poly', 'baseline', 'both', 'off']), default='poly') # @click.argument('mets_url') # def validate_workspace(mets_url, **kwargs): # ''' # Validate a workspace # ''' # _inform_of_result(WorkspaceValidator.validate(Resolver(), mets_url, **kwargs)) @validate_cli.command('tasks') @click.option('--workspace', nargs=1, required=False, help='Workspace these tasks are to be run. If omitted, only validate syntax') @click.argument('tasks', nargs=-1, required=True) def validate_process(tasks, workspace): ''' Validate a sequence of tasks passable to 'ocrd process' ''' if workspace: _inform_of_result(validate_tasks([ProcessorTask.parse(t) for t in tasks], Workspace(Resolver(), directory=workspace))) else: for t in [ProcessorTask.parse(t) for t in tasks]: _inform_of_result(t.validate())
the-stack_106_27905
''' show_ospf.py IOSXE parsers for the following show commands: * show ip ospf * show ip ospf interface * show ip ospf interface {interface} * show ip ospf sham-links * show ip ospf virtual-links * show ip ospf neighbor detail * show ip ospf neighbor * show ip ospf neighbor {interface} * show ip ospf database * show ip ospf database router * show ip ospf database network * show ip ospf database summary * show ip ospf database external * show ip ospf database opaque-area * show ip ospf database opaque-area self-originate * show ip ospf mpls ldp interface * show ip ospf mpls traffic-eng link * show ip ospf max-metric * show ip ospf traffic * show ip ospf interface brief * show ip ospf {process_id} segment-routing adjacency-sid * show ip ospf fast-reroute ti-lfa * show ip ospf segment-routing protected-adjacencies * show ip ospf segment-routing global-block * show ip ospf {process_id} segment-routing global-block * show ip ospf segment-routing * show ip ospf database opaque-area adv-router {address} ''' # Python import re import xmltodict from netaddr import IPAddress, IPNetwork # Metaparser from genie.metaparser import MetaParser from genie.metaparser.util.schemaengine import Schema, Any, Or, Optional from genie.libs.parser.utils.common import Common # =========================================================== # Schema for: # * 'show ip ospf {process_id} segment-routing local-block' # =========================================================== class ShowIpOspfSegmentRoutingLocalBlockSchema(MetaParser): ''' Schema for: * 'show ip ospf {process_id} segment-routing local-block' ''' schema = { 'instance': { Any(): { 'router_id': str, 'areas': { Any(): { 'router_id': { Any(): { 'sr_capable': str, Optional('srlb_base'): int, Optional('srlb_range'): int, }, }, }, }, }, }, } # =========================================================== # Schema for: # * 'show ip ospf {process_id} segment-routing local-block' # =========================================================== class ShowIpOspfSegmentRoutingLocalBlock(ShowIpOspfSegmentRoutingLocalBlockSchema): ''' Parser for: * 'show ip ospf {process_id} segment-routing local-block' ''' cli_command = ['show ip ospf segment-routing local-block', 'show ip ospf {process_id} segment-routing local-block'] def cli(self, process_id=None, output=None): if output is None: if process_id: cmd = self.cli_command[1].format(process_id=process_id) else: cmd = self.cli_command[0] out = self.device.execute(cmd) else: out = output # Init vars ret_dict = {} # OSPF Router with ID (10.4.1.1) (Process ID 65109) p1 = re.compile(r'^OSPF +Router +with +ID +\((?P<router_id>(\S+))\)' ' +\(Process +ID +(?P<pid>(\S+))\)$') # OSPF Segment Routing Local Blocks in Area 8 p2 = re.compile(r'^OSPF +Segment +Routing +Local +Blocks +in +Area' ' +(?P<area>(\d+))$') # Router ID SR Capable SRLB Base SRLB Range # -------------------------------------------------------- # *10.4.1.1 Yes 15000 1000 # 10.16.2.2 Yes 15000 1000 # 10.169.197.252 No p3 = re.compile(r'^(?P<value>\*)?(?P<router_id>\S+) +(?P<sr_capable>Yes|No)' '( +(?P<srlb_base>\d+) +(?P<srlb_range>\d+))?$') for line in out.splitlines(): line = line.strip() # OSPF Router with ID (10.4.1.1) (Process ID 65109) m = p1.match(line) if m: group = m.groupdict() inst_dict = ret_dict.setdefault('instance', {}).\ setdefault(group['pid'], {}) inst_dict['router_id'] = group['router_id'] continue # OSPF Segment Routing Local Blocks in Area 8 m = p2.match(line) if m: area_dict = inst_dict.setdefault('areas', {}).\ setdefault(str(IPAddress(str(m.groupdict()['area']))), {}) continue # Router ID SR Capable SRLB Base SRLB Range # -------------------------------------------------------- # *10.4.1.1 Yes 15000 1000 # 10.16.2.2 Yes 15000 1000 m = p3.match(line) if m: group = m.groupdict() smgt_dict = area_dict.setdefault('router_id', {}).\ setdefault(group['router_id'], {}) smgt_dict['sr_capable'] = group['sr_capable'] if group['srlb_base']: smgt_dict['srlb_base'] = int(group['srlb_base']) if group['srlb_range']: smgt_dict['srlb_range'] = int(group['srlb_range']) continue return ret_dict # ================== # Schema for: # * 'show ip ospf' # ================== class ShowIpOspfSchema(MetaParser): ''' Schema for: * 'show ip ospf' ''' schema = { 'vrf': {Any(): {'address_family': {Any(): {'instance': {Any(): {'router_id': str, Optional('enable'): bool, 'nsr': {'enable': bool}, 'bfd': {'enable': bool, Optional('strict_mode'): bool}, Optional('domain_id_type'): str, Optional('domain_id_value'): str, Optional('start_time'): str, Optional('nssa'): bool, Optional('area_transit'): bool, Optional('redistribution'): {Optional('max_prefix'): {Optional('num_of_prefix'): int, Optional('prefix_thld'): int, Optional('warn_only'): bool}, Optional('connected'): {'enabled': bool, Optional('subnets'): str, Optional('metric'): int}, Optional('static'): {'enabled': bool, Optional('subnets'): str, Optional('metric'): int}, Optional('bgp'): {'bgp_id': int, Optional('metric'): int, Optional('subnets'): str, Optional('nssa_only'): str, }, Optional('isis'): {'isis_pid': str, Optional('subnets'): str, Optional('metric'): int}}, Optional('database_control'): {'max_lsa': int, Optional('max_lsa_current'): int, Optional('max_lsa_threshold_value'): int, Optional('max_lsa_ignore_count'): int, Optional('max_lsa_current_count'): int, Optional('max_lsa_ignore_time'): int, Optional('max_lsa_reset_time'): int, Optional('max_lsa_limit'): int, Optional('max_lsa_warning_only'): bool}, Optional('stub_router'): {Optional('always'): {'always': bool, Optional('include_stub'): bool, Optional('summary_lsa'): bool, Optional('external_lsa'): bool, Optional('summary_lsa_metric'): int, Optional('external_lsa_metric'): int, Optional('state'): str}, Optional('on_startup'): {'on_startup': int, Optional('include_stub'): bool, Optional('summary_lsa'): bool, Optional('summary_lsa_metric'): int, Optional('external_lsa'): bool, Optional('external_lsa_metric'): int, 'state': str}, }, Optional('spf_control'): {Optional('incremental_spf'): bool, 'throttle': {'spf': {'start': int, 'hold': int, 'maximum': int}, 'lsa': {Optional('start'): int, Optional('hold'): int, Optional('maximum'): int, Optional('arrival'): int}, }, }, Optional('auto_cost'): {'enable': bool, 'reference_bandwidth': int, 'bandwidth_unit': str}, Optional('adjacency_stagger'): {'initial_number': int, 'maximum_number': int, Optional('no_initial_limit'): bool}, Optional('graceful_restart'): {Any(): {'enable': bool, 'type': str, Optional('helper_enable'): bool, Optional('restart_interval'): int}}, Optional('event_log'): {'enable': bool, Optional('max_events'): int, Optional('mode'): str, }, Optional('numbers'): {Optional('external_lsa'): int, Optional('external_lsa_checksum'): str, Optional('opaque_as_lsa'): int, Optional('opaque_as_lsa_checksum'): str, Optional('dc_bitless'): int, Optional('do_not_age'): int}, Optional('total_areas'): int, Optional('total_normal_areas'): int, Optional('total_stub_areas'): int, Optional('total_nssa_areas'): int, Optional('total_areas_transit_capable'): int, Optional('lsa_group_pacing_timer'): int, Optional('interface_flood_pacing_timer'): int, Optional('retransmission_pacing_timer'): int, Optional('external_flood_list_length'): int, Optional('db_exchange_summary_list_optimization'): bool, Optional('elapsed_time'): str, Optional('lls'): bool, Optional('opqaue_lsa'): bool, Optional('flags'): {Optional('abr'): bool, Optional('asbr'): bool}, Optional('areas'): {Any(): {'area_id': str, 'area_type': str, Optional('summary'): bool, Optional('default_cost'): int, Optional('authentication'): bool, Optional('ranges'): {Any(): {'prefix': str, Optional('cost'): int, 'advertise': bool}}, Optional('rrr_enabled'): bool, Optional('statistics'): {Optional('spf_runs_count'): int, Optional('spf_last_executed'): str, Optional('interfaces_count'): int, Optional('loopback_count'): int, Optional('area_scope_lsa_count'): int, Optional('area_scope_lsa_cksum_sum'): str, Optional('area_scope_opaque_lsa_count'): int, Optional('area_scope_opaque_lsa_cksum_sum'): str, Optional('dcbitless_lsa_count'): int, Optional('indication_lsa_count'): int, Optional('donotage_lsa_count'): int, Optional('flood_list_length'): int, }, }, }, }, }, }, }, }, }, } # ================== # Parser for: # * 'show ip ospf' # ================== class ShowIpOspf(ShowIpOspfSchema): ''' Parser for: * 'show ip ospf' ''' cli_command = 'show ip ospf' exclude = ['area_scope_lsa_cksum_sum' , ] def cli(self, output=None): if output is None: out = self.device.execute(self.cli_command) else: out = output # Init vars ret_dict = {} af = 'ipv4' # this is ospf - always ipv4 p1 = re.compile(r'(?:^VRF +(?P<vrf>(\S+)) +in +)?Routing +Process' ' +\"(?:ospf)? +(?P<instance>([a-zA-Z0-9\s]+))\"' ' +with +ID +(?P<router_id>(\S+))$') p1_1 = re.compile(r'^Routing +Process +is +shutdown$') p2 = re.compile(r'^Domain +ID +type +(?P<domain_id>(\S+)), +value' ' +(?P<value>(\S+))$') p3 = re.compile(r'^Start +time: +(?P<start>([0-9\:\.]+)), +Time' ' +elapsed: +(?P<elapsed>(\S+))$') p4 = re.compile(r'^Supports +only +single +TOS(TOS0) routes$') p5 = re.compile(r'^Supports +opaque +LSA$') p6 = re.compile(r'^Supports +Link-local +Signaling +\(LLS\)$') p7 = re.compile(r'^Supports +area +transit +capability$') p8 = re.compile(r'^Supports +NSSA +\(compatible +with +RFC +3101\)$') p9 = re.compile(r'^Supports +Database +Exchange +Summary +List' ' +Optimization +\(RFC +5243\)$') p10 = re.compile(r'^Event-log +(?P<event_log>(enabled|disabled)),' '(?: +Maximum +number +of +events:' ' +(?P<max_events>(\d+)),' ' +Mode: +(?P<mode>(\S+)))?$') p11 = re.compile(r'^It +is +an' '(?: +(?P<abr>(area border)))?' '(?: +and)?' '(?: +(?P<asbr>(autonomous system boundary)))?' ' +router$') p12_1 = re.compile(r'^Redistributing +External +Routes +from,$') p12_2 = re.compile(r'^(?P<type>(connected|static))(?: +with +metric' ' +mapped +to +(?P<metric>(\d+)))?$') p12_2_1 = re.compile(r'^(?P<type>(connected|static|isis))' ', +includes +(?P<redist>(subnets)) +in +redistribution') p12_3 = re.compile(r'^(?P<prot>(bgp|isis)) +(?P<pid>(\d+))' '(?: +with +metric +mapped +to +(?P<metric>(\d+)))?' '(?:, +includes +(?P<redist>(subnets)) +in +redistribution)?' '(?:, +(?P<nssa>(nssa areas only)))?$') p12_4 = re.compile(r'^Maximum +number +of +redistributed +prefixes' ' +(?P<num_prefix>(\d+))' '(?: +\((?P<warn>(warning-only))\))?') p12_5 = re.compile(r'^Threshold +for +warning +message' ' +(?P<thld>(\d+))\%$') p13 = re.compile(r'^Router +is +not +originating +router-LSAs' ' +with +maximum +metric$') p14_1 = re.compile(r'^Originating +router-LSAs +with +maximum' ' +metric$') p14_2 = re.compile(r'^Condition:' ' +(?P<condition>(always|on \S+))' '(?: +for +(?P<seconds>(\d+)) +seconds,)?' ' +State: +(?P<state>(\S+))$') p14_3 = re.compile(r'^Advertise +stub +links +with +maximum +metric' ' +in +router\-LSAs$') p14_4 = re.compile(r'^Advertise +summary\-LSAs +with +metric' ' +(?P<metric>(\d+))$') p14_5 = re.compile(r'^^Advertise +external\-LSAs +with +metric' ' +(?P<metric>(\d+))$') p15 = re.compile(r'^Initial +SPF +schedule +delay +(?P<time>(\S+))' ' +msecs$') p16 = re.compile(r'^Minimum +hold +time +between +two +consecutive' ' +SPFs +(?P<time>(\S+)) +msecs$') p17 = re.compile(r'^Maximum +wait +time +between +two +consecutive' ' +SPFs +(?P<time>(\S+)) +msecs$') p18 = re.compile(r'^Initial +LSA +throttle +delay +(?P<time>(\S+))' ' +msecs$') p19 = re.compile(r'^Minimum +hold +time +for +LSA +throttle' ' +(?P<time>(\S+)) +msecs$') p20 = re.compile(r'^Maximum +wait +time +for +LSA +throttle' ' +(?P<time>(\S+)) +msecs$') p21 = re.compile(r'^Minimum +LSA +arrival' ' +(?P<arrival>(\S+)) +msecs$') p22 = re.compile(r'^Incremental-SPF +(?P<incr>(disabled|enabled))$') p23 = re.compile(r'LSA +group +pacing +timer' ' +(?P<pacing>(\d+)) +secs$') p24 = re.compile(r'Interface +flood +pacing +timer' ' +(?P<interface>(\d+)) +msecs$') p25 = re.compile(r'Retransmission +pacing +timer' ' +(?P<retransmission>(\d+)) +msecs$') p26 = re.compile(r'EXCHANGE/LOADING +adjacency +limit: +initial' ' +(?P<initial>(\S+)), +process +maximum' ' +(?P<maximum>(\d+))$') p27 = re.compile(r'^Number +of +external +LSA +(?P<ext>(\d+))\.' ' +Checksum +Sum +(?P<checksum>(\S+))$') p28 = re.compile(r'^Number +of +opaque +AS +LSA +(?P<opq>(\d+))\.' ' +Checksum +Sum +(?P<checksum>(\S+))$') p29 = re.compile(r'^Number +of +DCbitless +external +and +opaque' ' +AS +LSA +(?P<num>(\d+))$') p30 = re.compile(r'^Number +of +DoNotAge +external +and +opaque' ' +AS +LSA +(?P<num>(\d+))$') p31 = re.compile(r'^Number +of +areas +in +this +router +is' ' +(?P<total_areas>(\d+))\. +(?P<normal>(\d+))' ' +normal +(?P<stub>(\d+)) +stub +(?P<nssa>(\d+))' ' +nssa$') p32 = re.compile(r'Number +of +areas +transit +capable +is' ' +(?P<num>(\d+))$') p33 = re.compile(r'^Maximum +number +of +non +self-generated +LSA' ' +allowed +(?P<max_lsa>(\d+))$') p33_1 = re.compile(r'^Current +number +of +non +self\-generated +LSA +(?P<max_lsa_current>\d+)$') p33_2 = re.compile(r'^Threshold +for +warning +message +(?P<max_lsa_threshold_value>\d+)\%$') p33_3 = re.compile(r'^Ignore\-time +(?P<max_lsa_ignore_time>\d+) +minutes,' ' +reset\-time +(?P<max_lsa_reset_time>\d+) +minutes$') p33_4 = re.compile(r'^Ignore\-count +allowed +(?P<max_lsa_ignore_count>\d+),' ' +current ignore\-count +(?P<max_lsa_current_count>\d+)$') p33_5 = re.compile(r'^Maximum +limit +of +redistributed +prefixes +(?P<max_lsa_limit>\d+) +\(warning\-only\)$') p34 = re.compile(r'^External +flood +list +length +(?P<num>(\d+))$') p35 = re.compile(r'^(?P<gr_type>(IETF|Cisco)) +Non-Stop +Forwarding' ' +(?P<enable>(enabled|disabled))$') p36 = re.compile(r'^(?P<gr_type>(IETF|Cisco)) +NSF +helper +support' ' +(?P<gr_helper>(enabled|disabled))$') p36_1 = re.compile(r'^restart-interval +limit *: +(?P<num>(\d+)) +sec$') p37 = re.compile(r'^Reference +bandwidth +unit +is' ' +(?P<bd>(\d+)) +(?P<unit>(mbps))$') p38 = re.compile(r'^Area +(?P<area>(\S+))(?: *\((I|i)nactive\))?$') p39_1 = re.compile(r'^It +is +a +(?P<area_type>(\S+)) +area' '(?:, +(?P<summary>(no +summary +LSA +in +this' ' +area)))?$') p39_2 = re.compile(r'^generates +stub +default +route +with +cost' ' +(?P<default_cost>(\d+))$') p40_1 = re.compile(r'^Area ranges are$') p40_2 = re.compile(r'^(?P<prefix>([0-9\.\/]+)) +(Passive|Active)' '(?:\((?P<cost>(\d+)) +\- +configured\))?' ' +(?P<advertise>(Advertise|DoNotAdvertise))$') p41 = re.compile(r'^Number +of +interfaces +in +this +area +is' ' +(?P<num_intf>(\d+))(?:' ' *\((?P<loopback>(\d+)) +loopback\))?$') p42 = re.compile(r'^Area +has +RRR +enabled$') p43 = re.compile(r'^SPF +algorithm +executed +(?P<count>(\d+))' ' +times$') p44 = re.compile(r'^SPF +algorithm +last +executed' ' +(?P<last_exec>(\S+)) +ago$') p45 = re.compile(r'^Area +has +no +authentication$') p46 = re.compile(r'^Number +of +LSA +(?P<lsa_count>(\d+))\.' ' +Checksum +Sum +(?P<checksum_sum>(\S+))$') p47 = re.compile(r'^Number +of opaque +link +LSA' ' +(?P<opaque_count>(\d+))\. +Checksum +Sum' ' +(?P<checksum_sum>(\S+))$') p48 = re.compile(r'^Number +of +DCbitless +LSA +(?P<count>(\d+))$') p49 = re.compile(r'^Number +of +indication +LSA +(?P<count>(\d+))$') p50 = re.compile(r'^Number +of +DoNotAge +LSA +(?P<count>(\d+))$') p51 = re.compile(r'^Flood +list +length +(?P<len>(\d+))$') p52 = re.compile(r'^Non-Stop +Routing +(?P<nsr>(enabled))$') p53_1 = re.compile(r'^BFD +is +enabled +in +strict +mode$') p53_2 = re.compile(r'^BFD +is +enabled$') for line in out.splitlines(): line = line.strip() # Routing Process "ospf 1" with ID 10.36.3.3 # VRF VRF1 in Routing Process "ospf 1" with ID 10.36.3.3 m = p1.match(line) if m: instance = str(m.groupdict()['instance']) router_id = str(m.groupdict()['router_id']) if m.groupdict()['vrf']: vrf = str(m.groupdict()['vrf']) else: vrf = 'default' # Set structure if 'vrf' not in ret_dict: ret_dict['vrf'] = {} if vrf not in ret_dict['vrf']: ret_dict['vrf'][vrf] = {} if 'address_family' not in ret_dict['vrf'][vrf]: ret_dict['vrf'][vrf]['address_family'] = {} if af not in ret_dict['vrf'][vrf]['address_family']: ret_dict['vrf'][vrf]['address_family'][af] = {} if 'instance' not in ret_dict['vrf'][vrf]['address_family'][af]: ret_dict['vrf'][vrf]['address_family'][af]['instance'] = {} if instance not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance']: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance] = {} # Set sub_dict sub_dict = ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance] sub_dict['router_id'] = router_id sub_dict['enable'] = True # Set some default values if 'nsr' not in sub_dict: sub_dict['nsr'] = {} sub_dict['nsr']['enable'] = False if 'bfd' not in sub_dict: sub_dict['bfd'] = {} sub_dict['bfd']['enable'] = False continue # Routing Process is shutdown m = p1_1.match(line) if m: sub_dict['enable'] = False continue # Domain ID type 0x0005, value 0.0.0.2 m = p2.match(line) if m: sub_dict['domain_id_type'] = str(m.groupdict()['domain_id']) sub_dict['domain_id_value'] = str(m.groupdict()['value']) continue # Start time: 00:23:49.050, Time elapsed: 1d01h m = p3.match(line) if m: sub_dict['start_time'] = str(m.groupdict()['start']) sub_dict['elapsed_time'] = str(m.groupdict()['elapsed']) continue # Supports only single TOS(TOS0) routes m = p4.match(line) if m: sub_dict['single_tos_route'] = True continue # Supports opaque LSA m = p5.match(line) if m: sub_dict['opqaue_lsa'] = True continue # Supports Link-local Signaling (LLS) m = p6.match(line) if m: sub_dict['lls'] = True continue # Supports area transit capability m = p7.match(line) if m: sub_dict['area_transit'] = True continue # Supports NSSA (compatible with RFC 3101) m = p8.match(line) if m: sub_dict['nssa'] = True continue # Supports Database Exchange Summary List Optimization (RFC 5243) m = p9.match(line) if m: sub_dict['db_exchange_summary_list_optimization'] = True continue # Event-log disabled # Event-log enabled, Maximum number of events: 1000, Mode: cyclic m = p10.match(line) if m: if 'event_log' not in sub_dict: sub_dict['event_log'] = {} if 'enabled' in m.groupdict()['event_log']: sub_dict['event_log']['enable'] = True else: sub_dict['event_log']['enable'] = False if m.groupdict()['max_events']: sub_dict['event_log']['max_events'] = \ int(m.groupdict()['max_events']) if m.groupdict()['mode']: sub_dict['event_log']['mode'] = str(m.groupdict()['mode']) continue # It is an area border router # It is an autonomous system boundary router # It is an area border and autonomous system boundary router m = p11.match(line) if m: if 'flags' not in sub_dict: sub_dict['flags'] = {} if m.groupdict()['abr']: sub_dict['flags']['abr'] = True if m.groupdict()['asbr']: sub_dict['flags']['asbr'] = True continue # Redistributing External Routes from, m = p12_1.match(line) if m: if 'redistribution' not in sub_dict: sub_dict['redistribution'] = {} continue # connected # connected with metric mapped to 10 # static # static with metric mapped to 10 m = p12_2.match(line) if m: the_type = str(m.groupdict()['type']) if the_type not in sub_dict['redistribution']: sub_dict['redistribution'][the_type] = {} sub_dict['redistribution'][the_type]['enabled'] = True if m.groupdict()['metric']: sub_dict['redistribution'][the_type]['metric'] = \ int(m.groupdict()['metric']) continue # connected, includes subnets in redistribution # static, includes subnets in redistribution # isis, includes subnets in redistribution m = p12_2_1.match(line) if m: the_type = str(m.groupdict()['type']) if the_type not in sub_dict['redistribution']: sub_dict['redistribution'][the_type] = {} sub_dict['redistribution'][the_type]['enabled'] = True sub_dict['redistribution'][the_type]['subnets'] = m.groupdict()['redist'] continue # bgp 100 with metric mapped to 111 # isis 10 with metric mapped to 3333 # bgp 100 with metric mapped to 100, includes subnets in redistribution, nssa areas only # bgp 100, includes subnets in redistribution m = p12_3.match(line) if m: prot = str(m.groupdict()['prot']) if prot not in sub_dict['redistribution']: sub_dict['redistribution'][prot] = {} if prot == 'bgp': sub_dict['redistribution'][prot]['bgp_id'] = \ int(m.groupdict()['pid']) else: sub_dict['redistribution'][prot]['isis_pid'] = \ str(m.groupdict()['pid']) # Set parsed values if m.groupdict()['metric']: sub_dict['redistribution'][prot]['metric'] = \ int(m.groupdict()['metric']) if m.groupdict()['redist']: sub_dict['redistribution'][prot]['subnets'] = \ str(m.groupdict()['redist']) if m.groupdict()['nssa']: sub_dict['redistribution'][prot]['nssa_only'] = True continue # Maximum number of redistributed prefixes 4000 # Maximum number of redistributed prefixes 3000 (warning-only) m = p12_4.match(line) if m: if 'max_prefix' not in sub_dict['redistribution']: sub_dict['redistribution']['max_prefix'] = {} sub_dict['redistribution']['max_prefix']['num_of_prefix'] = \ int(m.groupdict()['num_prefix']) if m.groupdict()['warn']: sub_dict['redistribution']['max_prefix']['warn_only'] = True else: sub_dict['redistribution']['max_prefix']['warn_only'] = False continue # Threshold for warning message 70% m = p12_5.match(line) if m: if 'max_prefix' not in sub_dict['redistribution']: sub_dict['redistribution']['max_prefix'] = {} sub_dict['redistribution']['max_prefix']['prefix_thld'] = \ int(m.groupdict()['thld']) continue # Router is not originating router-LSAs with maximum metric m = p13.match(line) if m: if 'stub_router' not in sub_dict: sub_dict['stub_router'] = {} if 'always' not in sub_dict['stub_router']: sub_dict['stub_router']['always'] = {} # Set values sub_dict['stub_router']['always']['always'] = False sub_dict['stub_router']['always']['include_stub'] = False sub_dict['stub_router']['always']['summary_lsa'] = False sub_dict['stub_router']['always']['external_lsa'] = False continue # Originating router-LSAs with maximum metric m = p14_1.match(line) if m: if 'stub_router' not in sub_dict: sub_dict['stub_router'] = {} continue # Condition: always State: active # Condition: always, State: active # Condition: on start-up for 5 seconds, State: inactive # Condition: on startup for 300 seconds, State: inactive p14_2 = re.compile(r'^Condition:' ' +(?P<condition>(always|on \S+))' '(?: +for +(?P<seconds>(\d+)) +seconds)?,?' ' +State: +(?P<state>(\S+))$') m = p14_2.match(line) if m: condition = str(m.groupdict()['condition']).lower().replace("-", "") condition = condition.replace(" ", "_") if 'stub_router' not in sub_dict: sub_dict['stub_router'] = {} if condition not in sub_dict['stub_router']: sub_dict['stub_router'][condition] = {} sub_dict['stub_router'][condition]['state'] = \ str(m.groupdict()['state']).lower() # Set 'condition' key if condition == 'always': sub_dict['stub_router'][condition][condition] = True else: sub_dict['stub_router'][condition][condition] = \ int(m.groupdict()['seconds']) continue # Advertise stub links with maximum metric in router-LSAs m = p14_3.match(line) if m: sub_dict['stub_router'][condition]['include_stub'] = True continue # Advertise summary-LSAs with metric 16711680 m = p14_4.match(line) if m: sub_dict['stub_router'][condition]['summary_lsa'] = True sub_dict['stub_router'][condition]['summary_lsa_metric'] = \ int(m.groupdict()['metric']) continue # Advertise external-LSAs with metric 16711680 m = p14_5.match(line) if m: sub_dict['stub_router'][condition]['external_lsa'] = True sub_dict['stub_router'][condition]['external_lsa_metric'] = \ int(m.groupdict()['metric']) continue # Initial SPF schedule delay 50 msecs m = p15.match(line) if m: start = int(float(m.groupdict()['time'])) if 'spf_control' not in sub_dict: sub_dict['spf_control'] = {} if 'throttle' not in sub_dict['spf_control']: sub_dict['spf_control']['throttle'] = {} if 'spf' not in sub_dict['spf_control']['throttle']: sub_dict['spf_control']['throttle']['spf'] = {} sub_dict['spf_control']['throttle']['spf']['start'] = start continue # Minimum hold time between two consecutive SPFs 200 msecs m = p16.match(line) if m: hold = int(float(m.groupdict()['time'])) if 'spf_control' not in sub_dict: sub_dict['spf_control'] = {} if 'throttle' not in sub_dict['spf_control']: sub_dict['spf_control']['throttle'] = {} if 'spf' not in sub_dict['spf_control']['throttle']: sub_dict['spf_control']['throttle']['spf'] = {} sub_dict['spf_control']['throttle']['spf']['hold'] = hold continue # Maximum wait time between two consecutive SPFs 5000 msecs m = p17.match(line) if m: maximum = int(float(m.groupdict()['time'])) if 'spf_control' not in sub_dict: sub_dict['spf_control'] = {} if 'throttle' not in sub_dict['spf_control']: sub_dict['spf_control']['throttle'] = {} if 'spf' not in sub_dict['spf_control']['throttle']: sub_dict['spf_control']['throttle']['spf'] = {} sub_dict['spf_control']['throttle']['spf']['maximum'] = maximum continue # Initial LSA throttle delay 50 msecs m = p18.match(line) if m: start = int(float(m.groupdict()['time'])) if 'spf_control' not in sub_dict: sub_dict['spf_control'] = {} if 'throttle' not in sub_dict['spf_control']: sub_dict['spf_control']['throttle'] = {} if 'lsa' not in sub_dict['spf_control']['throttle']: sub_dict['spf_control']['throttle']['lsa'] = {} sub_dict['spf_control']['throttle']['lsa']['start'] = start continue # Minimum hold time for LSA throttle 200 msecs m = p19.match(line) if m: hold = int(float(m.groupdict()['time'])) if 'spf_control' not in sub_dict: sub_dict['spf_control'] = {} if 'throttle' not in sub_dict['spf_control']: sub_dict['spf_control']['throttle'] = {} if 'lsa' not in sub_dict['spf_control']['throttle']: sub_dict['spf_control']['throttle']['lsa'] = {} sub_dict['spf_control']['throttle']['lsa']['hold'] = hold continue # Maximum wait time for LSA throttle 5000 msecs m = p20.match(line) if m: maximum = int(float(m.groupdict()['time'])) if 'spf_control' not in sub_dict: sub_dict['spf_control'] = {} if 'throttle' not in sub_dict['spf_control']: sub_dict['spf_control']['throttle'] = {} if 'lsa' not in sub_dict['spf_control']['throttle']: sub_dict['spf_control']['throttle']['lsa'] = {} sub_dict['spf_control']['throttle']['lsa']['maximum'] = maximum continue # Minimum LSA interval 200 msecs. Minimum LSA arrival 100 msecs # Minimum LSA arrival 100 msecs m = p21.match(line) if m: if 'lsa' not in sub_dict['spf_control']['throttle']: sub_dict['spf_control']['throttle']['lsa'] = {} sub_dict['spf_control']['throttle']['lsa']['arrival'] = \ int(float(m.groupdict()['arrival'])) continue # Incremental-SPF disabled m = p22.match(line) if m: if 'spf_control' not in sub_dict: sub_dict['spf_control'] = {} if 'enabled' in m.groupdict()['incr']: sub_dict['spf_control']['incremental_spf'] = True else: sub_dict['spf_control']['incremental_spf'] = False continue # LSA group pacing timer 240 secs m = p23.match(line) if m: sub_dict['lsa_group_pacing_timer'] = \ int(float(m.groupdict()['pacing'])) continue # Interface flood pacing timer 33 msecs m = p24.match(line) if m: sub_dict['interface_flood_pacing_timer'] = \ int(float(m.groupdict()['interface'])) continue # Retransmission pacing timer 66 msecs m = p25.match(line) if m: sub_dict['retransmission_pacing_timer'] = \ int(float(m.groupdict()['retransmission'])) continue # EXCHANGE/LOADING adjacency limit: initial 300, process maximum 300 m = p26.match(line) if m: if 'adjacency_stagger' not in sub_dict: sub_dict['adjacency_stagger'] = {} if m.groupdict()['initial'] == 'None': sub_dict['adjacency_stagger']['no_initial_limit'] = True else: sub_dict['adjacency_stagger']['initial_number'] = \ int(m.groupdict()['initial']) sub_dict['adjacency_stagger']['maximum_number'] = \ int(m.groupdict()['maximum']) continue # Number of external LSA 1. Checksum Sum 0x00607f m = p27.match(line) if m: if 'numbers' not in sub_dict: sub_dict['numbers'] = {} sub_dict['numbers']['external_lsa'] = int(m.groupdict()['ext']) sub_dict['numbers']['external_lsa_checksum'] = \ str(m.groupdict()['checksum']) continue # Number of opaque AS LSA 0. Checksum Sum 00000000 m = p28.match(line) if m: if 'numbers' not in sub_dict: sub_dict['numbers'] = {} sub_dict['numbers']['opaque_as_lsa'] = int(m.groupdict()['opq']) sub_dict['numbers']['opaque_as_lsa_checksum'] = \ str(m.groupdict()['checksum']) continue # Number of DCbitless external and opaque AS LSA 0 m = p29.match(line) if m: if 'numbers' not in sub_dict: sub_dict['numbers'] = {} sub_dict['numbers']['dc_bitless'] = int(m.groupdict()['num']) continue # Number of DoNotAge external and opaque AS LSA 0 m = p30.match(line) if m: if 'numbers' not in sub_dict: sub_dict['numbers'] = {} sub_dict['numbers']['do_not_age'] = int(m.groupdict()['num']) continue # Number of areas in this router is 1. 1 normal 0 stub 0 nssa m = p31.match(line) if m: sub_dict['total_areas'] = int(m.groupdict()['total_areas']) sub_dict['total_normal_areas'] = int(m.groupdict()['normal']) sub_dict['total_stub_areas'] = int(m.groupdict()['stub']) sub_dict['total_nssa_areas'] = int(m.groupdict()['nssa']) continue # Number of areas transit capable is 0 m = p32.match(line) if m: sub_dict['total_areas_transit_capable'] = int(m.groupdict()['num']) continue # Maximum number of non self-generated LSA allowed 123 m = p33.match(line) if m: if 'database_control' not in sub_dict: sub_dict['database_control'] = {} sub_dict['database_control']['max_lsa'] = \ int(m.groupdict()['max_lsa']) continue # Current number of non self-generated LSA 0 m = p33_1.match(line) if m: if 'database_control' not in sub_dict: sub_dict['database_control'] = {} sub_dict['database_control']['max_lsa_current'] = \ int(m.groupdict()['max_lsa_current']) continue # Threshold for warning message 75% m = p33_2.match(line) if m: if 'database_control' not in sub_dict: sub_dict['database_control'] = {} sub_dict['database_control']['max_lsa_threshold_value'] = \ int(m.groupdict()['max_lsa_threshold_value']) continue # Ignore-time 5 minutes, reset-time 10 minutes m = p33_3.match(line) if m: if 'database_control' not in sub_dict: sub_dict['database_control'] = {} sub_dict['database_control']['max_lsa_ignore_time'] = \ int(m.groupdict()['max_lsa_ignore_time']) * 60 sub_dict['database_control']['max_lsa_reset_time'] = \ int(m.groupdict()['max_lsa_reset_time']) * 60 continue # Ignore-count allowed 5, current ignore-count 0 m = p33_4.match(line) if m: if 'database_control' not in sub_dict: sub_dict['database_control'] = {} sub_dict['database_control']['max_lsa_ignore_count'] = \ int(m.groupdict()['max_lsa_ignore_count']) sub_dict['database_control']['max_lsa_current_count'] = \ int(m.groupdict()['max_lsa_current_count']) continue # Maximum limit of redistributed prefixes 5000 (warning-only) m = p33_5.match(line) if m: if 'database_control' not in sub_dict: sub_dict['database_control'] = {} sub_dict['database_control']['max_lsa_limit'] = int(m.groupdict()['max_lsa_limit']) sub_dict['database_control']['max_lsa_warning_only'] = False continue # External flood list length 0 m = p34.match(line) if m: sub_dict['external_flood_list_length'] = int(m.groupdict()['num']) continue # Non-Stop Forwarding enabled # IETF Non-Stop Forwarding enabled m = p35.match(line) if m: gr_type = str(m.groupdict()['gr_type']).lower() if 'enabled' in m.groupdict()['enable']: enable = True else: enable = False if 'graceful_restart' not in sub_dict: sub_dict['graceful_restart'] = {} if gr_type not in sub_dict['graceful_restart']: sub_dict['graceful_restart'][gr_type] = {} # Set keys sub_dict['graceful_restart'][gr_type]['enable'] = True sub_dict['graceful_restart'][gr_type]['type'] = gr_type # IETF NSF helper support enabled # Cisco NSF helper support enabled m = p36.match(line) if m: gr_type = str(m.groupdict()['gr_type']).lower() if 'enabled' in m.groupdict()['gr_helper']: gr_helper = True else: gr_helper = False if 'graceful_restart' not in sub_dict: sub_dict['graceful_restart'] = {} if gr_type not in sub_dict['graceful_restart']: sub_dict['graceful_restart'][gr_type] = {} # Set keys sub_dict['graceful_restart'][gr_type]['type'] = gr_type sub_dict['graceful_restart'][gr_type]['helper_enable'] = gr_helper if 'enable' not in sub_dict['graceful_restart'][gr_type]: sub_dict['graceful_restart'][gr_type]['enable'] = False continue # restart-interval limit: 11 sec m = p36_1.match(line) if m: sub_dict['graceful_restart'][gr_type]['restart_interval'] = \ int(m.groupdict()['num']) continue # Reference bandwidth unit is 100 mbps # Reference bandwidth unit is 4294967 mbps m = p37.match(line) if m: bd = int(m.groupdict()['bd']) if 'auto_cost' not in sub_dict: sub_dict['auto_cost'] = {} sub_dict['auto_cost']['reference_bandwidth'] = bd sub_dict['auto_cost']['bandwidth_unit'] = str(m.groupdict()['unit']) if bd == 100: # This is the default - set to False sub_dict['auto_cost']['enable'] = False else: sub_dict['auto_cost']['enable'] = True continue # Area BACKBONE(0) # Area BACKBONE(0.0.0.0) (Inactive) # Area 1 m = p38.match(line) if m: parsed_area = str(m.groupdict()['area']) n = re.match('BACKBONE\((?P<area_num>(\S+))\)', parsed_area) if n: area = str(IPAddress(str(n.groupdict()['area_num']))) else: area = str(IPAddress(str(m.groupdict()['area']))) # Create dict if 'areas' not in sub_dict: sub_dict['areas'] = {} if area not in sub_dict['areas']: sub_dict['areas'][area] = {} # Set default values sub_dict['areas'][area]['area_id'] = area sub_dict['areas'][area]['area_type'] = 'normal' continue # It is a stub area # It is a stub area, no summary LSA in this area # It is a NSSA area m = p39_1.match(line) if m: area_type = str(m.groupdict()['area_type']).lower() sub_dict['areas'][area]['area_type'] = area_type if area_type == 'stub': if m.groupdict()['summary']: sub_dict['areas'][area]['summary'] = False else: sub_dict['areas'][area]['summary'] = True continue # generates stub default route with cost 111 # generates stub default route with cost 222 m = p39_2.match(line) if m: sub_dict['areas'][area]['default_cost'] = \ int(m.groupdict()['default_cost']) continue # Area ranges are m = p40_1.match(line) if m: if 'ranges' not in sub_dict['areas'][area]: sub_dict['areas'][area]['ranges'] = {} continue # 10.4.1.0/24 Passive Advertise # 10.4.0.0/16 Passive DoNotAdvertise # 10.4.0.0/16 Active(10 - configured) Advertise m = p40_2.match(line) if m: prefix = str(m.groupdict()['prefix']) if 'ranges' not in sub_dict['areas'][area]: sub_dict['areas'][area]['ranges'] = {} if prefix not in sub_dict['areas'][area]['ranges']: sub_dict['areas'][area]['ranges'][prefix] = {} sub_dict['areas'][area]['ranges'][prefix]['prefix'] = prefix if m.groupdict()['cost']: sub_dict['areas'][area]['ranges'][prefix]['cost'] = \ int(m.groupdict()['cost']) if 'Advertise' in m.groupdict()['advertise']: sub_dict['areas'][area]['ranges'][prefix]['advertise'] = True else: sub_dict['areas'][area]['ranges'][prefix]['advertise'] = False continue # Number of interfaces in this area is 3 # Number of interfaces in this area is 3 (1 loopback) m = p41.match(line) if m: if 'areas' not in sub_dict: sub_dict['areas'] = {} if area not in sub_dict['areas']: sub_dict['areas'][area] = {} if 'statistics' not in sub_dict['areas'][area]: sub_dict['areas'][area]['statistics'] = {} sub_dict['areas'][area]['statistics']['interfaces_count'] =\ int(m.groupdict()['num_intf']) if m.groupdict()['loopback']: sub_dict['areas'][area]['statistics']['loopback_count'] =\ int(m.groupdict()['loopback']) continue # Area has RRR enabled m = p42.match(line) if m: sub_dict['areas'][area]['rrr_enabled'] = True continue # SPF algorithm executed 26 times m = p43.match(line) if m: if 'statistics' not in sub_dict['areas'][area]: sub_dict['areas'][area]['statistics'] = {} sub_dict['areas'][area]['statistics']['spf_runs_count'] = \ int(m.groupdict()['count']) continue # SPF algorithm last executed 00:19:54.849 ago m = p44.match(line) if m: if 'statistics' not in sub_dict['areas'][area]: sub_dict['areas'][area]['statistics'] = {} sub_dict['areas'][area]['statistics']['spf_last_executed'] = \ str(m.groupdict()['last_exec']) continue # Area has no authentication m = p45.match(line) if m: continue # Number of LSA 19. Checksum Sum 0x0a2fb5 m = p46.match(line) if m: if 'statistics' not in sub_dict['areas'][area]: sub_dict['areas'][area]['statistics'] = {} sub_dict['areas'][area]['statistics']['area_scope_lsa_count'] =\ int(m.groupdict()['lsa_count']) sub_dict['areas'][area]['statistics']\ ['area_scope_lsa_cksum_sum'] = \ str(m.groupdict()['checksum_sum']) continue # Number of opaque link LSA 0. Checksum Sum 00000000 m = p47.match(line) if m: if 'statistics' not in sub_dict['areas'][area]: sub_dict['areas'][area]['statistics'] = {} sub_dict['areas'][area]['statistics']\ ['area_scope_opaque_lsa_count'] = \ int(m.groupdict()['opaque_count']) sub_dict['areas'][area]['statistics']\ ['area_scope_opaque_lsa_cksum_sum'] = \ str(m.groupdict()['checksum_sum']) continue # Number of DCbitless LSA 5 m = p48.match(line) if m: if 'statistics' not in sub_dict['areas'][area]: sub_dict['areas'][area]['statistics'] = {} sub_dict['areas'][area]['statistics']['dcbitless_lsa_count'] = \ int(m.groupdict()['count']) continue # Number of indication LSA 0 m = p49.match(line) if m: if 'statistics' not in sub_dict['areas'][area]: sub_dict['areas'][area]['statistics'] = {} sub_dict['areas'][area]['statistics']['indication_lsa_count'] =\ int(m.groupdict()['count']) continue # Number of DoNotAge LSA 0 m = p50.match(line) if m: if 'statistics' not in sub_dict['areas'][area]: sub_dict['areas'][area]['statistics'] = {} sub_dict['areas'][area]['statistics']['donotage_lsa_count'] = \ int(m.groupdict()['count']) continue # Flood list length 0 m = p51.match(line) if m: if 'statistics' not in sub_dict['areas'][area]: sub_dict['areas'][area]['statistics'] = {} sub_dict['areas'][area]['statistics']['flood_list_length'] = \ int(m.groupdict()['len']) continue # Non-Stop Routing enabled m = p52.match(line) if m: sub_dict['nsr']['enable'] = True continue # BFD is enabled in strict mode m = p53_1.match(line) if m: if 'bfd' not in sub_dict: sub_dict['bfd'] = {} sub_dict['bfd']['enable'] = True sub_dict['bfd']['strict_mode'] = True continue # BFD is enabled m = p53_2.match(line) if m: if 'bfd' not in sub_dict: sub_dict['bfd'] = {} sub_dict['bfd']['enable'] = True continue return ret_dict # ============================ # Schema for: # * 'show ip ospf interface brief' # ============================ class ShowIpOspfInterfaceBriefSchema(MetaParser): ''' Schema for: * 'show ip ospf interface brief' ''' schema = { 'instance': { Any(): { 'areas': { Any(): { 'interfaces': { Any(): { 'ip_address': str, 'cost': int, 'state': str, 'nbrs_full': int, 'nbrs_count': int, }, }, }, }, }, }, } class ShowIpOspfInterfaceBrief(ShowIpOspfInterfaceBriefSchema): ''' Parser for: * 'show ip ospf interface brief' ''' cli_command = 'show ip ospf interface brief' def cli(self, output=None): if output is None: out = self.device.execute(self.cli_command) else: out = output # Init vars ret_dict = {} p1 = re.compile(r'^(?P<interface>\S+) +(?P<instance>\S+) +(?P<area>\d+) +' '(?P<address>\S+) +(?P<cost>\d+) +(?P<state>\S+) +(?P<nbrs_full>\d+)' '\/(?P<nbrs_count>\d+)$$') for line in out.splitlines(): line = line.strip() m = p1.match(line) if m: group = m.groupdict() interface = Common.convert_intf_name( str(group['interface'])) instance = str(group['instance']) ip_address = str(group['address']) area = str(IPAddress(str(group['area']))) state = group['state'] cost = int(group['cost']) nbrs_full = int(group['nbrs_full']) nbrs_count = int(group['nbrs_count']) intf_dict = ret_dict.setdefault('instance', {}).\ setdefault(instance, {}).\ setdefault('areas', {}).\ setdefault(area, {}).\ setdefault('interfaces', {}).\ setdefault(interface, {}) intf_dict.update({'ip_address' : ip_address}) intf_dict.update({'cost' : cost}) intf_dict.update({'state' : state}) intf_dict.update({'nbrs_full' : nbrs_full}) intf_dict.update({'nbrs_count' : nbrs_count}) continue return ret_dict # ============================ # Schema for: # * 'show ip ospf interface' # * 'show ip ospf interface {interface}'' # ============================ class ShowIpOspfInterfaceSchema(MetaParser): ''' Schema for: * 'show ip ospf interface' * 'show ip ospf interface {interface}' ''' schema = { 'vrf': {Any(): {'address_family': {Any(): {'instance': {Any(): {'areas': {Any(): {Optional('interfaces'): {Any(): {'name': str, 'enable': bool, 'line_protocol': bool, 'ip_address': str, Optional('interface_id'): int, Optional('attached'): str, 'demand_circuit': bool, 'router_id': str, 'interface_type': str, 'bfd': {'enable': bool}, Optional('if_cfg'): bool, Optional('cost'): int, Optional('transmit_delay'): int, Optional('state'): str, Optional('priority'): int, Optional('dr_router_id'): str, Optional('dr_ip_addr'): str, Optional('bdr_router_id'): str, Optional('bdr_ip_addr'): str, Optional('hello_interval'): int, Optional('dead_interval'): int, Optional('wait_interval'): int, Optional('retransmit_interval'): int, Optional('passive'): bool, Optional('oob_resync_timeout'): int, Optional('hello_timer'): str, Optional('index'): str, Optional('flood_queue_length'): int, Optional('next'): str, Optional('lls'): bool, Optional('last_flood_scan_length'): int, Optional('max_flood_scan_length'): int, Optional('last_flood_scan_time_msec'): int, Optional('max_flood_scan_time_msec'): int, Optional('total_dcbitless_lsa'): int, Optional('donotage_lsa'): bool, Optional('ti_lfa_protected'): bool, Optional('ipfrr_candidate'): bool, Optional('ipfrr_protected'): bool, Optional('stub_host'): bool, Optional('prefix_suppression'): bool, Optional('ttl_security'): {'enable': bool, Optional('hops'): int}, Optional('graceful_restart'): {Any(): {'type': str, 'helper': bool}}, Optional('topology'): {Any(): {'cost': int, 'disabled': bool, 'shutdown': bool, 'name': str}}, Optional('statistics'): {Optional('adj_nbr_count'): int, Optional('nbr_count'): int, Optional('num_nbrs_suppress_hello'): int, }, Optional('neighbors'): {Any(): {Optional('dr_router_id'): str, Optional('bdr_router_id'): str, }, }, Optional('authentication'): {'auth_trailer_key': {'crypto_algorithm': str, Optional('youngest_key_id'): int, }, }, Optional('teapp'): { Optional('topology_id'): str, Any(): { Optional('affinity'): { 'length': int, 'bits': str, }, Optional('extended_affinity'): { 'length': int, 'bits': str, }, }, }, Optional('sr_policy_manager'): { 'te_opaque_lsa': str, }, Optional('sr_mpls_enabled'): bool, }, }, Optional('virtual_links'): {Any(): {'name': str, 'enable': bool, 'line_protocol': bool, 'ip_address': str, Optional('interface_id'): int, Optional('attached'): str, 'demand_circuit': bool, 'router_id': str, 'interface_type': str, 'bfd': {'enable': bool}, Optional('if_cfg'): bool, Optional('cost'): int, Optional('transmit_delay'): int, Optional('state'): str, Optional('priority'): int, Optional('dr_router_id'): str, Optional('dr_ip_addr'): str, Optional('bdr_router_id'): str, Optional('bdr_ip_addr'): str, Optional('hello_interval'): int, Optional('dead_interval'): int, Optional('wait_interval'): int, Optional('retransmit_interval'): int, Optional('passive'): bool, Optional('oob_resync_timeout'): int, Optional('hello_timer'): str, Optional('index'): str, Optional('flood_queue_length'): int, Optional('next'): str, Optional('lls'): bool, Optional('last_flood_scan_length'): int, Optional('max_flood_scan_length'): int, Optional('last_flood_scan_time_msec'): int, Optional('max_flood_scan_time_msec'): int, Optional('total_dcbitless_lsa'): int, Optional('donotage_lsa'): bool, Optional('ti_lfa_protected'): bool, Optional('ipfrr_candidate'): bool, Optional('ipfrr_protected'): bool, Optional('stub_host'): bool, Optional('prefix_suppression'): bool, Optional('ttl_security'): {'enable': bool, Optional('hops'): int}, Optional('graceful_restart'): {Any(): {'type': str, 'helper': bool}}, Optional('topology'): {Any(): {'cost': int, 'disabled': bool, 'shutdown': bool, 'name': str}}, Optional('statistics'): {Optional('adj_nbr_count'): int, Optional('nbr_count'): int, Optional('num_nbrs_suppress_hello'): int, }, Optional('neighbors'): {Any(): {Optional('dr_router_id'): str, Optional('bdr_router_id'): str, }, }, Optional('authentication'): {'auth_trailer_key': {'crypto_algorithm': str, Optional('youngest_key_id'): int, }, }, Optional('teapp'): { Optional('topology_id'): str, Any(): { Optional('affinity'): { 'length': int, 'bits': str, }, Optional('extended_affinity'): { 'length': int, 'bits': str, }, }, }, Optional('sr_policy_manager'): { 'te_opaque_lsa': str, }, Optional('sr_mpls_enabled'): bool, }, }, Optional('sham_links'): {Any(): {'name': str, 'enable': bool, 'line_protocol': bool, 'ip_address': str, Optional('interface_id'): int, Optional('attached'): str, 'demand_circuit': bool, 'router_id': str, 'interface_type': str, 'bfd': {'enable': bool}, Optional('if_cfg'): bool, Optional('cost'): int, Optional('transmit_delay'): int, Optional('state'): str, Optional('priority'): int, Optional('dr_router_id'): str, Optional('dr_ip_addr'): str, Optional('bdr_router_id'): str, Optional('bdr_ip_addr'): str, Optional('hello_interval'): int, Optional('dead_interval'): int, Optional('wait_interval'): int, Optional('retransmit_interval'): int, Optional('passive'): bool, Optional('oob_resync_timeout'): int, Optional('hello_timer'): str, Optional('index'): str, Optional('flood_queue_length'): int, Optional('next'): str, Optional('lls'): bool, Optional('last_flood_scan_length'): int, Optional('max_flood_scan_length'): int, Optional('last_flood_scan_time_msec'): int, Optional('max_flood_scan_time_msec'): int, Optional('total_dcbitless_lsa'): int, Optional('donotage_lsa'): bool, Optional('ti_lfa_protected'): bool, Optional('ipfrr_candidate'): bool, Optional('ipfrr_protected'): bool, Optional('stub_host'): bool, Optional('prefix_suppression'): bool, Optional('ttl_security'): {'enable': bool, Optional('hops'): int}, Optional('graceful_restart'): {Any(): {'type': str, 'helper': bool}}, Optional('topology'): {Any(): {'cost': int, 'disabled': bool, 'shutdown': bool, 'name': str}}, Optional('statistics'): {Optional('adj_nbr_count'): int, Optional('nbr_count'): int, Optional('num_nbrs_suppress_hello'): int}, Optional('neighbors'): {Any(): {Optional('dr_router_id'): str, Optional('bdr_router_id'): str, }, }, Optional('authentication'): {'auth_trailer_key': {'crypto_algorithm': str, Optional('youngest_key_id'): int, }, }, Optional('teapp'): { Optional('topology_id'): str, Any(): { Optional('affinity'): { 'length': int, 'bits': str, }, Optional('extended_affinity'): { 'length': int, 'bits': str, }, }, }, Optional('sr_policy_manager'): { 'te_opaque_lsa': str, }, Optional('sr_mpls_enabled'): bool, }, }, }, }, }, }, }, }, }, }, } # =========================================== # Parser for: # * 'show ospf vrf all-inclusive interface' # =========================================== class ShowIpOspfInterface(ShowIpOspfInterfaceSchema): ''' Parser for: * 'show ip ospf interface' * 'show ip ospf interface {interface}' ''' cli_command = ['show ip ospf interface {interface}', 'show ip ospf interface'] exclude = ['hello_timer', 'dead_timer', 'bdr_ip_addr', 'bdr_router_id', 'last_flood_scan_length', 'last_flood_scan_time_msec', 'max_flood_scan_length', 'max_flood_scan_time_msec', 'state'] def cli(self, interface=None, output=None): if output is None: if interface: cmd = self.cli_command[0].format(interface=interface) else: cmd = self.cli_command[1] out = self.device.execute(cmd) else: out = output # Init vars ret_dict = {} af = 'ipv4' # this is ospf - always ipv4 # Mapping dict bool_dict = {'up': True, 'down': False, 'unknown': False} p1 = re.compile(r'^(?P<interface>(\S+)) +is( +administratively)?' ' +(?P<enable>(unknown|up|down)), +line +protocol' ' +is +(?P<line_protocol>(up|down))' '(?: +\(\S+\))?$') p2 = re.compile(r'^Internet +Address +(?P<address>(\S+)),' '(?: +Interface +ID +(?P<intf_id>(\d+)),)?' ' +Area +(?P<area>(\S+))(?:, +Attached +via' ' +(?P<attach>(.*)))?$') p2_1 = re.compile(r'^Attached +via +(?P<attached>([a-zA-Z0-9\s]+))$') p3 = re.compile(r'^Process +ID +(?P<pid>(\S+)),' '(?: +VRF +(?P<vrf>(\S+)))?' ' +Router +ID +(?P<router_id>(\S+)),' ' +Network +Type +(?P<interface_type>(\S+)),' ' +Cost: +(?P<cost>(\d+))$') p5 = re.compile(r'^Configured as demand circuit$') p6 = re.compile(r'^Run as demand circuit$') p7 = re.compile(r'^DoNotAge +LSA +not +allowed +\(Number +of' ' +DCbitless +LSA +is +(?P<num>(\d+))\)\.$') p8 = re.compile(r'^Enabled +by +interface +config, +including' ' +secondary +ip +addresses$') p9 = re.compile(r'^Transmit +Delay is +(?P<delay>(\d+)) +sec,' ' +State +(?P<state>(\S+))' '(?:, +Priority +(?P<priority>(\d+)))?' '(?:, +BFD +(?P<bfd>(enabled|disabled)))?$') p10 = re.compile(r'^Designated +(R|r)outer +\(ID\)' ' +(?P<dr_router_id>(\S+)), +(I|i)nterface' ' +(A|a)ddress +(?P<dr_ip_addr>(\S+))$') p11 = re.compile(r'^Backup +(D|d)esignated +(R|r)outer +\(ID\)' ' +(?P<bdr_router_id>(\S+)), +(I|i)nterface' ' +(A|a)ddress +(?P<bdr_ip_addr>(\S+))$') p12 = re.compile(r'^Timer +intervals +configured,' ' +Hello +(?P<hello>(\d+)),' ' +Dead +(?P<dead>(\d+)),' ' +Wait +(?P<wait>(\d+)),' ' +Retransmit +(?P<retransmit>(\d+))$') p12_1 = re.compile(r'^oob-resync +timeout +(?P<oob>(\d+))$') p12_2 = re.compile(r'^Hello +due +in +(?P<hello_timer>(\S+))$') p13 = re.compile(r'^Supports +Link-local +Signaling +\(LLS\)$') p14 = re.compile(r'^(?P<gr_type>(Cisco|IETF)) +NSF +helper +support' ' +(?P<helper>(enabled|disabled))$') p15 = re.compile(r'^Index +(?P<index>(\S+)),' ' +flood +queue +length +(?P<length>(\d+))$') p16 = re.compile(r'^Next +(?P<next>(\S+))$') p17 = re.compile(r'^Last +flood +scan +length +is +(?P<num>(\d+)),' ' +maximum +is +(?P<max>(\d+))$') p18 = re.compile(r'^Last +flood +scan +time +is +(?P<time1>(\d+))' ' +msec, +maximum +is +(?P<time2>(\d+)) +msec$') p19 = re.compile(r'^Neighbor +Count +is +(?P<nbr_count>(\d+)),' ' +Adjacent +neighbor +count +is' ' +(?P<adj_nbr_count>(\d+))$') p20_1 = re.compile(r'^Adjacent +with +neighbor +(?P<nbr>(\S+))' ' +\((B|b)ackup +(D|d)esignated +(R|r)outer\)$') p20_2 = re.compile(r'^Adjacent +with +neighbor +(?P<nbr>(\S+))' ' +\((D|d)esignated +(R|r)outer\)$') p20_3 = re.compile(r'^Adjacent +with +neighbor +(?P<nbr>(\S+))' ' +\(Hello suppressed\)$') p21 = re.compile(r'^Suppress +hello +for +(?P<sup>(\d+))' ' +neighbor\(s\)$') p22 = re.compile(r'^Loopback +interface +is +treated +as +a +stub' ' +Host$') p23 = re.compile(r'^Can +be +protected +by per-+prefix +Loop-Free' ' +FastReroute$') p24 = re.compile(r'^Can +be +used +for +per-prefix +Loop-Free' ' +FastReroute +repair +paths$') p25 = re.compile(r'^Not +Protected +by +per-prefix +TI-LFA$') p26 = re.compile(r'^Prefix-suppression +is +(?P<ps>(enabled|disabled))$') p27 = re.compile(r'^Strict +TTL +checking' ' +(?P<strict_ttl>(enabled|disabled))' '(?:, +up +to +(?P<hops>(\d+)) +hops +allowed)?$') p28_1 = re.compile(r'^Simple +password +authentication +enabled$') p28_2 = re.compile(r'^Cryptographic +authentication +enabled$') p28_3 = re.compile(r'^Youngest +key +id +is +(?P<id>(\d+))$') p28_4 = re.compile(r'^Rollover +in +progress, +(?P<num>(\d+))' ' +neighbor(s) +using +the +old +key(s):$') p28_5 = re.compile(r'^key +id +1 +algorithm +MD5$') # Segment Routing enabled for MPLS forwarding p29 = re.compile(r'^Segment +Routing +enabled +for +MPLS +forwarding$') # TEAPP: p30 = re.compile(r'^TEAPP:$') # Topology Id:0x0 p30_1 = re.compile(r'^Topology +Id: *(?P<topology_id>[\w]+)$') # TEAPP:SRTE p30_2 = re.compile(r'^TEAPP: *(?P<teapp>[\w]+)$') # Affinity: length 32, bits 0x00000010 p30_3 = re.compile(r'^Affinity: *length +(?P<length>\d+), +bits +(?P<bits>\w+)$') # Extended affinity: length 32, bits 0x00000010 p30_4 = re.compile(r'^Extended +affinity: *length +(?P<length>\d+), +bits +(?P<bits>\w+)$') # SR Policy Manager: p31 = re.compile(r'^SR +Policy +Manager:$') # TE Opaque LSA: Source of link information OSPF p31_1 = re.compile(r'^TE +Opaque +LSA: +(?P<te_opaque_lsa>[\S\s]+)$') for line in out.splitlines(): line = line.strip() # Loopback0 is up, line protocol is up # GigabitEthernet2 is up, line protocol is up # Port-channel2.100 is administratively down, line protocol is down # OSPF_SL1 is up, line protocol is up # OSPF_VL3 is up, line protocol is up # TenGigabitEthernet3/0/1 is up, line protocol is up (connected) # TenGigabitEthernet1/8 is down, line protocol is down (notconnect) # TenGigabitEthernet2/6.3052 is administratively down, line protocol is down (disabled) # TenGigabitEthernet1/15 is down, line protocol is down (err-disabled) m = p1.match(line) if m: interface = str(m.groupdict()['interface']) enable = str(m.groupdict()['enable']) line_protocol = str(m.groupdict()['line_protocol']) # Determine if 'interface' or 'sham_link' or 'virtual_link' if re.search('SL', interface): x = re.match('(?P<ignore>\S+)_SL(?P<num>(\d+))', interface) if x: intf_type = 'sham_links' name = 'SL' + str(x.groupdict()['num']) elif re.search('VL', interface): x = re.match('(?P<ignore>\S+)_VL(?P<num>(\d+))', interface) if x: intf_type = 'virtual_links' name = 'VL' + str(x.groupdict()['num']) else: intf_type = 'interfaces' name = interface continue # Internet Address 10.4.1.1/32, Interface ID 11, Area 0 # Internet Address 0.0.0.0/0, Area 0, Attached via Not Attached # Internet Address 10.229.4.4/24, Area 1, Attached via Interface Enable m = p2.match(line) if m: ip_address = str(m.groupdict()['address']) area = str(IPAddress(str(m.groupdict()['area']))) if m.groupdict()['intf_id']: intf_id = int(m.groupdict()['intf_id']) if m.groupdict()['attach']: attached = str(m.groupdict()['attach']).lower() continue # Attached via Interface Enable m = p2_1.match(line) if m: attached = str(m.groupdict()['attached']).lower() continue # Process ID 1, Router ID 10.64.4.4, Network Type VIRTUAL_LINK, Cost: 1 # Process ID 2, Router ID 10.229.11.11, Network Type SHAM_LINK, Cost: 111 # Process ID 1, Router ID 10.4.1.1, Network Type BROADCAST, Cost: 1 m = p3.match(line) if m: instance = str(m.groupdict()['pid']) router_id = str(m.groupdict()['router_id']) interface_type = str(m.groupdict()['interface_type']).lower() interface_type = interface_type.replace("_", "-") # Get interface values if intf_type == 'interfaces': intf_name = interface elif intf_type == 'virtual_links': # Init vl_addr = None vl_transit_area_id = None # Execute command to get virtual-link address cmd = 'show ip ospf virtual-links | i {interface}'.format(interface=interface) out = self.device.execute(cmd) for line in out.splitlines(): line = line.rstrip() # Virtual Link OSPF_VL0 to router 10.100.5.5 is down p = re.search('Virtual +Link +(?P<intf>(\S+)) +to +router' ' +(?P<address>(\S+)) +is +(up|down)' '(?:.*)?', line) if p: if interface == str(p.groupdict()['intf']): vl_addr = str(p.groupdict()['address']) break # Execute command to get virtual-link transit_area_id if vl_addr is not None: cmd = 'show running-config | i virtual-link | i {addr}'.format(addr=vl_addr) out = self.device.execute(cmd) for line in out.splitlines(): line = line.rstrip() # area 1 virtual-link 10.100.5.5 q = re.search('area +(?P<q_area>(\d+)) +virtual-link' ' +(?P<addr>(\S+))(?: +(.*))?', line) if q: q_addr = str(q.groupdict()['addr']) # Check parameters match if q_addr == vl_addr: vl_transit_area_id = str(IPAddress(str(q.groupdict()['q_area']))) break if vl_transit_area_id is not None: intf_name = '{} {}'.format(vl_transit_area_id, router_id) area = vl_transit_area_id elif intf_type == 'sham_links': # Init sl_local_id = None sl_remote_id = None # Execute command to get sham-link remote_id cmd = 'show ip ospf sham-links | i {interface}'.format(interface=interface) out = self.device.execute(cmd) for line in out.splitlines(): line = line.rstrip() # Sham Link OSPF_SL1 to address 10.151.22.22 is up p = re.search('Sham +Link +(?P<intf>(\S+)) +to +address' ' +(?P<remote>(\S+)) +is +(up|down)', line) if p: if interface == str(p.groupdict()['intf']): sl_remote_id = str(p.groupdict()['remote']) break # Execute command to get sham-link local_id if sl_remote_id is not None: cmd = 'show running-config | i sham-link | i {remote}'.format(remote=sl_remote_id) out = self.device.execute(cmd) for line in out.splitlines(): line = line.rstrip() # area 1 sham-link 10.229.11.11 10.151.22.22 cost 111 ttl-security hops 3 q = re.search('area +(?P<q_area>(\d+)) +sham-link' ' +(?P<local_id>(\S+))' ' +(?P<remote_id>(\S+)) +(.*)', line) if q: q_area = str(IPAddress(str(q.groupdict()['q_area']))) q_remote_id = str(q.groupdict()['remote_id']) # Check parameters match if q_area == area and q_remote_id == sl_remote_id: sl_local_id = str(q.groupdict()['local_id']) break # Set intf_name based on parsed values if sl_local_id is not None: intf_name = '{} {}'.format(sl_local_id, sl_remote_id) # Get VRF information based on OSPF instance cmd = 'show running-config | section router ospf {}'.format(instance) out = self.device.execute(cmd) for line in out.splitlines(): line = line.rstrip() # Skip the show command line so as to not match if re.search('show', line): continue # router ospf 1 # router ospf 2 vrf VRF1 p = re.search('router +ospf +(?P<instance>(\S+))' '(?: +vrf +(?P<vrf>(\S+)))?', line) if p: p_instance = str(p.groupdict()['instance']) if p_instance == instance: if p.groupdict()['vrf']: vrf = str(p.groupdict()['vrf']) break else: vrf = 'default' break # Build dictionary if 'vrf' not in ret_dict: ret_dict['vrf'] = {} if vrf not in ret_dict['vrf']: ret_dict['vrf'][vrf] = {} if 'address_family' not in ret_dict['vrf'][vrf]: ret_dict['vrf'][vrf]['address_family'] = {} if af not in ret_dict['vrf'][vrf]['address_family']: ret_dict['vrf'][vrf]['address_family'][af] = {} if 'instance' not in ret_dict['vrf'][vrf]['address_family'][af]: ret_dict['vrf'][vrf]['address_family'][af]['instance'] = {} if instance not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance']: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance] = {} if 'areas' not in ret_dict['vrf'][vrf]['address_family']\ [af]['instance'][instance]: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'] = {} if area not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas']: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area] = {} if intf_type not in ret_dict['vrf'][vrf]['address_family']\ [af]['instance'][instance]['areas'][area]: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area][intf_type] = {} if intf_name not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas'][area][intf_type]: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area][intf_type][intf_name] = {} # Set sub_dict sub_dict = ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas'][area]\ [intf_type][intf_name] # Delete variables to avoid overwrite issues for next intf del area del intf_name # Set values found in this regex sub_dict['router_id'] = router_id sub_dict['interface_type'] = interface_type if m.groupdict()['cost']: sub_dict['cost'] = int(m.groupdict()['cost']) # Set defaault keys sub_dict['demand_circuit'] = False if 'bfd' not in sub_dict: sub_dict['bfd'] = {} sub_dict['bfd']['enable'] = False # Set previously parsed keys try: sub_dict['name'] = name del name except Exception: pass try: sub_dict['ip_address'] = ip_address del ip_address except Exception: pass try: sub_dict['interface_id'] = intf_id del intf_id except Exception: pass try: sub_dict['attached'] = attached del attached except Exception: pass try: sub_dict['enable'] = bool_dict[enable] except Exception: pass try: sub_dict['line_protocol'] = bool_dict[line_protocol] except Exception: pass continue # Topology-MTID Cost Disabled Shutdown Topology Name # 0 1 no no Base p4 = re.compile(r'^(?P<mtid>(\d+)) +(?P<topo_cost>(\d+))' ' +(?P<disabled>(yes|no)) +(?P<shutdown>(yes|no))' ' +(?P<topo_name>(\S+))$') m = p4.match(line) if m: mtid = int(m.groupdict()['mtid']) if 'topology' not in sub_dict: sub_dict['topology'] = {} if mtid not in sub_dict['topology']: sub_dict['topology'][mtid] = {} sub_dict['topology'][mtid]['cost'] = int(m.groupdict()['topo_cost']) sub_dict['topology'][mtid]['name'] = str(m.groupdict()['topo_name']) if 'yes' in m.groupdict()['disabled']: sub_dict['topology'][mtid]['disabled'] = True else: sub_dict['topology'][mtid]['disabled'] = False if 'yes' in m.groupdict()['shutdown']: sub_dict['topology'][mtid]['shutdown'] = True else: sub_dict['topology'][mtid]['shutdown'] = False continue # Configured as demand circuit m = p5.match(line) if m: sub_dict['demand_circuit'] = True continue # Run as demand circuit m = p6.match(line) if m: sub_dict['demand_circuit'] = True continue # DoNotAge LSA not allowed (Number of DCbitless LSA is 1). m = p7.match(line) if m: sub_dict['donotage_lsa'] = False sub_dict['total_dcbitless_lsa'] = int(m.groupdict()['num']) continue # Enabled by interface config, including secondary ip addresses m = p8.match(line) if m: sub_dict['if_cfg'] = True continue # Transmit Delay is 1 sec, State POINT_TO_POINT # Transmit Delay is 1 sec, State DR, Priority 1 # Transmit Delay is 1 sec, State DR, Priority 111, BFD enabled m = p9.match(line) if m: sub_dict['transmit_delay'] = int(m.groupdict()['delay']) state = str(m.groupdict()['state']).lower() state = state.replace("_", "-") sub_dict['state'] = state if m.groupdict()['priority']: sub_dict['priority'] = int(m.groupdict()['priority']) if m.groupdict()['bfd']: if 'bfd' not in sub_dict: sub_dict['bfd'] = {} if 'enabled' in m.groupdict()['bfd']: sub_dict['bfd']['enable'] = True else: sub_dict['bfd']['enable'] = False continue # Designated Router (ID) 10.36.3.3, Interface address 10.2.3.3 m = p10.match(line) if m: sub_dict['dr_router_id'] = str(m.groupdict()['dr_router_id']) sub_dict['dr_ip_addr'] = str(m.groupdict()['dr_ip_addr']) continue # Backup Designated router (ID) 10.16.2.2, Interface address 10.2.3.2 m = p11.match(line) if m: sub_dict['bdr_router_id'] = str(m.groupdict()['bdr_router_id']) sub_dict['bdr_ip_addr'] = str(m.groupdict()['bdr_ip_addr']) continue # Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5 m = p12.match(line) if m: sub_dict['hello_interval'] = int(m.groupdict()['hello']) sub_dict['dead_interval'] = int(m.groupdict()['dead']) sub_dict['wait_interval'] = int(m.groupdict()['wait']) sub_dict['retransmit_interval'] = int(m.groupdict()['retransmit']) continue # oob-resync timeout 40 m = p12_1.match(line) if m: sub_dict['oob_resync_timeout'] = int(m.groupdict()['oob']) continue # Hello due in 00:00:00 m = p12_2.match(line) if m: sub_dict['passive'] = False sub_dict['hello_timer'] = str(m.groupdict()['hello_timer']) continue # Supports Link-local Signaling (LLS) m = p13.match(line) if m: sub_dict['lls'] = True continue # Cisco NSF helper support enabled # IETF NSF helper support enabled m = p14.match(line) if m: gr_type = str(m.groupdict()['gr_type']).lower() if 'graceful_restart' not in sub_dict: sub_dict['graceful_restart'] = {} if gr_type not in sub_dict['graceful_restart']: sub_dict['graceful_restart'][gr_type] = {} sub_dict['graceful_restart'][gr_type]['type'] = gr_type if 'enabled' in m.groupdict()['helper']: sub_dict['graceful_restart'][gr_type]['helper'] = True else: sub_dict['graceful_restart'][gr_type]['helper'] = False continue # Index 2/2, flood queue length 0 m = p15.match(line) if m: sub_dict['index'] = str(m.groupdict()['index']) sub_dict['flood_queue_length'] = int(m.groupdict()['length']) continue # Next 0(0)/0(0) m = p16.match(line) if m: sub_dict['next'] = str(m.groupdict()['next']) continue # Last flood scan length is 0, maximum is 11 m = p17.match(line) if m: sub_dict['last_flood_scan_length'] = int(m.groupdict()['num']) sub_dict['max_flood_scan_length'] = int(m.groupdict()['max']) continue # Last flood scan time is 0 msec, maximum is 1 msec m = p18.match(line) if m: sub_dict['last_flood_scan_time_msec'] = \ int(m.groupdict()['time1']) sub_dict['max_flood_scan_time_msec'] = \ int(m.groupdict()['time2']) continue # Neighbor Count is 1, Adjacent neighbor count is 1 m = p19.match(line) if m: if 'statistics' not in sub_dict: sub_dict['statistics'] = {} sub_dict['statistics']['nbr_count'] = \ int(m.groupdict()['nbr_count']) sub_dict['statistics']['adj_nbr_count'] = \ int(m.groupdict()['adj_nbr_count']) continue # Adjacent with neighbor 10.16.2.2 (Backup Designated Router) m = p20_1.match(line) if m: neighbor = str(m.groupdict()['nbr']) if 'neighbors' not in sub_dict: sub_dict['neighbors'] = {} if neighbor not in sub_dict['neighbors']: sub_dict['neighbors'][neighbor] = {} sub_dict['neighbors'][neighbor]['bdr_router_id'] = neighbor continue # Adjacent with neighbor 10.36.3.3 (Designated Router) m = p20_2.match(line) if m: neighbor = str(m.groupdict()['nbr']) if 'neighbors' not in sub_dict: sub_dict['neighbors'] = {} if neighbor not in sub_dict['neighbors']: sub_dict['neighbors'][neighbor] = {} sub_dict['neighbors'][neighbor]['dr_router_id'] = neighbor continue # Adjacent with neighbor 10.64.4.4 (Hello suppressed) m = p20_3.match(line) if m: neighbor = str(m.groupdict()['nbr']) if 'neighbors' not in sub_dict: sub_dict['neighbors'] = {} if neighbor not in sub_dict['neighbors']: sub_dict['neighbors'][neighbor] = {} continue # Suppress hello for 0 neighbor(s) m = p21.match(line) if m: if 'statistics' not in sub_dict: sub_dict['statistics'] = {} sub_dict['statistics']['num_nbrs_suppress_hello'] = \ int(m.groupdict()['sup']) continue # Loopback interface is treated as a stub Host m = p22.match(line) if m: sub_dict['stub_host'] = True continue # Can be protected by per-prefix Loop-Free FastReroute m = p23.match(line) if m: sub_dict['ipfrr_protected'] = True continue # Can be used for per-prefix Loop-Free FastReroute repair paths m = p24.match(line) if m: sub_dict['ipfrr_candidate'] = True continue # Not Protected by per-prefix TI-LFA m = p25.match(line) if m: sub_dict['ti_lfa_protected'] = False continue # Prefix-suppression is enabled m = p26.match(line) if m: if 'enabled' in m.groupdict()['ps']: sub_dict['prefix_suppression'] = True else: sub_dict['prefix_suppression'] = False # Strict TTL checking enabled, up to 3 hops allowed m = p27.match(line) if m: if 'ttl_security' not in sub_dict: sub_dict['ttl_security'] = {} if 'enabled' in m.groupdict()['strict_ttl']: sub_dict['ttl_security']['enable'] = True else: sub_dict['ttl_security']['enable'] = False if m.groupdict()['hops']: sub_dict['ttl_security']['hops'] = int(m.groupdict()['hops']) continue # Simple password authentication enabled m = p28_1.match(line) if m: if 'authentication' not in sub_dict: sub_dict['authentication'] = {} if 'auth_trailer_key' not in sub_dict['authentication']: sub_dict['authentication']['auth_trailer_key'] = {} sub_dict['authentication']['auth_trailer_key']\ ['crypto_algorithm'] = 'simple' continue # Cryptographic authentication enabled m = p28_2.match(line) if m: if 'authentication' not in sub_dict: sub_dict['authentication'] = {} if 'auth_trailer_key' not in sub_dict['authentication']: sub_dict['authentication']['auth_trailer_key'] = {} sub_dict['authentication']['auth_trailer_key']\ ['crypto_algorithm'] = 'md5' continue # Youngest key id is 2 m = p28_3.match(line) if m: if 'authentication' not in sub_dict: sub_dict['authentication'] = {} if 'auth_trailer_key' not in sub_dict['authentication']: sub_dict['authentication']['auth_trailer_key'] = {} sub_dict['authentication']['auth_trailer_key']\ ['youngest_key_id'] = int(m.groupdict()['id']) continue # Rollover in progress, 1 neighbor(s) using the old key(s): m = p28_4.match(line) if m: continue # key id 1 algorithm MD5 m = p28_5.match(line) if m: if 'authentication' not in sub_dict: sub_dict['authentication'] = {} if 'auth_trailer_key' not in sub_dict['authentication']: sub_dict['authentication']['auth_trailer_key'] = {} sub_dict['authentication']['auth_trailer_key']\ ['crypto_algorithm'] = 'md5' continue # Segment Routing enabled for MPLS forwarding m = p29.match(line) if m: sub_dict.update({'sr_mpls_enabled': True}) continue # TEAPP: m = p30.match(line) if m: teapp_dict = sub_dict.setdefault('teapp', {}) continue # Topology Id:0x0 m = p30_1.match(line) if m: topology_id = m.groupdict()['topology_id'] teapp_dict = sub_dict.setdefault('teapp', {}) teapp_dict.update({'topology_id': topology_id}) continue # TEAPP:SRTE m = p30_2.match(line) if m: teapp = m.groupdict()['teapp'] teapp_dict = sub_dict.setdefault('teapp', {}) item_dict = teapp_dict.setdefault(teapp, {}) continue # Affinity: length 32, bits 0x00000010 m = p30_3.match(line) if m: length = int(m.groupdict()['length']) bits = m.groupdict()['bits'] aff_dict = item_dict.setdefault('affinity', {}) aff_dict.update({'length': length}) aff_dict.update({'bits': bits}) continue # Extended affinity: length 32, bits 0x00000010 m = p30_4.match(line) if m: length = int(m.groupdict()['length']) bits = m.groupdict()['bits'] exa_dict = item_dict.setdefault('extended_affinity', {}) exa_dict.update({'length': length}) exa_dict.update({'bits': bits}) continue # SR Policy Manager: m = p31.match(line) if m: mgn_dict = sub_dict.setdefault('sr_policy_manager', {}) continue # TE Opaque LSA: Source of link information OSPF m = p31_1.match(line) if m: mgn_dict.update({'te_opaque_lsa': m.groupdict()['te_opaque_lsa']}) return ret_dict # ================================ # Super parser for: # * 'show ip ospf virtual-links' # * 'show ip ospf sham-links' # ================================ class ShowIpOspfLinksParser(MetaParser): ''' Parser for: * 'show ip ospf virtual-links' * 'show ip ospf sham-links' ''' def cli(self, cmd, link_type,output=None): assert link_type in ['virtual_links', 'sham_links'] if output is None: out = self.device.execute(cmd) else: out = output # Init vars ret_dict = {} af = 'ipv4' # crypo_algorithm dict crypto_dict = {'cryptographic': 'md5', 'simple password': 'simple'} p1 = re.compile(r'^(Virtual|Sham) +Link +(?P<interface>(\S+)) +to' ' +(address|router) +(?P<address>(\S+)) +is' ' +(?P<link_state>(up|down))$') p2 = re.compile(r'^Area +(?P<area>(\S+)),? +source +address' ' +(?P<source_address>(\S+))$') p3 = re.compile(r'^Run +as +demand +circuit$') p4 = re.compile(r'^DoNotAge +LSA +not +allowed' ' +\(Number +of +DCbitless +LSA +is +(?P<dcbitless>(\d+))\).' '(?: +Cost +of +using +(?P<cost>(\d+)))?' '(?: State +(?P<state>(\S+)))?$') p5 = re.compile(r'^Transit +area +(?P<area>(\S+)),' '(?: +via +interface +(?P<intf>(\S+)))?$') p6 = re.compile(r'^(?P<mtid>(\d+)) +(?P<topo_cost>(\d+))' ' +(?P<disabled>(yes|no)) +(?P<shutdown>(yes|no))' ' +(?P<topo_name>(\S+))$') p7 = re.compile(r'^Transmit +Delay +is +(?P<transmit_delay>(\d+))' ' +sec, +State +(?P<state>(\S+)),?$') p8 = re.compile(r'^Timer +intervals +configured,' ' +Hello +(?P<hello>(\d+)),' ' +Dead +(?P<dead>(\d+)),' ' +Wait +(?P<wait>(\d+)),' '(?: +Retransmit +(?P<retransmit>(\d+)))?$') p9 = re.compile(r'^Strict +TTL +checking' ' +(?P<strict_ttl>(enabled|disabled))' '(?:, +up +to +(?P<hops>(\d+)) +hops +allowed)?$') p10 = re.compile(r'^Hello +due +in +(?P<hello_timer>(\S+))$') p11 = re.compile(r'^Adjacency +State +(?P<adj_state>(\S+))$') p12 = re.compile(r'^Index +(?P<index>(\S+)), +retransmission +queue' ' +length +(?P<length>(\d+)), +number +of' ' +retransmission +(?P<retrans>(\d+))$') p13 = re.compile(r'^First +(?P<first>(\S+)) +Next +(?P<next>(\S+))$') p14 = re.compile(r'^Last +retransmission +scan +length +is' ' +(?P<len>(\d+)), +maximum +is +(?P<max>(\d+))$') p15 = re.compile(r'^Last +retransmission +scan +time +is' ' +(?P<time>(\d+)) +msec, +maximum +is' ' +(?P<max>(\d+)) +msec$') for line in out.splitlines(): line = line.strip() # Sham Link OSPF_SL0 to address 10.151.22.22 is up # Virtual Link OSPF_VL0 to router 10.64.4.4 is up m = p1.match(line) if m: address = str(m.groupdict()['address']) sl_remote_id = vl_router_id = address interface = str(m.groupdict()['interface']) link_state = str(m.groupdict()['link_state']) instance = None # Get link name n = re.match('(?P<ignore>\S+)_(?P<name>(S|V)L(\d+))', interface) if n: real_link_name = str(n.groupdict()['name']) else: real_link_name = interface # Get OSPF process ID from 'show ip ospf interface' cmd = 'show ip ospf interface | section {}'.format(interface) out = self.device.execute(cmd) for line in out.splitlines(): line = line.rstrip() # Process ID 2, Router ID 10.229.11.11, Network Type SHAM_LINK, Cost: 111 p = re.search('Process +ID +(?P<instance>(\S+)), +Router' ' +(.*)', line) if p: instance = str(p.groupdict()['instance']) break # Get VRF information using the ospf instance if instance is not None: cmd = 'show running-config | section router ospf {}'.format(instance) out = self.device.execute(cmd) for line in out.splitlines(): line = line.rstrip() # Skip the show command line so as to not match if re.search('show', line): continue # router ospf 1 # router ospf 2 vrf VRF1 p = re.search('router +ospf +(?P<instance>(\S+))' '(?: +vrf +(?P<vrf>(\S+)))?', line) if p: p_instance = str(p.groupdict()['instance']) if p_instance == instance: if p.groupdict()['vrf']: vrf = str(p.groupdict()['vrf']) break else: vrf = 'default' break # Build dict if 'vrf' not in ret_dict: ret_dict['vrf'] = {} if vrf not in ret_dict['vrf']: ret_dict['vrf'][vrf] = {} if 'address_family' not in ret_dict['vrf'][vrf]: ret_dict['vrf'][vrf]['address_family'] = {} if af not in ret_dict['vrf'][vrf]['address_family']: ret_dict['vrf'][vrf]['address_family'][af] = {} if 'instance' not in ret_dict['vrf'][vrf]['address_family'][af]: ret_dict['vrf'][vrf]['address_family'][af]['instance'] = {} if instance not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance']: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance] = {} continue # Area 1, source address 10.21.33.33 # Area 1 source address 10.229.11.11 m = p2.match(line) if m: area = str(IPAddress(str(m.groupdict()['area']))) source_address = str(m.groupdict()['source_address']) # Set link_name for sham_link link_name = '{} {}'.format(source_address, sl_remote_id) # Build dict if 'areas' not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'] = {} if area not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas']: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area] = {} if link_type not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas'][area]: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area][link_type] = {} if link_name not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas'][area][link_type]: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area][link_type][link_name] = {} # Set sub_dict sub_dict = ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas'][area]\ [link_type][link_name] # Set values sub_dict['transit_area_id'] = area sub_dict['local_id'] = source_address sub_dict['demand_circuit'] = False # Set previously parsed values try: sub_dict['name'] = real_link_name sub_dict['remote_id'] = sl_remote_id sub_dict['link_state'] = link_state except Exception: pass continue # Run as demand circuit m = p3.match(line) if m: if link_type == 'sham_links': sub_dict['demand_circuit'] = True else: demand_circuit = True continue # DoNotAge LSA not allowed (Number of DCbitless LSA is 7). # DoNotAge LSA not allowed (Number of DCbitless LSA is 1). Cost of using 111 State POINT_TO_POINT, m = p4.match(line) if m: dcbitless_lsa_count = int(m.groupdict()['dcbitless']) donotage_lsa = 'not allowed' if m.groupdict()['cost']: cost = int(m.groupdict()['cost']) if m.groupdict()['state']: link_state = str(m.groupdict()['state']).lower() # Set values for sham_links if link_type == 'sham_links': sub_dict['dcbitless_lsa_count'] = dcbitless_lsa_count sub_dict['donotage_lsa'] = donotage_lsa if m.groupdict()['cost']: sub_dict['cost'] = cost if m.groupdict()['state']: sub_dict['state'] = link_state continue # Transit area 1 # Transit area 1, via interface GigabitEthernet0/1 m = p5.match(line) if m: area = str(IPAddress(str(m.groupdict()['area']))) # Set link_name for virtual_link link_name = '{} {}'.format(area, vl_router_id) # Create dict if 'areas' not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'] = {} if area not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas']: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area] = {} if link_type not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas'][area]: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area][link_type] = {} if link_name not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas'][area][link_type]: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area][link_type][link_name] = {} # Set sub_dict sub_dict = ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas'][area]\ [link_type][link_name] # Set values sub_dict['transit_area_id'] = area sub_dict['demand_circuit'] = False if m.groupdict()['intf']: sub_dict['interface'] = str(m.groupdict()['intf']) # Set previously parsed values try: sub_dict['name'] = real_link_name except Exception: pass try: sub_dict['router_id'] = vl_router_id except Exception: pass try: sub_dict['dcbitless_lsa_count'] = dcbitless_lsa_count except Exception: pass try: sub_dict['donotage_lsa'] = donotage_lsa except Exception: pass try: sub_dict['demand_circuit'] = demand_circuit except Exception: pass try: sub_dict['link_state'] = link_state except Exception: pass continue # Topology-MTID Cost Disabled Shutdown Topology Name # 0 1 no no Base m = p6.match(line) if m: mtid = int(m.groupdict()['mtid']) if 'topology' not in sub_dict: sub_dict['topology'] = {} if mtid not in sub_dict['topology']: sub_dict['topology'][mtid] = {} sub_dict['topology'][mtid]['cost'] = int(m.groupdict()['topo_cost']) sub_dict['topology'][mtid]['name'] = str(m.groupdict()['topo_name']) if 'yes' in m.groupdict()['disabled']: sub_dict['topology'][mtid]['disabled'] = True else: sub_dict['topology'][mtid]['disabled'] = False if 'yes' in m.groupdict()['shutdown']: sub_dict['topology'][mtid]['shutdown'] = True else: sub_dict['topology'][mtid]['shutdown'] = False continue # Transmit Delay is 1 sec, State POINT_TO_POINT, m = p7.match(line) if m: sub_dict['transmit_delay'] = int(m.groupdict()['transmit_delay']) state = str(m.groupdict()['state']).lower() state = state.replace("_", "-") sub_dict['state'] = state continue # Timer intervals configured, Hello 3, Dead 13, Wait 13, Retransmit 5 # Timer intervals configured, Hello 4, Dead 16, Wait 16, Retransmit 44 # Timer intervals configured, Hello 10, Dead 40, Wait 40, m = p8.match(line) if m: if m.groupdict()['hello']: sub_dict['hello_interval'] = int(m.groupdict()['hello']) if m.groupdict()['dead']: sub_dict['dead_interval'] = int(m.groupdict()['dead']) if m.groupdict()['wait']: sub_dict['wait_interval'] = int(m.groupdict()['wait']) if m.groupdict()['retransmit']: sub_dict['retransmit_interval'] = int(m.groupdict()['retransmit']) continue # Strict TTL checking enabled, up to 3 hops allowed m = p9.match(line) if m: if 'ttl_security' not in sub_dict: sub_dict['ttl_security'] = {} if 'enabled' in m.groupdict()['strict_ttl']: sub_dict['ttl_security']['enable'] = True else: sub_dict['ttl_security']['enable'] = False if m.groupdict()['hops']: sub_dict['ttl_security']['hops'] = int(m.groupdict()['hops']) continue # Hello due in 00:00:03:179 m = p10.match(line) if m: sub_dict['hello_timer'] = str(m.groupdict()['hello_timer']) continue # Adjacency State FULL m = p11.match(line) if m: sub_dict['adjacency_state'] = str(m.groupdict()['adj_state']).lower() continue # Index 1/2/2, retransmission queue length 0, number of retransmission 2 m = p12.match(line) if m: sub_dict['index'] = str(m.groupdict()['index']) sub_dict['retrans_qlen'] = int(m.groupdict()['length']) sub_dict['total_retransmission'] = int(m.groupdict()['retrans']) continue # First 0x0(0)/0x0(0)/0x0(0) Next 0x0(0)/0x0(0)/0x0(0) m = p13.match(line) if m: sub_dict['first'] = str(m.groupdict()['first']) sub_dict['next'] = str(m.groupdict()['next']) continue # Last retransmission scan length is 1, maximum is 1 m = p14.match(line) if m: sub_dict['last_retransmission_scan_length'] = \ int(m.groupdict()['len']) sub_dict['last_retransmission_max_length'] = \ int(m.groupdict()['max']) continue # Last retransmission scan time is 0 msec, maximum is 0 msec m = p15.match(line) if m: sub_dict['last_retransmission_scan_time'] = \ int(m.groupdict()['time']) sub_dict['last_retransmission_max_scan'] = \ int(m.groupdict()['max']) continue return ret_dict # ============================= # Schema for: # * 'show ip ospf sham-links' # ============================= class ShowIpOspfShamLinksSchema(MetaParser): ''' Schema for: * 'show ip ospf sham-links' ''' schema = { 'vrf': {Any(): {'address_family': {Any(): {'instance': {Any(): {'areas': {Any(): {'sham_links': {Any(): {'name': str, 'link_state': str, 'local_id': str, 'remote_id': str, 'transit_area_id': str, Optional('hello_interval'): int, Optional('dead_interval'): int, Optional('wait_interval'): int, Optional('retransmit_interval'): int, Optional('transmit_delay'): int, 'cost': int, 'state': str, Optional('hello_timer'): str, Optional('demand_circuit'): bool, Optional('dcbitless_lsa_count'): int, Optional('donotage_lsa'): str, Optional('adjacency_state'): str, Optional('ttl_security'): {'enable': bool, Optional('hops'): int}, Optional('index'): str, Optional('first'): str, Optional('next'): str, Optional('last_retransmission_max_length'): int, Optional('last_retransmission_max_scan'): int, Optional('last_retransmission_scan_length'): int, Optional('last_retransmission_scan_time'): int, Optional('total_retransmission'): int, Optional('retrans_qlen'): int, Optional('topology'): {Any(): {'cost': int, 'disabled': bool, 'shutdown': bool, 'name': str, }, }, }, }, }, }, }, }, }, }, }, }, } # ============================= # Parser for: # * 'show ip ospf sham-links' # ============================= class ShowIpOspfShamLinks(ShowIpOspfShamLinksSchema, ShowIpOspfLinksParser): ''' Parser for: * 'show ip ospf sham-links' ''' cli_command = 'show ip ospf sham-links' def cli(self, output=None): return super().cli(cmd=self.cli_command, link_type='sham_links',output=output) # ================================ # Schema for: # * 'show ip ospf virtual-links' # ================================ class ShowIpOspfVirtualLinksSchema(MetaParser): ''' Schema for: * 'show ip ospf virtual-links' ''' schema = { 'vrf': {Any(): {'address_family': {Any(): {'instance': {Any(): {'areas': {Any(): {'virtual_links': {Any(): {'name': str, 'link_state': str, 'router_id': str, 'transit_area_id': str, Optional('hello_interval'): int, Optional('dead_interval'): int, Optional('wait_interval'): int, Optional('retransmit_interval'): int, 'transmit_delay': int, 'state': str, 'demand_circuit': bool, Optional('cost'): int, Optional('hello_timer'): str, Optional('interface'): str, Optional('dcbitless_lsa_count'): int, Optional('donotage_lsa'): str, Optional('adjacency_state'): str, Optional('ttl_security'): {'enable': bool, Optional('hops'): int}, Optional('index'): str, Optional('first'): str, Optional('next'): str, Optional('last_retransmission_max_length'): int, Optional('last_retransmission_max_scan'): int, Optional('last_retransmission_scan_length'): int, Optional('last_retransmission_scan_time'): int, Optional('total_retransmission'): int, Optional('retrans_qlen'): int, Optional('topology'): {Any(): {'cost': int, 'disabled': bool, 'shutdown': bool, 'name': str, }, }, }, }, }, }, }, }, }, }, }, }, } # ================================ # Parser for: # * 'show ip ospf virtual-links' # ================================ class ShowIpOspfVirtualLinks(ShowIpOspfVirtualLinksSchema, ShowIpOspfLinksParser): ''' Parser for: * 'show ip ospf virtual-links' ''' cli_command = 'show ip ospf virtual-links' def cli(self, output=None): return super().cli(cmd=self.cli_command, link_type='virtual_links', output=output) # ================================== # Schema for: # * 'show ip ospf neighbor detail' # ========================================= class ShowIpOspfNeighborDetailSchema(MetaParser): ''' Schema for: * 'show ip ospf neighbor detail' ''' schema = { 'vrf': {Any(): {'address_family': {Any(): {'instance': {Any(): {'areas': {Any(): {Optional('interfaces'): {Any(): {'neighbors': {Any(): {'neighbor_router_id': str, 'address': str, 'interface': str, 'priority': int, 'state': str, 'dr_ip_addr': str, 'bdr_ip_addr': str, Optional('interface_id'): str, Optional('hello_options'): str, Optional('sr_adj_label'): str, Optional('dbd_options'): str, Optional('dead_timer'): str, Optional('uptime'): str, Optional('index'): str, Optional('first'): str, Optional('next'): str, Optional('ls_ack_list'): str, Optional('statistics'): {Optional('nbr_event_count'): int, Optional('nbr_retrans_qlen'): int, Optional('total_retransmission'): int, Optional('last_retrans_scan_length'): int, Optional('last_retrans_max_scan_length'): int, Optional('last_retrans_scan_time_msec'): int, Optional('last_retrans_max_scan_time_msec'): int}, }, }, }, }, Optional('sham_links'): {Any(): {'neighbors': {Any(): {'neighbor_router_id': str, 'address': str, 'interface': str, 'priority': int, 'state': str, 'dr_ip_addr': str, 'bdr_ip_addr': str, Optional('interface_id'): str, Optional('hello_options'): str, Optional('dbd_options'): str, Optional('dead_timer'): str, Optional('uptime'): str, Optional('index'): str, Optional('first'): str, Optional('next'): str, Optional('ls_ack_list'): str, Optional('statistics'): {Optional('nbr_event_count'): int, Optional('nbr_retrans_qlen'): int, Optional('total_retransmission'): int, Optional('last_retrans_scan_length'): int, Optional('last_retrans_max_scan_length'): int, Optional('last_retrans_scan_time_msec'): int, Optional('last_retrans_max_scan_time_msec'): int}, }, }, }, }, Optional('virtual_links'): {Any(): {'neighbors': {Any(): {'neighbor_router_id': str, 'address': str, 'interface': str, 'priority': int, 'state': str, 'dr_ip_addr': str, 'bdr_ip_addr': str, Optional('interface_id'): str, Optional('hello_options'): str, Optional('dbd_options'): str, Optional('dead_timer'): str, Optional('uptime'): str, Optional('index'): str, Optional('first'): str, Optional('next'): str, Optional('ls_ack_list'): str, Optional('statistics'): {Optional('nbr_event_count'): int, Optional('nbr_retrans_qlen'): int, Optional('total_retransmission'): int, Optional('last_retrans_scan_length'): int, Optional('last_retrans_max_scan_length'): int, Optional('last_retrans_scan_time_msec'): int, Optional('last_retrans_max_scan_time_msec'): int}, }, }, }, }, }, }, }, }, }, }, }, }, } # ================================ # Parser for: # 'show ip ospf neighbor detail' # ================================ class ShowIpOspfNeighborDetail(ShowIpOspfNeighborDetailSchema): ''' Parser for: * 'show ip ospf neighbor detail' ''' cli_command = ['show ip ospf neighbor detail', 'show ip ospf neighbor {neighbor} detail'] exclude = ['hello_timer', 'dead_timer', 'bdr_ip_addr', 'bdr_router_id', 'index', 'last_retrans_max_scan_length', 'last_retrans_max_scan_time_msec', 'total_retransmission', 'uptime', 'last_retrans_scan_length', 'last_retrans_scan_time_msec'] def cli(self, neighbor='', output=None): if output is None: # Execute command on device if neighbor: out = self.device.execute(self.cli_command[1].format(neighbor=neighbor)) else: out = self.device.execute(self.cli_command[0]) else: out = output # Init vars ret_dict = {} af = 'ipv4' # this is ospf - always ipv4 p1 = re.compile(r'^Neighbor +(?P<neighbor>(\S+)), +interface' ' +address +(?P<address>(\S+))' '(?:, +interface-id +(?P<intf_id>(\S+)))?$') p2 = re.compile(r'^In +the +area +(?P<area>(\S+)) +via +interface' ' +(?P<interface>(\S+))$') p3 = re.compile(r'^Neighbor +priority +is +(?P<priority>(\d+)),' ' +State +is +(?P<state>(\S+)),' ' +(?P<num>(\d+)) +state +changes$') p4 = re.compile(r'^DR +is +(?P<dr_ip_addr>(\S+))' ' +BDR +is +(?P<bdr_ip_addr>(\S+))$') p5 = re.compile(r'^Options +is +(?P<options>(\S+)) +in +Hello' ' +\(E-bit\)$') p6 = re.compile(r'^Options +is +(?P<options>(\S+)) +in +DBD' ' +\(E-bit, O-bit\)$') p7 = re.compile(r'^Dead +timer +due +in +(?P<dead_timer>(\S+))$') p8 = re.compile(r'^Neighbor +is +up +for +(?P<uptime>(\S+))$') p9 = re.compile(r'^Index +(?P<index>(\S+)) +retransmission +queue' ' +length +(?P<ql>(\d+)), +number +of' ' +retransmission +(?P<num_retrans>(\d+))$') p10 = re.compile(r'^First +(?P<first>(\S+)) +Next +(?P<next>(\S+))$') p11 = re.compile(r'^Last +retransmission +scan +length +is' ' +(?P<num1>(\d+)), +maximum +is' ' +(?P<num2>(\d+))$') p12 = re.compile(r'^Last +retransmission +scan +time +is' ' +(?P<num1>(\d+)) +msec, +maximum +is' ' +(?P<num2>(\d+)) +msec$') p13 = re.compile(r'^SR +adj +label +(?P<sr_adj_label>\d+)$') for line in out.splitlines(): line = line.strip() # Neighbor 10.16.2.2, interface address 10.1.2.2 # Neighbor 192.168.111.1, interface address 192.168.70.1, interface-id 192 # Neighbor 192.168.255.9, interface address 10.0.109.9, interface-id unknown m = p1.match(line) if m: neighbor = str(m.groupdict()['neighbor']) address = str(m.groupdict()['address']) if m.groupdict()['intf_id']: interface_id = str(m.groupdict()['intf_id']) continue # In the area 0 via interface GigabitEthernet2 m = p2.match(line) if m: area = str(IPAddress(str(m.groupdict()['area']))) interface = str(m.groupdict()['interface']) instance = None router_id = None # Get OSPF process ID from 'show ip ospf interface' cmd = 'show ip ospf interface | section {}'.format(interface) out = self.device.execute(cmd) for line in out.splitlines(): line = line.rstrip() # Process ID 2, Router ID 10.229.11.11, Network Type SHAM_LINK, Cost: 111 p = re.search('Process +ID +(?P<instance>(\S+)), +Router +ID' ' +(?P<router_id>(\S+)) +(.*)', line) if p: instance = str(p.groupdict()['instance']) router_id = str(p.groupdict()['router_id']) break # Get VRF information using the ospf instance if instance is not None: cmd = 'show running-config | section router ospf {}'.format(instance) out = self.device.execute(cmd) for line in out.splitlines(): line = line.rstrip() # Skip the show command line so as to not match if re.search('show', line): continue # router ospf 1 # router ospf 2 vrf VRF1 p = re.search('router +ospf +(?P<instance>(\S+))' '(?: +vrf +(?P<vrf>(\S+)))?', line) if p: p_instance = str(p.groupdict()['instance']) if p_instance == instance: if p.groupdict()['vrf']: vrf = str(p.groupdict()['vrf']) break else: vrf = 'default' break # Build dict if 'vrf' not in ret_dict: ret_dict['vrf'] = {} if vrf not in ret_dict['vrf']: ret_dict['vrf'][vrf] = {} if 'address_family' not in ret_dict['vrf'][vrf]: ret_dict['vrf'][vrf]['address_family'] = {} if af not in ret_dict['vrf'][vrf]['address_family']: ret_dict['vrf'][vrf]['address_family'][af] = {} if 'instance' not in ret_dict['vrf'][vrf]['address_family'][af]: ret_dict['vrf'][vrf]['address_family'][af]['instance'] = {} if instance not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance']: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance] = {} # Determine if 'interface' or 'virtual_links' or 'sham_links' if re.search('VL', interface): # Init intf_type = 'virtual_links' vl_addr = None vl_transit_area_id = None # Execute command to get virtual-link address cmd = 'show ip ospf virtual-links | i {interface}'.format(interface=interface) out = self.device.execute(cmd) for line in out.splitlines(): line = line.rstrip() # Virtual Link OSPF_VL0 to router 10.100.5.5 is down p = re.search('Virtual +Link +(?P<intf>(\S+)) +to +router' ' +(?P<address>(\S+)) +is +(up|down)' '(?:.*)?', line) if p: if interface == str(p.groupdict()['intf']): vl_addr = str(p.groupdict()['address']) break # Execute command to get virtual-link transit_area_id if vl_addr is not None and router_id is not None: cmd = 'show running-config | i virtual-link | i {addr}'.format(addr=vl_addr) out = self.device.execute(cmd) for line in out.splitlines(): line = line.rstrip() # area 1 virtual-link 10.100.5.5 q = re.search('area +(?P<q_area>(\d+)) +virtual-link' ' +(?P<addr>(\S+))(?: +(.*))?', line) if q: q_addr = str(q.groupdict()['addr']) # Check parameters match if q_addr == vl_addr: vl_transit_area_id = str(IPAddress(str(q.groupdict()['q_area']))) break if vl_transit_area_id is not None: intf_name = '{} {}'.format(vl_transit_area_id, router_id) area = vl_transit_area_id elif re.search('SL', interface): # Init intf_type = 'sham_links' sl_local_id = None sl_remote_id = None # Execute command to get sham-link remote_id cmd = 'show ip ospf sham-links | i {interface}'.format(interface=interface) out = self.device.execute(cmd) for line in out.splitlines(): line = line.rstrip() # Sham Link OSPF_SL1 to address 10.151.22.22 is up p = re.search('Sham +Link +(?P<intf>(\S+)) +to +address' ' +(?P<remote>(\S+)) +is +(up|down)', line) if p: if interface == str(p.groupdict()['intf']): sl_remote_id = str(p.groupdict()['remote']) break # Execute command to get sham-link local_id if sl_remote_id is not None: cmd = 'show running-config | i sham-link | i {remote}'.format(remote=sl_remote_id) out = self.device.execute(cmd) for line in out.splitlines(): line = line.rstrip() # area 1 sham-link 10.229.11.11 10.151.22.22 cost 111 ttl-security hops 3 q = re.search('area +(?P<q_area>(\d+)) +sham-link' ' +(?P<local_id>(\S+))' ' +(?P<remote_id>(\S+)) +(.*)', line) if q: q_area = str(IPAddress(str(q.groupdict()['q_area']))) q_remote_id = str(q.groupdict()['remote_id']) # Check parameters match if q_area == area and q_remote_id == sl_remote_id: sl_local_id = str(q.groupdict()['local_id']) break # Set intf_name based on parsed values if sl_local_id is not None: intf_name = '{} {}'.format(sl_local_id, sl_remote_id) else: # Set values for dict intf_type = 'interfaces' intf_name = interface if 'areas' not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'] = {} if area not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas']: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area] = {} if intf_type not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas'][area]: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area][intf_type] = {} if intf_name not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas'][area][intf_type]: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area][intf_type][intf_name] = {} if 'neighbors' not in ret_dict['vrf'][vrf]['address_family']\ [af]['instance'][instance]['areas'][area][intf_type]\ [intf_name]: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area][intf_type][intf_name]\ ['neighbors'] = {} if neighbor not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas'][area][intf_type]\ [intf_name]['neighbors']: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area][intf_type][intf_name]\ ['neighbors'][neighbor] = {} # Set sub_dict sub_dict = ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas'][area][intf_type]\ [intf_name]['neighbors'][neighbor] # Set values sub_dict['neighbor_router_id'] = neighbor sub_dict['interface'] = interface try: sub_dict['address'] = address del address except Exception: pass try: sub_dict['interface_id'] = interface_id del interface_id except Exception: pass continue # Neighbor priority is 1, State is FULL, 6 state changes m = p3.match(line) if m: sub_dict['priority'] = int(m.groupdict()['priority']) state = str(m.groupdict()['state']).lower() state = state.replace('_', '-') sub_dict['state'] = state if 'statistics' not in sub_dict: sub_dict['statistics'] = {} sub_dict['statistics']['nbr_event_count'] = \ int(m.groupdict()['num']) continue # DR is 10.2.3.3 BDR is 10.2.3.2 m = p4.match(line) if m: sub_dict['dr_ip_addr'] = str(m.groupdict()['dr_ip_addr']) sub_dict['bdr_ip_addr'] = str(m.groupdict()['bdr_ip_addr']) continue # Options is 0x2 in Hello (E-bit) m = p5.match(line) if m: sub_dict['hello_options'] = str(m.groupdict()['options']) continue # Options is 0x42 in DBD (E-bit, O-bit) # Options is 0x42 in DBD (E-bit, O-bit) m = p6.match(line) if m: sub_dict['dbd_options'] = str(m.groupdict()['options']) continue # Dead timer due in 00:00:38 m = p7.match(line) if m: sub_dict['dead_timer'] = str(m.groupdict()['dead_timer']) continue # Neighbor is up for 08:22:07 m = p8.match(line) if m: sub_dict['uptime'] = str(m.groupdict()['uptime']) continue # Index 1/2/2, retransmission queue length 0, number of retransmission 0 m = p9.match(line) if m: sub_dict['index'] = str(m.groupdict()['index']) if 'statistics' not in sub_dict: sub_dict['statistics'] = {} sub_dict['statistics']['nbr_retrans_qlen'] = \ int(m.groupdict()['ql']) sub_dict['statistics']['total_retransmission'] = \ int(m.groupdict()['num_retrans']) continue # First 0x0(0)/0x0(0)/0x0(0) Next 0x0(0)/0x0(0)/0x0(0) m = p10.match(line) if m: sub_dict['first'] = str(m.groupdict()['first']) sub_dict['next'] = str(m.groupdict()['next']) continue # Last retransmission scan length is 0, maximum is 0 m = p11.match(line) if m: if 'statistics' not in sub_dict: sub_dict['statistics'] = {} sub_dict['statistics']['last_retrans_scan_length'] = \ int(m.groupdict()['num1']) sub_dict['statistics']['last_retrans_max_scan_length'] = \ int(m.groupdict()['num2']) continue # Last retransmission scan time is 0 msec, maximum is 0 msec m = p12.match(line) if m: if 'statistics' not in sub_dict: sub_dict['statistics'] = {} sub_dict['statistics']['last_retrans_scan_time_msec'] = \ int(m.groupdict()['num1']) sub_dict['statistics']['last_retrans_max_scan_time_msec'] = \ int(m.groupdict()['num2']) continue # SR adj label 10 m = p13.match(line) if m: sub_dict['sr_adj_label'] = str(m.groupdict()['sr_adj_label']) continue return ret_dict # =========================== # Schema for: # * 'show ip ospf database' # =========================== class ShowIpOspfDatabaseSchema(MetaParser): ''' Schema for: * 'show ip ospf database' ''' schema = { 'vrf': {Any(): {'address_family': {Any(): {'instance': {Any(): {Optional('areas'): {Any(): {'database': {'lsa_types': {Any(): {'lsa_type': int, 'lsas': {Any(): {'lsa_id': str, 'adv_router': str, 'ospfv2': {'header': {'lsa_id': str, 'adv_router': str, 'age': int, 'seq_num': str, 'checksum': str, Optional('link_count'): int, }, }, }, }, }, }, }, }, }, }, }, }, }, }, }, } # ========================== # Parser for: # 'show ip ospf database' # ========================== class ShowIpOspfDatabase(ShowIpOspfDatabaseSchema): ''' Parser for: * 'show ip ospf database' ''' cli_command = 'show ip ospf database' exclude = ['age'] def cli(self, output=None): if output is None: # Execute command on device out = self.device.execute(self.cli_command) else: out = output # Init vars ret_dict = {} address_family = 'ipv4' default_mt_id = 0 # 1: Router # 2: Network Link # 3: Summary # 3: Summary Network # 3: Summary Net # 4: Summary ASB # 5: Type-5 AS External # 10: Opaque Area lsa_type_mapping = { 'router': 1, 'net': 2, 'summary': 3, 'summary net': 3, 'summary asb': 4, 'external': 5, 'opaque': 10, } # OSPF Router with ID (172.16.1.214) (Process ID 65109) # OSPF Router with ID (10.36.3.3) (Process ID 1, VRF VRF1) p1 = re.compile(r'^OSPF +Router +with +ID +\((?P<router_id>(\S+))\)' ' +\(Process +ID +(?P<instance>(\d+))' '(?:, +VRF +(?P<vrf>(\S+)))?\)$') # Router Link States (Area 0) # Net Link States (Area 0) # Summary Net Link States (Area 8) # Summary ASB Link States (Area 8) p2 = re.compile(r'^(?P<lsa_type>([a-zA-Z\s]+)) +Link +States +\(Area' ' +(?P<area>(\S+))\)$') # Link ID ADV Router Age Seq# Checksum Link count # 10.13.202.64 10.120.202.64 2794 0x80000043 0x002254 3 # 10.1.1.2 10.169.197.253 70 0x8000003F 0x0015EF p3 = re.compile(r'^(?P<link_id>(\S+)) +(?P<adv_router>(\S+))' ' +(?P<age>(\d+)) +(?P<seq>(\S+)) +(?P<checksum>(\S+))' '(?: *(?P<link_count>(\d+)))?$') for line in out.splitlines(): line = line.strip() # Load for five secs: 71%/0%; one minute: 11%; five minutes: 9% # Time source is NTP, 20:29:26.348 EST Fri Nov 11 2016 # OSPF Router with ID (10.36.3.3) (Process ID 1, VRF VRF1) m = p1.match(line) if m: group = m.groupdict() router_id = str(group['router_id']) instance = str(group['instance']) if group['vrf']: vrf = str(group['vrf']) else: vrf = 'default' # Create dict ospf_dict = ret_dict.setdefault('vrf', {}).\ setdefault(vrf, {}).\ setdefault('address_family', {}).\ setdefault(address_family, {}).\ setdefault('instance', {}).\ setdefault(instance, {}) continue # Router Link States (Area 0) # Net Link States (Area 0) # Summary Net Link States (Area 8) # Summary ASB Link States (Area 8) m = p2.match(line) if m: group = m.groupdict() lsa_type_key = group['lsa_type'].lower() if lsa_type_key in lsa_type_mapping: lsa_type = lsa_type_mapping[lsa_type_key] else: continue # Set area if group['area']: try: int(group['area']) area = str(IPAddress(str(group['area']))) except Exception: area = str(group['area']) else: area = '0.0.0.0' # Create dict structure lsa_type_dict = ospf_dict.setdefault('areas', {}).\ setdefault(area, {}).\ setdefault('database', {}).\ setdefault('lsa_types', {}).\ setdefault(lsa_type, {}) # Set lsa_type lsa_type_dict['lsa_type'] = lsa_type continue # Link ID ADV Router Age Seq# Checksum Link count # 10.13.202.64 10.120.202.64 2794 0x80000043 0x002254 3 # 10.1.1.2 10.169.197.253 70 0x8000003F 0x0015EF m = p3.match(line) if m: group = m.groupdict() lsa_id = group['link_id'] # Create dict lsas_dict = lsa_type_dict.setdefault('lsas', {}).\ setdefault(lsa_id, {}) lsas_dict['lsa_id'] = lsa_id lsas_dict['adv_router'] = group['adv_router'] # osfpv2 dict ospfv2_dict = lsas_dict.setdefault('ospfv2', {}).\ setdefault('header', {}) ospfv2_dict['lsa_id'] = lsa_id ospfv2_dict['adv_router'] = group['adv_router'] ospfv2_dict['age'] = int(group['age']) ospfv2_dict['seq_num'] = group['seq'] ospfv2_dict['checksum'] = group['checksum'] if group['link_count']: ospfv2_dict['link_count'] = int(group['link_count']) continue return ret_dict # ===================================== # Super parser for: # * 'show ip ospf database external' # * 'show ip ospf database network' # * 'show ip ospf database summary' # * 'show ip ospf database router' # * 'show ip ospf database opaque' # * 'show ip ospf database opaque-area self-originate' # ===================================== class ShowIpOspfDatabaseTypeParser(MetaParser): ''' Parser for: * 'show ip ospf database external' * 'show ip ospf database network' * 'show ip ospf database summary' * 'show ip ospf database router' * 'show ip ospf database opaque * 'show ip ospf database opaque-area self-originate'' ''' def cli(self, db_type, out=None): assert db_type in ['external', 'network', 'summary', 'router', 'opaque'] # Init vars ret_dict = {} af = 'ipv4' default_mt_id = 0 capabilities_flag = False tlv_type_flag = False sub_tlv_type_flag = False # Router # Network Link # Summary Network # Opaque Area # Type-5 AS External lsa_type_mapping = { 'router': 1, 'network': 2, 'summary': 3, 'external': 5, 'opaque': 10, } p1 = re.compile(r'^OSPF +Router +with +ID +\((?P<router_id>(\S+))\)' ' +\(Process +ID +(?P<instance>(\d+))' '(?:, +VRF +(?P<vrf>(\S+)))?\)$') p2 = re.compile(r'^(?P<lsa_type_name>(.*)) +Link +States' '(?: +\(Area +(?P<area>(\S+))\))?$') p3_1 = re.compile(r'^Routing +Bit +Set +on +this +LSA$') p3_2 = re.compile(r'^LS +age: +(?P<age>(\d+))$') p3_2_1 = re.compile(r'^LS +age: +\w+\((?P<age>(\d+))\)$') p4 = re.compile(r'^Options:(?: +(?P<option>([a-zA-Z0-9]+)))?' '(?: *\((?P<option_desc>(.*))\))?$') p5_1 = re.compile(r'^LS +Type: +(?P<lsa_type>(.*))$') p5_2 = re.compile(r'^Link +State +ID: +(?P<lsa_id>(\S+))' '(?: +\(.*\))?$') p6 = re.compile(r'^Advertising +Router: +(?P<adv_router>(\S+))$') p7 = re.compile(r'^LS +Seq +Number: +(?P<ls_seq_num>(\S+))$') p8 = re.compile(r'^Checksum: +(?P<checksum>(\S+))$') p9 = re.compile(r'^Length *: +(?P<length>(\d+))$') p10 = re.compile(r'^Network +Mask: +\/(?P<net_mask>(\S+))$') p11_1 = re.compile(r'^Metric +Type: +2 +\(.*\)$') p11_2 = re.compile(r'^Metric +Type: +1 +\(.*\)$') p12 = re.compile(r'^TOS:? +(?P<tos>(\d+))(?:(\s+|\t+)Metric(?:s)?:' ' +(?P<metric>(\d+)))?$') p13 = re.compile(r'^Metric: +(?P<metric>(\d+))$') p14 = re.compile(r'^Forward +Address: +(?P<addr>(\S+))$') p15 = re.compile(r'^External +Route +Tag: +(?P<tag>(\d+))$') p16 = re.compile(r'^Attached +Router: +(?P<att_router>(\S+))$') p17 = re.compile(r'^Number +of +(l|L)inks *: +(?P<num>(\d+))$') p18 = re.compile(r'^Link +connected +to: +a +(?P<type>(.*))$') p18_1 = re.compile(r'^Link\s+connected +to\s*: +(?P<type>(.*))$') p19_1 = re.compile(r'^\(Link +ID\) +Network\/(s|S)ubnet +(n|N)umber:' ' +(?P<link_id>(\S+))$') p19_2 = re.compile(r'^\(Link +ID\) +(D|d)esignated +(R|r)outer' ' +(a|A)ddress: +(?P<link_id>(\S+))$') p19_3 = re.compile(r'^\(Link +ID\) +(N|n)eighboring +(R|r)outer' ' +(I|d)D: +(?P<link_id>(\S+))$') p20_1 = re.compile(r'^\(Link +Data\) +Network +Mask:' ' +(?P<link_data>(\S+))$') p20_2 = re.compile(r'^\(Link +Data\) +Router +Interface +address:' ' +(?P<link_data>(\S+))$') # MTID 32 Metrics: 1 # MTID : 0 p21 = re.compile(r'MTID\s*:*\s*(?P<mtid>\d+)\s*(?:(Metrics*\s*:*\s*(?P<metric>\d+)))?') p21_1 = re.compile(r'^Number +of +MTID +metrics: +(?P<num>(\d+))$') p22 = re.compile(r'^Opaque +Type: +(?P<type>(\d+))(?: +\((Traffic Engineering)\))?$') p23 = re.compile(r'^Opaque +ID: +(?P<id>(\d+))$') p24 = re.compile(r'^Fragment +number *: +(?P<num>(\d+))$') p25 = re.compile(r'^MPLS +TE +router +ID *: +(?P<mpls>(\S+))$') p26_1 = re.compile(r'^AS +Boundary +Router$') p26_2 = re.compile(r'^Area +Border +Router$') p27 = re.compile(r'^Link +connected +to\s*\:*\s+(?P<link>(.*))$') p28 = re.compile(r'^Link +ID *: +(?P<id>(\S+))$') p29 = re.compile(r'^Interface +Address *: +(?P<addr>(\S+))$') p30 = re.compile(r'^Admin +Metric *: +(?P<te_metric>(\d+))$') p31 = re.compile(r'^Maximum +(B|b)andwidth *:' ' +(?P<max_band>(\d+))$') p32 = re.compile(r'^Maximum +(R|r)eservable +(B|b)andwidth' '(?: +global)? *: +(?P<max_res_band>(\d+))$') p33 = re.compile(r'^Affinity +Bit *: +(?P<admin_group>(\S+))$') p33_1 = re.compile(r'^IGP +Metric *: +(?P<igp_metric>(\d+))$') p33_2 = re.compile(r'^Number +of +Priority *: +(?P<num>(\d+))$') p34 = re.compile(r'^Priority +(?P<num1>(\d+)) *:' ' +(?P<band1>(\d+))(?: +Priority +(?P<num2>(\d+))' ' *: +(?P<band2>(\d+)))?$') p35 = re.compile(r'^Unknown +Sub-TLV *: +Type += +(?P<type>(\d+)),' ' +Length += +(?P<length>(\d+))' ' +Value += +(?P<value>(.*))$') p36 = re.compile(r'^Extended +Administrative +Group *: +Length *:' ' +(?P<eag_length>(\d+))$') p37 = re.compile(r'^EAG\[(?P<group_num>(\d+))\]: +(?P<val>(\d+))$') # Neighbor Address : 192.168.220.2 p38 = re.compile(r'Neighbor\s+Address\s*:\s*(?P<neighbor_address>\S+)') # TLV Type: Router Information # TLV Type: Segment Routing Algorithm p39 = re.compile(r'TLV\s+Type\s*:\s*(?P<tlv_type>.+)') # Router Information p39_1 = re.compile(r'(R|r)outer\s+(I|i)nformation') # Segment Routing Algorithm p39_2 = re.compile(r'(S|s)egment\s+(R|r)outing\s+(A|a)lgorithm') # Segment Routing Range p39_3 = re.compile(r'(S|s)egment\s+(R|r)outing\s+(R|r)ange') # Segment Routing Node MSD p39_4 = re.compile(r'(S|s)egment\s+(R|r)outing\s+(N|n)ode\s+MSD') # Segment Routing Local Block p39_5 = re.compile(r'(S|s)egment\s+(R|r)outing\s+(L|l)ocal\s+(B|b)lock') # Extended Prefix p39_6 = re.compile(r'(E|e)xtended\s+(P|p)refix') # Extended Link p39_7 = re.compile(r'(E|e)xtended\s+(L|l)ink') # Algorithm: SPF # Algorithm: Strict SPF p40 = re.compile(r'Algo(?:(rithm))?\s*:\s*(?P<algorithm>.+)') # Range Size: 1000 p41 = re.compile(r'Range\s+Size\s*:\s*(?P<range_size>\d+)') # Flags : L-Bit, V-bit p42 = re.compile(r'Flags\s*\:\s*(?P<flags>.+)') # Weight : 0 p44 = re.compile(r'Weight\s*:\s*(?P<weight>\d+)') # Label : 19 p45 = re.compile(r'Label\s*:\s*(?P<label>\d+)') # (Link Data) Interface IP address: 192.168.220.1 p46 = re.compile(r'\(Link\s+Data\)\s+Interface\s+IP\s+address\s*:\s*(?P<link_data>\S+)') # Prefix : 10.4.1.1/32 p47 = re.compile(r'Prefix\s*:\s*(?P<prefix>\S+)') # AF : 0 p48 = re.compile(r'AF\s*:\s*(?P<af>\S+)') # Route-type: Intra p49 = re.compile(r'Route\-type\s*:\s*(?P<route_type>.+)') # Sub-TLV Type: Remote Intf Addr # Sub-TLV Type: Local / Remote Intf ID p50 = re.compile(r'Sub\-TLV\s+Type\s*:\s*(?P<sub_tlv_type>.+)') # Remote Interface Address : 192.168.0.1 p51 = re.compile(r'Remote\s+Interface\s+Address\s*:\s*(?P<remote_interface_address>\S+)') # Local Interface ID : 20 p52 = re.compile(r'Local\s+Interface\s+ID\s*:\s*(?P<local_interface_id>\S+)') # Remote Interface ID : 20 p53 = re.compile(r'Remote\s+Interface\s+ID\s*:\s*(?P<remote_interface_id>\S+)') # SID : 1 p54 = re.compile(r'SID\s*:\s*(?P<sid>\S+)') # Graceful Restart Helper p55 = re.compile(r'(G|g)raceful\s+(R|r)estart\s+(H|h)elper') # Stub Router Support p56 = re.compile(r'(S|s)tub\s+(R|r)outer\s+(S|s)upport') # SPF p57 = re.compile(r'SPF') # Strict SPF p58 = re.compile(r'Strict\s+SPF') # Sub-type: Node Max Sid Depth, Value: 13 p59 = re.compile(r'Sub\-type\s*:\s*Node\s+Max\s+Sid\s+Depth\,\s+Value:\s*(?P<value>\d+)') for line in out.splitlines(): line = line.strip() # OSPF Router with ID (10.36.3.3) (Process ID 1) # OSPF Router with ID (10.36.3.3) (Process ID 1, VRF VRF1) m = p1.match(line) if m: router_id = str(m.groupdict()['router_id']) instance = str(m.groupdict()['instance']) if m.groupdict()['vrf']: vrf = str(m.groupdict()['vrf']) else: vrf = 'default' if 'vrf' not in ret_dict: ret_dict['vrf'] = {} if vrf not in ret_dict['vrf']: ret_dict['vrf'][vrf] = {} if 'address_family' not in ret_dict['vrf'][vrf]: ret_dict['vrf'][vrf]['address_family'] = {} if af not in ret_dict['vrf'][vrf]['address_family']: ret_dict['vrf'][vrf]['address_family'][af] = {} if 'instance' not in ret_dict['vrf'][vrf]['address_family'][af]: ret_dict['vrf'][vrf]['address_family'][af]['instance'] = {} if instance not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance']: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance] = {} continue # Router Link States (Area 0) # Net Link States (Area 1) # Summary Net Link States (Area 0.0.0.0) # Type-5 AS External Link States # Type-10 Opaque Link Area Link States (Area 0) m = p2.match(line) if m: lsa_type = lsa_type_mapping[db_type] # Set area if m.groupdict()['area']: try: int(m.groupdict()['area']) area = str(IPAddress(str(m.groupdict()['area']))) except Exception: area = str(m.groupdict()['area']) else: area = '0.0.0.0' # Create dict structure if 'areas' not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'] = {} if area not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas']: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area] = {} if 'database' not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas'][area]: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area]['database'] = {} if 'lsa_types' not in ret_dict['vrf'][vrf]['address_family']\ [af]['instance'][instance]['areas'][area]['database']: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area]['database']['lsa_types'] = {} if lsa_type not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas'][area]['database']\ ['lsa_types']: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area]['database']['lsa_types']\ [lsa_type] = {} # Set sub_dict sub_dict = ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas'][area]['database']\ ['lsa_types'][lsa_type] # Set lsa_type sub_dict['lsa_type'] = lsa_type continue # Routing Bit Set on this LSA m = p3_1.match(line) if m: routing_bit_enable = True continue # LS age: 1565 m = p3_2.match(line) if m: tlv_type_flag = False sub_tlv_type_flag = False age = int(m.groupdict()['age']) continue # LS age: MAXAGE(3601) m = p3_2_1.match(line) if m: tlv_type_flag = False sub_tlv_type_flag = False age = int(m.groupdict()['age']) continue # Options: 0x20 (No TOS-capability, DC) # Options: (No TOS-capability, DC) m = p4.match(line) if m: option = str(m.groupdict()['option']) option_desc = str(m.groupdict()['option_desc']) continue # LS Type: Type-5 AS-External m = p5_1.match(line) if m: lsa_type = lsa_type_mapping[db_type] continue # Link State ID: 10.4.1.1 # Link State ID: 10.94.44.44 (Network address) # Link State ID: 10.1.2.1 (Designated Router address) # Link State ID: 10.1.2.1 (address of Designated Router) m = p5_2.match(line) if m: lsa_id = str(m.groupdict()['lsa_id']) continue # Advertising Router: 10.64.4.4 m = p6.match(line) if m: adv_router = str(m.groupdict()['adv_router']) lsa = '{} {}'.format(lsa_id, adv_router) # Reset counters for this lsa link_tlv_counter = 0 unknown_tlvs_counter = 0 # Create schema structure if 'lsas' not in sub_dict: sub_dict['lsas'] = {} if lsa not in sub_dict['lsas']: sub_dict['lsas'][lsa] = {} # Set keys under 'lsa' sub_dict['lsas'][lsa]['adv_router'] = adv_router try: sub_dict['lsas'][lsa]['lsa_id'] = lsa_id except Exception: pass # Set db_dict if 'ospfv2' not in sub_dict['lsas'][lsa]: sub_dict['lsas'][lsa]['ospfv2'] = {} if 'body' not in sub_dict['lsas'][lsa]['ospfv2']: sub_dict['lsas'][lsa]['ospfv2']['body'] = {} if db_type not in sub_dict['lsas'][lsa]['ospfv2']['body']: sub_dict['lsas'][lsa]['ospfv2']['body'][db_type] = {} db_dict = sub_dict['lsas'][lsa]['ospfv2']['body'][db_type] # Create 'topologies' sub_dict if 'summary' or 'database' if db_type in ['summary', 'external']: if 'topologies' not in db_dict: db_dict['topologies'] = {} if default_mt_id not in db_dict['topologies']: db_dict['topologies'][default_mt_id] = {} db_topo_dict = db_dict['topologies'][default_mt_id] db_topo_dict['mt_id'] = default_mt_id # Set header dict if 'header' not in sub_dict['lsas'][lsa]['ospfv2']: sub_dict['lsas'][lsa]['ospfv2']['header'] = {} header_dict = sub_dict['lsas'][lsa]['ospfv2']['header'] # Set previously parsed values try: header_dict['routing_bit_enable'] = routing_bit_enable del routing_bit_enable except Exception: pass try: header_dict['age'] = age del age except Exception: pass try: header_dict['option'] = option del option except Exception: pass try: header_dict['option_desc'] = option_desc del option_desc except Exception: pass try: header_dict['type'] = lsa_type del lsa_type except Exception: pass try: header_dict['lsa_id'] = lsa_id del lsa_id except Exception: pass try: header_dict['adv_router'] = adv_router del adv_router except Exception: pass try: header_dict['opaque_type'] = opaque_type del opaque_type except Exception: pass try: header_dict['opaque_id'] = opaque_id del opaque_id except Exception: pass # LS Seq Number: 0x80000002 m = p7.match(line) if m: header_dict['seq_num'] = str(m.groupdict()['ls_seq_num']) continue # Checksum: 0x7d61 m = p8.match(line) if m: header_dict['checksum'] = str(m.groupdict()['checksum']) continue # Length: 36 # Length : 36 m = p9.match(line) if m: length = int(m.groupdict()['length']) if sub_tlv_type_flag: sub_tlv_types_dict['length'] = length elif tlv_type_flag: tlv_type_dict['length'] = length else: header_dict['length'] = length continue # Network Mask: /32 m = p10.match(line) if m: dummy = '{}/{}'.format('0.0.0.0', m.groupdict()['net_mask']) db_dict['network_mask'] = str(IPNetwork(dummy).netmask) continue # Metric Type: 2 (Larger than any link state path) # Metric Type: 2 (Larger than any link state path) m = p11_1.match(line) if m: db_topo_dict['flags'] = "E" continue # Metric Type: 1 (Comparable directly to link state metric) m = p11_2.match(line) if m: # Do nothing continue # TOS: 0 # TOS: 0 Metric: 1 m = p12.match(line) if m: if db_type == 'router': if m.groupdict()['tos']: db_dict['links'][link_id]['topologies'][default_mt_id]\ ['tos'] = int(m.groupdict()['tos']) if m.groupdict()['metric']: db_dict['links'][link_id]['topologies'][default_mt_id]\ ['metric'] = int(m.groupdict()['metric']) continue else: db_topo_dict['tos'] = int(m.groupdict()['tos']) if m.groupdict()['metric']: db_topo_dict['metric'] = int(m.groupdict()['metric']) continue # Metric: 20 m = p13.match(line) if m: db_topo_dict['metric'] = int(m.groupdict()['metric']) continue # Forward Address: 0.0.0.0 m = p14.match(line) if m: db_topo_dict['forwarding_address'] = str(m.groupdict()['addr']) continue # External Route Tag: 0 m = p15.match(line) if m: db_topo_dict['external_route_tag'] = int(m.groupdict()['tag']) continue # Attached Router: 10.84.66.66 m = p16.match(line) if m: attached_router = str(m.groupdict()['att_router']) if 'attached_routers' not in db_dict: db_dict['attached_routers'] = {} if attached_router not in db_dict['attached_routers']: db_dict['attached_routers'][attached_router] = {} continue # Number of links: 3 # Number of Links: 3 m = p17.match(line) if m: db_dict['num_of_links'] = int(m.groupdict()['num']) continue # Link connected to: a Stub Network m = p18.match(line) if m: link_type = str(m.groupdict()['type']).lower() continue # Link connected to: another Router (point-to-point) m = p18_1.match(line) if m: if tlv_type_flag: sub_link_type = str(m.groupdict()['type']).lower() if 'another router' in sub_link_type: opaque_link_type = 1 tlv_type_dict['link_name'] = sub_link_type tlv_type_dict['link_type'] = opaque_link_type continue link_type = str(m.groupdict()['type']).lower() continue # (Link ID) Network/subnet number: 10.4.1.1 m = p19_1.match(line) if m: link_id = str(m.groupdict()['link_id']) # Create dict structures if 'links' not in db_dict: db_dict['links'] = {} if link_id not in db_dict['links']: db_dict['links'][link_id] = {} db_dict['links'][link_id]['link_id'] = link_id # Set previously parsed values try: db_dict['links'][link_id]['type'] = link_type except Exception: pass # Create topology dict under link_id if 'topologies' not in db_dict['links'][link_id]: db_dict['links'][link_id]['topologies'] = {} if default_mt_id not in db_dict['links'][link_id]['topologies']: db_dict['links'][link_id]['topologies'][default_mt_id] = {} db_dict['links'][link_id]['topologies'][default_mt_id]['mt_id'] = default_mt_id continue # (Link ID) Designated Router address: 10.166.7.6 m = p19_2.match(line) if m: link_id = str(m.groupdict()['link_id']) # If 'TLV Type' found in output this flag is set to true if tlv_type_flag: tlv_type_dict['link_id'] = link_id continue # Create dict structures if 'links' not in db_dict: db_dict['links'] = {} if link_id not in db_dict['links']: db_dict['links'][link_id] = {} db_dict['links'][link_id]['link_id'] = link_id # Set previously parsed values try: db_dict['links'][link_id]['type'] = link_type except Exception: pass # Create topology dict under link_id if 'topologies' not in db_dict['links'][link_id]: db_dict['links'][link_id]['topologies'] = {} if default_mt_id not in db_dict['links'][link_id]['topologies']: db_dict['links'][link_id]['topologies'][default_mt_id] = {} db_dict['links'][link_id]['topologies'][default_mt_id]['mt_id'] = default_mt_id continue # (Link ID) Neighboring Router ID: 10.151.22.22 m = p19_3.match(line) if m: link_id = str(m.groupdict()['link_id']) if tlv_type_flag: tlv_type_dict['link_id'] = link_id continue # Create dict structures if 'links' not in db_dict: db_dict['links'] = {} if link_id not in db_dict['links']: db_dict['links'][link_id] = {} db_dict['links'][link_id]['link_id'] = link_id # Set previously parsed values try: db_dict['links'][link_id]['type'] = link_type except Exception: pass # Create topology dict under link_id if 'topologies' not in db_dict['links'][link_id]: db_dict['links'][link_id]['topologies'] = {} if default_mt_id not in db_dict['links'][link_id]['topologies']: db_dict['links'][link_id]['topologies'][default_mt_id] = {} db_dict['links'][link_id]['topologies'][default_mt_id]['mt_id'] = default_mt_id continue # (Link Data) Network Mask: 255.255.255.255 m = p20_1.match(line) if m: db_dict['links'][link_id]['link_data'] = \ str(m.groupdict()['link_data']) continue # (Link Data) Router Interface address: 10.166.7.6 m = p20_2.match(line) if m: db_dict['links'][link_id]['link_data'] = \ str(m.groupdict()['link_data']) continue # MTID 32 Metrics: 1 # MTID : 0 m = p21.match(line) if m: mtid = int(m.groupdict()['mtid']) if sub_tlv_type_flag: sub_tlv_types_dict['mt_id'] = int(mtid) continue if db_type == 'router': if mtid not in db_dict['links'][link_id]['topologies']: db_dict['links'][link_id]['topologies'][mtid] = {} db_dict['links'][link_id]['topologies'][mtid]['mt_id'] = mtid db_dict['links'][link_id]['topologies'][mtid]['metric'] = \ int(m.groupdict()['metric']) elif db_type == 'summary': if 'topologies' not in db_dict: db_dict['topologies'] = {} if mtid not in db_dict['topologies']: db_dict['topologies'][mtid] = {} db_topo_dict = db_dict['topologies'][mtid] db_topo_dict['mt_id'] = mtid db_topo_dict['metric'] = int(m.groupdict()['metric']) continue # Number of MTID metrics: 0 m = p21_1.match(line) if m: db_dict['links'][link_id]['num_mtid_metrics'] = \ int(m.groupdict()['num']) continue # Number of TOS metrics: 0 p21_2 = re.compile(r'^Number +of +TOS +metrics: +(?P<num>(\d+))$') m = p21_2.match(line) if m: db_dict['links'][link_id]['num_tos_metrics'] = \ int(m.groupdict()['num']) continue # Opaque Type: 1 m = p22.match(line) if m: opaque_type = int(m.groupdict()['type']) continue # Opaque ID: 38 m = p23.match(line) if m: opaque_id = int(m.groupdict()['id']) continue # Fragment number: 0 m = p24.match(line) if m: header_dict['fragment_number'] = int(m.groupdict()['num']) continue # MPLS TE router ID : 10.4.1.1 m = p25.match(line) if m: db_dict['mpls_te_router_id'] = str(m.groupdict()['mpls']) continue # AS Boundary Router m = p26_1.match(line) if m: header_dict['as_boundary_router'] = True continue # Area Border Router m = p26_2.match(line) if m: header_dict['area_border_router'] = True continue # Link connected to Broadcast network m = p27.match(line) if m: link_tlv_counter += 1 if 'link_tlvs' not in db_dict: db_dict['link_tlvs'] = {} if link_tlv_counter not in db_dict['link_tlvs']: db_dict['link_tlvs'][link_tlv_counter] = {} # Set link type opaque_link = str(m.groupdict()['link']).lower() if opaque_link == 'broadcast network': opaque_link_type = 2 else: opaque_link_type = 1 db_dict['link_tlvs'][link_tlv_counter]\ ['link_type'] = opaque_link_type db_dict['link_tlvs'][link_tlv_counter]\ ['link_name'] = opaque_link # Set remote_if_ipv4_addrs (if needed) if opaque_link_type == 2: if 'remote_if_ipv4_addrs' not in db_dict['link_tlvs']\ [link_tlv_counter]: db_dict['link_tlvs'][link_tlv_counter]\ ['remote_if_ipv4_addrs'] = {} db_dict['link_tlvs'][link_tlv_counter]\ ['remote_if_ipv4_addrs']['0.0.0.0'] = {} continue # Link ID : 10.1.4.4 m = p28.match(line) if m: db_dict['link_tlvs'][link_tlv_counter]['link_id'] = \ str(m.groupdict()['id']) continue # Interface Address : 10.1.4.1 m = p29.match(line) if m: addr = str(m.groupdict()['addr']) if 'local_if_ipv4_addrs' not in db_dict['link_tlvs']\ [link_tlv_counter]: db_dict['link_tlvs'][link_tlv_counter]\ ['local_if_ipv4_addrs'] = {} if addr not in db_dict['link_tlvs'][link_tlv_counter]\ ['local_if_ipv4_addrs']: db_dict['link_tlvs'][link_tlv_counter]\ ['local_if_ipv4_addrs'][addr] = {} continue # Admin Metric : 1 m = p30.match(line) if m: db_dict['link_tlvs'][link_tlv_counter]['te_metric'] = \ int(m.groupdict()['te_metric']) continue # Maximum Bandwidth : 125000000 # Maximum bandwidth : 125000000 m = p31.match(line) if m: db_dict['link_tlvs'][link_tlv_counter]['max_bandwidth'] = \ int(m.groupdict()['max_band']) continue # Maximum reservable bandwidth : 93750000 # Maximum reservable bandwidth global: 93750000 m = p32.match(line) if m: db_dict['link_tlvs'][link_tlv_counter]\ ['max_reservable_bandwidth'] = \ int(m.groupdict()['max_res_band']) continue # Affinity Bit : 0x0 m = p33.match(line) if m: db_dict['link_tlvs'][link_tlv_counter]['admin_group'] = \ str(m.groupdict()['admin_group']) continue # IGP Metric : 1 m = p33_1.match(line) if m: db_dict['link_tlvs'][link_tlv_counter]['igp_metric'] = \ int(m.groupdict()['igp_metric']) continue # Number of Priority : 8 m = p33_2.match(line) if m: db_dict['link_tlvs'][link_tlv_counter]['total_priority'] = \ int(m.groupdict()['num']) continue # Priority 0 : 93750000 Priority 1 : 93750000 m = p34.match(line) if m: value1 = '{} {}'.format(str(m.groupdict()['num1']), str(m.groupdict()['band1'])) value2 = '{} {}'.format(str(m.groupdict()['num2']), str(m.groupdict()['band2'])) if 'unreserved_bandwidths' not in db_dict['link_tlvs']\ [link_tlv_counter]: db_dict['link_tlvs'][link_tlv_counter]\ ['unreserved_bandwidths'] = {} if value1 not in db_dict['link_tlvs'][link_tlv_counter]\ ['unreserved_bandwidths']: db_dict['link_tlvs'][link_tlv_counter]\ ['unreserved_bandwidths'][value1] = {} db_dict['link_tlvs'][link_tlv_counter]\ ['unreserved_bandwidths'][value1]['priority'] = \ int(m.groupdict()['num1']) db_dict['link_tlvs'][link_tlv_counter]\ ['unreserved_bandwidths'][value1]\ ['unreserved_bandwidth'] = int(m.groupdict()['band1']) if value2 not in db_dict['link_tlvs'][link_tlv_counter]\ ['unreserved_bandwidths']: db_dict['link_tlvs'][link_tlv_counter]\ ['unreserved_bandwidths'][value2] = {} db_dict['link_tlvs'][link_tlv_counter]\ ['unreserved_bandwidths'][value2]['priority'] = \ int(m.groupdict()['num2']) db_dict['link_tlvs'][link_tlv_counter]\ ['unreserved_bandwidths'][value2]\ ['unreserved_bandwidth'] = int(m.groupdict()['band2']) continue # Unknown Sub-TLV : Type = 32770, Length = 4 Value = 00 00 00 01 m = p35.match(line) if m: unknown_tlvs_counter += 1 if 'unknown_tlvs' not in db_dict['link_tlvs'][link_tlv_counter]: db_dict['link_tlvs'][link_tlv_counter]['unknown_tlvs'] = {} if unknown_tlvs_counter not in db_dict['link_tlvs']\ [link_tlv_counter]['unknown_tlvs']: db_dict['link_tlvs'][link_tlv_counter]['unknown_tlvs']\ [unknown_tlvs_counter] = {} db_dict['link_tlvs'][link_tlv_counter]['unknown_tlvs']\ [unknown_tlvs_counter]['type'] = int(m.groupdict()['type']) db_dict['link_tlvs'][link_tlv_counter]['unknown_tlvs']\ [unknown_tlvs_counter]['length'] = int(m.groupdict()['length']) db_dict['link_tlvs'][link_tlv_counter]['unknown_tlvs']\ [unknown_tlvs_counter]['value'] = str(m.groupdict()['value']) continue # Extended Administrative Group : Length: 8 m = p36.match(line) if m: if 'extended_admin_group' not in db_dict['link_tlvs']\ [link_tlv_counter]: db_dict['link_tlvs'][link_tlv_counter]\ ['extended_admin_group'] = {} db_dict['link_tlvs'][link_tlv_counter]['extended_admin_group']\ ['length'] = int(m.groupdict()['eag_length']) continue # EAG[0]: 0 m = p37.match(line) if m: group_num = int(m.groupdict()['group_num']) if 'groups' not in db_dict['link_tlvs'][link_tlv_counter]\ ['extended_admin_group']: db_dict['link_tlvs'][link_tlv_counter]\ ['extended_admin_group']['groups'] = {} if group_num not in db_dict['link_tlvs'][link_tlv_counter]\ ['extended_admin_group']['groups']: db_dict['link_tlvs'][link_tlv_counter]\ ['extended_admin_group']['groups'][group_num] = {} db_dict['link_tlvs'][link_tlv_counter]['extended_admin_group']\ ['groups'][group_num]['value'] = int(m.groupdict()['val']) continue # Neighbor Address : 192.168.220.2 m = p38.match(line) if m: db_dict['link_tlvs'][link_tlv_counter]['remote_if_ipv4_addrs'] = {m.groupdict()['neighbor_address']: {}} continue # TLV Type: Extended Link # TLV Type: Segment Routing Node MSD m = p39.match(line) if m: tlv_type_flag = True sub_tlv_type_flag = False group = m.groupdict() tlv_type = group['tlv_type'] # Router Information if p39_1.match(tlv_type): tlv_type_field = 'router_capabilities_tlv' # Segment Routing Algorithm elif p39_2.match(tlv_type): tlv_type_field = 'sr_algorithm_tlv' # Segment Routing Range elif p39_3.match(tlv_type): tlv_type_field = 'sid_range_tlvs' # Segment Routing Node MSD elif p39_4.match(tlv_type): tlv_type_field = 'node_msd_tlvs' # Segment Routing Local Block elif p39_5.match(tlv_type): tlv_type_field = 'local_block_tlvs' # Extended Prefix elif p39_6.match(tlv_type): tlv_type_field = 'extended_prefix_tlvs' # Extended Link elif p39_7.match(tlv_type): tlv_type_field = 'extended_link_tlvs' tlv_types_index = db_dict.get(tlv_type_field, {}).keys() if tlv_types_index: index = max(tlv_types_index) + 1 else: index = 1 tlv_type_dict = db_dict\ .setdefault(tlv_type_field, {})\ .setdefault(index, {}) tlv_type_dict['tlv_type'] = tlv_type continue if 'Capabilities' in line: capabilities_flag = True continue if capabilities_flag: if not line: capabilities_flag = False continue capability_field = None # Graceful Restart Helper if p55.match(line): capability_field = 'graceful_restart_helper' # Stub Router Support elif p56.match(line): capability_field = 'stub_router' if not capability_field: continue capabilities_dict = tlv_type_dict\ .setdefault('information_capabilities', {}) capabilities_dict[capability_field] = True continue # Algorithm: SPF # Algorithm: Strict SPF m = p40.match(line) if m: group = m.groupdict() algorithm = group['algorithm'] algorithm = algorithm.strip() if sub_tlv_type_flag: sub_tlv_types_dict['algo'] = algorithm continue algo_field = None # SPF if p57.match(algorithm): algo_field = 'spf' # Strict SPF if p58.match(algorithm): algo_field = 'strict_spf' if not algo_field: continue algorithm_dict = tlv_type_dict.setdefault('algorithm', {}) algorithm_dict[algo_field] = True continue # Range Size: 1000 m = p41.match(line) if m: group = m.groupdict() range_size = group['range_size'] tlv_type_dict['range_size'] = int(range_size) continue # Flags : L-Bit, V-bit m = p42.match(line) if m: group = m.groupdict() flags = group['flags'] if sub_tlv_type_flag: sub_tlv_types_dict['flags'] = flags continue tlv_type_dict['flags'] = flags continue # Weight : 0 m = p44.match(line) if m: group = m.groupdict() weight = int(group['weight']) if sub_tlv_type_flag: sub_tlv_types_dict['weight'] = weight continue tlv_type_dict['weight'] = weight continue # Label : 19 m = p45.match(line) if m: group = m.groupdict() label = group['label'] sub_tlv_types_dict['label'] = int(label) continue # (Link Data) Interface IP address: 192.168.220.1 m = p46.match(line) if m: group = m.groupdict() tlv_type_dict['link_data'] = group['link_data'] continue # Prefix : 10.4.1.1/32 m = p47.match(line) if m: group = m.groupdict() prefix = group['prefix'] tlv_type_dict['prefix'] = prefix continue # AF : 0 m = p48.match(line) if m: group = m.groupdict() af = int(group['af']) tlv_type_dict['af'] = af continue # Route-type: Intra m = p49.match(line) if m: group = m.groupdict() route_type = group['route_type'] tlv_type_dict['route_type'] = route_type continue # Sub-TLV Type: Remote Intf Addr # Sub-TLV Type: Local / Remote Intf ID m = p50.match(line) if m: tlv_type_flag = False sub_tlv_type_flag = True group = m.groupdict() sub_tlv_type = group['sub_tlv_type'] sub_tlv_types_index = tlv_type_dict.get('sub_tlvs', {}).keys() if sub_tlv_types_index: index = max(sub_tlv_types_index) + 1 else: index = 1 sub_tlv_types_dict = tlv_type_dict.setdefault('sub_tlvs', {}).setdefault(index, {}) sub_tlv_types_dict['type'] = sub_tlv_type continue # Remote Interface Address : 192.168.0.1 m = p51.match(line) if m: group = m.groupdict() remote_interface_address = group['remote_interface_address'] sub_tlv_types_dict['remote_interface_address'] = remote_interface_address continue # Local Interface ID : 20 m = p52.match(line) if m: group = m.groupdict() local_interface_id = int(group['local_interface_id']) sub_tlv_types_dict['local_interface_id'] = local_interface_id continue # Remote Interface ID : 20 m = p53.match(line) if m: group = m.groupdict() remote_interface_id = int(group['remote_interface_id']) sub_tlv_types_dict['remote_interface_id'] = remote_interface_id continue # SID : 1 m = p54.match(line) if m: group = m.groupdict() sid = int(group['sid']) sub_tlv_types_dict['sid'] = sid continue # Sub-type: Node Max Sid Depth, Value: 13 m = p59.match(line) if m: group = m.groupdict() sub_type_value = int(group['value']) sub_type_dict = tlv_type_dict.setdefault('sub_type', {}) sub_type_dict['node_max_sid_depth_value'] = sub_type_value continue return ret_dict # ================================== # Schema for: # * 'show ip ospf database router' # ================================== class ShowIpOspfDatabaseRouterSchema(MetaParser): ''' Schema for: * show ip ospf database router' ''' schema = { 'vrf': {Any(): {'address_family': {Any(): {'instance': {Any(): {Optional('areas'): {Any(): {'database': {'lsa_types': {Any(): {'lsa_type': int, 'lsas': {Any(): {'lsa_id': str, 'adv_router': str, 'ospfv2': {'header': {'option': str, 'option_desc': str, 'lsa_id': str, 'age': int, 'type': int, 'adv_router': str, 'seq_num': str, 'checksum': str, 'length': int, Optional('routing_bit_enable'): bool, Optional('as_boundary_router'): bool, Optional('area_border_router'): bool, }, 'body': {'router': {Optional('flags'): str, 'num_of_links': int, Optional('links'): {Any(): {'link_id': str, 'link_data': str, 'type': str, Optional('num_mtid_metrics'): int, Optional('num_tos_metrics'): int, 'topologies': {Any(): {'mt_id': int, Optional('metric'): int, Optional('tos'): int, }, }, }, }, }, }, }, }, }, }, }, }, }, }, }, }, }, }, }, }, } # ================================== # Parser for: # * 'show ip ospf database router' # ================================== class ShowIpOspfDatabaseRouter(ShowIpOspfDatabaseRouterSchema, ShowIpOspfDatabaseTypeParser): ''' Parser for: * 'show ip ospf database router' ''' cli_command = 'show ip ospf database router' exclude = ['age', 'seq_num', 'checksum', 'links'] def cli(self, output=None): if not output: output = self.device.execute(self.cli_command) return super().cli(db_type='router', out=output) # ==================================== # Schema for: # * 'show ip ospf database external' # ==================================== class ShowIpOspfDatabaseExternalSchema(MetaParser): ''' Schema for: * 'show ip ospf database external' ''' schema = { 'vrf': {Any(): {'address_family': {Any(): {'instance': {Any(): {Optional('areas'): {Any(): {'database': {'lsa_types': {Any(): {'lsa_type': int, 'lsas': {Any(): {'lsa_id': str, 'adv_router': str, 'ospfv2': {'header': {'option': str, 'option_desc': str, 'lsa_id': str, 'age': int, 'type': int, 'adv_router': str, 'seq_num': str, 'checksum': str, 'length': int, Optional('routing_bit_enable'): bool, }, 'body': {'external': {'network_mask': str, 'topologies': {Any(): {'mt_id': int, Optional('flags'): str, 'metric': int, 'forwarding_address': str, 'external_route_tag': int}, }, }, }, }, }, }, }, }, }, }, }, }, }, }, }, }, }, } # ==================================== # Parser for: # * 'show ip ospf database external' # ==================================== class ShowIpOspfDatabaseExternal(ShowIpOspfDatabaseExternalSchema, ShowIpOspfDatabaseTypeParser): ''' Parser for: * 'show ip ospf database external' ''' cli_command = 'show ip ospf database external' def cli(self, output=None): if not output: output = self.device.execute(self.cli_command) return super().cli(db_type='external', out=output) # =================================== # Schema for: # * 'show ip ospf database network' # =================================== class ShowIpOspfDatabaseNetworkSchema(MetaParser): ''' Schema for: * 'show ip ospf database network' ''' schema = { 'vrf': {Any(): {'address_family': {Any(): {'instance': {Any(): {Optional('areas'): {Any(): {'database': {'lsa_types': {Any(): {'lsa_type': int, 'lsas': {Any(): {'lsa_id': str, 'adv_router': str, 'ospfv2': {'header': {'option': str, 'option_desc': str, 'lsa_id': str, 'age': int, 'type': int, 'adv_router': str, 'seq_num': str, 'checksum': str, 'length': int, Optional('routing_bit_enable'): bool, }, 'body': {'network': {'network_mask': str, 'attached_routers': {Any(): {}, }, }, }, }, }, }, }, }, }, }, }, }, }, }, }, }, }, } # =================================== # Parser for: # * 'show ip ospf database network' # =================================== class ShowIpOspfDatabaseNetwork(ShowIpOspfDatabaseNetworkSchema, ShowIpOspfDatabaseTypeParser): ''' Parser for: * 'show ip ospf database network' ''' cli_command = 'show ip ospf database network' exclude = ['age', 'seq_num', 'checksum', 'lsas'] def cli(self, output=None): if not output: output = self.device.execute(self.cli_command) return super().cli(db_type='network', out=output) # =================================== # Schema for: # * 'show ip ospf database summary' # =================================== class ShowIpOspfDatabaseSummarySchema(MetaParser): ''' Schema for: * 'show ip ospf database summary' ''' schema = { 'vrf': {Any(): {'address_family': {Any(): {'instance': {Any(): {Optional('areas'): {Any(): {'database': {'lsa_types': {Any(): {'lsa_type': int, 'lsas': {Any(): {'lsa_id': str, 'adv_router': str, 'ospfv2': {'header': {'option': str, 'option_desc': str, 'lsa_id': str, 'age': int, 'type': int, 'adv_router': str, 'seq_num': str, 'checksum': str, 'length': int, Optional('routing_bit_enable'): bool, }, 'body': {'summary': {'network_mask': str, 'topologies': {Any(): {'mt_id': int, 'metric': int}, }, }, }, }, }, }, }, }, }, }, }, }, }, }, }, }, }, } # =================================== # Parser for: # * 'show ip ospf database summary' # =================================== class ShowIpOspfDatabaseSummary(ShowIpOspfDatabaseSummarySchema, ShowIpOspfDatabaseTypeParser): ''' Parser for: * 'show ip ospf database summary' ''' cli_command = 'show ip ospf database summary' exclude = ['age', 'seq_num', 'checksum'] def cli(self, output=None): if not output: output = self.device.execute(self.cli_command) return super().cli(db_type='summary', out=output) # ======================================= # Schema for: # * 'show ip ospf database opaque-area' # ======================================= class ShowIpOspfDatabaseOpaqueAreaSchema(MetaParser): ''' Schema for: * 'show ip ospf database opaque-area' * 'show ip ospf database opaque-area self-originate' ''' schema = { 'vrf': { Any(): { 'address_family': { Any(): { 'instance': { Any(): { Optional('areas'): { Any(): { 'database': { 'lsa_types': { Any(): { 'lsa_type': int, 'lsas': { Any(): { 'lsa_id': str, 'adv_router': str, 'ospfv2': { 'header': { 'option': str, 'option_desc': str, 'lsa_id': str, 'age': int, 'type': int, 'adv_router': str, 'seq_num': str, 'checksum': str, 'length': int, Optional('opaque_type'): int, 'opaque_id': int, Optional('fragment_number'): int, }, 'body': { 'opaque': { Optional('mpls_te_router_id'): str, Optional('links'): { Any(): { 'link_id': str, 'topologies': { Any(): { 'mt_id': int } }, } }, Optional('num_of_links'): int, Optional('router_capabilities_tlv'): { Any(): { 'length': int, 'tlv_type': str, Optional('information_capabilities'): { Optional('graceful_restart'): bool, Optional('graceful_restart_helper'): bool, Optional('stub_router'): bool, Optional('traffic_enginnering'): bool, Optional('p2p_over_lan'): bool, Optional('experimental_te'): bool, } } }, Optional('sr_algorithm_tlv'): { Any(): { 'tlv_type': str, 'length': int, Optional('algorithm'): { Optional('spf'): bool, Optional('strict_spf'): bool, } } }, Optional('sid_range_tlvs'): { Any(): { 'tlv_type': str, 'length': int, 'range_size': int, 'sub_tlvs': { Any(): { 'type': str, 'length': int, 'label': int, } } } }, Optional('node_msd_tlvs'): { Any(): { 'tlv_type': str, 'length': int, 'sub_type': { 'node_max_sid_depth_value': int } } }, Optional('local_block_tlvs'): { Any(): { 'tlv_type': str, 'range_size': int, 'length': int, 'sub_tlvs': { Any(): { 'type': str, 'length': int, 'label': int } } } }, Optional('extended_prefix_tlvs'): { Any(): { 'tlv_type': str, 'route_type': str, 'length': int, 'flags': str, 'prefix': str, 'af': int, Optional('sub_tlvs'): { Any(): { 'type': str, 'length': int, 'flags': str, Optional('mt_id'): int, 'algo': str, 'sid': int, } } } }, Optional('extended_link_tlvs'): { Any(): { 'link_id': str, 'link_data': str, 'length': int, Optional('link_name'): str, 'link_type': int, 'tlv_type': str, 'sub_tlvs': { Any(): { 'type': str, Optional('length'): int, Optional('flags'): str, Optional('mt_id'): int, Optional('weight'): int, Optional('label'): int, Optional('remote_interface_address'): str, Optional('local_interface_id'): int, Optional('remote_interface_id'): int, } } } }, Optional('link_tlvs'): { Any(): { Optional('link_type'): int, Optional('link_name'): str, Optional('link_id'): str, Optional('te_metric'): int, Optional('max_bandwidth'): int, Optional('max_reservable_bandwidth'): int, Optional('admin_group'): str, Optional('igp_metric'): int, Optional('total_priority'): int, Optional('local_if_ipv4_addrs'): { Any(): {} }, Optional('remote_if_ipv4_addrs'): { Any(): {} }, Optional('unreserved_bandwidths'): { Any(): { 'priority': int, 'unreserved_bandwidth': int, } }, Optional('unknown_tlvs'): { Any(): { 'type': int, 'length': int, 'value': str, } }, Optional('extended_admin_group'): { 'length': int, Optional('groups'): { Any(): { 'value': int } }, }, } }, } }, }, } }, } } } } } } } } } } } } # ======================================= # Parser for: # * 'show ip ospf database opaque-area' # ======================================= class ShowIpOspfDatabaseOpaqueArea(ShowIpOspfDatabaseOpaqueAreaSchema, ShowIpOspfDatabaseTypeParser): ''' Parser for: * 'show ip ospf database opaque-area' ''' cli_command = 'show ip ospf database opaque-area' def cli(self, output=None): if not output: output = self.device.execute(self.cli_command) return super().cli(db_type='opaque', out=output) # ===================================== # Schema for: # * 'show ip ospf mpls ldp interface' # ===================================== class ShowIpOspfMplsLdpInterfaceSchema(MetaParser): ''' Schema for: * "show ip ospf mpls ldp interface" ''' schema = { 'vrf': {Any(): {'address_family': {Any(): {'instance': {Any(): {'mpls': {'ldp': {'autoconfig': bool, 'autoconfig_area_id': str, }, }, 'areas': {Any(): {'interfaces': {Any(): {'mpls': {'ldp': {'autoconfig': bool, 'autoconfig_area_id': str, 'igp_sync': bool, 'holddown_timer': bool, 'state': str, Optional('state_info') :str }, }, }, }, }, }, }, }, }, }, }, }, } # ===================================== # Parser for: # * 'show ip ospf mpls ldp interface' # ===================================== class ShowIpOspfMplsLdpInterface(ShowIpOspfMplsLdpInterfaceSchema): ''' Parser for: * 'show ip ospf mpls ldp interface' ''' cli_command = ['show ip ospf mpls ldp interface', 'show ip ospf mpls ldp interface {interface}'] def cli(self, interface='', output=None): if output is None: # Execute command on device if interface: out = self.device.execute(self.cli_command[1].format(interface=interface)) else: out = self.device.execute(self.cli_command[0]) else: out = output # Init vars ret_dict = {} af = 'ipv4' # this is ospf - always ipv4 p1 = re.compile(r'^(?P<interface>(Lo.*|.*Gig.*|.*(SL|VL).*|' 'Cellular.*|FastEthernet.*|LISP.*|Po.*|Tunnel.*|' 'VirtualPortGroup.*|Vlan.*))$') p2 = re.compile(r'^Process +ID +(?P<instance>(\S+)),' '(?: +VRF +(?P<vrf>(\S+)),)?' ' +Area +(?P<area>(\S+))$') p3 = re.compile(r'^LDP +is' ' +(?P<auto_config>(not configured|configured))' ' +through +LDP +autoconfig$') p5 = re.compile(r'^Holddown +timer +is (?P<val>([a-zA-Z\s]+))$') # Interface is down and pending LDP p6 = re.compile(r'^Interface +is (?P<state>(up|down))( +and +(?P<state_info>[\w\s]*))?$') for line in out.splitlines(): line = line.strip() # Loopback0 # GigabitEthernet2 # TenGigabitEthernet3/0/1 # TwoGigabitEthernet # FiveGigabitEthernet # TwentyFiveGigE # FortyGigabitEthernet # HundredGigE # OSPF_SL1 # OSPF_VL1 # --extra-- # Cellular # FastEthernet # LISP # Port-channel # Tunnel # VirtualPortGroup # Vlan m = p1.match(line) if m: interface = str(m.groupdict()['interface']) continue # Process ID 1, Area 0 # Process ID 100, Area 0.0.0.0 # Process ID 2, VRF VRF1, Area 1 m = p2.match(line) if m: instance = str(m.groupdict()['instance']) try: int(m.groupdict()['area']) area = str(IPAddress(str(m.groupdict()['area']))) except: area = m.groupdict()['area'] if m.groupdict()['vrf']: vrf = str(m.groupdict()['vrf']) else: vrf = 'default' # Create dict if 'vrf' not in ret_dict: ret_dict['vrf'] = {} if vrf not in ret_dict['vrf']: ret_dict['vrf'][vrf] = {} if 'address_family' not in ret_dict['vrf'][vrf]: ret_dict['vrf'][vrf]['address_family'] = {} if af not in ret_dict['vrf'][vrf]['address_family']: ret_dict['vrf'][vrf]['address_family'][af] = {} if 'instance' not in ret_dict['vrf'][vrf]['address_family'][af]: ret_dict['vrf'][vrf]['address_family'][af]['instance'] = {} if instance not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance']: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance] = {} # Create mpls dict if 'mpls' not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['mpls'] = {} if 'ldp' not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['mpls']: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['mpls']['ldp'] = {} mpls_ldp_dict = ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['mpls']['ldp'] # Set values to mpls_ldp_dict mpls_ldp_dict['autoconfig_area_id'] = area if 'areas' not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'] = {} if area not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas']: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area] = {} if 'interfaces' not in ret_dict['vrf'][vrf]['address_family']\ [af]['instance'][instance]['areas'][area]: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area]['interfaces'] = {} if interface not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas'][area]['interfaces']: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area]['interfaces'][interface] = {} if 'mpls' not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas'][area]['interfaces']\ [interface]: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area]['interfaces'][interface]\ ['mpls'] = {} if 'ldp' not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas'][area]['interfaces']\ [interface]['mpls']: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area]['interfaces'][interface]\ ['mpls']['ldp'] = {} # Creat intf_dict intf_dict = ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas'][area]\ ['interfaces'][interface]['mpls']['ldp'] # Set values to intf_dict intf_dict['autoconfig_area_id'] = area continue # LDP is not configured through LDP autoconfig # LDP is configured through LDP autoconfig m = p3.match(line) if m: if m.groupdict()['auto_config'] is 'configured': intf_dict['autoconfig'] = True mpls_ldp_dict['autoconfig'] = True else: intf_dict['autoconfig'] = False mpls_ldp_dict['autoconfig'] = False continue # LDP-IGP Synchronization : Not required # LDP-IGP Synchronization : Required p4 = re.compile(r'^LDP-IGP +Synchronization *:' ' +(?P<igp_sync>(Not required|Required))$') m = p4.match(line) if m: if m.groupdict()['igp_sync'] == 'Required': intf_dict['igp_sync'] = True else: intf_dict['igp_sync'] = False continue # Holddown timer is disabled m = p5.match(line) if m: if 'enabled' in m.groupdict()['val']: intf_dict['holddown_timer'] = True else: intf_dict['holddown_timer'] = False continue # Interface is up m = p6.match(line) if m: state_info = m.groupdict()['state_info'] intf_dict['state'] = str(m.groupdict()['state']) if state_info: intf_dict['state_info'] = str(state_info) continue return ret_dict # ======================================== # Schema for: # * 'show ip ospf mpls traffic-eng link' # ======================================== class ShowIpOspfMplsTrafficEngLinkSchema(MetaParser): ''' Schema for: * 'show ip ospf mpls traffic-eng link' ''' schema = { 'vrf': {Any(): {'address_family': {Any(): {'instance': {Any(): {'mpls': {'te': {'router_id': str}, }, 'areas': {Any(): {'mpls': {'te': {'enable': bool, Optional('total_links'): int, Optional('area_instance'): int, Optional('link_hash_bucket'): {Any(): {'link_fragments': {Any(): {'link_instance': int, 'network_type': str, 'link_id': str, 'interface_address': str, 'te_admin_metric': int, 'igp_admin_metric': int, 'max_bandwidth': int, 'max_reservable_bandwidth': int, 'affinity_bit': str, 'total_priority': int, Optional('unreserved_bandwidths'): {Any(): {'priority': int, 'unreserved_bandwidth': int, }, }, }, }, }, }, }, }, }, }, }, }, }, }, }, }, } # ======================================== # Parser for: # * 'show ip ospf mpls traffic-eng link' # ======================================== class ShowIpOspfMplsTrafficEngLink(ShowIpOspfMplsTrafficEngLinkSchema): ''' Parser for: * 'show ip ospf mpls traffic-eng link' ''' cli_command = 'show ip ospf mpls traffic-eng link' def cli(self, output=None): if output is None: # Execute command on device out = self.device.execute(self.cli_command) else: out = output # Init vars ret_dict = {} af = 'ipv4' # this is ospf - always ipv4 p1 = re.compile(r'^OSPF +Router +with +ID +\((?P<router_id>(\S+))\)' ' +\(Process +ID +(?P<instance>(\S+))\)$') p2 = re.compile(r'^Area +(?P<area>(\d+)) +has +(?P<links>(\d+))' ' +MPLS +TE +links. +Area +instance +is' ' +(?P<area_instance>(\d+))\.$') p3 = re.compile(r'^Area +(?P<area>(\S+)) +MPLS +TE +not +initialized$') p4 = re.compile(r'^Links +in +hash +bucket +(?P<hash>(\d+))\.$') p5 = re.compile(r'^Link +is +associated +with +fragment' ' +(?P<fragment>(\d+))\. +Link +instance +is' ' +(?P<link_instance>(\d+))$') p6 = re.compile(r'^Link +connected +to +(?P<type>([a-zA-Z\s]+))$') p7 = re.compile(r'^Link +ID *: +(?P<link_id>(\S+))$') p8 = re.compile(r'^Interface +Address *: +(?P<addr>(\S+))$') p9 = re.compile(r'^Admin +Metric +te: +(?P<te>(\d+)) +igp:' ' +(?P<igp>(\d+))$') p14 = re.compile(r'^Maximum +(B|b)andwidth *: +(?P<mband>(\d+))$') p10 = re.compile(r'^Maximum +(R|r)eservable +(B|b)andwidth *:' ' +(?P<res_band>(\d+))$') p11 = re.compile(r'^Affinity +Bit *: +(?P<admin_group>(\S+))$') p12 = re.compile(r'^Number +of +Priority +: +(?P<priority>(\d+))$') p13 = re.compile(r'^Priority +(?P<num1>(\d+)) *:' ' +(?P<band1>(\d+))(?: +Priority +(?P<num2>(\d+))' ' *: +(?P<band2>(\d+)))?$') for line in out.splitlines(): line = line.strip() # OSPF Router with ID (10.4.1.1) (Process ID 1) m = p1.match(line) if m: router_id = str(m.groupdict()['router_id']) instance = str(m.groupdict()['instance']) # Get VRF information using the ospf instance cmd = 'show running-config | section router ospf {}'.format(instance) out = self.device.execute(cmd) for line in out.splitlines(): line = line.rstrip() # Skip the show command line so as to not match if re.search('show', line): continue # router ospf 1 # router ospf 2 vrf VRF1 p = re.search('router +ospf +(?P<instance>(\S+))' '(?: +vrf +(?P<vrf>(\S+)))?', line) if p: p_instance = str(p.groupdict()['instance']) if p_instance == instance: if p.groupdict()['vrf']: vrf = str(p.groupdict()['vrf']) break else: vrf = 'default' break # Create dict if 'vrf' not in ret_dict: ret_dict['vrf'] = {} if vrf not in ret_dict['vrf']: ret_dict['vrf'][vrf] = {} if 'address_family' not in ret_dict['vrf'][vrf]: ret_dict['vrf'][vrf]['address_family'] = {} if af not in ret_dict['vrf'][vrf]['address_family']: ret_dict['vrf'][vrf]['address_family'][af] = {} if 'instance' not in ret_dict['vrf'][vrf]['address_family'][af]: ret_dict['vrf'][vrf]['address_family'][af]['instance'] = {} if instance not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance']: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance] = {} if 'mpls' not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['mpls'] = {} if 'te' not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['mpls']: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['mpls']['te'] = {} ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['mpls']['te']['router_id'] = router_id continue # Area 0 has 2 MPLS TE links. Area instance is 2. m = p2.match(line) if m: area = str(IPAddress(str(m.groupdict()['area']))) total_links = int(m.groupdict()['links']) area_instance = int(m.groupdict()['area_instance']) # Create dict if 'areas' not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'] = {} if area not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas']: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area] = {} if 'mpls' not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas'][area]: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area]['mpls'] = {} if 'te' not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas'][area]['mpls']: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area]['mpls']['te'] = {} # Set values ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area]['mpls']['te']['enable'] = True ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area]['mpls']['te']['total_links'] = \ total_links ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area]['mpls']['te']['area_instance'] = \ area_instance continue # Area 1 MPLS TE not initialized # Area 0.0.0.0 MPLS TE not initialized m = p3.match(line) if m: try: int(m.groupdict()['area']) area = str(IPAddress(str(m.groupdict()['area']))) except: area = m.groupdict()['area'] # Create dict if 'areas' not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'] = {} if area not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas']: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area] = {} if 'mpls' not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas'][area]: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area]['mpls'] = {} if 'te' not in ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas'][area]['mpls']: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area]['mpls']['te'] = {} # Set values ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area]['mpls']['te']['enable'] = False continue # Links in hash bucket 8. m = p4.match(line) if m: link_hash_bucket = int(m.groupdict()['hash']) if 'link_hash_bucket' not in ret_dict['vrf'][vrf]\ ['address_family'][af]['instance'][instance]['areas']\ [area]['mpls']['te']: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area]['mpls']['te']\ ['link_hash_bucket'] = {} if link_hash_bucket not in ret_dict['vrf'][vrf]\ ['address_family'][af]['instance'][instance]['areas']\ [area]['mpls']['te']['link_hash_bucket']: ret_dict['vrf'][vrf]['address_family'][af]['instance']\ [instance]['areas'][area]['mpls']['te']\ ['link_hash_bucket'][link_hash_bucket] = {} link_dict = ret_dict['vrf'][vrf]['address_family'][af]\ ['instance'][instance]['areas'][area]['mpls']\ ['te']['link_hash_bucket'][link_hash_bucket] continue # Link is associated with fragment 2. Link instance is 2 m = p5.match(line) if m: link_fragment = int(m.groupdict()['fragment']) if 'link_fragments' not in link_dict: link_dict['link_fragments'] = {} if link_fragment not in link_dict['link_fragments']: link_dict['link_fragments'][link_fragment] = {} sub_dict = link_dict['link_fragments'][link_fragment] sub_dict['link_instance'] = int(m.groupdict()['link_instance']) continue # Link connected to Broadcast network m = p6.match(line) if m: sub_dict['network_type'] = str(m.groupdict()['type']).lower() continue # Link ID : 10.1.2.1 m = p7.match(line) if m: sub_dict['link_id'] = str(m.groupdict()['link_id']) continue # Interface Address : 10.1.2.1 m = p8.match(line) if m: sub_dict['interface_address'] = str(m.groupdict()['addr']) continue # Admin Metric te: 1 igp: 1 m = p9.match(line) if m: sub_dict['te_admin_metric'] = int(m.groupdict()['te']) sub_dict['igp_admin_metric'] = int(m.groupdict()['igp']) continue # Maximum bandwidth : 125000000 m = p14.match(line) #Modified from p9 to p14 if m: sub_dict['max_bandwidth'] = int(m.groupdict()['mband']) continue # Maximum reservable bandwidth : 93750000 m = p10.match(line) if m: sub_dict['max_reservable_bandwidth'] = \ int(m.groupdict()['res_band']) continue # Affinity Bit : 0x0 m = p11.match(line) if m: sub_dict['affinity_bit'] = str(m.groupdict()['admin_group']) continue # Number of Priority : 8 m = p12.match(line) if m: sub_dict['total_priority'] = int(m.groupdict()['priority']) continue # Priority 0 : 93750000 Priority 1 : 93750000 m = p13.match(line) if m: value1 = '{} {}'.format(str(m.groupdict()['num1']), str(m.groupdict()['band1'])) value2 = '{} {}'.format(str(m.groupdict()['num2']), str(m.groupdict()['band2'])) if 'unreserved_bandwidths' not in sub_dict: sub_dict['unreserved_bandwidths'] = {} if value1 not in sub_dict['unreserved_bandwidths']: sub_dict['unreserved_bandwidths'][value1] = {} sub_dict['unreserved_bandwidths'][value1]['priority'] = \ int(m.groupdict()['num1']) sub_dict['unreserved_bandwidths'][value1]\ ['unreserved_bandwidth'] = int(m.groupdict()['band1']) if value2 not in sub_dict['unreserved_bandwidths']: sub_dict['unreserved_bandwidths'][value2] = {} sub_dict['unreserved_bandwidths'][value2]['priority'] = \ int(m.groupdict()['num2']) sub_dict['unreserved_bandwidths'][value2]\ ['unreserved_bandwidth'] = int(m.groupdict()['band2']) continue return ret_dict # ============================= # Schema for: # * 'show ip ospf max-metric' # ============================= class ShowIpOspfMaxMetricSchema(MetaParser): ''' Schema for: * 'show ip ospf max-metric' ''' schema = { 'vrf': {Any(): {'address_family': {Any(): {'instance': {Any(): {'router_id': str, 'base_topology_mtid': {Any(): {'start_time': str, 'time_elapsed': str, 'router_lsa_max_metric': {Any(): {Optional('condition'): str, Optional('state'): str, Optional('advertise_lsa_metric'): int, Optional('unset_reason'): str, Optional('unset_time'): str, Optional('unset_time_elapsed'): str, Optional('time_remaining'): str, }, }, }, }, }, }, }, }, }, }, } # ============================= # Parser for: # * 'show ip ospf max-metric' # ============================= class ShowIpOspfMaxMetric(ShowIpOspfMaxMetricSchema): ''' Parser for: * 'show ip ospf max-metric' ''' cli_command = 'show ip ospf max-metric' def cli(self, output=None): if output is None: # Execute command on device out = self.device.execute(self.cli_command) else: out = output # Init vars ret_dict = {} address_family = 'ipv4' # Load for five secs: 71%/0%; one minute: 11%; five minutes: 9% # Time source is NTP, 20:29:26.348 EST Fri Nov 11 2016 # OSPF Router with ID (172.16.1.214) (Process ID 65109) # OSPF Router with ID (10.36.3.3) (Process ID 1, VRF VRF1) p1 = re.compile(r'^OSPF +Router +with +ID +\((?P<router_id>(\S+))\)' ' +\(Process +ID +(?P<instance>(\d+))' '(?:, +VRF +(?P<vrf>(\S+)))?\)$') # Base Topology (MTID 0) p2 = re.compile(r'^Base +Topology +\(MTID +(?P<mtid>(\d+))\)$') # Start time: 00:01:58.314, Time elapsed: 00:54:43.858 p3 = re.compile(r'^Start +time: +(?P<start_time>(\S+)), +Time +elapsed:' ' +(?P<time_elapsed>(\S+))$') # Originating router-LSAs with maximum metric # Originating router-LSAs with maximum metric, Time remaining: 00:03:55 p4_1 = re.compile(r'^Originating +router-LSAs +with +maximum +metric(, +Time +remaining: +(?P<time_remaining>([\d\:]+)))?$') # Router is not originating router-LSAs with maximum metric p4_2 = re.compile(r'^Router +is +not +originating +router-LSAs +with' ' +maximum +metric$') # Condition: on startup for 5 seconds, State: inactive p5 = re.compile(r'^Condition: +(?P<condition>(.*)), +State:' ' +(?P<state>([a-zA-Z\s]+))$') # Advertise summary-LSAs with metric 16711680 p6 = re.compile(r'^Advertise +summary-LSAs +with +metric' ' +(?P<metric>(\d+))$') # Unset reason: timer expired, Originated for 5 seconds p7 = re.compile(r'^Unset +reason: (?P<reason>(.*))$') # Unset time: 00:02:03.314, Time elapsed: 00:54:38.858 p8 = re.compile(r'^Unset +time: +(?P<time>(\S+)), +Time +elapsed:' ' +(?P<elapsed>(\S+))$') for line in out.splitlines(): line = line.strip() # OSPF Router with ID (10.36.3.3) (Process ID 1, VRF VRF1) m = p1.match(line) if m: group = m.groupdict() router_id = str(group['router_id']) instance = str(group['instance']) if group['vrf']: vrf = str(group['vrf']) else: vrf = 'default' # Create dict ospf_dict = ret_dict.setdefault('vrf', {}).\ setdefault(vrf, {}).\ setdefault('address_family', {}).\ setdefault(address_family, {}).\ setdefault('instance', {}).\ setdefault(instance, {}) ospf_dict['router_id'] = router_id continue # Base Topology (MTID 0) m = p2.match(line) if m: mtid = m.groupdict()['mtid'] mtid_dict = ospf_dict.setdefault('base_topology_mtid', {}).\ setdefault(mtid, {}) continue # Start time: 00:01:58.314, Time elapsed: 00:54:43.858 m = p3.match(line) if m: group = m.groupdict() mtid_dict['start_time'] = group['start_time'] mtid_dict['time_elapsed'] = group['time_elapsed'] continue # Originating router-LSAs with maximum metric # Originating router-LSAs with maximum metric, Time remaining: 00:03:55 m = p4_1.match(line) if m: rtr_lsa_dict = mtid_dict.\ setdefault('router_lsa_max_metric', {}).\ setdefault(True, {}) if m.groupdict()['time_remaining']: rtr_lsa_dict['time_remaining'] = m.groupdict()['time_remaining'] continue # Router is not originating router-LSAs with maximum metric m = p4_2.match(line) if m: rtr_lsa_dict = mtid_dict.\ setdefault('router_lsa_max_metric', {}).\ setdefault(False, {}) continue # Condition: on startup for 5 seconds, State: inactive m = p5.match(line) if m: group = m.groupdict() rtr_lsa_dict['condition'] = group['condition'] rtr_lsa_dict['state'] = group['state'] continue # Advertise summary-LSAs with metric 16711680 m = p6.match(line) if m: rtr_lsa_dict['advertise_lsa_metric'] = int(m.groupdict()['metric']) # Unset reason: timer expired, Originated for 5 seconds m = p7.match(line) if m: rtr_lsa_dict['unset_reason'] = m.groupdict()['reason'] continue # Unset time: 00:02:03.314, Time elapsed: 00:54:38.858 m = p8.match(line) if m: group = m.groupdict() rtr_lsa_dict['unset_time'] = group['time'] rtr_lsa_dict['unset_time_elapsed'] = group['elapsed'] continue return ret_dict # ========================== # Schema for: # * 'show ip ospf traffic' # ========================== class ShowIpOspfTrafficSchema(MetaParser): ''' Schema for: * 'show ip ospf traffic' ''' schema = { Optional('ospf_statistics'): {'last_clear_traffic_counters': str, 'rcvd': {'total': int, 'checksum_errors': int, 'hello': int, 'database_desc': int, 'link_state_req': int, 'link_state_updates': int, 'link_state_acks': int, }, 'sent': {'total': int, 'hello': int, 'database_desc': int, 'link_state_req': int, 'link_state_updates': int, 'link_state_acks': int, }, }, 'vrf': {Any(): {'address_family': {Any(): {'instance': {Any(): { Optional('router_id'): str, Optional('ospf_queue_statistics'): {'limit': {'inputq': int, 'outputq': int, 'updateq': int, }, 'drops': {'inputq': int, 'outputq': int, 'updateq': int, }, 'max_delay_msec': {'inputq': int, 'outputq': int, 'updateq': int, }, 'max_size': {'total': {'inputq': int, 'outputq': int, 'updateq': int, }, 'invalid': {'inputq': int, 'outputq': int, 'updateq': int, }, 'hello': {'inputq': int, 'outputq': int, 'updateq': int, }, 'db_des': {'inputq': int, 'outputq': int, 'updateq': int, }, 'ls_req': {'inputq': int, 'outputq': int, 'updateq': int, }, 'ls_upd': {'inputq': int, 'outputq': int, 'updateq': int, }, 'ls_ack': {'inputq': int, 'outputq': int, 'updateq': int, }, }, 'current_size': {'total': {'inputq': int, 'outputq': int, 'updateq': int, }, 'invalid': {'inputq': int, 'outputq': int, 'updateq': int, }, 'hello': {'inputq': int, 'outputq': int, 'updateq': int, }, 'db_des': {'inputq': int, 'outputq': int, 'updateq': int, }, 'ls_req': {'inputq': int, 'outputq': int, 'updateq': int, }, 'ls_upd': {'inputq': int, 'outputq': int, 'updateq': int, }, 'ls_ack': {'inputq': int, 'outputq': int, 'updateq': int, }, }, }, Optional('interface_statistics'): {'interfaces': {Any(): {'last_clear_traffic_counters': str, 'ospf_packets_received_sent': {'type': {Any(): {'packets': int, 'bytes': int, }, }, }, 'ospf_header_errors': {'length': int, 'instance_id': int, 'checksum': int, 'auth_type': int, 'version': int, 'bad_source': int, 'no_virtual_link': int, 'area_mismatch': int, 'no_sham_link': int, 'self_originated': int, 'duplicate_id': int, 'hello': int, 'mtu_mismatch': int, 'nbr_ignored': int, 'lls': int, 'unknown_neighbor': int, 'authentication': int, 'ttl_check_fail': int, Optional('adjacency_throttle'): int, Optional('bfd'): int, 'test_discard': int, }, 'ospf_lsa_errors': {'type': int, 'length': int, 'data': int, 'checksum': int, }, }, }, }, 'summary_traffic_statistics': {'ospf_packets_received_sent': {'type': {Any(): {'packets': int, 'bytes': int, }, }, }, 'ospf_header_errors': {'length': int, 'instance_id': int, 'checksum': int, 'auth_type': int, 'version': int, 'bad_source': int, 'no_virtual_link': int, 'area_mismatch': int, 'no_sham_link': int, 'self_originated': int, 'duplicate_id': int, 'hello': int, 'mtu_mismatch': int, 'nbr_ignored': int, 'lls': int, 'unknown_neighbor': int, 'authentication': int, 'ttl_check_fail': int, Optional('adjacency_throttle'): int, Optional('bfd'): int, 'test_discard': int, }, 'ospf_lsa_errors': {'type': int, 'length': int, 'data': int, 'checksum': int, }, }, }, }, }, }, }, }, } # ========================== # Parser for: # * 'show ip ospf traffic' # ========================== class ShowIpOspfTraffic(ShowIpOspfTrafficSchema): ''' Parser for: * "show ip ospf traffic" ''' cli_command = 'show ip ospf traffic' def cli(self, output=None): if output is None: # Execute command on device out = self.device.execute(self.cli_command) else: out = output # Init vars ret_dict = {} address_family = 'ipv4' vrf = 'default' received = False ; sent = False interface_stats = False ; summary_stats = False max_size_stats = False ; current_size_stats = False # OSPF statistics: p1 = re.compile(r'^OSPF +statistics:$') # Last clearing of OSPF traffic counters never # Last clearing of interface traffic counters never p2 = re.compile(r'^Last +clearing +of +(?P<type>(OSPF|interface)) +traffic' ' +counters +(?P<last_clear>([a-zA-Z0-9\:\s]+))$') # Rcvd: 2112690 total, 0 checksum errors p3 = re.compile(r'^Rcvd: +(?P<total>(\d+)) total, +(?P<csum_errors>(\d+))' ' +checksum +errors$') # 2024732 hello, 938 database desc, 323 link state req # 2381794 hello, 1176 database desc, 43 link state req p4 = re.compile(r'^(?P<hello>(\d+)) +hello, +(?P<db_desc>(\d+))' ' +database +desc, +(?P<link_state_req>(\d+))' ' +link +state +req$') # 11030 link state updates, 75666 link state acks # 92224 link state updates, 8893 link state acks p5 = re.compile(r'^(?P<link_state_updates>(\d+)) +link +state +updates,' ' +(?P<link_state_acks>(\d+)) +link +state +acks$') # Sent: 2509472 total p6 = re.compile(r'^Sent: +(?P<total>(\d+)) +total$') # OSPF Router with ID (10.169.197.252) (Process ID 65109) # OSPF Router with ID (10.36.3.3) (Process ID 1, VRF VRF1) p7 = re.compile(r'^OSPF +Router +with +ID +\((?P<router_id>(\S+))\)' ' +\(Process +ID +(?P<instance>(\d+))' '(?:, +VRF +(?P<vrf>(\S+)))?\)$') # OSPF queue statistics for process ID 65109: p8 = re.compile(r'^OSPF +queue +statistics +for +process +ID +(?P<pid>(\d+)):$') # InputQ UpdateQ OutputQ # Limit 0 200 0 # Drops 0 0 0 # Max delay [msec] 49 2 2 p9_1 = re.compile(r'^(?P<item>(Limit|Drops|Max delay \[msec\])) +' '(?P<inputq>(\d+)) +(?P<updateq>(\d+)) +(?P<outputq>(\d+))$') # Invalid 0 0 0 # Hello 0 0 0 # DB des 0 0 0 # LS req 0 0 0 # LS upd 0 0 0 # LS ack 14 14 6 p9_2 = re.compile(r'^(?P<item>(Invalid|Hello|DB des|LS ' 'req|LS upd|LS ack)) +(?P<inputq>(\d+)) ' '+(?P<updateq>(\d+)) +(?P<outputq>(\d+))$') # InputQ UpdateQ OutputQ # Max size 14 14 6 # Current size 0 0 0 p9_3 = re.compile(r'^(?P<item>(Max size|Current size)) +(?P<inputq>(\d+))' ' +(?P<updateq>(\d+)) +(?P<outputq>(\d+))$') # Interface statistics: p10 = re.compile(r'^Interface +statistics:$') # Interface GigabitEthernet0/0/6 p11 = re.compile(r'^Interface +(?P<intf>(\S+))$') # OSPF packets received/sent # Type Packets Bytes # RX Invalid 0 0 # RX Hello 169281 8125472 # RX DB des 36 1232 # RX LS req 20 25080 # RX LS upd 908 76640 # RX LS ack 9327 8733808 # RX Total 179572 16962232 # TX Failed 0 0 # TX Hello 169411 13552440 # TX DB des 40 43560 # TX LS req 4 224 # TX LS upd 12539 12553264 # TX LS ack 899 63396 # TX Total 182893 26212884 p12 = re.compile(r'^(?P<type>([a-zA-Z\s]+)) +(?P<packets>(\d+))' ' +(?P<bytes>(\d+))$') # OSPF header errors p13 = re.compile(r'^OSPF +header +errors$') # Length 0, Instance ID 0, Checksum 0, Auth Type 0, p14 = re.compile(r'^Length +(?P<len>(\d+)), +Instance +ID' ' +(?P<iid>(\d+)), +Checksum +(?P<csum>(\d+)),' ' +Auth +Type +(?P<auth>(\d+)),?$') # Version 0, Bad Source 0, No Virtual Link 0, p15 = re.compile(r'^Version +(?P<version>(\d+)), +Bad +Source' ' +(?P<bad_source>(\d+)), +No +Virtual +Link' ' +(?P<no_virtual_link>(\d+)),?$') # Area Mismatch 0, No Sham Link 0, Self Originated 0, p16 = re.compile(r'^Area +Mismatch +(?P<area_mismatch>(\d+)),' ' +No +Sham +Link +(?P<no_sham_link>(\d+)),' ' +Self +Originated +(?P<self_originated>(\d+)),?$') # Duplicate ID 0, Hello 0, MTU Mismatch 0, p17 = re.compile(r'^Duplicate +ID +(?P<duplicate_id>(\d+)),' ' +Hello +(?P<hello>(\d+)), +MTU +Mismatch' ' +(?P<mtu_mismatch>(\d+)),$') # Nbr Ignored 0, LLS 0, Unknown Neighbor 0, p18 = re.compile(r'^Nbr +Ignored +(?P<nbr_ignored>(\d+)), +LLS' ' +(?P<lls>(\d+)), +Unknown +Neighbor' ' +(?P<unknown_neighbor>(\d+)),?$') # Authentication 0, TTL Check Fail 0, Adjacency Throttle 0, p19 = re.compile(r'^Authentication +(?P<authentication>(\d+)), +TTL' ' +Check +Fail +(?P<ttl_check_fail>(\d+)), +Adjacency' ' +Throttle +(?P<adjacency_throttle>(\d+)),?$') # Authentication 0, TTL Check Fail 0, Test discard 0 p19_1 = re.compile(r'^Authentication +(?P<authentication>\d+), +TTL' ' +Check +Fail +(?P<ttl_check_fail>\d+), +Test discard' ' +(?P<test_discard>\d+),?$') # BFD 0, Test discard 0 p20 = re.compile(r'^BFD +(?P<bfd>(\d+)), +Test +discard' ' +(?P<test_discard>(\d+))$') # OSPF LSA errors p21 = re.compile(r'^OSPF +LSA +errors$') # Type 0, Length 0, Data 0, Checksum 0 p22 = re.compile(r'^Type +(?P<type>(\d+)), +Length +(?P<len>(\d+)),' ' +Data +(?P<data>(\d+)), +Checksum +(?P<csum>(\d+))$') # Summary traffic statistics for process ID 65109: p23 = re.compile(r'^Summary +traffic +statistics +for +process +ID' ' +(?P<pid>(\d+)):$') for line in out.splitlines(): line = line.strip() # OSPF statistics: m = p1.match(line) if m: ospf_stats_dict = ret_dict.setdefault('ospf_statistics', {}) continue # Last clearing of OSPF traffic counters never # Last clearing of interface traffic counters never m = p2.match(line) if m: if m.groupdict()['type'] == 'OSPF': ospf_stats_dict['last_clear_traffic_counters'] = \ m.groupdict()['last_clear'] if m.groupdict()['type'] == 'interface': intf_dict['last_clear_traffic_counters'] = \ m.groupdict()['last_clear'] continue # Rcvd: 2112690 total, 0 checksum errors m = p3.match(line) if m: group = m.groupdict() rcvd_dict = ospf_stats_dict.setdefault('rcvd', {}) rcvd_dict['total'] = int(group['total']) rcvd_dict['checksum_errors'] = int(group['csum_errors']) received = True ; sent = False continue # 2024732 hello, 938 database desc, 323 link state req # 2381794 hello, 1176 database desc, 43 link state req m = p4.match(line) if m: group = m.groupdict() if received: sdict = rcvd_dict elif sent: sdict = sent_dict else: continue sdict['hello'] = int(group['hello']) sdict['database_desc'] = int(group['db_desc']) sdict['link_state_req'] = int(group['link_state_req']) continue # 11030 link state updates, 75666 link state acks # 92224 link state updates, 8893 link state acks m = p5.match(line) if m: group = m.groupdict() if received: sdict = rcvd_dict elif sent: sdict = sent_dict else: continue sdict['link_state_updates'] = int(group['link_state_updates']) sdict['link_state_acks'] = int(group['link_state_acks']) continue # Sent: 2509472 total m = p6.match(line) if m: group = m.groupdict() sent_dict = ospf_stats_dict.setdefault('sent', {}) sent_dict['total'] = int(group['total']) sent = True ; received = False continue # OSPF Router with ID (10.169.197.252) (Process ID 65109) # OSPF Router with ID (10.36.3.3) (Process ID 1, VRF VRF1) m = p7.match(line) if m: group = m.groupdict() router_id = str(group['router_id']) instance = str(group['instance']) if group['vrf']: vrf = str(group['vrf']) else: vrf = 'default' # Create dict ospf_dict = ret_dict.setdefault('vrf', {}).\ setdefault(vrf, {}).\ setdefault('address_family', {}).\ setdefault(address_family, {}).\ setdefault('instance', {}).\ setdefault(instance, {}) ospf_dict['router_id'] = router_id continue # OSPF queue statistics for process ID 65109: m = p8.match(line) if m: queue_stats_dict = ospf_dict.setdefault('ospf_queue_statistics', {}) continue # InputQ UpdateQ OutputQ # Limit 0 200 0 # Drops 0 0 0 # Max delay [msec] 49 2 2 m = p9_1.match(line) if m: group = m.groupdict() item = group['item'].strip().lower().replace(" ", "_").\ replace("[", "").replace("]", "") tmp_dict = queue_stats_dict.setdefault(item, {}) tmp_dict['inputq'] = int(group['inputq']) tmp_dict['updateq'] = int(group['updateq']) tmp_dict['outputq'] = int(group['outputq']) continue # Invalid 0 0 0 # Hello 0 0 0 # DB des 0 0 0 # LS req 0 0 0 # LS upd 0 0 0 # LS ack 14 14 6 m = p9_2.match(line) if m: group = m.groupdict() item = group['item'].strip().lower().replace(" ", "_").\ replace("[", "").replace("]", "") if max_size_stats: tmp_dict = max_size_queue_stats_dict.setdefault(item, {}) elif current_size_stats: tmp_dict = current_size_queue_stats_dict.setdefault(item, {}) else: tmp_dict = queue_stats_dict.setdefault(item, {}) tmp_dict['inputq'] = int(group['inputq']) tmp_dict['updateq'] = int(group['updateq']) tmp_dict['outputq'] = int(group['outputq']) continue # InputQ UpdateQ OutputQ # Max size 14 14 6 # Current size 0 0 0 m = p9_3.match(line) if m: group = m.groupdict() item = group['item'].strip().lower().replace(" ", "_") tmp_dict = queue_stats_dict.setdefault(item, {}) if item == 'max_size': max_size_stats = True current_size_stats = False max_size_queue_stats_dict = tmp_dict elif item == 'current_size': current_size_stats = True max_size_stats = False current_size_queue_stats_dict = tmp_dict tmp_dict.setdefault('total', {})['inputq'] = int(group['inputq']) tmp_dict.setdefault('total', {})['updateq'] = int(group['updateq']) tmp_dict.setdefault('total', {})['outputq'] = int(group['outputq']) continue # Interface statistics: m = p10.match(line) if m: intf_stats_dict = ospf_dict.setdefault('interface_statistics', {}) continue # Interface GigabitEthernet0/0/6 m = p11.match(line) if m: intf = m.groupdict()['intf'] intf_dict = intf_stats_dict.setdefault('interfaces', {}).\ setdefault(intf, {}) interface_stats = True ; summary_stats = False continue # Type Packets Bytes # RX Invalid 0 0 # RX Hello 169281 8125472 # RX DB des 36 1232 # RX LS req 20 25080 # RX LS upd 908 76640 # RX LS ack 9327 8733808 # RX Total 179572 16962232 # TX Failed 0 0 # TX Hello 169411 13552440 # TX DB des 40 43560 # TX LS req 4 224 # TX LS upd 12539 12553264 # TX LS ack 899 63396 # TX Total 182893 26212884 m = p12.match(line) if m: group = m.groupdict() if interface_stats: sdict = intf_dict elif summary_stats: sdict = summary_stats_dict else: continue item_type = group['type'].strip().lower().replace(" ", "_") tmp_dict = sdict.setdefault('ospf_packets_received_sent', {}).\ setdefault('type', {}).setdefault(item_type, {}) tmp_dict['packets'] = int(group['packets']) tmp_dict['bytes'] = int(group['bytes']) continue # OSPF header errors m = p13.match(line) if m: group = m.groupdict() if interface_stats: sdict = intf_dict elif summary_stats: sdict = summary_stats_dict else: continue ospf_header_errors_dict = sdict.setdefault('ospf_header_errors', {}) continue # Length 0, Instance ID 0, Checksum 0, Auth Type 0, m = p14.match(line) if m: group = m.groupdict() ospf_header_errors_dict['length'] = int(group['len']) ospf_header_errors_dict['instance_id'] = int(group['iid']) ospf_header_errors_dict['checksum'] = int(group['csum']) ospf_header_errors_dict['auth_type'] = int(group['auth']) continue # Version 0, Bad Source 0, No Virtual Link 0, m = p15.match(line) if m: group = m.groupdict() ospf_header_errors_dict['version'] = int(group['version']) ospf_header_errors_dict['bad_source'] = int(group['bad_source']) ospf_header_errors_dict['no_virtual_link'] = int(group['no_virtual_link']) continue # Area Mismatch 0, No Sham Link 0, Self Originated 0, m = p16.match(line) if m: group = m.groupdict() ospf_header_errors_dict['area_mismatch'] = int(group['area_mismatch']) ospf_header_errors_dict['no_sham_link'] = int(group['no_sham_link']) ospf_header_errors_dict['self_originated'] = int(group['self_originated']) continue # Duplicate ID 0, Hello 0, MTU Mismatch 0, m = p17.match(line) if m: group = m.groupdict() ospf_header_errors_dict['duplicate_id'] = int(group['duplicate_id']) ospf_header_errors_dict['hello'] = int(group['hello']) ospf_header_errors_dict['mtu_mismatch'] = int(group['mtu_mismatch']) continue # Nbr Ignored 0, LLS 0, Unknown Neighbor 0, m = p18.match(line) if m: group = m.groupdict() ospf_header_errors_dict['nbr_ignored'] = int(group['nbr_ignored']) ospf_header_errors_dict['lls'] = int(group['lls']) ospf_header_errors_dict['unknown_neighbor'] = int(group['unknown_neighbor']) continue # Authentication 0, TTL Check Fail 0, Adjacency Throttle 0, m = p19.match(line) if m: group = m.groupdict() ospf_header_errors_dict['authentication'] = int(group['authentication']) ospf_header_errors_dict['ttl_check_fail'] = int(group['ttl_check_fail']) ospf_header_errors_dict['adjacency_throttle'] = int(group['adjacency_throttle']) continue # Authentication 0, TTL Check Fail 0, Test discard 0 m = p19_1.match(line) if m: group = m.groupdict() ospf_header_errors_dict['authentication'] = int(group['authentication']) ospf_header_errors_dict['ttl_check_fail'] = int(group['ttl_check_fail']) ospf_header_errors_dict['test_discard'] = int(group['test_discard']) continue # BFD 0, Test discard 0 m = p20.match(line) if m: group = m.groupdict() ospf_header_errors_dict['bfd'] = int(group['bfd']) ospf_header_errors_dict['test_discard'] = int(group['test_discard']) continue # OSPF LSA errors m = p21.match(line) if m: if interface_stats: sdict = intf_dict elif summary_stats: sdict = summary_stats_dict else: continue ospf_lsa_errors_dict = sdict.setdefault('ospf_lsa_errors', {}) continue # Type 0, Length 0, Data 0, Checksum 0 m = p22.match(line) if m: group = m.groupdict() ospf_lsa_errors_dict['type'] = int(group['type']) ospf_lsa_errors_dict['length'] = int(group['len']) ospf_lsa_errors_dict['data'] = int(group['data']) ospf_lsa_errors_dict['checksum'] = int(group['csum']) continue # Summary traffic statistics for process ID 65109: m = p23.match(line) if m: pid = m.groupdict()['pid'] ospf_dict = ret_dict.setdefault('vrf', {}).\ setdefault(vrf, {}).\ setdefault('address_family', {}).\ setdefault(address_family, {}).\ setdefault('instance', {}).\ setdefault(pid, {}) summary_stats_dict = ospf_dict.\ setdefault('summary_traffic_statistics', {}) interface_stats = False ; summary_stats = True vrf = 'default' continue return ret_dict # =========================== # Schema for: # * 'show ip ospf neighbor' # * 'show ip ospf neighbor {interface}' # =========================== class ShowIpOspfNeighborSchema(MetaParser): ''' Schema for: * 'show ip ospf neighbor' * 'show ip ospf neighbor {interface}' ''' schema = { 'interfaces': {Any(): {'neighbors': {Any(): {'priority': int, 'state':str, 'dead_time':str, 'address':str, }, }, }, }, } # =========================== # Parser for: # * 'show ip ospf neighbor' # * 'show ip ospf neighbor {interface}' # =========================== class ShowIpOspfNeighbor(ShowIpOspfNeighborSchema): ''' Parser for: * 'show ip ospf neighbor' * 'show ip ospf neighbor {interface}' ''' cli_command = [ 'show ip ospf neighbor {interface}', 'show ip ospf neighbor'] exclude = ['dead_time'] def cli(self, interface='', output=None): if output is None: # Execute command on device if interface: cmd = self.cli_command[0].format(interface=interface) else: cmd = self.cli_command[1] out = self.device.execute(cmd) else: out = output # Init vars ret_dict = {} # Neighbor ID Pri State Dead Time Address Interface # 172.16.197.253 128 FULL/DR 00:00:30 172.16.165.49 GigabitEthernet0/0/1 # 10.169.197.252 0 FULL/ - 00:00:36 10.169.197.93 GigabitEthernet2 p1=re.compile(r'^(?P<neighbor>\S+) +(?P<pri>\d+) +(?P<state>\S+(?:\s+\S+)?)' ' +(?P<dead_time>\S+) +(?P<address>\S+) +(?P<interface>\S+)$') for line in out.splitlines(): line = line.strip() m = p1.match(line) if m: neighbor = m.groupdict()['neighbor'] interface = m.groupdict()['interface'] #Build Dict intf_dict = ret_dict.setdefault('interfaces', {}).setdefault(interface, {}) nbr_dict = intf_dict.setdefault('neighbors', {}).setdefault(neighbor, {}) # Set values nbr_dict['priority'] = int(m.groupdict()['pri']) nbr_dict['state'] = str(m.groupdict()['state']) nbr_dict['dead_time'] = str(m.groupdict()['dead_time']) nbr_dict['address'] = str(m.groupdict()['address']) continue return ret_dict # ================================================= # Parser for: # * 'show ip ospf database router self-originate' # ================================================= class ShowIpOspfDatabaseRouterSelfOriginate(ShowIpOspfDatabaseRouterSchema, ShowIpOspfDatabaseTypeParser): ''' Parser for: * 'show ip ospf database router self-originate' ''' cli_command = 'show ip ospf database router self-originate' exclude = ['age' , 'checksum', 'seq_num', 'dead_time'] def cli(self, output=None): if not output: output = self.device.execute(self.cli_command) return super().cli(db_type='router', out=output) class ShowIpOspfSegmentRoutingAdjacencySidSchema(MetaParser): ''' Schema for commands: * show ip ospf {process_id} segment-routing adjacency-sid ''' schema = { 'process_id': { Any(): { 'router_id': str, 'adjacency_sids': { Any(): { 'neighbor_id': str, 'neighbor_address': str, 'interface': str, 'flags': str, Optional('backup_nexthop'): str, Optional('backup_interface'): str, } } } } } class ShowIpOspfSegmentRoutingAdjacencySid(ShowIpOspfSegmentRoutingAdjacencySidSchema): ''' Parser for commands: * show ip ospf {process_id} segment-routing adjacency-sid ''' cli_command = [ 'show ip ospf {process_id} segment-routing adjacency-sid', 'show ip ospf segment-routing adjacency-sid', ] def cli(self, process_id=None, output=None): if output is None: if process_id: command = self.cli_command[0].format(process_id=process_id) else: command = self.cli_command[1] out = self.device.execute(command) else: out = output # OSPF Router with ID (10.4.1.1) (Process ID 65109) r1 = re.compile(r'OSPF\s+Router\s+with\s+ID\s+\((?P<router_id>\S+)\)\s+' '\(Process\s+ID\s+(?P<process_id>\d+)\)') # 16 10.16.2.2 Gi0/1/2 192.168.154.2 D U # 17 10.16.2.2 Gi0/1/1 192.168.4.2 D U r2 = re.compile(r'(?P<adj_sid>\d+)\s+(?P<neighbor_id>\S+)\s+' '(?P<interface>\S+)\s+(?P<neighbor_address>\S+)\s+' '(?P<flags>[SDPUGL\s]+)\s*(?:(?P<backup_nexthop>\S+))?' '\s*(?:(?P<backup_interface>\S+))?') parsed_output = {} for line in out.splitlines(): line = line.strip() # OSPF Router with ID (10.4.1.1) (Process ID 65109) result = r1.match(line) if result: group = result.groupdict() router_id = group['router_id'] process_id = group['process_id'] process_id_dict = parsed_output.setdefault('process_id', {})\ .setdefault(process_id, {}) process_id_dict['router_id'] = router_id continue # 16 10.16.2.2 Gi0/1/2 192.168.154.2 D U # 17 10.16.2.2 Gi0/1/1 192.168.4.2 D U result = r2.match(line) if result: group = result.groupdict() adj_sid = group['adj_sid'] adjs_sid_dict = process_id_dict.setdefault('adjacency_sids', {})\ .setdefault(adj_sid, {}) adjs_sid_dict['neighbor_id'] = group['neighbor_id'] interface = group['interface'] adjs_sid_dict['interface'] = Common.convert_intf_name(str(interface)) adjs_sid_dict['neighbor_address'] = group['neighbor_address'] adjs_sid_dict['flags'] = group['flags'] backup_nexthop = group['backup_nexthop'] if backup_nexthop: adjs_sid_dict['backup_nexthop'] = backup_nexthop backup_interface = group['backup_interface'] if backup_interface: adjs_sid_dict['backup_interface'] = backup_interface continue return parsed_output # ================================================= # Schema for: # * 'show ip ospf fast-reroute ti-lfa' # ================================================= class ShowIpOspfFastRerouteTiLfaSchema(MetaParser): """Schema for show ip ospf fast-reroute ti-lfa """ schema = { 'process_id': { Any(): { 'router_id': str, 'ospf_object': { Any(): { 'ipfrr_enabled': str, 'sr_enabled': str, 'ti_lfa_configured': str, 'ti_lfa_enabled': str, } } } } } # ================================================= # Parser for: # * 'show ip ospf fast-reroute ti-lfa' # ================================================= class ShowIpOspfFastRerouteTiLfa(ShowIpOspfFastRerouteTiLfaSchema): """Parser for show ip ospf fast-reroute ti-lfa """ cli_command = 'show ip ospf fast-reroute ti-lfa' def cli(self, output=None): if output is None: out = self.device.execute(self.cli_command) else: out = output # OSPF Router with ID (10.4.1.1) (Process ID 65109) p1 = re.compile(r'^OSPF +Router +with +ID +\((?P<router_id>\S+)' '\) +\(Process +ID +(?P<process_id>\d+)\)') # Process ID (65109) no yes no no # Area 8 no yes no no # Loopback0 no no no no # GigabitEthernet0/1/2 no yes no no p2 = re.compile(r'^(?P<ospf_object>[\S\s]+) +(?P<ipfrr_enabled>(yes|no)' '( +\(inactive\))?) +(?P<sr_enabled>(yes|no)( +\(inactive\))?) ' '+(?P<ti_lfa_configured>(yes|no)( +\(inactive\))?) +' '(?P<ti_lfa_enabled>(yes|no)( +\(inactive\))?)$') # initial variables ret_dict = {} for line in out.splitlines(): line = line.strip() # OSPF Router with ID (10.4.1.1) (Process ID 65109) m = p1.match(line) if m: group = m.groupdict() router_id = group['router_id'] process_id = int(group['process_id']) process_id_dict = ret_dict.setdefault('process_id', {}). \ setdefault(process_id, {}) process_id_dict.update({'router_id': router_id}) ospf_object_dict = process_id_dict.setdefault('ospf_object', {}) continue # Process ID (65109) no yes no no # Area 8 no yes no no # Loopback0 no no no no # GigabitEthernet0/1/2 no yes no no m = p2.match(line) if m: group = m.groupdict() ospf_object = group['ospf_object'].strip() ipfrr_enabled = group['ipfrr_enabled'] sr_enabled = group['sr_enabled'] ti_lfa_configured = group['ti_lfa_configured'] ti_lfa_enabled = group['ti_lfa_enabled'] ospf_object = ospf_object_dict.setdefault(ospf_object, {}) ospf_object.update({'ipfrr_enabled': ipfrr_enabled }) ospf_object.update({'sr_enabled': sr_enabled }) ospf_object.update({'ti_lfa_configured': ti_lfa_configured }) ospf_object.update({'ti_lfa_enabled': ti_lfa_enabled }) continue return ret_dict # =============================================================== # Schema for 'show ip ospf segment-routing protected-adjacencies' # =============================================================== class ShowIpOspfSegmentRoutingProtectedAdjacenciesSchema(MetaParser): ''' Schema for show ip ospf segment-routing protected-adjacencies ''' schema = { 'process_id': { Any(): { 'router_id': str, Optional('areas'): { Any(): { 'neighbors': { Any(): { 'interfaces': { Any(): { 'address': str, 'adj_sid': int, Optional('backup_nexthop'): str, Optional('backup_interface'): str } } } } } } } } } # ======================================================== # Parser for: # * 'show ip ospf segment-routing protected-adjacencies' # ======================================================== class ShowIpOspfSegmentRoutingProtectedAdjacencies(ShowIpOspfSegmentRoutingProtectedAdjacenciesSchema): """ Parser for show ip ospf segment-routing protected-adjacencies """ cli_command = 'show ip ospf segment-routing protected-adjacencies' def cli(self, output=None): if output is None: out = self.device.execute(self.cli_command) else: out = output # OSPF Router with ID (10.4.1.1) (Process ID 65109) p1 = re.compile(r'OSPF +Router +with +ID +\((?P<router_id>\S+)\) +\(' 'Process +ID +(?P<process_id>\d+)\)') # Area with ID (8) p2 = re.compile(r'^Area +with +ID \((?P<area_id>\d+)\)$') # 10.234.30.22 Gi10 192.168.10.2 17 192.168.10.3 Gi14 p3 = re.compile( r'^(?P<neighbor_id>\S+) +(?P<interface>\S+) +(?P<address>\S+) +(' r'?P<adj_sid>\d+)( +(?P<backup_nexthop>\S+))?( +(?P<backup_interface>\S+))?$') # initial variables ret_dict = {} for line in out.splitlines(): line = line.strip() # OSPF Router with ID (10.4.1.1) (Process ID 65109) m = p1.match(line) if m: group = m.groupdict() router_id = group['router_id'] process_id = int(group['process_id']) process_id_dict = ret_dict.setdefault('process_id', {}). \ setdefault(process_id, {}) process_id_dict['router_id'] = router_id continue # Area with ID (8) m = p2.match(line) if m: group = m.groupdict() area_id = str(IPAddress(str(group['area_id']))) area_dict = process_id_dict.setdefault('areas', {}). \ setdefault(area_id, {}) continue # 10.234.30.22 Gi10 192.168.10.2 17 192.168.10.3 Gi14 m = p3.match(line) if m: group = m.groupdict() neighbor_id = group['neighbor_id'] interface = group['interface'] address = group['address'] adj_sid = int(group['adj_sid']) backup_nexthop = group['backup_nexthop'] backup_interface = group['backup_interface'] neighbor_dict = area_dict.setdefault('neighbors', {}). \ setdefault(neighbor_id, {}). \ setdefault('interfaces', {}). \ setdefault(Common.convert_intf_name(interface), {}) neighbor_dict.update({'address': address}) neighbor_dict.update({'adj_sid': adj_sid}) if backup_nexthop: neighbor_dict.update({'backup_nexthop': backup_nexthop}) if backup_interface: neighbor_dict.update({'backup_interface': Common.convert_intf_name(backup_interface)}) continue return ret_dict class ShowIpOspfSegmentRoutingSidDatabaseSchema(MetaParser): ''' Schema for commands: * show ip ospf segment-routing sid-database ''' schema = { 'process_id': { Any(): { 'router_id': str, Optional('sids'): { Any(): { 'index': { Any(): { # 1, 2, 3, ... Optional('codes'): str, 'prefix': str, Optional('adv_rtr_id'): str, Optional('area_id'): str, Optional('type'): str, Optional('algo'): int } } }, 'total_entries': int } } } } class ShowIpOspfSegmentRoutingSidDatabase(ShowIpOspfSegmentRoutingSidDatabaseSchema): """ Parser for commands: * show ip ospf segment-routing sid-database """ cli_command = ['show ip ospf segment-routing sid-database'] def cli(self, output=None): if output is None: out = self.device.execute(self.cli_command[0]) else: out = output # OSPF Router with ID (10.4.1.1) (Process ID 65109) p1 = re.compile(r'^OSPF +Router +with +ID +\((?P<router_id>[\d+\.]+)\) +' '\(Process +ID +(?P<pid>\d+)\)$') # 1 (L) 10.4.1.1/32 10.4.1.1 8 Intra 0 # 2 10.16.2.2/32 10.16.2.2 8 Intra 0 # 10.16.2.3/32 10.16.2.2 8 Intra 0 # 3 (M) 10.16.2.3/32 Unknown 0 # 10.36.3.3/32 10.16.2.10 0 p2 = re.compile(r'(?:(?P<sid>\d+) +)?(?:\((?P<codes>[LNM,]+)\) +)?(?P<prefix>[\d\.\/]+)' r'( +(?P<adv_rtr_id>[\d\.]+))?( +(?P<area_id>\d+))?(?: +(?P<type>\w+))?' r'(?: +(?P<algo>\d+))?') ret_dict = {} sid_entries = 0 for line in out.splitlines(): line = line.strip() # OSPF Router with ID (10.4.1.1) (Process ID 65109) m = p1.match(line) if m: group = m.groupdict() process_dict = ret_dict.setdefault('process_id', {}).setdefault(int(group['pid']), {}) process_dict.update({'router_id': group['router_id']}) continue # 1 (L) 10.4.1.1/32 10.4.1.1 8 Intra 0 # 2 10.16.2.2/32 10.16.2.2 8 Intra 0 # 10.16.2.3/32 10.16.2.2 8 Intra 0 # 3 (M) 10.16.2.3/32 Unknown 0 # 10.36.3.3/32 10.16.2.10 0 m = p2.match(line) if m: group = m.groupdict() sid_entries += 1 sids_dict = process_dict.setdefault('sids', {}) sids_dict.update({'total_entries': sid_entries}) if group.get('sid'): index = 1 sid_dict = sids_dict.setdefault(int(group['sid']), {}) else: # No sid found. Using previous sid. index += 1 index_dict = sid_dict.setdefault('index', {}).setdefault(index, {}) index_dict.update({'prefix': group['prefix']}) if group.get('codes'): index_dict.update({'codes': group['codes']}) if group.get('adv_rtr_id'): index_dict.update({'adv_rtr_id': group['adv_rtr_id']}) if group.get('area_id'): index_dict.update({'area_id': str(IPAddress(group['area_id']))}) if group.get('type'): index_dict.update({'type': group['type']}) if group.get('algo'): index_dict.update({'algo': int(group['algo'])}) continue return ret_dict # ===================================================== # Schema for: # * 'show ip ospf {pid} segment-routing global-block' # ===================================================== class ShowIpOspfSegmentRoutingGlobalBlockSchema(MetaParser): """ Schema for commands: * show ip ospf {pid} segment-routing global-block """ schema = { 'process_id': { Any(): { 'router_id': str, 'area': int, 'routers': { Any(): { 'router_id': str, 'sr_capable': str, Optional('sr_algorithm'): str, Optional('srgb_base'): int, Optional('srgb_range'): int, Optional('sid_label'): str } } } } } # ===================================================== # Parser for: # * 'show ip ospf {pid} segment-routing global-block' # ===================================================== class ShowIpOspfSegmentRoutingGlobalBlock(ShowIpOspfSegmentRoutingGlobalBlockSchema): """ Parser for commands: * show ip ospf {pid} segment-routing global-block """ cli_command = ['show ip ospf segment-routing global-block', 'show ip ospf {process_id} segment-routing global-block'] def cli(self, process_id=None, output=None): if not output: if not process_id: cmd = self.cli_command[0] else: cmd = self.cli_command[1].format(process_id=process_id) out = self.device.execute(cmd) else: out = output # OSPF Router with ID (10.4.1.1) (Process ID 1234) p1 = re.compile(r'^OSPF +Router +with +ID +\((?P<router_id>[\d+\.]+)\) +' '\(Process +ID +(?P<pid>\d+)\)$') # OSPF Segment Routing Global Blocks in Area 3 p2 = re.compile(r'^OSPF +Segment +Routing +Global +Blocks +in +Area (?P<area>\d+)$') # *10.4.1.1 Yes SPF,StrictSPF 16000 8000 Label # 10.16.2.2 Yes SPF,StrictSPF 16000 8000 Label # *10.4.1.1 No # 10.16.2.2 No p3 = re.compile(r'^\*?(?P<router_id>[\d\.]+) +(?P<sr_capable>\w+)' '(?: +(?P<sr_algorithm>[\w,]+) +(?P<srgb_base>\d+) +' '(?P<srgb_range>\d+) +(?P<sid_label>\w+))?$') ret_dict = {} for line in out.splitlines(): line = line.strip() # OSPF Router with ID (10.4.1.1) (Process ID 1234) m = p1.match(line) if m: group = m.groupdict() router_dict = ret_dict.setdefault('process_id', {}).setdefault(int(group['pid']), {}) router_dict.update({'router_id': group['router_id']}) continue # OSPF Segment Routing Global Blocks in Area 3 m = p2.match(line) if m: group = m.groupdict() router_dict.update({'area': int(group['area'])}) continue # *10.4.1.1 Yes SPF,StrictSPF 16000 8000 Label # 10.16.2.2 Yes SPF,StrictSPF 16000 8000 Label m = p3.match(line) if m: group = m.groupdict() router_entry_dict = router_dict.setdefault('routers', {}).setdefault(group['router_id'], {}) router_entry_dict.update({'router_id': group['router_id']}) router_entry_dict.update({'sr_capable': group['sr_capable']}) if group['sr_algorithm']: router_entry_dict.update({'sr_algorithm': group['sr_algorithm']}) if group['srgb_base']: router_entry_dict.update({'srgb_base': int(group['srgb_base'])}) if group['srgb_range']: router_entry_dict.update({'srgb_range': int(group['srgb_range'])}) if group['sid_label']: router_entry_dict.update({'sid_label': group['sid_label']}) continue return ret_dict # ========================================== # Parser for 'show ip ospf segment-routing' # ========================================== class ShowIpOspfSegmentRoutingSchema(MetaParser): ''' Schema for show ip ospf segment-routing ''' schema = { 'process_id': { Any(): { 'router_id': str, Optional('global_segment_routing_state'): str, Optional('segment_routing_enabled'): { 'area': { Any(): { 'topology_name': str, 'forwarding': str, 'strict_spf': str } } }, 'sr_attributes': { 'sr_label_preferred': bool, 'advertise_explicit_null': bool, }, Optional('global_block_srgb'): { 'range': { 'start': int, 'end': int }, 'state': str, }, Optional('local_block_srlb'): { 'range': { 'start': int, 'end': int }, 'state': str, }, Optional('registered_with'): { Any(): { Optional('client_handle'): int, Optional('sr_algo'): { Any(): { Any(): { 'handle': str, 'bit_mask': str, } } }, Optional('client_id'): int, } }, Optional('max_labels'): { 'platform': int, 'available': int, 'pushed_by_ospf': { 'uloop_tunnels': int, 'ti_lfa_tunnels': int } }, 'mfi_label_reservation_ack_pending': bool, 'bind_retry_timer_running': bool, Optional('bind_retry_timer_left'): str, Optional('adj_label_bind_retry_timer_running'): bool, Optional('adj_label_bind_retry_timer_left'): str, Optional('srp_app_locks_requested'): { 'srgb': int, 'srlb': int }, Optional('teapp'): { 'te_router_id': str } } } } class ShowIpOspfSegmentRouting(ShowIpOspfSegmentRoutingSchema): ''' Parser for show ip ospf segment-routing ''' cli_command = 'show ip ospf segment-routing' def cli(self, output=None): if output is None: out = self.device.execute(self.cli_command) else: out = output # OSPF Router with ID (10.16.2.2) (Process ID 65109) p1 = re.compile(r'^OSPF +Router +with +ID +\((?P<router_id>\S+)\) +\(' 'Process +ID +(?P<process_id>\d+)\)$') # Global segment-routing state: Enabled p2 = re.compile(r'^Global +segment\-routing +state: +' '(?P<global_segment_routing_state>\S+)$') # Prefer non-SR (LDP) Labels p3 = re.compile(r'^Prefer +non\-SR +\(LDP\) +Labels$') # Do not advertise Explicit Null p4 = re.compile(r'^Do +not +advertise +Explicit +Null$') # Global Block (SRGB): p5 = re.compile(r'^Global +Block +\(SRGB\):$') # Range: 16000 - 23999 p6 = re.compile(r'^Range: +(?P<start>\d+) +\- +(?P<end>\d+)$') # State: Created p7 = re.compile(r'^State: +(?P<state>\S+)$') # Local Block (SRLB): p8 = re.compile(r'^Local +Block +\(SRLB\):$') # Registered with SR App, client handle: 2 p9 = re.compile(r'^Registered +with +(?P<app_name>[\S\s]+), +' 'client +handle: +(?P<client_handle>\d+)$') # SR algo 0 Connected map notifications active (handle 0x0), bitmask 0x1 p10 = re.compile(r'^SR +algo +(?P<algo>\d+) +(?P<notifications>[\S\s]+) +\(' 'handle +(?P<handle>\w+)\), +bitmask +(?P<bitmask>\w+)$') # Registered with MPLS, client-id: 100 p12 = re.compile(r'^Registered +with +(?P<app_name>[\S\s]+), +client\-id: +' '(?P<client_id>\d+)$') # Max labels: platform 16, available 13 p13 = re.compile(r'^Max +labels: +platform +(?P<platform>\d+), available +(?P<available>\d+)$') # Max labels pushed by OSPF: uloop tunnels 10, TI-LFA tunnels 10 p14 = re.compile(r'^Max +labels +pushed +by +OSPF: +uloop +tunnels +(?P<uloop_tunnels>\d+)' ', +TI\-LFA +tunnels +(?P<ti_lfa_tunnels>\d+)$') # mfi label reservation ack not pending p15 = re.compile(r'^mfi +label +reservation +ack +not +pending$') # Bind Retry timer not running p16 = re.compile(r'^Bind +Retry +timer +not +running$') # Bind Retry timer running, left ??? p16_1 = re.compile(r'^Bind +Retry +timer +running, +left +(?P<bind_retry_timer_left>\S+)$') # Adj Label Bind Retry timer not running p17 = re.compile(r'^Adj +Label +Bind +Retry +timer +not +running$') # Adj Label Bind Retry timer running, left ??? p17_1 = re.compile(r'^Adj +Label +Bind +Retry +timer +running, +left +(?P<adj_label_bind_retry_timer_left>\S+)$') # sr-app locks requested: srgb 0, srlb 0 p18 = re.compile(r'^sr\-app +locks +requested: +srgb +(?P<srgb>\d+), +srlb +(?P<srlb>\d+)$') # TE Router ID 10.16.2.2 p19 = re.compile(r'^TE +Router +ID +(?P<te_router_id>\S+)$') # Area Topology name Forwarding Strict SPF p20 = re.compile(r'^Area +Topology +name +Forwarding +Strict +SPF$') # 8 Base MPLS Capable # AS external Base MPLS Not applicable p21 = re.compile(r'^(?P<area>(\d+|(\w+ +\w+))) +(?P<topology_name>\w+)' ' +(?P<forwarding>\w+) +(?P<strict_spf>\w+( +\w+)?)$') # initial variables ret_dict = {} for line in out.splitlines(): line = line.strip() # OSPF Router with ID (10.16.2.2) (Process ID 65109) m = p1.match(line) if m: group = m.groupdict() router_id = group['router_id'] process_id = int(group['process_id']) process_id_dict = ret_dict.setdefault('process_id', {}). \ setdefault(process_id, {}) process_id_dict.update({'router_id': router_id}) sr_attributes_dict = process_id_dict.setdefault('sr_attributes', {}) sr_attributes_dict.update({'sr_label_preferred': True}) sr_attributes_dict.update({'advertise_explicit_null': True}) process_id_dict.update({'mfi_label_reservation_ack_pending': True}) process_id_dict.update({'bind_retry_timer_running': True}) process_id_dict.update({'adj_label_bind_retry_timer_running': True}) continue # Global segment-routing state: Enabled m = p2.match(line) if m: group = m.groupdict() global_segment_routing_state = group['global_segment_routing_state'] process_id_dict.update({'global_segment_routing_state': global_segment_routing_state}) continue # Prefer non-SR (LDP) Labels m = p3.match(line) if m: group = m.groupdict() sr_attributes_dict = process_id_dict.setdefault('sr_attributes', {}) sr_attributes_dict.update({'sr_label_preferred': False}) continue # Do not advertise Explicit Null m = p4.match(line) if m: group = m.groupdict() sr_attributes_dict = process_id_dict.setdefault('sr_attributes', {}) sr_attributes_dict.update({'advertise_explicit_null': False}) continue # Global Block (SRGB): m = p5.match(line) if m: group = m.groupdict() block_dict = process_id_dict.setdefault('global_block_srgb', {}) continue # Range: 16000 - 23999 m = p6.match(line) if m: group = m.groupdict() range_dict = block_dict.setdefault('range', {}) range_dict.update({'start': int(group['start'])}) range_dict.update({'end': int(group['end'])}) continue # State: Created m = p7.match(line) if m: group = m.groupdict() state = group['state'] block_dict.update({'state': state}) continue # Local Block (SRLB): m = p8.match(line) if m: group = m.groupdict() block_dict = process_id_dict.setdefault('local_block_srlb', {}) continue # Registered with SR App, client handle: 2 m = p9.match(line) if m: group = m.groupdict() app_name = group['app_name'] client_handle = int(group['client_handle']) registered_with_sr_app_dict = process_id_dict.setdefault('registered_with', {}). \ setdefault(app_name, {}) registered_with_sr_app_dict.update({'client_handle': client_handle}) continue # SR algo 0 Connected map notifications active (handle 0x0), bitmask 0x1 # SR algo 0 Active policy map notifications active (handle 0x2), bitmask 0xC m = p10.match(line) if m: group = m.groupdict() algo = int(group['algo']) notifications = group['notifications'].lower().replace(' ', '_') handle = group['handle'] bitmask = group['bitmask'] sr_algo_dict = registered_with_sr_app_dict.setdefault('sr_algo', {}). \ setdefault(algo, {}). \ setdefault(notifications, {}) sr_algo_dict.update({'handle': handle}) sr_algo_dict.update({'bit_mask': bitmask}) continue # Registered with MPLS, client-id: 100 m = p12.match(line) if m: group = m.groupdict() app_name = group['app_name'] client_id = int(group['client_id']) registered_with_mpls_dict = process_id_dict.setdefault('registered_with', {}). \ setdefault(app_name, {}) registered_with_mpls_dict.update({'client_id': client_id}) continue # Max labels: platform 16, available 13 m = p13.match(line) if m: group = m.groupdict() platform = int(group['platform']) available = int(group['available']) match_labels_dict = process_id_dict.setdefault('max_labels', {}) match_labels_dict.update({'platform': platform}) match_labels_dict.update({'available': available}) continue # Max labels pushed by OSPF: uloop tunnels 10, TI-LFA tunnels 10 m = p14.match(line) if m: group = m.groupdict() uloop_tunnels = int(group['uloop_tunnels']) ti_lfa_tunnels = int(group['ti_lfa_tunnels']) match_labels_dict = process_id_dict.setdefault('max_labels', {}) pushed_by_ospf_dict = match_labels_dict.setdefault('pushed_by_ospf', {}) pushed_by_ospf_dict.update({'uloop_tunnels': uloop_tunnels}) pushed_by_ospf_dict.update({'ti_lfa_tunnels': ti_lfa_tunnels}) continue # mfi label reservation ack not pending m = p15.match(line) if m: process_id_dict.update({'mfi_label_reservation_ack_pending': False}) continue # Bind Retry timer not running m = p16.match(line) if m: process_id_dict.update({'bind_retry_timer_running': False}) continue # Bind Retry timer running, left ??? m = p16_1.match(line) if m: group = m.groupdict() bind_retry_timer_left = group['bind_retry_timer_left'] process_id_dict.update({'bind_retry_timer_left': bind_retry_timer_left}) continue # Adj Label Bind Retry timer not running m = p17.match(line) if m: process_id_dict.update({'adj_label_bind_retry_timer_running': False}) continue # adj_label_bind_retry_timer_left m = p17_1.match(line) if m: group = m.groupdict() adj_label_bind_retry_timer_left = group['adj_label_bind_retry_timer_left'] process_id_dict.update({'adj_label_bind_retry_timer_left': adj_label_bind_retry_timer_left}) continue # sr-app locks requested: srgb 0, srlb 0 m = p18.match(line) if m: group = m.groupdict() srgb = int(group['srgb']) srlb = int(group['srlb']) srp_app_locks_requested_dict = process_id_dict.setdefault('srp_app_locks_requested', {}) srp_app_locks_requested_dict.update({'srgb': srgb}) srp_app_locks_requested_dict.update({'srlb': srlb}) continue # TE Router ID 10.16.2.2 m = p19.match(line) if m: group = m.groupdict() te_router_id = group['te_router_id'] process_id_dict.setdefault('teapp', {}). \ update({'te_router_id': te_router_id}) continue # Area Topology name Forwarding Strict SPF m = p20.match(line) if m: segment_routing_enabled_dict = process_id_dict.setdefault('segment_routing_enabled', {}) continue # 8 Base MPLS Capable # AS external Base MPLS Not applicable m = p21.match(line) if m: group = m.groupdict() area = group['area'] if area.isdigit(): area = str(IPAddress(str(area))) topology_name = group['topology_name'] forwarding = group['forwarding'] strict_spf = group['strict_spf'] area_dict = segment_routing_enabled_dict.setdefault('area', {}). \ setdefault(area, {}) area_dict.update({'topology_name' : topology_name}) area_dict.update({'forwarding' : forwarding}) area_dict.update({'strict_spf' : strict_spf}) continue return ret_dict class ShowIpOspfDatabaseOpaqueAreaSelfOriginate(ShowIpOspfDatabaseOpaqueAreaSchema, ShowIpOspfDatabaseTypeParser): ''' Parser for: * 'show ip ospf database opaque-area self-originate' ''' cli_command = ['show ip ospf database opaque-area {lsa_id} self-originate', 'show ip ospf database opaque-area self-originate'] def cli(self, lsa_id=None, output=None): if output is None: if lsa_id: output = self.device.execute(self.cli_command[0].format(lsa_id=lsa_id)) else: output = self.device.execute(self.cli_command[1]) return super().cli(db_type='opaque', out=output) class ShowIpOspfDatabaseOpaqueAreaAdvRouter(ShowIpOspfDatabaseOpaqueAreaSchema, ShowIpOspfDatabaseTypeParser): ''' Parser for: * 'show ip ospf database opaque-area adv-router {address}' ''' cli_command = 'show ip ospf database opaque-area adv-router {address}' def cli(self, address, output=None): if not output: output = self.device.execute(self.cli_command.format(address=address)) return super().cli(db_type='opaque', out=output) class ShowIpOspfDatabaseOpaqueAreaTypeExtLink(ShowIpOspfDatabaseOpaqueAreaSchema, ShowIpOspfDatabaseTypeParser): """ Parser for: * show ip ospf database opaque-area type ext-link """ cli_command = 'show ip ospf database opaque-area type ext-link' def cli(self, output=None): if not output: output = self.device.execute(self.cli_command) return super().cli(db_type='opaque', out=output) class ShowIpOspfDatabaseOpaqueAreaTypeExtLinkSelfOriginate(ShowIpOspfDatabaseOpaqueAreaSchema, ShowIpOspfDatabaseTypeParser): """ Parser for: * show ip ospf database opaque-area type ext-link self-originate """ cli_command = 'show ip ospf database opaque-area type ext-link self-originate' def cli(self, output=None): if not output: output = self.device.execute(self.cli_command) return super().cli(db_type='opaque', out=output) class ShowIpOspfDatabaseOpaqueAreaTypeExtLinkAdvRouter(ShowIpOspfDatabaseOpaqueAreaSchema, ShowIpOspfDatabaseTypeParser): """ Parser for: * show ip ospf database opaque-area type ext-link adv-router {address} """ cli_command = 'show ip ospf database opaque-area type ext-link adv-router {address}' def cli(self, address, output=None): if not output: output = self.device.execute(self.cli_command.format(address=address)) return super().cli(db_type='opaque', out=output)
the-stack_106_27907
import os import pickle import random import numpy as np class ReplayMemory: def __init__(self, capacity, seed): random.seed(seed) self.capacity = capacity self.buffer = [] self.position = 0 def push(self, state, action, reward, next_state, done): if len(self.buffer) < self.capacity: self.buffer.append(None) self.buffer[self.position] = (state, action, reward, next_state, done) self.position = (self.position + 1) % self.capacity def sample(self, batch_size): batch = random.sample(self.buffer, batch_size) state, action, reward, next_state, done = map(np.stack, zip(*batch)) return state, action, reward, next_state, done def __len__(self): return len(self.buffer) def save_buffer(self, logs_dir, return_path=False): save_path = os.path.join(logs_dir, "replay_buffer.pkl") print('Saving buffer to {}'.format(save_path)) with open(save_path, 'wb') as f: pickle.dump(self.buffer, f) if return_path: return save_path def load_buffer(self, save_path): print('Loading buffer from {}'.format(save_path)) with open(save_path, "rb") as f: self.buffer = pickle.load(f) self.position = len(self.buffer) % self.capacity
the-stack_106_27908
""" Loading results, formatting and adding columns result is the raw result metric computed from predictions at the end the benchmark. For classification problems, it is usually auc for binomial classification and logloss for multinomial classification. score ensures a standard comparison between tasks: higher is always better. norm_score is a normalization of score on a [0, 1] scale, with {{zero_one_refs[0]}} score as 0 and {{zero_one_refs[1]}} score as 1. imp_result and imp_score for imputed results/scores. Given a task and a framework: if all folds results/scores are missing, then no imputation occurs, and the result is nan for each fold. if only some folds results/scores are missing, then the missing result is imputed by the {{impute_missing_with}} result for this fold. """ import numpy as np import pandas as pd import report.config as config from .metadata import load_dataset_metadata from .util import Namespace, display def load_results(files): return pd.concat([pd.read_csv(file) for file in files], ignore_index=True) def task_prop(row, metadata, prop): return getattr(metadata.get(row.task), prop) def impute_result(row, results, res_col='result', imp_framework=None, imp_results=None, imp_value=None, aggregation=None): if pd.notna(row[res_col]): return row[res_col] # if all folds are failed or missing, don't impute if pd.isna(results.loc[(results.task == row.task) & (results.framework == row.framework)][res_col]).all(): return np.nan if imp_framework is not None: # impute with ref framework corresponding value imp_results = results if imp_results is None else imp_results return (imp_results.loc[(imp_results.framework == imp_framework) & (imp_results.task == row.task)] [res_col] .agg(aggregation) if aggregation else imp_results.loc[(imp_results.framework == imp_framework) & (imp_results.task == row.task) & (imp_results.fold == row.fold)] [res_col] .item()) return imp_value def imputed(row): return pd.isna(row.result) and pd.notna(row.imp_result) fit_metrics = ['auc', 'acc', 'r2'] def metric_type(row, res_col='result'): return 'fit' if any([row[res_col] == getattr(row, m, None) for m in fit_metrics]) else 'loss' def score(row, res_col='result'): return (row[res_col] if row['metric_type'] == 'fit' else - row[res_col]) def norm_score(row, score_col='score', zero_one_refs=None, ref_results=None, aggregation=None): if zero_one_refs is None: return row[score_col] def get_val(ref, default): try: if isinstance(ref, str): return (ref_results.loc[(ref_results.framework == ref) & (ref_results.task == row.task)] [score_col] .agg(aggregation) if aggregation else ref_results.loc[(ref_results.framework == ref) & (ref_results.task == row.task) & (ref_results.fold == row.fold)] [score_col] .item()) else: return ref except Exception: raise # return default zero, one = (get_val(ref, i) for i, ref in enumerate(zero_one_refs)) rel_score = (row[score_col] - zero) / (one - zero) return (- rel_score if row['metric_type'] == 'loss' and one < 0 <= zero else rel_score) def sorted_ints(arr): return sorted(list(map(int, arr[~np.isnan(arr)]))) def remove_duplicates(df, handling='fail'): if not df.index.is_unique: print("Duplicate entries:") display(df[df.index.duplicated(keep=False)].sort_values(by=df.index.names), pretty=False) assert df.index.is_unique or handling != 'fail' duplicated = (df.index.duplicated(keep='first') if handling == 'keep_first' else df.index.duplicated(keep='last') if handling == 'keep_last' else df.index.duplicated(keep=False) if handling == 'keep_none' else np.full((len(df), 1), False)) return df[~duplicated] def prepare_results(results_files, renamings=None, exclusions=None, imputation=None, normalization=None, ref_results=None, duplicates_handling='fail' # other options are 'keep_first', 'keep_last', 'keep_none' ): if not results_files: return None results = load_results(results_files) if renamings: results.replace(renamings, inplace=True) if exclusions: results = results.loc[~results.framework.isin(exclusions)] results.task = results.task.str.lower() results.framework = results.framework.str.lower() results.fold = results.fold.apply(int) frameworks = results.framework.unique() frameworks.sort() tasks = results.task.unique() tasks.sort() folds = results.fold.unique() metadata = load_dataset_metadata(results) done = results.set_index(['task', 'fold', 'framework']) done = remove_duplicates(done, handling=duplicates_handling) missing = (pd.DataFrame([(task, fold, framework, 'missing') for task in tasks for fold in range(config.nfolds) for framework in frameworks if (task, fold, framework) not in done.index], columns=[*done.index.names, 'info']) .set_index(done.index.names)) missing = remove_duplicates(missing, handling=duplicates_handling) failed = (results.loc[pd.notna(results['info'])] .set_index(done.index.names)) failed = remove_duplicates(failed, handling=duplicates_handling) # extending the data frame results = results.append(missing.reset_index()) results['type'] = [task_prop(row, metadata, 'type') for _, row in results.iterrows()] results['metric_type'] = [metric_type(row) for _, row in results.iterrows()] results['score'] = [score(row) for _, row in results.iterrows()] if ref_results is None: ref_results = results if imputation is not None: imp_fr = imp_val = aggr = None if isinstance(imputation, tuple): imp_fr, aggr = imputation elif isinstance(imputation, str): imp_fr = imputation else: imp_val = imputation results['imp_result'] = [impute_result(row, results, imp_framework=imp_fr, imp_results=ref_results, imp_value=imp_val, aggregation=aggr) for _, row in results.iterrows()] results['imp_score'] = [impute_result(row, results, 'score', imp_framework=imp_fr, imp_results=ref_results, imp_value=imp_val, aggregation=aggr) for _, row in results.iterrows()] if normalization is not None: score_col = 'imp_score' if imputation is not None else 'score' zero_one = normalization[0:2] aggr = normalization[2] if len(normalization) > 2 else None results['norm_score'] = [norm_score(row, score_col, zero_one_refs=zero_one, ref_results=ref_results, aggregation=aggr) for _, row in results.iterrows()] return Namespace( results=results, frameworks=frameworks, tasks=tasks, folds=folds, metadata=metadata, done=done, missing=missing, failed=failed )
the-stack_106_27909
# -*- encoding:utf-8 -*- from mako import runtime, filters, cache UNDEFINED = runtime.UNDEFINED __M_dict_builtin = dict __M_locals_builtin = locals _magic_number = 8 _modified_time = 1350123761.8453729 _enable_loop = True _template_filename = '/home/smita/cyberweb/cyberweb/templates/gcem/gcem_sim_details.mako' _template_uri = '/gcem/gcem_sim_details.mako' _source_encoding = 'utf-8' from webhelpers.html import escape _exports = ['col1main'] def _mako_get_namespace(context, name): try: return context.namespaces[(__name__, name)] except KeyError: _mako_generate_namespaces(context) return context.namespaces[(__name__, name)] def _mako_generate_namespaces(context): pass def _mako_inherit(template, context): _mako_generate_namespaces(context) return runtime._inherit_from(context, u'/1col.mako', _template_uri) def render_body(context,**pageargs): __M_caller = context.caller_stack._push_frame() try: __M_locals = __M_dict_builtin(pageargs=pageargs) __M_writer = context.writer() # SOURCE LINE 1 __M_writer(u'\n\n') # SOURCE LINE 54 __M_writer(u'\n\n') return '' finally: context.caller_stack._pop_frame() def render_col1main(context): __M_caller = context.caller_stack._push_frame() try: c = context.get('c', UNDEFINED) __M_writer = context.writer() # SOURCE LINE 3 __M_writer(u'\n<style type="text/css">\n table, td, th\n {\n width:600px;\n border:1px solid black;\n }\n td\n {\n height:400px;\n vertical-align:top;\n }\n\n #jobs table, #jobs th, #jobs td\n {\n width:600px;\n border:1px solid black;\n }\n #jobs th\n {\n height:200px;\n vertical-align:top;\n }\n #jobs td\n {\n height:200px;\n vertical-align:top;\n }\n</style>\n\n<h3>') # SOURCE LINE 33 __M_writer(escape(c.title)) __M_writer(u'</h3>\n<p>\n\n\n<blockquote>\n <table id="jobs">\n <tr><td>\n list all jobs in top panel job status/progress\n </td></tr>\n </table>\n</blockquote>\n<blockquote>\n <table style="vertical:600px">\n <tr><td>\n <p> on selection of job in panel above, display job details\n <p>interact with job (cancel)\n <p>view interim results --> redirect to analyze \n </td></tr>\n </table>\n</blockquote>\n\n') return '' finally: context.caller_stack._pop_frame()
the-stack_106_27910
# -*- coding: utf-8 -*- from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter from matplotlib.colors import LinearSegmentedColormap import matplotlib.pyplot as plt import numpy as np import bbobbenchmarks #########User-configured Parameters: #Numbered from 1 (Sphere Function) to 24 (Lunacek bi-Rastrigin Function) #as they occur in http://coco.lri.fr/downloads/download15.03/bbobdocfunctions.pdf ProblemID=21 #Range for X,Y to display xLimitLower = -5.05 xLimitUpper = 5.05 yLimitLower = -5.05 yLimitUpper = 5.05 #Samplepoints per dimension (remember the total number of points is samplepoints²) samplepoints = 101 #Range below/above the optimal function value - keep in mind this is minimization! zLimitBelow = 10 # "empty" space below opt f-value zLimitAbove = 100 # added range which is shown of the function above the opt f-value #If you don't care and want automatically determined values for the given X/Y-rectangle autoZ = True #########SCRIPT######### problem, optimalFunValue = bbobbenchmarks.instantiate(ProblemID,1) #one eval is needed so xopt exists problem._evalfull(np.array([0,0])) print('Problem: ' + str(ProblemID)) print('Optimal Solution Vector: ' + str(problem.xopt)) print('Optimal Function Value: ' + str(optimalFunValue)) @np.vectorize def func(x, y): coord = np.array([x-xopt,y-yopt]) _, funValue = problem._evalfull(coord) return funValue #This return is much better for some problems #return np.log10(funValue - optimalFunValue) #Generating the global optimum somewhere inside [-4,4] xopt = np.random.uniform(-4,4) yopt = np.random.uniform(-4,4) fig = plt.figure() ax = fig.gca(projection='3d') #Defining the grid of probing points, and how many of them X = np.linspace(-5, 5, samplepoints) Y = np.linspace(-5, 5, samplepoints) Z = func(X[:,None], Y[None,:]) X, Y = np.meshgrid(X, Y) #needed for getting everything plotted #Plot itself surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.jet, linewidth=0, antialiased=False) #Defining the "Viewport" ax.set_xlim(-5.01,5.01) ax.set_ylim(-5.01,5.01) if(autoZ): print('automatic z-limits by matplotlib') else: ax.set_zlim(optimalFunValue - zLimitBelow, optimalFunValue + zLimitAbove) #Axis Labels ax.set_xlabel('x1') ax.set_ylabel('x2') ax.set_zlabel('f') #Label for the logarithmic return value #ax.set_zlabel('$log_{10}(f-f_{opt})$') #Inverting the zaxis makes for better images plt.gca().invert_zaxis() plt.show() #For future use, changes format of the axis labeling #x.zaxis.set_major_locator(LinearLocator(10)) #ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) #If one wants to see the colorbar #fig.colorbar(surf, shrink=0.5, aspect=5)
the-stack_106_27914
import json import pytest from buildtrigger.test.githubmock import get_github_trigger from buildtrigger.triggerutil import ( SkipRequestException, ValidationRequestException, InvalidPayloadException, ) from endpoints.building import PreparedBuild from util.morecollections import AttrDict @pytest.fixture def github_trigger(): return get_github_trigger() @pytest.mark.parametrize( "payload, expected_error, expected_message", [ ('{"zen": true}', SkipRequestException, ""), ("{}", InvalidPayloadException, "Missing 'repository' on request"), ('{"repository": "foo"}', InvalidPayloadException, "Missing 'owner' on repository"), # Valid payload: ( """{ "repository": { "owner": { "name": "someguy" }, "name": "somerepo", "ssh_url": "someurl" }, "ref": "refs/tags/foo", "head_commit": { "id": "11d6fbc", "url": "http://some/url", "message": "some message", "timestamp": "NOW" } }""", None, None, ), # Skip message: ( """{ "repository": { "owner": { "name": "someguy" }, "name": "somerepo", "ssh_url": "someurl" }, "ref": "refs/tags/foo", "head_commit": { "id": "11d6fbc", "url": "http://some/url", "message": "[skip build]", "timestamp": "NOW" } }""", SkipRequestException, "", ), ], ) def test_handle_trigger_request(github_trigger, payload, expected_error, expected_message): def get_payload(): return json.loads(payload) request = AttrDict(dict(get_json=get_payload)) if expected_error is not None: with pytest.raises(expected_error) as ipe: github_trigger.handle_trigger_request(request) assert str(ipe.value) == expected_message else: assert isinstance(github_trigger.handle_trigger_request(request), PreparedBuild) @pytest.mark.parametrize( "dockerfile_path, contents", [ ("/Dockerfile", "hello world"), ("somesubdir/Dockerfile", "hi universe"), ("unknownpath", None), ], ) def test_load_dockerfile_contents(dockerfile_path, contents): trigger = get_github_trigger(dockerfile_path) assert trigger.load_dockerfile_contents() == contents @pytest.mark.parametrize( "username, expected_response", [ ("unknownuser", None), ("knownuser", {"html_url": "https://bitbucket.org/knownuser", "avatar_url": "avatarurl"}), ], ) def test_lookup_user(username, expected_response, github_trigger): assert github_trigger.lookup_user(username) == expected_response def test_list_build_subdirs(github_trigger): assert github_trigger.list_build_subdirs() == ["Dockerfile", "somesubdir/Dockerfile"] def test_list_build_source_namespaces(github_trigger): namespaces_expected = [ { "personal": True, "score": 1, "avatar_url": "avatarurl", "id": "knownuser", "title": "knownuser", "url": "https://bitbucket.org/knownuser", }, { "score": 0, "title": "someorg", "personal": False, "url": "", "avatar_url": "avatarurl", "id": "someorg", }, ] found = github_trigger.list_build_source_namespaces() sorted(found, key=lambda d: sorted(d.items())) sorted(namespaces_expected, key=lambda d: sorted(d.items())) assert found == namespaces_expected
the-stack_106_27915
# G 改 E, 实际上需要用G Block改出E block, 完成逆序对称,在同样位置还原style潜码 # 比第0版多了残差, 每一层的两个(conv/line)输出的w1和w2合并为1个w # 比第1版加了要学习的bias_1和bias_2,网络顺序和第1版有所不同(更对称) # 比第2版,即可以使用到styleganv1,styleganv2, 不再使用带Equalize learning rate的Conv (这条已经废除). 以及Block第二层的blur操作 # 改变了上采样,不在conv中完成 # 改变了In,带参数的学习 # 改变了了residual,和残差网络一致,另外旁路多了conv1处理通道和In学习参数 # 经测试,不带Eq(Equalize Learning Rate)的参数层学习效果不好 #这一版兼容PGGAN和BIGGAN: 主要改变最后一层,增加FC #PGGAN: 加一个fc, 和原D类似 #BIGGAN,加两个fc,各128channel,其中一个是标签,完成128->1000的映射 #BIGGAN 改进思路1: IN替换CBN (本例实现) #BIGGAN 改进思路2: G加w,和E的w对称 (未实现) import math import torch import torch.nn as nn from torch.nn import init from torch.nn.parameter import Parameter import sys sys.path.append('../') from torch.nn import functional as F import model.utils.lreq as ln # G 改 E, 实际上需要用G Block改出E block, 完成逆序对称,在同样位置还原style潜码 # 比第0版多了残差, 每一层的两个(conv/line)输出的w1和w2合并为1个w # 比第1版加了要学习的bias_1和bias_2,网络顺序和第1版有所不同(更对称) def snlinear(eps=1e-12, **kwargs): return nn.utils.spectral_norm(nn.Linear(**kwargs), eps=eps) class BigGANBatchNorm(nn.Module): """ This is a batch norm module that can handle conditional input and can be provided with pre-computed activation means and variances for various truncation parameters. We cannot just rely on torch.batch_norm since it cannot handle batched weights (pytorch 1.0.1). We computate batch_norm our-self without updating running means and variances. If you want to train this model you should add running means and variance computation logic. """ def __init__(self, num_features, condition_vector_dim=None, n_stats=51, eps=1e-4, conditional=True): super(BigGANBatchNorm, self).__init__() self.num_features = num_features self.eps = eps self.conditional = conditional # We use pre-computed statistics for n_stats values of truncation between 0 and 1 self.register_buffer('running_means', torch.zeros(n_stats, num_features)) self.register_buffer('running_vars', torch.ones(n_stats, num_features)) self.step_size = 1.0 / (n_stats - 1) if conditional: assert condition_vector_dim is not None self.scale = snlinear(in_features=condition_vector_dim, out_features=num_features, bias=False, eps=eps) self.offset = snlinear(in_features=condition_vector_dim, out_features=num_features, bias=False, eps=eps) else: self.weight = torch.nn.Parameter(torch.Tensor(num_features)) self.bias = torch.nn.Parameter(torch.Tensor(num_features)) def forward(self, x, truncation, condition_vector=None): # Retreive pre-computed statistics associated to this truncation coef, start_idx = math.modf(truncation / self.step_size) start_idx = int(start_idx) if coef != 0.0: # Interpolate running_mean = self.running_means[start_idx] * coef + self.running_means[start_idx + 1] * (1 - coef) running_var = self.running_vars[start_idx] * coef + self.running_vars[start_idx + 1] * (1 - coef) else: running_mean = self.running_means[start_idx] running_var = self.running_vars[start_idx] if self.conditional: running_mean = running_mean.unsqueeze(0).unsqueeze(-1).unsqueeze(-1) running_var = running_var.unsqueeze(0).unsqueeze(-1).unsqueeze(-1) weight = 1 + self.scale(condition_vector).unsqueeze(-1).unsqueeze(-1) bias = self.offset(condition_vector).unsqueeze(-1).unsqueeze(-1) out = (x - running_mean) / torch.sqrt(running_var + self.eps) * weight + bias else: out = F.batch_norm(x, running_mean, running_var, self.weight, self.bias, training=False, momentum=0.0, eps=self.eps) return out class FromRGB(nn.Module): def __init__(self, channels, outputs): super(FromRGB, self).__init__() self.from_rgb = torch.nn.Conv2d(channels, outputs, 1, 1, 0) def forward(self, x): x = self.from_rgb(x) x = F.leaky_relu(x, 0.2) return x class BEBlock(nn.Module): def __init__(self, inputs, outputs, latent_size, has_second_conv=True, fused_scale=True): #分辨率大于128用fused_scale,即conv完成上采样 super().__init__() self.has_second_conv = has_second_conv self.noise_weight_1 = nn.Parameter(torch.Tensor(1, inputs, 1, 1)) self.noise_weight_1.data.zero_() self.bias_1 = nn.Parameter(torch.Tensor(1, inputs, 1, 1)) #self.instance_norm_1 = nn.InstanceNorm2d(inputs, affine=True, eps=1e-8) self.batch_norm_1 = BigGANBatchNorm(inputs, condition_vector_dim=256, n_stats=51, eps=1e-12, conditional=True) #self.inver_mod1 = ln.Linear(2 * inputs, latent_size) # [n, 2c] -> [n,512] self.conv_1 = ln.Conv2d(inputs, inputs, 3, 1, 1, bias=False) self.noise_weight_2 = nn.Parameter(torch.Tensor(1, outputs, 1, 1)) self.noise_weight_2.data.zero_() self.bias_2 = nn.Parameter(torch.Tensor(1, outputs, 1, 1)) #self.instance_norm_2 = nn.InstanceNorm2d(outputs, affine=True, eps=1e-8) self.batch_norm_2 = BigGANBatchNorm(inputs, condition_vector_dim=256, n_stats=51, eps=1e-12, conditional=True) #self.inver_mod2 = ln.Linear(2 * inputs, latent_size) if has_second_conv: if fused_scale: self.conv_2 = ln.Conv2d(inputs, outputs, 3, 2, 1, bias=False) else: self.conv_2 = ln.Conv2d(inputs, outputs, 3, 1, 1, bias=False) self.fused_scale = fused_scale self.inputs = inputs self.outputs = outputs if self.inputs != self.outputs: self.batch_norm_3 = BigGANBatchNorm(inputs, condition_vector_dim=256, n_stats=51, eps=1e-12, conditional=True) self.conv_3 = ln.Conv2d(inputs, outputs, 1, 1, 0) #self.instance_norm_3 = nn.InstanceNorm2d(outputs, affine=True, eps=1e-8) with torch.no_grad(): self.bias_1.zero_() self.bias_2.zero_() def forward(self, x, cond_vector, truncation=0.4): residual = x # mean1 = torch.mean(x, dim=[2, 3], keepdim=True) # [b, c, 1, 1] # std1 = torch.sqrt(torch.mean((x - mean1) ** 2, dim=[2, 3], keepdim=True)) # [b, c, 1, 1] # style1 = torch.cat((mean1, std1), dim=1) # [b,2c,1,1] # w1 = self.inver_mod1(style1.view(style1.shape[0],style1.shape[1])) # [b,2c]->[b,512] w1=0 x = self.batch_norm_1(x, truncation, cond_vector) #x = F.leaky_relu(x, 0.2) x = self.conv_1(x) #x = self.instance_norm_1(x) x = torch.addcmul(x, value=1.0, tensor1=self.noise_weight_1, tensor2=torch.randn([x.shape[0], 1, x.shape[2], x.shape[3]]).to(x.device)) x = x + self.bias_1 x = F.leaky_relu(x, 0.2) # mean2 = torch.mean(x, dim=[2, 3], keepdim=True) # [b, c, 1, 1] # std2 = torch.sqrt(torch.mean((x - mean2) ** 2, dim=[2, 3], keepdim=True)) # [b, c, 1, 1] # style2 = torch.cat((mean2, std2), dim=1) # [b,2c,1,1] # w2 = self.inver_mod2(style2.view(style2.shape[0],style2.shape[1])) # [b,512] , 这里style2.view一直写错成style1.view w2=0 if self.has_second_conv: x = self.batch_norm_2(x, truncation, cond_vector) #x = F.leaky_relu(x, 0.2) x = self.conv_2(x) #x = self.instance_norm_2(x) x = torch.addcmul(x, value=1.0, tensor1=self.noise_weight_2, tensor2=torch.randn([x.shape[0], 1, x.shape[2], x.shape[3]]).to(x.device)) x = x + self.bias_2 x = F.leaky_relu(x, 0.2) if self.inputs != self.outputs: residual = self.batch_norm_3(residual, truncation, cond_vector) #x = F.leaky_relu(x, 0.2) residual = self.conv_3(residual) x = F.leaky_relu(x, 0.2) x = x + residual if not self.fused_scale: #上采样 x = F.avg_pool2d(x, 2, 2) #x = 0.111*x+0.889*residual #降低x的比例,可以将const的loss缩小!!0.7*residual: 10-11 >> 7 同时 c_s的loss扩大至3, ws的抖动提前, 效果更好 return x, w1, w2 class BE(nn.Module): def __init__(self, startf=16, maxf=512, layer_count=9, latent_size=512, channels=3, pggan=False, biggan=False): super().__init__() self.maxf = maxf self.startf = startf self.latent_size = latent_size #self.layer_to_resolution = [0 for _ in range(layer_count)] self.decode_block = nn.ModuleList() self.layer_count = layer_count inputs = startf # 16 outputs = startf*2 #resolution = 1024 # from_RGB = nn.ModuleList() fused_scale = False self.FromRGB = FromRGB(channels, inputs) for i in range(layer_count): has_second_conv = i+1 != layer_count #普通的D最后一个块的第二层是 mini_batch_std #fused_scale = resolution >= 128 # 在新的一层起初 fused_scale = flase, 完成上采样 #from_RGB.append(FromRGB(channels, inputs)) block = BEBlock(inputs, outputs, latent_size, has_second_conv, fused_scale=fused_scale) inputs = inputs*2 outputs = outputs*2 inputs = min(maxf, inputs) outputs = min(maxf, outputs) #self.layer_to_resolution[i] = resolution #resolution /=2 self.decode_block.append(block) #self.FromRGB = from_RGB self.biggan = biggan if biggan: self.new_final_1 = ln.Linear(8192, 256, gain=1) # 8192 = 512 * 16 self.new_final_2 = ln.Linear(256, 128, gain=1) #self.new_final_3 = ln.Linear(256, 1000, gain=1) # #将w逆序,以保证和G的w顺序, block_num控制progressive,在其他网络中无效 def forward(self, x, cond_vector, block_num=9): #x = self.FromRGB[9-block_num](x) #每个block一个 x = self.FromRGB(x) #w = torch.tensor(0) for i in range(9-block_num,self.layer_count): x,w1,w2 = self.decode_block[i](x, cond_vector, truncation=0.4) #w_ = torch.cat((w2.view(x.shape[0],1,512),w1.view(x.shape[0],1,512)),dim=1) # [b,2,512] # if i == (9-block_num): #最后一层 # w = w_ # [b,n,512] # else: # w = torch.cat((w_,w),dim=1) if self.biggan: c_v = self.new_final_1(x.view(x.shape[0],-1)) #[n, 256], cond_vector z = self.new_final_2(c_v) # [n, 128] #w_ = self.new_final_3(x) # [n, 1000] return c_v, z #test # E = BE(startf=64, maxf=512, layer_count=7, latent_size=512, channels=3) # imgs1 = torch.randn(2,3,256,256) # const2,w2 = E(imgs1) # print(const2.shape) # print(w2.shape) # print(E)
the-stack_106_27916
import math from machine import PWM, Pin from .pca9685 import PCA9685 def map_angle(x, in_min, in_max, out_min, out_max): return int((x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min) class Servo: """ A abstract base class for controlling hobby servos. Parent classes must implement the duty methos Args: freq (int): The frequency of the signal, in hertz. min_pulse_us (int microseconds): The minimum signal length supported by the servo. max_pulse_us (int microseconds): The maximum signal length supported by the servo. actuation_range (int): The range between the minimum and maximum positions. """ def __init__( self, freq=50, min_pulse_us: int = 500, max_pulse_us: int = 2000, actuation_range: int = 180, ): self.freq = freq self.set_pulse_width_range(min_pulse_us, max_pulse_us) """The physical range of motion of the servo in degrees.""" self.actuation_range = actuation_range def _us2duty(self, value): period = 1000000 / self.freq print(f"period: {period}") return int(1024 * value / period) def set_pulse_width_range(self, min_pulse: int = 750, max_pulse: int = 2250): """Change min and max pulse widths.""" # self._min_duty = int((min_pulse * self.freq) / 1000000 * 0xFFFF) self._min_duty = self._us2duty(min_pulse) print(f"min duty: {self._min_duty}") # max_duty = (max_pulse * self.freq) / 1000000 * 0xFFFF max_duty = self._us2duty(max_pulse) print(f"max duty: {max_duty}") self._duty_range = int(max_duty - self._min_duty) print(f"duty range: {self._duty_range}") @property def fraction(self): """Pulse width expressed as fraction between 0.0 (`min_pulse`) and 1.0 (`max_pulse`). For conventional servos, corresponds to the servo position as a fraction of the actuation range. Is None when servo is diabled (pulsewidth of 0ms). """ if self.duty() == 0: # Special case for disabled servos return None return (self.duty() - self._min_duty) / self._duty_range @fraction.setter def fraction(self, value: float = None): if value is None: self.duty(0) # disable the motor return if not 0.0 <= value <= 1.0: raise ValueError("Must be 0.0 to 1.0") duty_cycle = self._min_duty + int(value * self._duty_range) # print(f"duty: {duty_cycle}") self.duty(duty_cycle) @property def angle(self): """The servo angle in degrees. Must be in the range ``0`` to ``actuation_range``. Is None when servo is disabled.""" if self.fraction is None: # special case for disabled servos return None return self.actuation_range * self.fraction @angle.setter def angle(self, new_angle: int = None): if new_angle is None: # disable the servo by sending 0 signal self.fraction = None return if new_angle < 0 or new_angle > self.actuation_range: raise ValueError("Angle out of range") self.fraction = new_angle / self.actuation_range def duty(self, duty: int = None): raise Exception("duty function must be implemented in parent") class DirectServo(Servo): def __init__( self, pin: Pin, freq=50, min_pulse_us=400, max_pulse_us=2400, actuation_range=180, ): self.pin = pin self.pwm = PWM(pin, freq=freq, duty=0) super().__init__(freq, min_pulse_us, max_pulse_us, actuation_range) def duty(self, duty: int = None): if not duty: return self.pwm.duty() return self.pwm.duty(duty) class PCAServo(Servo): def __init__( self, pca9685: PCA9685, channel: int, freq=50, min_pulse_us=600, max_pulse_us=2700, actuation_range=180, ): self.pca9685 = pca9685 self.pca9685.freq(freq) self.channel = channel super().__init__(freq, min_pulse_us, max_pulse_us, actuation_range) def _us2duty(self, value): period = 1000000 / self.freq print(f"period: {period}") # TODO: Work out why servos on the pca need 4095 return int(4095 * value / period) def duty(self, duty: int = None): if not duty: return self.pca9685.duty(self.channel) return self.pca9685.duty(self.channel, duty) def release(self): self.pca9685.duty(self.channel, 0)
the-stack_106_27918
# Given a binary tree, find the second largest # node in it class Node: def __init__(self, data): self.data = data self.left = None self.right = None def find_largest(root): current = root while current is not None: if current.right is not None: return current.right.data current = current.right def find_second_largest(root): if root is None or (root.left is None and root.right is None): raise ValueError("Tree must atleast have 2 nodes") current = root while current is not None: if(current.left is not None and current.right is None): return find_largest(current.left) if(current.right is not None and current.right.left is None and current.right.right is None): return current.data current = current.right node = Node(10) node.left = Node(5) node.left.left = Node(1) node.right = Node(50) node.right.left = Node(45) node.right.right = Node(100) result = find_second_largest(node) print(result) # prints 50
the-stack_106_27922
import numpy as np from ann import NeuralNetwork # input x = np.array([ [30, 40, 50], [40, 50, 20], [50, 20, 15], [20, 15, 60], [15, 60, 70], [60, 70, 50] ], dtype=np.float64) # Expected output y = np.array([20, 15, 60, 70, 50, 40], dtype=np.float64) def main(): size_of_learn_sample = int(len(x)*0.9) print(size_of_learn_sample) NN = NeuralNetwork(x, y, 0.5) # NN.print_matrices() NN.train() NN.print_matrices() if __name__ == "__main__": main()
the-stack_106_27924
# Authors: Manoj Kumar # Thomas Unterthiner # License: BSD 3 clause import scipy.sparse as sp import numpy as np from .fixes import sparse_min_max, bincount from .sparsefuncs_fast import csr_mean_variance_axis0 as _csr_mean_var_axis0 from .sparsefuncs_fast import csc_mean_variance_axis0 as _csc_mean_var_axis0 def _raise_typeerror(X): """Raises a TypeError if X is not a CSR or CSC matrix""" input_type = X.format if sp.issparse(X) else type(X) err = "Expected a CSR or CSC sparse matrix, got %s." % input_type raise TypeError(err) def inplace_csr_column_scale(X, scale): """Inplace column scaling of a CSR matrix. Scale each feature of the data matrix by multiplying with specific scale provided by the caller assuming a (n_samples, n_features) shape. Parameters ---------- X : CSR matrix with shape (n_samples, n_features) Matrix to normalize using the variance of the features. scale : float array with shape (n_features,) Array of precomputed feature-wise values to use for scaling. """ assert scale.shape[0] == X.shape[1] X.data *= scale.take(X.indices, mode='clip') def inplace_csr_row_scale(X, scale): """ Inplace row scaling of a CSR matrix. Scale each sample of the data matrix by multiplying with specific scale provided by the caller assuming a (n_samples, n_features) shape. Parameters ---------- X : CSR sparse matrix, shape (n_samples, n_features) Matrix to be scaled. scale : float array with shape (n_samples,) Array of precomputed sample-wise values to use for scaling. """ assert scale.shape[0] == X.shape[0] X.data *= np.repeat(scale, np.diff(X.indptr)) def mean_variance_axis(X, axis): """Compute mean and variance along axis 0 on a CSR or CSC matrix Parameters ---------- X: CSR or CSC sparse matrix, shape (n_samples, n_features) Input data. axis: int (either 0 or 1) Axis along which the axis should be computed. Returns ------- means: float array with shape (n_features,) Feature-wise means variances: float array with shape (n_features,) Feature-wise variances """ if axis not in (0, 1): raise ValueError( "Unknown axis value: %d. Use 0 for rows, or 1 for columns" % axis) if isinstance(X, sp.csr_matrix): if axis == 0: return _csr_mean_var_axis0(X) else: return _csc_mean_var_axis0(X.T) elif isinstance(X, sp.csc_matrix): if axis == 0: return _csc_mean_var_axis0(X) else: return _csr_mean_var_axis0(X.T) else: _raise_typeerror(X) def inplace_column_scale(X, scale): """Inplace column scaling of a CSC/CSR matrix. Scale each feature of the data matrix by multiplying with specific scale provided by the caller assuming a (n_samples, n_features) shape. Parameters ---------- X: CSC or CSR matrix with shape (n_samples, n_features) Matrix to normalize using the variance of the features. scale: float array with shape (n_features,) Array of precomputed feature-wise values to use for scaling. """ if isinstance(X, sp.csc_matrix): inplace_csr_row_scale(X.T, scale) elif isinstance(X, sp.csr_matrix): inplace_csr_column_scale(X, scale) else: _raise_typeerror(X) def inplace_row_scale(X, scale): """ Inplace row scaling of a CSR or CSC matrix. Scale each row of the data matrix by multiplying with specific scale provided by the caller assuming a (n_samples, n_features) shape. Parameters ---------- X : CSR or CSC sparse matrix, shape (n_samples, n_features) Matrix to be scaled. scale : float array with shape (n_features,) Array of precomputed sample-wise values to use for scaling. """ if isinstance(X, sp.csc_matrix): inplace_csr_column_scale(X.T, scale) elif isinstance(X, sp.csr_matrix): inplace_csr_row_scale(X, scale) else: _raise_typeerror(X) def inplace_swap_row_csc(X, m, n): """ Swaps two rows of a CSC matrix in-place. Parameters ---------- X: scipy.sparse.csc_matrix, shape=(n_samples, n_features) Matrix whose two rows are to be swapped. m: int Index of the row of X to be swapped. n: int Index of the row of X to be swapped. """ for t in [m, n]: if isinstance(t, np.ndarray): raise TypeError("m and n should be valid integers") if m < 0: m += X.shape[0] if n < 0: n += X.shape[0] m_mask = X.indices == m X.indices[X.indices == n] = m X.indices[m_mask] = n def inplace_swap_row_csr(X, m, n): """ Swaps two rows of a CSR matrix in-place. Parameters ---------- X: scipy.sparse.csr_matrix, shape=(n_samples, n_features) Matrix whose two rows are to be swapped. m: int Index of the row of X to be swapped. n: int Index of the row of X to be swapped. """ for t in [m, n]: if isinstance(t, np.ndarray): raise TypeError("m and n should be valid integers") if m < 0: m += X.shape[0] if n < 0: n += X.shape[0] # The following swapping makes life easier since m is assumed to be the # smaller integer below. if m > n: m, n = n, m indptr = X.indptr m_start = indptr[m] m_stop = indptr[m + 1] n_start = indptr[n] n_stop = indptr[n + 1] nz_m = m_stop - m_start nz_n = n_stop - n_start if nz_m != nz_n: # Modify indptr first X.indptr[m + 2:n] += nz_n - nz_m X.indptr[m + 1] = m_start + nz_n X.indptr[n] = n_stop - nz_m X.indices = np.concatenate([X.indices[:m_start], X.indices[n_start:n_stop], X.indices[m_stop:n_start], X.indices[m_start:m_stop], X.indices[n_stop:]]) X.data = np.concatenate([X.data[:m_start], X.data[n_start:n_stop], X.data[m_stop:n_start], X.data[m_start:m_stop], X.data[n_stop:]]) def inplace_swap_row(X, m, n): """ Swaps two rows of a CSC/CSR matrix in-place. Parameters ---------- X : CSR or CSC sparse matrix, shape=(n_samples, n_features) Matrix whose two rows are to be swapped. m: int Index of the row of X to be swapped. n: int Index of the row of X to be swapped. """ if isinstance(X, sp.csc_matrix): return inplace_swap_row_csc(X, m, n) elif isinstance(X, sp.csr_matrix): return inplace_swap_row_csr(X, m, n) else: _raise_typeerror(X) def inplace_swap_column(X, m, n): """ Swaps two columns of a CSC/CSR matrix in-place. Parameters ---------- X : CSR or CSC sparse matrix, shape=(n_samples, n_features) Matrix whose two columns are to be swapped. m: int Index of the column of X to be swapped. n : int Index of the column of X to be swapped. """ if m < 0: m += X.shape[1] if n < 0: n += X.shape[1] if isinstance(X, sp.csc_matrix): return inplace_swap_row_csr(X, m, n) elif isinstance(X, sp.csr_matrix): return inplace_swap_row_csc(X, m, n) else: _raise_typeerror(X) def min_max_axis(X, axis): """Compute minimum and maximum along an axis on a CSR or CSC matrix Parameters ---------- X : CSR or CSC sparse matrix, shape (n_samples, n_features) Input data. axis: int (either 0 or 1) Axis along which the axis should be computed. Returns ------- mins: float array with shape (n_features,) Feature-wise minima maxs: float array with shape (n_features,) Feature-wise maxima """ if isinstance(X, sp.csr_matrix) or isinstance(X, sp.csc_matrix): return sparse_min_max(X, axis=axis) else: _raise_typeerror(X) def count_nonzero(X, axis=None, sample_weight=None): """A variant of X.getnnz() with extension to weighting on axis 0 Useful in efficiently calculating multilabel metrics. Parameters ---------- X : CSR sparse matrix, shape = (n_samples, n_labels) Input data. axis : None, 0 or 1 The axis on which the data is aggregated. sample_weight : array, shape = (n_samples,), optional Weight for each row of X. """ if axis == -1: axis = 1 elif axis == -2: axis = 0 elif X.format != 'csr': raise TypeError('Expected CSR sparse format, got {0}'.format(X.format)) # We rely here on the fact that np.diff(Y.indptr) for a CSR # will return the number of nonzero entries in each row. # A bincount over Y.indices will return the number of nonzeros # in each column. See ``csr_matrix.getnnz`` in scipy >= 0.14. if axis is None: if sample_weight is None: return X.nnz else: return np.dot(np.diff(X.indptr), sample_weight) elif axis == 1: out = np.diff(X.indptr) if sample_weight is None: return out return out * sample_weight elif axis == 0: if sample_weight is None: return bincount(X.indices, minlength=X.shape[1]) else: weights = np.repeat(sample_weight, np.diff(X.indptr)) return bincount(X.indices, minlength=X.shape[1], weights=weights) else: raise ValueError('Unsupported axis: {0}'.format(axis)) def _get_median(data, n_zeros): """Compute the median of data with n_zeros additional zeros. This function is used to support sparse matrices; it modifies data in-place """ n_elems = len(data) + n_zeros if not n_elems: return np.nan n_negative = np.count_nonzero(data < 0) middle, is_odd = divmod(n_elems, 2) data.sort() if is_odd: return _get_elem_at_rank(middle, data, n_negative, n_zeros) return (_get_elem_at_rank(middle - 1, data, n_negative, n_zeros) + _get_elem_at_rank(middle, data, n_negative, n_zeros)) / 2. def _get_elem_at_rank(rank, data, n_negative, n_zeros): """Find the value in data augmented with n_zeros for the given rank""" if rank < n_negative: return data[rank] if rank - n_negative < n_zeros: return 0 return data[rank - n_zeros] def csc_median_axis_0(X): """Find the median across axis 0 of a CSC matrix. It is equivalent to doing np.median(X, axis=0). Parameters ---------- X : CSC sparse matrix, shape (n_samples, n_features) Input data. Returns ------- median : ndarray, shape (n_features,) Median. """ if not isinstance(X, sp.csc_matrix): raise TypeError("Expected matrix of CSC format, got %s" % X.format) indptr = X.indptr n_samples, n_features = X.shape median = np.zeros(n_features) for f_ind, (start, end) in enumerate(zip(indptr[:-1], indptr[1:])): # Prevent modifying X in place data = np.copy(X.data[start: end]) nz = n_samples - data.size median[f_ind] = _get_median(data, nz) return median
the-stack_106_27925
# -*- coding: utf-8 -*- ''' Created on 2018. 9. 24. @author: jason96 Apply Gini Impurity ''' import pandas as pd from graphviz import Digraph import os import operator import numpy as np raw_data = { 'name': ["Kang", "Kim", "Choi", "Park", "Yoon"], '짱절미': [True, False, False, False, False], '셀스타그램': [False, False, True, False, False], 'like': [True, False, True, True, False] } pd_data = pd.DataFrame(raw_data) pd_data = pd_data.set_index("name") label_name = "like" feature_names = pd_data.columns.difference([label_name]) def display_node(dot, key, node): if node["leaf"] is True: proba = node['proba'] proba = round(proba, 4) proba = str(proba) dot.node(key, proba) else: desc = node['desc'] dot.node(key, desc) if "left" in node: left_key = key + "L" display_node(dot, left_key, node['left']) dot.edge(key, left_key) if "right" in node: right_key = key + "R" display_node(dot, right_key, node['right']) dot.edge(key, right_key) dot.render('graphviz-files/dstree.gv', view=True) def display_tree(tree): dot = Digraph(comment='Decision Tree') display_node(dot, "Root", tree) def predict(data, node): if node['leaf']: proba = node["proba"] result = dict(zip(data.index, len(data) * [proba])) else: rule = node['rule'] left_data = data[rule(data)] left_result = predict(left_data, node['left']) right_data = data[~rule(data)] right_result = predict(right_data, node['right']) return {**left_result, **right_result} return result def binary_rule(data, feature_name, value): return data[feature_name] == value def make_rule(method, feature_name, value): def call_condition(data): return method(data, feature_name, value) return call_condition def make_rules(feature_names): rules = {} feature_names = list(feature_names) for feature_name in feature_names: rules[feature_name] = make_rule(binary_rule, feature_name, True) return rules def get_best_rule(data, rules): gini_indexes = {} for feature_name, rule in rules.items(): true_data = data[rule(data)] true_proba = true_data[label_name].mean() false_proba = 1 - true_proba gini_index = true_proba*(1-false_proba) - false_proba*(1-true_proba) gini_indexes[feature_name] = gini_index sorted_x = sorted(gini_indexes.items(), key=operator.itemgetter(1)) for k, v in sorted_x: # @UnusedVariable return k, rules[k] def make_node(data, rules): if len(rules) > 0: feature_name, rule = get_best_rule(data, rules) left_data = data[rule(data)] right_data = data[~rule(data)] if len(left_data) > 0 and len(right_data) > 0: del rules[feature_name] node = {'leaf': False, 'desc': feature_name, 'rule': rule} node['left'] = make_tree(left_data, rules.copy()) node['right'] = make_tree(right_data, rules.copy()) return node proba = data[label_name].mean() node = {'leaf': True, 'proba': proba} return node def make_tree(data, feature_names): rules = make_rules(feature_names) return make_node(data, rules) def display_predict(predict): for k, v in predict.items(): print(k, v) def bootstrap(data, feature_names, label_name): feature_data = data[feature_names] num_rows, num_cols = feature_data.shape index = np.random.choice(feature_data.index, size=num_rows, replace=True) if max_feature == None: # @IgnorePep8 num_cols = np.sqrt(num_cols) else: num_cols = num_cols * max_feature num_cols = int(num_cols) columns = np.random.choice(feature_data.columns, size=num_cols, replace=False) # If index and columns are specified, # a new table is created based on the values. result = feature_data.loc[index, columns] result[label_name] = data[label_name] return result def make_forest(data): forest = [] for _ in range(n_estimators): bootstrapped_data = bootstrap(data, feature_names, label_name) bs_feature_names = bootstrapped_data.columns.difference([label_name]) tree = make_tree(bootstrapped_data, bs_feature_names) forest.append(tree) return forest def predict_forest(data, forest): prediction_total = [] for tree in forest: prediction = predict(data, tree) prediction = pd.Series(prediction) prediction_total.append(prediction) prediction_total = pd.concat(prediction_total, axis=1, sort=False) prediction_total = prediction_total.mean(axis=1) return prediction_total if __name__ == '__main__': max_feature = None n_estimators = 10 os.environ["PATH"] += os.pathsep + '/usr/local/bin' forest = make_forest(pd_data) display_predict(predict_forest(pd_data, forest)) # tree = make_tree(pd_data, rules) # display_tree(tree) # display_predict(predict(pd_data, tree))
the-stack_106_27926
from django.db import models from core.utils import validate_slug from labour.models import ObsoleteSignupExtraBaseV1 SHIRT_SIZES = [ ('NO_SHIRT', 'Ei paitaa'), ('XS', 'XS Unisex'), ('S', 'S Unisex'), ('M', 'M Unisex'), ('L', 'L Unisex'), ('XL', 'XL Unisex'), ('XXL', 'XXL Unisex'), ('3XL', '3XL Unisex'), ('4XL', '4XL Unisex'), ('5XL', '5XL Unisex'), ('LF_XS', 'XS Ladyfit'), ('LF_S', 'S Ladyfit'), ('LF_M', 'M Ladyfit'), ('LF_L', 'L Ladyfit'), ('LF_XL', 'XL Ladyfit'), ] SHIFT_TYPE_CHOICES = [ ('yksipitka', 'Yksi pitkä vuoro'), ('montalyhytta', 'Monta lyhyempää vuoroa'), ('kaikkikay', 'Kumpi tahansa käy'), ] TOTAL_WORK_CHOICES = [ ('8h', 'Minimi - 8 tuntia (1 lämmin ateria)'), ('12h', '12 tuntia (2 lämmintä ateriaa)'), ('yli12h', 'Työn Sankari! Yli 12 tuntia! (2 lämmintä ateriaa)'), ] class SimpleChoice(models.Model): name = models.CharField(max_length=63) def __str__(self): return self.name class Meta: abstract = True class SpecialDiet(SimpleChoice): pass class Night(SimpleChoice): pass class SignupExtra(ObsoleteSignupExtraBaseV1): shift_type = models.CharField(max_length=15, verbose_name='Toivottu työvuoron pituus', help_text='Haluatko tehdä yhden pitkän työvuoron vaiko monta lyhyempää vuoroa?', choices=SHIFT_TYPE_CHOICES, ) total_work = models.CharField(max_length=15, verbose_name='Toivottu kokonaistyömäärä', help_text='Kuinka paljon haluat tehdä töitä yhteensä tapahtuman aikana? Useimmissa tehtävistä minimi on kahdeksan tuntia, mutta joissain tehtävissä se voi olla myös vähemmän (esim. majoitusvalvonta 6 h).', choices=TOTAL_WORK_CHOICES, ) overseer = models.BooleanField( default=False, verbose_name='Olen kiinnostunut vuorovastaavan tehtävistä', help_text='Vuorovastaavat ovat kokeneempia conityöläisiä, jotka toimivat oman tehtäväalueensa tiiminvetäjänä.', ) want_certificate = models.BooleanField( default=False, verbose_name='Haluan todistuksen työskentelystäni Traconissa', ) certificate_delivery_address = models.TextField( blank=True, verbose_name='Työtodistuksen toimitusosoite', help_text='Jos haluat työtodistuksen, täytä tähän kenttään postiosoite (katuosoite, ' 'postinumero ja postitoimipaikka) johon haluat todistuksen toimitettavan.', ) shirt_size = models.CharField( max_length=8, choices=SHIRT_SIZES, verbose_name='Paidan koko', help_text='Ajoissa ilmoittautuneet vänkärit saavat maksuttoman työvoimapaidan. ' 'Kokotaulukot: <a href="http://www.bc-collection.eu/uploads/sizes/TU004.jpg" ' 'target="_blank">unisex-paita</a>, <a href="http://www.bc-collection.eu/uploads/sizes/TW040.jpg" ' 'target="_blank">ladyfit-paita</a>', ) special_diet = models.ManyToManyField( SpecialDiet, blank=True, verbose_name='Erikoisruokavalio' ) special_diet_other = models.TextField( blank=True, verbose_name='Muu erikoisruokavalio', help_text='Jos noudatat erikoisruokavaliota, jota ei ole yllä olevassa listassa, ' 'ilmoita se tässä. Tapahtuman järjestäjä pyrkii ottamaan erikoisruokavaliot ' 'huomioon, mutta kaikkia erikoisruokavalioita ei välttämättä pystytä järjestämään.' ) lodging_needs = models.ManyToManyField(Night, blank=True, verbose_name='Tarvitsen lattiamajoitusta', help_text='Ruksaa ne yöt, joille tarvitset lattiamajoitusta. Lattiamajoitus sijaitsee ' 'kävelymatkan päässä tapahtumapaikalta.', ) prior_experience = models.TextField( blank=True, verbose_name='Työkokemus', help_text='Kerro tässä kentässä, jos sinulla on aiempaa kokemusta vastaavista ' 'tehtävistä tai muuta sellaista työkokemusta, josta arvioit olevan hyötyä ' 'hakemassasi tehtävässä.' ) free_text = models.TextField( blank=True, verbose_name='Vapaa alue', help_text='Jos haluat sanoa hakemuksesi käsittelijöille jotain sellaista, jolle ei ole ' 'omaa kenttää yllä, käytä tätä kenttää.' ) email_alias = models.CharField( blank=True, default='', max_length=32, verbose_name='Sähköpostialias', help_text='Coniitit saavat käyttöönsä [email protected] sähköpostialiaksen, joka ' 'ohjataan coniitin omaan sähköpostilaatikkoon. Tässä voit toivoa haluamaasi sähköpostialiaksen alkuosaa eli sitä, joka tulee ennen @tracon.fi:tä. ' 'Sallittuja merkkejä ovat pienet kirjaimet a-z, numerot 0-9 sekä väliviiva.', validators=[validate_slug] ) @classmethod def get_form_class(cls): from .forms import SignupExtraForm return SignupExtraForm @property def formatted_lodging_needs(self): return "\n".join("{night}: {need}".format( night=night.name, need='Tarvitsee lattiamajoitusta' if self.lodging_needs.filter(pk=night.pk).exists() else 'Ei tarvetta lattiamajoitukselle', ) for night in Night.objects.all())
the-stack_106_27929
# coding: utf-8 # /*########################################################################## # Copyright (C) 2016 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ############################################################################*/ """ Python h5 module and octave h5 module have different ways to deal with h5 files. This module is used to make the link between octave and python using such files. (python is using a dictionary and octave a struct ) This module provides tool to set HDF5 file for fasttomo input. Here is an example of a simple read and write : .. code-block:: python :emphasize-lines: 3,5 # writing a structure myStruct = {'MKEEP_MASK': 0.0, 'UNSHARP_SIGMA': 0.80000000000000004 } writer = Octaveh5().open("my_h5file", 'a') writer.write('mt_struct_name', myStruct) # reading a h5 file reader = Octaveh5().open("my_h5file") strucDict = reader.get('mt_struct_name') .. note:: These functions depend on the `h5py <http://www.h5py.org/>`_ library, which is not a mandatory dependency for `silx`. """ import logging logger = logging.getLogger(__name__) import numpy as np import h5py __authors__ = ["C. Nemoz", "H. Payno"] __license__ = "MIT" __date__ = "05/10/2016" class Octaveh5(object): """This class allows communication between octave and python using hdf5 format. """ def __init__(self, octave_targetted_version=3.8): """Constructor :param octave_targetted_version: the version of Octave for which we want to write this hdf5 file. This is needed because for old Octave version we need to had a hack(adding one extra character) """ self.file = None self.octave_targetted_version = octave_targetted_version def open(self, h5file, mode='r'): """Open the h5 file which has been write by octave :param h5file: The path of the file to read :param mode: the opening mode of the file :'r', 'w'... """ try: self.file = h5py.File(h5file, mode) return self except IOError as e: if mode == 'a': reason = "\n %s: Can t find or create " % h5file else: reason = "\n %s: File not found" % h5file self.file = None logger.info(reason) raise e def get(self, struct_name): """Read octave equivalent structures in hdf5 file :param struct_name: the identification of the top level identity we want to get from an hdf5 structure :return: the dictionnary of the requested struct. None if can t find it """ if self.file is None: info = "No file currently open" logger.info(info) return None data_dict = {} grr = (list(self.file[struct_name].items())[1])[1] try: gr_level2 = grr.items() except AttributeError: reason = "no gr_level2" logger.info(reason) return None for key, val in iter(dict(gr_level2).items()): data_dict[str(key)] = list(val.items())[1][1][()] if list(val.items())[0][1][()] != np.string_('sq_string'): data_dict[str(key)] = float(data_dict[str(key)]) else: if list(val.items())[0][1][()] == np.string_('sq_string'): # in the case the string has been stored as an nd-array of char if type(data_dict[str(key)]) is np.ndarray: data_dict[str(key)] = "".join(chr(item) for item in data_dict[str(key)]) else: data_dict[str(key)] = data_dict[str(key)].decode('UTF-8') # In the case Octave have added an extra character at the end if self.octave_targetted_version < 3.8: data_dict[str(key)] = data_dict[str(key)][:-1] return data_dict def write(self, struct_name, data_dict): """write data_dict under the group struct_name in the open hdf5 file :param struct_name: the identificatioon of the structure to write in the hdf5 :param data_dict: The python dictionnary containing the informations to write """ if self.file is None: info = "No file currently open" logger.info(info) return group_l1 = self.file.create_group(struct_name) group_l1.attrs['OCTAVE_GLOBAL'] = np.uint8(1) group_l1.attrs['OCTAVE_NEW_FORMAT'] = np.uint8(1) group_l1.create_dataset("type", data=np.string_('scalar struct'), dtype="|S14") group_l2 = group_l1.create_group('value') for ftparams in data_dict: group_l3 = group_l2.create_group(ftparams) group_l3.attrs['OCTAVE_NEW_FORMAT'] = np.uint8(1) if type(data_dict[ftparams]) == str: group_l3.create_dataset("type", (), data=np.string_('sq_string'), dtype="|S10") if self.octave_targetted_version < 3.8: group_l3.create_dataset("value", data=np.string_(data_dict[ftparams] + '0')) else: group_l3.create_dataset("value", data=np.string_(data_dict[ftparams])) else: group_l3.create_dataset("type", (), data=np.string_('scalar'), dtype="|S7") group_l3.create_dataset("value", data=data_dict[ftparams]) def close(self): """Close the file after calling read function """ if self.file: self.file.close() def __del__(self): """Destructor """ self.close()
the-stack_106_27932
#!/usr/bin/env python # -*- coding: utf-8 -*- # File: char-rnn.py # Author: Yuxin Wu import argparse import numpy as np import operator import os import sys from collections import Counter import tensorflow as tf from tensorpack import * from tensorpack.tfutils import optimizer, summary from tensorpack.tfutils.gradproc import GlobalNormClip rnn = tf.contrib.rnn class _NS: pass # noqa param = _NS() # some model hyperparams to set param.batch_size = 128 param.rnn_size = 256 param.num_rnn_layer = 2 param.seq_len = 50 param.grad_clip = 5. param.vocab_size = None param.softmax_temprature = 1 param.corpus = None class CharRNNData(RNGDataFlow): def __init__(self, input_file, size): self.seq_length = param.seq_len self._size = size logger.info("Loading corpus...") # preprocess data with open(input_file, 'rb') as f: data = f.read() data = [chr(c) for c in data if c < 128] counter = Counter(data) char_cnt = sorted(counter.items(), key=operator.itemgetter(1), reverse=True) self.chars = [x[0] for x in char_cnt] print(sorted(self.chars)) self.vocab_size = len(self.chars) param.vocab_size = self.vocab_size self.char2idx = {c: i for i, c in enumerate(self.chars)} self.whole_seq = np.array([self.char2idx[c] for c in data], dtype='int32') logger.info("Corpus loaded. Vocab size: {}".format(self.vocab_size)) def __len__(self): return self._size def __iter__(self): random_starts = self.rng.randint( 0, self.whole_seq.shape[0] - self.seq_length - 1, (self._size,)) for st in random_starts: seq = self.whole_seq[st:st + self.seq_length + 1] yield [seq[:-1], seq[1:]] class Model(ModelDesc): def inputs(self): return [tf.TensorSpec((None, param.seq_len), tf.int32, 'input'), tf.TensorSpec((None, param.seq_len), tf.int32, 'nextinput')] def build_graph(self, input, nextinput): cell = rnn.MultiRNNCell([rnn.LSTMBlockCell(num_units=param.rnn_size) for _ in range(param.num_rnn_layer)]) def get_v(n): ret = tf.get_variable(n + '_unused', [param.batch_size, param.rnn_size], trainable=False, initializer=tf.constant_initializer()) ret = tf.placeholder_with_default(ret, shape=[None, param.rnn_size], name=n) return ret initial = (rnn.LSTMStateTuple(get_v('c0'), get_v('h0')), rnn.LSTMStateTuple(get_v('c1'), get_v('h1'))) embeddingW = tf.get_variable('embedding', [param.vocab_size, param.rnn_size]) input_feature = tf.nn.embedding_lookup(embeddingW, input) # B x seqlen x rnnsize input_list = tf.unstack(input_feature, axis=1) # seqlen x (Bxrnnsize) outputs, last_state = rnn.static_rnn(cell, input_list, initial, scope='rnnlm') last_state = tf.identity(last_state, 'last_state') # seqlen x (Bxrnnsize) output = tf.reshape(tf.concat(outputs, 1), [-1, param.rnn_size]) # (Bxseqlen) x rnnsize logits = FullyConnected('fc', output, param.vocab_size, activation=tf.identity) tf.nn.softmax(logits / param.softmax_temprature, name='prob') xent_loss = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=tf.reshape(nextinput, [-1])) cost = tf.reduce_mean(xent_loss, name='cost') summary.add_param_summary(('.*/W', ['histogram'])) # monitor histogram of all W summary.add_moving_summary(cost) return cost def optimizer(self): lr = tf.get_variable('learning_rate', initializer=2e-3, trainable=False) opt = tf.train.AdamOptimizer(lr) return optimizer.apply_grad_processors(opt, [GlobalNormClip(5)]) def get_config(): logger.auto_set_dir() ds = CharRNNData(param.corpus, 100000) ds = BatchData(ds, param.batch_size) return TrainConfig( data=QueueInput(ds), callbacks=[ ModelSaver(), ScheduledHyperParamSetter('learning_rate', [(25, 2e-4)]) ], model=Model(), max_epoch=50, ) def sample(path, start, length): """ :param path: path to the model :param start: a `str`. the starting characters :param length: a `int`. the length of text to generate """ # initialize vocabulary and sequence length param.seq_len = 1 ds = CharRNNData(param.corpus, 100000) pred = OfflinePredictor(PredictConfig( model=Model(), session_init=SmartInit(path), input_names=['input', 'c0', 'h0', 'c1', 'h1'], output_names=['prob', 'last_state'])) # feed the starting sentence initial = np.zeros((1, param.rnn_size)) for c in start[:-1]: x = np.array([[ds.char2idx[c]]], dtype='int32') _, state = pred(x, initial, initial, initial, initial) def pick(prob): t = np.cumsum(prob) s = np.sum(prob) return(int(np.searchsorted(t, np.random.rand(1) * s))) # generate more ret = start c = start[-1] for _ in range(length): x = np.array([[ds.char2idx[c]]], dtype='int32') prob, state = pred(x, state[0, 0], state[0, 1], state[1, 0], state[1, 1]) c = ds.chars[pick(prob[0])] ret += c print(ret) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.') parser.add_argument('--load', help='load model') subparsers = parser.add_subparsers(title='command', dest='command') parser_sample = subparsers.add_parser('sample', help='sample a trained model') parser_sample.add_argument('-n', '--num', type=int, default=300, help='length of text to generate') parser_sample.add_argument('-s', '--start', default='The ', help='initial text sequence') parser_sample.add_argument('-t', '--temperature', type=float, default=1, help='softmax temperature') parser_train = subparsers.add_parser('train', help='train') parser_train.add_argument('--corpus', help='corpus file', default='input.txt') args = parser.parse_args() if args.gpu: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu if args.command == 'sample': param.softmax_temprature = args.temperature assert args.load is not None, "Load your model by argument --load" sample(args.load, args.start, args.num) sys.exit() else: param.corpus = args.corpus config = get_config() config.session_init = SmartInit(args.load) launch_train_with_config(config, SimpleTrainer())
the-stack_106_27935
#!/usr/bin/python3 # -*- coding: utf-8 -*- # Author: i2cy([email protected]) # Filename: remote_controller # Created on: 2020/9/17 """ WARNING: INTERNAL NETWORK USE ONLY WARNING: INTERNAL NETWORK USE ONLY WARNING: INTERNAL NETWORK USE ONLY """ import socket import time import os import threading LISTENING_PORT = 10430 KEY = "__BasiCABCKey." LIVE = True class timeKey: # 64-Bits Live key generator/matcher def __init__(self,key): if type(key) != type(""): raise Exception("key must be a string") self.key = key def keygen(self,mt=0): # 64-Bits Live key generator dt = int(str(int(time.time()))[:-2]) + mt sub_key_unit = str(int(str(4*dt**8 + 8*dt**4 + 2*dt**2 + 4*dt + 1024)[::-1]) + 3*dt**4 + 2*dt**3 + 3*dt**2 + 2*dt) final_key = b"" n = 0 n2 = 0 for i in range(64): if n == len(sub_key_unit): n = 0 if n2 == len(self.key): n2 = 0 final_key_unit = ord(self.key[n2]) + ord(sub_key_unit[n]) if final_key_unit >= 255: final_key_unit -= 256 final_key += bytes((final_key_unit,)) n += 1 n2 += 1 return final_key def keymatch(self,key): # Live key matcher lock_1 = self.keygen(-1) lock_2 = self.keygen(0) lock_3 = self.keygen(1) lock = [lock_1,lock_2,lock_3] if key in lock: return True else: return False def executer(cmd): try: pipe = os.popen(cmd) time.sleep(0.5) res = pipe.read() except Exception as err: res = str(err) print("execution result:", res) def handler(con): try: con.settimeout(3) tk = timeKey(KEY) match = tk.keymatch(con.recv(1024)) if not match: return else: con.sendall(b"OK") cmd = con.recv(2048).decode() thr = threading.Thread(target=executer, args=(cmd,)) thr.start() con.sendall(b"OK") con.close() except Exception as err: try: con.sendall(str(err).encode()) con.close() except: pass print("error while communicating with client,", err) def listening_loop(): global LIVE try: srv = socket.socket(socket.AF_INET, socket.SOCK_STREAM) srv.bind(("0.0.0.0", LISTENING_PORT)) print("server bind at 0.0.0.0:{}".format(LISTENING_PORT)) srv.settimeout(5) srv.listen(10) except Exception as err: print("failed to initialize server, {}, exiting".format(err)) LIVE = False return while LIVE: try: con, addr = srv.accept() print("connection from {} in coming".format(str(addr))) handler_thread = threading.Thread(target=handler, args=(con,)) handler_thread.start() except: continue srv.close() def main(): global LIVE print("initializing...") lis_thread = threading.Thread(target=listening_loop) lis_thread.start() print('(use Ctrl+C to exit)\n') while LIVE: try: time.sleep(2) except KeyboardInterrupt: LIVE = False exit(0) if __name__ == "__main__": main()
the-stack_106_27936
import copy import itertools import warnings import torch import torch.nn as nn import torch.nn.quantized as nnq from torch.nn.intrinsic import _FusedModule from .quantization_mappings import ( get_default_dynamic_quant_module_mappings, get_default_static_quant_module_mappings, get_default_qat_module_mappings, get_default_qconfig_propagation_list, no_observer_set, _has_special_act_post_process, _get_special_act_post_process, ) from .stubs import DeQuantStub, QuantWrapper from .qconfig import default_dynamic_qconfig, float16_dynamic_qconfig, float_qparams_weight_only_qconfig def is_activation_post_process(module): return (isinstance(module, torch.quantization.ObserverBase) or isinstance(module, torch.quantization.FakeQuantizeBase) or isinstance(module, torch.quantization.Logger)) # type: ignore def _propagate_qconfig_helper(module, qconfig_dict, allow_list=None, qconfig_parent=None, prefix=''): r"""This is a helper function for `propagate_qconfig_` Args: module: input module qconfig_dict: dictionary that maps from name of submodule to quantization configuration allow_list: list of quantizable modules qconfig_parent: quantization config of parent module, we will fallback to this config when there is no specified config for current module prefix: corresponding prefix of the current module, used as key in qconfig_dict Return: None, module is modified inplace with qconfig attached """ # TODO: Add test if allow_list is None: allow_list = get_default_qconfig_propagation_list() module_qconfig = qconfig_dict.get(type(module), qconfig_parent) module_qconfig = qconfig_dict.get(prefix, module_qconfig) module_qconfig = getattr(module, 'qconfig', module_qconfig) torch.quantization.qconfig.assert_valid_qconfig(module_qconfig, module) module.qconfig = module_qconfig for name, child in module.named_children(): module_prefix = prefix + '.' + name if prefix else name _propagate_qconfig_helper(child, qconfig_dict, allow_list, module_qconfig, module_prefix) # TODO(jerryzh): expose allow_list def propagate_qconfig_(module, qconfig_dict=None, allow_list=None): r"""Propagate qconfig through the module hierarchy and assign `qconfig` attribute on each leaf module Args: module: input module qconfig_dict: dictionary that maps from name or type of submodule to quantization configuration, qconfig applies to all submodules of a given module unless qconfig for the submodules are specified (when the submodule already has qconfig attribute) Return: None, module is modified inplace with qconfig attached """ if qconfig_dict is None: qconfig_dict = {} _propagate_qconfig_helper(module, qconfig_dict, allow_list) def _observer_forward_hook(self, input, output): r"""Forward hook that calls observer on the output """ return self.activation_post_process(output) def register_activation_post_process_hook(module): assert hasattr(module, 'activation_post_process'), \ 'Expect activation_post_process attribut already attached to the module' return module.register_forward_hook(_observer_forward_hook) def add_observer_(module, qconfig_propagation_list=None, non_leaf_module_list=None, device=None, custom_module_class_mapping=None): r"""Add observer for the leaf child of the module. This function insert observer module to all leaf child module that has a valid qconfig attribute. Args: module: input module with qconfig attributes for all the leaf modules that we want to quantize device: parent device, if any non_leaf_module_list: list of non-leaf modules we want to add observer Return: None, module is modified inplace with added observer modules and forward_hooks """ if qconfig_propagation_list is None: qconfig_propagation_list = get_default_qconfig_propagation_list() if custom_module_class_mapping is None: custom_module_class_mapping = {} # respect device affinity when adding observers if device is None: devices = get_unique_devices_(module) assert len(devices) <= 1, ( "add_observer_ only works with cpu or single-device CUDA modules, " "but got devices {}".format(devices) ) device = next(iter(devices)) if len(devices) > 0 else None def get_activation_post_process(qconfig, device, special_act_post_process=None): activation = qconfig.activation() if special_act_post_process is None else special_act_post_process() if device is not None: activation.to(device) return activation def needs_observation(m): return hasattr(m, 'qconfig') and m.qconfig is not None def insert_activation_post_process(m, special_act_post_process=None): """ Adds an activation post process module and register a post hook that calls the module """ # We don't insert observer/fake_quantize for DeQuantStub if needs_observation(m) and not isinstance(m, DeQuantStub): # observer and hook will be gone after we swap the module m.add_module('activation_post_process', get_activation_post_process(m.qconfig, device, special_act_post_process)) # Register observer as the first entry in the hook list # All post forward hooks are preserved and will be executed after the observer before convert handle = register_activation_post_process_hook(m) m._forward_hooks.move_to_end(handle.id, last=False) for name, child in module.named_children(): if type(child) in [nnq.FloatFunctional, nnq.QFunctional]: if needs_observation(child): child.activation_post_process = get_activation_post_process(child.qconfig, device) elif isinstance(child, _FusedModule): # activation_post_process are now added directly to nn.Sequentail/_FusedModule if needs_observation(child): insert_activation_post_process(child) elif _has_special_act_post_process(child): special_act_post_process = _get_special_act_post_process(child) insert_activation_post_process(child, special_act_post_process) elif non_leaf_module_list is not None and type(child) in non_leaf_module_list: if needs_observation(child): insert_activation_post_process(child) elif needs_observation(child) and type(child) in custom_module_class_mapping: observed_child = custom_module_class_mapping[type(child)].from_float(child) setattr(module, name, observed_child) # TODO: These are the modules that cannot be observed # Once there are more, we should move them to a separate list if custom_module_class_mapping[type(child)] not in no_observer_set(): insert_activation_post_process(observed_child) else: add_observer_(child, qconfig_propagation_list, non_leaf_module_list, device, custom_module_class_mapping) # Insert observers only for leaf nodes, note that this observer is for # the output of the module, for input QuantStub will observe them if len(module._modules) == 0 and not isinstance(module, torch.nn.Sequential) \ and type(module) in qconfig_propagation_list: insert_activation_post_process(module) def get_unique_devices_(module): return {p.device for p in module.parameters()} | \ {p.device for p in module.buffers()} def add_quant_dequant(module): r"""Wrap the leaf child module in QuantWrapper if it has a valid qconfig Note that this function will modify the children of module inplace and it can return a new module which wraps the input module as well. Args: module: input module with qconfig attributes for all the leaf modules that we want to quantize Return: Either the inplace modified module with submodules wrapped in `QuantWrapper` based on qconfig or a new `QuantWrapper` module which wraps the input module, the latter case only happens when the input module is a leaf module and we want to quantize it. """ if len(module._modules) == 0 and hasattr(module, 'qconfig') and module.qconfig: return QuantWrapper(module) for name, child in module.named_children(): module._modules[name] = add_quant_dequant(child) return module def prepare(model, inplace=False, allow_list=None, observer_non_leaf_module_list=None, prepare_custom_config_dict=None): r"""Prepares a copy of the model for quantization calibration or quantization-aware training. Quantization configuration should be assigned preemptively to individual submodules in `.qconfig` attribute. The model will be attached with observer or fake quant modules, and qconfig will be propagated. Args: `model`: input model to be modified in-place `inplace`: carry out model transformations in-place, the original module is mutated `allow_list`: list of quantizable modules `observer_non_leaf_module_list`: list of non-leaf modules we want to add observer `prepare_custom_config_dict`: customization configuration dictionary for prepare function .. code-block:: python # Example of prepare_custom_config_dict: prepare_custom_config_dict = { # user will manually define the corresponding observed # module class which has a from_float class method that converts # float custom module to observed custom module "float_to_observed_custom_module_class": { CustomModule: ObservedCustomModule } } """ torch._C._log_api_usage_once("quantization_api.quantize.prepare") if prepare_custom_config_dict is None: prepare_custom_config_dict = {} custom_module_class_mapping = prepare_custom_config_dict.get("float_to_observed_custom_module_class", {}) if not inplace: model = copy.deepcopy(model) # TODO: remove allow_list qconfig_propagation_list = allow_list if qconfig_propagation_list is None: qconfig_propagation_list = get_default_qconfig_propagation_list() propagate_qconfig_(model, qconfig_dict=None) # sanity check common API misusage if not any(hasattr(m, 'qconfig') and m.qconfig for m in model.modules()): warnings.warn("None of the submodule got qconfig applied. Make sure you " "passed correct configuration through `qconfig_dict` or " "by assigning the `.qconfig` attribute directly on submodules") add_observer_( model, qconfig_propagation_list, observer_non_leaf_module_list, custom_module_class_mapping=custom_module_class_mapping) return model def _remove_activation_post_process(module): # TODO: maybe we should change activation_post_process to _activation_post_process # to prevent it from being used by user if hasattr(module, 'activation_post_process') and \ is_activation_post_process(module.activation_post_process): delattr(module, 'activation_post_process') # remove activation_post_proceess hook handle_ids_to_remove = set() for handle_id, hook_fn in module._forward_hooks.items(): if hook_fn is _observer_forward_hook: handle_ids_to_remove.add(handle_id) for handle_id in handle_ids_to_remove: module._forward_hooks.pop(handle_id) # TODO: rename to something more general def _remove_qconfig(module): r"""Clean up the qconfig left in the module so that new qconfig can be propagated. Args: module: module to be cleaned up """ for child in module.children(): _remove_qconfig(child) if hasattr(module, "qconfig"): del module.qconfig _remove_activation_post_process(module) def quantize(model, run_fn, run_args, mapping=None, inplace=False): r"""Quantize the input float model with post training static quantization. First it will prepare the model for calibration, then it calls `run_fn` which will run the calibration step, after that we will convert the model to a quantized model. Args: model: input float model run_fn: a calibration function for calibrating the prepared model run_args: positional arguments for `run_fn` inplace: carry out model transformations in-place, the original module is mutated mapping: correspondence between original module types and quantized counterparts Return: Quantized model. """ torch._C._log_api_usage_once("quantization_api.quantize.quantize") if mapping is None: mapping = get_default_static_quant_module_mappings() if not inplace: model = copy.deepcopy(model) model.eval() prepare(model, inplace=True) run_fn(model, *run_args) convert(model, mapping, inplace=True) return model def quantize_dynamic(model, qconfig_spec=None, dtype=torch.qint8, mapping=None, inplace=False): r"""Converts a float model to dynamic (i.e. weights-only) quantized model. Replaces specified modules with dynamic weight-only quantized versions and output the quantized model. For simplest usage provide `dtype` argument that can be float16 or qint8. Weight-only quantization by default is performed for layers with large weights size - i.e. Linear and RNN variants. Fine grained control is possible with `qconfig` and `mapping` that act similarly to `quantize()`. If `qconfig` is provided, the `dtype` argument is ignored. Args: model: input model qconfig_spec: Either: - A dictionary that maps from name or type of submodule to quantization configuration, qconfig applies to all submodules of a given module unless qconfig for the submodules are specified (when the submodule already has qconfig attribute). Entries in the dictionary need to be QConfigDynamic instances. - A set of types and/or submodule names to apply dynamic quantization to, in which case the `dtype` argument is used to specify the bit-width inplace: carry out model transformations in-place, the original module is mutated mapping: maps type of a submodule to a type of corresponding dynamically quantized version with which the submodule needs to be replaced """ torch._C._log_api_usage_once("quantization_api.quantize.quantize_dynamic") if qconfig_spec is None: if dtype == torch.qint8: qconfig_spec = { nn.Linear : default_dynamic_qconfig, nn.LSTM : default_dynamic_qconfig, nn.GRU : default_dynamic_qconfig, nn.LSTMCell : default_dynamic_qconfig, nn.RNNCell : default_dynamic_qconfig, nn.GRUCell : default_dynamic_qconfig, } elif dtype == torch.float16: qconfig_spec = { nn.Linear : float16_dynamic_qconfig, nn.LSTM : float16_dynamic_qconfig, nn.GRU : float16_dynamic_qconfig, nn.LSTMCell : float16_dynamic_qconfig, nn.RNNCell : float16_dynamic_qconfig, nn.GRUCell : float16_dynamic_qconfig, } elif dtype == torch.quint8: qconfig_spec = { nn.EmbeddingBag : float_qparams_weight_only_qconfig, } else: raise ValueError( "Don't know how to quantize with default settings for {}. Provide full qconfig please".format(dtype)) elif isinstance(qconfig_spec, set): if dtype is torch.qint8: default_qconfig = default_dynamic_qconfig elif dtype is torch.float16: default_qconfig = float16_dynamic_qconfig elif dtype is torch.quint8: default_qconfig = float_qparams_weight_only_qconfig else: raise RuntimeError('Unknown dtype specified for quantize_dynamic: ', str(dtype)) qconfig_spec = dict(zip(qconfig_spec, itertools.repeat(default_qconfig))) if mapping is None: mapping = get_default_dynamic_quant_module_mappings() if not inplace: model = copy.deepcopy(model) model.eval() propagate_qconfig_(model, qconfig_spec) convert(model, mapping, inplace=True) return model def prepare_qat(model, mapping=None, inplace=False): r""" Prepares a copy of the model for quantization calibration or quantization-aware training and converts it to quantized version. Quantization configuration should be assigned preemptively to individual submodules in `.qconfig` attribute. Args: model: input model to be modified in-place mapping: dictionary that maps float modules to quantized modules to be replaced. inplace: carry out model transformations in-place, the original module is mutated """ torch._C._log_api_usage_once("quantization_api.quantize.prepare_qat") if mapping is None: mapping = get_default_qat_module_mappings() if not inplace: model = copy.deepcopy(model) propagate_qconfig_(model, qconfig_dict=None) convert(model, mapping=mapping, inplace=True, remove_qconfig=False) prepare(model, observer_non_leaf_module_list=set(mapping.values()), inplace=True) return model def quantize_qat(model, run_fn, run_args, inplace=False): r"""Do quantization aware training and output a quantized model Args: model: input model run_fn: a function for evaluating the prepared model, can be a function that simply runs the prepared model or a training loop run_args: positional arguments for `run_fn` Return: Quantized model. """ torch._C._log_api_usage_once("quantization_api.quantize.quantize_qat") if not inplace: model = copy.deepcopy(model) model.train() prepare_qat(model, inplace=True) run_fn(model, *run_args) convert(model, inplace=True) return model def convert( module, mapping=None, inplace=False, remove_qconfig=True, convert_custom_config_dict=None): r"""Converts submodules in input module to a different module according to `mapping` by calling `from_float` method on the target module class. And remove qconfig at the end if remove_qconfig is set to True. Args: `module`: prepared and calibrated module `mapping`: a dictionary that maps from source module type to target module type, can be overwritten to allow swapping user defined Modules `inplace`: carry out model transformations in-place, the original module is mutated `convert_custom_config_dict`: custom configuration dictionary for convert function .. code-block:: python # Example of convert_custom_config_dict: convert_custom_config_dict = { # user will manually define the corresponding quantized # module class which has a from_observed class method that converts # observed custom module to quantized custom module "observed_to_quantized_custom_module_class": { ObservedCustomModule: QuantizedCustomModule } } """ torch._C._log_api_usage_once("quantization_api.quantize.convert") if not inplace: module = copy.deepcopy(module) _convert( module, mapping, inplace=True, convert_custom_config_dict=convert_custom_config_dict) if remove_qconfig: _remove_qconfig(module) return module def _convert( module, mapping=None, inplace=False, convert_custom_config_dict=None): r"""Converts submodules in input module to a different module according to `mapping` by calling `from_float` method on the target module class Args: module: input module mapping: a dictionary that maps from source module type to target module type, can be overwritten to allow swapping user defined Modules inplace: carry out model transformations in-place, the original module is mutated """ if mapping is None: mapping = get_default_static_quant_module_mappings() if convert_custom_config_dict is None: convert_custom_config_dict = {} custom_module_class_mapping = convert_custom_config_dict.get("observed_to_quantized_custom_module_class", {}) if not inplace: module = copy.deepcopy(module) reassign = {} for name, mod in module.named_children(): # both fused modules and observed custom modules are # swapped as one unit if not isinstance(mod, _FusedModule) and \ type(mod) not in custom_module_class_mapping: _convert(mod, mapping, True, # inplace custom_module_class_mapping) reassign[name] = swap_module(mod, mapping, custom_module_class_mapping) for key, value in reassign.items(): module._modules[key] = value return module def swap_module(mod, mapping, custom_module_class_mapping): r"""Swaps the module if it has a quantized counterpart and it has an `observer` attached. Args: mod: input module mapping: a dictionary that maps from nn module to nnq module Return: The corresponding quantized module of `mod` """ new_mod = mod if hasattr(mod, 'qconfig') and mod.qconfig is not None: swapped = False if type(mod) in custom_module_class_mapping: new_mod = custom_module_class_mapping[type(mod)].from_observed(mod) swapped = True elif type(mod) in mapping: new_mod = mapping[type(mod)].from_float(mod) swapped = True if swapped: # Preserve module's pre forward hooks. They'll be called on quantized input for pre_hook_fn in mod._forward_pre_hooks.values(): new_mod.register_forward_pre_hook(pre_hook_fn) # Preserve module's post forward hooks except _observer_forward_hook # After convert they'll work with quantized output for hook_fn in mod._forward_hooks.values(): if hook_fn is not _observer_forward_hook: new_mod.register_forward_hook(hook_fn) # respect device affinity when swapping modules devices = get_unique_devices_(mod) assert len(devices) <= 1, ( "swap_module only works with cpu or single-device CUDA modules, " "but got devices {}".format(devices) ) device = next(iter(devices)) if len(devices) > 0 else None if device: new_mod.to(device) return new_mod def get_observer_dict(mod, target_dict, prefix=""): r"""Traverse the modules and save all observers into dict. This is mainly used for quantization accuracy debug Args: mod: the top module we want to save all observers prefix: the prefix for the current module target_dict: the dictionary used to save all the observers """ def get_prefix(prefix): return prefix if prefix == "" else prefix + '.' if hasattr(mod, 'activation_post_process'): target_dict[get_prefix(prefix) + 'activation_post_process'] = mod.activation_post_process for name, child in mod.named_children(): module_prefix = get_prefix(prefix) + name if prefix else name get_observer_dict(child, target_dict, module_prefix)
the-stack_106_27939
# Short-term MFCC Cepstrum Distance # pr6_5_3 from MFCC import * from Noisy import * from Universal import * from VAD import * if __name__ == '__main__': # Set_I IS = 0.25 # unvoice segemnt length wlen = 200 # frame length 25ms inc = 80 # frame shift filename = 'bluesky1.wav' SNR = 10 # PART_I speech = Speech() xx, fs = speech.audioread(filename, 8000) xx = xx - np.mean(xx) # DC x = xx / np.max(xx) # normalized N = len(x) time = np.arange(N) / fs noisy = Noisy() signal, _ = noisy.Gnoisegen(x, SNR) # add noise wnd = np.hamming(wlen) # window function overlap = wlen - inc NIS = int((IS * fs - wlen) / inc + 1) # unvoice segment frame number y = speech.enframe(signal, list(wnd), inc).T fn = y.shape[1] # frame number frameTime = speech.FrameTime(fn, wlen, inc, fs) # frame to time Mfcc = MFCC() ccc = Mfcc.mfcc(signal, fs, 16, wlen, inc) # MFCC fn1 = ccc.shape[0] # frame number frameTime1 = frameTime[2 : fn - 2] Ccep = ccc[:, 0 : 16] # MFCC coefficient C0 = np.mean(Ccep[0 : 5, :], axis = 0) # calculate approximate average noise MFCC coefficient Dcep = np.zeros(fn) for i in range(5, fn1): Cn = Ccep[i, :] # one frame MFCC cepstrum coefficient Dstu = 0 for k in range(16): # calculate the MFCC cepstrum distance Dstu += (Cn[k] - C0[k]) ** 2 # between each frame and noise Dcep[i] = np.sqrt(Dstu) Dcep[0 : 5] = Dcep[5] Vad = VAD() Dstm = Vad.multimidfilter(Dcep, 10) # smoothing dth = np.max(Dstm[0: NIS]) T1 = dth T2 = 1.5 * dth [voiceseg, vsl, SF, NF] = Vad.vad_param1D(Dstm, T1, T2) # figure plt.figure(figsize=(9, 16)) plt.subplot(3, 1, 1) plt.plot(time, x) for k in range(vsl): nx1 = voiceseg['begin'][k] nx2 = voiceseg['end'][k] print('{}, begin = {}, end = {}'.format(k + 1, nx1, nx2)) plt.plot(np.array([frameTime[nx1], frameTime[nx1]]), np.array([-1, 1]), 'k', linewidth=1) plt.plot(np.array([frameTime[nx2], frameTime[nx2]]), np.array([-1, 1]), 'k--', linewidth=1) plt.axis([0, np.max(time), -1, 1]) plt.xlabel('Time [s]') plt.ylabel('Amplitude') plt.title('Clean Speech Signal') plt.subplot(3, 1, 2) plt.plot(time, signal) plt.axis([0, np.max(time), np.min(signal), np.max(signal)]) plt.xlabel('Time [s]') plt.ylabel('Amplitude') plt.title('Noisy Speech Signal SNR = {}dB'.format(SNR)) plt.subplot(3, 1, 3) plt.plot(frameTime, Dstm) plt.axis([0, np.max(time), 0, 1.2 * np.max(Dstm)]) plt.xlabel('Time [s]') plt.ylabel('Amplitude') plt.title('Short-term MFCC Cepstrum Distance') for k in range(vsl): nx1 = voiceseg['begin'][k] nx2 = voiceseg['end'][k] plt.plot(np.array([frameTime[nx1], frameTime[nx1]]), np.array([0, 1.2 * np.max(Dstm)]), 'k', linewidth=1) plt.plot(np.array([frameTime[nx2], frameTime[nx2]]), np.array([0, 1.2 * np.max(Dstm)]), 'k--', linewidth=1) plt.plot(np.array([0, np.max(time)]), np.array([T1, T1]), 'b', linewidth=1) plt.plot(np.array([0, np.max(time)]), np.array([T2, T2]), 'r--', linewidth=1) plt.savefig('images/vad_mfcc_cepstrum_distance.png', bbox_inches='tight', dpi=600) plt.show()
the-stack_106_27941
#!/usr/bin/python import os import re import sys import csv import json import pandas import installLib requiredConfigParameters = ["dataFolder"] # Load the configuration file. config = json.loads(installLib.readFile("config/config.json")) for requiredConfigParameter in requiredConfigParameters: if not requiredConfigParameter in config.keys(): print("Error - required value " + requiredConfigParameter + " not set in config.json.") sys.exit(1) # Read the existing basic staff details. Headings: # GUID,UserCode,Title,GivenName,FamilyName,DateOfBirth,Username,Identifier,Form,Role,JobTitle,TelephoneNumber staff = pandas.read_csv(config["dataFolder"] + os.sep + "staff.csv", header=0) # Tell Pandas that the (currently empty) JobTitle and TelephoneNumber columns are actually meant to be String, not Float. staff["JobTitle"] = staff["JobTitle"].astype(str) staff["TelephoneNumber"] = staff["TelephoneNumber"].astype(str) # Staff job titles: not recorded by iSAMS, but instead set manually in GSuite for each signature. Therefore, for each user, # retrive the existing signature and extract the "job title" value, updating the "staff" records read from CSV above. Use the job # Role if no other value is present, then write out the updated "staff.csv" again with the added values. outputString = "" for staffIndex, staffMember in staff.iterrows(): if staff.at[staffIndex, "JobTitle"] == "nan": staff.at[staffIndex, "JobTitle"] = "" if staff.at[staffIndex, "TelephoneNumber"] == "nan": staff.at[staffIndex, "TelephoneNumber"] = "" staffName = "" staffJobTitle = "" staffUsername = "" staffTelephone = "" for sigLine in installLib.runCommand("gam user " + staffMember["Username"] + " show signature"): sigLine = sigLine.replace(u'\xc2\xa0', u' ').strip() matchResult = re.match(".*bold..(.*)..span. . (.*)..div..*?", sigLine) if not matchResult == None: staffName = matchResult[1].strip() staffJobTitle = matchResult[2].split("<")[0].strip().replace("&amp;", "&") matchResult = re.match(".*blank..(.*)@knightsbridgeschool.com./a..*", sigLine) if not matchResult == None: staffUsername = matchResult[1] matchResult = re.match("([ \d]*)</div>$", sigLine) if not matchResult == None: if not matchResult[1] == "": staffTelephone = matchResult[1] if staffUsername == "": staffUsername = staffMember["Username"] if staffTelephone == "": staffTelephone = "020 7590 9000" if staffJobTitle == "": staffJobTitle = staffMember["Role"] if not staffMember["Username"] == staffUsername: print("Username mismatch: " + staffMember["Username"] + " not equal to " + staffUsername) else: print("Adding details for staff member " + staffMember["GivenName"] + " " + staffMember["FamilyName"] + " - JobTitle: " + str(staffJobTitle) + ", staffTelephone: " + str(staffTelephone)) staff.at[staffIndex, "JobTitle"] = staffJobTitle staff.at[staffIndex, "TelephoneNumber"] = staffTelephone installLib.writeFile(config["dataFolder"] + os.sep + "staff.csv", staff.to_csv(index=False))
the-stack_106_27942
# -*- coding: utf-8 -*- import argparse from multiprocessing import cpu_count from ncc import LOGGER try: from dataset.codesearchnet_feng.proj_oriented import ( LANGUAGES, MODES, RAW_DATA_DIR, RAW_PROJ_DATA_DIR, LIBS_DIR, FLATTEN_PROJ_DATA_DIR, ) except ImportError: from . import ( LANGUAGES, MODES, RAW_DATA_DIR, RAW_PROJ_DATA_DIR, LIBS_DIR, FLATTEN_PROJ_DATA_DIR, ) if __name__ == '__main__': """ This script is to flatten attributes of code_search_net dataset Examples: 'code', 'code_tokens', 'docstring', 'docstring_tokens', 'func_name', 'original_string', 'index', """ parser = argparse.ArgumentParser(description="Download CodeSearchNet dataset(s) or Tree-Sitter Library(ies)") parser.add_argument( "--language", "-l", default=LANGUAGES, type=str, nargs='+', help="languages constain [{}]".format(LANGUAGES), ) parser.add_argument( "--dataset_dir", "-d", default=RAW_PROJ_DATA_DIR, type=str, help="raw dataset download directory", ) parser.add_argument( "--flatten_dir", "-f", default=FLATTEN_PROJ_DATA_DIR, type=str, help="data directory of flatten attribute", ) parser.add_argument( "--attrs", "-a", default=['code', 'code_tokens', 'docstring', 'docstring_tokens'], type=str, nargs='+', help="attrs: code, code_tokens, docstring, docstring_tokens, func_name, original_string, index", ) parser.add_argument( "--cores", "-c", default=cpu_count(), type=int, help="cpu cores for flatten raw data attributes", ) args = parser.parse_args() LOGGER.info(args)
the-stack_106_27943
"""Support for Xiaomi aqara binary sensors.""" import logging from homeassistant.components.binary_sensor import ( BinarySensorDeviceClass, BinarySensorEntity, ) from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant, callback from homeassistant.helpers.entity_platform import AddEntitiesCallback from homeassistant.helpers.event import async_call_later from homeassistant.helpers.restore_state import RestoreEntity from . import XiaomiDevice from .const import DOMAIN, GATEWAYS_KEY _LOGGER = logging.getLogger(__name__) NO_CLOSE = "no_close" ATTR_OPEN_SINCE = "Open since" MOTION = "motion" NO_MOTION = "no_motion" ATTR_LAST_ACTION = "last_action" ATTR_NO_MOTION_SINCE = "No motion since" DENSITY = "density" ATTR_DENSITY = "Density" async def async_setup_entry( hass: HomeAssistant, config_entry: ConfigEntry, async_add_entities: AddEntitiesCallback, ) -> None: """Perform the setup for Xiaomi devices.""" entities: list[XiaomiBinarySensor] = [] gateway = hass.data[DOMAIN][GATEWAYS_KEY][config_entry.entry_id] for entity in gateway.devices["binary_sensor"]: model = entity["model"] if model in ("motion", "sensor_motion", "sensor_motion.aq2"): entities.append(XiaomiMotionSensor(entity, hass, gateway, config_entry)) elif model in ("magnet", "sensor_magnet", "sensor_magnet.aq2"): entities.append(XiaomiDoorSensor(entity, gateway, config_entry)) elif model == "sensor_wleak.aq1": entities.append(XiaomiWaterLeakSensor(entity, gateway, config_entry)) elif model in ("smoke", "sensor_smoke"): entities.append(XiaomiSmokeSensor(entity, gateway, config_entry)) elif model in ("natgas", "sensor_natgas"): entities.append(XiaomiNatgasSensor(entity, gateway, config_entry)) elif model in ( "switch", "sensor_switch", "sensor_switch.aq2", "sensor_switch.aq3", "remote.b1acn01", ): if "proto" not in entity or int(entity["proto"][0:1]) == 1: data_key = "status" else: data_key = "button_0" entities.append( XiaomiButton(entity, "Switch", data_key, hass, gateway, config_entry) ) elif model in ( "86sw1", "sensor_86sw1", "sensor_86sw1.aq1", "remote.b186acn01", "remote.b186acn02", ): if "proto" not in entity or int(entity["proto"][0:1]) == 1: data_key = "channel_0" else: data_key = "button_0" entities.append( XiaomiButton( entity, "Wall Switch", data_key, hass, gateway, config_entry ) ) elif model in ( "86sw2", "sensor_86sw2", "sensor_86sw2.aq1", "remote.b286acn01", "remote.b286acn02", ): if "proto" not in entity or int(entity["proto"][0:1]) == 1: data_key_left = "channel_0" data_key_right = "channel_1" else: data_key_left = "button_0" data_key_right = "button_1" entities.append( XiaomiButton( entity, "Wall Switch (Left)", data_key_left, hass, gateway, config_entry, ) ) entities.append( XiaomiButton( entity, "Wall Switch (Right)", data_key_right, hass, gateway, config_entry, ) ) entities.append( XiaomiButton( entity, "Wall Switch (Both)", "dual_channel", hass, gateway, config_entry, ) ) elif model in ("cube", "sensor_cube", "sensor_cube.aqgl01"): entities.append(XiaomiCube(entity, hass, gateway, config_entry)) elif model in ("vibration", "vibration.aq1"): entities.append( XiaomiVibration(entity, "Vibration", "status", gateway, config_entry) ) else: _LOGGER.warning("Unmapped Device Model %s", model) async_add_entities(entities) class XiaomiBinarySensor(XiaomiDevice, BinarySensorEntity): """Representation of a base XiaomiBinarySensor.""" def __init__(self, device, name, xiaomi_hub, data_key, device_class, config_entry): """Initialize the XiaomiSmokeSensor.""" self._data_key = data_key self._device_class = device_class self._should_poll = False self._density = 0 super().__init__(device, name, xiaomi_hub, config_entry) @property def should_poll(self): """Return True if entity has to be polled for state.""" return self._should_poll @property def is_on(self): """Return true if sensor is on.""" return self._state @property def device_class(self): """Return the class of binary sensor.""" return self._device_class def update(self): """Update the sensor state.""" _LOGGER.debug("Updating xiaomi sensor (%s) by polling", self._sid) self._get_from_hub(self._sid) class XiaomiNatgasSensor(XiaomiBinarySensor): """Representation of a XiaomiNatgasSensor.""" def __init__(self, device, xiaomi_hub, config_entry): """Initialize the XiaomiSmokeSensor.""" self._density = None super().__init__( device, "Natgas Sensor", xiaomi_hub, "alarm", "gas", config_entry ) @property def extra_state_attributes(self): """Return the state attributes.""" attrs = {ATTR_DENSITY: self._density} attrs.update(super().extra_state_attributes) return attrs async def async_added_to_hass(self) -> None: """Handle entity which will be added.""" await super().async_added_to_hass() self._state = False def parse_data(self, data, raw_data): """Parse data sent by gateway.""" if DENSITY in data: self._density = int(data.get(DENSITY)) value = data.get(self._data_key) if value is None: return False if value in ("1", "2"): if self._state: return False self._state = True return True if value == "0": if self._state: self._state = False return True return False class XiaomiMotionSensor(XiaomiBinarySensor): """Representation of a XiaomiMotionSensor.""" def __init__(self, device, hass, xiaomi_hub, config_entry): """Initialize the XiaomiMotionSensor.""" self._hass = hass self._no_motion_since = 0 self._unsub_set_no_motion = None if "proto" not in device or int(device["proto"][0:1]) == 1: data_key = "status" else: data_key = "motion_status" super().__init__( device, "Motion Sensor", xiaomi_hub, data_key, "motion", config_entry ) @property def extra_state_attributes(self): """Return the state attributes.""" attrs = {ATTR_NO_MOTION_SINCE: self._no_motion_since} attrs.update(super().extra_state_attributes) return attrs @callback def _async_set_no_motion(self, now): """Set state to False.""" self._unsub_set_no_motion = None self._state = False self.async_write_ha_state() async def async_added_to_hass(self) -> None: """Handle entity which will be added.""" await super().async_added_to_hass() self._state = False def parse_data(self, data, raw_data): """Parse data sent by gateway. Polling (proto v1, firmware version 1.4.1_159.0143) >> { "cmd":"read","sid":"158..."} << {'model': 'motion', 'sid': '158...', 'short_id': 26331, 'cmd': 'read_ack', 'data': '{"voltage":3005}'} Multicast messages (proto v1, firmware version 1.4.1_159.0143) << {'model': 'motion', 'sid': '158...', 'short_id': 26331, 'cmd': 'report', 'data': '{"status":"motion"}'} << {'model': 'motion', 'sid': '158...', 'short_id': 26331, 'cmd': 'report', 'data': '{"no_motion":"120"}'} << {'model': 'motion', 'sid': '158...', 'short_id': 26331, 'cmd': 'report', 'data': '{"no_motion":"180"}'} << {'model': 'motion', 'sid': '158...', 'short_id': 26331, 'cmd': 'report', 'data': '{"no_motion":"300"}'} << {'model': 'motion', 'sid': '158...', 'short_id': 26331, 'cmd': 'heartbeat', 'data': '{"voltage":3005}'} """ if raw_data["cmd"] == "heartbeat": _LOGGER.debug( "Skipping heartbeat of the motion sensor. " "It can introduce an incorrect state because of a firmware " "bug (https://github.com/home-assistant/core/pull/" "11631#issuecomment-357507744)" ) return if NO_MOTION in data: self._no_motion_since = data[NO_MOTION] self._state = False return True value = data.get(self._data_key) if value is None: return False if value == MOTION: if self._data_key == "motion_status": if self._unsub_set_no_motion: self._unsub_set_no_motion() self._unsub_set_no_motion = async_call_later( self._hass, 120, self._async_set_no_motion ) if self.entity_id is not None: self._hass.bus.fire( "xiaomi_aqara.motion", {"entity_id": self.entity_id} ) self._no_motion_since = 0 if self._state: return False self._state = True return True class XiaomiDoorSensor(XiaomiBinarySensor, RestoreEntity): """Representation of a XiaomiDoorSensor.""" def __init__(self, device, xiaomi_hub, config_entry): """Initialize the XiaomiDoorSensor.""" self._open_since = 0 if "proto" not in device or int(device["proto"][0:1]) == 1: data_key = "status" else: data_key = "window_status" super().__init__( device, "Door Window Sensor", xiaomi_hub, data_key, BinarySensorDeviceClass.OPENING, config_entry, ) @property def extra_state_attributes(self): """Return the state attributes.""" attrs = {ATTR_OPEN_SINCE: self._open_since} attrs.update(super().extra_state_attributes) return attrs async def async_added_to_hass(self) -> None: """Handle entity which will be added.""" await super().async_added_to_hass() if (state := await self.async_get_last_state()) is None: return self._state = state.state == "on" def parse_data(self, data, raw_data): """Parse data sent by gateway.""" self._should_poll = False if NO_CLOSE in data: # handle push from the hub self._open_since = data[NO_CLOSE] return True value = data.get(self._data_key) if value is None: return False if value == "open": self._should_poll = True if self._state: return False self._state = True return True if value == "close": self._open_since = 0 if self._state: self._state = False return True return False class XiaomiWaterLeakSensor(XiaomiBinarySensor): """Representation of a XiaomiWaterLeakSensor.""" def __init__(self, device, xiaomi_hub, config_entry): """Initialize the XiaomiWaterLeakSensor.""" if "proto" not in device or int(device["proto"][0:1]) == 1: data_key = "status" else: data_key = "wleak_status" super().__init__( device, "Water Leak Sensor", xiaomi_hub, data_key, BinarySensorDeviceClass.MOISTURE, config_entry, ) async def async_added_to_hass(self) -> None: """Handle entity which will be added.""" await super().async_added_to_hass() self._state = False def parse_data(self, data, raw_data): """Parse data sent by gateway.""" self._should_poll = False value = data.get(self._data_key) if value is None: return False if value == "leak": self._should_poll = True if self._state: return False self._state = True return True if value == "no_leak": if self._state: self._state = False return True return False class XiaomiSmokeSensor(XiaomiBinarySensor): """Representation of a XiaomiSmokeSensor.""" def __init__(self, device, xiaomi_hub, config_entry): """Initialize the XiaomiSmokeSensor.""" self._density = 0 super().__init__( device, "Smoke Sensor", xiaomi_hub, "alarm", "smoke", config_entry ) @property def extra_state_attributes(self): """Return the state attributes.""" attrs = {ATTR_DENSITY: self._density} attrs.update(super().extra_state_attributes) return attrs async def async_added_to_hass(self) -> None: """Handle entity which will be added.""" await super().async_added_to_hass() self._state = False def parse_data(self, data, raw_data): """Parse data sent by gateway.""" if DENSITY in data: self._density = int(data.get(DENSITY)) value = data.get(self._data_key) if value is None: return False if value in ("1", "2"): if self._state: return False self._state = True return True if value == "0": if self._state: self._state = False return True return False class XiaomiVibration(XiaomiBinarySensor): """Representation of a Xiaomi Vibration Sensor.""" def __init__(self, device, name, data_key, xiaomi_hub, config_entry): """Initialize the XiaomiVibration.""" self._last_action = None super().__init__(device, name, xiaomi_hub, data_key, None, config_entry) @property def extra_state_attributes(self): """Return the state attributes.""" attrs = {ATTR_LAST_ACTION: self._last_action} attrs.update(super().extra_state_attributes) return attrs async def async_added_to_hass(self) -> None: """Handle entity which will be added.""" await super().async_added_to_hass() self._state = False def parse_data(self, data, raw_data): """Parse data sent by gateway.""" value = data.get(self._data_key) if value is None: return False if value not in ("vibrate", "tilt", "free_fall", "actively"): _LOGGER.warning("Unsupported movement_type detected: %s", value) return False self.hass.bus.fire( "xiaomi_aqara.movement", {"entity_id": self.entity_id, "movement_type": value}, ) self._last_action = value return True class XiaomiButton(XiaomiBinarySensor): """Representation of a Xiaomi Button.""" def __init__(self, device, name, data_key, hass, xiaomi_hub, config_entry): """Initialize the XiaomiButton.""" self._hass = hass self._last_action = None super().__init__(device, name, xiaomi_hub, data_key, None, config_entry) @property def extra_state_attributes(self): """Return the state attributes.""" attrs = {ATTR_LAST_ACTION: self._last_action} attrs.update(super().extra_state_attributes) return attrs async def async_added_to_hass(self) -> None: """Handle entity which will be added.""" await super().async_added_to_hass() self._state = False def parse_data(self, data, raw_data): """Parse data sent by gateway.""" value = data.get(self._data_key) if value is None: return False if value == "long_click_press": self._state = True click_type = "long_click_press" elif value == "long_click_release": self._state = False click_type = "hold" elif value == "click": click_type = "single" elif value == "double_click": click_type = "double" elif value == "both_click": click_type = "both" elif value == "double_both_click": click_type = "double_both" elif value == "shake": click_type = "shake" elif value == "long_click": click_type = "long" elif value == "long_both_click": click_type = "long_both" else: _LOGGER.warning("Unsupported click_type detected: %s", value) return False self._hass.bus.fire( "xiaomi_aqara.click", {"entity_id": self.entity_id, "click_type": click_type}, ) self._last_action = click_type return True class XiaomiCube(XiaomiBinarySensor): """Representation of a Xiaomi Cube.""" def __init__(self, device, hass, xiaomi_hub, config_entry): """Initialize the Xiaomi Cube.""" self._hass = hass self._last_action = None if "proto" not in device or int(device["proto"][0:1]) == 1: data_key = "status" else: data_key = "cube_status" super().__init__(device, "Cube", xiaomi_hub, data_key, None, config_entry) @property def extra_state_attributes(self): """Return the state attributes.""" attrs = {ATTR_LAST_ACTION: self._last_action} attrs.update(super().extra_state_attributes) return attrs async def async_added_to_hass(self) -> None: """Handle entity which will be added.""" await super().async_added_to_hass() self._state = False def parse_data(self, data, raw_data): """Parse data sent by gateway.""" if self._data_key in data: self._hass.bus.fire( "xiaomi_aqara.cube_action", {"entity_id": self.entity_id, "action_type": data[self._data_key]}, ) self._last_action = data[self._data_key] if "rotate" in data: action_value = float( data["rotate"] if isinstance(data["rotate"], int) else data["rotate"].replace(",", ".") ) self._hass.bus.fire( "xiaomi_aqara.cube_action", { "entity_id": self.entity_id, "action_type": "rotate", "action_value": action_value, }, ) self._last_action = "rotate" if "rotate_degree" in data: action_value = float( data["rotate_degree"] if isinstance(data["rotate_degree"], int) else data["rotate_degree"].replace(",", ".") ) self._hass.bus.fire( "xiaomi_aqara.cube_action", { "entity_id": self.entity_id, "action_type": "rotate", "action_value": action_value, }, ) self._last_action = "rotate" return True
the-stack_106_27944
from floppy.graph import Graph from floppy.floppyUi import Painter2D, MainWindow import sys from PyQt5.QtWidgets import QApplication import argparse import logging logger = logging.getLogger('Floppy') logger.setLevel(logging.DEBUG) fh = logging.FileHandler('floppy.log') fh.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') fh.setFormatter(formatter) logger.addHandler(fh) def run(): logger.info('Starting Floppy Application with '+' '.join(sys.argv)) app = QApplication(sys.argv) painter = initializePainter() startUI(app, painter) def initializePainter(): painter = Painter2D() Graph(painter=painter) return painter def startUI(app, painter): win = MainWindow(painter=painter) win.setArgs(parseArgv()) win.show() logger.debug('Startup successful. Handing main thread control to Qt main loop.') qtReturnValue = app.exec_() override, value = win.getFloppyReturnValue() if override: sys.exit(value) sys.exit(qtReturnValue) # try: # sys.exit(app.exec_()) # except KeyboardInterrupt: # print('Keyboard Interrupt. Shutting down gracefully.') # win.killRunner() def parseArgv(): parser = argparse.ArgumentParser() parser.add_argument('-i', action='store_true', required=False) parser.add_argument('--test', nargs=1, required=False, default=False) args = parser.parse_args() return args
the-stack_106_27946
__version__ = "1.0.0" __author__ = "Akhier Dragonheart" __license__ = "MIT" import json import pygame def get_spritesheet(jsonpath): """Get a spritesheet through data stored in a json file This function expects all sprites to be the same size. Along with that it needs your json file to be formated like so: { "file": "examples/examplesheet.png", "colorkey": false, "sprite_width":50, "sprite_height":50, "sprites": [ { "row": [ {"id": "yellow"}, {"id": "blue"}, {"id": "purple"} ] }, { "row": [ {"id": "green"}, {"id": "red"} ] } ] } :param jsonpath: This is were the json file detailing your spritesheet is located :return: Dictionary containing pairs of (sprite_name, sprite_image) """ with open(jsonpath) as json_data: sheet_data = json.load(json_data) try: full_image = pygame.image.load(sheet_data['file']).convert() except FileNotFoundError: print(sheet_data['file'] + " not found") colorkey = sheet_data['colorkey'] sprite_width = sheet_data['sprite_width'] sprite_height = sheet_data['sprite_height'] sprites = {} y = 0 for row in sheet_data['sprites']: x = 0 for sprite_id in row['row']: sprite_name = sprite_id['id'] rect = pygame.Rect(x, y, sprite_width, sprite_height) sprite = pygame.Surface(rect.size).convert() sprite.blit(full_image, (0, 0), rect) if colorkey: if colorkey is -1: colorkey = sprite.get_at((0, 0)) sprite.set_colorkey(colorkey, pygame.RLEACCEL) sprites[sprite_name] = sprite x += sprite_width y += sprite_height return sprites
the-stack_106_27947
from django.conf.urls import include, patterns, url from django.conf import settings from django.contrib import admin from django.contrib.auth.decorators import login_required from django.views.i18n import javascript_catalog from django.views.decorators.cache import cache_page from django.views.generic.base import RedirectView import authority import badger from adminplus.sites import AdminSitePlus from waffle.views import wafflejs admin.site = AdminSitePlus() admin.autodiscover() admin.site.login = login_required(admin.site.login) authority.autodiscover() badger.autodiscover() urlpatterns = patterns( '', (r'^search', include('kitsune.search.urls')), (r'^forums', include('kitsune.forums.urls')), (r'^questions', include('kitsune.questions.urls')), (r'^flagged', include('kitsune.flagit.urls')), (r'^upload', include('kitsune.upload.urls')), (r'^kb', include('kitsune.wiki.urls')), (r'^gallery', include('kitsune.gallery.urls')), (r'^army-of-awesome', include('kitsune.customercare.urls')), (r'^chat', RedirectView.as_view(url='questions/new')), (r'^messages', include('kitsune.messages.urls')), (r'^1', include('kitsune.inproduct.urls')), (r'^postcrash', include('kitsune.postcrash.urls')), (r'^groups', include('kitsune.groups.urls')), (r'^karma', include('kitsune.karma.urls')), (r'^kpi/', include('kitsune.kpi.urls')), (r'^products', include('kitsune.products.urls')), (r'^announcements', include('kitsune.announcements.urls')), (r'^community', include('kitsune.community.urls')), (r'^badges/', include('kitsune.kbadge.urls')), (r'^offline', include('kitsune.offline.urls')), # Kitsune admin (not Django admin). (r'^admin/', include(admin.site.urls)), # Javascript translations. url(r'^jsi18n/.*$', cache_page(60 * 60 * 24 * 365)(javascript_catalog), {'domain': 'javascript', 'packages': ['kitsune']}, name='jsi18n'), # JavaScript Waffle. url(r'^wafflejs$', wafflejs, name='wafflejs'), (r'^', include('kitsune.dashboards.urls')), (r'^', include('kitsune.landings.urls')), (r'^', include('tidings.urls')), # Keep short for email wrapping. (r'^', include('kitsune.kpi.urls_api')), # Users ('', include('kitsune.users.urls')), # Services and sundry. (r'', include('kitsune.sumo.urls')), # APIs (r'^api/1/kb/', include('kitsune.wiki.urls_api')), (r'^api/1/products/', include('kitsune.products.urls_api')), ) # Handle 404 and 500 errors handler404 = 'kitsune.sumo.views.handle404' handler500 = 'kitsune.sumo.views.handle500' if settings.DEBUG: media_url = settings.MEDIA_URL.lstrip('/').rstrip('/') urlpatterns += patterns( '', (r'^%s/(?P<path>.*)$' % media_url, 'django.views.static.serve', {'document_root': settings.MEDIA_ROOT}), )
the-stack_106_27948
""" Utility for generating grids of plots. """ import os import math import itertools from typing import Any, Callable, Optional import matplotlib.pyplot as plt # type: ignore from experiment_utils.plotting.defaults import DEFAULT_SETTINGS def try_cell_row_col( value_dict: dict, row: Any, col: Any, default_value: Optional[bool] = None ) -> Any: """Helper for finding the dictionary value associated with a cell in the plot. The dictionary is first index by cell using `(row, col)`, then by row using `row`, and finally by column using `col`. `default_value` is returned if nothing is found. :param value_dict: dictionary to index into. e.g y-axis labels for each cell. :param row: key for the plot row. :param col: key for the plot column. :param default_value: value to return if nothing is found. Optional. Defaults to `None`. :returns: value_dict[(row, col)], value_dict[row], value_dict[col] or `default_value`. """ return value_dict.get( (row, col), value_dict.get(row, value_dict.get(col, default_value)) ) def plot_grid( plot_fn: Callable, results: dict, figure_labels: dict, line_kwargs: dict, limits: dict = {}, ticks: dict = {}, log_scale: dict = {}, settings: dict = DEFAULT_SETTINGS, base_dir: Optional[str] = None, ): """Helper function for generating a len(rows) x len(cols) grid of plots. In the following, cell refers to a (row, col) key-pair. :param plot_fn: function for plotting each cell in the grid. :param results: nested dictionary of results. The first level of is defines the rows of the plot, the second the columns and the third the lines in each cell. Note that the number of columns must be the same for each row, but the number of lines may differ for each cell. :param figure_labels: dict of dicts containing labels for the plots. The top-level dict should contain keys 'y_labels', 'x_labels', 'col_titles', 'row_titles'. Each sub-dict can be indexed by cell, row, or column. :param line_kwargs: dict of key-word arguments for each key in 'lines'. :param limits: dict of tuples (x_lim, y_lim), where x_lim are the desired limits for the x-axis and y_lim are the desired limits for the y-axis. Can be indexed by cell, row, or column. :param ticks: dict of tuples (x_ticks, y_ticks), where x_ticks are the desiredd ticks for the x-axis y_ticks are the desired ticks for the y-axis. Can be indexed by cell, row, or column. :param log_scale: dict of strings indicating whether or not to plot a cell, row, or column as a log-log, log-linear, or linear-linear plot. Defaults to linear-linear. :param settings: dict with the plot configuration. See 'defaults.DEFAULT_SETTINGS' above. :param base_dir: location to save plot. Defaults to 'None', in which case the plot is not saved. :returns: figure and dictionary of axis objects indexed by the rows and columns. """ rows = list(results.keys()) cols = list(results[rows[0]].keys()) fig = plt.figure( figsize=(settings["fig_width"] * len(cols), len(rows) * settings["fig_height"]) ) # grid spec. spec = fig.add_gridspec(ncols=len(cols), nrows=len(rows)) # title the plot if a title is given. if "title" in figure_labels: fig.suptitle( figure_labels["title"], fontsize=settings.get("titles_fs", 18), y=1 ) # unpack label arguments: y_labels, x_labels, col_titles, row_titles = ( figure_labels.get("y_labels", {}), figure_labels.get("x_labels", {}), figure_labels.get("col_titles", {}), figure_labels.get("row_titles", {}), ) axes = {} for i, (row, col) in enumerate(itertools.product(rows, cols)): ax = fig.add_subplot(spec[math.floor(i / len(cols)), i % len(cols)]) # dict of axes objects axes[(row, col)] = ax ax.yaxis.offsetText.set_fontsize(settings["offest_text_fs"]) # in the top row if settings.get("col_titles", False) and i < len(cols): ax.set_title(col_titles.get(col, ""), fontsize=settings["subtitle_fs"]) if settings.get("row_titles", False) and i % len(cols) == 0: ax.annotate( row_titles.get(row, ""), xy=(0, 0.5), xytext=(-ax.yaxis.labelpad - settings["row_title_pad"], 0), xycoords=ax.yaxis.label, textcoords="offset points", fontsize=settings["subtitle_fs"], ha="right", va="center", rotation=90, ) # start of a new row if settings.get("y_labels", False) == "left_col" and i % len(cols) == 0: ax.set_ylabel(y_labels.get(row, ""), fontsize=settings["axis_labels_fs"]) elif settings.get("y_labels", False) == "every_col": ax.set_ylabel( try_cell_row_col(y_labels, row, col, ""), fontsize=settings["axis_labels_fs"], ) # in the bottom row if ( settings.get("x_labels", False) == "bottom_row" and len(cols) * (len(rows) - 1) <= i ): ax.set_xlabel(x_labels.get(col, ""), fontsize=settings["axis_labels_fs"]) elif settings.get("x_labels", False) == "every_row": ax.set_xlabel( try_cell_row_col(x_labels, row, col, ""), fontsize=settings["axis_labels_fs"], ) ax.ticklabel_format( axis="y", style=settings.get("ticklabel_format", "scientific"), scilimits=(0, 0), ) # ticks ax.tick_params(labelsize=settings["tick_fs"]) if try_cell_row_col(ticks, row, col, None) is not None: x_ticks, y_ticks = try_cell_row_col(ticks, row, col, None) if x_ticks is not None and len(x_ticks) > 0: ax.xticks(x_ticks) if y_ticks is not None and len(y_ticks) > 0: ax.yticks(y_ticks) # plot the cell plot_fn(ax, results[row][col], line_kwargs, settings) # log-scale: if try_cell_row_col(log_scale, row, col, None) is not None: log_type = try_cell_row_col(log_scale, row, col, None) if log_type == "log-linear": ax.set_yscale("log") elif log_type == "log-log": ax.set_yscale("log") ax.set_xscale("log") elif log_type == "linear-log": ax.set_xscale("log") # limits: needs to be done after plotting the data if try_cell_row_col(limits, row, col, None) is not None: x_limits, y_limits = try_cell_row_col(limits, row, col, None) if x_limits is not None and len(x_limits) > 0: ax.set_xlim(*x_limits) if y_limits is not None and len(y_limits) > 0: ax.set_ylim(*y_limits) # Put only one shared legend to avoid clutter handles, labels = ax.get_legend_handles_labels() final_handles, final_labels = [], [] for i, label in enumerate(labels): final_handles.append(handles[i]) final_labels.append(labels[i]) ncol = settings["legend_cols"] if settings["show_legend"]: legend = fig.legend( final_handles, final_labels, loc="lower center", borderaxespad=0.1, fancybox=False, shadow=False, frameon=False, ncol=ncol, fontsize=settings["legend_fs"], ) for line in legend.get_lines(): line.set_linewidth(4.0) bottom_margin = settings["bottom_margin"] / len(rows) plt.tight_layout() fig.subplots_adjust( wspace=settings.get("wspace", 0.2), hspace=settings.get("vspace", 0.2), bottom=bottom_margin, ) if base_dir is not None: head, _ = os.path.split(base_dir) os.makedirs(head, exist_ok=True) plt.savefig(base_dir) plt.close() return fig, axes
the-stack_106_27954
from pytest import raises from mutmut import ( partition_node_list, name_mutation, Context, mutate) def test_partition_node_list_no_nodes(): with raises(AssertionError): partition_node_list([], None) def test_name_mutation_simple_mutants(): assert name_mutation(None, 'True') == 'False' def test_context_exclude_line(): source = "__import__('pkg_resources').declare_namespace(__name__)\n" assert mutate(Context(source=source)) == (source, 0) source = "__all__ = ['hi']\n" assert mutate(Context(source=source)) == (source, 0)
the-stack_106_27956
from __future__ import unicode_literals from django.contrib.contenttypes.fields import GenericForeignKey from django.contrib.contenttypes.models import ContentType from django.contrib.sites.models import Site from django.db import models from django.utils import timezone from django.utils.encoding import python_2_unicode_compatible from .conf import settings from .signals import user_linked_to_response try: from django.urls import reverse except ImportError: from django.core.urlresolvers import reverse AUTH_USER_MODEL = getattr(settings, "AUTH_USER_MODEL", "auth.User") @python_2_unicode_compatible class Referral(models.Model): user = models.ForeignKey( AUTH_USER_MODEL, on_delete=models.SET_NULL, related_name="referral_codes", null=True ) label = models.CharField(max_length=100, blank=True) code = models.CharField(max_length=40, unique=True) expired_at = models.DateTimeField(null=True, blank=True) redirect_to = models.CharField(max_length=512) target_content_type = models.ForeignKey(ContentType, null=True, blank=True, on_delete=models.SET_NULL) target_object_id = models.PositiveIntegerField(null=True, blank=True) target = GenericForeignKey( ct_field="target_content_type", fk_field="target_object_id" ) created_at = models.DateTimeField(default=timezone.now) def __str__(self): if self.user: return "{} ({})".format(self.user, self.code) else: return self.code @classmethod def for_request(cls, request): cookie = request.COOKIES.get("pinax-referral") if cookie: code, session_key = cookie.split(":") try: return Referral.objects.get(code=code) except Referral.DoesNotExist: pass @property def url(self): path = reverse("pinax_referrals:process_referral", kwargs={"code": self.code}) domain = Site.objects.get_current().domain protocol = "https" if settings.PINAX_REFERRALS_SECURE_URLS else "http" return "{}://{}{}".format(protocol, domain, path) @property def response_count(self): return self.responses.filter(action="RESPONDED").count() def save(self, *args, **kwargs): if not self.code: self.code = settings.PINAX_REFERRALS_CODE_GENERATOR_CALLBACK(Referral) return super(Referral, self).save(*args, **kwargs) @classmethod def create(cls, redirect_to, user=None, label="", target=None): if target: obj, _ = cls.objects.get_or_create( user=user, redirect_to=redirect_to, label=label, target_content_type=ContentType.objects.get_for_model(target), target_object_id=target.pk ) else: obj, _ = cls.objects.get_or_create( user=user, label=label, redirect_to=redirect_to, ) return obj @classmethod def record_response(cls, request, action_string, target=None): referral = cls.referral_for_request(request) if referral: return referral.respond(request, action_string, target=target) @classmethod def referral_for_request(cls, request): if request.user.is_authenticated: qs = ReferralResponse.objects.filter(user=request.user) else: qs = ReferralResponse.objects.filter(session_key=request.session.session_key) try: return qs.order_by("-created_at")[0].referral except IndexError: pass def link_responses_to_user(self, user, session_key): for response in self.responses.filter(session_key=session_key, user__isnull=True): response.user = user response.save() user_linked_to_response.send(sender=self, response=response) def respond(self, request, action_string, user=None, target=None): if user is None: if request.user.is_authenticated: user = request.user else: user = None ip_address = request.META.get( settings.PINAX_REFERRALS_IP_ADDRESS_META_FIELD, "" ) kwargs = dict( referral=self, session_key=request.session.session_key, ip_address=ip_address, action=action_string, user=user ) if target: kwargs.update({"target": target}) return ReferralResponse.objects.create(**kwargs) def filtered_responses(self): return settings.PINAX_REFERRALS_RESPONSES_FILTER_CALLBACK( referral=self ) class ReferralResponse(models.Model): referral = models.ForeignKey(Referral, related_name="responses", on_delete=models.CASCADE) session_key = models.CharField(max_length=40) user = models.ForeignKey(AUTH_USER_MODEL, null=True, on_delete=models.SET_NULL) ip_address = models.CharField(max_length=45) action = models.CharField(max_length=128) target_content_type = models.ForeignKey(ContentType, null=True, on_delete=models.SET_NULL) target_object_id = models.PositiveIntegerField(null=True) target = GenericForeignKey( ct_field="target_content_type", fk_field="target_object_id" ) created_at = models.DateTimeField(default=timezone.now)
the-stack_106_27959
# -*- coding: utf-8 -*- from selenium import webdriver from selenium.common.exceptions import TimeoutException import time import re import json import config import utils # if you want to make this word on a system with no GUI, install Xvfb first and then uncomment these lines. # from pyvirtualdisplay import Display # display = Display(visible=0, size=(1366, 768)) # display.start() # print('Display start') browser = webdriver.Firefox() class WechatScraper(): def __init__(self, **kwargs): self.config = config """ query: keyword page: the page you want to scrap, useful when you use a keyword to scrap many articles """ def get_article_list_by_keyword(self, query, page=1): query = 'query=' + query page = 'page=' + str(page) built_url = self._build_url(self.config.article_search_url, ['query', 'page'], [query, page]) article_list = [] browser.get(built_url) times = self._withdraw_time(browser.page_source) news_list = browser.find_elements_by_css_selector('.news-list li') for i in range(len(news_list)): news = news_list[i] title = news.find_element_by_tag_name('h3').text url = news.find_element_by_css_selector('h3 a').get_attribute('href') description = news.find_element_by_css_selector('.txt-box>p').text gzh = news.find_element_by_css_selector('.account').text gzh_url = news.find_element_by_css_selector('.account').get_attribute('href') # time_re = re.compile(r'\d{10}') # bs_obj = BeautifulSoup(browser.page_source, 'html.parser') # time = re.search(time_re, news.find_element_by_tag_name('script').text).group(0) imgs = map(self._withdraw_image, news.find_elements_by_tag_name('img')) news_unit = { 'title': title, 'url': url, 'gzh': gzh, 'gzh_url': gzh_url, 'description': description, 'updateTime': times[i], 'poster': imgs } article_list.append(news_unit) return article_list def get_article_by_url(self, url): browser.get(url) avatar_re = re.compile(r'ori_head_img_url[^;]+;') raw_avatar = avatar_re.findall(browser.page_source) avatar = '' if(raw_avatar): avatar = re.sub(re.compile(r'[^"]+"'), '', raw_avatar[0], 1).replace('";', '') page_content = browser.find_element_by_id('img-content') ems = page_content.find_elements_by_css_selector('.rich_media_meta_list>em') author = '' if(len(ems)>1): author = ems[1].text content = page_content.find_element_by_id('js_content').get_attribute('innerHTML') article = { 'authorName': author, 'authorAvatar': avatar, 'content': content } return article # scrap gzh list at the page def search_gzh_by_keyword(self, query, **kwargs): page = kwargs.get('page', 1) query = 'query=' + query page = 'page=' + str(page) built_url = self._build_url(self.config.gzh_search_url, ['query', 'page'], [query, page]) browser.get(built_url) gzh_list = browser.find_elements_by_css_selector('.news-list2 li') for i in range(len(gzh_list)): gzh = gzh_list[i] avatar = gzh.find_element_by_css_selector('.img-box img').get_attribute('src') title = gzh.find_element_by_class_name('tit').text wechatid = gzh.find_element_by_name('em_weixinhao').text qrcode = gzh.find_element_by_css_selector('.ew-pop .pop img').get_attribute('src') gzh_info = { 'title': title, 'wechatid': wechatid, 'avatar': avatar, 'qrcode': qrcode } dls = gzh.find_elements_by_tag_name('dl') for k in range(len(dls)): dl = dls[k] if(dl.text[0:4] == u'功能介绍'[0:4]): gzh_info['introduction'] = dl.find_element_by_tag_name('dd').text if(dl.text[0:4] == u'微信认证'[0:4]): gzh_info['verification'] = dl.find_element_by_tag_name('dd').text gzh_list[i] = gzh_info return gzh_list # get gzh message by wechatid def get_gzh_message(self, wechatid): query = 'query=' + str(wechatid) page = 'page=' + str(1) built_url = self._build_url(self.config.gzh_search_url, ['query', 'page'], [query, page]) browser.get(built_url) gzh_list = browser.find_elements_by_css_selector('.news-list2 li') gzh_url = gzh_list[0].find_element_by_css_selector('.img-box a').get_attribute('href') browser.get(gzh_url) # get msg within the script source_re = re.compile(r'{"list":.+}}]}') msg_list_string = source_re.findall(browser.page_source)[0] msg_list = json.loads(msg_list_string.encode('utf-8'))['list'] for i in range(len(msg_list)): msg = msg_list[i] f = msg['app_msg_ext_info'] s = msg['comm_msg_info'] msg_list[i] = { 'title': f['title'], 'url': 'http://mp.weixin.qq.com' + f['content_url'], 'poster': f['cover'], 'authorName': f['author'], 'description': f['digest'], 'updateTime': s['datetime'] } return msg_list # get msg list through DOM tree # msg_list = browser.find_elements_by_class_name('weui_msg_card') # for i in range(len(msg_list)): # msg = msg_list[i] # html = msg.find_element_by_css_selector('.weui_media_box').get_attribute('innerHTML') # img_re = re.compile(r'http:.*wx_fmt=[a-zA-Z0-9]+') # poster = img_re.findall(html) # title = msg.find_element_by_tag_name('h4').text.strip() # url = 'http://mp.weixin.qq.com' + msg.find_element_by_tag_name('h4').get_attribute('hrefs') # time = msg.find_element_by_class_name('weui_media_extra_info').text # msg_list[i] = { # 'title': title, # 'poster': poster, # 'url': url, # 'time': time # } # print(msg_list) # return msg_list """ below here are some common functions """ # replace url parameters def _build_url(self, base, oldVal, newVal): if(type(oldVal) == str): base = base.replace(oldVal, newVal) if(type(oldVal) == list): for i in range(len(oldVal)): base = base.replace(oldVal[i], str(newVal[i])) return base # withdraw image url through image element def _withdraw_image(self, element): return element.get_attribute('src') or element.get_attribute('data-src') # withdraw time within script, page source needed def _withdraw_time(self, source): raw_re = re.compile(r'document\.write\(timeConvert\(\'\d{10}\'\)\)') raw_times = raw_re.findall(source) exact_re = re.compile(r'\d{10}') return [exact_re.findall(time)[0] for time in raw_times]
the-stack_106_27962
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' import socket import sys sys.path.append('..') from common import send_msg, recv_msg PORT = 9090 with socket.socket() as sock: sock.bind(('', PORT)) sock.listen() print(f'Server: {sock.getsockname()}') while True: conn, addr = sock.accept() print('Connected:', addr) while True: data = recv_msg(conn) if not data: break print(f'Receiving ({len(data)}): {data}') print('Sending') data = data.decode('utf-8').upper().encode('utf-8') send_msg(conn, data) print('Close\n')
the-stack_106_27964
#https://www.youtube.com/watch?v=jO6qQDNa2UY&ab_channel=TechWithTim #The mp3 files doesn't work import pygame #OS to help find the path to the assets import os pygame.font.init() pygame.mixer.init() #surface is like a Window in pygame WIDTH, HEIGHT = 900, 500 WIN = pygame.display.set_mode((WIDTH, HEIGHT)) pygame.display.set_caption("First Game!") #Editing windows properties HEALTH_FONT = pygame.font.SysFont('comicsans', 40) WINNER_FONT = pygame.font.SysFont('comicsans', 100) WHITE = (255, 255, 255) BORDER_COLOR = (0, 0, 0) YELLOW_BULLET_COLOR = (255, 255, 0) RED_BULLET_COLOR = (255, 0, 0) BORDER = pygame.Rect((WIDTH/2) - 5, 0, 10, HEIGHT) #BULLET_HIT_SOUND = pygame.mixer.Sound(os.path.join('Assets', 'Grenade+1.mp3')) #BULLET_FIRE_SOUND = pygame.mixer.Sound(os.path.join('Assets', 'Gun+Silencer.mp3')) FPS = 60 VEL = 5 BULLET_VEL = 7 MAX_BULLETS = 3 SPACESHIP_WIDTH, SPACESHIP_HEIGHT = 55, 40 YELLOW_HIT = pygame.USEREVENT + 1 RED_HIT = pygame.USEREVENT + 2 YELLOW_SPACESHIP_IMAGE = pygame.image.load( os.path.join('Tutorials/Assets', 'spaceship_yellow.png')) YELLOW_SPACESHIP_SCALE = pygame.transform.scale( YELLOW_SPACESHIP_IMAGE, (SPACESHIP_WIDTH, SPACESHIP_HEIGHT)) YELLOW_SPACESHIP = pygame.transform.rotate(YELLOW_SPACESHIP_SCALE, 90) RED_SPACESHIP_IMAGE = pygame.image.load( os.path.join('Tutorials/Assets', 'spaceship_red.png')) RED_SPACESHIP_SCALE = pygame.transform.scale( RED_SPACESHIP_IMAGE, (SPACESHIP_WIDTH, SPACESHIP_HEIGHT)) RED_SPACESHIP = pygame.transform.rotate(RED_SPACESHIP_SCALE, -90) SPACE = pygame.transform.scale(pygame.image.load( os.path.join('Tutorials/Assets', 'space.png')), (WIDTH, HEIGHT)) def draw_window(yellow, red, yellow_bullets, red_bullets, yellow_health, red_health): #From now on, urder matters to put things on screen #Background color to WIN #Colors are in RGB in Pygame #WIN.fill((BACKGROUND)) WIN.blit(SPACE, (0, 0)) #Draw the border pygame.draw.rect(WIN, BORDER_COLOR, BORDER) #Blit to draw a surface over the screen #Images are loaded as surfaces in Pygame #0,0 position is top left in Pygame #WIN.blit(YELLOW_SPACESHIP_IMAGE, (300, 200)) yellow_health_text = HEALTH_FONT.render("Health: " + str(yellow_health), 1, WHITE) red_health_text = HEALTH_FONT.render("Health: " + str(red_health), 1, WHITE) WIN.blit(yellow_health_text, (10, 10)) WIN.blit(red_health_text, (WIDTH - red_health_text.get_width() - 10, 10)) #Now using the one variable of the spaceship that is scaled, not the actual image WIN.blit(YELLOW_SPACESHIP, (yellow.x, yellow.y)) WIN.blit(RED_SPACESHIP, (red.x, red.y)) for bullet in yellow_bullets: pygame.draw.rect(WIN, YELLOW_BULLET_COLOR, bullet) for bullet in red_bullets: pygame.draw.rect(WIN, RED_BULLET_COLOR, bullet) #Now, update windows with the information written so far pygame.display.update() def yellow_handle_movement(key_pressed, yellow): if key_pressed[pygame.K_a] and yellow.x - VEL > 0: yellow.x -= VEL if key_pressed[pygame.K_d] and yellow.x + VEL + yellow.width < BORDER.x: yellow.x += VEL if key_pressed[pygame.K_w] and yellow.y + VEL > 0: yellow.y -= VEL if key_pressed[pygame.K_s] and yellow.y + VEL + yellow.height < HEIGHT: yellow.y += VEL def red_handle_movement(key_pressed, red): if key_pressed[pygame.K_LEFT] and red.x - VEL > BORDER.x + BORDER.width: red.x -= VEL if key_pressed[pygame.K_RIGHT] and red.x + VEL + red.width < WIDTH: red.x += VEL if key_pressed[pygame.K_UP] and red.y + VEL > 0: red.y -= VEL if key_pressed[pygame.K_DOWN] and red.y + VEL + red.height < HEIGHT: red.y += VEL def handle_bullets(yellow_bullets, red_bullets, yellow, red): for bullet in yellow_bullets: bullet.x += BULLET_VEL if red.colliderect(bullet): pygame.event.post(pygame.event.Event(RED_HIT)) yellow_bullets.remove(bullet) elif bullet.x > WIDTH: yellow_bullets.remove(bullet) for bullet in red_bullets: bullet.x -= BULLET_VEL if yellow.colliderect(bullet): pygame.event.post(pygame.event.Event(YELLOW_HIT)) red_bullets.remove(bullet) elif bullet.x < 0: red_bullets.remove(bullet) def draw_winner(winner_text): draw_text = WINNER_FONT.render(winner_text, 1, WHITE) WIN.blit(draw_text, (WIDTH/2 - draw_text.get_width()/2, HEIGHT/2 - draw_text.get_height()/2)) pygame.display.update() pygame.time.delay(5000) def main(): yellow = pygame.Rect(100, 300, SPACESHIP_WIDTH, SPACESHIP_HEIGHT) red = pygame.Rect(700, 300, SPACESHIP_WIDTH, SPACESHIP_HEIGHT) yellow_bullets = [] red_bullets = [] yellow_health = 10 red_health = 10 clock = pygame.time.Clock() #Event loop for redrawing the surface, checking collision, updating score run = True while run: clock.tick(FPS) for event in pygame.event.get(): if event.type == pygame.QUIT: run = False pygame.quit() if event.type == pygame.KEYDOWN: if event.key == pygame.K_LSHIFT and len(yellow_bullets) < MAX_BULLETS: bullet = pygame.Rect(yellow.x + yellow.width, yellow.y + yellow.height/2, 10, 5) yellow_bullets.append(bullet) #BULLET_FIRE_SOUND.play() if event.key == pygame.K_RSHIFT and len(red_bullets) < MAX_BULLETS: bullet = pygame.Rect(red.x, red.y + red.height/2, 10, 5) red_bullets.append(bullet) #BULLET_FIRE_SOUND.play() if event.type == YELLOW_HIT: yellow_health -= 1 #BULLET_HIT_SOUND.play() if event.type == RED_HIT: red_health -= 1 #BULLET_HIT_SOUND.play() winner_text = "" if yellow_health <= 0: winner_text = "Red Wins!" if red_health <= 0: winner_text = "Yellow Wins!" if winner_text != "": draw_winner(winner_text) break print(yellow_health, red_health) key_pressed = pygame.key.get_pressed() yellow_handle_movement(key_pressed, yellow) red_handle_movement(key_pressed, red) handle_bullets(yellow_bullets, red_bullets, yellow, red) draw_window(yellow, red, yellow_bullets, red_bullets, yellow_health, red_health) main() if __name__ == "__main__": #__name__ of the file and __main__ is the main file that was run #This means main() will be excecuted when running this file main()
the-stack_106_27965
# Copyright (C) 2014 Christine Dodrill <[email protected]> All rights reserved. # # This software is provided 'as-is', without any express or implied # warranty. In no event will the authors be held liable for any damages # arising from the use of this software. # # Permission is granted to anyone to use this software for any purpose, # including commercial applications, and to alter it and redistribute it # freely, subject to the following restrictions: # # 1. The origin of this software must not be misrepresented; you must not # claim that you wrote the original software. If you use this software # in a product, an acknowledgment in the product documentation would be # appreciated but is not required. # # 2. Altered source versions must be plainly marked as such, and must not be # misrepresented as being the original software. # # 3. This notice may not be removed or altered from any source # distribution. # from flask import Blueprint, flash, render_template, redirect from unimatrix.forms import ServerForm from unimatrix.models import Server from unimatrix import db bp = Blueprint("admin", __name__) @bp.route("/") def index(): return render_template("admin/index.html") @bp.route("/addserver", methods=['GET', 'POST']) def addserver(): form = ServerForm() if form.validate_on_submit(): server = Server(form.name.data, form.description.data, form.ipaddress.data) server.linksumm.append("genesect.yolo-swag.com") db.keys["servers"].append(server.__dict__) db.commit() flash("Success! Added %s" % repr(server)) return redirect("/") return render_template("admin/addserver.html", **locals())